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Abstract  

The intricate arrangement and composition of articular cartilage confer the 

structure its unique material and mechanical properties.  Degeneration of articular 

cartilage, especially osteoarthritis, imposes great burden not only on the patients, 

but also on society.  While there exist various non-surgical and surgical treatment 

methods, continuous research is required to overcome the limitations of current 

therapeutic methods.   

 

Mesenchymal stromal cell (MSC)-based therapy of cartilage defects has been 

developed to generate replacement articular chondrocytes for the production of 

extra cellular matrix.   To develop a novel way of advancing MSC-based therapy, 

we examined the chondrogenic potential of MSCs that have undergone anti-Thy1 

treatments.  Although several studies have suggested a potential link between 

Thy-1 and chondrogenic potential of MSCs, our anti-Thy1 strategy did not 

enhance chondrogenic potential of MSCs.  Furthermore, we report that a common 

lentiviral transduction strategy can compromise MSCs’ chondrogenic capacity, 

and that Thy-1 expression during chondrogenesis is dynamic in its nature. 
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Part A: General Introduction 

 

General Overview 

With advancements in science and medicine, the average life expectancy of a 

human has increased dramatically over the past few decades.  With a prolonged 

life span, people engage in various activities ranging from light activities, such as 

walking and writing, to strenuous activities, like running and cycling, until they 

are older.  Against people’s hope of maintaining active and healthy lifestyle, 

people’s freedom of movements, and therefore their quality of life, is often 

restricted by degeneration of articular cartilage that comes with age or injury.  

While there are many types of joint injuries, osteoarthritis (OA) is especially 

debilitating.  OA continues to progress when the material properties and structural 

integrity of articular cartilage are disrupted.  Articular cartilage lacks the ability to 

heal itself owing to its avascular and aneural nature, and without effective 

treatment methods, the quality of life of OA patients will continue to suffer.  To 

ameliorate the negative effects of OA on individuals and society, various 

treatment methods have been developed.  Although many patients have benefitted 

from these therapeutic methods, more research must be done to overcome the 

obstacles that current treatment methods are facing.  Our current study aims to 

develop a novel way of advancing mesenchymal stem cell (MSC)-based therapy 

via anti-Thy1 strategies.  Several studies have suggested a potential link between 

the cell surface antigen Thy-1 and chondrogenic potential of multipotent MSCs.  

In order to develop a meaningful improvement in current cartilage regeneration 
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technique, it is essential to understand the basic anatomy and physiology of 

articular cartilage, health and social consequences of OA, advantages and 

disadvantages of current treatment methods, dynamic properties of MSCs, and 

current knowledge of Thy-1.  Since gene silencing of Thy-1 via RNA interference 

(RNAi) is integral to our current research, the mechanisms and application of 

RNAi will also be explored.  In order to devise an ideal protocol with which Thy-

1 expression can be effectively reduced, several small experiments have been 

conducted.  How the observations made in these experiments have shaped our 

approach to the central research question will also be demonstrated in this thesis.  

Finally, using the knowledge and insights gained from this review, the role of 

Thy-1 in chondrogenic differentiation of human bone marrow mesenchymal stem 

cells (hBM-MSCs) will be investigated.  Healthy articular cartilage is key to 

maintaining productive and enjoyable life.  This review will provide the basic 

information necessary to understand the purpose and direction of our current 

research.    
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Introduction 

Degeneration of articular cartilage is a leading cause of disability resulting in a 

high economic and social burden on society.  Owing to its avascular and aneural 

nature, articular cartilage cannot heal itself.  Many nonsurgical and surgical 

techniques have been developed to help patients gain improved functionality.  

However, these therapeutic methods have limitations.  Cell-based therapy is one 

of the most recent types of cartilage repair method.  Current cell-based methods 

rely heavily on cell culture propagated autologous chondrocytes, but these cells 

suffer from low cell yields, undergo senescence during culture expansion and 

display poor cartilage forming characteristics.  Because of the limitations of 

autologous chondrocyte implantation, mesenchymal stem cell-based cell therapy 

has been developed.  Bone marrow mesenchymal stem cells (MSCs) are attractive 

as a cell source for joint articular cartilage repair and regeneration because of the 

cells’ multi-lineage plasticity towards a variety of mesenchymal tissues including 

cartilage.  Like any other cartilage repair techniques, MSC-based cell therapy is 

far from being perfect.  Continuous research into finding ways of improving the 

chondrogenic capacity of MSCs is needed to increase the quality of cell-based 

therapy.  Recently, Adesida et al. suggested a potential link between CD90 (Thy-

1) expression and chondrogenic potential of bone marrow MSCs.  In their 

experiment, CD90 protein expression was low in cells with higher chondrogenic 

capacity prior to chondrogenic stimulation.  Although the role of CD90 has been 

explored for more than 40 years, hardly any studies have looked into its role in 

chondrogenesis of bone marrow MSCs.  This review will provide an overview of 
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the anatomy and physiology of articular cartilage, current treatment methods for 

cartilage defects, properties of MSCs, and current knowledge of CD90 antigen.  

The background knowledge provided in this review will help one understand the 

importance of and the logic behind the proposed research. 
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Chapter 1:  Anatomy and Physiology of Articular Cartilage 

1.1 Articular Cartilage 

Articular cartilage is a specialized hyaline cartilage found in diarthrodial joints (1).  

It is hypocellular, aneural, alymphatic, and avascular (2).  Although it appears to 

be a simple inert tissue (3), the structure and composition of articular cartilage is 

very complex and intricate.  Material properties of the hyaline articular cartilage, 

including thickness, cell density, matrix composition, and mechanical properties, 

vary between species and sites (4); however, articular cartilage in all synovial 

joints shares the same components, general structure, and functional purposes (3).  

Across all species, articular cartilage is known to have extraordinary mechanical 

properties.  Moreover, despite the harsh and strenuous functions that the tissue 

serves, articular cartilage has amazing durability (1) that cannot be matched with 

any other synthetic materials. 
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1.2 Composition of Articular Cartilage 

Articular cartilage is composed of two main components: cells and extracellular 

matrix.  Cells account for only about 1% of the volume of adult human articular 

cartilage.  Instead, water and extracellular matrix macromolecules are responsible 

for much of the volume and wet weight of normal articular cartilage (3, 5).   

 

Chondrocytes 

Articular cartilage is made up of only one type of cell, namely chondrocytes.  

Although these highly specialized cells occupy less than 5% of the total volume 

of articular cartilage, they are responsible for the “synthesis, remodeling and turn-

over of the extracellular matrix (6).”  Because each chondrocyte is surrounded by 

extracellular matrix, there is little cell-to-cell contact.  Owing to the avascular 

nature of articular cartilage, chondrocytes must rely on synovial fluid for the 

exchange of organic and inorganic substances that are essential for maintaining 

the integrity of the tissue.  Moreover, the fact that the synovial fluid must pass 

through a “double diffusion barrier” (first the synovial tissue and synovial fluid, 

and then the cartilage matrix) makes the cellular environment hypoxic.  

Consequently, chondrocytes predominantly undergo anaerobic respiration (3).  

The cell shape, density, metabolic activity, and organization differ in different 

zones of the cartilage.  Although articular cartilage can be viewed as being 

“isolated” from the outside environment (owing to its aneural and avascular 

nature), chondrocytes receive, process, and respond to external stimuli that have 

been carried by the extracellular matrix (2).  As one becomes skeletally mature, 
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the chondrocytes’ ability to produce new tissue is largely lost; however, the 

chondrocytes of skeletally mature individuals will continue to regulate matrix 

composition (7).  The metabolic activity of chondrocytes change during the 

course of one’s development and upon varying use of articular cartilage (8).  This 

is how articular cartilage remodels its surface and matrix in response to the 

changes in the external and internal environments. 

 

Extracellular Matrix 

Extracellular matrix (ECM) can be divided into two components: tissue fluid and 

macromolecules.  The composition of extracellular matrix changes with age, the 

type of joint, and the site of joint (9, 10).  The interaction between the two 

components of the ECM contributes to the tissue integrity and properties.   

Tissue fluid 

The major component of the ECM is water, which in the adult tissue represents 

about 70% of the weight (8).  Water content in articular cartilage varies with the 

depth of the tissue.  Water accounts for about 80% of the wet weight at the 

surface and for approximately 65% in the deep zone (11).  Various organic and 

inorganic substances, including gases, small proteins, dissolved electrolytes, and 

various metabolites, are contained in the tissue fluid.  The interaction between the 

tissue fluid and structural macromolecules helps to maintain the fluid and its 

solvents, within the matrix (1, 3).  A small percentage of water is contained in the 

intracellular space (12).  The remainder of the tissue fluid can be found in various 

parts of the matrix.  About half of the water is thought to be associated with the 
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collagen fibers, while the other half seems to be “plasma ultrafiltrate” or free 

interstitial water (13).  Tissue fluid plays an important role in both substance-

exchange and in maintaining the biomechanical properties of articular cartilage.  

The flow of water through cartilage and across the articular surface aids in the 

transport of nutrients to the tissue and of wastes away from the tissue (1).  The 

fluid is also critical in the fundamental mechanism of cartilage load support (14).  

The small pore size of the ECM causes high frictional resistance to fluid flow (1).  

This leads to a high interstitial fluid pressurization, which contributes to more 

than 90% of the load transmission function of cartilage for several hundred 

seconds after loading (14-18).  Furthermore, high pressurization of the fluid phase 

establishes viscoelastic properties of cartilage (19).  The resistive drag of 

interstitial fluid flowing through the low-permeability collagen-proteoglycan 

matrix, along with the intrinsic viscoelasticity of the cartilage solid matrix, is 

primarily responsible for the viscoelastic and dynamic response of cartilage under 

confined compression (14, 20).  The frictional resistance to fluid flow coupled 

with the pressurization of the water within the ECM gives articular cartilage the 

compressive strength and ability to withstand high joint loads (1). 

Collagens 

The collagen network can be described as the “endoskeleton of cartilage” (2).  

The solid phase of articular cartilage is mainly composed of a three-dimensional 

network of collagen fibrils.  About 60% of the dry weight of cartilage comes from 

collagens (1).  Although the concentration of collagens throughout the various 

zones is fairly uniform, the orientation of the fibrils varies between zones (21).  



9	
  
	
  

There are many types of collagen, including collagen type II, III, V, VI, IX, X, 

and XI.  Type II collagen is the predominant form of collagen (90-95%), while the 

contributions by types III, VI, IX, X, and XI collagens are minor (1).   Regardless 

of the types, all collagens are composed of three identical polypeptide chains (α-1 

chains) wound into a triple helix (22).  Collagen II, IX, and XI together form a 

heterofibril (Figure 1-1) (23, 24).  The maintenance of the structure is critical to 

the structural integrity of cartilage and degeneration of this heteropolymer will 

likely compromise the function of cartilage to a great extent (25). 

Type IX collagen accounts for approximately 1% of total collagen, and its 

molecule are covalently bonded to the surface of type II collagen fibrils or with 

other collagen IX molecules (26-28).  It is suspected that type IX collagen plays 

an important role in fibril-fibril and fibril proteoglycan interactions (29, 30).  

Furthermore, the covalent cross-linking of type IX collagen molecules with other 

collagen fibrils seems to be closely associated with the reorganization of the 

collagen network and the consequent network failure in osteoarthritic cartilage 

(28).  Type XI is intimately copolymerized with type II collagen and with other 

collagen XI molecules (31).  It is believed that the control of lateral fibril growth 

is an intrinsic property of appropriate collage II and collagen XI mixtures (32).  

Collagen type III is found in a low abundance.  Nevertheless, cross-linking studies 

show that it is a regular component in articular cartilage.  It is known to be found 

pericellularly throughout the entire depth of the cartilage (33).  Collagen III fibrils 

are linked to other collagen III molecules, as well as to the surface of type II 

collagen (34).  From the extensive cross-linkage between collagen types II and III, 
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along with the fact that type III collagen is known to be prominent at sites of 

healing and repair in skin and other tissues (35),  it is suspected that type III 

collagen plays a key role in matrix reinforcement and a healing response to matrix 

damage (34).   

 

Figure 1-1 The collagen II:IX:XI heterofibril.  A molecular model of the 
collagen type IX fold and interaction site with a collagen II microfibril that can 
account for all known cross-linking sites between collagen II and IX molecules 
(23). 

 

Type VI collagen can be found mostly in pericellular spaces (36), although it is 

also interspersed loosely in spaces throughout the matrix (37).  Lastly, literature 

has suggested that type X collagen is a skeletal-specific molecule that may be 

present in bone, as well as in hypertrophic cartilage (38).  Overall, the intimate 

and intricate association between the various collagen fibrils, coupled with the 
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specific orientation of the fibrils in different zones, confers great tensile strength 

to the cartilage, thereby helping to maintain the volume and shape of the tissue. 

 Proteoglycan 

Proteoglycan (PG) is responsible for approximately 10-15% of the wet weight of 

articular cartilage.  PG is secreted by chondrocytes, into the ECM (1).  Although 

its presence in our body is ubiquitous, PG is most abundantly found in the hyaline 

cartilages (30).  A PG monomer consists of a core protein with covalently bound 

glycosaminoglycan (GAG) side chains (Figure 1-2) (1, 2, 30).  The 

macromolecules are called the PG aggrecan molecule.  Many PG aggrecan 

molecules interact non-covalently with hyaluronic acid to form large proteoglycan 

aggregates (30, 39).  The hyaluronan and aggrecans are joined via link protein 

(Figure 1-2) (40).  A single GAG is an unbranched chain of repeating 

disaccharide units.  Four types of sulfated GAGs, namely chondroitin sulfate, 

dermatan sulfate, keratin sulfate, and heparin sulfate, and a non-sulfated GAG 

(hyaluronic acid) are found in articular cartilage (30, 41).  Overall, these GAG 

side chains contain numerous negatively charged carboxyl and sulfate groups.  

The negative charges on the GAG side chains repel one another and make the 

aggregates swell.  The distended volume of the PG adds to the tensile strength of 

the collagen network.  Furthermore, the high concentration of negative charges 

attracts water and cations.  The large number of ions creates an osmotic pressure, 

which enhances fluid flow into the tissue.  These properties of PG give articular 

cartilage its elasticity and resilience (42, 43). 
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Figure 1-2 Diagram of the proteoglycan aggregate and aggrecan molecule.(44)   
Non-aggregating proteoglycans, such as biglycan, decorin, and fibromodulin, are 
also present in articular cartilage and are thought to help stabilize the ECM (45).  
The structure, composition, and concentration of proteoglycans vary throughout 
the tissue depth and with age (46-48).   
 

Non-collagenous proteins and glycoproteins 

Articular cartilage also contains other substances, including non-collagenous 

proteins and various glycoproteins.  Although their functions are not fully 

understood, it is suspected that they have roles in maintenance and organization of 

macromolecular structure of the matrix, cell-matrix interactions, and the 

responses of the tissue in inflammatory arthritis and osteoarthrosis (3). 
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1.3 Zones of Articular Cartilage 

Articular cartilage can be roughly divided into four horizontal layers, or zones: 

the superficial, transitional or middle, deep or radial, and calcified cartilage zones 

(Figure 1-3).   

	
  
Figure 1-3 Stratified structure of cartilage demonstrating zonal arrangement. 
(44) 

 

Each zone has its unique morphological, compositional, and organizational 

features (2, 3).  In addition, articular chondrocytes from various zones are 

significantly different in their morphology, rate of proliferation, and biochemical 

activity (49, 50).  These characteristics are of functional importance. 
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Superficial Zone 

The outermost layer, or the superficial zone, is the thinnest zone of all.   This 

layer can be divided into two sub-zones.  The first sub-zone is the lamina 

splendens (Figure 1-4). The lamina splendens is acellular sheet of fine fibrils that 

covers the joint surface.  The second-zone consists of both chondrocytes and 

collagen fibers.  Within this sub-zone, the collagen fibrils run parallel to the 

surface (1, 21, 51, 52).   The parallel orientation of these collagen fibrils gives this 

zone greater stiffness, greater strength, and less extensibility compared to the 

deeper zones (53).  The second sub-zone contains the flattened chondrocytes that 

show a low PG production activity and a high PG degradation activity (49, 50, 52).  

Consequently, the PG content of the superficial zone is at its lowest.  It should 

also be noted that fibronectin and water concentrations are highest in the region 

(1-3).  These characteristics of the superficial zone contribute to the functional 

and biochemical properties of articular cartilage.  The results from a confined 

compression creep experiment showed that the superficial zone plays a critical 

role in restricting fluid exudation and interstitial fluid movement within the tissue, 

thereby contributing to the compressive behavior of articular cartilage (54).  In 

addition, biomechanical and biochemical testing on canine superficial-zone 

specimens demonstrated that the disruption and remodeling of the collagen 

network in the superficial zone may play a critical role in the development of 

osteoarthritis (55).   
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Figure 1-4  Schematic view of the collagen fibrillar organisation in human 
articular cartilage in a full thickness block, from the surface to the deep 
subchondral bone (21). 
	
  

Transitional (Middle) Zone 

The transitional or middle zone is sandwiched between the superficial and deep 

zones.  The volume of this zone is typically several times greater than that of the 

superficial zone.  The collagen fibers have larger diameters and show a random 

arrangement (1, 2, 52).  The chondrocytes in this region are rounder.  These 

spheroidal-shaped cells are rich in synthetic organelles, endoplasmic reticulum, 

and Golgi membranes.  Consequently, the proteoglycan concentration is higher in 

this zone compared to the superficial zone.   

 

Deep (Radial) Zone 

The chondrocytes in the deep zone are round in shape, and are grouped in 

columns that are perpendicular to the joint surface.  This zone is characterized by 
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collagen fibrils with largest diameters, the highest PG concentration, and the 

lowest water concentration (3).  Collagen fibers are organized into randomly 

arranged large bundles (approximate diameter = 55µm) (2, 21). 

 

Tidemark 

A wavy, irregular line called the tide mark separates the deep zone from the 

calcified zones (Figure 1-5a) (2).  The formation of tidemark is an active process 

(56).  The tide mark has periodic gaps, which might provide suitable pathways for 

substance-exchange between the non-calcified cartilage, calcified cartilage, and 

subchondral bone (Figure 1-5b).  

 
 
 

 
Figure 1-5a SEM micrograph of a 
perpendicular section of normal 
articular cartilage (reduced from x 
300). NC: non-calcified cartilage; SB: 
subchondral bone; T: tidemark (57). 

 
 
  

 

 
Figure 1-5b SEM micrograph of a 
perpendicular section of articular 
cartilage showing a gap (↓) in the 
Tidemark (reduced from x500). NC: 
non-calcified cartilage; SB: 
subchondral bone; T: tidemark (57)
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Calcified Zone 

The calcified zone is thin and is closest to the subchondral bone.  This region is 

largely devoid of proteoglycans (2).  The cells are round and contain only small 

amounts of endoplasmic reticulum and Golgi membranes.  These chondrocytes 

show a low level of metabolic activity (3) and are distributed randomly in the 

apatitic salts-rich matrix (1).  Electron microscopy scans showed that collagen 

fibers run perpendicular to the articular surface (51).  These fibers are arranged in 

small bundles, which combine into larger bundles at the tidemark (Figure 1-6) (2, 

21).  This branching of fibrils diffuses and distributes the load over the entire 

cartilage-subchondral bone boundary (57).  The collagen fibers anchor the rest of 

the cartilage structure to the subchondral bone underneath.  Furthermore, the 

calcified zone likely blocks the transport of nutrients from the subchondral bone.  

Consequently, articular cartilage must depend on synovial fluid for nutritional 

support (1). 
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Figure 1-6 A split in the fibrillar structure of the calcified zone showing fibre 
bundles oriented toward the surface.  Calcified fibre bundles (arrow A) appear 
to be aggregated to form larger bundles (arrow B) shown sectioned at the exposed 
surface.  The underlying trabecular (T) are also exposed at the base of the split 
(reduced from x 330) (21). 
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1.4 Biomechanical Properties and  Functions of Articular Cartilage 

Articular cartilage must endure tremendous stresses and strains that develop 

during normal daily activities like walking, running, and jumping.  The average 

load that a knee joint experiences during a daily life is about three times greater 

than the body weight (58).  The ability of articular cartilage to store, transmit, and 

dissipate mechanical energy, coupled with its tensile and compressive properties, 

enables the cartilage to withstand the forces.  The crosslinking of collagen fibrils 

is responsible for the tensile strength, while PGs and water within the collagen 

network confers resilience to the structure.  Repulsion between the negatively 

charged PG side chains resists compression beyond a “point-of-no-return.”  The 

shape of the tissue is restored when water returns back to the structure as load is 

released (1).  The fact that interstitial fluid pressure provides support to more than 

95% of the applied load in normal activities partially explains why articular 

cartilage can withstand the high repetitive loads for many decades (1, 59)  The 

viscoelastic nature of articular cartilage is also critical for functioning of healthy 

articular cartilage.  The frictional drag resulting from interstitial fluid flow is the 

main source of the viscoelastic property.  The loss of this drag as a result of 

increased permeability and water content leads to a loss of stress-shielding effect 

to protect the ECM (60).  The intrinsic properties of the components of articular 

cartilage, their organization within the tissue, and interactions between the 

individual components contribute to the function of articular cartilage to provide a 

smooth, low-friction surface at the joint and to effectively and efficiently support 

and distribute load with great durability. 
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Chapter 2: Degeneration and Repair of Articular Cartilage 

2.1 Degeneration of Articular Cartilage and its Impact on Society 

When the molecular composition and organization of articular cartilage are 

disrupted, the material properties and structural integrity of the tissue deteriorate.  

Because of its aneural and avascular nature, articular cartilage has a limited ability 

to respond to injury (61-63).  Although there are many types of joint 

diseases/injuries, osteoarthritis (OA) or osteoarthrosis is the leading cause of 

chronic disability.  Although OA can be caused by multiple factors, such as 

trauma, joint laxity, crystal deposition, bone microfractures, and immunological 

factors, aging and mechanical wear resulting from excessive repetitive loading of 

the cartilage are the two most well-understood causes of the breakdown of 

articular cartilage (2).  Decreases in tensile strength of weight-bearing articular 

cartilage resulting from changes in the organization of the collagen fiber network 

begin after the third decade of life (64).  With increasing age, human articular 

cartilage experiences fundamental changes in the sizes and compositions of its 

proteoglycans.  It has been also noted that during aging, there is “the progressive 

accumulation of the hyaluronic acid-binding region essentially free of the keratan 

sulphate-rich region and the rest of the proteoglycan monomer, and the 

progressive partial cleavage of the link proteins (65).”  Furthermore, arthritic 

cartilages undergo much more collagen degradation compared to healthy 

cartilages (66).  Loss of type II collagen content leads to softening of the tissue, 

and eventually to cartilage destruction (2).  A basic summary of the progression of 

degeneration of articular cartilage in osteoarthrosis is illustrated in Table 2-1 (61). 
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Table 2-1 Stages in the Development and Progression of Degeneration of 
Articular Cartilage in Osteoarthrosis (61). 

Stage Description 
I: Disruption or alteration of 
cartilage matrix 

Disruption or alteration of macromolecular 
framework of matrix associated with increase in 
concentration of water that may be caused by 
mechanical insults, degradation of matrix 
macromolecules, or alterations of chondrocyte 
metabolism.  At first, concentration of type-II 
collagen remains unchanged, but collagen 
meshwork may be damaged, and concentration of 
aggrecans and degree of proteoglycan aggregation 
decrease. 

II: Response of chondrocytes to 
disruption or alteration of 
matrix 

When chondrocytes detect a disruption or alteration 
of their matrix, they can respond by increasing 
synthesis and degradation of the matrix and by 
proliferating.  Their response may restore tissue, 
maintain tissue in an altered state, or increase 
volume of cartilage.  They may sustain an 
increased level of activity for years. 

III: Decline in response of 
chondrocytes 

Failure of chondrocytic response to restore or 
maintain tissue leads to loss of articular cartilage 
accompanied or preceded by decline in 
chondrocytic response.  The causes for this decline 
remain poorly understood, but they may partially 
result from mechanical damage to tissue with 
injury to chondrocytes and down-regulation of 
chondrocytic response to anabolic cytokines. 

 

According to the World Health Organization’s 2011 report, 9.6% of men and 18.0% 

of women older than 60 years of age worldwide suffer from symptomatic 

osteoarthritis (OA) (67).  Furthermore, it is estimated that in the year 2020, about 

18.2 % of the U.S. population or roughly 59.4 million people will be affected by 

OA (68).  OA has a large impact on people’s quality of life.  Almost 80% of OA 

patients experience limitations in movement, and 25% reported that they cannot 

perform their daily activities (67).  Moreover, health-related quality of life 

(HRQOL) of OA patients was measured to be lower than that of individuals 
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suffering other chronic diseases, including chronic obstructive pulmonary disease, 

low blood pressure, and irritable bowel syndrome (69).  OA is not only a problem 

of health, but is also economically burdensome.  “The economic burden of a 

disease comprises direct costs, such as the costs of drugs, medical care, hospitals, 

research, pensions and benefits, and indirect costs, such as premature mortality 

and chronic and short-term disability (70).”  It has been reported that people with 

OA are less likely to be employed relative to workers without OA pain.  This 

difference was mainly due to the OA patients’ impaired productivity at work (p < 

0.0001) (71).  According to the same study, healthcare resource utilization was 

also significantly higher (p < 0.0001) among the workers with OA pain than those 

without OA pain (71).  Another study that was conducted in 2010 also noted that 

as the severity of OA increased, the cost related to lost work productivity also 

increased (72).  OA is a pervasive disease and is becoming a greater concern as 

the average lifespan of humans continues to increase.  It is also important to note 

that any kind of cartilage defect can be detrimental to quality of life.  Effective 

and efficient treatment methods are needed to help people maintain healthy life.   
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2.2 Nonoperative Treatments 

The initial management of cartilage lesions is largely nonoperative.  The 

nonoperative treatments include but are not limited to deep heat (diathermy) 

therapy (73), cryotherapy (74, 75), physical therapy, bracing (76-79), exercise 

(80-82), activity modification through patient education (83), topical medications 

(84), systemic medications (ex. analgesics, nonsteroidal anti-inflammatory drugs, 

glucosamine and chondroitin sulfate) (85-88), and intra-articular medications (89, 

90).  The primary aim of the initial treatment is to control symptoms and improve 

joint function.  However, it is important to note that patient responses to these 

initial treatment methods are unpredictable.  Although these treatment modalities 

can be effective at relieving pain and improving function in affected patients, they 

do not treat the underlying cause and more invasive methods of treatments are 

often required (1).  These nonoperative treatments can also be used post-surgery 

to relieve pain or to enhance recovery.  These treatment methods are more 

approachable, less invasive, and many times cheaper than operative treatments.  

However, some of the nonoperative treatments can cause serious complications in 

patients.  For instance, although nonsteroidal anti-inflammatory drugs (NSAIDs) 

have been used many years to relieve pain, continuous use of the drugs can lead to 

gastrointestinal bleeding, cardiac dysfunction, and kidney dysfunction, and can 

even be detrimental to bone and tendon healing (91-95). 
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2.3 Marrow Stimulation Techniques 

Both patient-specific and lesion-specific variables must be taken into account 

when making the decision on the surgical management of cartilage defects.  

Patient-specific variables include things such as age, physical fitness, body mass 

index (BMI), and associated injuries, while lesion-specific variables include level 

of acuteness, size and location, containment, and history of previous surgical 

interventions (96).  One of the most commonly performed procedures for cartilage 

lesions is marrow stimulation technique.  This category of surgical intervention 

includes strategies such as transcortical Pridie drilling, abrasion arthroplasty, 

microfracture, and enhanced microfracture (96, 97).  In treating symptomatic 

cartilage damage, marrow stimulation strategies are among the most frequently 

used methods.  Owing to the avascular nature of articular cartilage, full-thickness 

cartilage injuries that do not involve bone have limited intrinsic capacity to heal 

on their own.  The principle of marrow stimulation is therefore to create blood 

supply and facilitate the local recruitment of multipotent bone marrow 

mesenchymal stem cells to the otherwise avascular joint surface.  These vascular 

access channels also allow an inflow of fibrin, platelets, and various growth 

factors to the area of defect and allow the formation of what is called “super-clot 

(1).”  This technique is effective because human mesenchymal stem cells (hMSCs) 

have the ability to form a type of repair cartilage.  However, the mechanical 

properties of the newly formed tissue have been reported to be closer to those of 

fibro-cartilage.  Fibrocartilage is predominantly made up of collagen type I, while 

the main constituent of hyaline cartilage is type II collagen.  Consequently, 
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“growing fibro-cartilage into areas previously occupied by hyaline cartilage will 

expose the new tissue to a mechanical environment characterized by compressive 

forces to which it is somewhat ill-equipped (96).”  However, more recent studies 

have reported that the newly grown tissue may be a combination of fibro-cartilage 

and hyaline-like cartilage (98), indicating that the newly formed tissue might be 

more resilient to mechanical forces than what had been expected.  It is now 

understood that the hMSCs differentiate into fibrochondrocytes that produce 

varying amounts of type I and II collagens (99-101).  Nevertheless, the inferior 

quality of the repair tissue, incomplete defect filling and new bone formation in 

the defect area are limitations of these methods (99). The methods and 

mechanisms of microfracture technique will be explored further to enhance the 

understanding of the marrow stimulation strategies. 

 

Microfracture 

A popular method of treating cartilage lesions is microfracture.  After the 

destroyed and unstable cartilage is removed arthroscopically, micropenetration of 

the subchondral plate can be performed (Figure 2-1, Figure 2-2).  Perforation of 

subchondral bone plate facilitates the filling of the cartilage defect with a blood 

clot that contains hMSCs.  This technique is an appealing treatment option, 

because it is relatively simple to perform and carries minimal morbidity (96).  

Other strengths of this technique include its limited invasiveness, relatively short 

postoperative recovery time, and cost-effectiveness (97). 
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Figure 2-1 Surgical technique of microfracture: Creation of vertical margins 
and removal of the calcific cartilage layer with curette or Volkmann spoon.  
Perforation of subchondral bone plate with microfracture awl to facilitate 
mesenchymal stem cell clot formation.  Awl tip should be driven perpendicularly 
into sub-chondral bone.  Gradual conversion of ‘super-clot’ into fibro-cartilage 
over a period of 8 to 12 weeks (96). 

 
Figure 2-2 Full thickness cartilage defect on medial femoral condyle treated 
with microfracture in accordance to the technique shown in Figure 2.1.  
Second look arthroscopy at 9 months revealed complete coverage with repair 
cartilage (far right) (96).  
 

In a study, 40 patients with a single symptomatic cartilage defect and no general 

osteoarthritis in the knee were enrolled in a randomized experiment.  These 

patients received microfracture treatment, and a five-year follow-up evaluation 

showed that approximately 77% of the patients were satisfied with their results 

(98).  Similar studies have shown that microfracture repair of articular cartilage 

lesions in the knee results in significant functional improvement and relief from 

pain (102, 103). 
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2.4 Replacement Techniques 

Replacement techniques involve, but are not limited to osteochondral autograft 

transplantation, osteochondral allograft transplantation, and the use of synthetic 

resorbable scaffolds.  The basic principle behind the techniques is to “provide 

instantaneous repair through structural reconstitution (96).”  Two of these 

techniques will be reviewed further. 

 

Osteochondral Autograft Transplantation  

Osteochondral autograft transplantation (OAT), also known as mosaicplasty, is 

based on the transfer of one or more cylindrical osteochondral plugs into the 

chondral defect of the weight-bearing cartilage.  Grafts that are about 2.5 to 

10mm in diameter are harvested from comparatively non-weight bearing 

periphery of the trochlea or inter-condylar notch.  These plugs are then placed into 

the recipient site using a press-fit technique (Figure 2-3) (96, 97).  Hangody et al. 

reviewed 831 mosaicplasties that were done at their institution.  “The results of 

the resurfacing procedures were evaluated at regular intervals with use of 

standardized clinical scores and radiography, and selected patients were also 

assessed with magnetic resonance imaging, second-look arthroscopy, histological 

analysis of biopsy materials and cartilage stiffness measurement (104).”  

Although complications were observed in 40 out of the 831 patients after surgery, 

“69 of the 83 patients who were followed arthroscopically demonstrated good 

gliding surfaces, histological evidence of survival of the transplanted hyaline 

cartilage, and fibrocartilage covering of the donor sites (104).”  Likewise, Jakob 
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et al. examined 52 patients who had mosaicplasty of the knee.  Although four 

patients required reoperation owing to graft failure, their two-year follow-up 

study showed that an increased level of knee function was found in 86% of the 

patients.  The OAT technique has been evaluated in many other studies, and 

showed encouraging results (105-109).  However, this technique has its 

limitations.  These limitations include “difficulty restoring concave or convex 

articular surfaces, incongruity of articular surfaces that can alter joint contact 

pressures, short-term fixation strength and load-bearing capacity, donor site 

morbidity, and lack of peripheral integration with peripheral chondrocyte death 

associated with graft harvesting and insertion (97).”  Furthermore, the technique 

is limited by the amount of donor tissue available, and therefore is best suited for 

lesions of less than 4cm2 (96). 

 

Osteochondral Allograft Transplantation 

The surgical procedures of osteochondral allograft transplantation are similar to 

those of OAT.  The major difference is that this specific technique uses 

osteochondral grafts harvested and maintained by a tissue bank.  Like OAT, many 

positive results have been reported on osteochondral allograft transplantation 

method (110-113).  Although this technique avoids the donor site morbidity, the 

treatment method has the same kind of issues found in OAT.  Additional 

disadvantages of osteochondral allograft transplantation include higher cost, 

potential for disease transmission and potential for immunologic reactions (112).   
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Figure 2-3 Miniarthrotomy mosaicplasty (104). 

 

In addition, tissue availability is a major limiting factor of the treatment method, 

because long-term storage of the grafts is discouraged.  It has been suggested that 

the implantation should be performed within 28 days of graft harvest, because the 

material properties of hypothermically stored grafts steadily decrease over time 

(114). 
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2.5 Cell Based Therapy  

In the early 1970s, Bentley et al. demonstrated that the homografts of epiphyseal 

cells in suspension can survive, produce matrix and become incorporated into 

defects made in the tibial articular surface of adult rabbit knees.  Moreover, the 

cells arranged themselves into layers similar to those found in surrounding 

cartilage and endochondral ossification occurred in the base of the graft (115).  

This finding sparked the development of clinical tissue engineering.  One of the 

first forms of cell-based therapies is autologous chondrocyte implantation (ACI).  

However, the limited ability of chondrocytes to expand ex vivo has led to the 

investigation of MSCs as an alternative cell source.  “The cellular therapies seek 

to generate replacement articular chondrocytes for the production of cartilage 

tissue thereby reducing pain, restoring joint function and delaying the onset of 

cartilage degradation and the need for prosthetic joint replacement (116).” 

 

Autologous Chondrocyte Implantation 

In ACI, biopsies of articular cartilage that are taken from the low weight-bearing 

region of the patellofemoral joint are expanded ex vivo for the re-implantation into 

debrided areas of the damaged weight-bearing surface (116-119).  To reduce the 

risk of cell leakage from the graft site and promote more homogeneous 

distribution of chondrocytes throughout the graft, next generations ACI 

procedures, including Matrix-Assisted Chondrocyte Implantation (MACI) and 

autologous chondrocyte scaffolds have been developed (120-124).  The results 

from ACI treatments have been encouraging (125-129).  A review has suggested 
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that ACI technique might be more effective than some other techniques at 

repairing articular cartilage defects (130), although more studies need to be done 

to validate the argument.  Furthermore, long-term effectiveness of the treatment 

method still needs to be confirmed.  Disadvantages of the procedure also include 

technical difficulties with fixation of the membrane, problems with graft 

delamination and overgrowth (hypertrophy), invasiveness of the procedure, the 

requirement for a second surgery, dedifferentiation of mature chondrocytes into 

fibroblast-like cells, and high  medical expenses (131-135). 

 

Mesenchymal Cell-Based Repair  

This technique shares the same principle as ACI; however, the source of cells is 

hMSCs rather than mature chondrocytes.  In 1999, Pittenger et al. demonstrated 

multipotent nature of hMSCs by differentiating adult hMSCs into three cell 

lineages of adipocytes, osteoblasts and chondrocytes (136).  Ever since, interest in 

the application of hMSCs for the development of articular cartilage cell-based 

therapies was reignited.  Various studies have shown that the MSCs can be 

differentiated into chondrocytes that are capable of producing functional cartilage 

matrix. MSCs have been traditionally harvested from the iliac crest.  The 

harvested MSCs can be expanded in monolayer culture until they are collected to 

be injected into the site of defect.  Mesenchymal stem cell-based therapy has 

shown positive results, although long-term effectiveness of this treatment method 

is still unclear (137-140).  One of the advantages of using MSCs for cartilage 

repair is their high proliferative ability.  This ability allows for application of the 
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treatment method to very large defects.  Another potential advantage is that “they 

may be more active than host autologous chondrocytes and produce a more 

regenerative matrix (141).”  However, this idea is only a speculation and has not 

been proven.  Despite its advantages, continuous research is needed to improve 

the technique.  The biological and mechanical properties of hMSCs-derived repair 

cartilage are still thought to be inferior to those of normal human articular 

cartilage.  Variability in the quality of hMSCs (142) and subsequently of 

differentiated chondrocytes also needs to be controlled for, if this treatment 

method is to become more effective.  “The challenge [of the cell-therapy] is to 

produce a neocartilage that is sufficiently mature to withstand the biochemical 

environment of the joint, but immature enough to allow not only remodeling but 

also integration with host tissue, including the subchondral bone below the defect 

(141).” 
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Chapter 3: Mesenchymal Stem Cells and their Chondrogenic Potential  

3.1 Definition of Mesenchymal Stem Cells 

In general terms, MSCs are cells that have the capacity to self-renew and give rise 

to cells of multiple lineages.  Although self-renewal and multipotency are two 

broad criteria that define MSCs as real stem cells (143), exact definition of MSCs 

is a matter of debate.  Nevertheless, the Mesenchymal and Tissue Stem Cell 

Committee of the International Society for Cellular Therapy (ISCT) suggested 

minimal criteria to define human MSCs: (1) MSCs must be plastic-adherent when 

maintained in standard culture conditions and form colony-forming unit 

fibroblasts (CFU-Fs), (2) MSCs must express CD105, CD73, and CD90, and lack 

expression of CD45, CD34, CD14 or CD 11b, CD79α, or CD19, and HLA-DR 

surface molecules, and (3) MSCs must differentiate to osteoblasts, adipocytes, 

and chondroblasts in vitro (144).  However, these characteristics might not be a 

correct representation of unmanipulated MSCs in vivo.  It has been suggested that 

discrepancies between various reports on the characteristics of MSCs might arise 

due to the differences in isolation method, tissue and species of origin, and culture 

conditions (145).  The fact that there is no efficient method of characterizing 

unmanipulated MSCs is of special concern, because MSCs are extremely 

sensitive to their physical environment.   

 

Various studies have demonstrated that hMSCs undergo alterations in their 

physiology and chemistry during culture (146).  For instance, a distinct expression 

of certain surface antigens including CD45 and CD31 was found in freshly 
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isolated hMSCs, while the expression was significantly lower in culture expanded 

hMSCs (147).    MSCs were first recognized and have been primarily studied in 

vitro (145).  There has been minimal information on the in vivo behavior and 

characteristics of MSCs, mainly because MSCs represent only about 0.001-0.01% 

of the total number of nucleated cells in the bone marrow (136).  Without in vitro 

expansion, efficient and realistic examination of the MSCs is extremely difficult.  

Although the concept of a stem cell has been one of the organizing principles of 

developmental biology for more than a century, our understanding of MSC 

biology remains rudimentary.  Like the multipotent nature of MSCs, the definition 

and concept of stem cells have shifted continuously and have displayed a 

remarkable degree of plasticity (148).   
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3.2 Characteristics of Mesenchymal Stem Cells  

Historically, MSCs from the bone marrow stroma have been the “gold standard” 

of stem cell research.  Furthermore, bone marrow MSCs are the most advanced 

MSCs with regard to clinical development (149).  However, mesenchymal stem 

cells are known to reside in virtually all post-natal organs and tissues, including 

the brain, spleen, liver, kidney, bone marrow, muscle, fat, periosteum, trabecular 

bone, and deciduous teeth (150-155).  Although various studies have reported on 

varying differentiation potential among the MSCs from different tissue sources 

(156, 157), there are certain characteristics that are common to all MSCs.  Apart 

from what has already been discussed in Chapter 3.1, some important features of 

all types of MSCs include their immunological characteristics and response to 

continuous passaging in vitro. 

 

Immunological Characteristics 

Several studies reported that MSCs escape immune recognition and inhibit 

immune responses (158).  In conjunction with this observation, it was also 

reported that MSCs and their differentiated derivatives do not express HLA-Class 

II antigens in vitro and possess only low level expression of co-stimulatory 

molecules (159).  More specifically, the immune phenotype of cultured MSCs is 

widely described as MHC Class I+, MHC Class II-, CD40-, CD80-, and CD86- 

(160).  These phenotypes suggest the nonimmunogenic nature of MSCs and imply 

that MSCs might be effective in inducing tolerance.  These immunological 

characteristics make MSCs suitable for clinical use in an allogeneic manner in 
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diverse regenerative medicine approaches (161).  Moreover, MSCs have the 

capacity to engraft into various tissues and organs when infused systemically, and 

this engraftment has been shown to be stable in the long term (162, 163).  

Although the exact mechanism of immunomodulatory effects of MSCs is not 

clear, their low expression of class II Major Histocompatibility Complex and 

costimulatory molecules in their cell surface augments their potential utility in 

tissue engineering, and cellular and gene therapy (164). 

 

Effect of Continuous Passaging 

Despite its great potential as a clinical tool, MSCs have their limitations.  MSCs 

have a limited lifespan in vitro as any normal, somatic cell.  After a certain 

number of cell divisions, MSCs enter senescence, which is morphologically 

characterized by enlarged and irregular cell shapes and is ultimately a stop of 

proliferation (165).  It has been shown that MSCs demonstrate loss of 

multipotentiality (166), morphological abnormalities, enlargement, attenuated 

expression of specific surface markers, and stop in proliferation within 43 to 77 

days of cultivation (7 to 12 passages).  These changes are thought to be a 

continuous process starting from the first passage onwards (167).  Because MSCs 

must be expanded in vitro in order to generate enough cells to be used during cell 

therapy, the ‘mortal’ property of MSCs can be a limiting factor for the clinical 

application of MSCs.  
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3.3 Heterogeneous Population of Mesenchymal Stem Cells 

Human MSCs are known to be heterogeneous in terms of their morphology and 

their differentiation potential (163).  Moreover, a change in the composition of 

hMSC population during the course of culture expansion has been reported (168).  

Heterogeneity of MSC can refer to various aspects (168): (A) Proliferation rate: 

MSCs can be divided into slow-growing and fast-growing categories; (B) 

Morphology: spindle-shaped, large flat and small round MSCs have been 

observed (169); (C) Growth pattern: tight or disperse (170); (D) 

Immunophenotype: different subsets of the MSC population expressed distinct 

cell surface antigens (171, 172); (E) Multilineage differentiation potential: 

MSCs are known to be multipotent.  However, clonal analysis of single-cell 

derived colonies has demonstrated that not every cell possesses differentiation 

potential toward osteogenic, adipogenic, and chondrogenic lineages and that 

MSCs tend to lose adipogenic and chondrogenic potential at increasing cell 

doubling (173-176); (F) Heterogeneity in the level of differentiation toward a 

specific lineage: it has been suspected that different subsets of MSCs are 

committed to different differentiation pathways.  The gradation of osteogenic, 

adipogenic, or chondrogenic differentiation varies between different clones but 

this has hardly been addressed so far (175); and finally (G) Cellular aging:  

MSCs are diverse in their states of cellular aging (177).  

 

A subject of particular interest is the existence of uncommitted mesenchymal 

progenitor cells in MSC cultures (178).  According to Colter et al. (179), the 
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developmental and growth stages of cultured MSCs can be divided into three 

phases: a lag phase, a log phase or rapid growth, and a stationary phase.  In 

stationary cultures of bone marrow, a majority of MSCs were large and 

moderately granular (also called mature MSCs or mMSCs), while a minority of 

MSCs was small and agranular.  The small and agranular cells are termed 

recycling stem cells (RS-1 cells).  It has been shown that these RS-1 cells give 

rise to a new population of small and densely granular cells (RS-2 cells) during 

the lag phase.  During the late log phase, the RS-2 cells decrease in number and 

regenerate the pool of RS-1 cells found in stationary culture.  The authors suggest 

that the earliest progenitors in the cultures are RS-1 and RS-2 cells.  Therefore the 

number of RS-1 and RS-2 cells in any sample of MSCs should reflect the number 

of cells that generate single-cell derived colonies in cfu-assays.  All of the cells in 

the cultures of MSCs were consistently negative for markers for hematopoietic 

cells (CD34, CD11B, CD43, and CD45).  More interestingly, the mMSCs were 

positive for CD90 (Thy-1), while RS-1 cells were dimly positive and the RS-2 

cells were negative for this specific cell marker.   
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The authors suggest a mechanism (Figures 3-1 and 3-2) by which interactions 

between the RS-1 and RS-2 cells give rise to mMSCs.  mMSCs are relatively 

mature and slow dividing and become the predominant cell as the cultures 

approach senescence (166).  The findings by Colter et al. have been consistent 

throughout various studies, including the work by Mets and Verdonk (180).  Mets 

and Verdonk reported that there are two cell types in human bone marrow derived 

stromal cells: type I cells, which look like typical fibroblast-like cells, and type II 

cells that are large and resemble epithelial-like cells in morphology.   

 
 
Figure 3-1 Time course of number of 
cells observed after initial plating of 
cells.  Values   are adjusted for the 
total number of cells in the cultures 
(179). 
 

 

 

 
Figure 3-2 Scheme for the 
precursor-product relationships of 
cells in cultures of MSCs.  The large 
mMSCs replicate poorly.  Therefore, 
the RS-2 cells that appear during the 
lag phase must arise from RS-1 cells.  
During the early log phase of growth, 
the RS-2 cell decline in number as the 
mMSCs appear in large numbers.  
Therefore, the RS-2 cells are probably 
precursors of the mMSCs.  However, 
the data do not completely exclude the 
possibility that RS-2 cells rapidly 
generate RS-1 cells, and the RS-1 cells 
then give rise to mMSCs (dashed 
arrow).  Also, the earliest mMSCs 
probably continue to replicate.  During 
the late log phase, the RS-2 cells 
decline in number, and the 
subpopulation of RS-1 expands.  
Therefore, the RS-2 cells probably 
recycle into RS-1 cells (179).   
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The authors observed that type II cells were largely non-dividing, while type I 

cells were rapidly dividing.  Phase I cultures consisted mainly of type I cells, but 

this cell population decreased over subsequent passages.  Because the type II cells 

formed an increasing fraction of the population as the culture aged, the authors 

suspect that type I cells act as progenitor cells, giving rise to non-dividing type II 

cells.  More interestingly, another study by the same authors found that the donor 

age is inversely related to type I cell population and directly related to type II cell 

population (181).  It would also be interesting to test if the decrease in the number 

of type 1 cells (or RS-1 or RS-2 cells) is related to the loss of multipotentiality 

following serial passage in culture (166).  These results from various authors 

highlight the fact that identification of different subgroups within the MSC culture 

will be very important when using MSCs for cell and gene therapy (179).   

 

Another topic of special interest is the notion of specific lineage-priming.  

Lineage-priming is a molecular model of stem cell differentiation in which 

proliferating stem cells express a subset of gene associated to the differentiation 

pathways to which they can commit (174).  Two models of stem cell 

differentiation have been proposed (Figures 3-3).  The second model corresponds 

to lineage-priming hypothesis.  Delorme et al. suggested that the later model of 

stem cell differentiation is a more accurate representation of MSC differentiation 

(174).   
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Figure 3-3. Gene-expression patterns as a function of transition from a stem-
cell to a maturing-cell state. (a) One possibility is that the stem cell is a ‘blank 
slate’ and that differentiation entails acquisition of different gene-expression 
capacities (indicated by protrusions of different colours). (b) An opposing 
possibility is that stem cells express many genes at a low level (indicated by small 
protrusions), and that the expression of many of these is reduced during 
differentiation, with the expression of a small collection of the rest increased to a 
higher level (indicated by larger protrusions)(182). (Reprinted by permission from 
Macmillan Publishers Ltd: Nature Reviews Genetics, Zipori D. The nature of 
stem cells: state rather than entity. 2004, 5(11): p.873-8. Copyright 2004. 
http://www.nature.com/nrg/index.html) 
 

They showed that proliferating primary layers and clones of bone marrow MSCs 

have precise priming to the osteoblastic, chondrocytic, and adipocytic lineages 

and further demonstrated that MSCs cultured in the presence of inducers 

differentiate into the lineages for which they are primed.  In support of this view, 

various other studies have shown that not every cell is tripotent and that MSCs are 

heterogeneous in terms of lineage commitment (173, 175, 176).  For example, 

Muraglia et al. analyzed the ability of 185 non-immortalized human bone marrow 

stromal cell clones to differentiate into osteogenic, chondrogenic, and adipogenic 

lineages (173).  They found that “all clones but one differentiated into the 
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osteogenic lineage.  About one third of the clones differentiated into all three 

lineages analyzed, [but] most clones (60-80%) displayed an osteo-chondrogenic 

potential.”  Similar to Figure 3-3b, the authors suggest “a possible model of 

predetermined bone marrow stromal cells differentiation where the tripotent cells 

can be considered as early mesenchymal progenitors that display a sequential loss 

of lineage potentials, generating osteochondrogenic progenitors, which in turn, 

give rise to osteogenic precursors.” 

 

From many studies, it is evident that MSCs are a heterogeneous ensemble of 

progenitors and lineage-committed cells, with a broad range of regenerative 

properties (176).  For an effective clinical use of MSCs, recognizing and isolating 

the different subgroups would be crucial.  More advanced understanding about the 

phenotypic characteristics of the different subgroups might lead to a development 

of “cell-engineering.”  Through cell-engineering, one might be able to program 

individual cells to behave like highly proliferative and multipotent MSCs or even 

to select a specific differentiation pathway the MSCs must follow.   
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3.4 Microenvironments and Chondrogenesis of Mesenchymal Stem Cells 

Although why, when, and how the heterogeneous nature of MSCs arises are 

unclear, some studies have suggested that environmental influences might induce 

heterogeneity in MSC culture (163).  “Physical factors in the local cellular 

microenvironment, including cell shape and geometry, matrix mechanics, external 

mechanical forces, and nanotopographical features of the extracellular matrix, can 

all have strong influences on regulating stem cell fate (183).”  The in vivo stem 

cell niche presents a wide range of molecular and cellular scale physical, 

biological, and chemical signals.  These environmental cues act to regulate tissue 

regeneration based on physiological demands (184).  For instance, it has been 

reported that a mechanical stimulation can be an efficient method to induce 

chondrogenic differentiation of MSCs in vitro for cartilage tissue engineering in a 

three-dimensional environment (185).  The natural niche of MSCs is neither 

stationary nor uninterrupted.  In vivo, MSCs are exposed to both structural 

changes in the surrounding environment and many mechanical stresses that are 

caused by addition or removal of surrounding cells, muscle contraction and 

relaxation, as well as bone compression and decompression (183).  Therefore, 

understanding and reproducing the unique aspects of the dynamic cellular 

microenvironments in which the MSCs are naturally found are critical when 

unlocking the full potential of stem cells.  Among various environmental factors, 

the effect of growth factors, oxygen tension, and biomaterials in chondrogenic 

differentiation of MSCs will be explored further. 
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Growth Factors 

Chondrogenic differentiation of MSCs can be induced by various intrinsic and 

extrinsic factors, but growth factors are some of the most important modulators in 

this process (186).  Growth factors are a group of biologically active polypeptides 

produced by the body that can stimulate various biological activities including 

cellular division, growth, and differentiation (187).  In vivo, interactions between 

various growth factors regulate development and maintain homeostasis of 

articular cartilage (188).  Common growth factors that are used for chondrogenic 

differentiation of MSCs include transforming growth factor-β3 (TGF-β3) and 

insulin-like growth factor 1 (IGF-1).  TGF-β3 is known to increase cartilaginous 

ECM production (189, 190), while IGF-1 increases proliferation and cartilaginous 

ECM production (191-193).  Specific growth factors have been shown to promote 

cell proliferation and differentiation; however, some animal studies have raised 

biosafety concerns around application of growth factors in vitro and on animal 

models (194, 195).  Further investigations are necessary to find the safest way of 

their utilization in the regenerative medicine. 

 

Normoxia vs. Hypoxia 

Another important regulatory factor which influences the chondrogenic potential 

of MSCs is oxygen tension.  It has been consistently shown that low oxygen 

tension promotes chondrogenesis of MSCs in many aspects, including increased 

GAG content, higher and more homogeneous distribution of PG and collagen type 

II, and increased Sox 9 expression (196-199).  For instance, Sheehy et al. showed 
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that expansion of MSCs at 5% pO2 was faster than expansion at 20% pO2 (200).  

The authors demonstrated that both pellets and hydrogels cultured under the low 

oxygen tension stained more intensely for type II collagen when undergoing 

chondrogenesis.  The low oxygen tension also appeared to inhibit hypertrophy in 

both pellets and hydrogels.  It has even been shown that low oxygen tension is a 

more potent promoter of chondrogenesis than 1 hour/day of dynamic compression 

(201).  Current research and regenerative medicine would benefit from closer 

observation of phenotypic changes that occur in MSCs undergoing differentiation 

in hypoxic and normoxic conditions.    

 

Biomaterials 

In vivo, the ECM provides natural scaffolding for cells.  Hence, when culturing 

cells for tissue engineering purposes in vitro, it is important to mimic the 

structural integrity of native ECM.  Compared to the traditional monolayer culture, 

3D culture environment has been reported to yield significantly higher level of 

collagen and protein production by fibroblasts (202).  Scaffolds can be built using 

various types of biomaterials.  Regardless of its type, a biomaterial should be able 

to “replace part of a living system or to function in intimate contact with living 

tissues” (203).  Furthermore, a scaffold is expected to support chondrogenic cell 

growth and the formation of new tissue without eliciting harmful responses from 

the surrounding tissues in vivo (204).  To fulfill this purpose, a scaffold should 

ideally have suitable surface chemistry to support cellular behaviors, have 

mechanical properties similar to the tissue at the site of implantation, and be 
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highly porous with an interconnected pore network for cell growth and dynamic 

exchange of nutrients and metabolic waste (205).  Today, a wide range of 

biomaterials are available for use in tissue engineering.  The biomaterials include, 

but are not limited to,  biodegradable synthetic polymers such as poly(lactic acid) 

and polyglycolide, and poly(lactic-coglycolide) copolymers (205-209) , naturally-

derived or synthetic-based hydrogels (210, 211), and natural polymers including 

collagen (202, 212, 213).  Synthetic polymers are versatile tools for tissue 

engineering, because they are easy to process, control and modify relative to 

natural materials (214, 215).  However, degradation of these synthetic polymers 

can release acidic degradation products, which can create an unfavorable 

environment for surrounding tissue (203).  These byproducts can cause local 

disturbances such as inflammatory reactions, especially if the tissue has poor 

vascularization or low metabolic rate (205, 216).  Furthermore, synthetic polymer 

scaffolds suffer from relatively low-cell seeding efficacy and poor retention of the 

ECM formed by the seeded cells (210).  On the other hand, hydrogels can achieve 

homogeneous distribution of cells and can better maintain the neotissues formed 

within the scaffold (210).  Hydrogels are composed of synthetic or natural 

hydrophilic polymer chains, and have properties similar to the natural ECM (211).  

Their highly hydrated 3D structure is especially similar to the macromolecular 

structure of cartilage, making hydrogels a suitable shelter for chondrocytes and 

MSCs.  However, due to their nanoporous structure, hydrogels cannot support the 

proliferation and migration of seeded cells like scaffold sponges can support (202, 

217).  Scaffold sponges built from natural polymers have been widely used in 
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tissue engineering.  Of various natural polymers, collagen is particularly suitable 

for biomedical application, because it is the most abundant protein in mammalian 

tissues (213, 218).  Collagen type I is the most commonly used natural polymer, 

because of its abundance, ubiquity, and biocompatibility (219).  While some 

additional strengths of collagen as a biomaterial include its innate low antigenicity, 

biodegradability, bioreabsorbability, high porosity, and its easily modifiable 

nature, the disadvantages include high cost of purifying type I collagen, 

variability of isolated collagen, lack of inherent rigidity, and potential for 

antigenicity through telopeptides (213, 219-222).  Despite its drawbacks, collagen 

type I sponges have been used successfully with various cell types, including 

hBM-MSCs (212, 223).  Furthermore, chondrocytes cultured in 3D porous 

collagen sponges have been reported to maintain the production of cartilage-

specific ECM and expression of chondrocyte genes in contrast to the decreases 

seen in monolayer 2D cultures (219, 224, 225).  These properties of collagen type 

I sponges make them an attractive tool for ACI and MSC-based cell therapy.  By 

restoring a 3D structure which mimics the in vivo environment, natural 

interactions between cells and the ECM are facilitated, and chondrogenic 

differentiation of MSCs can therefore be effectively induced. 

 

The influence of environmental factors on the behavior of MSCs has been well 

recognized.  However, it is also important to note the trophic capacities of MSCs.  

In 1996, Haynesworth et al. documented that newly committed progenitor cells 

synthesize a wide range of growth factors and cytokines that have effects on cells 
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in their vicinity (226).  “All cells secrete various bioactive agents that reflect both 

their functional status and the influence of their local microenvironments.  …  The 

pattern and quantity of such secreted factors is well known to feed back on the 

cell itself and govern both its functional status and physiology.”(227)  The 

bioactive molecules secreted by MSCs can have either direct or indirect effect on 

local cellular dynamics.  Here, the indirect activity is referred to as “trophic.”  For 

many years, it has been thought that the regeneration of cells or tissues is 

influenced by MSCs’ multilineage differentiation potential.  However, various 

studies have shown that bioactive factors released by MSCs play a critical role in 

tissue repair.  For instance, Park et al. (228) demonstrated that pancreatic islets 

co-cultured with MSCs showed lower ADP/ATP ratios, higher glucose stimulated 

insulin secretion indexes and viability, and higher levels of anti-apoptotic signal 

molecules.  Furthermore, diabetic mice that received islet transplants cultured in 

MSC-conditioned medium for 48 hours demonstrated significantly lower blood 

glucose levels and enhanced blood vessel formation.  These results suggest that 

the trophic factors secreted by hMSCs enhance islet survival and function after 

transplantation.  Trophic effects of MSCs have also been observed with various 

other tissues including myocytes, neurons, and chondrocytes (227, 229, 230).  Wu 

et al. (231) cocultured MSCs with primary chondrocytes and found that 

“increased cartilage deposition in cocultures is mainly due to a trophic role of the 

MSCs in stimulating chondrocyte proliferation and matrix deposition rather than 

MSCs actively undergoing chondrogenic differentiation.”(231)  These findings 

suggest an even greater role of MSCs as a therapeutic tool.  In addition to 



49	
  
	
  

providing replacement cells for damaged or “expired” cells, MSCs can secrete 

bioactive factors that function to trophically assist the repair and regeneration 

process (227). 

 

In order for cell-based therapies to be both efficient and effective, the ability to 

manipulate the local microenvironments of MSCs in vitro is crucial.  Furthermore, 

understanding the potential influence MSCs can have on their environment is 

important when designing tissue repair strategies.  Outlining the interaction 

between MSCs and their local environments, as well as identifying factors that 

increase the proliferative and chondrogenic potential of MSCs will significantly 

advance mesenchymal stem cell-based therapy.   
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Chapter 4: CD90 (Thy-1) and Mesenchymal Stem Cells 

4.1 Current Knowledge of CD90 (Thy-1)  

“Thy-1 (CD90) is a developmentally regulated, evolutionarily conserved cell 

surface glycoprotein, the biological role of which remains somewhat enigmatic 

despite hundreds of intriguing publications” over many years (232).  CD90 is 

“expressed in a heterogeneous range of cell types, including thymocytes, 

lymphocytes, fibroblasts, neuronal cells, hematopoietic and mesenchymal stem 

cells, ovarian follicular cells, and some cancer cells.”(232)  The structural gene 

for human CD90 is localized in the long arm of chromosome 11, and although the 

structure of the Thy-1 gene is highly conserved across different species, the 

regulatory mechanism of the Thy-1 gene is fundamentally different (233).  

Previous studies have explored both immunologic and nonimmunologic roles of 

CD90 (234) .  Immunologically, CD90 is thought to be involved in T cell 

activation (235) and to regulate neutrophil functions (236).  In addition, some of 

its nonimmunological functions involve its role in inhibition of neurite outgrowth 

(237), induction of apoptosis in thymocytes and mesangial cells (238-240), 

leukocyte and melanoma cell adhesion and migration (241-243), tumor 

suppression (244, 245), and fibroblast proliferation and migration (246).  

Although the functions and behaviors of CD90 are still mysterious, CD90 is 

thought to be an important regulator of cell-cell and cell-matrix interactions.  To 

the minds of many, Thy-1 has been relegated to the role of a mere marker (232).  

This is especially true for MSCs.  Besides from the fact that CD90 antigen is one 

of the cell surface antigens that are used to identify mesenchymal stem cells, there 
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has been hardly any research on the relationship between MSCs’ level of CD90 

expression and their chondrogenic capacity.   
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4.2 CD 90 (Thy-1) Expression on Mesenchymal Stem Cells 

In effort to better characterize MSCs, several antibodies have been raised.  Along 

with many other cell marker antibodies, CD90 antibody was reported to react with 

undifferentiated MSCs (247).  Furthermore, the ISCT has proposed that MSC 

populations must be positive at least for several antigens, including CD73, CD90, 

and CD105 (144, 247).  Therefore, it has been generally accepted that CD90 is 

found in all MSCs.  However, it must be noted that the phenotypic properties of 

MSCs is usually based on analyses of in vitro expanded cells.  Very little is 

known about their in vivo phenotype.  In 2005, Boiret et al. reported something 

striking (248).  The authors characterized various antigenic expressions on fresh, 

unmanipulated MSCs and on MSCs after short-time adherence.  Interestingly, 

they found that 95.5±2.1% of initial, unmanipulated bone marrow cells were 

CD90- (n = 5).  After 1 to 3 days of culturing, the proportion of CD90- cells 

decreased to 82.6±5.5% (n = 10).  Although defining CD90- cells as MSCs 

violates the ISCT guideline, none of the MSCs that were used in their study 

expressed hematopoietic markers like CD34, CD45, and glycophorin A.  

Furthermore, by eliminating cells with CD14 expression, it was ensured that the 

adherent cells were not monocytes (249).  These results suggest that an alteration 

of antigen expression occurs when MSCs are removed from their natural niche (or 

in vivo environment).  It is highly likely that unusual environmental conditions, 

such as adherence to a two dimensional surface, induce the conversion of CD90- 

cells into CD90+ cells.  Furthermore, the authors sorted the MSCs into CD90+ 

and CD90- fractions, and the cells were cultured in basic mesenchymal medium 
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for four weeks.  After four weeks, only 22.7±11.3% of the “CD90- population” 

remained CD90- (n = 3).  This change in CD90 expression within the negative 

subset cannot be explained by an initial contamination because the purity of 

sorting was over 98.5%.  The result suggests that the culture condition continues 

to induce the conversion from CD90- to CD90+ in MSCs.  This study is important 

because it highlights the fact that in vitro	
  characterization of MSCs can be 

different from in vivo characterization of the cells. 
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4.3 Potential Significance of CD90 (Thy-1)  

The results acquired by Veyrat-Masson et al. become more interesting when they 

are compared to the observations made by Colter et al..  Colter et al.(179) 

identified RS-1 cells which are weakly CD90+, RS-2 cells which are CD90-, and 

mMSCs cells which are CD90+.  The authors also remarked that the earliest 

progenitors in the cultures were RS-1 and RS-2 cells, and that the population of 

mMSCs rapidly expanded during the log phase growth, while the RS-2 cells 

declined in number (Figure 3-1).  The observation made by Colter et al. on the 

RS-2 and possibly RS-1 cells corresponds with the observation made by Veyrat-

Masson et al. on CD90- cells.  As discussed in Chapter 3.3, RS-1 and RS-2 cells 

are likely to be the same group of cells as type I cells described by Mets et al. 

(180).  Mets et al. noted that the population of type I cells is inversely 

proportional to a donor’s age (181).  This result indicates that the conversion of 

CD90- MSCs into CD90+ MSCs can be induced not just by the unfavorable 

conditions that are normally introduced during in vitro cultivation, but also by 

unfavorable physiological changes that arise from aging.  In addition, the data 

from the four studies suggest that CD90- cells that were observed in abundance in 

unmanipulated MSCs are likely to be the earliest progenitor cells, which give rise 

to mMSCs.  In this sense, CD90- can be thought to be more “flexible” or 

“malleable” than mMSCs (CD90+ cells).   

 

In support of this view, Adesida et al. reported that cell populations which contain 

a higher percentage of CD90- cells were the ones to produce better cartilage (250).  
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In their study, bone marrow MSCs were cultured either in a hypoxic condition (3% 

O2) or in a normoxic condition (21% O2).  After 14 days of culturing using 

αMEM supplemented with 10% heat inactivated fetal bovine serum, penicillin-

streptomycin, HEPES, sodium pyruvate, and 5ng/ml FGF-2, the number of MSC 

colonies developed under hypoxia was generally higher by 5% to 38% than those 

developed under normoxia.  Furthermore, the authors found that regardless of the 

oxygen tension during pellet culture, hypoxia-expanded MSC pellets underwent a 

more robust chondrogenesis than normoxia-expanded MSC pellets after three 

weeks of culture using chondrogenic media.  The enhancement of chondrogenic 

capacity of bone marrow MSCs was marked by increased GAG synthesis and 

Safranin O staining, along with an increase in mRNA expression of aggrecan, 

collagen type II, and Sox 9.  In addition to these analyses, the effect of oxygen 

tension on the expression of cell surface markers was investigated.  The results 

were surprising: the CD90 expression was consistently lower in MSCs expanded 

under a hypoxic condition.  This observation is important, because it might imply 

that there is a potential link between CD90 expression and chondrogenic potential 

of bone marrow MSCs.  It has been reported that MSCs tend to lose adipogenic 

and chondrogenic potential at increasing cell doubling (173-176).  It has  also 

been reported that with subsequent cell doublings, the proportion of CD90- cells 

decreases while the percentage of CD90+ cells increases (248).  Based on these 

observations, it can be hypothesized that a loss of multipotentiality in MSCs is a 

result of a loss of the CD90- MSC population over time or that a decrease in the 

CD90- expression is a phenotypic representation of MSCs’ loss of 
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multipotentiality.  If this assumption is true, the definition of MSCs that has been 

used widely by many scientists must be redefined, and cell-based therapy for 

cartilage repair will benefit from selecting for MSCs lacking CD90 expression. 

 

In contrast to the results found by Adesida et al., Krawetz et al. reported that 

CD90+ synovial fluid mesenchymal progenitor cells (sfMPCs) had increased 

chondrogenic potential compared to the CD90- population (251).    In their study, 

sfMPCs were derived from synovial fluid from normal and osteoarthritic knee 

joints.  Fresh sfMPC were plated in untreated culture dishes and after 1 -2 hours at 

37°C/5%CO2, culture media (DMEM with 10% fetal bovine serum, 1% 

penicillin-streptomycin, 1% non-essential amino acids, and 0.2% beta-

mercaptoethanol) was added.  When the cells reached about 60-70% confluency, 

the cells were harvested and sorted under sterile conditions.  CD105+, CD73+, 

CD44+, CD45-, CD11b- cell populations were selected for further culturing for 1 

passage.  Then, these cells were sorted using magnetic enrichment process.  Both 

the CD90+ and CD90- fractions were cultured for one additional passage and then 

induced to differentiate in chondrogenic media for 14 days with or without micro-

mass aggregation.  In their analyses, the authors found that CD90- fraction 

displayed reduced levels of Sox9, collagen type II and Aggrecan mRNA, as well 

as less intense alcian blue and collagen type II staining at day 14 of 

chondrogenesis compared to the CD90+ population.  Although more insight into 

the role of CD90 antigen in chondrogenesis of MSCs has been gained from this 

study, it is unclear whether the CD90- fraction was truly CD90-.  It has been 
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reported that CD90- cells quickly convert to CD90+ cells upon the initial plating 

of extracted MPCs on a two-dimensional plastic surface (248).  Although 

passaging the sorted cells for an additional passage would have given the cells 

time to recover from the stressful sorting procedure and to proliferate further, the 

“once-pure” CD90- sfMPCs population could have developed into a mixture of 

CD90+ and CD90- sfMPCs population.  It should also be noted that although 

sfMPCs and bone marrow MSCs are both MSCs, it is uncertain how the source of 

MSCs might affect their behavior in vitro.  Nevertheless, further investigation is 

needed to accurately portray the relationship between CD90 and chondrogenic 

potential of bone marrow MSCs. 
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Conclusion 

Across several different studies, CD90- subset of MSC population has been noted 

as “interesting” and “mysterious.”  However, the exact role of CD90 in 

chondrogenic differentiation of bone marrow MSCs is still unknown.  In-depth 

investigation into the properties and function of CD90 can improve the current 

understanding of MSCs.  To determine if bone marrow MSCs lacking CD90 

surface expression have enhanced chondrogenic propensity, a gene knock-down 

experiment can be performed.  By doing so, it is possible to investigate whether 

anti-Thy1 treatment of bone marrow MSCs can enhance bone marrow-MSCs’ in 

vitro chondrogenic capacity.  In this review, the anatomy and physiology of 

articular cartilage has been explored.  Poor intrinsic healing capacity of articular 

cartilage that arises from its unique structure has also been described.  

Furthermore, the serious negative impacts that cartilage defects can have on 

society and individuals, as well as the limitations of current cartilage repair 

strategies have been carefully reviewed.  From this review, it is evident that a new 

method of increasing the chondrogenic capacity of bone marrow MSCs is critical.  

Advancement in mesenchymal stem cell research is crucial if MSC-based therapy 

of cartilage defects is to become more efficient and effective.   
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Part B: Introduction to RNA interference and Development of a Working 

Gene Knockdown Protocol  

 

Introduction 

In the previous section of the thesis, an overview of the basic anatomy and 

physiology of articular cartilage, treatment methods for cartilage defects, 

properties of MSCs, and current understanding of CD90 was provided in order to 

help the reader gain the background knowledge necessary to understand the 

purpose of our proposed research.   The objective of this section is to provide 

basic information on RNAi technology in order to show how we have optimized 

our CD90 knockdown protocol.  In Chapter 5, RNAi will be described to help 

the reader understand the mechanisms behind gene silencing technology.  In 

Chapter 6, various vector systems will be explored and in Chapter 7, lentivirus 

(LV) vector system will be investigated in greater details.  In Chapters 8 and 9, 

we demonstrate how we have developed our final CD90 knockdown protocol 

through experimental means.  Finally in Chapter 10, we investigate how the 

protein expression of CD90 is affected by transduction.  RNAi is a powerful tool 

which can help scientists study gene functions.  However, this tool cannot be used 

safely and effectively without understanding the nature of this technology.   This 

review will provide the basis on which our experiments can build. 
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Chapter 5:  RNA Interference 

5.1 Basic Aspects of  RNA Interference 

RNA interference (RNAi), also known as post-transcriptional gene silencing 

(PTGS) in plants, is “the inhibition of expression of specific genes by double-

stranded RNAs (dsRNAs)” (1).  During this innate, evolutionarily conserved 

cellular process (2), “dsRNA molecule of greater than 19 duplex nucleotides” is 

known to cause the degradation of both the invading dsRNA molecule and single-

stranded RNAs (ssRNAs) of identical sequences, including endogenous mRNAs 

(3).  It has been speculated that RNA-mediated gene silencing has a biologically 

significant role in stabilizing the genome by sequestering repetitive sequences, in 

development of multicellular organisms, and in defense against viral infections 

(4-7).   RNAi is a multistep process whose basic mechanism is conserved among 

virtually all eukaryotes, including mammals (8).  RNAi can be roughly divided 

into two phases: (1) Initiation and (2) Silencing or effector.  In human cells, RNAi 

pathway takes places in the cytoplasm (5, 9, 10).  During the initiation phase, 

dsRNAs are cleaved by a dsRNA-specific riboendonuclease called Dicer into 21-

25 nt duplex RNAs called small interfering RNAs (siRNAs) (10, 11).  During the 

silencing or effector phase, these small dsRNAs are unwound by RNA helicase 

activity and “the siRNA strand antisense to the target RNA (known as guide 

strand) is incorporated into the RNA-induced silencing complex (RISC), while 

the complementary passenger strand is destroyed” (10).   It is this guide strand, 

which is complementary to the target mRNA, that allows for a highly sequence-

specific gene silencing.  The binding between the guide strand and the RISC is 
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followed by recognition of the complementary mRNA, which is cleaved by a 

component of RISC (12, 13).  Figure 5-1 schematically summarizes the RNAi 

machinery.  

 
Figure 5-1 Mechanism of RNA interference. Double-stranded RNA is cleaved 
inside the cell by Dicer enzyme into 21-23 nucleotide fragments called short 
interfering RNA (siRNA). The siRNA is assembled in a hetero-multimedia 
protein complex called RNA induced silencing complex (RISC). The RISC 
complex is activated by ATP, and the unwound siRNA in the complex guides the 
target mRNA degradation by a ribonuclease, tentatively called Slicer (11).  



87	
  
	
  

Due to the destruction of mRNA templates, protein synthesis of the specific gene 

is inhibited.  Previous studies have suggested that RNAi can “inhibit expression 

of gene of interest in almost every type of cells,” although siRNA-mediated gene 

inhibition can never completely eliminate the gene product (4).  Nevertheless, 

RNAi has proven to be an efficient and effective method for investigating gene 

functions in mammalian cells.   
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5.2 Triggers of RNA Interference in Mammals 

As the definition of RNAi suggests, dsRNA is an important precursor for RNAi.  

However, complications can arise when dsRNA longer than 30 nt length is 

directly introduced to mammalian cells.  The long dsRNA can activate a dsRNA-

dependent protein kinase (PKR), leading to the global gene silencing and cell 

toxicity (phenomena collectively known as nonspecific off-target effects) (3, 14, 

15).  This undesirable consequence can be circumvented by using smaller 

dsRNAs (less than 30 nt length), namely siRNAs and short hairpin RNAs 

(shRNAs).  shRNA is a fold-back stem loop structure of siRNA whose sense and 

antisense strands are linked together by a small linker sequence (16).  Dicer 

degrades the linker sequence as shRNA is exported from nucleus to cytoplasm, 

and the resulting siRNAs enter the usual RNAi mechanism (17).   

 

Although chemically synthesized siRNAs and vector based shRNAs can both 

achieve target-specific silencing, they are intrinsically different molecules, and 

therefore can have different molecular mechanisms of action and off-target effects 

(18).  While both types of molecules are valuable tools for RNAi technology, they 

have their advantages and disadvantages.  siRNAs are simple to manufacture and 

easier to chemically modify.  This property of siRNAs is especially useful when 

trying to reduce unintended effects on gene expression mediated by RNAi or “off-

target effects.”  Specific off-target effects are caused when partial sequence 

complementarity of the RNAi construct (either the guide or the passenger strand) 

to non-target mRNAs leads to off-target knockdown (18, 19).  Unlike shRNA 
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approach which does not permit specific chemical modification of the silencing 

construct, siRNA approach allows for chemical modifications which can reduce 

direct off-target effects (20-22).  Furthermore, chemical modification of siRNAs 

can make them less immunostimulatory, thereby reducing nonspecific off-target 

effects.  However, chemical modifications are costly and must be applied 

carefully, because reductions in off-target effects can decrease the overall potency 

of suppression (18).    

 

Unlike siRNA, shRNA is endogenously expressed.  While siRNAs can be 

delivered directly to the cytosol where they can enter the RNAi pathway, shRNA 

constructs must be delivered to the nucleus of cells.  Moreover, the resulting 

shRNAs must overcome an additional challenge of having to be transported from 

the nucleus to the cytoplasm to enter the effector phase of the RNAi pathway.  

Despite this disadvantage, several studies have shown that shRNAs act as “a 

better substrate for dicer and displays improved RISC loading” (23-25) compared 

to siRNAs.  In addition, shRNA allows for a longer period of expression as 

compared with the siRNA, because it can be amplified by transcription.  Although 

the transient nature of siRNA might be preferential in certain occasions, this 

property of shRNA can be especially useful when applying RNAi technology to 

mammalian cells, because they lack amplification steps which are available in 

other systems like C. elegans, plants, and fungi (26).  More importantly, some 

studies have suggested that shRNA is more potent than siRNA at mediating gene 

silencing (23, 27).  For instance, McCaffrey et al. (27) achieved a significant 
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(>80%) knockdown of luciferase expression when hydrodynamic dosing 40 µg of 

siRNA with 2 µg of a plasmid encoding luciferase (pGL3), while only 10 µg of 

shRNA hydrodynamically coadministed with 2 µg of pGL3 was required to 

achieve >95% luciferase knockdown under the same conditions.  Another benefit 

of using shRNA comes from the fact that shRNAs are processed via endogenous 

mechanisms, making shRNA-induced inflammatory responses less likely.  In 

support, Rao et al. (19) argued that using siRNA is more likely to result in off-

target effects, because siRNA “requires higher concentrations and more frequent 

dosing to achieve similar levels of knockdown” as shRNA.  The same research 

group added that because unprotected siRNA may be more susceptible to 

intracellular metabolism, its risk for nonspecific target recognition increases.  

While shRNA is a potent, stable, and effective tool for RNAi technology, it has its 

disadvantages.  In contrast to siRNA, with which precise control of its 

intracellular level is possible, shRNA lacks the means to adjust levels of 

suppression.  Because there exists no exact and reliable way of preventing the 

overexpression of shRNA, shRNA can saturate the endogenous miRNA pathway 

resulting in significant lethality (19, 28, 29).  However, using an RNA polymerase 

II promoter-driven shRNA expression cassette rather than highly active RNA 

polymerase III type promoters allows for greater regulation, thereby alleviating 

toxic effects (30). 
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5.3 Using RNA Interference Technology 

RNAi technology is a potent and efficient method of gene suppression which 

utilizes cells’ innate, evolutionarily conserved system of self-defense and 

regulation.   Some of the important factors that must be considered in order to 

achieve efficient and effective knockdown include the cell type,  type of RNAi 

triggers used, specific designs of siRNA or shRNA, and methods of siRNA or 

shRNA delivery (31).  Research can take full advantage of RNAi technology, 

only when these key factors are carefully determined.  After close review, we 

have decided to use shRNA for our current study, because we must achieve an 

effective and sustained knockdown of the gene CD90 in human primary cells.  

Understanding the mechanisms and components of RNAi will contribute to the 

development of an optimal knockdown protocol for our future experiments. 
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Chapter 6: Methods of Delivering RNAi Triggers 

6.1  Transfection of Mammalian Cells 

The cytosolic delivery of “naked” siRNA oligonucleotides is the simplest method 

for RNAi  (32).  However, it is unlikely to achieve a successful knockdown using 

this simple method in mammalian cells, because of the following reasons: (1) 

“mammalian cells appear to lack the effective dsRNA-uptake machinery that is 

found in other species such as C. elegans; (2) siRNA is highly charged and cannot 

pass freely through the cytoplasmic membrane; and (3) uptake of siRNA by fluid-

phase endocytosis does not result in the release of siRNA into the cytoplasm.  If 

siRNA is not delivered effectively to the cytoplasmic compartment, it will not 

interact with other RISC components and, thus, will not induce RNAi. (31)” To 

improve transfection efficiency in cells, including those that are otherwise 

incapable of transfection, a plethora of chemical delivery agents have been 

developed.   The basic principles underlying the design of the chemical delivery 

agents are similar for all nucleic acids, including plasmid DNA and siRNA.  

Nucleic acid transfection reagents must be capable of interacting with the nucleic 

acid cargo and of fusing and/or disrupting biological membranes to deliver the 

cargo to the cell cytoplasm.  Transfection reagents often interact with nucleic 

acids via electrostatic forces.  This interaction enables the formation of 

transfection reagents-nucleic acid complexes, and the two components can be 

presented simultaneously to the biological membranes.  The three different types 

of complexes are lipoplexes, polyplexes, and lipopolyplexes (31).    Lipoplexes, 

polyplexes, and lipopolyplexes refer to cationic lipid-nucleic acid complexes, 
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cationic polymer-nucleic acid complexes, and complexes with both polycationic 

polymers and cationic lipids, respectively (33).  It has been proposed that the 

positively charged nano-sized lipoplex or polyplex particles bind to the negatively 

charged cell membrane by non-specific, electrostatic interactions, and enter the 

cell via endocytosis (34-36).  Upon a subsequent endosomal/lysosomal disruption, 

the nucleic acid is released into the cytoplasm.  The method of release is 

fundamentally different for lipoplexes and polyplexes.  The interaction between 

the cationic lipids of the lipoplex and the anionic lipids of the endosomal 

membrane weakens the electrostatic interaction between the nucleic acid and the 

lipoplex, releasing the content into the cytoplasm.  On the other hand, the 

polyplex approach involves endosome disruption through increased osmotic 

pressure.  Many cationic polymers have pH-dependent functional groups with pKa 

values of 5-7.  When these buffering groups act as an extensive “proton sponge” 

(37), the number of protons required for acidification of endosomes during their 

maturation to lysosomes is increased.  Consequently, the concentration of their 

counter-ions inside the lumen also increases, resulting in osmotic swelling due to 

water entry (31, 38).  Finally, “lipopolyplex reagents combine the action of 

cationic lipids and polymers to deliver nucleic acids” (31).  Once the nucleic acid 

is released into the cytoplasm, it may be transported into the nucleus.  Although 

the exact mechanism of transport is still unclear, it has been hypothesized that 

nucleic acid passively enters the nucleus during mitosis when the nuclear 

membrane disintegrates temporarily (39) and/or that it is actively transported 

through nuclear pores into the nucleus (34, 40).  Pollard et al. (41) has suggested 
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that unlike cationic lipids, cationic polymers promote gene delivery from the 

cytoplasm to the nucleus potentially by enhancing intracytoplasmic mobility of 

nucleic acid and by protecting nucleic acid from endogenous nuclease degradation.  

The same research group (41) also argued that transgene expression in the nucleus 

is prevented by complexation with cationic lipids.  In support, Zabner et al. (34) 

found that cationic lipid-mediated transfection is an inefficient process, because 

only a small percentage of nucleic acid delivered to the cytoplasm is released 

from the endosomes, and only a small percentage of the free nucleic acid actually 

enters the nucleus.  Despite many years of efforts to optimize transfection 

efficiency of non-viral, chemical delivery reagents, transfection continues to be an 

inefficient delivery method for mammalian primary cells.  In other words, siRNA 

or plasmids encoding shRNA cannot enter the cells’ cytoplasm and/or nucleus 

using simple chemical delivery reagents.  The fact that siRNAs cannot be 

efficiently delivered to the cytoplasm of mammalian primary cells supports our 

previous decision to take shRNA-approach to our current study.  Furthermore, the 

limitations of transfection method suggests that a more potent and efficient 

method of delivery is required to achieve a sufficient level of RNAi in target cells.   
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6.2  Transduction of Mammalian Cells 

“For most untransfectable cells, adenoviral, retroviral, or lentiviral-based shRNA 

technology remains the only viable technology for successful delivery of RNAi” 

(32).  While there exist health and safety concerns over viral methods for 

delivering RNAi triggers, transduction of mammalian cells with viral vectors has 

been widely used as a powerful tool to achieve a stable knockdown in various 

biological systems.  Although there are many different kinds of viral vectors, only 

the most commonly used ones, namely standard retroviruses, adenoviruses (Adv), 

and lentiviruses (LV), will be discussed in this chapter (42). 

 

Standard Retroviruses 

One of the most distinguishing properties of retroviruses is their ability to reverse 

the transcription of their ssRNA genome into dsDNA, which is subsequently 

integrated into the host cell genome (42).  Retroviruses were “among the first 

vectors used as transfer vehicles for hairpin-RNA expressing plasmids,” and have 

been used effectively for many years to transduce most cell lines and many 

primary cell types (43, 44).  However, one drawback of retroviral vectors is that 

they require cell division for expression (31, 45).  Figure 6-1 represents a 

schematic overview of the mechanism of RNA silencing after retroviral delivery 

of shRNA.   
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Figure 6-1 Schematic overview of the mechanism of RNA silencing in the 
host cell that leads to transcriptional silencing after retroviral delivery of 
shRNA. Retroviruses (or vectors) deliver therapeutic shRNA-expressing 
transgenes that integrate into the genome of the host cell and lead to stable 
shRNA expression.  Expressed shRNAs require the activity of endogenous 
Exportin 5 for nuclear transport. Several proteins are recruited and form a dimer 
with Dicer which receives and subsequently cleaves the dsRNA generating duplex 
siRNAs with 2 nt 3’ overhangs. These siRNAs activate the RNA-induced 
silencing complex (RISC) which unwinds the RNA and recruits only the guiding 
strand to target mRNA which is subsequently cleaved and degraded. The figure is 
schematic, and the Dicer and RISC complexes can vary dependent on cellular 
process (44). 
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Adenoviruses  

Adenoviruses are “medium-sized, non-enveloped viruses with a nucleocapsid and 

a linear dsDNA genome” (44).  Unlike standard retroviruses, Adv can infect both 

dividing and non-dividing cells (31).  Despite this advantage, adenoviral vector 

approach might not be as effective in stem cells because it appears that the 

primary receptors for Adv are poorly expressed in stem cells, resulting in low 

transduction rates (46). 

 

Lentiviruses  

LV “constitute a subclass of retroviruses which also carry two copies of ssRNA 

genome in an enveloped capsid” (44).  The most widely-known example of LV, 

the human immunodeficiency virus type-1 (HIV-1), provided the basis for the 

development of first LV vectors (47, 48).  Like Adv, LV can effectively transduce 

both dividing and non-dividing cells (32, 48, 49).  Because of this property, the 

LV-mediated gene-delivery system can lead to an efficient and stable expression 

of RNAi in human cells, including primary non-dividing cells (50).  Other 

advantages of LV vectors include their ability to accommodate large (up to 7.5 kb) 

amounts of DNA (51), and their lower immunogenicity and toxicity compared to 

Adv (32, 44). 
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6.3 The Choice of a Suitable Gene Delivery System 

While there are many different ways of delivering RNAi triggers, the properties 

of each method must be carefully reviewed in order to determine the most suitable 

vector for a specific biological system.  Since achieving a long-term knockdown 

of gene CD90 in primary, human mesenchymal stem cells (hMSCs), is an 

important requirement for our current study, LV-based vectors were chosen over 

other delivery systems.  Lentiviral expression system will be explored further in 

the following chapter. 
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Chapter 7: Lentiviral Expression System    

 7.1 Structure of Lentivirus 

Understanding the structure of LV is useful when using lentiviral expression 

system, because LV vectors’ biological behaviors are closely related to the 

biology of parental LV.  LV, which belong to a subclass of complex retroviruses, 

are characterized by their ability to reverse transcribe their ssRNA genome into 

dsDNA (52).  Similar to other retroviruses, LV contain three basic genes, namely 

gag, pol, and env.  The gag gene codes for the precursor structural proteins of the 

LV particle, including the matrix, capsid, and nucleocapsid, while the pol gene 

codes for reverse transcriptase (RT) and integrase.   Finally, the env gene codes 

for surface and transmembrane components of the viral envelope proteins (42, 53).  

In addition to these genes, the lentiviral genome also comprises six additional 

genes (i.e. rev, tat, nef, vpr, vpu, and vif) which code for proteins critical for viral 

replication, binding, infection, and release (54).  Another important genomic 

feature of LV is the homologous regions of 600 to 900 nt, also called long 

terminal repeats (LTRs).  LTRs flank both ends of the lentiviral proviruses (i.e. 

the viral cDNA integrated in the host genome), and each LTR is segmented into 

three regions called U3, R, and U5.  LTRs play a critical role in virus replication, 

integration, and expression (53).   
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 7.2 Life Cycle of Lentivirus 

The life cycle of LV is similar to that of other retroviruses in that the interaction 

between the glycoproteins of the viral envelope and specific cell receptors leads to 

the fusion of the envelope with the host cell’s membrane, which in turn triggers 

the release of the lentiviral core into the host cell’s cytoplasm (42).  Once inside 

the cytoplasm, the viral capsid disintegrates, and the complex process of reverse 

transcription begins. To quickly summarize, the enzyme RT converts the viral 

RNA genome into a dsDNA.  Subsequently, its DNA genome is integrated into 

the host cell chromosome.  Unlike other retroviruses, disassembly of the nuclear 

membrane is not a prerequisite for the integration of the lentiviral cDNA into the 

host cell’s genome.  Upon integration, the virus uses the host cell’s replication 

machinery to express viral genes (53, 55).   Once the virus reassembles in the 

cytoplasm, it exits the host cell by budding from the cellular membrane, where the 

LV acquires the capsid (56).  After budding, it matures into an infectious particle 

that is capable of starting a fresh cycle of replication (57).   
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 7.3 Designing and Producing Lentivirus Vectors  

LV vectors are attractive gene transfer tools, because (1) they can integrate 

efficiently and stably into the chromosomes of their targets; (2) they do not 

transfer viral genes, thus reducing the risk of vector-mediated toxicity and 

destruction of transduced cells by virus-specific cytotoxic T cells; and (3) they 

can efficiently transduce a wide variety of cells including slowly- and non-

dividing cells (45, 58).  LV vectors are “replication-defective, hybrid viral 

particles made by the core proteins and enzymes of a LV, and the envelope of a 

different virus, most often the vesicular stomatitis virus (VSV)” (59), whose 

purpose is to safely obtain a single transduction event into the target host cell, 

without disturbing normal function of the host cell genome (47).  LV vectors are 

traditionally produced through transient cotransfection of 3-4 viral elements into 

the highly transfectable, human embryonic kidney (HEK) 293T cells (60, 61).  

The viral elements that are required to produce LV vectors are “the LV packaging 

helper proteins consisting of at least the gag-pol genes, the LV transfer vector 

RNA containing the transgene expression cassette, and an heterologous 

glycoprotein” (62).  While the packaging cassette is critical for the “packaging” 

functions of LV vectors and encodes all lentiviral vector trans-elements, the 

transfer or vector cassette contains all the cis-acting elements required for 

efficient packaging, reverse transcription, nuclear import, and integration in the 

target cells (47).  Furthermore, the genetic template for the transgene of interest is 

also incorporated in the transfer vector.  Finally, the envelope cassette often 

expresses the vesicular stomatitis virus G protein (VSV-G), rather than the 



102	
  
	
  

parental HIV-1 envelope.  VSV-G pseudotyped LV vectors can transduce a broad 

range of tissues and cell types, and are less dependent on viral accessory proteins 

for full infectivity, because they can enter target cells through an endocytic 

pathway instead of direct fusion with the cell membrane (47, 63).  While the 

efficiency and potency of LV vectors are important, safety concerns surrounding 

the use of the vectors must not be overlooked.  Over the past several decades, 

various biosafety features of LV vectors have been developed.  These features 

include modifications in all three viral elements: the packaging, transfer, and 

envelope plasmids.  To prevent the formation of replication-competent 

retroviruses (RCRs), split genome design, in which the cis-acting elements of the 

LV genome are segregated from the trans-acting elements, has been developed 

(64, 65).  Separation of an intact LV genome into three or four components 

reduces the risk of generating RCRs.  Furthermore, most of sequences from the 

LV genome were eliminated or replaced by heterologous sequences.  The first 

generation of LV vectors lacked most of the env gene sequence and certain cis-

elements, but maintain the nonessential or accessory genes vpu, vpr, vif, nef, rev, 

and tat (48, 66).  In the second generation of LV vectors, all the accessory genes, 

excluding tat and rev, were deleted to advance the biosafety of LV vectors (67, 

68).  Finally, even the tat gene was deleted in the third generation of LV vectors, 

and the gag/pol and rev genes, which had been placed together on one packaging 

vector in previous generations of LV vectors, were split into two packaging 

cassettes (69).   Several studies have confirmed that the elimination of the 

accessory genes from a packaging construct does not compromise the vector yield 
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or the transduction efficiency of LV vector system (67, 68).  Owing to these 

safety modifications, neither second nor third generation LV vectors have been 

found to form RCRs (48, 70, 71).  In addition to these biosafety features, further 

modifications have been made to the LTRs of the transfer vector to create what is 

called a self-inactivating (SIN) vector (72-74).  The deletion of the 

enhancer/promoter sequences in the U3 region of the 3’ LTR abolishes the 

transcriptional activity of the SIN provirus.  The inactivity of the LTR 

subsequently reduces the risk of promoter interference and susceptible oncogenic 

derivations (58, 62).  For many years, scientists have sought ways to improve the 

efficiency and biosafety of LV vectors, and as a consequence, LV expression 

system has become a more reliable and attractive tool for gene delivery.   
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Chapter 8: Selecting Suitable Expression Construct for Knockdown of CD90 

Proper application of RNAi technology depends on selection of a suitable target 

sequence for a given gene of interest.  Although many different constructs are 

commercially available for research purposes, “there is no guarantee of effective 

gene silencing for a given shRNA until experimentally proven” (32).  Therefore, 

experimentally testing several shRNA constructs that have been designed to 

silence CD90 is crucial for our current study (from the RNAi Consortium).  Five 

different shRNA expression constructs (all from Thermo Scientific, Ottawa, 

Ontario, Canada) were tested (n=3) for their ability to trigger effective gene 

silencing in osteosarcoma cells U2OS.  U2OS cells were chosen as the target cells, 

because they are easily transfectable and are known to express antigen CD90 (75-

77).   

 

The target sequence information for each shRNA construct is given in Table 8-1.  

The gene silencing effects of each construct can be studied by comparing the 

CD90 mRNA expression level of U2OS cells transfected with each of the five 

constructs, to that of untreated U2OS cells (n=2, negative control) and U2OS cells 

transfected with a control vector pLKO.1 GFP (n=2, non-targeting shRNA control; 

Addgene 30323). 

Table 8-1 Basic Construct Information. All five constructs have the pLKO.1 
backbone.  For convenience, each construct was given simple codes. 

Code Construct Vector Target Sequence 
E8 TRCN0000057023  

 
pLKO.1 

GCCATGAGAATACCAGCAGTT 
E9 TRCN0000057024 CGAACCAACTTCACCAGCAAA 

E10 TRCN0000057025 GCTCAGAGACAAACTGGTCAA 
E11 TRCN0000057026 GTCACAGTGCTCAGAGACAAA 
E12 TRCN0000057027 CACCAGCAAATACAACATGAA 
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In this short experiment, U2OS cells in early passages were cultured and 

maintained under normal oxygen tension (21% O2) at 37°C in a standard culture 

medium:  high glucose Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 4.5 mg/mL D-Glucose, 0.1mM non-essential amino acids, 1 

mM sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 0.29 mg/mL L-glutamine, and 10% heat inactivated fetal 

bovine serum (all from Invitrogen, Mississauga, Ontario, Canada).  Adherent 

U2OS cells were detached with 0.05%  trypsin-EDTA (Invitrogen) approximately 

18-24 hours before transient transfection and were plated in 2.5ml standard 

culture medium per well in a 6-well plate at a density of 200,000 cells/well.  The 

cells reached 60-70% confluency approximately one day after plating.  At this 

stage, TransIT-LT1 Reagent:DNA complex was distributed to U2OS cells in the 

complete culture medium.  The TransIT-LT1 Reagent:DNA complex was 

prepared by mixing and incubating 2 µg of each construct with 500 µl of serum-

free standard culture medium and 6 µl TransIT-LT1 Reagent (Mirus, Madison, 

Wisconsin, USA).  After approximately 72 hours of incubation, the cells were 

harvested for gene expression analysis.  The negative control group was cultured 

and harvested under the same conditions, but without undergoing transfection 

procedures. 

 

After 72 hours of incubation, the culture medium from the culture vessel was 

aspirated, and Trizol (Invitrogen) was directly and immediately added to U2OS 

cells, and total RNA of U2OS cells was subsequently extracted according to the 
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manufacturer’s instruction.  Contaminating genomic DNA was removed by 

DNase treatment.  Total RNA (50 ng) in a 40-µl reaction was reverse-transcribed 

to cDNA by using GoScript RT primed with oligo (dT)15 primer (Fisher 

Scientific, Whitby, ON, Canada).  Quantitative real-time polymerase chain 

reaction (qRT-PCR) was performed in DNA Engine Opticon II Continuous 

Fluorescence Detection System (Bio-Rad) by using hot start Taq and SYBR 

Green detection (Eurogentec North America Inc., San Diego, CA, USA).  Primer 

sequences for CD 90 and β-actin were obtained from Invitrogen.  The mRNA 

expression level for CD 90 was normalized to the expression level of β-actin by 

the 2!!!(!)   method (78, 79).   

 

Data are presented as mean ± standard error of mean of measurements. Statistical 

analyses were performed using SPSS version 21 (IBM Corp. Released 2012. IBM 

SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp).  

Experimental and control groups were compared with one-way analysis of 

variance with Tukey’s multiple comparison post hoc tests.  All statistical 

differences were considered to be significant with a p-value of less than 0.05. 
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The relative mean expression of CD90 was evaluated at the mRNA level in U2OS 

cells which had undergone different transfection (or no transfection) treatments.  

There was no statistical significance between any groups (Figure 8-1).  The 

results suggested that all five constructs equally failed at generating statistically 

significant gene silencing in U2OS cells.   

 

 
Figure 8-1 Gene expression analysis of U2OS cells after 72h. incubation with 
(1) a construct of interest (E8~E12); (2) a non-targeting shRNA construct; or 
(3) no vector.  CD90 expression was evaluated by quantitative mRNA gene 
expression analysis via SYBR Green detection. 
 
Because no statistical difference was found between and within the experimental 

and control groups, selection of suitable expression construct became more 

difficult.  Despite a lack of clear indication, both the average percentage 
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generated 34.9%, 37.6%, and 18.8% knockdown of CD90 mRNA expression in 

each of the three trials when compared to the negative control group, was chosen 

over other constructs.  Although making such a decision without sufficient 

statistical evidence is suboptimal, selection of suitable expression construct had to 

be made, and construct E9 seemed to demonstrate a reasonably consistent 

knockdown pattern.  Furthermore, the specific construct yielded the highest viral 

titer (data not shown) when cotransfected with packaging and envelope vectors 

into HEK 293T cells, making it more appealing for use in our future transduction 

experiments.   

 

As discussed in Chapter 5.2, transduction approach is much more potent than 

transfection approach.  Although the gene silencing effect demonstrated by 

construct E9 in this chapter is not as significant as we had hoped it to be, the 

shRNA construct’s knockdown effects become much more clear in the following 

chapters where hBM-MSCs are transduced with LV vectors containing the 

construct of our choice.  Hereafter, shRNA construct coded as E9 will be called 

CD90 shRNA. 
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Chapter 9: Transduction of Human Mesenchymal Stem Cells 

A variety of studies have reported successful transduction of MSCs using LV 

vectors (80-82).  An important factor that must be determined before transducing 

MSCs is multiplicity of infection (MOI).  MOI refers to the ratio between the 

number of infectious units and the number of target cells.  Determining MOI is an 

important step towards the development of an optimal knockdown protocol for 

our proposed research.  In this chapter, we aimed to (1) check the gene silencing 

effect of CD90 shRNA using LV vectors and to (2) determine a reasonable MOI 

that can be used for our future experiments by measuring the CD90 mRNA 

expression levels in hBM-MSCs that have been transduced with CD90 shRNA at 

four different MOIs. 

 

In order to isolate hBM-MSCs, bone marrow aspirates were obtained from 

surgically discarded material after approval and a waiver of informed consent of 

the local ethical committee of the University of Alberta (Edmonton, Canada) 

during orthopedic procedures from the iliac crest of a 43-year old female patient.  

After counting the number of nucleated cells in the aspirates by using crystal 

violet nuclei staining and a hemacytometer, 15 million mono-nucleated cells 

(MNCs) were seeded per 150 cm2 tissue culture flask.  The cells were cultured in 

α-MEM supplemented with 10% heat inactivated fetal bovine serum, 1 mM 

sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 0.29 mg/mL L-glutamine (all from Invitrogen, Mississauga, 

Ontario, Canada) and 5 ng/ml basic fibroblast growth factor (from Humanzyme, 



110	
  
	
  

Medicorp Inc., Montreal, Quebec, Canada).  Nucleated cells were allowed to 

adhere and grow for seven days before the first media change under normal 

oxygen tension (21% O2) at 37°C in a humidified incubator with 5% CO2.  

Thereafter, the culture medium was changed twice per week until 70% to 80% 

cell confluency was attained.  The adherent cells were detached using 0.05% 

trypsin-EDTA (Invitrogen) and expanded until passage 1.  The isolated cells were 

resuspended in freezing medium (high glucose Dulbecco’s modified Eagle’s 

medium supplemented with 4.5 mg/mL D-Glucose, 20% fetal bovine serum, 10% 

dimethyl sulfoxide, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.29 

mg/mL L-glutamine; all from Invitrogen) and were kept in liquid N2 until 

experimental use.  Prior to experiments, the cells were thawed and were cultured 

until passage 3 following the same protocol as previously described.   

 

To transduce hBM-MSCs, second generation SIN HIV-1 based, VSV-G 

pseudotyped LV vectors were used.   LV vectors were produced by standard 

transient cotransfection of a three-plasmid system into HEK 293T cells.  CD90 

transfer plasmid (Thermoscientific), packaging plasmid ps-PAX2 (Addgene 

plasmid 12260) and envelope plasmid pMD2.G (Addgene plasmid 12259) were 

transfected into HEK 293T cells using TransIT-LT1 Reagent (Mirus, Madison, 

Wisconsin, USA).  Standard culture medium was replaced with 30%-fetal bovine 

serum culture medium 18 hours post-transfection.  LV vector-containing 

supernatants were collected 48 h and 72 h post-transfection.  The titer of the 

pooled LV vectors was determined by using qPCR Lentivirus Titration (Titer) Kit 
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(Applied Biological Materials, Richmond, British Columbia, Canada) and  FAST 

qPCR Kit Master Mix (2X) Universal (KAPA Biosystems, Woburn, 

Massachusetts, USA), according to the manufacturers’ instructions. 

 

Approximately 18-24 hours before lentiviral transduction, adherent hBM-MSCs 

were detached using 0.05% trypsin-EDTA (Invitrogen) and were plated in 4 ml 

standard culture medium per well in a 6-well plate at a density of 60,000 

cells/well.  Just prior to transduction, adherent hBM-MSCs in one well were 

detached using 0.05% trypsin-EDTA, and viable cells were counted using trypan 

blue exclusion test and a hemacytometer.  Using the cell number, the number of 

infectious units (and therefore the volume of viral supernatant) that must be added 

to each well was determined.  Thereafter, the culture medium in each well was 

replaced with 4 ml of transduction cocktail containing standard culture medium, 

LV vector supernatant (MOI = 0, 2, 6, and 18) and final concentration of 8 µg/ml 

Polybrene (Sigma-Aldrich).   

 

After approximately 72 hours of incubation, the transduction cocktail was 

aspirated from the culture vessel, and Trizol (Invitrogen) was directly and 

immediately added to the adherent hBM-MSCs, and total RNA of hBM-MSCs  

was subsequently extracted according to the manufacturer’s instruction.  

Contaminating genomic DNA was removed by DNase treatment.  Total RNA (50 

ng) in a 40-µl reaction was reverse-transcribed to cDNA by using GoScript RT 

primed with oligo (dT)15 primer (Fisher Scientific, Whitby, ON, Canada).  qRT-
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PCR was performed in DNA Engine Opticon II Continuous Fluorescence 

Detection System (Bio-Rad) by using hot start Taq and SYBR Green detection 

(Eurogentec North America Inc., San Diego, CA, USA).  Primer sequences were 

taken from previously published work or were custom designed by Dr. Adetola 

Adesida using the Primer Express software (Applied Biosystems, Foster City, 

California, USA).  All primers were obtained from Invitrogen.  The mRNA 

expression level for CD90 was normalized to the expression level of β-actin by 

the 2!!!"   method (78, 79). 

 

The relative expression of CD90 was evaluated at the mRNA level in hBM-MSCs.  

Figure 9-1 represents a decrease in CD90 mRNA expression with increasing 

MOI.  Figure 9-2 shows the percentage knockdown of CD90 mRNA expression 

when normalized to the negative control group (MOI=0).   

 
Figure 9-1 Gene expression analysis of hBM-MSCs after 72h. incubation 
with varying MOI of lentiviral vectors. CD90 expression was evaluated by 
quantitative mRNA gene expression analysis via SYBR Green detection. 
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In this chapter, we intended to determine the MOI with which a sufficient knock 

down of CD90 expression can be achieved.  The results showed a dose-dependent 

reduction of CD90 mRNA expression level.  About 65% knockdown of CD90 

expression was achieved with MOI of 2, and thereafter, the percentage 

knockdown continued to increase slowly with increasing MOI.  As discussed in 

Chapter 5.2, high concentrations of shRNAs may cause cell toxicity.  While 

using high MOIs can help achieve near 100% knockdown of the gene of interest, 

oversaturating target cells with shRNAs may harm the cells.  Considering these 

facts, MOI of 10 was determined to be appropriate.  While determining MOI 

using one donor might not account for donor variability and potential errors, this 

test was meant to serve as a simple check on a reasonable MOI that can be used 

for our proposed research. 

 
Figure 9-2 Gene expression analysis of hBM-MSCs after 72h. incubation 
with varying MOI of lentiviral vectors. Percentage knockdown of CD90 
expression at MOI= 2, 6, and 18 when normalized to the CD90 expression at 
MOI=0. 
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Furthermore, the results support the gene silencing effect of the CD90 shRNA 

that was selected in Chapter 8.  Using these results, hBM-MSCs can be 

successfully silenced to illuminate the functions of CD90 during chondrogenic 

differentiation. 
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Chapter 10: Flow Cytometry Analysis of Transduced hBM-MSCs 

In order to verify the gene silencing effect of CD90 using our CD90 shRNA 

construct, the level of protein knockdown was also observed via flow cytometry 

analysis.  In the previous chapters, qRT-PCR results confirmed a decrease in 

CD90 mRNA expression level.  As the number of mRNA transcripts available for 

translation into the cell surface antigen CD90 decreases, the number of end-

products (the cell markers themselves) which are presented on cellular membrane 

should also decrease.  However, it is important to acknowledge that the degree of 

protein knockdown depends on the half-life of the protein.  In other words, 

“proteins with longer half-lives will take longer to become depleted than those 

with shorter half-lives” (31).  In this chapter, flow cytometry analysis was done 

on hBM-MSCs transduced with CD90 shRNA at two different time points.  We 

hypothesize that over time, the degree of CD90 expression at protein level should 

decrease. 

 

hBM-MSCs were isolated and maintained as described in Chapter 9.  hBM-

MSCs used in this experiment came from three female donors (age=23, 38, and 

44).  Lentiviral vectors containing either CD90 shRNA or pLKO.1 GFP (non-

targeting negative control) were also produced as described in Chapter 9, and the 

viral supernatant was concentrated using Lenti-XTM Concentrator (Clontech 

Laboratories, CA, USA) according to the user manual.  hBM-MSCs were 

incubated with transduction cocktail for 48 hours.  After 48 hours, transduction 

cocktail was replaced with fresh standard culture medium supplemented with 
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5ng/ml basic fibroblast growth factor.  Thereafter, hBM-MSCs were detached 

using 0.05% trypsin-EDTA (Invitrogen) on Day 3 and Day 7 of experiment (a day 

and 5 days after transduction cocktail was replaced, respectively).  The isolated 

cells were washed once with FACS buffer (1X PBS supplemented with 5% fetal 

bovine serum and 0.1% sodium azide), and were resuspended in FACS buffer at 

250,000 cells/100µl buffer.  Thereafter, the experimental group was incubated 

with PE-CD90 antibodies (BD Pharmingen), while the isotype control group was 

incubated with mIgG1 sc-2866/PE (Santa Cruz Biotechnology).  Incubation was 

implemented on ice, in the dark.  After 30 minutes of incubation, the cells were 

washed twice with FACS buffer and were resuspended in 500µl of FACS buffer.  

All washing steps were performed by a combination of centrifugation (1500 rpm, 

5 minutes, at 4°C) and aspiration of supernatant.  The cells were analyzed using 

FACS Calibur (BD Bioscience) and Cell Quest Pro software (BD Bioscience).  

The level of expression of CD90 was calculated as the ratio between geometric 

median fluorescence intensity (MFI) of the experimental group and that of the 

isotype control.  

 

Figure 10-1 shows corrected MFI of each treatment group measured 3 and 7 days 

after the first introduction of transduction cocktail to the target cells.  Data are 

presented as median ± standard error of mean of measurements. Three treatment 

groups within each time group were compared with one-way analysis of variance 

with Tukey’s multiple comparison post hoc tests using SPSS version 21 (IBM 

Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, 
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NY: IBM Corp).  Within each time group, no significant statistical difference was 

found between different treatment groups at p=0.05.   

 

 
Figure 10-1 Comparisons of MFI on day 3 and day 7. MFI of three groups 
were measured 3 and 7 days after the first introduction of transduction cocktail.  
 

To generate Figure 10-2, MFI of CD90 shRNA-treated group was normalized to 

MFI of pLKO.1 GFP-treated group using simple division.  Then, the calculated 

values from Day 3 and Day 7 were compared.  Data are presented as median ± 

standard error of mean of measurements. When paired t-test was performed on the 

normalized values using SPSS version 21, no statistical difference was found at 

p=0.05.   
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Figure 10-2 MFI of CD90 shRNA group normalized to MFI of pLKO.1 GFP 
group on day 3 and day 7 of transduction. MFI of three groups were measured 
3 and 7 days after the first introduction of transduction cocktail. MFI of CD90 
shRNA group was then normalized to that of pLKO.1 GFP group.   
 

The flow cytometry analysis results suggest two possibilities.  It is possible that 

although CD90 was silenced successfully at the mRNA transcript-level, the 

change was not significant at the protein level because the half-life of CD90 is 

“long.”  While a decrease in mRNA expression indicates that there are fewer 

CD90 templates that can be translated, transduction itself cannot eliminate the 

already-existing antigens.  Alternatively, it is also possible that 48-hour 

incubation using MOI=10 was not sufficient to generate a significant reduction 

CD90 antigen-expression.  Despite a lack of statistical significance, Figures 10-1 

and 10-2 show a trend of decreasing CD90 antigen over time.  The fact that large 

donor variability existed suggests that the difference in CD90 antigen expression 

between CD90 shRNA-treated group and the control groups may become clearer 

with a larger sample size. 
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Conclusion 

In Part B of the thesis, the basic knowledge about RNAi and various RNAi-

triggering systems has been provided.  RNAi is an endogenous cellular 

mechanism which can be used to silence specific genes through post-

transcriptional means.  Our current study relies on this cellular mechanism to 

knockdown the expression CD90.  Hence, the important factors governing the 

success of gene silencing, including the choice of RNAi triggering molecules, 

vector delivery system, and MOI, must be determined carefully.  From the 

background knowledge gained from literature review and observations made in 

our experiments, we decided that shRNA-approach would be most suitable for our 

proposed research, because a stable and potent knockdown of CD90 was desirable.  

Furthermore, lentiviral expression system was determined to be most effective at 

transducing primary hBM-MSCs in comparison to other vector systems.  The next 

step was to select a specific shRNA sequence that can successfully knockdown 

the expression of CD90 in hBM-MSCs.  In addition, the shRNA sequence of 

choice was used to effectively knockdown hBM-MSCs from a female donor, and 

MOI of 10 was experimentally determined to be sufficient for eliciting a 

reasonable reduction of CD90 expression in hBM-MSCs.  Finally, flow cytometry 

analysis of transduced MSCs suggests that gene silencing at the mRNA level is 

not readily represented at the protein level.  The knowledge gained from this 

section of the thesis will help our pursuit for a novel method of increasing 

chondrogenic capacity of BM-MSCs via anti-CD90 strategies. 
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Pat C: Main Experiments 

 

Chapter 11: Changes in mRNA expression of CD90 in shRNA-transduced 

human mesenchymal stem cells with varying incubation time with viral 

supernatant 

 

Chapter 11.1: Introduction 

RNA interference (RNAi) is an innate and evolutionarily conserved cellular 

process that can be used to suppress expression of specific genes [1, 2].  

Investigation into functions of various genes has benefitted greatly from the use of 

lentiviral (LV) vectors [3-5].  LV vectors have been used for many years to 

achieve stable gene silencing in human primary cells, including human bone 

marrow-mesenchymal stem cells (hBM-MSCs) [4-7].  Modification of hBM-

MSCs via RNAi is of special interest because of the cells’ ability to differentiate 

into various mesenchymal lineages, including osteocytes, adipocytes, and 

chondrocytes [8].  Investigation into the functions of certain genes that may play a 

critical role in chondrogenic differentiation of hBM-MSCs is especially valuable, 

because the knowledge gained from such research can help improve the quality of 

mesenchymal cell-based therapy for articular cartilage damage.   

In order to achieve a successful transduction of hBM-MSCs, various 

factors such as incubation time with a transduction cocktail must be determined 

cautiously.  Although there is evidence to suggest that increased exposure to 

transduction cocktail, which contains lentiviral vectors and the most common 
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transduction-enhancing additive called polybrene (hexadimethrine bromide) [9], 

can increase transduction efficiency, it has also been suggested that a greater 

exposure to RNAi reagents can disrupt target cells’ cellular metabolism [4, 10, 

11].  For instance, Lin et al. has reported that the commonly used concentration of 

polybrene (final concentration of 8µg/ml) can inhibit proliferation of MSCs and 

that this inhibitory effect of polybrene persisted even 3 weeks after exposure.  

Other researchers have also noted that lentiviral vectors themselves or the 

expression of the transgene of interest can be toxic to target cells [6, 12].   

Similarly, our lab has observed mass cell death as a result of transduction (data 

not shown).  In that experiment, MSCs were incubated with transduction cocktail 

containing 8µg/ml  of polybrene and pLKO.1-based vector at multiplicity of 

infection (MOI) of 10 for 72 hours, at which time transduction medium was 

replaced with standard culture medium supplemented with 5 ng/ml basic 

fibroblast growth factor.  Approximately 3 days after the removal of transduction 

cocktail, only 70% of the cells remained attached to plastic culture vessel, and 

after approximately 7 days, almost all the cells were detached from the flask.  

Trypan blue exclusion assay of the detached cells confirmed that the targets cells 

were dead.  Grinev et al. suggests disruption in target cells’ gene integrity by 

multiple integrations of virus genome copies may be responsible for the mass cell 

death [11, 13].  

While various studies have looked into the effect of varying MOI on 

transduction efficiency and cellular metabolism, the relationship between 

transduction time and transduction efficiency has not been studied explicitly.  The 
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fact that transduction efficiency may vary between different lentiviral vectors and 

target cell types further necessitates the need to find an optimal incubation time 

for transducing hBM-MSCs with shRNA vectors of interest to our research group.  

The purpose of this experiment was to investigate how different incubation times 

with transduction cocktail affect the degree of knockdown of our gene of interest, 

CD90, in hBM-MSCs.  As we propose that CD90 may have an important role in 

guiding chondrogenic differentiation of MSCs [14], it is critical to find the 

minimum incubation time with which a reasonable degree of gene silencing can 

be achieved.  It was hypothesized that the amount of gene silencing achieved will 

increase with transduction time until maximum copies of virus genome has 

integrated into the target cells genome at a given MOI.   
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Chapter 11.2: Materials and Methods 

Lentiviral vector production, concentration and titration 

HEK 293T packaging cells were co-transfected with packaging plasmid ps-PAX2 

(Addgene plasmid 12260), envelope plasmid pMD2.G (Addgene plasmid 12259), 

and hairpin pLKO.1-RNAi vectors using TransIT-LT1 Reagent (Mirus, Madison, 

Wisconsin, USA).  The two hairpin pLKO.1-RNAi vectors used in the experiment 

are TRCN0000057024 (CD90 shRNA; Thermoscientific) and pLKO.1 GFP 

(Addgene 30323; non-targeting shRNA control).  Lentiviral vector-containing 

supernatants were collected 48 h and 72 h post-transfection.  The LV vector 

supernatant was concentrated using Lenti-XTM Concentrator (Clontech 

Laboratories, CA, USA) following the user manual.  The titer of the pooled LV 

vectors was then determined using qPCR Lentivirus Titration (Titer) Kit (Applied 

Biological Materials, Richmond, British Columbia, Canada) and  FAST qPCR Kit 

Master Mix (2X) Universal (KAPA Biosystems, Woburn, Massachusetts, USA), 

according to the manufacturers’ instructions. 

 

Isolation and transduction of human bone marrow mesenchymal stem cells 

Bone marrow aspirates were obtained from surgically discarded material after 

approval and a waiver of informed consent of the local ethical committee at the 

University of Alberta (Edmonton, Canada) during orthopedic procedures from the 

iliac crest of five donors (Table 11-1; three females, 23 to 44 years old, and two 

males, 24 and 51 years old).  After counting the number of nucleated cells in the 

aspirates by using crystal violet nuclei staining and a hemacytometer, 15 million 
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mono-nucleated cells (MNCs) were seeded per 150 cm2 tissue culture flask.  The 

cells were cultured in α-MEM supplemented with 10% heat inactivated fetal 

bovine serum, 1 mM sodium pyruvate, 100 mM HEPES buffer, 100 U/mL 

penicillin, 100 µg/mL streptomycin, and 0.29 mg/mL L-glutamine (all from 

Invitrogen, Mississauga, Ontario, Canada) and 5 ng/ml basic fibroblast growth 

factor (from Humanzyme, Medicorp Inc., Montreal, Quebec, Canada).  Nucleated 

cells were allowed to adhere and grow for seven days before the first media 

change under normal oxygen tension (21% O2) at 37°C in a humidified incubator 

with 5% CO2.  Thereafter, the culture medium was changed twice per week until 

70% to 80% cell confluence was attained.  The adherent cells were detached using 

0.05% trypsin-EDTA (Invitrogen) and expanded until passage 1.  The isolated 

cells were resuspended in freezing medium (high glucose Dulbecco’s modified 

Eagle’s medium supplemented with 4.5 mg/mL D-Glucose, 20% fetal bovine 

serum, 10% dimethyl sulfoxide, 100 U/mL penicillin, 100 µg/mL streptomycin, 

and 0.29 mg/mL L-glutamine; all from Invitrogen) and were kept in liquid N2 

until experimental use.   

 

Table 11-1 Donor information of bone marrow aspirates. 
Donor Age Gender 

BM135 23 Female 
BM 140 51 Male 
BM 143 44 Female 
BM 147 38 Female 
BM 149 24 Male 
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Prior to experiments, the cells were thawed and cultured until passage 3 following 

the same protocol as before.  When 70-80% confluence was reached, the adherent 

cells were detached using 0.05% trypsin-EDTA and plated in 1.28ml standard 

culture medium per well in a 6-well plate at a density of 60,000 cells/well.  

Approximately one day later, when the cells reached 60-70% confluence, the 

culture medium was replaced with transduction cocktail, which consisted of fresh 

standard culture medium supplemented with 5 ng/ml basic fibroblast growth 

factor, lentiviral vector supernatant (multiplicity of infection of 10) and 8 µg/ml 

polybrene (Sigma-Aldrich).  The culture medium of the no-treatment group and 

the polybrene-control group was replaced with fresh standard culture medium 

containing basic fibroblast growth factor, and fresh standard culture medium 

containing basic fibroblast growth factor and 8 µg/ml polybrene, respectively.  

After 24, 48, and 72 hours of incubation, the cells were harvested for gene 

expression analysis.   

 

Gene expression analysis 

Trizol (Invitrogen) was applied quickly and directly to the adherent cells at 24, 48, 

and 72 hour time points.  Total RNA of hBM-MSCs was subsequently extracted 

by using RNeasy mini kit (Qiagen, Mississauga, Ontario, Canada), and 

contaminating genomic DNA was removed by DNase treatment.  Total RNA (50 

ng) in a 40-µl reaction was reverse-transcribed to cDNA by using GoScript RT 

primed with oligo (dT)15 primer (Fisher Scientific, Whitby, ON, Canada).  qRT-

PCR was performed in DNA Engine Opticon II Continuous Fluorescence 
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Detection System (Bio-Rad) by using hot start Taq and SYBR Green detection 

(Eurogentec North America Inc., San Diego, CA, USA).  Primer sequences for 

CD90 and β-actin were obtained from Invitrogen.  The mRNA expression level 

for CD90 was normalized to the expression level of β-actin by the 2!!!"   method 

[15, 16]. 

 

Statistical analysis  

Data are presented as mean ± standard error of mean of measurements. Statistical 

analyses were performed using SPSS version 21 (IBM Corp. Released 2012. IBM 

SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp).  Different 

treatment groups within each incubation time group were compared with one-way 

analysis of variance with Tukey’s multiple comparison post hoc tests.  All 

statistical differences were considered to be significant with a p-value of less than 

0.05. 

 

 

 

 

 

 

 

 

 



135	
  
	
  

Chapter 11.3: Results 

For each time group, MSCs were further divided into 4 different groups: hBM-

MSCs cultured in (1) normal culture medium; (2) normal culture medium 

containing 8 µg/ml polybrene but no LV vectors; (3) CD90 shRNA transduction 

cocktail; and (4) pLKO.1 GFP transduction cocktail.  No significant difference 

was found between the groups after 24 hours (Figure 11-1). There was a 

statistically significant decrease in expression of CD90 mRNA by the CD90 

shRNA-transduced MSCs (group 3) compared to the hBM-MSCs cultured in 

normal culture medium (group 1) after 48h and 72h incubations (Figure 11-1).  

However, no statistical difference was found between treatment groups 1, 2, and 4 

regardless of the lengths of incubation.   
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Figure 11-1 mRNA expression of CD90 relative to β-actin.  Data represent 
mean ± standard error (n=5); one-way ANOVA with Tukey’s post hoc test was 
used: * = p < 0.05 and ** = p < 0.01.   

0.00	
  

0.01	
  

0.02	
  

0.03	
  

0.04	
  

0.05	
  

0.06	
  

1	
   2	
   3	
   4	
  

m
RN

A	
  
ex
pr
es
si
on

	
  re
la
0v

e	
  
to
	
  β
-­‐a
c0
n	
  

Treatment	
  

CD90	
  (24	
  h.	
  Incuba0on)	
  

0.00	
  

0.01	
  

0.02	
  

0.03	
  

0.04	
  

0.05	
  

0.06	
  

1	
   2	
   3	
   4	
  

m
RN

A	
  
ex
pr
es
si
on

	
  re
la
0v

e	
  
to
	
  β
-­‐a
c0
n	
  

Treatment	
  

CD90	
  (48	
  h.	
  Incuba0on)	
  

0.00	
  

0.01	
  

0.02	
  

0.03	
  

0.04	
  

0.05	
  

0.06	
  

1	
   2	
   3	
   4	
  

m
RN

A	
  
ex
pr
es
si
on

	
  re
la
0v

e	
  
to
	
  β
-­‐a
c0
n	
  

Treatment	
  

CD90	
  (72	
  h.	
  Incuba0on)	
  

*	
  

**	
  



137	
  
	
  

Chapter 11.4: Discussion 

hBM-MSCs at passage 3 were cultured in four different conditions for three 

different incubation time to test transduction efficiency that can be achieved with 

each transduction time.  CD90 mRNA expression of the resulting hBM-MSCs 

were analyzed using qRT-PCR.  The results showed that neither polybrene nor 

pLKO.1-GFP changed CD90 expression in target cells while the CD90 shRNA 

group showed a significant decrease in CD90 gene expression compared to that of 

the hBM-MSCs cultured in normal culture medium.  These results indicate that 

the changes that were observed in CD90 shRNA treated group are due to CD90 

shRNA alone.  Furthermore, it demonstrates that pLKO.1-GFP is a suitable non-

targeting shRNA that can serve as a reliable control for CD90 shRNA.  As it can 

be seen from Figure 11-1, incubating hBM-MSCs with CD90 shRNA for 24h. 

was not sufficiently long enough to generate a significant silencing of CD90.  

Instead, a length of incubation equal to or greater than 48h. was required to 

significantly knock down CD90 expression in target cells.  It can also be 

concluded that exposing target cells to LV vectors for a longer period of time does 

not necessarily result in more effective gene silencing.  In fact, the comparisons 

showed that the degree of CD90 knockdown achieved at 48h. and 72h. was very 

similar.  As hypothesized earlier, saturation of target cell genome with viral 

genome appeared to have occurred, and we suggest here that with MOI=10 this 

plateau was reached with 48h of incubation with LV supernatant.  It is also 

interesting to observe that no significant difference was found between non-

targeting control group (group 4) and CD90 shRNA group (group 3) even though 
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the graph suggests a difference exists.  In the future, this concern can be addressed 

by using a higher MOI.  With a greater dose of LV vectors, a statistical difference 

between the two treatment groups (groups 3 and 4) may become apparent.  

Despite this concern, our results showed CD90 shRNA-treated MSCs consistently 

had lower CD90 mRNA expression relative to pLKO.1-GFP-treated MSCs.  The 

lack of statistical difference may be attributed to donor variability, and this 

problem can be improved by increasing the sample size.  It should also be noted 

that RNAi can never completely eliminate the gene product [17].  However, a 

complete knockout of the gene of interest is not always required to produce a 

biological phenomenon [18].    
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Chapter 11.5: Conclusion 

Genetic modification of hBM-MSCs allows scientists to alter the behaviors of 

multipotent cells and to study functions of specific genes.  There is evidence to 

suggest that CD90 is closely related to in vitro chondrogenic differentiation of 

hBM-MSCs, and to investigate the relationship between the level of CD90 

expression and chondrogenic potential of hBM-MSCs, determining a suitable 

transduction time is crucial.  In order to avoid cell toxicity and changes in 

metabolism of hBM-MSCs from the transduction procedure itself, we aimed to 

investigate the minimum length of incubation time necessary to generate a 

significant gene silencing of CD90.  Here, we showed that exposing hBM-MSCs 

to CD90 shRNA for 48h. was sufficient to achieve a meaningful knockdown of 

CD90 when compared to hBM-MSCs that are cultured in standard culture 

medium.  Interestingly, no significant difference in CD90 mRNA expression was 

found between CD90 shRNA-treated group and non-targeting shRNA-treated 

group.  In conclusion, we report that LV vectors are an effective gene delivery 

tool and that incubating hBM-MSCs with CD90 shRNA for 48h. or more will 

produce a significant silencing of the gene.    
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Chapter 12: Enhancing chondrogenesis of mesenchymal stromal cells 

through anti-Thy1 strategies 

 

Chapter 12.1: Introduction 

Degeneration of articular cartilage, especially osteoarthritis (OA), is a leading 

cause of disability resulting in a high economic and social burden on society.   

Not only does the disruption to the intricate structure and composition of articular 

cartilage jeopardize patients’ health and quality of life, but it also imposes great 

economic burden to patients and society due to direct and indirect costs of the 

disease (1-4).   Because of its low cellularity, and avascular and aneural nature (5-

8), articular cartilage cannot heal itself.  Therefore, effective and efficient 

treatment methods are highly desirable.  While there exist many different kinds of 

nonoperative (9-13) and surgical (14-17) treatment methods, these therapeutic 

methods have limiting factors, and continuous effort to advance the quality of 

current cartilage repair strategies is critical for ameliorating OA-associated 

problems.   

 

Cell-based therapy using mesenchymal stem cells (MSCs) has developed to 

“generate replacement articular chondrocytes for the production of cartilage tissue 

thereby reducing pain, restoring joint function and delaying the onset of cartilage 

degradation and the need for prosthetic joint replacement” (18).  MSCs are an 

attractive cell source for cell-based therapy, because of their ability to 

differentiate into various cell lineages including chondrocytes (19).  Furthermore, 
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MSCs have high proliferative ability, thereby enabling application of the 

treatment method to very large defects.  Despite these advantages, there are 

concerns that the quality of human mesenchymal stem cells (hMSCs)-derived 

repair cartilage is inferior to that of normal human articular cartilage.  In addition, 

this treatment method cannot be used effectively unless a wide variability in the 

quality of hMSCs, the “ingredients” for cell-therapy, can be controlled for  (20).   

 

Recently, Adesida et al. suggested a potential link between CD90 (Thy-1) 

expression and the chondrogenic potential of bone marrow MSCs (21).  In their 

experiment, hBM-MSCs with higher chondrogenic potential consistently and 

significantly expressed less CD90 protein prior to chondrogenic stimulation.  

Although CD90 has been explored for nearly half a century, its role in 

chondrogenesis of MSCs is still unclear.  In order to elucidate the relationship 

between CD90 and chondrogenic capacity of hBM-MSCs, we silence CD90 

expression via RNA interference (RNAi).  RNAi is a powerful method of gene 

suppression, and short hairpin RNA (shRNA)-mediated transduction can achieve 

an efficient and stable knockdown of a specific gene (22-27).   In our current 

research, second generation lentiviral (LV) vectors will be used to deliver CD90-

targeting shRNA into hBM-MSCs (28-33).   

 

In this study, chondrogenic capacity of hBM-MSCs whose CD90 expression has 

been knocked down will be compared to that of hBM-MSCs that have been (1) 

cultured normally in standard culture medium; and (2) transduced with LV 
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vectors containing non-targeting shRNA pLKO.1 GFP.  Chondrogenic potential 

of hBM-MSCs expressing different levels of CD90 will be explored by culturing 

hBM-MSCs in collagen sponge scaffolds, which mimic natural extracellular 

matrix (ECM) by providing highly organized, three-dimensional (3-D) cell 

culturing environment in which MSCs can proliferate, migrate, and differentiate 

(34-37). 
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Chapter 12.2: Materials and Methods 

Lentiviral vector production, concentration, and titration 

HEK 293T packaging cells were co-transfected with packaging plasmid ps-PAX2 

(Addgene plasmid 12260), envelope plasmid pMD2.G (Addgene plasmid 12259), 

and hairpin pLKO.1-RNAi vectors using TransIT-LT1 Reagent (Mirus, Madison, 

Wisconsin, USA).  The two hairpin pLKO.1-RNAi vectors used in the experiment 

were TRCN0000057024 (CD90 shRNA; Thermoscientific) and pLKO.1 GFP 

(Addgene 30323; non-targeting shRNA control).  Lentiviral vector-containing 

supernatants were collected 48 h and 72 h post-transfection.  The LV vector 

supernatant was concentrated using Lenti-XTM Concentrator (Clontech 

Laboratories, CA, USA) following the user manual.  The titer of the pooled LV 

vectors was then determined using qPCR Lentivirus Titration (Titer) Kit (Applied 

Biological Materials, Richmond, British Columbia, Canada) and  FAST qPCR Kit 

Master Mix (2X) Universal (KAPA Biosystems, Woburn, Massachusetts, USA), 

according to the manufacturers’ instructions. 

 

Isolation and transduction of human bone marrow mesenchymal stem cells 

Bone marrow aspirates were obtained from surgically discarded material after 

approval and a waiver of informed consent of the local ethical committee of the 

University of Alberta (Edmonton, Canada) during orthopedic procedures from the 

iliac crest of four donors (Table 12-1; four males, 40 to 56 years old).  After 

counting the number of nucleated cells in the aspirates using crystal violet nuclei 

staining and a hemacytometer, 15 million mono-nucleated cells (MNCs) were 
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seeded per 150 cm2 tissue culture flask.  The cells were cultured in α-MEM 

supplemented with 10% heat inactivated fetal bovine serum, 1 mM sodium 

pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL streptomycin, 

and 0.29 mg/mL L-glutamine (all from Invitrogen, Mississauga, Ontario, Canada) 

and 5 ng/ml basic fibroblast growth factor (from Humanzyme, Medicorp Inc., 

Montreal, Quebec, Canada).  Nucleated cells were allowed to adhere and grow for 

seven days before the first media change under normal oxygen tension (21% O2) 

at 37°C in a humidified incubator with 5% CO2.  Thereafter, the culture medium 

was changed twice per week until 70% to 80% cell confluency was attained.  The 

adherent cells were detached using 0.05% trypsin-EDTA (Invitrogen) and 

expanded until passage 1.  The isolated cells were resuspended in freezing 

medium (high glucose Dulbecco’s modified Eagle’s medium supplemented with 

4.5 mg/mL D-Glucose, 20% fetal bovine serum, 10% dimethyl sulfoxide, 100 

U/mL penicillin, 100 µg/mL streptomycin, and 0.29 mg/mL L-glutamine; all from 

Invitrogen) and were stored in liquid N2 until experimental use.   

 

Table 12-1 Donor information of bone marrow aspirates. 
Donor Age Gender 

BM133 40  
 

Male 
BM 134 56 
BM 140 51 
BM 142 44 

 

Prior to experiments, the cells were thawed and were cultured until passage 3 

following the same protocol as before.  When 70-80% confluency was reached, 

the cells were divided into three groups: (1) No treatment group; (2) Group E9; 
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and (3) Group pLKO.1 GFP.  While the no treatment group was cultured in 

normal culture medium until its subsequent scaffold culture, the culture medium 

for Group E9 and pLKO.1 GFP was replaced with 20ml of transduction cocktail 

containing fresh standard culture medium supplemented with 5 ng/ml basic 

fibroblast growth factor, lentiviral vector supernatant (multiplicity of infection 

(MOI) of 10) and 8 µg/ml polybrene (Sigma-Aldrich).   After 48 hours of 

incubation, the medium for all three groups was changed to standard culture 

medium supplemented with 5 ng/ml basic fibroblast growth factor.  The cells 

were left to recover for 3 additional days in the normal culture medium, after 

which they were detached to be cultured in chondrogenic medium or to be 

analyzed by flow cytometry.   

 

Flow cytometry analysis 

The isolated cells were washed once with FACS buffer (1X PBS supplemented 

with 5% fetal bovine serum and 0.1% sodium azide), and were resuspended in 

FACS buffer at 250,000 cells/100µl buffer.  Then, the experimental group was 

incubated with PE-CD90 antibodies (BD Pharmingen), while the isotype control 

group was incubated with mIgG1 sc-2866/PE (Santa Cruz Biotechnology).  

Incubation was implemented on ice, in the dark.  After 30 minutes of incubation, 

the cells were washed twice with FACS buffer and were resuspended in 500µl of 

FACS buffer.  All washing steps were performed by a combination of 

centrifugation (1500 rpm, 5 minutes, at 4°C) and aspiration of supernatant.  The 

cells were analyzed using FACS Calibur (BD Bioscience) and Cell Quest Pro 
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software (BD Bioscience).  The level of expression of CD90 was calculated as the 

ratio between geometric median fluorescence intensity (MFI) of the experimental 

group and that of the isotype control.  Unless otherwise stated, the three treatment 

groups were compared with one-way analysis of variance with Tukey’s multiple 

comparison post-tests using SPSS version 21 (IBM Corp. Released 2012. IBM 

SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp).   

 

In vitro chondrogenic differentiation 

hBM-MSCs at passage 3 were seeded into three-dimensional (3-D) collagen 

scaffolds.  DuraGen® collagen matrix (Integra Lifesciences, PlainsBoro, NJ, 

USA; 10cmx12.5cm; ~3.5mm total thickness collagen sponge with pore size of 

115±20µm) was cut into 6mm diameter disks using a sterile biopsy punch.  The 

scaffolds were placed in a 24-well plate, and each scaffold was seeded with 

500,000 MSCs resuspended in 20µl of serum-free chondrogenic medium 

consisting of high glucose Dulbecco’s modified Eagle’s medium (DMEM) 

containing 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 mM 

HEPES buffer, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 0.29 mg/ml L-glutamine (all from Invitrogen), and supplemented 

with 0.1 mM ascorbic acid 2-phosphate, 40 µg/ml L-proline, 10−5 M 

dexamethasone, 1× ITS+1 premix (Sigma-Aldrich, Oakville, Canada), and 10 

ng/ml TGF-β3 (Humanzyme-Medicorp Inc.).  To allow initial cell attachment, the 

scaffolds seeded with MSCs were incubated in a humidified incubator maintained 

at 37°C with 21% O2 and 5% CO2 for 15 minutes.  Thereafter, 100µl of 
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chondrogenic medium was gently added to the base of each well, and the scaffold 

discs were incubated in the humidified incubator for an additional 30 minutes.  

Finally, 650µl of chondrogenic medium was added along the side of each well, 

and the scaffolds were cultured for 3 weeks under normoxic condition (21% O2) 

at 37°C in a humidified incubator with 5% CO2.  The chondrogenic medium was 

changed twice a week until the scaffolds were collected for biochemical, 

histological, and gene expression analysis.  

 

Biochemical analysis 

Scaffolds were rinsed with 1X PBS (Invitrogen) and were digested in proteinase 

K (1mg/ml in 40mM Tris with 1mM EDTA, 1mM iodoacetamide and 10mg/ml 

pepstatin A; all from Sigma-Aldrich) for 16 hours at 56°C.  The sulfated 

glycosaminoglycan (sGAG) content was measured by 1,9-dimethymethylene blue 

binding (Sigma-Aldrich) using chondroitin sulfate (Sigma-Aldrich) as standard.  

The DNA content was determined using the CyQuant cell proliferation assay kit 

(Invitrogen) with supplied bacteriophage l DNA as standard. Statistical 

differences between test groups were evaluated by one-way analysis of variance 

(ANOVA) with Tukey’s multiple comparison post-tests. Statistical analyses were 

performed using SPSS version 21 (IBM Corp. Released 2012. IBM SPSS 

Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp).  All statistical 

differences with p-value of less than 0.05 were considered to be significant.  
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Histological analysis 

Tissues generated from the scaffold cultures were fixed in 4% phosphate buffered 

formalin, processed into paraffin wax, sectioned at 5 µm and stained with 0.1% 

safranin-O and counterstained with 1% fast green to reveal sulfated GAG (sGAG) 

matrix depositions. Other sections were stained with 1% alcian blue and 

counterstained with 1% neutral red stain to reveal GAG matrix depositions.  It 

should be noted that alcian blue may or may not stain only for sGAG depending 

on the pH achieved during staining.  Images were captured using an Omano 

OM159T biological trinocular microscope (Microscope Store, Virginia, USA) 

fitted with an Optixcam summit series 5MP digital camera and Optixcam 

software and assembled in Adobe Photoshop (Adobe Systems Inc. San Jose, 

USA).   

 

Gene expression analysis 

Trizol (Invitrogen) was applied quickly and directly to scaffolds on Day 0 (before 

chondrogenic culture) or Day 21 (after 3 weeks of chondrogenic culture on 

scaffolds), and total RNA of hBM-MSCs was subsequently extracted according to 

the manufacturer’s instruction.  Contaminating genomic DNA was removed by 

DNase treatment.  Total RNA (50 ng) in a 40-µl reaction was reverse-transcribed 

to cDNA by using GoScript RT primed with oligo (dT)15 primer (Fisher 

Scientific, Whitby, ON, Canada).  qRT-PCR was performed in DNA Engine 

Opticon II Continuous Fluorescence Detection System (Bio-Rad) using hot start 

Taq and SYBR Green detection (Eurogentec North America Inc., San Diego, CA, 
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USA).  The mRNA expression levels for aggrecan (AGG), Collagen1a2, 

Collagen2a1, Collagen10a1, cartilage oligomeric matrix protein (COMP), and 

CD90 were normalized to the expression level of β-actin by the 2!!!"   method (38, 

39).  Primer sequences (Table 12-2) were based on previous published work (40, 

41) or were custom designed by Dr. Adetola Adesida using the Primer Express 

software (Applied Biosystems, Foster City, California, USA).  All primers were 

obtained from Invitrogen (Mississauga, Ontario, Canada).  Unless otherwise 

stated, statistical analyses were evaluated by ANOVA with Tukey’s multiple 

comparison post-tests using SPSS version 21 (IBM Corp. Released 2012. IBM 

SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp).  Statistical 

differences were considered to be significant with a p-value of less than 0.05.   

 

Table 12-2 Primer sequences used in quantitative real-time PCR.  
Gene Primer Sequence Direction Reference 
β-Actin 5’-AAGCCACCCCACTTCTCTCTAA-3’ 

5’-AATGCTATCACCTCCCCTGTGT-3’ 
(Forward) 
(Reverse) 

[41] 

COMP 5’-CCGACAGCAACGTGGTCTT-3’ 
5’-CAGGTTGGCCCAGATGATG-3’ 

(Forward) 
(Reverse) 

[40] 

Aggrecan 5’-AGGGCGAGTGGAATGATGTT-3’ 
5’-GGTGGCTGTGCCCTTTTTAC-3’ 

(Forward) 
(Reverse) 

[41] 

Collagen1A2 5’-TTGCCCAAAGTTGTCCTCTTCT-3’ 
5’-AGCTTCTGTGGAACCATGGAA-3’ 

(Forward) 
(Reverse) 

[41] 

Collagen2A1 5’-CTGCAAAATAAAATCTCGGTGTTCT-3’ 
5’-GGGCATTTGACTCACACCAGT-3’ 

(Forward) 
(Reverse) 

[41] 

Collagen10A1 5’-CTGCAAAATAAAATCTCGGTGTTCT-3’ 
5’-GGGCATTTGACTCACACCAGT-3’ 

(Forward) 
(Reverse) 

[40] 

Thy1 (CD90) 5’-ACCATGAACCTGGCCATCAG-3’ 
5’TCGGGAGACCTGCAAGACT-3’ 

(Forward) 
(Reverse) 
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Chapter 12.3: Results 

Effect of anti-Thy1 treatment on the expression of cell surface marker Thy1  

To investigate the effect of anti-Thy1 treatment on the expression of cell surface 

protein Thy-1, we analyzed the cell surface molecule expression from four 

different donors: BM 133, 134, 140, and 142.  Data are presented as median ± 

standard error of mean of measurements. Figure 12-1 shows normalized CD90 

cell surface expression as determined by MFI of each treatment group measured 5 

days after the first introduction of transduction cocktail to the target cells.  No 

significant statistical difference was found between different treatment groups at p 

= 0.05.   

 
Figure 12-1 Comparisons of MFI between different groups.  
MFI of three different groups were measured 5 days after the first introduction of 
transduction cocktail.  
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Downstream effect of anti-Thy1 treatment on extracellular matrix formation  

The deposition and distribution of GAG in the extracellular matrix of Day 21 

scaffolds was visualized by alcian blue and safranin-O staining of 5µm thickness 

paraffin embedded sections (Figures 12-2).  Positive alcian blue staining was 

observed only in the no treatment group as indicated by greenish-blue color.   

         

      

      
Figure 12-2 Histological analysis of scaffold constructs after three weeks of 
chondrogenic culture.  All photomicrographs represent medium (10x) images 
with a 100um scale bar.  (a)~(c) alcian blue/neutral red staining of no treatment 
group, Group E9, and Group pLKO.1 GFP, respectively. (d)~(f) safranin-O/fast 
green staining of no treatment group, Group E9, and Group pLKO.1 GFP, 
respectively. 

a. 

b. 

c. 

d. 

e. 

f. 
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Similarly, safranin-O staining showed that the scaffolds belonging to the no 

treatment group were the only constructs which stained positive for safranin-O as 

indicated by pink color (Figure 12-2b).  In contrast, those constructs of the E9 

and pLKO.1 GFP groups did not demonstrate any positive staining for sulfated 

proteoglycan (Figure 12-2c and d, respectively).  Most of the cells that are 

embedded in the ECM, when visible, showed a rounded chondrocyte-like 

morphology.   

Quantitative GAG matrix normalized to DNA content of the scaffolds was 

determined (Figure 12-3).  In the pooled data set, no statistically significant 

difference was found between the three groups with regards to their GAG per 

DNA content. 

 
Figure 12-3 Comparisons of GAG/DNA between three groups.  	
  
Mean GAG/DNA (µg/µg) levels of three different groups was measured after 
three weeks of scaffold culture in chondrogenic media.  A total of four 
independent scaffold culture experiments were performed in duplicate.   
 

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

No	
  Treatment	
   	
  E9	
   	
  pLKO.1	
  GFP	
  

GA
G/

DN
A	
  
(µ
g/
µg

)	
  

Treatment	
  Groups	
  

Average	
  GAG/DNA	
  content	
  



155	
  
	
  

Effect of anti-Thy1 treatment on Thy1 (CD90) gene 
 
Quantitative RT-PCR was performed for CD90 gene expression analysis for the 

three groups before and after three weeks of chondrogenic culture.  The mean 

mRNA expression level of CD90 before (Day 0) and after (Day 21) three weeks 

of chondrogenic culture are presented in Figure 12-4.  Before three weeks of 

chondrogenic culture, the mRNA expression level of CD90 was significantly 

lower in the E9 group compared to both the no treatment (8.4-fold at p < 0.001) 

and pLKO.1 GFP (5.4-fold at p = 0.014) control groups.  Before chondrogenic 

culture, no statistically significant difference in the mean mRNA expression level 

of CD90 was found between the no treatment and pLKO.1 GFP groups.  After 

three weeks of chondrogenic stimulation on scaffolds, the difference in CD90 

mRNA expression level in the E9 group compared to the no treatment group (1.7-

fold at p = 0.051) approached significance, while the difference between the E9 

group and the pLKO.1 GFP group became statistically insignificant.  No 

statistically significant difference was found between the no treatment and 

pLKO.1 GFP groups after three weeks of scaffold culture.   

 

Further statistical analyses using paired samples T test revealed that the CD90 

mRNA expression level of hBM-MSCs increased over the three weeks of 

chondrogenic culture for both the E9 (10.4-fold at p = 0.005) and pLKO.1 GFP 

groups (2.4-fold at p = 0.035), while approaching statistical significance for the 

no treatment group (2.2-fold at p = 0.059).  Figure 12-4 illustrates this change in 

CD90 mRNA expression. 
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Figure 12-4 CD90 gene expression analysis of hBM-MSCs before and after 
three weeks of chondrogenic culture across three different groups.  CD90 
expression was evaluated by quantitative mRNA gene expression analysis via 
SYBR Green detection. * = P < 0.05 by (1) one-way ANOVA with Tukey’s 
multiple comparison post-tests for in-between groups and (2) paired samples T 
test for within groups. 
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expression level of COMP (1.8-fold at p < 0.001), AGG (32.5-fold at p = 0.024), 

and Col2a1 (127.0-fold at p = 0.045) compared to the E9 group.  Similarly, the no 

treatment group showed higher mean mRNA expression level of COMP (1.9-fold 

at p < 0.001), AGG (45.2-fold at p = 0.022), and Col2a1 (126.2-fold at p = 0.045) 

in comparison to the pLKO.1 GFP group.  In addition, the expression level of 

Col1a2 (2.8-fold at p = 0.03) and Col10a1 (14.6-fold at p = 0.039) was 

significantly lower in the E9 group compared to the no treatment group, while the 

significance of the difference in the level of Col1a2 (2.3-fold at p = 0.062) and 

Col10a1 (9.0-fold at p = 0.051) expression between the no treatment and pLKO.1 

GFP groups approached significance.  No statistically significant difference was 

found between the E9 and pLKO.1 GFP groups with regards to the mRNA 

expression level of all five chondrogenic genes. qRT-PCR results obtained from 

the hBM-MSCs of the three groups that received three weeks of chondrogenic 

stimulation on scaffolds are presented in the next five figures (Figure 12-5 - 12-9).    
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Figure 12-5	
  COMP gene expression analysis of hBM-MSCs after three weeks 
of chondrogenic culture across three different groups.  COMP expression was 
evaluated by quantitative mRNA gene expression analysis via SYBR Green 
detection. * = P < 0.05 by one-way ANOVA with Tukey’s multiple comparison 
post-tests. 
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Figure 12-6	
  AGG gene expression analysis of hBM-MSCs after three weeks 
of chondrogenic culture across three different groups.  AGG expression was 
evaluated by quantitative mRNA gene expression analysis via SYBR Green 
detection. * = P < 0.05 by one-way ANOVA with Tukey’s multiple comparison 
post-tests. 
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Figure 12-7	
  Col1a2 gene expression analysis of hBM-MSCs after three weeks 
of chondrogenic culture across three different groups.  Col1a2 expression was 
evaluated by quantitative mRNA gene expression analysis via SYBR Green 
detection. * = P < 0.05 by one-way ANOVA with Tukey’s multiple comparison 
post-tests. 
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Figure 12-8	
  Col2a1 gene expression analysis of hBM-MSCs after three weeks 
of chondrogenic culture across three different groups.  Col2a1 expression was 
evaluated by quantitative mRNA gene expression analysis via SYBR Green 
detection. * = P < 0.05 by one-way ANOVA with Tukey’s multiple comparison 
post-tests. 
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Figure 12-9	
   Col10a1 gene expression analysis of hBM-MSCs after three 
weeks of chondrogenic culture across three different groups.  Col10a1 
expression was evaluated by quantitative mRNA gene expression analysis via 
SYBR Green detection. * = P < 0.05 by one-way ANOVA with Tukey’s multiple 
comparison post-tests. 
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Chapter 12.4: Discussion 

In this study, we have compared the chondrogenic potential of hBM-MSCs that 

were mono-layer cultured (P3) in three different culture media: (1) standard α-

MEM culture media; (2) α-MEM culture media containing CD90 shRNA 

transduction cocktail; and (3) α-MEM culture media containing pLKO.1 GFP 

non-targeting shRNA transduction cocktail.  The BM-MSCs were selected via 

plastic adherence and cell culture mediated propagation.  Their chondrogenic 

capacity was determined by further culturing these cells in 3-D scaffold constructs 

for three weeks. 

 

Flow cytometry analysis and quantitative RT-PCR were performed to monitor the 

effectiveness of our gene knockdown treatment in silencing CD90.  This is 

important since a meaningful investigation of the effect of anti-Thy1 treatment on 

chondrogenic potential of hBM-MSCs can only be achieved through a successful 

knockdown of the gene CD90 in the E9 group.  The result from flow cytometry 

analysis showed no difference in protein expression of cell surface marker CD90 

between the three groups.  However, qRT-PCR suggested that initially (before 

scaffolding), the mRNA expression of CD90 in the E9 group was significantly 

lower compared to the control groups (i.e. no treatment and pLKO.1 GFP groups).  

Two major factors can be responsible for this discrepancy.  But firstly, it is 

important to understand the mechanism of our anti-Thy1 strategy.  The treatment 

achieves gene silencing by destroying CD90 mRNA templates rather than the 

actual cell surface proteins.  Therefore, while transduction of hBM-MSCs using 
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CD90 targeting shRNA will reduce the expression of CD90 at the genetic level, it 

cannot directly eliminate the proteins that are already expressed on the cell 

surface.  Then, the regulation of the cell surface protein expression depends on the 

half-life of the protein.  Naturally, it will take longer for proteins with longer half-

lives to be depleted compared to those with shorter half-lives (42).  The lack of 

statistical significance in the results obtained from flow cytometry analysis could 

indicate that (1) no significant gene silencing occurred; or that (2) the half-life of 

CD90 is “long.”  Because our genetic analysis confirmed that CD90 was silenced 

successfully at the mRNA transcript-level, we suspect that the turnover rate of 

Thy1 surface markers is low, and that there is a delay in observation of decreased 

CD90 expression at the protein level.  Interestingly, the level of CD90 mRNA 

expression increased after three weeks of chondrogenic culture, even in the E9 

group.  This result was surprising because we predicted that the suppression of 

CD90 would be maintained throughout the chondrogenic culture.   

 

There are several possible explanations for this change.  Firstly, it is possible that 

the gene-silencing effect was wearing off in Group E9.  Although lentiviral-based 

shRNA technology is considered to be one of the most stable means of gene 

knockdown, it has its limitations (27, 43).  With subsequent passages, expression 

of various transgenes can decrease (44).  However, considering reports which 

indicate that successfully transduced human mesenchymal stem cells continued to 

express the desirable effect for at least four months in culture (44), it is not likely 

that the gene silencing effect of the CD90-targeting lentiviral-based shRNA 
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diminished over the course of three weeks.  Moreover, considering that this trend 

of increasing CD90 mRNA expression was also seen in the pLKO.1 GFP group 

and, to a certain degree, with the no treatment group, instability of CD90-

targeting lentiviral-based shRNA is not likely to be responsible for the recovery of 

CD90 mRNA transcript level in hBM-MSCs.   

 

A second possible explanation is that the transduced cells whose CD90 expression 

was suppressed overcame the effect of gene knockdown by producing more 

mRNA transcripts than can be destroyed.  No previous research has outlined the 

change in CD90 mRNA expression in hBM-MSCs before and after chondrogenic 

culture.  While this mechanism is currently not fully understood, there are two 

plausible mechanisms by which the level of CD90 can be recovered.  It could be 

that chondrogenic culture itself induced CD90 expression.  During chondrogenic 

culture on scaffolds, the cells are exposed to various growth factors and other 

chemicals, including ascorbic acid, dexamethasone, L-proline, human insulin and 

TFG-β3, which were absent in the media that was used for monolayer culture on 

plastic.  This sudden change in culture environment could have induced the 

upregulation of the gene CD90.  Alternatively, it can also be hypothesized that an 

increase in CD90 mRNA expression is a natural phenomenon during 

chondrogenic stimulation of hBM-MSCs.  From gene analysis of CD90, it is 

evident that the CD90 mRNA expression level of the Group E9 and pLKO.1 GFP 

increased significantly during the three weeks of chondrogenic culture until the 

expression of CD90 mRNA transcripts of all three groups became similar (or not 
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statistically significantly different).  Therefore, it can be hypothesized that a 

certain level of CD90 expression is actually a necessity for chondrogenesis of 

hBM-MSCs.  To test this hypothesis, it would be useful to completely knockout 

the gene CD90 instead of using the knockdown approach.  Using this extreme 

measure, the function of CD90 during chondrogenesis can be explored further.   

 

Comparison of chondrogenic capacity of the three groups via histological, 

biochemical, and genetic means led to very intriguing results.  While GAG per 

DNA content analysis showed no significant difference across the three groups, 

the no treatment group performed significantly better compared to the E9 and 

pLKO.1 GFP groups in safranin-O/fast green staining, alcian blue/neutral red 

staining, and in gene analysis of chondrogenic genes.  In these three types of 

analyses, the no treatment group was the only group which demonstrated a 

reasonable degree of chondrogenesis.  The E9 and pLKO.1 GFP groups 

performed equally poorly in producing cartilage.   

 

Several factors can be attributed to the low chondrogenic capacity of the E9 and 

pLKO.1 GFP groups.  According to various literatures, polybrene, the most 

common transduction-enhancing additive, can have harmful effects to cells.  For 

instance, Lin et al. reported that exposure to the commonly used concentration of 

polybrene can inhibit proliferation and differentiation capabilities of human 

mesenchymal stem cells (45, 46).  In addition to the potential negative effect of 

polybrene, other RNAi reagents can disrupt target cells’ cellular metabolism (47, 
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48).    Considering these reports and the fact that the only difference 

distinguishing the no treatment group from the E9 and pLKO.1 GFP groups is the 

treatment with lentiviral transduction cocktail, it can be hypothesized that the 

chondrogenic potential of the transduced hBM-MSCs was compromised due to 

the treatment itself.  However, there is also evidence suggesting that transduced 

hMSCs retained their differentiation potentials even after lentiviral transduction 

using polybrene (49, 50).  As there are many variables that can influence the 

outcome of a gene knockdown experiment, such as MOI, incubation time with 

transduction cocktail, and the sequence of shRNA delivered to target cells, this 

discrepancy in results is, to a degree, expected.  Nonetheless, it should be 

acknowledged that no “one-for-all” gene knockdown protocol, that is both 

perfectly safe and effective, exists.  In the future, having another control group, in 

which hBM-MSCs are treated with the standard culture medium that contains an 

equal final concentration of polybrene as the E9 or pLKO.1 GFP groups, would 

be beneficial.  With this additional control group, we will be able to better 

understand the impact of polybrene and other transduction reagents on cellular 

metabolism.  Furthermore, protamine sulfate has been suggested to be a safer 

alternative to polybrene that can preserve proliferation and differentiation 

capabilities of transduced hBM-MSCs (46).  Advantages and disadvantages of 

each transduction-enhancing additive can be explored further for future 

experiments.   
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Because the differentiation potential of the E9 and pLKO.1 GFP groups was 

considerably compromised, it is increasingly more difficult to investigate the 

relationship between CD90 and chondrogenic capacity of hBM-MSCs.  From the 

biochemical, histological, and gene analysis results, there was no significant 

difference between the E9 and pLKO.1 GFP with regards to the cells’ 

chondrogenic potential.  This result can be interpreted in two ways.   

Firstly, it is possible that any difference in chondrogenic potential that existed 

between the two treatment groups due specifically to CD90 was “masked” by the 

powerful negative influence the knockdown procedure had on the two groups.   

 

Alternatively, it is possible that the anti-Thy1 strategy made no difference to the 

cells’ ability to undergo chondrogenesis.  In this experiment, however, it is 

important not to prematurely conclude that CD90 has no role in chondrogenesis of 

hBM-MSCs.  In our experiment, CD90 mRNA expression of the E9 group was 

knocked down by a factor of 5.4 (p=0.014) compared to that of the pLKO.1 GFP 

group, while no difference was seen in their phenotypic expression of CD90.  

Because no previous work has explicitly investigated the role of CD90 in 

chondrogenesis, it is difficult to determine if there is a threshold CD90 expression 

level that must be achieved in order to have a significant impact on the cells’ 

differentiation potential.  Considering that mRNA silencing was not maintained 

throughout chondrogenesis, it is important to ask if the results would have 

changed if a more complete (both in degree and duration) knockdown of CD90 

was achieved or if the protein expression of CD90 was significantly different 
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between the E9 and pLKO.1 GFP groups.  To address this issue, a higher MOI or 

prolonged incubation time can be used to induce a more powerful knockdown of 

CD90.  However, these adjustments should be made cautiously, because the 

changes can be toxic to cells. 

 

While it is possible that no apparent difference between the E9 and pLKO.1 GFP 

groups with regards to their chondrogenic potential was observed due to 

experimental limitations, it is also possible that CD90 does not have a direct 

influence over hBM-MSCs’ chondrogenic potential.  In the work of Adesida et al. 

(21), the potential link between a lower expression of CD90 and increased 

chondrogenic potential is illustrated.  Two different interpretations can be drawn 

from this observation: (1) CD90 has a direct role in chondrogenesis, and hence, 

reducing its expression will enhance chondrogenesis of MSCs directly; or (2) the 

cell surface maker CD90 is the “marker” (rather than a “cause”) for a subset of 

heterogeneous hBM-MSCs that has high chondrogenic potential.  In this scenario, 

unlike our initial hypothesis, CD90 can be indirectly associated with 

chondrogenesis.  In other words, while it is not a cause of enhanced 

chondrogenesis, it may still be associated with increased chondrogenic potential.  

In this case, anti-Thy1 strategy will have no effect on the chondrogenic capacity 

of hBM-MSCs, because their intrinsic potential to undergo chondrogenesis is not 

altered by the treatment.   
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In 2005, Boiret et al. reported that 95.5±2.1% of initial, unmanipulated bone 

marrow cells were CD90- (n=5), but after 1 to 3 days of monolayer culturing, the 

proportions of CD90- cells decreased significantly until most of the hBM-MSCs 

became CD90+ (51).  Similarly, several other scientists have identified 

subpopulations of hBM-MSCs as CD90- or CD90+, and noted that they 

ultimately become CD90+ with subsequent passaging in vitro or aging in vivo (52, 

53).  To study if a subset of MSCs that can maintain their natural CD90- 

phenotype (observed as having a lower level of CD90 expression) can better 

maintain their chondrogenic potential in vitro, a natural separation of the two cell 

populations (i.e. CD90- and CD90+), rather than an artificial alteration of the cell 

phenotype, is desirable.     

 

In fact, Ahearne et al. recently reported separating two subpopulations of porcine 

adipose MSCs by exploiting the adhesive behavior of MSCs (54).  Interestingly, 

the most noticeable difference between the subpopulation of cells which adhered 

to cell culture plastic within 30 minutes of collagenase digestion (termed rapidly 

adhering (RA) cells) and the other subpopulation of cells which did not adhere to 

cell culture plastic within that time frame (termed non adherent (NA) cells), was 

the presence of more CD90+ cells in the RA group.      There were significantly (p 

= 0.021) fewer CD90+ cells in the NA subpopulation (57.8%) compared to the 

RA subpopulation (79.5%).  When chondrogenic potential of these two groups 

was examined via 21 days of pellet culture in chemically defined chondrogenic 

media, the RA group was found to show a diminished chondrogenic capacity 
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compared to the NA group (in terms of total sGAG produced).  Furthermore, the 

RA group displayed enhanced osteogenic capacity relative to the NA group, 

suggesting that MSC-based therapy can benefit from isolating and analyzing the 

behavior of different subpopulations of MSCs based on specific cell markers, 

such as CD90.  

 

This is the first study investigating the effect of anti-Thy1 strategy on 

chondrogenic potential of hBM-MSCs.  Taken together, our findings indicate that 

further adjustments to the experiment to overcome the limitations of current study 

are necessary to investigate the role of CD90 in chondrogenesis more accurately.  

The results suggest a common lentiviral transduction protocol can negatively 

impact the differential potential of hBM-MSCs.  Furthermore, our study 

highlights different ways in which CD90 can be associated with chondrogenesis 

(direct or indirect).   
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Chapter 12.5: Conclusion 

While the existence of CD90 has been acknowledged for nearly half a century, its 

exact role in chondrogenesis of hBM-MSCs is still unknown.  Recently, it has 

been suggested that there is a potential link between a reduced expression of 

CD90 and increased chondrogenic potential of MSCs.  In this study, we intended 

to investigate the properties and function of CD90, in order to better understand 

the surface marker’s role in chondrogenic differentiation of MSCs.  To examine 

the role of CD90 in chondrogenesis, chondrogenic potential of three groups—(1) 

MSCs grown under standard culture condition; (2) MSCs that underwent anti-

Thy1 treatment; and (3) MSCs treated with non-targeting shRNA—were 

compared via histological, biochemical, and genetic means.  The results showed 

that anti-Thy1 strategy had no effect on chondrogenic potential of hBM-MSCs.  

However, there were various limitations of this study which made our 

investigation difficult.  It is hoped that the observations made in this research will 

benefit future research in its investigation into the role of CD90 in chondrogenesis.  

For the first time, we report changes in CD90 mRNA expression during 

chondrogenic stimulation.  While the mystery of CD90 is still unsolved, our 

current study documents observations that bring us one step closer to 

understanding the dynamics of CD90 expression during chondrogenesis of hBM-

MSCs.   
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Chapter 13: Concluding Remarks and Future Directions 

Among many types of joint disorders, osteoarthritis (OA) is the leading cause of 

chronic disability.  The World Health Organization (WHO) reported that 9.6% of 

men and 18.0% of women older than 60 years of age worldwide suffer from 

symptomatic OA [1].  Disruption to and degeneration of the intricate structure of 

articular cartilage imposes great burden on individuals and society.  OA patients 

experience a decrease in their quality of life and work productivity as their 

articular cartilage loses its unique material and biomechanical properties [1, 2].  

Furthermore, indirect and direct costs of OA are social and economic problems 

that our society cannot overlook [3].     

 

To reduce the burden of OA, various non-surgical and surgical treatments have 

been developed.  Nonoperative treatments can be effective at alleviating pain and 

improving joint function, but individual responses to the treatments can vary 

widely.  Furthermore, non-surgical treatment options do not solve the underlying 

cause of OA, and consequently, more invasive methods are often required [4].  On 

the other hand, surgical interventions provide a more direct solution to the 

problems of OA.  However, these methods are invasive, costly, and have 

significant limitations such as the inferior quality of the repair tissue, incomplete 

defect filling, new bone formation, and limited availability of donor tissue.   

 

Despite the limitations of operative treatments, OA patients must rely on surgical 

interventions for repair of cartilage defects, because articular cartilage lacks the 
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ability to respond to injury [5-7].  Continuous effort by scientists and clinicians to 

improve treatment methods led to the development of mesenchymal stromal cell 

(MSC)-based therapy [8].  This technique benefits from the ability of human 

mesenchymal stromal cells (hMSCs) to differentiate into articular chondrocytes, 

which in turn, produce functional cartilage matrix [9].   MSC-based therapy has 

great therapeutic potential, because of MSCs’ ability to proliferate quickly and 

produce regenerative matrix actively [10].  However, better ways of controlling 

for the variability in the quality of hMSCs is necessary [11].   

 

Interestingly, recent work by Adesida et al. suggested a potential link between 

CD90 (Thy-1) and the chondrogenic potential of bone marrow MSCs [12].  

Similarly, various scientists have alluded to the significance of CD90 by 

illustrating that (1) contrary to the definition of MSCs provided by the 

International Society for Cellular Therapy (ISCT), MSCs in vivo are mostly 

CD90- [13]; (2) MSCs gain CD90 surface antigens when they are removed from 

their natural niche and are subsequently cultured in vitro [13]; and (3) within the 

heterogeneous population of MSCs, there exists a subset of MSCs, with no or  

low level of CD90 expression, which seems to act as early progenitor cells [14, 

15].  Despite the potential benefits it could bring to the advancement of MSC-

based therapy, no previous studies have explicitly explored the role of CD90 in 

chondrogenesis.  Current knowledge of the cell marker is very limited, and our 

study aimed to deepen the understanding of CD90.  
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To investigate the role of CD90 in chondrogenesis, our specific gene of interest 

(CD90) was silenced via RNA interference (RNAi).  There are many important 

factors that govern the safety and effectiveness of gene silencing, and we 

developed our current knockdown protocol through various troubleshooting 

experiments.  To achieve a balance between minimizing harm and maximizing 

efficiency of transduction, we carefully reviewed and selected the appropriate 

method of delivering RNAi triggers, CD90-targeting shRNA sequences, 

multiplicity of infection, and incubation time.       

 

With this protocol, we successfully knocked down the mRNA expression of 

CD90 in hMSCs.  However, our results suggested that the chondrogenic potential 

of hMSCs was compromised in the transduced MSCs.  While the results showed 

that our anti-Thy1 strategy had no effect on chondrogenic capacity of hMSCs, the 

limitations of this study made the interpretation of our results more challenging.   

 

Concerns over the safety of RNAi technology remain [16-19], and  more research 

is required to develop a standard gene knockdown protocol, with which scientists 

can effectively and efficiently achieve specific gene silencing while minimizing 

disruption to cellular metabolism.  With such advancements in RNAi technology, 

the role of CD90 can be examined more accurately.   

 

Because our knowledge of CD90 is limited, certain aspects of our results could 

not be fully explained.  It was observed that the protein expression of CD90 did 
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not correlate with the decrease in CD90 mRNA expression.  It is possible that our 

anti-Thy1 treatment was not successful at enhancing chondrogenesis of MSCs, 

because we failed to inactivate or abolish the cell surface proteins.  Therefore, 

future experiments will benefit from developing ways to disassemble or to 

blocking the surface antigen to effectively limit its functions.  To our surprise, we 

also observed that the expression level of CD90 increased during the three weeks 

of chondrogenic culture regardless of the treatments the MSCs received during 

their monolayer culture.  From this observation, it can be speculated that 

achieving a certain level of CD90 expression is necessary during chondrogenesis, 

but its mechanism is not fully understood.  By knocking out the gene CD90 

completely, the role of CD90 during chondrogenesis can be explored further.   

 

Review of previously published work and our results combined together, we 

suspect that CD90 may be associated with chondrogenesis of MSCs by (1) having 

a direct role in chondrogenesis; and/or by (2) serving as a marker for a 

subpopulation of MSCs with high chondrogenic potential.  Our work is one of the 

initial investigations of CD90, and much work needs to be done to identify the 

role of CD90 in chondrogenesis.  As was done by Adesida et al. [12], the 

correlation between the protein expression of CD90 and the quality of MSCs 

(with regards to their differential potential) can be investigated further by 

profiling the expression of CD90 on MSCs that have been  “prompted” to have 

high chondrogenic capacity.  For instance, it has been reported that mechanical 

stimulation can be an efficient method of inducing chondrogenic differentiation of 
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MSCs in vitro [20].  It would be interesting to investigate whether the cell surface 

expression of CD90 differ between the MSCs that have received mechanical 

stimuli versus those that did not receive additional stimuli.   

In addition to these investigations, our understanding of CD90 will increase 

immensely from observing the characteristics (such as size and shape) and 

behaviors (such as colony-forming ability, proliferation rate, and differentiation 

potential) of naturally occurring CD90- and CD90+ MSCs.  Upon isolation of the 

two subsets of MSCs, further observation can be made on the changes of CD90 

expression during monolayer expansion, and during and after chondrogenic 

culture in a three-dimensional environment (as in pellet or scaffold culture). There 

is evidence to suggest that the population of CD90+ cells increases with age [21] 

(similar to how the CD90+ population increases with subsequent passages in vitro 

until they reach senescence), and therefore, further exploration of the dynamic 

expression of CD90 can potentially increase our understanding of how the human 

body’s ability to “heal” changes with age.     

 

Our current study provides the basis on which future experiments can expand.  It 

is hoped that the knowledge and insights gained from the current and future 

research will advance MSC-based therapy.  Engineering individual MSCs to 

enhance their chondrogenic potential, or identifying a subpopulation of MSCs that 

is more ideal for use in tissue engineering can significantly improve the 

effectiveness of cell-based therapy.  A method of isolating, expanding, and 

applying high-quality MSCs will greatly aid the management of OA by allowing 
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for the generation of high-quality cartilage and by achieving uniformity in the 

outcomes of cell-based therapy.   
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