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1

Chapter 1 

Introduction

For thousands of years, mankind has endeavored to understand the fundamen
tal nature of matter. Over time, a succession of paradigms has emerged, and 
within the last one-hundred years, an exceptional model — the Standard Model
— has been developed. The quantitative predictions of the Standard Model 
have been verified by experiment to such a high degree of precision that one 
might, in all modesty, claim that it is the most successful physical theory ever 
created. This thesis deals with high-precision theoretical predictions of the Stan
dard Model and the techniques that can be used to obtain them. In this chapter, 
we set the stage by outlining the background and motivation for the work to 
follow.

1.1 Quantum Field Theory
The Standard Model describes three of the four fundamental forces of nature
— the strong, weak, and electromagnetic — by means of quantum field theory. 
Quantum field theory arises from the merger of quantum mechanics with spe
cial relativity; a definitive introduction to quantum field theory is provided in 
the wonderful book by Peskin and Schroeder [1]. For our immediate purposes, 
there is one feature of quantum field theory that requires special emphasis.

Insofar that a particular physical theory is defined by its particle content and 
symmetries in a Lagrangian, physical observables for the quantum field theory 
can be expressed in a formal way via functional path integrals. Unfortunately, 
for all but a handful of artificial exceptions, exact results cannot be obtained, 
and thus, certain approximations are needed to render the calculations tractable. 
The most common approximation arises in perturbative quantum field theory, 
wherein an exact prediction of the theory can be mapped onto an asymptotic se
ries in a small parameter. This small parameter is related to the strength of the
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2 CHAPTER 1. INTRODUCTION

interaction between particles and the various terms of the series can be visual
ized as sets of Feynman diagrams with different numbers of interaction vertices. 
Feynman rules, which can be obtained from the Lagrangian of the theory, pro
vide a recipe for translating the features of these diagrams into mathematical 
expressions which are then used to calculate the approximate predictions of the 
theory.

1.2 The Standard Model
The Standard Model is able to make quantitative predictions about thousands 
of physical processes in particle physics in terms of only 19 free parameters. 
These 19 parameters are listed in Table 1.1. An excellent introductory reference

Description Free Parameters Related Parameters

Lepton masses me/ m^, mT Yukawa

couplingsQuark masses m u, m d, m s, mc, mb, m t

CKM matrix # 1 2 / # 1 3 / # 2 3 / ^ A  A, p, f] or

Coupling constants 9/ 9wr 9s sin 9W

Higgs doublet mH, rriw A H> v

Strong CP 6cp

Table 1.1: The 19 free parameters of the Standard Model.

for the Standard Model is the book by Griffiths [2]. Our starting point will be 
the Feynman rules for the Standard Model, as per the conventions of Cheng and 
Li [3]. For brevity, we shall restrict ourselves to the Feynman rules that are used 
in this thesis.

The first set of Feynman rules, shown in Table 1.2, concerns the external 
lines in a diagram. Here, u(p) and u(p) are four-component Dirac spinors and p 
denotes the four-momentum carried by the particle.

The second set of Feynman rules, shown in Table 1.3, deals with interaction 
vertices. In the quark-quark-IT boson vertex, i and j  are quark flavor labels and 
Vij is a CKM matrix element. For the three-gluon vertex, the four-momenta klr 
&2, and ks are all taken to be flowing into the vertex. For the gluon-ghost vertex, 
keep in mind that a closed ghost loop requires an additional factor of (—1) due 
to its fermionic statistics.
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1.2. THE STANDARD MODEL 3

Incoming fermion u(p)

Outgoing fermion u ( p )

Table 1.2: Feynman rules for the external lines in a diagram.

The third set of Feynman rules, shown in Table 1.4, deals with the inter
nal lines, better known as propagators, of a diagram. It is assumed that a 
four-momentum k flows through each line. The labels p  and v denote four- 
component Lorentz indices and the labels a and b denote SU(3) color indices. 
For the fermion propagators, the contraction is usually abbreviated as #. 
Aside from the color conservation factor 5ab, the photon, gluon, and W  boson 
propagators in Table 1.3 are all special cases of the general formula

—i
k2 — m 2 + is

Specifically, for the photon and gluon, we have m — 0 and we work in the 
Feynman-'t Hooft gauge where £ =  1, and for the W  boson we work in the 
unitary gauge by letting £ —> oo.

Conservation of energy and momentum at each interaction vertex is not suf
ficient to constrain the four-momentum of every internal line in a Feynman di
agram with loops, therefore we m ust integrate over all undetermined loop mo
menta. The +is in the denominator of each propagator is the pole term which 
provides the prescription for integration when the remainder of the propagator 
becomes singular. The location of these poles in the complex ko-plane allows us 
to move from Minkowski space to Euclidean space by means of a Wick rotation 
(& o ) m  i(ko)E- This change of variables alters the denominators of our propa
gators from (klf — m 2 + ie) to (—k% — m 2 + ie) so that they are no longer singular, 
and thus, explicit reference to the pole prescription can be dropped. Henceforth, 
it will be assumed that any loop integrals we encounter will have already been 
Wick rotated into Euclidean space, unless explicitly stated otherwise.

9fiu + (£ -  1)
k̂ iki/

k2 — £ra2 + is
(1.1)
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4 CHAPTER 1. INTRODUCTION

Charged lepton-photon —ie 7^

Quark-gluon igs lHa

Quark-quark-IF boson _ 7 s ) V i .

3 gluons

ki, a, p 

k2, b, v k?, c, X

igsf abc P i  -  h ) \ 9nu
+ (&2 — &3 )(i9i>X

+ ( k s  — k ^ ^ g x ^ l

Gluon-ghost

a,n

q ,c  p,b

9 s f abcPn

Table 1.3: Feynman rules for the interaction vertices in a diagram.

1.3 Perturbative Calculations
For a particular physical process, the basic calculational scheme is to group 
Feynman diagrams, based on the number of interaction vertices, in order to 
generate the terms of a perturbation series. Even the first term of such a series 
is often a very accurate approximation. Subsequent terms in the series are sup
pressed by powers of c^, a dimensionless number that is related to the coupling 
constant, gj, of a particular interaction by

ai ~  4^ ’ (1*2)

where factors of h and c are taken to be 1. At this stage, two things should be 
pointed out.

First, is that c t j ,  known in the context of electromagnetism as the fine-structure 
constant, is not constant, but rather, depends on the characteristic scale of the 
process. In QED, a~l ~  137 at low energies, but the coupling increases to 
o r 1 ~  128 at energies characteristic of the masses of the weak bosons. In QCD,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.3. PERTURBATIVE CALCULATIONS 5

Lepton k2—m2+ie

Quark a >  b k2 — m2+ie

Photon u VW v w w w v v
—i-Qliv
k2+is

Gluon
u v v w v w w w v
a b

-igiMvtiab 
k 2+ie

W  boson U vV u w v w w w
—i

k2—m2+ie
kfikp 

/f 1' n, -

Ghost a ^  b 
« • • • • • • • • • • • • • • • • •

—iSab
k2+ie

Table 1.4: Feynman rules for the propagators in a diagram.

on the other hand, the analog to the fine-structure constant, as, is not nearly 
so small. Furthermore, as becomes increasingly large at lower energies so that 
perturbation theory cannot be used at all unless the characteristic energy of a 
process is sufficiently large. This property of QCD is known as asymptotic free
dom.

Second, is that the factors that accompany a" in the n-th term of a perturba
tion series are not necessarily such that the n-th term is smaller than its prede
cessor. This sort of behavior sometimes arises when the presence of additional 
loops in a diagram allows the inclusion of certain interaction vertices that were 
previously absent. It also occurs for diagrams with a very large number of loops 
(n ~  o r 1) because the number of Feynman diagrams eventually increases far too 
quickly for their contributions to be suppressed by an. This is why we speak of 
a perturbation series as an asymptotic series.

Most of the pioneering work in quantum field theory was done in the con
text of the electromagnetic interaction and it was here that the term "radiative 
corrections" was first used to describe the perturbative adjustments to physical 
quantities that arose in the theory. The first successful calculation of this sort 
was Bethe's explanation [4] of the Lamb shift in 1947, followed the next year 
by Schwinger's calculation [5] of the electron anomalous magnetic moment. 
The electron anomalous magnetic moment was the subject of the first two-loop 
perturbative calculation, performed by Sommerfield [6] in 1957. QED remains 
the easiest sector of the Standard Model within which to perform perturbative
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6 CHAPTER 1. INTRODUCTION

calculations, as might be attested to by the existence of a partial five-loop cal
culation [7]. As for the electroweak and QCD sectors of the Standard Model, 
perturbative calculations were underway by the end of the 1960s [8], several 
years before these theories were cast in a completed form. It should also be 
mentioned that many developments in perturbative quantum field theory have 
resulted from studies of simpler theories such as <p3, A(p4, or Yukawa theory. In 
the context of the latter, a recent publication [9] examines a mathematical tech
nique for computing a particular class of 31-loop effects!

There are several motivations driving precision calculations in the Standard 
Model, the most exciting of which is the prospect of finding indirect evidence 
for physics beyond the Standard Model via small, systematic deviations be
tween experimental measurements and the corresponding Standard Model pre
dictions. Precise Standard Model calculations can also affect the systematic er
rors involved in experimental settings like the beam luminosity in a collider. 
Finally, from an aesthetic standpoint, it is only natural that we should want to 
extract as much as possible from such a predictive and successful theory.

So begins our journey into multiloop calculations in the Standard Model. 
The chapters ahead fall into two main classes: techniques and research. Chap
ters 2 through 10 provide a comprehensive description of an assortment of tech
nical details that are used to facilitate the calculations ahead. Chapters 11, 12, 
and 13 each document the results of an original research project, and collec
tively, these chapters are the heart of this thesis. Following the conclusions in 
Chapter 14, the Appendix describes and catalogs the computer programs that 
have been written in conjunction w ith this work so that the results presented 
here can, if the need arises, be verified or extended.

"Somebody thought of that, and someone believed it; look what it's 
done so far."

Kermit the Frog (The Rainbow Connection)
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Chapter 2 

Dimensional Regularization

In Chapter 1, we saw how perturbative quantum field theory gives rise to loop 
integrals. Individually, these loop integrals may contain ultraviolet and infrared 
divergences, and while the sum of all diagrams of a given order in a renormal
ized quantum field theory must lead to finite physical predictions, it is simply 
not feasible to do such calculations all in one piece. Instead, we regularize in
dividual loop integrals. More specifically, we artificially adjust loop integrals 
so that they produce finite results individually, but yield the same sum as the 
unregularized integrals.

There are a number of techniques available for regularizing loop integrals, 
some of which we will now discuss. Consider the Euclidean-space integral

/ * *  (2 .1)
( k 2 + ra2)2

This integral has an ultraviolet divergence. Since the divergence arises from the 
high-momentum portion of the integral (\k\ —> oo), the most obvious solution 
would be to place a cutoff on the integral so that we only integrate over mo
mentum values below some A. This method has its drawbacks, though, not the 
least of which is the loss of Lorentz invariance. A slightly more robust tactic is 
Pauli-Villars regularization, whereby we multiply the integral by an additional 
factor:

* k A2 (2.2)/ (k2 +  ra2)2 k2 + A2

If A is sufficiently large, the low-momentum region of the loop integral is unaf
fected, but the high-momentum region is suppressed by a factor of k2, which in 
this case is enough to remove the divergence.

Meanwhile, there are also infrared divergences to deal with, such as the one
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8 CHAPTER 2. DIMENSIONAL REGULARIZATION

/
in the integral

** (23)
k \ k 2 + m2) ' K ’

Since this divergence arises from the low-momentum portion of an integral
(| A: | —> 0), we could place a lower cutoff on the integral so that we only inte
grate over momentum values above some fj,. Alternatively, seeing as the source 
of the divergence is the k4 factor which originated from the propagators of mass
less particles, we could add a tiny mass /i to these particles so that the integral 
becomes

d4k (2.4)/ (,k2 +  /i2)2(fc2 +  m2)
Using these methods, we can in principle obtain an explicit result for each 

loop integral in terms of the artificial parameters A and /i. After combining all 
the relevant contributions, we would then take the limits A -* oo and fi —> 
0 and expect to obtain a sensible result. The drawbacks to this approach are 
threefold: first, the calculations are more cumbersome than the simplicity of the 
methods suggest; second, the separation of ultraviolet and infrared divergences 
can sometimes be more of a nuisance than a virtue, especially for the types of 
calculations encountered in this thesis; finally, certain symmetries are violated 
by these methods, and hence the results are not always reliable.

A superior approach is the method of dimensional regularization [10], where
by we regard the loop momentum as a vector in a D-dimensional space. We 
will soon see how in this framework, divergences only arise when ID is a pos
itive integer such as 4. Conceptual abstractness notwithstanding, dimensional 
regularization is an extremely useful method that has become the standard for 
many classes of calculations in particle physics.

2.1 Basic Calculation

I .  = 1 7 ^ 1  (2-5)

In this section, we will evaluate the most basic Euclidean-space loop integral,

d4k ____1_
(27r)4 (k2 +  m2y

from first principles using the method of dimensional regularization. In con
junction with the techniques we will discuss in subsequent chapters, this result 
will be a central component of the solution of more complicated integrals.

After generalizing the dimension of the integral from 4 to D,

T _  [  dPk 1
n ~  J  (2ir)D {k2 +  m2)n ’ ( }
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2.1. BASIC CALCULATION 9

our first step is to switch to a hyperspherical coordinate system. Assuming, for 
now, that D is a positive integer and that (2n -  D) > 0, we have

via

( h , k 2 , . . . ,  & o )  — > ( K ,  4> ,8  i ,  • • • ,  &d - 2 )

ki = K  cos 81 ,
k2 — K  sin 8\ cos 82 ,
k3 = K  sin 81 sin 82 cos 83 ,

(2.7)

(2.8)

ko- 1 =  K sin8\ . . .  sindD_2 cos0 ,
=  K  sin 8\ . . .  sin 80-2  sin <f>.

The Jacobian factor, J , which relates the integration elements of the two coordi
nate systems by

dk\ dk2 . .. dko 

is given by the determinant

J  dK d(f) d8i . . .  ddo- 2

J

d k i d k D
d K d K

dkx d k n
991>- 2

D - 2

=  K D ~ 1 J J  s ixd  8j  . 
f=i

The loop integral can then be factored into angular and radial parts:

^  d K  K D~l
= h ° [ (2tt)d (K2 + m 2)n '

To evaluate the radial integral, we begin with the substitution

K  — m^/x

so that
_  m D~2n

n ~ 2(2^ j ° h D [
dx

x D / 2 - 1

(2.9)

(2.10)

(2.11)

(2.12)

(* +  ! )»■ (2 1 3 )

The ^-integral can then be evaluated in terms of a Beta function. We will look at 
Beta and Gamma functions more carefully in the next section, but in the mean-
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10 CHAPTER 2. DIMENSIONAL REGULARIZATION

time, borrowing (2.29) and (2.30), our loop integral can now be written as

_ r ( f ) r ( n - f )  r  
” “ 2(2r)c r(n) J  D ' ( '

Turning to the angular integral, we have

/
p2ir D —2 /  \

dttD = J  #  I f  sin-7 OjdejJ . (2.15)

The ^-integral is simply 2tt, and the 0,-integrals can be handled by (2.32) so that

J d a o - 2ir (2, 6)

When the product is expanded, the T((j +  2)/2) terms in the denominator will 
cancel the T((j -f l)/2) terms in the adjacent numerator. This observation, along 
with T( 1/ 2) =  and T(l) =  1, allows us to write

/ 2 nD/2dnD = j ^ .  (2.17)

Inserting this result into (2.14), we have our solution for the basic loop integral 
in dimensional regularization:

/ (2n)D (k2 + m?)n (Air)0 /2 T(n) \ m,2

n - &d Dk  1 _  1 r ( n - f ) ^ l ,  p l 8 )

While we originally assumed that D was a positive integer and that (2n —D) > 0 
in order to facilitate an explicit derivation, (2.18) can be extended by means of 
analytic continuation so as to be valid for any choice of D in the complex plane 
such that T(n — D/2) is well-defined.

2.2 The Gamma Function
We have now seen that the solution for the basic loop integral in dimensional 
regularization (2.18) can be expressed in terms of Gamma functions. In this 
section, we will examine some of the properties of these functions (see [11] for 
more rigor).
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2.2. THE GAMMA FUNCTION 11

The most common definition of the Gamma function is through the integral

This formulation quickly leads to a number of useful properties, such as

Mathematicians, meanwhile, tend to prefer the Weierstrassian product

where 7 is the Euler-Mascheroni constant, an irrational number defined by

From (2.23) it is readily deduced that T(z) is an analytic function of 2: with sim
ple poles at 2 =  0, —1, —2 ,...  Looking back at (2.18), it is now clear why we 
originally restricted ourselves to values of (2n — D) that were greater than zero, 
as the Gamma function in the numerator is not well-behaved when (n — D/2) 
is a negative integer. Of course, it is apparent that the original integral (2.5) has 
an ultraviolet divergence whenever n < 2 .

We expect to encounter divergences, though, as that is the reason for which 
regularization is required in the first place. The structure of the Gamma function 
implies that so long as we steer clear of the poles, we can work with a well- 
behaved, analytic function. To accomplish this, we write

so that Gamma functions like T(n — D/2) are well-behaved, since the argument, 
n — 2 +  e, is never a non-positive integer. We can use (2.20) to write an arbitrary 
Gamma function T(a + be) in terms of T(1 + be), which in turn can be expressed

Expanding out the exponential in (2.26), we obtain T(1+6e) as a series in powers 
of e. The coefficients of this expansion depend on the transcendental numbers

(2.19)

T{z +  1) = zT{z) ,
r(i/2) = v^,

T(n) =  (n — 1)! ,

(2.20)

(2.21)

(2.22)

(2.23)

7 =  ■ + I  +  -  logm j =  0 .5772157.... (2.24)
r n —f  00 \  l 2  771

D =  4 -  2e (2.25)

as
T(1 +  be) =  exp { - W 7 + C(2) -  ^  C(3) + . . .}  . (2.26)
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1 2 CHAPTER 2. DIMENSIONAL REGULARIZATION

{7 , £(2),£(3),...}, where 7 was defined in (2.24) and £(n) is the Riemann zeta 
function defined by

00 1

<(") = E  F ' (2-27)
fc=l

We could easily evaluate £(n) to arbitrary precision numerically, but it is nev
ertheless worth noting that £(2) =  7r2/6  and £(4) = 7r4/90. The more general 
Gamma function T(a +  be) can be expanded in e as

T(a + be) =  P(a, b) T(1 +  be) , (2.28)

where we use (2.26) for T(1 + be) and P(a, 6) is a Pochhammer symbol [12] that, 
by virtue of (2 .20), is a rational function involving only a, b, and e.

The Beta function, B(a, b), occurs frequently when we use dimensional reg
ularization to evaluate loop integrals, and it can be written in terms of Gamma 
functions as

B(a’6> =  T i F r r  (2-29)

In particular, Beta functions appear in the following commonly used integrals [13]:

r*°° dx

fJo

fJo
= B ( n , v -  n) , (2.30)

0 (1 +  z)"
1

£m_1(1 — x)u~ldx — B( ii, u) , (2.31)

/2 1
I sin/i“1x cosv~xx d x  — - B  ■ (2.32)

JQ **  ̂  ̂  ̂'

The relation (2.32) can be used to establish a Gamma function identity, known 
as the doubling formula, which we will need to call upon later:

o2x—1 /  1\
r ( 2x) =  T(*) r  U  +  -  j  . (2.33)

We have now seen how dimensional regularization allows us to express in
dividual loop integrals as series in powers of e. Actually, we are dealing with 
a Laurent series — in other words a series with powers and inverse powers of 
e — because the divergent diagrams will blow up if we take the physical limit 
of (2.25), namely, e -» 0. When all the relevant diagrams for a calculation are in
cluded and the theory is properly renormalized, we expect that the troublesome 
terms with inverse powers of e will cancel, leaving us with a result that is finite 
and physical as e —> 0.
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2.3. SCALELESS INTEGRALS 13

Looking at the Gamma functions in (2.18), we see that this particular inte
gral will have precisely one factor of T(1 +  e) within which the transcendental 
constants in (2.26) appear. More complicated integrals will depend on more 
complex combinations of Gamma functions, but it turns out that if we remove 
a factor of

TO-2* r ( l  +  e)
~  (4tr)^ /2 { }

for each loop in the integral, the remainder of the solution will always be inde
pendent of 7 . Meanwhile, (2.34) goes smoothly to l/(4?r)2 in the limit e -» 0, so 
it essentially allows us to remove some of the clutter that accompanies a typical 
loop integral.

2.3 Scaleless Integrals
In this section, we will prove an important result regarding the behavior of 
scaleless integrals like

J» = j i £  <235>
in dimensional regularization. Specifically, these integrals are zero. We will 
now justify this result in three different ways in order of increasing rigor and 
sophistication.

Intuitive Method
While we have already seen how dimensional regularization deals with loop 
integrals with ultraviolet divergences, the technique applies equally well when 
there are infrared divergences. Suppose we take ra — 2 in (2.35) so that we wish 
to evaluate

*  =  / £ •  0 3 6 )

This integral has logarithmic divergences of both an ultraviolet and infrared 
nature. By treating both types of divergences simultaneously through a single 
artificial parameter e, dimensional regularization allows the two types of diver
gences to cancel for scaleless integrals. Heuristically,

/ ^  ~  — -  = 0 . (2.37)
k4 euv e/ra
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14 CHAPTER 2. DIMENSIONAL REGULARIZATION

As this reasoning is less convincing for n ^  2, we can also examine what hap
pens when we make the substitution k = /it. Applying this to (2.35), we have

_ , dD(/rf>I  ( l ^ )2n

^ f dDi

= »D- 2nJn , (2.38)

and so for (2.38) to hold for arbitrary values of /j ,  we can require that Jn — 0.

Brute Force Method
Borrowing a technique from the next chapter, we can show that scaleless inte
grals in dimensional regularization are zero based on the result of (2.18). The 
idea is to apply the time-honored physicist's technique of multiplying by 1 for 
a clever choice of 1. Specifically,

W  (239)J  k2n k2 + m2

We then combine the denominators with a Feynman parameter. Postponing an 
explanation of the details of this technique to the next chapter, we have

J- = w m l j 1 -  • (2-40)
Since we intend to show that Jn = 0, it will be convenient to discard multiplica
tive factors at the front of the expression as they arise. Writing the numerator
as

k2 +  m 2 = (k2 + xm2) +  (1 — x)m2 , (2.41)

Jn ~  [ \  1 -  x)n- ldx [  dDk (  1 .. +  ~ \  . (2.42)
JQ J  \  {k2 + xm2)n (k2 + x m 2)n+1 J

At this stage, we can apply the basic result (2.18) to both of the terms in the 
braces, resulting in
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2.3. SCALELESS INTEGRALS 15

Next we use (2.20) in order to write the Gamma functions in the second term in 
the same form as those in the first:

j- .  M  ( > ] - '  (2.44)
r(n) \ m 2y

fJo
x I dx { x%~n(l -  x)" -1 +  -  x )1 ( » - f )

n

The x-integrals can be evaluated with the identity (2.31) so that

Jn ~  n B  - n  + l , n j  + ( n - ^ j  B ^ j - n , n  + l 

nT ( f  -  n + 1) T(n) ( f  -  n) T ( f  -  n) T(n + 1)
T ( f  + 1) r ( f +  1)

r ( f  - n  + l ) r ( n  +  l) r ( f - n  +  l ) r ( n  + l)
r ( f  + i) r ( f  + i )

0 . (2.45)r

Elegant Method
The method we will now present (first used in [14]) is a proof that

poo

J  — x1* dx = 0 (2.46)

in dimensional regularization. The generalization to scaleless D-dimensional 
loop integrals follows naturally, as the radial part of these integrals takes on the 
same form as (2.46). We start by breaking the integral into two parts,

pb poo

J  — Jl Ar J2 — / dx + /  x^ dx . (2.47)
J o  Jb

Looking at J\, we will define the integral in a distributional sense, namely,

Ji — f  x^ f ix )  dx , (2.48)
Jo

where f (x)  is a test function that is sufficiently well-behaved to be infinitely 
differentiable over the region x £ [0,6]. A sa result, we can expand f (x)  in terms 
of a Taylor series,
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16 CHAPTER 2. DIMENSIONAL REGULARIZATION

f(x)  = f(0) + f ( 0 ) x  + ^ - x 2 + . . .  + ^ - x n + .. .  . (2.49)
di Til

Provided Re(/i) > — 1, we can now integrate so that

, / ( O) ^ 1 , / ' ( 0) i^+2 , , / " (0)^ + "+ ‘ ,
J , “ T :r r + “ ^ T 2“  ( „ - i ) ! ( M + „ + i )  •• ■ ( >

While this expression is explicitly valid for Re(/z) > — 1, we can use analytic 
continuation to define J\ for all possible values of y, aside from the simple poles 
that occur at —1, —2, . . . .  Finally, choosing a particularly simple test function, 
namely f (x)  = 1 Vr G [0, b], we obtain

f b

Ji = /  x * f ( x )  dx = — —  , y  G C\{—1, - 2 , . . .}  . (2.51)
Jo /i + I

Moving on to J 2, we will again define the integral in a distributional sense, 
and in addition, we will make the substitution x = 1/y, so that

poo p l /b

J2 = /  x^f{x) d x =  y ~ ^ 2f ( l / y )  d y . (2.52)
J& Jo

Then we proceed, just as for Ji, by expanding /  in a Taylor series, performing 
the integral under the assumption that y, lies in a safe range (Re(y) < — 1 in this 
case), extending the result to all values of y  by analytic continuation, and then 
setting the test function to 1. This gives us

(1/6)_M_1 t f+l
h  -  ....=  -  ~~~r 1 y e c \ { - 1, - 2, . . . } ,  (2.53)

( y  1) y  + 1

and so Ji and J 2 cancel to establish that J  is zero and that scaleless integrals 
indeed vanish in dimensional regularization.

"Here is an ordinary square... but suppose we extend the square 
beyond the two dimensions of our universe, along the hypothetical Z 
axis, there. This forms a three-dimensional object known as a 'cube',' 
or a 'Frinkahedron' in honor of its discoverer."

Professor Frink (The Simpsons)
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Chapter 3 

Parameter Tricks

In Chapter 2, we showed how dimensional regularization allows us to mitigate 
the divergences that arise in loop integrals. On the other hand, the basic result 
of (2.18) does not apply directly to most loop integrals, as they typically contain 
a number of different denominator factors arising from the various propagators 
in Feynman diagrams. For simplicity, we will loosely use the term "propaga
tor" for the denominator factor associated with the full propagator arising from 
the Feynman rules of Chapter 1. In this chapter, we will introduce a number of 
ways of dealing with multiple propagators so that we can evaluate more elab
orate loop integrals in terms of the basic integral (2.18). We will illustrate these 
methods using classes of integrals that we will have further encounters with in 
the chapters ahead.

3.1 Feynman Parameters
Consider the one-loop integral

f  [dDk] u , jBn dDk
J  { k t  + 2W. Wh<.) where M *1 = (2̂ d  • <3-«

We denote this class of integrals by "onshell" and Figure 3.1 shows a sketch. By 
sketch we mean a diagram that depicts the basic structure of the integral. While 
this could be a Feynman diagram, it could also be the case that a class of inte
grals — hereafter to be referred to as a topology — appears at an intermediate 
stage of a calculation. The sketch of a topology merely indicates which propaga
tors are present, but says nothing about how they got there, how many powers 
of each factor exist, or what might be in the numerator. Note the presence of 
the k2ce term in (3.1). While it is simple enough to set c — 0 for integrals that 
originate from one-loop Feynman diagrams, such epsilon-propagators can arise
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18 CHAPTER 3. PARAMETER TRICKS

on massless lines in a multiloop diagram when we integrate over one or more 
subloops. We will see an example of this later in this section.

Figure 3.1: Sketch of the "onshell" topology.

The idea behind Feynman parameters is the identity

I f 1 1
— -  =  /  d x j — — 7 (3.2) 
A B  J 0 [xA +  (1 — x)B ]2

This may seem like a frivolous complication, but if A and B  are propagators in a 
loop integral, it is easier to perform the loop integration on the right-hand side 
of (3.2) than on the left. Before we apply this to the "onshell" topology, we will 
need a more general version of the identity (3.2) [1]:

1 _  ^  X A  n ^ f - 1 r(mi +  • ■ ■ + mn)= /  dx i ■ ■ ■ dxn 6 Xi — 1^A T ' A F . - . A Z *  Jo n ^  r(Tm) • • • F(mn) ‘
(3.3)

When we apply (3.3) to (3.1), we obtain

f  f i r  1 _  T '|b+C€-1 f ________________ [d k]________________ . ..

Jo 1  fx ( k 2 +  2 kp )  +  ( 1  -  x ) k 2]a+b+ce '

r ( a  + b + ce)
T(a)T(b + ce) Jo v ' J  [x(k2 + 2kp) +  (1 — x)k2

The denominator terms can now be combined and we complete the square:

x(k2 + 2 kp) +  (1 — x)k2 =  k2 + 2 xkp
— (k + xp)2 — x 2p2 . (3.5)

Note that in Euclidean space, p2 — —m 2. We then shift the variable of integration
to I =  k +  xp so that we have

T(q + b + ce) f 1 a - i ( 1 _  x \b + c e ~ i f  \d° l \ (3 6 )

T{a)T{b + c e ) J o d  ( } J  [t? + x2m 2}a+b+ct ’ ( }
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3.1. FEYNM AN PARAMETERS 19

Applying the basic dimensional regularization integral (2.18), we produce

r(q  +  b + ce) r 1 dx xa_t _  x)b+Ce-i f r ( q  +  b +  c e - f )  / _ J _ V +6+C£ 
r(a)r(6 +  ce) io |  (47r)£)/2r(a  + 6 + ce) \ x 2m 2 J

or more simply,

f 1 d x  x D - l - a - 2b -2ce^ _  x ^ c e - l  (3 8)
Jo

(3.7)

_r  (a +  fo +  ce ^ )_______  I  ^  ^ D —l —a—2b—2cef f  „ \ b + c e - l
(47r)D/2r(a )r(6  +  ce)m2(a+6+“ )-^

Using (2.31) to perform the ^-integration, we have

(47r)^/2r ( l) r (6  +  c e )m i+ b+“ )-c  ^  ~ a “  26 “  2 c e >b  +  C€) * (3'9)

Finally, using (2.29) to write the Beta function in terms of Gamma functions, we 
obtain

r  (a + i> + ce -  f ) r ( P  — o — 26 — 2ce)
(4x)°/2r(a)r(D  -  a  — b  — ce)m 2(«+t+ct) - o  ' ' ’

for a final result of

f  [dDk] r ( a  +  6 —2 +  (c + l)e) F(4 — a — 2b — 2(c +  l)e)
J  (,k2 + 2kp)a k2(6+“ ) _  (47r)2- er ( a ) r (4 -  a -  6 -  (c +  2)e) m 2( a + 6- 2+ ( c + i) c )  ■

(3.11)
Another common one-loop topology that can be handled with a Feynman 

parameter is "one":
[dDk]

I ( k  -j~ <jr)2(a +k=) /j2 (c+de) ^ ^

This topology is sketched in Figure 3.2. Note that both propagators are massless 
and can therefore have epsilon-pieces if subloops have already been integrated 
out. Also, there are no constraints on the external momentum q, unlike the case 
in "onshell' where we needed to know that p2 =  — m 2.

Figure 3.2: Sketch of the "one" topology.
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20 CHAPTERS. PARAMETER TRICKS

We will not derive a general result for the "one" topology here, however we 
will now look at an example where we can integrate over a subloop in order to 
see how one-loop topologies can be nested. Consider the integral

Jr001 /(*?
[dD h \ [ d D h }

(3.13)
+  2kip)(ki + hz)2kl

as depicted in Figure 3.3. Since we have routed k2 through both of the massless

Figure 3.3: Sketch of the "Jooi" topology.

lines, the ^-dependent subloop belongs to the "one" topology. Introducing a 
Feynman parameter,

r(2) [d°k-2

mm
J o  J  k\ + 2kxp j  W1 ■ 1 ^

[x(ki +  k2)2 + (1 -  x)k$\2 
[dDk2\

(3.14)
\{k2 + xk i )2 +  x{l  -  x)kfY 

Next we identify I = k2 + xki  and use (2.18) to evaluate the ^-integral, yielding

r  (2 -  f )\dDki

011 “  J o  J  W T i k2h p  (4x)D/2 [*(1 -  x)k2]2~D/2

r «  (i - - / ■  ™
Jo( 47r) 0 / 2 + 2klP) k f  '

(3.15)

The remaining kr-integral belongs to the "onshell" topology, and so when we 
substitute (3.11) and evaluate the x-integral with (2.31), we obtain

J o n  —
r(e) r ( l  -  e)r(l  -  e) r ( —1 + 2e)F(3 -  4e)

(47t ) ° / 2 r(2 -  2e)
m ~ 2e r ( l  +  e)

(4n)D/ 2
m

(47r)'D/2F(3 -  3e) m2(-1+2e) 
f  F2(l — e)F(—1 +  2e)T(3 — 4e) ^
\ r(2 — 2e)F(3 — 3e)F(l +  e)e J '

(3.16)
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3.2. SCHWINGER PARAMETERS 21

Notice how we have explicitly separated the factor in the brackets at the front, 
in accordance with the convention (2.34). Expanding the Gamma functions in 
the braces as a Laurent series in e and dividing out the loop factors, we obtain

J «n 1 5 / 1 1  r 2\  f  55 5r2 \  . 2,
^  = ’ 2 ? ^ 5 + L t ^ t J  + U ^ x ^ 4C(3t + 0 ( £ ) ' ( 3 ' 1 7 )

in exact agreement with the result provided in [15].

3.2 Schwinger Parameters
While there are often several techniques that can be used to evaluate certain loop 
integrals — some one-loop integrals can even be solved in Minkowski space 
with direct contour integration — there are also loop integrals that do not yield 
to Feynman parameters in any obvious way. For example, the "gm3" topology,

/ [dPkx\{dDk2) (318)
{k\ +  l )a{kj + l )b{kx -  k2)2c

and depicted in Figure 3.4, is a vacuum bubble topology that often arises in cal
culations. Note that we have set m = 1 for convenience, since for integrals with 
a single external scale, the overall mass dependence is uniquely determined by 
dimensional considerations. Should we try to evaluate (3.18) using Feynman

Figure 3.4: Sketch of the "gm3" topology.

parameters, we would find that although the loop integrals can be dealt with, 
the integrals over the Feynman parameters themselves are unusually difficult. 
An easier solution arises from a related technique: Schwinger parameters.

A Schwinger parameter, a, can be introduced via the identity

1 1 r°°
±  = da a a_1 e-*-4 . (3.19)
Aa T(a) Jo
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This identity is then copied several times so that

1 1 poo poo

AaB b. . ■ ■ = 1  d a l d^ - a^ 1'• • <3'20)
and all the different propagators are additively combined in the argument of the 
exponential. Applying this to the "gm3" integral (3.18), we have

j  da dfi d'j aa 1/3b Xrf  1 J [ d Dki][dDk2
T(a)T(b)T(c)
x exp [~a(kf  + 1) -  fdikl + 1) -  7 (A* -  k2)2] . (3.21)

Next, we rewrite the exponential as a product of Gaussians in the loop mo
menta:

exp [• • •] =  exp [ - ( a  +  7 )fcj -  (/3 +  7) ^  +  27^1̂ 2]

=  eAa+P)e-(^ i)( k̂ ^ T e- ( ^ ^ ) kl . (3.22)

If we shift kx by an amount 7^2/ (a + 7 ), we have two Gaussian loop integrals of
the form

G(aO =  J[dPk] e - ^ 2 . (3.23)

To evaluate G(/j,), we work in hyperspherical coordinates and use (2.17) to eval
uate the angular integral:

(3-24>
Setting x = fik2, we can use (2.19) to solve the ^-integral:

^   ̂ 2 ^ D/2 r , n_x _a
“  {4n)Dl2T(D/2) — J. d x t ’ e

u~D!2^  T(D/2)
(47r)£)/2r(D /2)

(3.25)

Returning to our "gm3" calculation, we can now insert (3.25) for the two 
Gaussian loop integrals, obtaining

1
(47r)-Dr(a)r(6)T(c)

poo

I dad(3d'yaa~~lflb~17c~1e~<'a+l3'>(af3 + a'f+f3j)~D/2 . (3.26) 
J o
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3.2. SCHWINGER PARAMETERS 23

With the loop integrals out of the way, we are now left with integrals over the 
three Schwinger parameters. Starting with the 7 -integral,

poo

/ , =  /  d7 7'-'(Q/3 + (Q + )3 b r £’/2 , (3.27)
Jo

into which we substitute 7  = aj3z/(a + /3), so that

\ c - D / 2  ro c_ ( a p y - w  r  /2

1 ( o + f  io
(3.28)

Using (2.30) to solve the ^-integral,

(a/?)ĉ / 2 _ /  D
(a +  /3)c V ’ 2 

and so the "gm3" integral now becomes 

B ( c , f - c )

A = B  ( c , -  -  c ] , (3.29)

poo

/  da d/3 pb-i+c-Y (a + f3)-ce -{a+p) .
Jo(4tt)d  r(a)r(6)r(c)

At this stage, the astute substitutions are a — xp and /? =  (1 — x)p, leading to

(3.30)

fJo
B  ( C ’ 2 C)  I J  a - l + c - f /•, _  r ^ - l + c -

(4tt)^ r(a )r(6 )r(c) 1 [L x)
P O O

x /  dp p1+(a~1+c_f  )+(b~1+c~ f ) - ce~^ . (3.31)
Jo

Solving the ^-integral with (2.31) and the p-integral with (2.19), we finish with

/ (fcf +  l)a(fc| +  l)b(&i -  k2)2c
r  ( f  -  c) r  (a +  c -  f ) r  (6 +  c -  f ) r ( a  +  6 H- c -  D) 

(4tt)^ r(a )r(6 )r  ( f ) r (a  +  6 4- 2c — D)

(3.32)

Note that a, b, and c need not be integers. In all honesty, "gm3" is probably 
the most complicated integral for which we make use of a general solution. 
As we will see in the next chapter, there are methods by which we can write 
arbitrary integrals within a given topology in terms of a few specific integrals in 
the topology, and therefore general solutions are, fortunately, unnecessary.
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24 CHAPTER 3. PARAMETER TRICKS

3.3 Tomonaga Parameters
While Feynman and Schwinger parameters are usually versatile enough to help 
us evaluate many multiloop integrals, there is a third identity that is worth 
knowing about:

i i r°° x0- 1
A aB 0 ~  B(a,/3) Jo [A + BX]a+0 '

dX -r----- -- r — r  . (3.33)

The parameter A in this identity does not have a commonly used name, and so 
we shall create a temporary name to be used within this thesis. It would seem 
fitting to name this parameter after Sin-Itiro Tomonaga who, along with Richard 
Feynman and Julian Schwinger, was awarded the Nobel Prize in Physics in 1965 
for "fundamental work in quantum electrodynamics, with deep-ploughing con
sequences for the physics of elementary particles" [16].

To illustrate the application of Tomonaga parameters, consider the integral

r  [d°*,][d%]
1 J  ( f c , p + l ) f t 2 ) P , + k 2 ) 2 +  l ]  ' k '  ’

The unusual factor (kxp +  1) is characteristic of a category of integrals known 
as eikonal integrals. We will encounter eikonal integrals again in Chapters 6 
and 12, but for now, we will simply use as a representative example of the 
types of loop integrals where Tomonaga parameters are most useful.

We start by shifting ki in (3.34) to ki — k2 and then introduce a Tomonaga 
parameter to combine the k\ -dependent factors:

J +  _  r  [dPiKy
1 /  ( hp  -  k2p +  l){kl){kl +  1)

f  [dDh][dDk2] r°°__________ dx__________
J  kj J0 [kj + l + X(kip -  k2p + l)]2 ‘

Next, we complete the square of the new denominator and use p2 = -1 :

(3.35)

[kj + l + X(kip -  k2p + 1)] =
Ap \ 2 A2k\ H—— J -|———b A + 1 — Xk2p (3.36)

After an obvious shift in k\ we can perform the ^-integral using (2.18), so that

t +   r(e) /-”  f  [dDk2\
-  (4n)°/2 J o  dXJ  kl ( f  + A +  1 -  Ak2Py  • 1 • }
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3.4. PARTIAL FRACTIONS 25

Introducing a second Tomonaga parameter to evaluate the fc2-integral,

T(e) f ° ° ^  f° °  dp p*-1 f  [dDk2]
J t

[°° [°° dp ff-L f
M W q  Jo B { l , e ) J

v- m s > s ? ^ s -

T(—1 +  2e)

[H + P ( f  +  A + 1 ~ XkiP)]1+£ 
[dDk 2]

(4 tt)D

poo pc

/  dX 
Jo Jo

(k2 — ^ p )  + p +  ^- + A +  1
1—2edp pe 1 /  pA2 A2

' — +  — + A + 1

)]
l+e

- l + 2 e
(3.38)

At this stage, we encounter the crucial steps, as even Feynman and Schwinger 
parameters can cast loop integrals like J j  in terms of an integral over some in
tricate function of parameters. Actually solving these final integrals analytically 
is the real challenge. For the task at hand, the substitutions

A =  2x ,
(x +  l )2 

p =  — - —  2 > (3.39)

result in a complete separation of the x- and ^-dependent factors, so that

_ 2r(—i + 2e) r  
(4ir)D h dx

X —2 + 2 e fJo
dz(x +  l)~4+6e JQ (1 + z)~1+2e 

Using (2.30) to evaluate both integrals, the final result is

2

(3.40)

r■+ _
(4tt)D B ( - 1 + 2e, - 3  +  4e)F(l -  e )r( -2  + 3e) . (3.41)

3.4 Partial Fractions
Occasionally a set of propagators is not linearly independent, so that an obvious 
simplification is available. For example, the "gm.2" topology

/ [dDk]
(.k2 +  m2)a k2b

(3.42)

as depicted in Figure 3.5, is a one-loop vacuum bubble topology in which the 
two propagators are not independent. As a result, we have a partial fraction 
identity

1 1 f l  1 1  (3.43)
(k2 + m 2) k2 m2

1 1
k2 (k2 +  m 2)_

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26 CHAPTER 3. PARAMETER TRICKS

Figure 3.5: Sketch of the "gm2" topology.

which allows us to start with the general "gm2" integral (3.42) and whittle down 
the exponents a and b until one of them becomes zero. Note that for the pur
poses of this section, we assume that b is an integer, even though the most gen
eral "gm2" topology can also have an epsilon-propagator here. If the k2 factors 
disappear, we are left with the basic integral (2.18), whereas if we eliminate the 
(k2 + m 2) factors, a scaleless integral remains.

A more efficient way of thinking about this technique is to write the explicit 
linear dependence of the propagators:

(k2 + m2) — (k2) — m2 — 0 . (3.44)

If we rewrite this expression as

1 =  ~T  [(^2 +  ™2) ~  (^2)] > (3.45)

we can multiply by 1, in the form of the right-hand side of (3.45), as many times 
as is necessary to remove one of the propagators. In the next chapter, we will 
derive more sophisticated relationships which allow us to manipulate the ex
ponents of propagators in loop integrals. This will become one of the most
important methods in our arsenal.

"This day and age we're living in gives cause for apprehension, with 
speed and new invention, and things like third dimension, yet we 
get a trifle weary, with Mister Einstein's theory."

(As Time Goes By)
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Chapter 4 

Recurrence Relations

In Chapter 3, we described a number of techniques that can be used to evalu
ate loop integrals that contain several propagators. While the use of external 
parameters — Feynman, Schwinger, or Tomonaga — is the most aesthetically 
pleasing, the unfortunate fact of the matter is that often the resultant integrals 
over these parameters cannot be analytically solved, especially in a general form 
applicable to an entire topology. Section 3.4 introduced a simple identity that 
arises from a partial fraction decomposition and can be interpreted as a prim 
itive recurrence relation, that is, a relationship between similar loop integrals 
that differ only in the explicit exponents of the propagators. In this chapter, 
we will derive a more sophisticated set of recurrence relations. Devising a re
currence relation algorithm to simplify integrals in a multiloop topology is one 
of the most tedious tasks associated with this kind of work, therefore, after we 
look at the basic concept behind recurrence relations, we will illustrate their use 
through a sequence of increasingly complicated examples.

4.1 Basic Concepts
The first use of recurrence relations to simplify loop integrals took place over 
twenty years ago in the context of calculating /5-functions of massless scalar ip3 
theory [17,18]. While the computational resources available at that time were 
meager, these works were nearly clairvoyant in their assessment of the future 
applications of the method. To illustrate the basic idea, consider the n-loop in
tegral

\dPki)[dDk2] ■ • ■ [dDkn]
/ V(ki ,k2, . . . , k n,p)

(4.1)
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28 CHAPTER 4. RECURRENCE RELATIONS

where V(k i , k2, . . . ,  kn, p) denotes an unspecified collection of propagators. Now 
suppose, at the front of the integrand, we insert the operator

a  e ,  , (4.2)
d(ki)

where i £ [l,n] and i  £ {ki,k2, . . . ,  kn,p}. Stokes' Theorem then allows us to 
transform our integral:

/ d ^ [dDk1}[dDk2\ • • • [dDkn]
d ( k i M V{ki, k2, . . . ,  kn,p)

=  /ife, r , n - i  ou]P \d ° k ^  • • • • • • [ e P * :n ]

u J  s  ^  —  ■ (4 3 )

Along the (D — 1)-dimensional surface where ki -» oo, every fc*-dependent prop
agator in V  will go to k2, because the ki terms will dominate anything else. As 
a result, the surface integral is a scaleless integral which, as we recall from Sec
tion 2.3, vanishes in dimensional regularization. In other words, we can gener
ate recurrence relations from the identity

/ d ^  [dDki}[dDk2} ■ • • [dPkn] =Q (4 4)
d(ki)r V (k i ,k2, . .. ,kn,p)

It is interesting to note that these integration by parts identities in momentum 
space are equivalent, via Fourier transforms, to statements of translation invari
ance and momentum conservation in position space [18]. While that interpreta
tion is much more intuitive, the momentum-space formulation is easier to work 
with.

Observe that the basic identity (4.4) does not address loop integrals contain
ing numerator factors. Our derivation of recurrence relations is restricted to 
scalar integrals, wherein the integrals are completely characterized by the ex
ponents of the propagators, positive or negative. Oftentimes, any numerator 
factors we might start with can be written as linear combinations of propaga
tors so as to create scalar integrals. The examples in this chapter will all behave 
in this way. In Chapter 5, we will explore techniques that can be used when this 
method cannot adequately handle all numerator factors. For an n-loop integral, 
we have (n + l)(n  +  2)/2 independent scalar products that can be constructed 
from { h , k 2, . ■ ■ ,kn,p}, but since p2 = —m 2 can be pulled out of the integral, 
there are really only n(n +  3)/2 scalars that need to be expressed in terms of 
propagators. So long as the propagators are linearly independent, this means 
that we need 2 different propagators for a one-loop integral, 5 for a two-loop 
integral, 9 for a three-loop integral, and so on. While we are on the topic of com
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4.1. BASIC CONCEPTS 29

binatorics, we can see from (4.4) that with n choices for ki and (n 4- 1) choices for 
I, we can generate n(n + 1) independent recurrence relations, in other words, 2, 
6, and 12, for one-, two-, and three-loop topologies, respectively.

At this stage, it would be wise to introduce some notation. Given that the 
scalar integrals we will be working with can be completely characterized by the 
exponents of the propagators, we can write an integral from a topology "I" as

where factors like [1] are convenient shorthands for specific propagators. Look
ing back at the partial fraction identity (3.45) for the "gm2" topology, if we set 
m  =  1, we can write this as

All recurrence relations will look like {1 =  ... } at the moment they are ap
plied to an integral. Based on (4.4), however, recurrence relations are typically 
derived in the form {0 = . . .  }, so it is useful to have an additional notation. 
Taking (3.44) as a starting point, we would write

where the symbol 1 denotes the integral gm2(ax — 1, a2), so that (4.7) represents

To conclude this section, we will look at another type of recurrence relation. 
For the sake of simplicity, let us examine a one-loop topology where

Tensorially, this integral must be proportional to as p is the only vector that 
remains after integration. Furthermore, to obtain the correct mass dimension,

7(oi, a2, as, 04,
[<iDkx][dDk2]

[l]ai [2]02 [3]“3 [4]“4 [5]a® ’ (4.5)

! = [ ! ] -  [2] . (4.6)

0 =  I -  — 2“ — 1 (4.7)

0 =  gm2{ax -  1, a2) -  gm2(ax,a2 -  1) -  gm2(ax,a2) (4.8)

(4.9)

so that the standard recurrence relation identity (4.4) reads

(4.10)

for q £ {k,p}. Now consider the integral

(4.11)
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30 CHAPTER 4. RECURRENCE RELATIONS

we require a factor of
—ai —a.2 (4.12)

Finally, we will denote the dimensionless remaining pieces by X,  so that

Note that X  will turn out to be a combination of loop integrals, albeit ones in 
which the mass dimension is already factored out. If we assign in (4.13) as p^ 
and contract both sides with j f ,  we obtain the trivial result that ^  corresponds 
exactly to the integral over T, aside from the explicit mass dimension. Setting 
equal to k^ and contracting both sides with j f ,  on the other hand, will provide 
us with a nontrivial result for X  once we rewrite (k ■ p) in terms of propagators 
in T.  Having determined X,  we then return to (4.13), with and take the
partial derivative of both sides with respect to p^. Since X  is technically mass- 
independent, the partial derivative only sees the leading p-dependent factors on 
the right-hand side of (4.13). We will demonstrate this method explicitly in the 
next example. It is important to realize that the recurrence relations developed 
in this way will not be independent from the recurrence relations provided by 
the integration by parts technique (4.4). Instead, these "extra" recurrence re
lations correspond to particularly unusual combinations of the original recur
rence relations. Since it is often the case that these unusual combinations are 
both useful and hard to construct from the original recurrence relations, it is 
worth knowing about the approach.

4.2 Simple One-Loop Example
For our first explicit example of recurrence relations, let us recall the "onshell" 
topology from Section 3.1. Restricting the exponents to integers, we have

(4.13)

(4.14)

Based on (4.4), there will be two recurrence relations:

(4.16)

(4.15)
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v = 0 .\a,2

Starting with (4.15), we find that

f y Db] J -  2a^ k 'P) _  2a2{k-p) _  2a2p2 ]  1
J 1 J \  k2 (k2 +  2kp) (k2 +  2kp) J k201 (Jfc2 +  2kp)

(4.17)
Using

p2 = - l ,  *2 =  [1]i ( t -p )  =  i ( [ 2 ] - [ l ] ) ,  (4.18)

the recurrence relation becomes

(  a i t P l - W )  °2([2] -  [1]) 2 « 2 l 1
J  ‘ 1 I [1] PI P] J [l̂ 'pp ’ (4.19)

or more compactly,

R l  : (ax -  a2) -  axl +2- +  2a22+ +  a2l “ 2+ -  0 . (4.20)

Repeating the same sequence of steps for (4.16), we obtain

2aik2 2a2k2 2a2(k • p) 1 1[\rlDk l ! n  -  2aik2 2u2k2 2a2(k-p) \
J  [ J1 k2 (k2 + 2kp) (k2 + 2kp) J k2̂ ( k 2 + 2kp) = 0,

/  { 2o2(1] M[2] -  [1]) \  1 _  „
[2] [2] /  [1]2«[2]“

R2 : ( D -  2ai -  a2) -  a2l~2+ =  0 . (4.21)

Equations (4.20) and (4.21) are the two recurrence relations for the "onshell" 
topology. R2 will be all we need to concentrate on, as it relates I(ai,a2) to 
I(ai — 1, a2 + 1). Rewriting it as

1 = ____ °±____ ii l  (4.22)
D -  2ax -  a2 [2] ’ 1 J

we see that this recurrence relation can be applied as many times as necessary 
in order to reduce a\ to 0. Once ai =  0, the "onshell" topology simplifies to

[dDk]/(0,a2) J  ^ 2 +  2kpy2 
= j  [d° k]

[(k + p)2 + 1]02
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f  \dDk]
J  ( P  +  i r  ’

(4.23)

which we recognize as the most basic dimensionally regularized integral (2.18). 
Note that we have shifted k to (k — p) in the last line. Even if (4.23) did not 
correspond to an exactly solvable loop integral, it does represent a subtopology 
that is simpler than the one we started with. If need be, we can repeat the recur
rence relation process for any subtopology we encounter until we either obtain 
integrals that we have previously solved or a set of so-called master integrals. 
Master integrals, which in some sense represent the boundary conditions of a 
set of recurrence relations, will arise in the example in Section 4.4.

Before moving on to a more complicated example, though, we will exam
ine the extra recurrence relation that was discussed at the end of the previous 
section. Applying (4.13) to the "onshell" topology, we have

Taking the partial derivative of both sides of (4.24) with respect to leads to

Using (4.18) on the left-hand side, (4.25) on the right, and setting p2 =  -1 , the 
extra recurrence relation can be written as

X I : -  2a2l~ 2 + -  (D -  ai -  a2)l~  +  (D -  ax -  a2)2~ =  0 . (4.27)

We now wish to show that this recurrence relation can be constructed from the 
ones that we derived earlier ((4.20) and (4.21)):

(4.24)

By contracting both sides with p^ and using (4.18) we find that

(4.25)

k2ai(k2 +  2A:p)®2+1

=  D (—p 2) ^  ~ ai~“2X  - 2 ^ j - a i -  a ^ j  p ^ { - p 2) ^

= 2(D -  ai -  a2) ( -p 2)%-ai~a2X  . (4.26)

R1 :
R2 :

{q, \  — a 2 ) — Ox l + 2  +  2 a 2 2 +  +  o 2 l  2^~ — 0 , 
(D — 2&i — ct2) — o2l  2+ =  0 .
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First, we will add R1 and R2 in order to cancel the 1 2+ terms:

R1 + R2 : (D — ax -  2a2) -  axl +2“ +  2g22+ =  0 . (4.28)

Next we apply I -  to this, so that

{D + l - c i ! -  2a2) l _ -  (ai -  1 )2 ' + 2a2l~ 2 + = 0. (4.29)

Notice that we also shifted ax —> (ax — 1). This is because applying I -  lowers 
the exponent of [1] in the loop integral, and since the explicit factors of ax in the 
recurrence relations refer to this exponent, they must be shifted also. For the 
same reason, the application of 1+ would entail the shift ax -» (ax +  1).

Next, we apply 2“ to R2, obtaining

(D + 1 -  2ax — a2)2~ -  (a2 -  1)1" = 0 . (4.30)

Finally, subtracting (4.29) from (4.30), we have

—2a2l  2+ — (Z) — (i\ — a2) l  +  (Z) — gx — g2)2 =  0 , (4.31)

which is exactly what we obtained in (4.27) using the other method. In other 
words,

X I =  2~R2 -  1_ (R1 + R2) , (4.32)

and the extra recurrence relation is not independent of the others.

4.3 Simple Two-Loop Example
Now we are ready to look at a two-loop example. Consider the "N5c" topology, 
as sketched in Figure 4.1 and defined by the integral

f  [dP k\\[dP hi\ . .
N5c(ai,a2,a3, a4,a5) =  J  ^ ^ {k; + - ^  + p)la. ( k l + h + p ) ^  ' <4 3 3 >

With any new topology, the first steps should be to decide how to route the 
momenta and to express all possible scalar products in terms of the propagators 
so that recurrence relations can be derived. For "N5c", the recurrence relations
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Figure 4.1: Sketch of the "N5c" topology.

are:

R1 : Os3+(—1 — 1 ) +  as5+(—1 + 4  ) + (D — 2a,\ — <23 — 05) =  0 ,

R2 : a i l +( l + 3 - + 4 - -  5“ )
-f<233+(2 — 5 ) +  as5+(—2 + 3  ) -F (03 — 05) =  0 ,

R3 : a i l +(—1 - 3 ” )
+ 038^(1 +  1 ) + as5+(l + 2  — 3 — 4 ) + (<2i — 03) =  0 ,

(4.34)
R4 : a22+(l + 3 - + 4 “ - 5 “ )

+a44+(l — 5 ) +  d55+(—1 + 4  ) +  (<24 — (25) =  0 ,

R5 : C244~*~(—1 — 2 ) +  (255^ (—2 H- 3 ) + (Z) — 2(22 — C24 — G5) =  0 ,

R 6 : a22+(—1 - 4 " )
+a44+(l + 2 ) +  055^(1 + 2  — 3 —4 ) + (a2 — G4) = 0 .

Before scrutinizing the recurrence relations, the next step is to determine what 
kind of simplification will occur if one of the propagators is removed from the 
topology. For "N5c" integrals, the removal of any propagator leads to a two- 
loop integral with four massless propagators. Since one of the loops will have 
only two propagators, this subloop belongs to the "one" topology, and follow
ing the evaluation of this subloop, the remaining loop integral will also be a 
"one" integral. Most topologies are not this simple — the more common situa
tion is that there are one or two propagators whose removal does not simplify 
things appreciably. In addition, the removal of a propagator often leads to a 
simpler topology with the same number of loops, as opposed to the sequence of 
trivial one-loop integrals that we have with "N5c".

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.4. COMPLICATED ONE-LOOP EXAMPLE 35

Having looked at the effects of removing any particular propagator, the next 
step is to check for symmetries in the loop integral. For the "N5c" topology, the 
integral is unchanged by the swap k\ «-» k<i, so that ai and 03 can be interchanged 
with 02 and 04, respectively. This simplifies our task somewhat, since a quick 
perusal of the recurrence relations in (4.34) indicates that R4, R5, and R 6 can 
be obtained directly from R2, R l ,  and R3, respectively, by such a symmetry. 
As a result, we need only consider R l , R2, and R3.

Now it is time to look at the recurrence relations. Notice that if we were to 
apply R l  directly,

1 = ( ^ -8ai1- a, - . , ) {w(1 + [11) + B ([11- [41)}- (435>

the a3/[3] term would increase a3 indefinitely without lowering any of the other 
exponents. Similarly, we cannot use R2 or R3 in isolation. The problems, ev
idently, are the solitary raising terms like o33+, and one solution would be to 
look for a linear combination of recurrence relations in which these terms can
cel. R l  A R2 T R3,

a i l+ (4-  _  5“ ) +  a33+(2~ -  5” ) +  (D -  ax -  a3 -  2a5) -  0 , (4.36)

is such a linear combination, leading to the useful relationship

1 =  I S ([51 - |4]) +  M (|51 ~ P l ) } ' (4 3 7 )

Repeated applications of (4.37) will eventually bring either a2, 04, or 05 to zero, 
at which point the "N5c" topology can be solved in terms of simpler topologies.

4.4 Complicated One-Loop Example
In the two previous examples, we were able to construct a single recurrence re
lation that was guaranteed to reduce one of the exponents in the integral until 
one of the propagators was removed and the topology was simplified. If this 
were always the case, any multiloop topology could eventually be reduced to a 
nesting of one-loop subtopologies and a number of physicists would get more 
sleep. Instead, we often find that there are certain integrals in a topology, known 
as master integrals, that cannot be reduced any further by the recurrence rela
tions. We will discuss methods of evaluating master integrals in Chapter 6 . Now 
we shall look at an example of a topology containing a master integral in order 
to illustrate some of the additional techniques that can be used to construct a
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solution algorithm with recurrence relations.
Consider the one-loop topology "M3", as sketched in Figure 4.2 and defined 

by the integral

M3(alla2)a3)=  [  .»■ i f ?  „ r=- • (4.38)J  k2ai (k2 +  2kp)a2 (k + p)2a3

Figure 4.2: Sketch of the "M3" topology.

If the exponents are all integers, this is a very simple integral to solve — 
simply construct a partial fraction identity relating [2] and [3] and apply it until 
one of these propagators is removed so that the remaining integral belongs to 
either the "one" or "onshell" topologies. The "M3" topology can also arise from 
a multiloop topology, though, after one or more subloops have been integrated 
out, in which case one or both of the massless propagators [1] and [3] will have a 
non-integer exponent. If only one of these exponents is non-integer, the solution 
is still straightforward, so we will focus on the case where both [1] and [3] have 
non-integer exponents. Assuming that we started from a three-loop integral 
and have integrated over two subloops, we can rewrite (4.38) as

f  [dDk]
m ( ai , a2, a3) =  J  k 2(a 1+e ) ( k 2 + 2kP)a>(k + p ) 2^ + e )  ' (439>

where now ai, a2, and a3 are all integers. The recurrence relations for this topol
ogy are

R l  : a22+l  + (a3 +  e)3+(l  + 2  ) + (2di +  a2 — D 4- 2e) =  0 ,

R 2 :  —(ai +  e )l+2- + a22+(2 +  l - )  (4'4°̂
+(a3 + e)3+(2 +  1 —2 ) +  (ai — a2 -I- e) = 0 .

If we remove [2], the topology simplifies to a "one" integral. The presence of the 
e-propagators, however, prevents us from removing [1] or [3]. The strategy, then,
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will be to lower a2 as much as possible while keeping ax and a3 from running 
off to arbitrarily large positive or negative values.

Let us start by trying to lower a2. Both recurrence relations contain 2+ terms, 
so we certainly do not want to apply these directly. We could, however, apply 
2~ to R2 in order to "invert" the 2a22+ term. Unfortunately, R2 also contains an 
a22+l~  term, so that 2“R2 will have a 1~ term which will allow ax to become 
increasingly negative without doing anything about a2. Fortunately, there is 
also a a22+l “ term in R l , so that this problematic term is canceled in

(R2 -  R l)  : —(ax + e )l+2~ + 2a22+
+2(a3 +  e)3+(l -  2~) +  (D -  ax -  2a2 -  e) =  0 . 1 ’

Now we can apply 2 ~  in order to invert the 2a22+ term, so that

1 =  2(1 a2) j  _ _  ^a2 + 2 -  e) -  (ai +  e )p j + 2(a3 +  e) —[3]
(4.42)

This identity will lower a2 every time it is applied, but notice that the (1 — a2)
factor in the denominator precludes us from using it when a2 = 1. This is a
general feature of recurrence relation algorithms, namely, that whenever we try 
to lower an integer exponent by inverting a term with a raising operator for that 
propagator, we cannot lower the exponent past 1. Although some of our inte
grals might have a2 =  0 as a consequence of the [2]2 terms in (4.42), we have to 
continue the algorithm with the worst-case scenario in mind, specifically, inte
grals of the form M3(ax, l ,a 3) for arbitrary values of ax and a3.

With a2 =  1, let us now concentrate on focusing a3 towards zero. The linear 
dependence of [2] and [3],

1 =  [2] -  [3] , (4.43)

can be used directly when a3 > 0, as it will either lower a3 towards zero or, better 
yet, give us a2 =  0. Alternatively, if a3 < 0, we simply divide the identity (4.43) 
by [3] and rearrange the terms so that

^ I s T '  (444)

This will certainly increase a3 and it may or may not lower a2 to zero.
At this stage, we need to deal with ax in integrals of the form M 3(ax, 1,0) 

in an attempt to focus ax to a single value. We are going to aim for ax =  1, 
for reasons that will become clearer in Chapter 6, so that our master integral is
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38 CHAPTER 4. RECURRENCE RELATIONS

M 3(1,1,0). If ax > 1, we can simply apply R l:

(D — 2ax — a2 — 2e)
1 {a2{|+(£i3+£)nlp} ■ (4-45)

All three of the terms in (4.45) lead to good things. The [l]/[2] term lowers aX/ 
and even though a2 is increased to 2, it can be lowered again with (4.42) so that, 
at worst, a3 is raised instead. The [l]/[3] term lowers ai and the corresponding 
increase in a3 can be reversed with (4.43). Finally, the [2]/[3] term sends a2 to 
zero.

All that remains is to address integrals where ax < 1. This is the most non
trivial step of the algorithm because while it is extremely easy to increase aXr 
we cannot increase a2 without encountering an infinite loop once the [2] term 
in (4.42) lowers a2 back to 1. No direct combination of R l  and R2 is free of 2+ 
factors, and since a2 =  1, we are not allowed to apply a 2“ operator either. The 
solution is to create a hybrid combination of recurrence relations, whereby we 
apply raising or lowering operators only to some of the recurrence relations in 
a well-chosen combination. For instance, consider

1+R1 : a22+ +  (ct3 +  e)3~*~(l + 1”*~2 ) +  (2ax -(- a2 — D +  2 +  2e)l^~ — 0 .

This relation only contains a single 2+ term, just like the relation (R2 — R l)  
in (4.41), which suggests that we can cancel the offending term with an appro
priate combination of the two,

It is clear that this relation will increase ax without any drawbacks. As a result, 
any "M3" integral with two epsilon-propagators can be cast in terms of "one" 
integrals and the master integral

(4.46)

(R2 -  R l ) —21+(R1) : - 2 (az + e)3+2“ (l + 1+)
+2(D —  2 — 2 c lx  —  0,2  —  2e)l+
— (ax T e )l+2 + (D — ax — 2ot2 — e) =  0

(4.47)

or equivalently,

1
(4.48)

(di +  2a2 — D +  e)

(4.49)
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4.5. COMPLICATED TWO-LOOP EXAMPLE 3 9

This is not a particularly pleasant master integral to solve, and we will see ex
actly w hy in Chapter 6, but at least there is only the one.

4.5 Complicated Two-Loop Example
To complete the sequence of examples illustrating the construction of recurrence 
relation algorithms, consider the two-loop topology "Tlep", as sketched in Fig
ure 4.3 and defined by the integral

, . f  [d% ][dDA;2]
11 a2’a3’04,05 ~  J klaik22(a2+€)( h  -  k2)2a3(h + p)2a*(k% + 2k2p)as '

(4.50)
The wavy line in Figure 4.3 is the epsilon-propagator. If any of the other four

\
\

\

Figure 4.3: Sketch of the "Tlep" topology.

propagators are removed, the topology immediately unravels into a pair of one- 
loop integrals, and so our task is clear: lower air a^, a^, and without letting a2 
run away in either direction. We might well end up with a master integral such 
as T le p (l,0 ,1,1,1).

First we need the recurrence relations. When dealing with two-loop topolo
gies, let alone three-loop topologies, it is important to print out the recurrence 
relations in a format that emphasizes their basic behavior without distractions 
from less important features. In this spirit, here are the recurrence relations for 
the "Tlep" topology, printed in a convenient format:

R l :  + [3 + ] *  ( - [ 1 - ]  +  [2 - ] )
+[4+] * (_ i  -  [l_]) (4.51)
—2 *  a l  — a3 — a4 +  D

R2 : + [1 + ] *  (—[2—] +  [3—])

+ [3 + ] * ( - [ 1 - ]  +  [2-]) (4.52)
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+[4+] * H H  +  [3-] -  [5-])
—dl -f- a3

R 3 : +[1+] * (—1 — [4—])
+[3+] * (-1  +  [1-] -  [2-] -  [4-] + [5-]) (4.53)
+[4+] * (1 + [1-])
+ a l — a4

R4 : +[2+] * (-[1 -]  + [3-])
+[3+] .  ([1-] -  [2-]) (4.54)
+[5+) » (-1  -  [2 ] + [3-] -  (4-])
—a2 + a3 — ep

R 5 : +[3+] * ([I-] -  [2-D
+[5+] * (-[2 -])  (4.55)
—2 * a2 — a3 — a5 + D — 2 * ep

R 6 : +[2+] « (-[5 -D
+ 1 3 + 1  * (1 ”  1 H  + P - l  + [4-] -  [5-D (4.56)
+ [5+ ]. (2 + [2 -])
+a2 — a5 + ep

In addition to a wise use of brackets and the omission of the obvious "=  0" 
pieces, the raising operators implicitly contain the appropriate coefficient, name
ly, [1+] =  a il+  and [2+] =  (o2 + e)2+.

Now let us get to work. Even though the order is usually somewhat arbi
trary, as our first task we will try to lower o5. R4 and R 6 both contain solitary 
[5+] terms that we might invert. Unfortuantely, R 6 is not a good choice, because 
the [3+] term will lead to a [5]/[3] term that does not provide a net-lowering of 
the exponents {ai, 03, 04,05}. Meanwhile, the [5+][2—] term in R4 will create a 
[2] term that lowers 02 indefinitely. Fortunately, such a term also appears in R5, 
and so the combination

R4 — R5 : +[2+] * (—[1—] + [3—])
+ [ 5 + M - l  + [ 3 - ] - [ 4 -D
+a2 +  2 * a3 +  a5 — D + ep (4.57)
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can be used to lower a5:

1  =

+  '  ( 4 5 8 )  

Turning to 04, we need look no further than 4 rR l:

1 =  -1 X1 +  { <5 ~ 2a' ~ a3 ~ a , -  2c) + <13 W ~  M ]  ■ (4.59)

Since the [4][2]/[3] term in (4.59) is not net-lowering in {01, 03, 04, 05}, we will 
need to make sure that when we lower o3, we do not generate a similar [3] [2] /  [4] 
term which would essentially create a runaway scenario by means of a net [2] [2]
term. After looking carefully at the recurrence relations in order to find a com
bination which cancels dangerous [n+] and [n+][2—] terms, we find that

2R4 -  R5 +  R6 : +[2+] * ( -2  * [1-] + 2* [3-] -  [5-])
+[3+] * (1 +  [4-] -  [5-])
+[5+] * (2 * [3-] -  2 * [4-])
Ta2 -T 3 * a3 — D 4- ep (4.60)

fits the bill perfectly, leading to

1 =  [5] — [4] + .-—-LL— |  (a2 -f. 3az — 7 + 3e) +  2a5-LL_Ul

. [5] +  2[1] -  2[3] } .. ...
—(a2 + ^ ----- — j  • (4-61)

This leaves us with the task of lowering oi, and after a bit of searching, we obtain 
a relation

R l  +  R3+2R4 -  R5 + R6 : +[1+] * (-1  -  [4-])
+[2+] * ( -2  * [1-] +  2 * [3-] -  [5-])
+[5+] * (2 * [3-] -  2 * [4-])
—al +  a2 + 2 * a3 — 2 * a4 +  ep (4.62)

in which we can invert a [1+] term without running into other difficulties, so

1)
+  2a3 +  (Z5 — 5 +  3e)
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that

1 =  -[4] +
(ox

2[3] -  [5] -  2[1] 
[2]

(4.63)

We can use the preceding relations to lower a\, a3/ a4/ and a5 all to 1 so that we 
are now faced with integrals of the form Tlep(l, a2, 1,1,1). Although we cannot 
remove [2], we can focus the exponent a2 towards a specific value such as 0. If 
a2 > 0, a direct application of R5,

will either lower a2 or send oi to 0. It does not matter that o3 or 05 might be 
raised to 2, as we can easily reapply relations (4.61) or (4.58) to return these 
exponents to 1 without running into an infinite loop.

Raising negative values of a2/ on the other hand, is a considerably more diffi
cult job, as none of the original recurrence relations are free of [2—] terms and we 
cannot invert these on account of the [n+] factors that accompany them, given 
that an = 1 Vn G (1,3,4,5}. There are two options available to us here. The 
first is to construct a hybrid recurrence relation like (4.47), whereby we find an 
elaborate combination of recurrence relations within which raising and lower
ing operators act on only some of the relations. This is the most elegant method, 
but it can also be extremely difficult to come up with such a relation. The alter
native involves brute force, but it is at least guaranteed to work, and so in the 
interests of obtaining a solution without wasting an inordinate amount of time, 
it can be used as a last resort. Here is how it works. We know that R5 can lower 
positive values of a2 in integrals of the form T lep (l,a2, 1,1,1). Suppose a2 is 
negative, though, and we apply R5 once anyways. We would probably expect 
to have, after settling a3 and a$ back down to 1, a term like T lep (l, a2 — 1,1,1,1). 
If, on paper, we work out this connection, for arbitrary values of a2/ we can take 
the Tlep(l, a2 — 1,1,1,1) term that we generate and solve for it in terms of every
thing else. Then, by shifting a2 to a2 + 1, we will have a relation which increases 
negative values of a2. It takes a page or so of shorthand to work out the details, 
but in this particular case a remarkable thing happens: the Tlep(l,  a2 — 1,1,1,1) 
terms all cancel! As a result, we simply collect all the other things we generate 
from applying R5 to T lep (l, a2, 1,1,1) and come up with

(4 -  2a2 -  a3 -  a5 -  2e)
1

2(a2 — 1 + 2e)
1

{ (a 2 —l +  e) ( [ 3 1 - [ l ] - [ 5 ] )
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♦ w W - W  (4'65)
This relation can be used for all values of 0,2 in T lep(l, 02,1,1,1) integrals, and 
so the "Tlep" topology has no master integrals.

4.6 Additional Comments
We have now looked at a number of examples of how to use recurrence rela
tions to simplify the loop integrals in a topology. When properly applied, these 
procedures allow us to write an arbitrary loop integral in terms of loop integrals 
belonging to simpler topologies and, perhaps, master integrals within the same 
topology.

At the end of the example in the previous section, we briefly described a 
brute force method of generating the hard-to-find recurrence relations that are 
often needed in the final stages of an algorithm. Since this particular case turned 
out to be easier than we had any right to expect, it is worth discussing the 
method further. The most common application of this method occurs when the 
application of any recurrence relation, in combination with the relations pre
viously used, leads to an infinite loop wherein a term in one of the relations 
exactly reverses the effect of another relation. In cases like this, by starting with 
an integral and applying a recurrence relation on paper, we will soon generate 
additional factors of the original integral, so that schematically,

(O riginal Integral) =  (Sim pler Integrals) +  (C on stan t) * (O riginal Integral) . (4.66)

Once an equation like this is obtained, it is obvious that an infinite loop can be 
avoided simply by moving all the (Original Integral) terms to the same side of the 
equation. Another common situation is that

(Original Integral) =  (S im pler Integrals) -I- (C o n sta n t) * (O riginal Integral)

+ (Constant) * (M ore C om plicated  Integral) . (4.67)

In this case, solve for the (M ore C om plicated  Integral) and shift the exponents so 
that this becomes the (O riginal Integral) and t h e  initial (O riginal Integral) looks 
simpler in comparison. It m ust be stressed, though, that this method is a last 
resort and should only be used when the integral under consideration has one 
free parameter, otherwise there will be several calculations required and they 
might be rather unwieldy.

While paper can be used to explain the ideas in this chapter, it would be fool
ish to attempt to calculate multiloop integrals on paper in this way. Beyond its
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numerous other virtues, symbolic computation, which we will discuss in Chap
ter 10, becomes an indispensable tool for implementing recurrence relation al
gorithms. Once an algorithm is created, we can double-check it by ensuring that 
the original recurrence relations are satisfied for a large assortment of specific 
integrals. Basically, these tests consist of choosing one specific integral from the 
topology, expressing each recurrence relation in terms of this integral and some 
other specific integrals with similar parameters, evaluating the integrals using 
the programmed algorithm, and then checking to see that all recurrence rela
tions are satisfied by the explicit calculation even though some of them might 
not have been used to construct the recurrence relation algorithm. Since the cre
ation of these algorithms is perhaps the most difficult aspect of this work, it is 
quite reassuring to have these kinds of tests available to us.

"Though at first it seems as though it doesn't show, like a tree, ability 
will bloom and grow."

The Aristocats (Scales and Arpeggios)
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Chapter 5 

Tensor Reduction

In Chapter 4, we saw how recurrence relations provide a powerful method for 
dealing with loop integrals so that we do not need to construct general so
lutions. Since the method assumes that we have scalar integrals, we need to 
rewrite numerator factors in terms of existing propagators. Unfortunately, it is 
not always possible to do this directly. This chapter explores a subtle technique 
that can be used to accomplish the same objective.

5.1 One-Loop Procedure
Consider the integral /• j k 2

I
(5 1)

(,k2 +  m 2)n

Aside from the additional numerator factor of k2, this corresponds to the "gm2" 
topology that we first encountered in Section 3.4. This numerator does not cause 
much trouble, though, as it can easily be written as

k2 =  (k2 +  m2) — m2 (5.2)
so that

[dDk \k 2 [ \ jDi \ 1  1 m2/ {k2 + m?)n J  \  (k2 +  m2)n~x (k2 +  m 2)r
and both terms on the right-hand side are scalar integrals.

Now consider the integral
[dDk\ (k ■ p)

(5.3)

/ (k2 + m 2)n  ̂ ^
It is obviously impossible to write (k • p) as a linear combination of existing 
propagators and /.-independent constants. In principle, we could introduce an 
additional propagator such as (k2 + 2kp), but then we would no longer be deal-
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mg with the "gm2" topology. Instead, there is a clever way. Since we are inte
grating over all possible values of k  and the denominator is quadratic in k ,  the 
substitution k  ^  —k  leads to

f  ['d° k\ (k ' P) = f  [d° k] { - k -p )
J ( k 2 +  m 2) n J ( k 2 +  m 2) n ’ 1 j

and so (5.4) is in fact zero. This argument holds whenever we have an odd 
number of powers of k  in the numerator of a loop integral whose denominator 
is quadratic in k .

A  more complicated situation arises with the integral

[ d P k ]  (k  • p)2
/ ( k 2 + m 2)n ’ (5'6)

as symmetry arguments like the one above no longer demand that this integral 
vanish. Rewriting (5.6) as

f  [d P k ]  F F
p“p- J W T ^ r ’ w

we will now construct an identity for F F  that, while not true in isolation, is 
true for our purposes because we are integrating over all possible values of k.  
We start by noting that the Fintegral must yield a ^-independent tensor that 
is symmetric in p  and v .  The only candidate is g tJ,u. Next, any replacement of
F F  must maintain both the correct mass dimension and the same number of
Ffactors in the numerator. As a result,

P F  <x g ^ k 2 . (5.8)

We determine the constant of proportionality by contracting both sides of (5.8) 
with g^„ and noting that in dimensional regularization g ^ g ^  =  D. Then we 
have

<i ^ k 2
F F  -  . (5.9)

The ~  reminds us that while (5.9) is not explicitly true by itself, the two sides 
are equivalent after integration over all possible values of k .  Substituting (5.9) 
back into (5.7), we obtain

f  [dD k] (k  ■ p)2 p2 C [dD k] k 2
J (k2 + m2)n D J (5.10)

(.k 2 +  m 2 ) n ’

and we can use (5.3) to solve the Fintegral on the right-hand side. Introducing
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a more compact notation, we can write our newfound identity as

1M2
< ^’2) =  g—  {k2) , (5.11)

where
( r ’n) =  J  

^  s  f

[dDk\ • • ■ A/1"
V(k2,m 2)

[ d P k ]  k 2
V(k2,m 2) ’

(5.12)

(5.13)

and D represents some collection of propagators. The generalization of (5.11) is

nm-fin
<*"> "  / M  <**> ■ <5 '14>

where Gw‘"Mn denotes a sum of products of n/2 ga^ tensors that is completely 
symmetric in the indices {p i , . . . ,  pn}. We have already shown that

f ( 2 , D)  = D ,  (5.15)

and we wish to construct a general formula. For n — 4,

(fc"’4) = 5-----  /(4  c )  ‘ <5'16>

Contracting both sides with g ^ ^ g ^ 3IH and noting that g^g^ — D, we obtain

«=TiSr<*‘>
so that

/(4 ,D ) =  D(D +  2) . (5.18)

At this stage, we might guess that

/(n , £>) =  D(D 4- 2)(U + 4) • ■ • (D + {n -  2)) . (5.19)

This turns out to be the correct expression for f(n, D) and we can prove it by 
induction. Having established (5.19) for n = 2,4, we now need to show that if it 
is true, as written, for n, then it necessarily follows that it is also true for n +  2.

To begin, we observe that GAtl'"A‘n+2 has (n +  1)!! terms. This is because the 
order of the ga@ factors is irrelevant, so we might as well write the one involving 
Pi at the front. There are then (n + 1) other p  indices that can be paired with
Pi in this leading ̂ -tensor. Then, we write the g-tensor containing the lowest
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remaining g index, leaving (n — 1) other indices to pair with it, and so forth, 
yielding (n +  l)(n  — 1). . .  =  (n + 1)!! terms.

Now, of the (n + 1)!! terms, (n — 1)!! will contain and the remaining 
n(n -  1)!! will not. When we contract G^'"fln+2 with • • • 5Mn+lMn+2, those
terms containing g^1̂ 2 will yield D times the full contraction over the remain
ing n indices. As for the terms without g ^ 2, we can assume, without loss of 
generality, that the leading term is g^1̂ 3. In this case, our contraction involves

=  a fc sT * 1* -  s r *  • (5.20)

Since j  > 3, we have f (n ,  D) remaining once gx and g% are out of the picture. In 
other words,

f ( n  +  2, D) = Df(n, D) + n {D f(n  -  2, D) +  (n -  2) {...}}
=  Df(n ,D)  + n { f (n ,D )}
= {D + n)f(n ,D)
= D(D + 2)(D + 4) ■ • • (D + \{n + 2) -  2]) . (5.21)

We can also write f ( n ,D ) a s ( D  + n — 2)!!. This is not only more compact, but by 
virtue of the identity (2.22), it suggests that we should be able to cast our result 
in terms of the ubiquitous Gamma functions. Explicitly,

f (n ,D) = £>(£> + 2)(JD +  4). ••(£> + ( n - 2))
=  2n/2(D/2)(£>/2 +  1) • • • (D/2 + n/2 -  1)

2"/2 r  (o±n)

r(?) (5.22)

This process of tensor reduction on one-loop integrals is so useful that we 
automatically incorporate it into the three major one-loop topologies — "one", 
"onshell", and "gm.2" — that were introduced in Chapter 3.

5.2 Multiloop Procedure
While the method we developed in the previous section works extremely well at 
the one-loop level, things become increasingly complicated when we have two 
or more loops. In particular, we often encounter topologies with fewer propa
gators than is necessary to be able to rewrite every possible numerator factor. In 
this section we will examine, through a sequence of increasingly difficult exam
ples, how tensor reduction can be implemented in multiloop integrals.
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One-Loop Subloop
Consider the "T2" topology, as sketched in Figure 5.1, and defined by

(5.23)

[dDkx][dDk2]
[l]ai[2]a2[3p[4]a4 '

Figure 5.1: Sketch of the "T2" topology.

First, notice that the /^-dependent subloop cannot be evaluated on its own, 
even though it looks a lot like "onshell". This is because the external momentum 
that flows through the massive line of the k2-loop is (kx +  p), instead of just p, 
and since the 1 in the mass term of [4] is actually m 2 =  —p2, the k2-loop depends 
nontrivially on two different external scales. This is a major reason why massive 
lines are more of a nuisance than massless lines.

Next, observe that the four propagators of (5.23) are insufficient to handle all 
possible numerator factors that depend on kx, k2, and p. Specifically,

leaving only [4] to handle both (k2 ■ p) and (kx • k2), which is clearly insufficient.
The solution to this problem relies on the fact that the only part of the k2- 

integral that is not quadratic in k2 is the 2k2 ■ (kx + p) term that arises in [4]. 
Therefore, suppose we break k2 into two pieces — one that is parallel to (kx +p) 
and the other that is perpendicular to it:

Now observe what happens to the two fc2-dependent propagators using this 
representation of k2:

p2 = - l ,  k\ — [1] , k2 = [2] , kx ■ p = ([3] -  [1] + 1) /2 , (5.24)

(5.25)

[2] +  ( H )  , (5.26)

+  (ji2 ) +  2fc| • (kx +  p) +  (kx +  p)2 +  1. (5.27)[4] —
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Both of these factors are quadratic in k%, precisely because of the specific form 
of (5.25). Once we know that the propagators of (5.23) are quadratic in fcj-, we do 
not actually need to write them as in (5.26) and (5.27), but we will use (5.25) to 
rewrite the k2 factors appearing in the numerator via (k2 -p) and (ki ■ k2). At first 
glance, this might seem like a rather futile thing to do, as contains the exact 
same (k2 ■ p) and (ki ■ k2) terms that we are trying to deal with in the first place. 
The loophole, though, is that k\ doesn't really depend on (k2 ■ p) and (k\ ■ k2) — 
it depends on (k2 ■ (h  + p)), and we can deal with this particular scalar product:

h  • (A* + p )  = m -  [2] -  [3] - l ) / 2 .  (5.28)

At this stage, then, we have managed to rewrite all possible numerator factors in 
terms of the propagators [1], [2], [3], and [4], along with fcf. Since these propaga
tors only depend on k% via (A; )̂2, we can average over the directions of k% in an 
analogous fashion to the one-loop tensor reduction technique we developed in 
the previous section. The only difference is that fcf lies in a (D — 1)-dimensional 
subspace because it is orthogonal to (&i +p). Once we have averaged over the 
directions of k^, we might still have factors of k^ in the numerator, but they can 
only appear as powers of {k^)2. These can be expressed in terms of propagators 
by solving (5.25) for k^,  so that

This example represents the main way in which tensor reduction arises at the 
two-loop level, wherein there is only one situation in which things become more 
complicated. If the propagator [3] had been a massive line instead, the factors 
of (ki +  p)2 created by the tensor reduction would correspond to a fifth type of 
propagator which we shall label as [5], This fifth propagator is not independent 
of the others, though, and a partial fraction identity could be used to eliminate 
either [3] or [5] at any stage of the calculation so that there would be two closely 
related types of two-loop, four-propagator integrals to solve.

At the three-loop level, however, things can become more complicated. The 
next three examples illustrate the ways in which tensor reduction can be used 
to deal with the more difficult situations that arise with three loops.

Separate Subloops
Consider the "X7" topology, as sketched in Figure 5.2, and defined by

f  \dDh][dDh][dDh ]
X 7 ( a i ,o 2,<i3,<ii,a5,tt6) -  /  (5 '30)
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 1____________________

X [(ki +  k2 +  p ) 2 +  1]“5 [(kx +  k3 +  p ) 2 +  I f 6 '

Figure 5.2: Sketch of the "X7" topology.

Although we only have six independent propagator factors to try to cope 
with nine possible numerator factors, we can apply the tensor reduction proce
dure to the k2- and &3-subloops simultaneously:

k2 = k \ k ^ y ' (k i + p ) +  k * , (5.31)

ks = (ki + p) + k£ . (5.32)(.h  + p y
Every propagator is either independent of or quadratic in k^  and k%, therefore
we can average over the directions of both of these (D — 1)-dimensional vectors
in order to handle scalar products in the numerator involving k2 or k3.

Nested Subloops
The "XI" topology, as sketched in Figure 5.3, is defined by the integral

r  i i Dh \ { d D k2]{dD h3]
X l ( a i ,a2,a3,a4,a5, a7,o8) -  J ^  + p ) 2 n { k  +  (5.33)

1
X [(k2 + k3)> + l]a6k23aT(ki + l)°* ‘

For the small subloop at the top, it is clear that we need to assign

k2 -  h  + *2 • (5-34)
%

Both ^-dependent propagators will be quadratic in k^,  so we can average over
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Figure 5.3: Sketch of the "XI" topology.

the directions of this (D — 1)-dimensional vector. Although we do not actually 
solve the k2-integral at this stage, we know that if we did, the result could only 
generate additional factors of k2. As a result, the A^-integral would then involve 
the three factors k3, (fcf + 1), and (ki + k3)2, so we can now apply the tensor 
reduction procedure to k3:

k3 = ki + k^ . (5.35)

As far as the details of the application are concerned, the nested subloops work 
the same as the separate subloops because we simultaneously project two of the 
loop momenta. The main difference between the two is the subtle reasoning 
needed to establish that the nested subloops do in fact behave in this way.

Two-Loop Subloop
For our final example, we consider the "T3m" topology, as sketched in Fig
ure 5.4, and defined by the integral

mn ,  ̂ f  [dDkx}[dDk2][dDk3]T3m(ax,a2, a3, a4, a5, a<j, a7) = J  - p —  ; -  ,  v)_  (5.36)

x

+ pYa2(kx +  k2 + p)2as 
1

{h + k2 + k3 + p)2-4(fex + k3 + p)2̂ k 22aekla7 '

Now things look somewhat ominous, as there is no subloop that contains 
only two propagators. Instead, we will need to consider the A^-A^-subloop as a 
whole, beginning with the observation that the propagators in this subloop only 
depend on kx and p through the combination (kx +p). Since we can express the 
scalar products k2 • (kx +  p) and k3 ■ (kx + p) in terms of existing propagators, 
we can write p = (kx + p) — kx so that the only troublesome scalar products are 
(kx-k2) and (kx-k3). Then, we take the rather unusual step of projecting kx along 
(kx + p):

h  = {h  + ?) + ^  ■ <537)[kx + p y
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Figure 5.4: Sketch of the "T3m" topology.

Each of the propagators, except for kf, already depends on ki via (ki +p), and so 
the only propagator in which can appear is £f. The dependence here will 
obviously be quadratic, thus we can legitimately average over the directions of 
k i ,  and consequently, we can express all possible scalar products in terms of 
existing propagators in the "T3m" topology.

5 . 3  Auxiliary Propagators
As we have seen, the tensor reduction procedure can quickly become intricate 
and abstract. There is an alternative, which we shall now examine, that is con
ceptually simpler. The idea is to create an auxiliary propagator in order to han
dle any numerator factor that cannot be expressed as a linear combination of 
propagators. As an explicit example, we reexamine the "T2" topology from ear
lier in this section:

 ̂ f  [dDki][dDk2] ,c acn
T2(a1,<h ,a3,ai ) J  kz,lkz „ {h  + p)2at |(it] + ^  +p)2  + i r  • < • )

Rather than invoke a tensor reduction scheme in order to manage five potential 
scalar products in the numerator in terms of the four propagators, we simply 
introduce a fifth propagator,

[5] =  &2 • p , (5.39)

so that every scalar product is now under control. While it is clear that this 
auxiliary propagator sits in the numerator, it can be incorporated into a set of 
recurrence relations without any conceptual difficulties.

While any topology to which we can apply a tensor reduction could instead 
be handled with auxiliary propagators, the converse is not true. For example, 
the "X13" topology, as sketched in Figure 5.5, does not contain any subloops 
for which we can construct a tensor reduction scheme that would enable us
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to express nine possible scalar products in terms of the seven propagators in 
the topology. In  this case, we have no choice but to introduce two auxiliary 
propagators.

Figure 5.5: Sketch of the "X13" topology.

One might wonder why we went to so much trouble describing the tensor 
reduction procedure when the auxiliary propagator method can solve the same 
problems with much less mess and is sufficiently robust so as to apply to all 
topologies. Given that some experts rely on auxiliary propagators entirely [19] 
and others use a mix of tensor reduction and auxiliary propagators [20], the 
choice is an aesthetic one. When we use auxiliary propagators, we find that the 
recurrence relations are easy to derive and simple to write. On the other hand, 
it does no good to lower the negative exponent on the auxiliary propagator 
even further, and so it is often more difficult to construct an effective algorithm 
that uses the recurrence relations to simplify a topology. Conversely, the tensor 
reduction method makes it difficult to derive and write recurrence relations. It 
is almost always the case, though, that there is a modest subset of recurrence 
relations or linear combinations of recurrence relations that can be written quite 
compactly. With no auxiliary propagators to worry about, the removal of any 
propagator will then lead to a simplification of the original topology. It is for 
this reason that the tensor reduction procedure is the preferred approach here 
whenever subloops are present.

"Once you have eliminated the impossible, whatever remains, how
ever unlikely, must be the truth."

Sherlock Holmes
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Chapter 6 

Master Integrals

In Chapter 4, we saw how to construct recurrence relations that allow us to 
write an arbitrary loop integral in terms of loop integrals belonging to simpler 
topologies and, perhaps, master integrals within the same topology. While this 
procedure undoubtedly makes some of the most complicated loop calculations 
more manageable, we are still left with the task of evaluating the master inte
grals. In this chapter, we will illustrate a variety of techniques that can be used 
to obtain explicit solutions for master integrals.

6.1 One-Loop Examples 

M2 Master Integral
Consider the "M2" topology, as sketched in Figure 6.1, and defined by the inte
gral

Although this may look like an innocent one-loop topology, the presence of two

Figure 6.1: Sketch of the "M2" topology, 

massive lines makes it quite difficult to solve. Recurrence relations can be used

(6.1)
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to lower the exponents ay and a2 to 1, so that we will have to evaluate the master 
integral

M2(l, 1) =  j [dD k\

( k 2 +  2 k p ) ( k 2 +  1 ) '

Introducing a Feynman parameter, we obtain

M 2 (  1 , 1 )  =  v ( 2 ) f Qdx f  \x ( k 2 +  2 k p ) \ - ( I - x ) ( k 2 + 1 ) } 2

-  r *  /  ^

(6.2)

[(A  +  x p ) 2 +  ( x 2 — X  +  l ) ] 2

f  d x  ( x 2 — x  + 1)~£ . (6.3)
Jo

   I rlv ( r 2
(47 t) Z>/ 2

The z-integral in (6.3) is surprisingly difficult to solve analytically. Recognizing 
that this integral is finite, we will expand the integrand in powers of e:

(x2 — x + 1)~£ = exp [—eln(a;2 — x  +  1)]
e2

= 1 — eln(x2 — x +  1) +  — ln2(a;2 — x +  1) — . . .  . (6.4)

Removing a loop factor of T  — F(1 +  e)/(47r)i?/2 from (6.3), the master integral 
can then be expanded in powers of e as

M2(l,  1) 1
T

= -  — f  d x  ln(a;2 — x  + 1 ) + ^ f  dx l n 2 ( x 2 — x  + 1) +  0(e2) . (6.5) e  Jo  2 J 0

The Feynman parameter integrals are now free of external parameters like e, and 
so they can be evaluated numerically if necessary. With a bit of work, though, 
analytic solutions can also be obtained. For the first integral, we write

( x 2 - x  +  l ) = ( x -  e iw/3) ( x  -  e~i7r/3) , (6 .6)

split the logarithm into two terms, integrate each term by parts, and find that

I
dx In (or2 — x + 1) =  — 2 +  - 7= . (6.7)

'0 \/3 ‘

The second integral is substantially harder to evaluate; the result is

/ 'Jo
dx ln2(:c2 — x  +  1) — 2 ^4 +  ~=  In3 — 952 — ) . (6.8)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.1. ONE-LOOP EXAMPLES 57

This is our first example of a loop integral whose solution contains constants like 
s/3, In 3, and S2, in addition to the ((n) and 7 that we first saw in Section 2.2. S2, 
defined by

S 2 = Cl2 = 0.2604341376... , (6.9)

is a constant that arises frequently in loop integrals with more than one massive 
line. Unraveling the notation [21], Ch(x) is known as the Clausen function and 
it can be written as

OO . ,

Cl2(x) = Im [Li2 (e")] =  ] T  ^  . (6.10)
k- 1

Meanwhile, Li2(x) is the dilogarithm, defined by

Li2( x ) = -  r  d z = ^  r ±  r j ? L .  (6.n )
Jo z  Jo z  Jo i  ~  y

The dilogarithm is often written in terms of Spence functions, and based on the 
right-most term of (6.11), it is not surprising that these functions will sometimes 
arise in conjunction with Feynman parameter integrals. Returning from the 
digression, we have obtained the "M2" master integral and can write it as

M 2(l, 1) _  1 1 f n 7T ( A 2tt ^ o ^  2\
T  " 7  + l 2 " v f J + e ( 4 ^ v S  + 7 3 l n 3 ^ 9SV + 0 ( e ) - (6 -12)

While this result took some effort to obtain, the existence of a recurrence relation 
algorithm has at least prevented us from having to evaluate "M2" integrals for 
the general case.

M 3  Master Integral
In Section 4.4, we used recurrence relations to solve the "M3" topology in terms 
of the master integral

M 3(l, 1,0) =  [  ■■----------- i------■ (6.13)
 ̂ ’ J  k 2(1+^ ( k 2 +  2 k p ) ( k  +  p ) 2e

To evaluate it, we first combine the p-dependent propagators with a Feynman 
parameter x, and then combine the resulting

x(k  + p)2 +  (1 — x)(k2 + 2kp) = (k + p)2 +  (1 — x) (6.14)
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factor with the p-independent propagator using an additional Feynman param
eter y:

M 3 ( M ’ 0) =  r S n f )  e) /  -  y T

[dD k\
X /[(* + yp)2 +  y(y -  x)]2+2e 

[  d x  f  d
Jo Jor(€)r(l +  € ) ( 4 ^ y 0 " y„ “ \ y ( y  -  x ) ] M - W

c£ xy  2e
r ( e ) T 2 ( l  +  e ) J 0 ^ J 0 ^  ( y  -  a;)*

f  d x  [  a 
Jo  Jo

F  F(3e) f \  [ \  x ^ y - ^ l  -  y)£
'  J ~  ' d y  ------------- • (6.15)

Note that we have expressed the loop factor of T(1 + e)/(4ir)D!2 as T  in the last 
line of (6.15). At this stage, we will divide the Feynman parameter integrals into
two parts: Ix for y > x and / 2 for x > y, so that

Af3(1, •*’ °) =  r ( f f  (1 +  e ) ( /l  +  ' (6-16)

Starting with Ix, we will write x =  yz, where z £ [0,1]. This leads to

r f l j  f 1 j M e-1sr2e(i -  v Y

= f  i y  <T4‘ (1 -  y)‘ f  dz z‘- \  1 -  z ) -3e 
Jo Jo

= B( 1 + e, 1 -  4e)B(l -  3e, e) (6.17)

=  -  +  3 +  f 9 + e +  ( 27 + —  + 18C(3)) e2 +  0 (e3) ,

where we have used (2.31) to evaluate the integrals in the second line. Turning 
to / 2, we start by rewriting the denominator as

( y - x ) ~ 3e =  ( - l )~ 3e(a; -  y)~~u
= e 3ine( x  -  y ) ~ 3 e , (6.18)

where we have used — 1 —» e ~ m , a step which we will justify more carefully in 
Section 6.3. Then, we can use y  — x z ,  for 2 € [0,1], so that

I , / , x €~ l ( x z ) ~ 2e( l  — X z YIo =  e  d x  x d z -  v ; v '[  d x  [  a 
Jo Jo ( x  — x z ) 3e
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= e3ive [  dx [  dz x~4ez~2e(l -  z)~3€{ 1 -  x z f  . (6.19)
Jo Jo

Since this integral is finite, we can now expand the integrand as a series in e 
and evaluate the integral term by term. Incidentally, this is why we have cho
sen M 3(1,1,0) as our master integral. Other choices, while superficially finite, 
would lead to divergences in the integral I2 that prevent an expansion of the 
integrand in powers of e. The result for the first few terms of (6.19) is

/2= e3̂ | l +  ^ 7 + ^ e  + 3̂7 -  ^  + 11C(3)) e2 + 0(e3)j . (6.20)

Combining the results of (6.16), (6.17), (6.19), and (6.20), we have

M 3(l, 1,0) 1 4 /16  I I tt2 . V-  + -  + — + — — + nr e
T  3e 3 V 3 18

+  ( f  +  ”  +  7 « 3 )  +  «r ( 7  +  e2 +  <3(e3) . (6.21)

The imaginary terms arise from the expansion of e3t7r£ in (6.20). In Section 6.3, 
we will explore the origin and meaning of the imaginary parts of loop integrals.

6.2 Eikonal Integrals
In Section 3.3, we showed how Tomonaga parameters can be used to evaluate 
the Jy integral:

j+  _  J  \dPki][dDk2\
(hp  + l)(kj)[{ki + k2)2 + 1]

2 B (—l + 2e, —3 + 4e)T(l — e)T(—2 +  3e) . (6.22)D ‘(47r)

The propagator (kip +  1) is known as an eikonal propagator, and consequently, 
Jj is an eikonal integral. The meaning of this term stems from the Greek root 
eiko-, meaning weak or yielding, since the eikonal propagator depends weakly 
on the loop momentum. In the context of the method of asymptotic expansions, 
which we shall examine carefully in Chapter 7, eikonal propagators arise from 
the region of a loop integral where \k\ < \p\, so that (k2 + 2kp) — (2kp). The 
additional +1 term is merely a consequence of a shift of k to (k — p):

(2kp) ->■ 2{(k -  p)p) — 2{kp -  p2) =  2(kp + 1) . (6.23)
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As we saw in Chapter 1, the Minkowski-space definition of a propagator 
includes an infinitesimal pole term +id (previously written as Tie) in order to 
prescribe a method for integrating near the poles of the propagator. Based on 
the locations of these poles, we can justify a Wick rotation to Euclidean space. 
When we combine a set of propagators with +id pole terms using one of the 
parameters from Chapter 3, the composite denominator factor will also have a 
+id pole term, so that we usually regard the +id as implicit and we Wick rotate 
at an early stage in the calculation. With asymptotic expansions, the situation 
becomes more delicate due to the possibility of —id pole terms. Whenever such 
terms might arise, we must remain in Minkowski space until the pole situation 
is clarified. For small loop momenta, the Minkowski-space propagators (k2 + 
2kp -I- id) and (k2 — 2kp + id) would be expanded as

1 I k 2
+ ••• , (6.24)( k 2 +  2kp +  i d )  (2 kp + i d ) (2 kp +  i d ) 2

1 _  1 k2
(k2 — 2 kp +  i d )  (2 kp — i d )  (2 kp — i d ) 2

As we can see, the propagator in (6.24) retains the + i d  pole term and therefore a 
Euclidean-space calculation will be appropriate. The propagator in (6.25), on the 
other hand, now has a —i d  pole term and therefore a permanent Wick rotation 
cannot be used to evaluate the loop integral.

With these developments in mind, the original loop integral in (6.22) is ac
tually ill-defined, as we do not know the sign of the pole term in the eikonal
propagator. The "+" in J f  indicates that the pole term was indeed + i d ,  which 
is why we were able to evaluate the integral in Euclidean space using the tech
niques of Chapter 3. Conversely, we can also have a J f  integral, wherein the 
eikonal propagator carries a —i d  pole term. A Wick rotation is therefore prohib
ited, but fortunately we are rescued by an identity from complex analysis [22]:

/•» f ( x )  d x  =  p j ° °  f i x Y d x  T
,/_00 x  -  a  ± i d  J_O0 x  — a

Rearranging this slightly,

f°° f ( x )  d x  _  f ( x )  d x  
J - o o  x - a - i d  x  — a  +  i d

or in other words, a loop integral in which only a single propagator has a —i d  
pole term can be related to the corresponding integral where all propagators 
have + i d  pole terms and an additional integral that is also free of —i d  pole terms.
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Quantitatively, this means that

j -  = j+ +  AJi  (6.28)

where
AJi = 2m [  - p —    £(*<> -  1) . (6.29)

Jm (k2 +  +  ^2) — 1 + *<5]
Although we will stay in Minkowski space, as denoted by the label M  on the 
loop integral, the remaining poles are conventionally located and will hereafter 
be suppressed. Combining the denominators with a Feynman parameter, we 
have

AJi  =  2m [  d x  [  ------------— ---------------------   5(k°i -  1). (6.30)
Jo  J m  \ { k 2 +  x k i ) 2 +  x { \  -  x ) k \  -  x]

After shifting k 2 to k 2 — x k i f we can evaluate the ^-integral by converting (2.18) 
back to Minkowski space:

f  1 = ( - 1)”' r ( " - f )  ( ± Y ~ *  «
JM (2 i)D ( V  -  m2)" (4jr)D/2 r(n) \ m 2 J  ' '

dDk 1 _  (-1  )ni r  (n -  § ) /  1

Af 1

This leads to

AJl  = 2” l  d x L [d° k m ' ~ 1)' ^ ¥ r W x)k l f

r1 r ^ ~ l k

[ d x !(47r)-D/2(27r)Z) J0 J [x — x(l — x) +  x (l — :c)k2]
(6.32)

where k denotes the (D — 1)-dimensional spatial momentum associated with £4 . 
Working in hyperspherical coordinates, the integration element becomes

J  dD~lk  =  J  d£lD-i  J  kD~2 dk , (6.33)

where k =  |k|. Using (2.17) to evaluate the angular integral in (6.32),

4v? r(e) p  kD- 2 dk
1 ( 4 T ) « r ( ! - e ) X  io  I*2 + 1 (1  -  z ) * T  '

With the substitution

* = i / j ” z , <6-35>
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the x- and ^-integrals can be evaluated in terms of Beta functions via (2.31) 
and (2.30), respectively, resulting in

r(e) / 5  1 \  /3  3 \
1 ~  (4tt)d  T ( |  — e) \ 2  ’ 2 +eJ B \ 2  C’ 2 + J

^  T ( ~ l  + 2e) B  ( I -  3e, + e)  . (6.36)
(4tt)d  V 2 J  \  2 ’ 2

There are two nontrivial sets of eikonal master integrals that we will en
counter in Chapter 12, J f  and J The calculation of follows the same pro
cedures as we have used for J f ,  and for completeness, the results are:

±  =  f  __________________ [dD h ] [ d D k 2]__________________

1 J m  ( h p  -  1 ±  i S ) ( k $  +  i<$)[(h  +  k 2) 2 -  1 +  id]

— ^ —jp |2T(1 — e)T(—2 -)- 3e)jE?(—3 + 4e, —1 +  2e)

-(1  =F l)V5fT ( -  j  + 2e) B  -  3e, “ J  + «) } . (6-37)

7 - /Jh.
± _  i _____________[dDki}[dPk2

m (hp  ±  i6)(k% -  1 + i<5)[(fci + k2)2 -  1 + i<5] 
7T „ /  3 \  /  1 1

“  ± (4^ r r 2 + 2V B V“ 2 + e , ' 5 + 7  ■ <6,38)

Meanwhile, the following eikonal integrals are scaleless integrals, and so in 
accordance with the results of Section 2.3, they are zero in dimensional regular
ization:

[dDk]JJmJm (k2 +  i5)ai (2kp ±  iS)a2 ’ 

f  ______________________ [dDki][dDk2]______________________
Jm (&i +  id)ai(k2 +  iS)a2((h  — k2)2 +  iS)as(2kip ±  (2k2p ±  iS)as

(6.39)

(6.40)

6.3 Imaginary Terms
Let us have a closer look at the "one" topology that we briefly saw in Section 3.1. 
The integral, defined in Minkowski space as

L [d° k] (6.41)
((k +  p)2 +  *5)01 (k2 + i8)a2 ’
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is sketched in Figure 6.2. Note that Gi and a.2 need not be integer exponents 
and that the external momentum p obeys the onshell condition p2 — m2. Even

Figure 6.2: Sketch of the "one" topology.

though we could Wick rotate this integral and evaluate it, the Minkowski-space 
pole terms produce a subtle effect. With a Feynman parameter, the denomina
tors are combined as

x ( ( k  + p ) 2 +  i d )  + (1 — x ) ( k 2 +  i d )  — k 2 +  2 x k p  +  x p 2 +  i d  (6.42)
= ( k  +  x p ) 2 -)- x ( l  — x ) p 2 +  i d  .

By shifting k  to (k —x p ), the ^-integral can be evaluated using the basic Minkowski- 
space result (6.31), giving rise to a factor of

a\  +ci2—D / 2

(6.43)

Ordinarily, we take the limit <5 —> 0 as soon as possible, but for this case we will 
keep d  around a little while longer. If we factor out x ( l  — x ) p 2, a term which is 
non-negative, the term containing d  still must go to 0 as d  —» 0, so we will rescale 
5 and examine the factor

(-1  - i d ) D / 2~ a i ~ a* . (6.44)

Writing the argument of the exponent as (a — be) for integers a and b, we have

( - 1 - ^ ) “ [(- l-z<5)-£]6 . (6.45)

We can smoothly take the limit d  —> 0 for the first factor to produce (—1)“, but in 
the second factor, the non-integer exponent e makes (—1)~€ ambiguous. Instead, 
the d  suggests that we should write

lim (—1 — i d )  — e~iw , (6.46)
<5-s-0
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and so the "one" topology gives rise to factors of el7re which, when expanded in
e as

m e  1 • 7T2€ 2 i7T3 63e =  1 + m e   --------   h ... , (6.47)I  6
give rise to imaginary terms in the loop integrals.

The Optical Theorem
The amplitudes that we compute for various classes of Feynman diagrams are 
connected to the probabilities for certain physical processes to occur. These 
probabilities must have a sensible physical interpretation, and as a direct conse
quence, the amplitudes are constrained by a relationship known as the optical 
theorem [1]. Quantitatively, the optical theorem states that

l m M ( A - > A )  = C ^ 2 \ M ( A ^ B ) \ 2 , (6.48)
B

where A  and B both represent a set of particles with specific identities and mo
menta and C  is a constant which depends on a set of external parameters relat
ing to the particles in A.  The sum is over any possible set of particles B which 
can simultaneously be put onshell. Customizing (6.48) to the case where A  is a 
single particle of mass m, the constant is simply | .  Then, we can separate the 
sum over B into a sum over specific particles and an integral over the physically 
allowed phase space of these particles. As a result of the techniques that we will 
describe in Chapter 7, we will always be able to reduce our work to single-scale 
diagrams, and thus B m ust consist of massless particles only, lest we end up 
turning one massive particle into another equally massive particle plus some 
others. As a result, for a specific diagram that specifies M ,  we need only sum 
over the ways in which the diagram can be "cut" in two by only cutting through 
massless lines. Thinking of the optical theorem in this way, we have

Im M  =  I J2 f  MiM*2 , (6.49)
cuts

where M \  and M 2 correspond to the two pieces of M  that are produced by the 
cut. The phase space integral involves a factor of

d3q (6.50)
(2tt)32 E

for every particle involved in a given cut, along with a 5-function to conserve 
overall four-momentum. It was shown by the aptly-named Cutkosky [23] that
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this cutting procedure is applicable to diagrams with an arbitrary number of 
loops. Over forty years later, this powerful idea is still elusive to some [24].

After deriving several important phase space factors, we will illustrate this 
method through an extensive series of examples. Be forewarned that this will be 
a very intricate and lengthy section in order to supply details that are completely 
absent in the literature. These techniques are required to obtain the master inte
grals encountered in Chapter 13.

Phase Space Factors
Define P2 as the phase space of two massless scalars, assuming that the initial 
particle has mass m. This situation is depicted by Figure 6.3. Quantitatively,

s - q t
p X

X
\

q i

Figure 6.3: Origin of the P2 phase space factor.

P2 /  (2ti-)0 - 1 2E x (2tr)^-1 2E2 Ql 92) ’ (6‘51)

where we have generalized to D dimensions. Working in the rest frame of the 
incident particle,

S{D)(p -  qi -  q2) = S(m -  Ex -  E2) q i -  q2) (6.52)

and the second (5-function can be used to set q2 =  —qi, so that

  f  dD~l-
4(27r)

(6.53)

Since the final particles are massless, Ex — jqa j and E2 — |q2| =  ] — qx | =  E x, 
leading to

P 2  4 ( 2 n ) D ~ 2 j  |q x|2 ^  2 q̂ i ^ ' (6 '54)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



66 CHAPTER 6. MASTER INTEGRALS

Moving to spherical coordinates, where J  dD *qi =  J  /  g f 2 dqi, and 
using (2.17) to evaluate the angular integral,

2 ( l - D )  ( 3 - D ) / 2 r

P2 =  — jT pE Ij—  J Ql S(m ~ 2q^  dqi • (6-55)

Finally, using the 6-function identity

S = zL  Such that =  0 ’ (6.56)

we obtain

so that
/ mP~~4

S(m -  2?i) dg, = - ^ 5- (6.57)

P2 — p ^n-i j • (6.58)

Setting D =  4 — 2e and removing the loop factor of T  — m~2T ( l  +  e)/{Aix)Dl2 
in accordance with (2.34), our final result for the phase space of two massless 
particles is

T  22eir3/2
P2 = r ( l  +  g)r(3/2 — e) • <6-59>

Although we could proceed in a similar fashion to derive P3, the phase 
space of three massless scalars, it will be worth the extra effort if we add a com
plication to the derivation: we will allow one of the particles to have a non-zero 
mass. At the end of the derivation, we can recover P3 by taking this mass to be 
zero, but otherwise, this non-zero mass will allow us to obtain an expression for 
the four-body phase space P 4 that arises in many three-loop master integrals. 
Let P 3m  denote this generalized three-body phase space, as depicted in Fig
ure 6.4. Taking q% = y to be the mass of particle 2 and using the external particle 
mass as the unit of energy (so that y = m l / M 2), we have

dD~lqi dP~1 q2 dD_1q3f  dv  q i  du lq 2 du ^3  ,n^ D s(D),  ̂ ^
J (2n)D^  2E x (2v)D~l 2E2 (2ir)D~' 2E3 ( ^  91 92 9a)

1 f  dD- 1q 1dD~l q2

P3m
J  (2 7 1 -)^ -

f  dD~1q 1dv ~l q2 , , , , , u
0/0 \ 2D - 3  /  i— n— Ti T 1 ~  1*4111 ~ N2I -  qi + qa ) •8(2tt)2D 3 J  |q i | |q 2 | |q i+  q2 |

(6.60)

If we write q i and qa in hyperspherical coordinates, only the angle 9 between 
these two vectors remains in the integral. Letting qi and q2 denote the magni-
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p X  
— > — q2

x
\

' qs

Figure 6.4: Origin of the P3m  phase space factor.

tudes of q i and q2/ we obtain

QD-iQ,D~2 f  (qi~3dqi)(q2~2dq2) sin-0-3 0 d6
P3m  = /8(27r)2D 3 J y /qj + y y /qf + q% + 2qxq2 cos 6 

x J(1 - q i  -  y/q% + y ~  \J  q{ +ql + 2qlq%co&9) . (6.61)

Before we roll up our sleeves to evaluate the integral, let us rewrite the factors 
in front in a more convenient form. Using (2.17), we see that

Hd- i Hd-2 _  1 /  2tt2 e A /  27r1 £
8(2tc)2D~3 8(2tc)2D~3 \^r(3/2 -  e) J \T(1  -  e),

2-6+4t7r-|+2e

r(3 /2  — e)T(l — e) '

Using the doubling formula (2.33), we can write

1 r(2  -  2e) r ( l  -  e)

(6.62)

r ( l  -  e) r ( l  -  e )r(l -  e) r(2  -  2e) 
1 V r̂

so that

B(1 — e, 1 — e) 21_2e T(3/2 -  e) 

QD-iQn-2 2_7+6e7r~2+2e

(6.63)

(6.64)
8(2tt)2D~3 5(1 -  e, 1 -  e) T2(3/2 -  e) '

Abbreviating 5(1 — e, 1 — e) by Bn,  removing two loop factors of T,  and using 
our result (6.59) for P2, we conclude that

n D^ n D-i  21- 2' (P2)2
=  * B U ■ (6'65)
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Returning to the integral in (6.61), we will use the 5-function to perform the 
integral over 0. In order to rewrite the 5-function as 6(0 — 0O), the identity (6.56) 
requires us to divide the integrand by a factor of

% + y -  v 9T + q2 +  2 § 1 § 2  COS I
qiq2 sin#

\/ffi+9a +2gig2cos#
(6.66)

Our phase space factor now looks like

p3m=++p+ r  5{0 _ 9o). (6.67)
J  v t i  +  y

At this stage w e will change variables from the momentum magnitudes qx and 
q2 to the mass invariants z and u, defined by

z = (q2 + Qz)2 = (p'1 -  Qi)2 =  1 - 2 ,  (6.68)

u = (<fi + q%)2 -  (qf -  q%)2 =  1 + y -  2sJq\ +  y , (6.69)

where an index (x in the equations above indicates a four-vector. From (6.68), it 
is easy to see that

qi 2

whereas (6.69) leads to

n  = -  (6.70)

2 ^ l  + y - « V*  =  (  2 J
 ̂ « 1 +  V — u \  (  du 2?2<4j2 =  2 [ -----   H - y

q2 dq2 _  du

\/<£ + y 2
92“2* . (6.71)

The 2e and q2 2e factors are left unsubstituted in anticipation of a future cancel
lation. Substituting (6.70) and (6.71) into (6.67), we obtain

(P2)5P 3m  =  v '
2ttBh

J  du dz (2qiq2) 2e (sin2 0O) £ . (6.72)
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The compactness of this expression is somewhat deceiving, as sin 9q is implicitly 
fixed by the 5-function in (6.61). Specifically,

i - ? i  -  y q l  + y j  = y?* +  g2 +  2?i92cos0o ,

1 + y -  2qi -  2 J  q% + y + 2qx J q l  + y =  2qxq2 cos 0q , (6.73)

and w ith cos#0 =  1 — 2sm2(0o/2), we have 

1
sin (#0/2) = Aqx q2

Using sin2 0o =  4sin2(0o/2)(l — sin2(0o/2)),

1

2?i?2 -  1 -  2gi + y +  2(q1 -  I) J q l  + y (6.74)

(sin 0 o ) ~ e =
(tqitoY 2e 2qiq2 ~  ( 1 — 2gi +  y +  2(qx — 1 )\/q% + y

x 2?i?2 +  ( 1 — 2gi + y +  2(qx — 1 ) \ /q2 + y (6.75)

As anticipated, when we substitute this result into (6.72), the (2g1g2)_2e factors 
cancel. To finish the derivation, we will need to use (6.68) and (6.69) to write 
the terms in the square brackets of (6.75) in terms of z and u.  After a lengthy 
sequence of tedious but straightforward algebraic manipulations, we find that

P3m (P2):
2trBn / d u  d z  u  e z  e '(1 - z ) ( z - y ) u (6.76)

Setting y =  0, we obtain the phase space factor P3 for three massless scalars:

P3 (P2);
27xBn / d u  d z  u  e z  £ (1 u)~ (6-77)

The limits of integration for P3 are

f  d z  [  ,
Jo  Jo

1 p \ —u

d u  or [  d u  [
Jo  Jo

d z  . (6.78)

Supposing we have four massless scalars, we can group two of them to
gether (particles 2 and 4, for instance) and integrate over the two-body phase 
space of the pair. The resulting invariant, y = (q% + q%)2, can then be regarded 
as a single massive particle. Together with particles 1 and 3, this "massive par
ticle" forms a three-body phase space of the form (6.76). This can be expressed
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as

where the extra P2/2n  in front, relative to P3m , arises from

(:2n)DS('D)(p -  q i -  q2 -  qs -  q4) =  J  d°q24 (2n)D8{D)(p - q i - q z -  q24)

x 5(D){q24 - q 2 -  q4)

= 2tt /  dy (2ir)DSiD)(P ~ ft -  © -  Q24)

X J  ^27rp j f (27r)P<5(P)(ft4 -  g2 -  g4) ■ (6.80)

There are six ways to express the limits of integration for P4. Two of them are

Fortunately, these expressions are easier to apply than they are to derive. The 
proper use of these formulas will now be displayed with some examples.

Simple Example of a 2-Particle Cut
Let us consider an integral from the "one" topology wherein we have exactly 
one factor of each propagator:

Removing the loop factor IF = m  2T (1 +  e)/(47r)°/2 and using (—1) e =  eme 
from (6.46), we can evaluate the entire integral explicitly:

Using the optical theorem, we will now evaluate the imaginary part of this inte
gral directly. Figure 6.5 shows how the integral can be split into two by cutting 
across massless lines. Each side is a trivial vertex which contributes nothing to

du and

(6.81)

one (6.82)

one(l, 1) 1
F  =  €

= -  +  (2 + 27r) +  { 4 +  2m —
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Figure 6.5: Illustration of a cut through the massless lines of a "one" integral, 

a loop integral, thus from (6.49) we have

1 (6.84)

Substituting (6.59) for P2 and expanding the result as a series in e, we have

(6.85)

in agreement with the complete result (6.83).

1
Im one(l, 1) =  -  P2  .

Z

Im one(l, 1) „ = 7T + 2ff€ +  0{e2) ,
J-

Simple Example of a 3-Particle Cut
A simple example of a two-loop integral whose imaginary part can be evaluated 
with the optical theorem is

J°oo(l’l ’ l ) ~  j  k fk K h
[dDki}[dDk2

+ k2 +p)2 '

(6.86)

The complete solution for this integral, obtained from a sequence of two simple 
massless one-loop integrals, is

Jooo(l,M ) 1
T 2 4e

13 in \  (115 Iff2 13i7r\ ^ . 2. ^  or7X
) + i2+— j e + ° (̂ - (6'87)

As shown in Figure 6.6, the cut is obvious. As with the previous example, each 
side is just a trivial vertex, therefore

Im Jqoo( 1 , U ) ^ P 3 . (6 .88)
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/
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Figure 6.6: Illustration of a cut through the massless lines of a "Jooo"  integral.

Substituting (6.77) for P3, we have

Im Jooo(h 1) 1) =  [  du [  dz u~€ z~e (1 — z — u)~e . (6.89)4ttB n  Jo Jq

With the substitution z — (1 — u)w, the integrals can be evaluated explicitly as

p i  p l — u  P 1 P 1
du dz u~e z~e (1 — z — u)~e = / duu~e( l —u)l~2e /  dw w~e(l — w)~e

J o  J o  J o  Jo
=  B(1 — e, 2 — 2e)B(l — e, 1 — e) (6.90)

so that

Im Jooo(l, 1,1) (P2)2
T 2 4 ttP 2

5 ( 1 - 6 , 2 - 2 6 )

|  + e + 0 (e2) , (6.91)

which agrees with (6.87).

Simple Example of a 4-Particle Cut
The simplest example of a loop integral whose imaginary part can be evaluated 
with a four-particle cut is

r  \dDh ] { d ° k 2] \d ° h \
J  kfk%k%(ki +  k2 +  k3 + p)2 '
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This integral is sketched in Figure 6.7, where we refrain from drawing the obvi
ous cut. This integral can be evaluated exactly as a sequence of three massless

\ ^  ^  ^  ^  I

Figure 6.7: Sketch of the "J4" integral, 

one-loop integrals, with the result

J4 1 (  71 iir\ (3115 5?r2 7 l in \  2,
+  — +  — + - r — -  —  + e + ° ( e ) • (6.93)F 3 36e V216 12J \1296 36 72 ,

Alternatively, we can obtain the imaginary part of this integral using the for
mula (6.79) for P4:

p i  p Z  p i

/  dz dy 
Jo Jo Jo

Im J4 =  /  dz j  dy j  duu e z £y e (um -  m) £ (6.94)

where um =  (1 — ^)(z — y)jz. With the substitution u — umw, the w-integral is 
u]^2eB n , so that

('P2')3 f 1 rz
Im J4 =  j  dz z~1+£ (1 -  z f ~ 2£ j  dy y~£ (z -  y)1̂  . (6.95)

With the substitution y =  zz, the a;- and ^-integrals are B{ 1 — e, 2 — 2e) and 
B (2 — 2e, 2 — 2e), respectively, so that our final result is

Im <74 7r 7l7r o,
- y ^  = T2 + i 2 e + ° ^ '  (6-96)

in agreement with the complete result (6.93).
These first three examples of how to apply the optical theorem to obtain 

the imaginary part of a loop integral are somewhat unimpressive, as we are 
only confirming results that we can more easily obtain with more conventional 
methods. Think of these examples as a calibration of the method. The utility
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of these new methods occurs when we encounter more complicated integrals in 
which we do not know anything about the exact result.

More Difficult Example of a 2-Particle Cut
Our first non-trivial example of a master integral evaluated via cuts is the "N5a" 
master integral,

iV5a(1,1,1,1,1) /  k2k2(k2 + 2k\
[dDki][dDk2

p)(k2 + p)2 p i  + k2)2 +  2(fcj +  k2)p\
, (6-97)

and sketched in Figure 6.8.

\
\

/
/

Figure 6.8: Sketch of the "N5a" master integral.

After cutting through the two massless lines on the right, we see that a one- 
loop integral still remains to the left of the cut. The general procedure is to eval
uate an integral such as this and to put the external lines on mass shell. Then, 
this result is to be folded into the integration of the phase space calculation. For 
two particle cuts, however, there are no remaining integrals to be performed in 
P2  because there is only one way in which two particles can partition the avail
able phase space. As a result, calculations with two-particle cuts reduce to a 
multiplication of P 2 /2  with the remaining loop integral. For the "N5a" integral 
currently under consideration, this loop integral is

L - I [tpk\
k2{k2 +  2kp) [(k +  q)2 +  1] (6.98)

as pictured in Figure 6.9.
We begin evaluating L by combining the two massive propagators with a 

Feynman parameter,

x (k2 + 2kp) -1- (1 -  x) [(& +  q)2 + l] = k2 + 2k (xp + (1 -  x)q) +  (1 -  x)(q2 + 1)
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p-q

Figure 6.9: Sketch of the remaining loop integral after cutting the "N5a" master 
integral.

=  k2 +  2kt +  (1 — x) , (6.99)

where t = (xp+ (1 — x)q) and we have used q2 — 0 in the last line. Next, we intro
duce a second Feynman parameter in order to fold in the massless propagator 
in L:

y [k2 +  2kt + (1 — x)] + (1 — y)k2 = k2 +  2ykt  4- y{l — x)
= (k +  yt)2 +  y( 1 -  x) -  y2t2 . (6.100)

But

and so

t2 = [xp +  (1 -  x)qf
— x2p2 + (1 — x)2q2 + 2a;(l — x)pq 
=  x2(—l) +  (1 -  :z)2(0) + x(l  -  x) jp2 + q2 -  { p -  q)2] 
= —x2 — x(l  — x)
= —x , (6.101)

P(3) [  ydy  f  dx [  
Jo Jo J

T(3 ~ D I2 )
Jo Jo

[dDk]
[(k +  yt)2 + y( 1 — x) + xy2f

(6.102)
(4k)d/2 Jo ^ Jo (1 - x  + xy)1+e 

After pulling out the standard loop factor (2.34), we can evaluate the Feynman
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parameter integrals, resulting in

^  +  3C(3) e +  0 (e2)

The imaginary part of the "N5a" master integral is then

P2
Im iV5a(l, 1,1,1,1) =  —  L

Zi

(6.103)

=  T 2 — + ^3^(3 ) + — ) e +  0 ( e 2) (6.104)

More Difficult Example of a 3-Particle Cut
With cuts of three or more particles the partition of the total phase space is not 
unique, and hence, integrals over mass invariants appear in (6.77) and (6.79). 
Any propagators and loops that are not severed by a particular cut will also de
pend on these integration parameters. This can be seen in the "N5d" topology, 
as sketched in Figure 6.10.

Figure 6.10: Sketch of the "N5d" master integral.

In this particular case, all that remains after the cut are two massive prop
agators. Since they each split into a pair of massless lines which are cut, the 
four-momenta of these massive propagators are related to the mass invariants, 
2 and u, of (6.77):

1
fc? +  l

1
1 - 2

1

(6.105)

(6.106)
&2 +  1 1 — U '

The minus signs are required to reconcile the Minkowski-space formulation of
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the phase space formulas with the Euclidean-space formulation of our loop in
tegrals. The "N5d" master integral is therefore

47T-Bn  J o  Jo

1 “ , u £z £ (l — z — uY 
dz

7T3 / _  7r + 0(e2) (6.107)

Im N5d(l, 1,1,1,1) =

=  [ir+ (7« 3>+ 3

More Difficult Example of a 4-Particle Cut
For our final example, we shall consider the "M il"  master integral, as sketched 
in Figure 6.11. This integral is very closely related to the "Y9" topology de
scribed in the Appendix.

\ /

Figure 6.11: Sketch of the "M il"  master integral.

On each side of the cut we have a massive propagator. As might be expected 
when cutting through four lines in a planar three-loop diagram, there are no 
loop integrals remaining. We would like to apply our four-body phase space 
expression (6.79) to this integral, but first we will need to change one of the 
integration variables. Specifically, we need to replace the invariant u = (qi + q3)2 
with v =  (qi + q2)2 since the massless loop corresponds to a massive q2 and thus 
the massive propagators beside the cut carry momenta (qi +  q2) and (q2 +  (ft). 
With

u + v + z — 1 -+- ?/, (6.108)

we can rewrite (6.79) as 

(P2)3
P 4  =

n
J  dy J  dz J  dvy  £z e (l + y — z — v) e ~  ■ (6.109)

The integral we need to evaluate has the additional propagator factors (1 — v) - l
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and (1 — z) 1/ and as before, can be expanded in e and evaluated term by term, 
thereby leading to

(6 .110)

+ (-1 1 9  + i |^ + 6 3 < ( 3 )  +  ^ Q e2 +  0 ( 6 3) .

Although some of the master integrals that arise in Chapter 13 are even more 
elaborate than the examples considered here, the general ideas are the same. 
Be forewarned, though, that not all papers in this field treat imaginary terms 
properly. For example, the master integrals for any two-loop topology, such as 
the ones used in the preceding examples, have been calculated in [15]. While 
this paper is a valuable reference, there are errors in the signs of the imaginary 
terms in some of these integrals [25].

Additional Trick
Consider the "Y2a" master integral,

Y2a(0 1 1 1 ) =  f ____________________________¥2a{t), 1,1,1) j  k fk l ( k i+ v )2 [ (h  + h + p ) 2  + 1y

as shown in Figure 6.12. The epsilon-propagator k\e indicates that this is a

Figure 6.12: Sketch of the "Y2a" master integral.

subtopology of a three-loop topology. Although a two-loop diagram — even 
one with an epsilon-propagator — is usually simpler than a three-loop dia
gram, it appears as if we cannot evaluate the imaginary part of the master 
integral (6.111) using cuts, since the epsilon-propagator does not really corre
spond to a well-defined virtual particle that can be put on mass shell. One 
option would be to "undo" the epsilon-propagator by replacing it with a mass
less subloop so that we could make a three-particle cut on a three-loop integral. 
There is an easier method that can be applied to this particular topology, though.

Im M il —14 T
?7r

9C(3)
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Since the A;2-dependent subloop sits entirely on the (ki +p)-line, any cut through 
the (ki + p)2 propagator will result in the onshell condition (ki +  p)2 =  0 in the 
k2-loop. Our inability to cut through the kf€ line is irrelevant to the &2-integral, 
which with the aforementioned onshell constraint, is identical to a much sim
pler integral:

r [dDk2] (fci+p)̂ =0 r [dDk2
J  [(&i + k2 + p)2 +  1 ]  J[(h + k2 + p)2 +  1 ]kl J  {kl +  1 )kl ‘

(6.112)

This new A;2-integral is a simple one-loop vacuum bubble integral, which to
gether with the remaining massless ^-dependent loop, can easily be solved in 
order to obtain the imaginary part of the "Y2a" master integral:

Im Y2a(0 ,M ,  1) =  £  + l l £ £ + ( 8 ^  _  ^  + 0(£3j (6_n 3 )
T 2 2 4 V 8 12 ,

Of course, the real part of Y2a(0,1,1,1) cannot be obtained in this way, but 
if the imaginary terms are all we are interested in then this "cut-free cutting" 
technique is a useful trick to know about.

Vacuum Bubbles
Diagrams without external lines are known as vacuum bubbles. Although the 
exponentiation of disconnected diagrams identity [1] allows us to discard vac
uum bubble diagrams generated directly from the Feynman rules of Chapter 1, 
such diagrams can be legally obtained in other contexts. Recurrence relations, 
for instance, can sometimes eliminate one or more propagators in such a way 
that vacuum bubble integrals are produced. Also, as we shall see in Chapter 7, 
it is sometimes useful to consider the behavior of a loop integral when the loop 
momenta are so much larger than the external momenta that the external lines 
might just as well not exist.

While vacuum bubble integrals are slightly easier to solve than propagator- 
type integrals with the same number of loops, we can often save unnecessary 
work by realizing that vacuum bubble integrals are purely real. This is most 
obviously seen by observing that if we were to cut through a vacuum bubble 
diagram, there would be no way to put all the cut particles on mass shell and 
still conserve energy. In other words, an isolated vacuum cannot generate phys
ical particles and physical particles cannot annihilate into nothing.
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6.4 Advanced Techniques
The arsenal of techniques we have discussed in this chapter is powerless to eval
uate many of the master integrals that we often encounter. More sophisticated 
mathematical techniques can be used to obtain analytic results like [26]

[dDki)[dDk2}
k2k2(k2 + 2kip)(k2 + 2k2p)[(ki + k2)2 +  2{k\ + k?)p\

(6.114)^  |  < (3)-^1112 + 0(e)

Another useful technique is the method of differential equations [27], whereby 
the onshell condition p2 =  —m 2 is suspended long enough to use recurrence 
relations to express d/d(m2) of a master integral in terms of the master integral 
itself and known integrals from subtopologies. While the differential equation 
method is fraught with its own complications, it can be used to obtain the coef
ficient of any particular power of e in the Laurent series expansion of a master 
integral.

Finite loop integrals can, of course, be evaluated numerically even without 
recourse to Feynman parameters, although some sort of technique is typically 
used to reduce the number of integration variables so that computing time is op
timized for a given level of precision. With a sufficiently precise computation, a 
numerical result can be converted to a quasi-analytic form by using an integer 
relation algorithm [28] to express the master integral as a simple linear combi
nation of products of the various irrational numbers (such as ir, £(3), In 2, and 
S2) that the solution is expected to depend on. This technique was used [15,29] 
to evaluate the complete set of two-loop self-energy onshell master integrals.

"I knew scientists wasted their lives but geez..."
Homer Simpson (The Simpsons)
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Chapter 7 

Loop Integrals With Multiple Scales

Up to this point, we have been discussing loop integrals depending on only 
one mass scale. With this restriction, we have presented a plethora of tools 
that can be used to simplify and evaluate loop integrals. Unfortunately, many 
realistic calculations are more complicated than this, as propagators from two 
or more different kinds of massive particles can appear in loop integrals. In 
this chapter, we will illustrate methods with which multi-scale loop integrals 
can be evaluated in terms of single-scale loop integrals. Given the power of 
the techniques of the previous chapters, the ability to handle multi-scale loop 
integrals essentially gives us a license to attempt any multiloop calculation that 
we wish in perturbative quantum field theory.

7.1 Exactly Solvable Example
Consider the integral

/ {dDk\ ( 7 1 )
(k2 + m2)(k2 + M 2) ’

where M  > m. Using a partial fraction decomposition, as discussed in Sec
tion 3.4, we can write (7.1) in terms of a pair of single-scale integrals:

f  [dDk] 1 f f  [iDk\ f  Id°k] -j

J (ft2 +  m 2)(ft2 +  M 2) M 2 — m2 \J k2 + m 2 )  ft2 +  M 2 J  ' '

Each of the single-scale loop integrals can be solved explicitly using the basic 
dimensional regularization result (2.18) so that

/ [dDk\ r ( - l  +  e) 1
(k2 + m 2)(k2 + M 2) (4tt)d /2 M 2 — m 2

{(m2) M - ( M 2)(1- £)} . (7.3)
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If we remove an overall loop factor of M  2T(1 +  e)/(47r2)D/2, (7.3) can be ex
panded in powers of e as

H’ “  (7.4)
m2 In

m 2 __ -I
M 2 1

In the next two sections, we will obtain this result using other techniques. While 
these techniques add a layer of intricacy to the calculation, we are not trying to 
overcomplicate things merely for fun. Rather, these new techniques are readily 
applicable to less trivial loop integrals for which exact solutions are extremely 
difficult to obtain by any other means.

7.2 Taylor Expansions
The two mass scales appearing in a loop integral like (7.1) can alternatively be 
regarded as one mass scale and a dimensionless number:

m2 =  r M 2 , r € (0,1) . (7.5)

This suggests that if we use (7.5) to cast (7.1) in terms of r and M, the integral 
might become much simpler when r is very close to zero. A close inspection of

[dPk] f  [dDk]f  [drk] f
J  (k2 + m2)(k2 + M 2) J(k2 + m 2)(k2 + M 2) J  (k2 +  r M 2)(k2 + M 2) ’

(7.6)

however, suggests that the r M 2 term in the denominator might not necessarily 
be smaller than the k2 term. Suppose, instead, that we are interested in what 
happens when r is very close to 1, in other words, when m  is not much smaller 
than M.  Equivalently, we can define another dimensionless number x  via

m 2 = (1 — x )M 2 , x E  (0,1) , (7.7)

and consider the behavior of the integral when x is very close to zero. In this
C3.S6

f  [dDk\ f _________ Kfcj_________  . .
]  (k2 + m?)(k? + M ‘‘) J  (k2 + M 2 -  x M 2)(k2 + M 2) ' k ' ’

and we are guaranteed that the x M 2 term will be substantially smaller than (k2+ 
M 2), regardless of the size of k2. This implies that the Taylor series expansion

1 1 x M 2 (x M 2)2
T  77 -^ TTTrrr +  7 7 7 -------7 7 7 7 7  T  • • •(k2 + M 2 -  x M 2) {k2 + M 2) (k2 +  M 2)2 (k2 +  M 2)3
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=  f ,  ( x M r  ( 7 9 )
^  (k2 + M 2)n+l K ;
71— 0

will converge. Assuming that we can safely interchange the order of the sum
mation and integration, (7.8) becomes

f  \dDk]   M 2)n f  \dD k\ (7 10)
J  (k2 +  m 2)(k2 + M 2) ^  } J  (k2 + M 2)n+2 ' V '

At this stage the loop integral, while dependent on an integer n over which we 
will eventually sum, is of the simple type (2.18), so that

/ [dDk] = M  2e m 2 \ n T{n + e)
(k2 + m 2)(k2 + M 2) (47r)£)/2 \  M 2)  r (n  +  2)

It is not at all obvious that this result agrees with the exact solution (7.3), but 
an explicit expansion of both formulas in powers of e and x — (1 -  m 2/ M 2) con
firms that they are indeed the same.

In most realistic multi-scale problems, we will not have an exact solution 
to compare with. Furthermore, when we apply a Taylor expansion to the inte
grand, it will usually not even be possible to obtain a general solution for the 
remaining loop integral in terms of the summation index n. Instead, we ex
pand the integrand to a finite number of terms and evaluate each loop integral 
separately. Using this tactic, the accuracy of the truncated sum comes into ques
tion. From the Taylor-expanded solution (7.11), if we remove a loop factor of 
M~2T(1 +  e)/(47r)D/2, we are left with

f  ( i  _  i g l V  . (7.i2)
M*J  r (n  +  2) r ( l + e) '  ’

n = 0

The n = 0 term, via the F(n +  e) factor, provides the only e"1 contribution, in 
agreement with (7.4), while the next term in an e-expansion receives contribu
tions from all values of n. Suppose we truncate the series at n — N  and plot the 
finite part of (7.12) as a function of m 2/ M 2 for various choices of N.  Figure 7.1 
shows these plots, along with the exact result of (7.4). Since the expansion pa
rameter (1 — m 2/ M 2) is small for m  ~  M, it is not surprising that even the 
severe N  = 1 truncation provides reliable results near m 2/ M 2 =  1. As we move 
to smaller values of m2/ M 2, more terms are needed in the series in order to fol
low the exact result accurately. With a sufficiently large number of terms, we 
can obtain a reliable result in the extreme limit of m2/ M 2 =  0. Alternatively, we 
could try to find a way to create an expansion about the m 2/ M 2 =  0 limit. This 
will be the topic of the next section.
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Convergence of a Truncated Taylor Series
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Figure 7.1: Plot of the finite part of a Taylor series expansion of a simple loop 
integral as a function of the mass-square ratio m 2/ M 2. The solid lines represent 
the functions obtained by truncating the series after 1, 3, and 5 terms, respec
tively. The dashed line denotes the exact solution.

7.3 Method of Asymptotic Expansions
Inspired by the success of the Taylor expansion method, we would now like to 
expand the simple integral (7.1) about the m 2/ M 2 =  0 limit. At the beginning of 
the previous section, however, we noted that the integral

/ [dPk]
f

[dDk]
(k2 + m 2)(k2 + M 2) J (k2 + r M 2)(k2 +  M 2) (7.13)

does not appear to permit a simplification because k2 may or may not be larger 
than rM 2, even if r  is quite small. Suppose that we divide the integral into two 
parts based on the magnitude of k,

/ [dDk\
(k2 +  m 2)(k2 + M 2) (/ +/ )\J\k\<a J\k\>Li/

[dDk]
m<» M > J  (k2 + m 2)(k2 + M 2)

(7.14)
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where m < fi < M. For the srrtall-A; integral, k2 < M 2 so that we can expand the 
M-dependent propagator as

1 1 k2 + (A;2)2
(.k2 + M 2) M 2 (M2)2 (M2)3

—l)”(A;2)n 
(M 2)n+1 '

Similarly, for the large-A: integral, k2 > m2 so that we can expand the m-dependent 
propagator as

1 _  1 m2 (m 2)2
(A;2 +  m 2) k 2 (A;2)2 (A;2)3

=  2 .  - ( P p r -  • <7-16>
n = 0

Either expansion allows one of the mass scales to be factored out of the integral 
so that a single-scale integral remains. Unfortunately, the limits of integration 
are restricted so that we do not have a solution available. Let us then add and 
subtract integrals so that our expanded integrands can be integrated over all 
possible values of k,

I ^  = A + B - C - V , (7.17)

where

(k2 + m 2){k2 + M 2)

( - I f  f  [dDk] (k2)A  =  f
Z. (M2)n+1 J
71 :

OO

£ (M2)n+1 J {k2 +  m 2)

[dDk}

(7.18)

B  l ) n ( m 2 ) n  J  ( k 2 ) n } i ( k 2  +  M 2 )  ’ ( 7 ' 1 9 )

71=0
OO

V  (-1 )"  [
L .  (M2)»+l J n

(—l)n /■ [dDA:] (A;2)"

71

OO

^  (M2)”+1 (k2 + m 2)

 \dDk)

n = 0 ■' lfel<M

(7.20)

*  -  ™ + m . (7.21)

The integrals A  and B are now solvable. Although the expansions by which they 
were generated do not converge over the entire integration region, any spurious 
divergences that this might create in A  or B will be absent in the overall result 
of (A  + B — C — V). Looking more closely at C and V,  we see that the integration
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regions are such that an additional expansion is possible. Specifically, since C

Similarly, since V  depends on only small values of k, the (k2 +  M 2) propagator 
can be expanded:

After swapping the dummy summation indices in V, we see that the only dif
ference between C and V  is the region of integration. Together, they are

fortuitous result means that the correct solution to (7.17) will be obtained merely 
from [A +  B). In other words, when we break a loop integral into two regions 
in order to facilitate various expansions of the integrand, whatever additional 
contribution we obtain by integrating one of the expanded integrands over the 
entire integration volume will be exactly canceled by the additional contribution 
that we obtain from integrating the other expanded integrand over the entire 
integration volume.

By evaluating A  and B explicitly, we can verify that we obtain the correct 
result (7.1). For A,  we will rewrite the k2 factors in the num erator of (7.18) as 
((k2+ m 2) — m 2). When we multiply out the n copies of this factor, we will obtain 
a scaleless integral if we have so much as one (k2 + m 2) factor in the numerator, 
therefore we need only consider the (—m2) contributions:

depends on only large values of k, the (k2 + m2) propagator can be expanded 
without additional convergence problems:

j = 0 n = 0

(7.22)

(-1  V'+n(m2)
(7.23)

(7.24)

which is identically zero on account of the scaleless loop integrals. This rather

=  (~ l)n f  [dDk] ( - m 2)
^  (M2)n+1 J (fc2 + m 2)
1 -1 / i  , \  _ 9 f f  ° °

r ( - l  +  €) m - 2eg  

(4tt)d/2 1 - § |
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r(—1 + e) m 2̂
(47:)D/2 M 2 — m 2

(7.25)

This is exactly the first term of (7.3). As for B, for arbitrary values of n, we can 
obtain a solution with the help of a Feynman parameter:

+ M 2)

[dDk]

n
ooy ,  r (n  + 2 -  D/2) ( - m 2)" f 1 (1 -  a:)"

^  r(n + 1) \att)d /2 J0 X {xM 2)n+2- D/2

M~2e F (n + e) /  m 2\ n f 1 
=  r :  \'n/o z J  TV T IT  I “ 172  ) /  ^  X  (1 — # ) .(4tt)d/2 ^  r (n  +  1) V M  J  Jo

Using (2.31), the x-integral can be solved in terms of a Beta function, and in 
addition, we will make use of the identity [13]

r (x ) r ( i  - x )  = - A — , (7.26)sm nx

so that _
_  M~2e y  F(n +  £) /  m 2\ n T(n + 1)F(1 — n -  e)

(4tt)v/2 ^  r (n  +  1) [ M 2]  r(2  -  e)

M~2£ V  * 1(4it)d / 2 ^  y M 2/  sin7r(n + e) T(2 — ej

With sin7r(n +  e) =  (—l)” sin 7re and another application of (7.26) with x =  2 — e,
we have M —2f 00 / 2 \ n 1

^  v '  /  m  \  7T l

(47T)-0/2 \ M 2 J sin 7re r(2 — e)

M -2£ ^  f m 2\ n ^
(4* ) D/2 5 U 2J  ( l  +  e)

r(-l + e) M 2̂ -*)
( 4 7 r ) £ )/ 2  JV-f2  _  m 2 ’

(7.27)

which is exactly the second term in (7.3). Together with (7.25), (7.27) proves that 
it is possible to expand a two-scale loop integral about the limit nr? j M 2 =  0. 
This is an example of an asymptotic expansion. As we did with the Taylor ex
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pansions of the previous section, it is useful to look at the convergence of an 
expansion about m 2/ M 2 =  0. Using the finite term of (7.4),

we can expand the denominator as a series in m 2/ M 2 and then truncate the 
overall result at (m 2/ M 2)N, keeping in mind that there are also logarithmic fac
tors in the expansion. In a realistic calculation, we could only expect to obtain 
the leading terms of such a series, and the effects of the large logarithms on the 
convergence of the expansion are important. Figure 7.2 compares the functions 
obtained for various values of N  with the exact solution. Although the trun-

Convergence of a Truncated Asymptotic Expansion
1
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Figure 7.2: Plot of the finite part of an asymptotic series expansion of a sim
ple loop integral as a function of the mass-square ratio m 2/ M 2. The solid lines 
represent the functions obtained by truncating the series after 1, 3, and 5 terms, 
respectively. The dashed line denotes the exact solution.

cated series work well for small values of m 2/ M 2, as expected, the convergence 
becomes quite poor as this parameter increases. Additional terms in the series 
would certainly extend the range for which accurate results are obtained, but

Exact
N=1

N=5
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we should keep in mind that for sufficiently large values of m 2/ M 2, the Tay
lor expansion about m 2/ M 2 — 1 will be more reliable. In fact, if we splice the 
N  — 5 asymptotic expansion to the N  — 5 Taylor expansion at a point such 
as m 2/ M 2 — 0.3, as shown in Figure 7.3, we can see that the two expansions 
match up almost seamlessly. Not only does this confirm that we can accurately

1

0.9

g °'8
H 0.7
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; §  0.6 
E
*S 0.5  

.§  0.4

1  0.3o
°  0.2 
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0
0 0.2 0.4 0.6 0.8 1
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Figure 7.3: Plot of the finite part of series expansions of a simple loop integral 
as a function of the mass-square ratio m 2/ M 2. For m 2/ M 2 < 0.3, the N  =  5 
asymptotic expansion about m 2/ M 2 =  0 is used, while for m 2/ M 2 > 0.3, the 
N  =  5 Taylor expansion about m 2/ M 2 = 1 is used.

calculate the original loop integral (7.1) for any choice of m  and M,  but it pro
vides an important consistency check on our calculation. For more realistic and 
more difficult calculations, such consistency checks are hard to come by, and are 
therefore quite reassuring.

General Procedure
Having illustrated the use of asymptotic expansions with an explicit example, 
we will now enumerate a simple five-step algorithm [30] which can be applied 
to a general two-scale loop integral. For integrals with more than two scales,

Matching Asymptotic and Taylor Expansions
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we could either apply this procedure recursively [31] or in combination with a 
Taylor expansion, as we will see in Chapter 11.

Step 1: Identify the large and small external scales in the integrals.

Step 2: Divide the integration volume into regions so that within each region, 
the loop momentum flows through the various propagators are of the or
der of one of the external scales. More specifically, the statement k ~  M  
asserts that k2 > m 2 in Euclidean space.

Step 3: Within every region, expand any propagators within which there are 
terms that depend differently on the external scales.

Step 4: Remove the constraints on the regions and integrate each expanded 
integrand over the original integration volume.

Step 5: Add the contributions from each region to obtain the final result.

The fourth step of this algorithm requires further explanation, since by ignoring 
the constraints on the individual regions, it may appear as if contributions to the 
total integral are counted more than once. As we saw explicitly in the previous 
example, this does not happen because the extra contributions to the total inte
gral that are introduced by removing the constraints on individual regions can 
be expressed as scaleless integrals which vanish in dimensional regularization. 
This implies that the integrals from the various regions are different analytic 
functions of the parameters of the problem.

Two-Loop Implementation
For a problem with two external scales, the method of asymptotic expansions 
leads to two momentum regions for one-loop integrals: k ~  m  and A: ~  M. 
For two-loop integrals, however, we cannot simply assign regions for k\ and k2 
separately because there will be one or more propagators that depend on both 
kx and k2. For simplicity, let us denote the combination of kx and k2 by k3 — 
in practice, &3 is almost always kx + k2 or kx — k2. Naively, kx, k2, and ks could 
each be either soft (~  m) or hard (~ M ), but since the three momenta are not 
independent, it is not possible to have two of them soft while the third is hard. It 
is, of course, permissible to have all three soft, all three hard, or one soft and two 
hard. This leads to five momentum regions for two-loop integrals, as depicted 
in Figure 7.4.

Oftentimes, an expansion of the integrand within one of the momentum re
gions leads to a scaleless integral. While this is certainly convenient, it is also
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N
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Figure 7.4: Sketch of the five momentum regions required for a two-loop calcu
lation using the method of asymptotic expansions.

related to a potential pitfall. Consider a two-loop integral containing the follow
ing five propagators:

[1] =  k2 ,
[2] =  k22 ,
[3] =  (k2 + 2kip) ,
[4] = (ki + k2)2 + 2(ki +  k2)p ,
[5] =  (k2 + 2hP )  ,

where the external momenta p and P  are related by p — (m /M ) P . In Region 2, 
where ki ~  M, k^ ~  ra, and k\ +  k2 ~  M,  propagators [3] and [4] are expanded 
in terms of k\ denominator factors. This leaves only [2] =  for /c2-dependence 
in the denominator, so that the fc2-integral is scaleless and this region does not 
contribute. In Region 1, where kx, k2, and k\ + k2 are all ~  M,  [3] and [4] 
become k\ and {k\ +  k2)2, respectively. This region contributes a non-zero result, 
and if we look carefully, we can see that we never explicitly took advantage 
of the assumption that k2 ~  M,  hence this latter region should automatically 
include the special case of the former region where kt and k\ +  k2 were ~  M  
but k2 ~  m. In other words, we are getting away with a double-counting in this
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particular case. Unfortunately, this is not an unassailable feature of the method 
of asymptotic expansions. As a counterexample, consider the two-loop integral 
containing:

[1] =  k\ +  m 2 ,
[2] =  k l ,
[3] = ( h + p ) 2 ,
[4] =  (ki + k2 + p)2 ,
[5] =  (kl +  2k2p) ,

where p2 =  — M 2. This integral arises in the context of the top quark decays that 
we will discuss in Chapter 13. Suppose that ki and k2 are both ~  M,  so that 
[1] becomes k\. Without making any assumptions about the size of k\ + k2, we 
can already solve this integral in terms of the "Tl" topology. Indeed, the region 
where kx +  k2 is also assumed to be ~  M  (Region 1) would lead to no further 
expansions. If, however, we assume that kx + k2 ~  m  (Region 3), [4] becomes p2, 
and the kx- and ^-integrals factor. Neither of them are scaleless, though, and 
thus the double-counting is no longer benign. From this example, we are forced 
to adopt an additional proviso:

Proviso to Step 3: If the propagators in a loop integral are such that all allowed 
expansions within one region are consistent with the momentum assign
ments of another region, discard the latter region in order to avoid double
counting. In other words, once an integral can be solved in terms of single
scale integrals, additional expansions (if available) should be avoided.

To conclude this section, we will look at an example which features another 
superficial difficulty. Consider a two-loop integral containing seven propaga
tors:

[1] =  k l ,
[2] =  k̂ ,

[3] =  (kx +  k2)2 ,
[4] =  (kl + 2kxp) ,
[5] = (kx +  k2)2 +  2(kx + k2)p ,
[6] =  (k2x+2kxP ) ,
[7] =  ( k \ - 2 k 2P ) ,

where, as before, the external momenta p and P  are related by p =  (m/M)P.  
Integrals like this arise in the context of the recoil corrections to the bound state 
energy levels we will discuss in Chapter 12. In the region where kx and k2 are 
both ~  M  but kx + k2 ~  m  (Region 3), the only propagator that permits an 
obvious expansion is [4] —> kl. At this stage, the integral still depends on both
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external scales. This would be acceptable if the k\- and fc2-integrals factored so 
that one of the integrals only depended on the soft scale and the other integral 
only depended on the hard scale, but that is clearly not the case here. Instead, 
suppose we try to factor the two-loop integral into a k\-integral depending on 
the hard scale and a (k\ +  £12)-integral depending on the soft scale. This can be 
accomplished by writing k2 as ( h + k 2) - k i  so that [2] -» kf and [7] -* (k\+2kiP). 
In other words, the soft and hard scales will only decouple once we express the 
loop integral in terms of loop momenta which are soft and hard.

7.4 Convergence Improvement
Although asymptotic expansions allow us, in principle, to obtain an arbitrary 
number of terms in a series which approximates the exact result, limitations in 
computational resources frequently prevent us from calculating as many terms 
as we would sometimes like. In particular, we are often interested in checking 
the behavior of the series as the expansion parameter increases, in which case 
the series might converge quite slowly. Fortunately, there are

... powerful methods to recover an accurate approximation to an 
exact answer from a few terms of a slowly convergent or divergent 
perturbation series if these terms can be supplemented by some an
alytic information about the answer. [32]

We will briefly outline two such techniques — the Shanks method and Pade 
approximants — that can be used to improve the accuracy of a result obtained 
from a truncated series.

Shanks Method
The basic idea behind the Shanks method is that many series have a transient 
behavior that is predominantly that of a geometric series. Quantitatively, this 
implies that the ra-th partial sum of the series, A n, can be well-approximated by

An ~  A +  aqn (7.29)

for some appropriate choice of A, a, and q. Insofar that this assumption is accu
rate, the true limit of the series, A, can be more easily pinpointed by creating a 
new series, £(An), which attempts to remove the transient behavior induced by 
a and q:

s { K )  =  a , - a +1 - a i  (7 3 0 )

^71 — 1 I -'T-n+l ‘-‘■‘ *■71
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The series (7.30), which can be constructed directly from the original series An, 
will converge more quickly and therefore reduce the error induced by truncat
ing An after a finite number of terms. If necessary, the process can be nested so 
as to produce even better convergence via the series S 2(An) =  S'[S'(An)], S3(An), 
and so on.

Fade Approximants
A more powerful procedure for dealing with truncated series involves Pade 
approximants, as they are not only capable of accelerating the convergence of 
many slowly converging series, but they can often handle divergent series as 
well! Divergences in a power series arise from the presence of singularities so 
that any simple polynomial will be an inadequate approximation near such a 
singularity. A Pade approximant is a rational function — in other words, a ratio 
of two polynomials — whose coefficients are chosen so that when the approx
imant is expanded, it matches the original power series order by order. For a 
polynomial of order T  in the variable x, we can construct the Pade approxi
mants

Tr~\N a n
K ( x )  =  [N/M] =  (7.31)

provided that M  + N  — T. Without loss of generality, we set B0 =  1.
Whenever we have reason to believe that a power series we are generating is 

arising from an analytic function, Pade approximants are likely to be of use, as 
they explicitly incorporate the effects of simple poles. This technique applies to 
multiloop calculations at a much deeper level than the artificial expansions we 
introduce in order to cope with multiple scale problems. Indeed, the basic struc
ture of perturbative quantum field theory is such that we can, at best, express 
physical quantities as asymptotic series [33] in the coupling parameter. Pade 
approximants can then be used [34,35] to estimate the effects of higher-order 
terms, particularly in QCD where the expansion parameter a.a is sufficiently 
large that the perturbation series does not converge very quickly.

"They all laughed at Christopher Columbus when he said the world 
was round."

George and Ira Gershwin {They All Laughed)
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Chapter 8 

Color Factors

In Chapter 1, we saw that the Feynman rules for perturbative QCD contain 3- 
by-3 color matrices ta, in addition to the 7-matrices that also appear in QED. 
The effects of these two types of matrices can be factored completely, so that a 
QCD diagram gives rise to the product of a color factor and a colorless QED- 
like amplitude. As a result, aside from the non-Abelian diagrams that begin to 
appear at the two-loop level, QCD calculations are essentially just QED calcula
tions multiplied by the appropriate color factors. In this chapter, we will review 
some of the group theory behind color factors [1,36] and then we will calculate 
several color factors explicitly.

8.1 Lie Algebras
Suppose that we have a Lagrangian from which we will construct a quantum 
field theory and that this Lagrangian is invariant under a certain class of uni
tary transformations. While discrete unitary transformations such as time re
versal, charge conjugation, and parity provide deep insights into the nature of 
the theory, we will focus on continuous transformations containing elements 
arbitrarily close to the identity transformation. Within such groups, more prop
erly known as Lie groups, every element can be expressed in terms of a product 
of infinitesimal elements. We can write an infinitesimal group element Q as

0 (e) =  1 + ieata +  0 (e2) , (8.1)

where ta are Hermitian operators that generate the symmetry group and ea are 
infinitesimal parameters which specify the group element. Near the identity 
element, where global topological structure is irrelevant, we can use (8.1) to 
describe the features of the Lie group in terms of the Lie algebra which governs 
the generators if. Specifically, since the product of any two group elements is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



96 CHAPTER 8. COLOR FACTORS

itself a group element, the product of generators must be a linear combination 
of generators. The same is true for the commutator of generators,

commutation relation (8.2) and the set of generators to which it applies consti
tute a Lie algebra.

One particular family of Lie algebras is used throughout the Standard Model 
and it is based on the Lie group SU (N ), the set of all N  x N  unitary transfor
mations U such that det(C/) = 1. We can represent the generators of SU(N)  by a 
set of (N2 — 1) traceless Hermitian iV-dimensional matrices ta. This is known as 
the fundamental representation. Of the many technical results associated with 
the theory of Lie algebras, there are a few identities which are indispensable for 
calculating color factors. We will now discuss the origin of these identities.

Trace Normalization
Although the SU(N)  generators are traceless in isolation,

this need not be the case for products of two or more generators. By selecting an 
appropriate basis, the trace of a product of two generators can be normalized as

The trace normalization factor, TR, takes on a unique value in SU(N)  Lie alge
bras in the fundamental representation,

At this stage, we can show that f abc in (8.2) is antisymmetric in all its indices, 
and not just a and b. Simply multiply (8.2) from the right with td, take a trace of 
both sides, and then use (8.4) on the right hand side to see that

[ta, tb] =  i f ahcf  , (8.2)

where f ahc denotes a collection of numbers known as structure constants. The

Tr (ta) = 0 (8.3)

Tr (tatb) =  Tr Sab. (8.4)

(8.5)

as can be checked explicitly using the 517(2) generators

(8.6)

Tr ([fa, £6] td) =  i f abc Tr 5^  , (8.7)
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and so
r fc =  _ _ tT V ([« V ‘] t ')  . (8.8)

Clearly f abc is antisymmetric in a and b. Using the cyclic property of the trace, 
we see that

Tr([ta, tb} tc) = Tr([tatb - t bta] t c)
= Tr (tatbtc) -  Tr (tbtatc)
= Tr (t6£cta) -  Tr (tctbta)
=  -T f  ([fc, t6] ta) , (8.9)

and so / a6c is antisymmetric in a and c as well. A similar calculation confirms 
that f abc is antisymmetric in b and c.

Casimir Operator in the Fundamental Representation
Consider the operator

t2 -  tata , (8.10)

where we are summing over the (N2 — 1) possible values of a. If we calculate 
the commutator of t2 with any particular generator, say tb, we find that

[t2, tb] = tatatb -  tbtata
= ta (tbta + i f abctc) -  (tatb +  i f bacte) ta 
= ta ( i fabctc) +  ( i /abcfc) ta 
=  i f abc{ta, f }
=  0 . (8 .11)

Since the anticommutator is symmetric in a and c while f abc is antisymmetric 
in these indices, we conclude that t2 commutes with every generator and is 
therefore an invariant of the algebra. This is why, for instance, the £ in the £{£-{-1) 
eigenvalue of the angular momentum operator L2 is an acceptable quantum 
number for the electron in a hydrogen atom. The invariance of t2 allows us to 
write

tata = CF 1 , (8.12)

where 1 is the N  x N  unit matrix and CF is known as the Casimir operator in 
the fundamental representation of SU(N). The Casimir operator is a constant 
within any particular representation; we can determine CF by taking the trace
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of (8.12) and using (8.4) to evaluate the left hand side:

and since TR — 1/2,

Tr (tata) = CF Tr(l) ,
Tr 5™ =  Cf N ,

T r  (N2 — 1) =  CFN ,  (8.13)

N 2 -  1
C r - n r -  (8-14)

Casimir Operator in the Adjoint Representation
So far, we have used the fundamental representation of SU{N), wherein each 
of the (N2 — 1) generators is mapped to an N  x N  traceless Hermitian matrix
such that the commutation relation (8.2) is satisfied. Another important group
representation is the adjoint representation, where the generators are simply 
written in terms of the structure constants:

W L  = ■ <8-15>

The commutation relation (8.2) follows directly from the Jacobi identity

jia d e  j;bcd  _j_ j:bde j c a d  _j_ y c d e  j:abd    q  (8 16)

or equivalently,

[(“, +  [t6, [ f X \ \  + [tc, [i“,«6]] =  0 . (8.17)

In the adjoint representation, the trace normalization factor in

Tr (taAtbA) =  Ta Sab (8.18)

is
Ta = N ,  (8.19)

as can be seen by explicit calculation in the 517(2) case where

cr* a3
~2’ T

( T k

ieijk . (8.20)

The Casimir operator in the adjoint representation of SU(N),  denoted by CA, is 
defined by

taAtaA = CA 1,  (8.21)
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where 1 is the ( N2 — 1) x ( N2 — 1) unit matrix. Just as we obtained Cp before, we 
can take the trace of both sides and use the trace normalization (8.18) to obtain

CA = N . (8.22)

Useful Identities
Consider the double contraction f acd f bcd. We can use (8.15) to interpret the /  
factors as generators in the adjoint representation, so that

j a c d  j-bcd __  j-acd  jd c b

~  ( t j d a d  i^ A ^ d b

= (*M «6
CA lab

=  CA 8ab. (8.23)

Another useful simplification occurs for the contraction of an /  with two gener
ators:

fod>ct bt c =  1 ( f a b c t bt c +  p c b t c t b^

=  \  ( f ahCt bt C -  f abcf t b )

fa b c

=  V m
'f

  __jto.bc jtbcd^d

2

= ^  r  , (8.24)

where in the last line, we have applied the identity (8.23). Finally, we can con
sider the product tatbta of generators, assumed to be in the fundamental repre
sentation:

tatbta =  ( t bt a +  [ t a , t b] ) t a 

= tbtata +  i f abct c t a

c A\ +b
= ( C F - - f ) r -  (8-25)

Note that we have used (8.12) and (8.24) to obtain the last line of (8.25). We now 
have all the tools we need to calculate color factors.
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8.2 Calculation of Color Factors
There are systematic methods available [37] for calculating color factors in non- 
Abelian gauge theories. In this section, we will use the results of the previous 
section to obtain the SU(N)  color factors for basic one- and two-loop diagrams 
in detail.

In general, physically measurable quantities are obtained from Feynman di
agrams by taking a trace over factors associated with a particular fermion line. 
For simplicity, let us assume that we have a single fermion line running through 
each diagram, as is the case with the top quark decays of Chapter 13. The color 
factor will then contain an overall factor of 1/N  in order to average over the 
initial colors of the fermion. This 1/N  will inevitably be canceled by a factor of 
N  resulting from the Tr(l) that remains once all the color matrices are rewritten 
in terms of CF and Ca -

In the examples ahead, remember that we are working backwards along a 
fermion line in order to accumulate color matrices in the trace. Every basic 
gluon-fermion vertex contributes a single ta factor, and we will automatically 
apply the Sab factors from the gluon propagators which enforce color conserva
tion between vertices. In order to make all our color factors real, we will assign 
—i f abc from the three-gluon vertex Feynman rule of Table 1.3 towards the color 
factor. Note that the gluons are labeled a, b, and c in  a counterclockwise order.

At the one-loop level, there is only one color factor to calculate:

=  1,  ■& («“)

=  ^ T r ( C F l)

=  CF . (8.26)

At the two-loop level, we can start with the following simple Abelian dia
grams:

= ^  Tr (tatbtbta)

= ^  Tr {taCFta)

= C2f , (8.27)
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= — Tr (tatbtatb)

= 1  Tr ((C , -  CAl2)tHb) 

= C ,(C , -  C x /2 ) . (8.28)

The other Abelian diagram involves a second fermion loop and therefore a sec
ond trace:

= ^  Tr (tatb) Tr (tatb)
1

= j j T r { t atb) T R 5'

= ^ T r  ((“*“)

= CpTR .

Similarly, there is a non-Abelian diagram with a subloop:

1

ab

(8.29)

N Tr (tatb) (—i f cda) ( ~ i f bdc)

i  Tr (tatb) CA Sab

CA
N  

CFCA .

Tr (tata)

(8.30)

This diagram also requires an overall symmetry factor of 1 /2 due to the indistin- 
guishability of the gluons in the subloop. In order to cancel the unphysical po
larization modes of the gluon subloop, we will also need to consider diagrams 
with a ghost loop. Provided we assign the same —i f ahc part of the interaction 
term towards the color factor as we did for the three-gluon vertex, and provided 
we incorporate the ghost loop factor of (—1) elsewhere, the ghost loop diagram 
will have the same color factor as the gluon loop diagram:

£ — z
= cFcA. (8.31)
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Finally, there is a diagram with a single non-Abelian vertex:

1
N  Tr (tatbtc) (-i f**1) 

Tr (tatbtc) f abc

. (8.32)

At the three-loop level, the number of types of diagrams proliferates rapidly 
— including diagrams with four-gluon vertices — but the techniques we are 
using still apply. As we will not require three-loop color factors for the top 
quark decay calculation in Chapter 13, we shall stop here.

Since QCD is based on an 517(3) gauge symmetry, we can assign specific 
numerical values to the three constants on which our color factors depend:

T r  = 1/2 , (8.33)
CF = 4 /3 , (8.34)
CA = 3 . (8.35)

It is in our best interests, though, not to make these substitutions until the very 
end of a calculation. Instead, we can group our calculation into various subsets, 
each with a specific dependence on T r , Cf , and Ca - A s  the cancellation of di
vergences or gauge parameters cannot rely on a coincidence between specific 
numerical values of these three constants, each individual subset must be well- 
behaved in isolation. This provides a valuable method with which to check a 
difficult calculation.

'In every job that must be done there is an element of fun."
Mary Poppins (A Spoonful of Sugar)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



103

Chapter 9 

Renormalization Factors

So far, we have painted a picture of perturbative quantum field theory in which 
we can approximate nature by calculating sets of Feynman diagrams of increas
ing complexity. This is an oversimplification. The problem is that the parti
cles w ith which we do our experiments already incorporate virtual effects at all 
possible scales and there is simply no way to turn these interactions off. The 
parameters, such as coupling constants and particle masses, upon which the 
predictions of quantum field theory depend, are naively extracted from simple 
processes involving these complicated particles. Therefore, if we are going to 
calculate perturbative corrections to a physical process induced by virtual par
ticles, it is absolutely essential that we do not double-count the virtual effects 
that are implicitly present in the parameters of the theory. Renormalization is 
the name for the quantitative procedure we follow in order to accomplish this 
goal. In this chapter, we will show how the formal ideas of renormalization can 
be cast in a convenient form suitable for practical implementation in a multiloop 
calculation.

9.1 Formalities
For the purposes of this chapter, we shall restrict ourselves to the renormaliza
tion of Quantum Electrodynamics. Our first objective is to clarify what we mean 
when we measure the parameters of the theory using low-energy experiments. 
The QED Lagrangian consists of three terms; two are kinetic terms which lead 
to propagators for the photon and electron and the other is an interaction term 
between a photon and an electron. This is fine for the theory end of things, but 
in an experiment, we can only measure what goes in and what comes out. The 
physically realistic propagators and vertices should therefore look something 
like the sketches in Figure 9.1. We can describe the shaded blobs quantitatively
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•^AAAA/VI |i/VV\AA/V
A

Figure 9.1: Sketch of the physically realistic propagators and interaction vertex 
in Quantum Electrodynamics. The shaded blobs represent processes that our 
experiments cannot detect.

using the Feynman rules of Chapter 1 and in this way, we obtain expressions for 
the effective propagators and vertices as series in powers of a. In order to justify 
using the physically measured electron mass and charge in the basic Feynman 
rules, we need to place constraints on the expressions for the effective propaga
tors and vertices. These constraints are known as renormalization conditions, 
and in order to satisfy them, we are forced to add additional Feynman rules to 
the theory. Such additional Feynman rules are called counterterms; Table 9.1 
lists the counterterms for Quantum Electrodynamics. The counterterm param-

W vw xE rw vw 1

Table 9.1: Feynman rules for counterterms in Quantum Electrodynamics.

eters Si, S2, S3, and Sm can be obtained, to any desired order in a, from explicit 
loop calculations. To leading order, the results are derived in [1], and when 
adjusted to match our conventions, they are:

- 2 e

Si =

s 2 —

S3 =

e2r ( l  +  e)m
(4tt)d /2 

e2T(l +  e)m-2t 
(4tt)-d/2

e2r ( l  + e)m~2e 
(47t)£/2

3
€

3
e
_4
3e

1 — 2e 

4
1 -2 e

(9.1)

(9.2)

(9.3)
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3 4
e +  1 -  2e

(9.4)

Notice that 5i = 52. This is not a coincidence, as the Ward-Takahashi identity

these counterterm coefficients are divergent. This is a consequence of the fact 
that the one-loop contributions to the shaded blobs of Figure 9.1 are themselves 
divergent, and if contributions from these shaded blobs are implicitly present 
in the physical parameters of the theory, then these divergences are necessarily 
canceled by the various 5 factors. Without renormalization, we would be trying 
to do perturbative calculations using parameters that are not appropriate to the 
scale at which we perform our experiments. Thinking of renormalization in 
terms of scale-dependent parameters is a very powerful idea which has many 
applications outside of particle physics.

The justification for counterterms presented in the previous section is a heuristic 
one. More typically, a "top down" approach is employed in which the initial La
grangian is separated into two parts through a rescaling of fields. One of these 
parts gives rise to the familiar Feynman rules in terms of physical parameters 
and the other part produces the counterterms. Either way, the existence of coun
terterms is required. We shall now see how these counterterms are used, and 
in the process, we will point out a cancellation which allows us to incorporate 
renormalization effects more efficiently.

We will start with 6 3 .  When we use the Feynman rule in Table 9.1, we must 
keep in mind that the counterterm is sandwiched between two regular photon 
propagators. The resulting product is

When this product of propagators is used as one piece of a Feynman diagram, 
the q^qv terms vanish as a consequence of the Ward identity [1]. This means that 
the photon propagator counterterm, when sandwiched between two ordinary 
photon propagators, behaves like a single photon propagator multiplied by — S 3 .

guarantees that this must be true to all orders in a. It might seem alarming that

9.2 A More Useful Translation

[~i(ga/3q2 -  qaqP)5z]

(9.5)

We will call this the charge renormalization factor and denote it by PH:

(9.6)
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Next we consider the counterterm for the electron propagator. Taking the 
Feynman rule from Table 9.1 and sandwiching it between two regular electron 
propagators, we have

If we split the counterterm into two parts via

[*(#2 -  4n)] =  [i(rn82 -  <5m)] + [i82{$ -  m)] (9.8)

and recognize that — m)(tf + m) =  (p2 — m2), we can write (9.7) as

,4 ±4 ) H ^ - u ) ( ,4 ±4 ) - ( i4 ±4 ) ^ -  <«)p2 — m 2 J \ P  ~ m 2 J \ p 2 — m 2 J

We call the factor between the propagators in the first term of (9.9) the mass 
renormalization constant and denote it by MC:

MC =  i(m82 — 8m) • (9.10)

Meanwhile, in the second term of (9.9), we have —82 multiplied by a single
electron propagator. Every electron propagator in a QED diagram sits between 
two electron-photon vertices, though, and so the total number of vertices in a 
diagram minus the total number of electron propagators will always equal one- 
half the number of external electron lines in the diagram. This is very useful 
because the vertex counterterm in Table 9.1 is such that we need only multiply 
the corresponding diagram by <h. Since the Ward-Takahashi identity asserts that 
8\ =  82, most of the 6* contributions from the vertex counterterms will cancel 
the —82 contributions from the electron propagator counterterms. All that will 
remain is a factor of 8X, for every pair of external electron lines, which we call 
the wavefunction renormalization factor WF:

WF =  8X =  82 . (9.11)

The term wavefunction renormalization is used because it is possible to regard 
this factor as being associated with the wavefunctions of the external electron 
lines:

u(p) ->■ a/1 +  $2 u{p) u(p) -> \ / l  + S2 u(p) . (9.12)

To summarize, we have shown how the four counterterm parameters 8Xf 82, 
8s, and 8m can be replaced by the three renormalization factors PH, MC, and 
WF. Furthermore, two of these new factors — PH and WF — can be directly
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multiplied with the result from an ordinary diagram. The mass renormalization 
constant, on the other hand, still carries a feature of the original sandwiching 
procedure, so that MC must be multiplied by a diagram in which an electron 
propagator is used twice in a row. We represent this by an X on an electron 
line:

 > X  >----------  =  M C  ( t  . (9.13)
\ p 2 — m 2 J

One final remark about renormalization factors is that usually we do not 
need to calculate them ourselves. Regardless of the physical process under con
sideration, there is only one set of PH, MC, and WF factors for a given theory, 
and hence, the results are transcribed directly from the literature whenever pos
sible.

A Simple Example
We conclude this chapter with an explicit example of how to apply renormaliza
tion factors correctly in a physical calculation. As a preview for Chapter 11, we 
will consider the O {a2) QED calculation of the anomalous magnetic moment of 
the electron. The leading contribution to ae is at O (a):

(ae)x -  ( -  +  2e +  O (e2)^  . (9.14)

The leading term, a/2-n, is Schwinger's famous result [5], and the O (e) term will 
be needed for the O (a2) result due to the presence of 1 /e in the counterterms.

At O (a2), there are 7 two-loop diagrams to consider, as shown in Figure 9.2. 
In general, the loop in diagram (g) could also be a muon or tau, but we shall 
restrict ourselves to QED with only electrons. Notice that diagrams (c) and (d) 
are mirror images of each other. This means that we need only calculate one of 
them and multiply the result by 2; the same is true for diagrams (e) and (f). The 
total contribution from the diagrams in Figure 9.2 is

/  \ diagrams __
\aeJ2 — I ^

\7T

23 /  641 7r 3<(3) 7r n
 +  b  b - ^ - 4  In 2
24e V144 12 4 2

(9.15)

We expect the divergence in (9.15) to cancel once we incorporate the renormal
ization factors. Expressed in terms of a and to finite order in e, we obtain the
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C H s  p  A ,
v ]  r v

(b)(a) (b) (c) (d)

(s)(e) (f)

Figure 9.2: (9 (a2) diagrams that contribute to ae.

renormalization factors WF, PH, and MC from (9.2), (9.3), and (9.4):

WF= © ( P ) ’ <916)
PH =  0  f t )  - <9-17)

MC = im. (2) ( |  +  l )  . (9.18)

The WF and PH renormalization factors simply multiply the O (a) result in (9.14):

\W F  IX H O  /  \ 3(<.«)»*■ =  WF (fle)i = ( - j  -  2 j . (9.19)

w r = P H ( a , ) ,  = 0 2f t f t ) -  <9-20)

The MC factor, meanwhile, is to be multiplied by a one-loop diagram in which 
there is an extra electron propagator,

<9-21>
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so that
(ae) r  = 2MC(ae)Im= 0 2( - | - I ) (9.22)

The factor of 2 in (9.22) accounts for the mirror image of the diagram in (9.21). 
Combining (9.22) with (9.19) and (9.20), we have the renormalization contribu
tions to (ae)2,

Adding this to the contributions from the two-loop diagrams in (9.15), we obtain 
the finite final result

as first obtained by Sommerfield [6].
Although the preceding example was a fairly simple one, the main ideas 

extend to more difficult calculations. In Chapter 13, for example, we will be 
using the O (a^) QCD renormalization factors as part of a calculation involving 
the decay of a top quark.

renorm (9.23)

(9.24)

"Anything that happens, happens. Anything that, in happening, 
causes something else to happen, causes something else to happen. 
Anything that, in happening, causes itself to happen again, happens 
again. It doesn't necessarily do it in chronological order, though."

(Hitch Hiker's Guide to the Galaxy)
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Chapter 10 

Symbolic Computation

Symbolic computation is an indispensable tool for performing most multiloop 
calculations. In this chapter, we will have a brief look at a few of the main ideas 
associated with symbolic computation, the specific programming environments 
that have been used to obtain the results in this thesis, and some of the chal
lenges associated with especially large computations. The Centre for Symbolic 
Computation at the University of Alberta provides an excellent environment for 
applying these computational techniques to a number of research frontiers, and 
in particular, to the calculations presented in this thesis.

10.1 Basic Ideas
The use of symbols in place of specific numbers was a very fruitful abstraction 
for ancient mathematicians, but only in the last few decades has this idea been 
carried over to the realm of machine computation. For certain types of problems 
in various branches of science, the benefits have been enormous. Suppose, for 
example, that in the context of some physical problem, we would like to solve 
a set of equations for one or more functions /, which depend on one or more 
variables Xj. If the equations cannot be solved by hand conveniently, a very 
common approach involves writing a computer program in a language such as 
FORTRAN or C and solving the equations numerically for each specific point in 
a grid of possible values of the variables. If the grid is sufficiently dense, the in
terpolations between the grid points will usually provide a good approximation 
to the exact solution. With symbolic computation, on the other hand, the goal 
would be to obtain the exact functional form of the solution. An exact solution 
has several advantages over a numerical solution. First, specific numerical val
ues can always be obtained from an exact solution, whereas the reverse is not 
true. Secondly, an exact solution is free of the numerical errors that accrue in a
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numerical calculation, both from the approximations that result from a discrete 
grid and the rounding of intermediate floating point numbers in the program. 
Finally, the functional form of an exact solution often provides insights into the 
problem that might easily be overlooked from a plot of an accurate numerical 
solution.

The desire for exact solutions is natural, but how can a computer deliver 
them? It all starts with the basic representation of data. In a typical numer
ical programming language, computer memory is set aside to keep track of a 
list of variables. These variables can encode things like integers, floating point 
numbers, or character strings, and they are repeatedly modified by the specific 
instructions of a computer program. In a typical symbolic programming lan
guage, the basic object is a term. A term consists of a rational number coefficient 
and one or more algebraic variables with various integer exponents. Terms are 
grouped together to form an expression and it is the expression which is dy
namically altered over the course of a symbolic program. Terms can be created, 
destroyed, combined, or split, and so the size of an expression can change. The 
principal way to modify an expression is through pattern matching. Suppose, 
for example, that we have an expression, / ,  whose terms make up a polynomial 
in the symbol x,  and that w e would like to differentiate f (x ) .  Schematically, the 
computer will represent each term as:

Term  =  (N um erator, D enom inator, E xponent o f  Sym bol 1 , . . . )  .

Each of the elements is an integer and we will assume that x  is the only symbol 
in this particular program, so that the term 3z14 will be represented in memory
as

3z14 — ► (3,1,14) .

The differentiation instruction (a/b)xc -> (ac/b)x°~l can easily be implemented
as

(a,  b, c) => (a * c, b, c — 1) .

Of course, the program should know how  to simplify the fraction (ac/b) if there 
are common factors in the numerator and denominator. Other functions of x 
— sin x, for example — would be stored as separate symbols and additional 
rules would be necessary to handle them. In principle, all of this can be done 
if the programmer is sufficiently diligent. Not every scientist has the time or 
inclination to be a diligent programmer, though, and with this point w e segue 
into a look at the relative strengths of a few symbolic algebra programs.
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10.2 Computer Algebra Programs
Of the dozens of computer algebra systems in existence, three have been used 
extensively in conjunction with this thesis: Maple [38], Mathematica [39], and 
FORM [40]. Maple and Mathematica are conceptually very similar. Both sys
tems incorporate massive amounts of built-in knowledge and a fancy user- 
interface. A useful analogy is to think of each of these systems as a sort of 
mathematical Swiss Army Knife. These are very convenient programs to use 
for certain tasks. For example, Maple was used at the end of Section 3.1 to ex
pand the Gamma functions in (3.16) as a Laurent series in e. Specifically, the 
command

simplify(series(GAMMA(l — ep) * GAMMA(1 — ep) * GAMMA(—1 +  2 * ep) 
*GAMMA(3 -  4 * ep)/GAMMA(2- 2 *  ep)/GAMMA(3 -  3 * ep)
/GAMMA(1 +  ep)/ep, ep =  0,4));

yields

-§ep~2 -  fep"1 +  (-§7r2 -  f )  +  (-4C(3) -  | tt2 +  f§) ep +  0(ep2) .

Mathematica, meanwhile, is particularly good at providing analytic solutions 
for the parameter integrals that are required for our master loop integrals. For 
example, the integral (6.19) in Section 6.1 can be evaluated using the command

lntegrate[Series[x A (—4 * ep) * z A (—2 * ep) * (1 — z) A (—3 * ep)
*(1 - x * z )  A ep, {ep, 0,2}], {x, 0,1},  {z, 0,1}]

with the result ,
64-ep(42+Pi2)+ep2(222—Pi2+66Zeta[3])

6

For all their bells and whistles, Maple and Mathematica come up short in the 
most crucial area for multiloop calculations: large problems. These two sys
tems are slow, inefficient, and cannot accomodate problems which exceed cer
tain memory requirements. For this reason, FORM is the program of choice for 
the majority of the work in this thesis. Developed by a fellow particle physi
cist, but applicable to any field of research, FORM has very little in the way of 
built-in knowledge. It is up to the user to add everything that is needed and 
only what is needed. The key feature of the program, though, is the ability to 
handle expressions of immense size by using large sections of hard disk space 
for temporary storage. This, along with the austere design, makes it extremely 
efficient, and thus well-suited to work on difficult multiloop calculations.
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10.3 Very Large Calculations
Inevitably, research-level problems usually manage to saturate all available com
puting resources. In multiloop calculations, the culprits are threefold. The first 
two are directly related to the number of loops, as both the overall number of di
agrams and the typical complexity of each diagram increases dramatically with 
each extra loop. These two factors are fixed in advance by the scope of the prob
lem. The third culprit in our multiloop computations is the series expansion of a 
multi-scale problem, as described in Chapter 7. An approximate rule of thumb 
is that the computing time needed to generate N  terms of such a series expan
sion grows as the factorial of N.  N o matter how powerful the computer being 
used, it is not hard to pick a value of N  sufficiently large to put the computation 
out of reach. In general, when expanding loop integrals from opposite ends of a 
kinematic region, roughly five terms of each expansion are sufficient to produce 
a region of overlap where the two expansions agree. For two-loop calculations, 
five terms can usually be obtained on a desktop computer (circa 2004) without 
any extraordinary optimization efforts, and so it is not particularly important to 
try to extract one or two additional terms. At three loops, on the other hand, 
even the first few terms are hard to get, thus further efforts are justified.

Typically, the primary method of extending a very large calculation is to 
optimize the computer code. This is often done by analyzing the flow of a pro
gram and then trying to improve the efficiency at one or more key bottlenecks 
through small modifications in the code. The next level of optimization involves 
adjusting the system settings that govern the various levels of memory alloca
tion. Having maximized the performance of a particular program on a partic
ular machine, the next escalation of effort might involve other computers. The 
various diagrams in a multiloop calculation can be distributed among a set of 
machines, for instance. Often, though, there are one or two diagrams whose dif
ficulty exceed that of all the others combined, so that distributed computing is 
not necessarily much of an improvement. Instead, one might consider parallel 
computing, where a set of computers is used to evaluate a single diagram. The 
latest version of FORM supports parallel processing [41], and thus provides a 
less expensive alternative to high-performance workstations.

Recently, an alternative paradigm has been implemented by Laporta [19] to 
solve the large systems of recurrence relations that arise in multiloop calcula
tions. In place of the manually constructed algorithms described in Chapter 4, 
this new approach uses the Gaussian elimination procedure in a brute force 
way. Instead of applying the recurrence relations selectively to create an ef
ficient algorithm that is valid for arbitrary exponents of the propagators, the 
Laporta method picks a specific range of exponents and writes every possible 
recurrence relation for every possible loop integral in the range. The loop inte
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grals are then ranked by "difficulty" and the large list of recurrence relations is 
used to remove the loop integrals one by one, starting with the most difficult. 
When every recurrence relation is used up, whichever loop integrals remain are 
regarded as master integrals. Spurious master integrals can arise if the initial 
range of loop integrals is not sufficiently large. This algorithm is applied only 
to the top-level topologies that follow directly from the original diagrams, and 
while some of the master integrals identified by the algorithm will consist of 
products of smaller integrals or loop integrals with integrable subloops, there is 
no need to work through a sequence of subtopologies. The initial implementa
tion of the Laporta algorithm involves sophisticated programming techniques, 
but once the core of the algorithm is designed, it can quickly be adapted to ad
dress any other given topology. Given the manual effort required to construct 
recurrence relation algorithms for three-loop topologies, the lure of a computer
generated algorithm is apparent. What might not be apparent, though, is that 
the Laporta algorithm, while admittedly slow and inefficient for simple prob
lems, is actually faster at obtaining additional terms deep within an expansion. 
In Chapter 13, for instance, this algorithm was used to obtain the oo5 terms for 
the contribution to top quark decay from the two most difficult diagrams [43]. 
The key feature of the Laporta algorithm which seems to provide this improve
ment is the use of very large tables to store the results of each specific loop 
integral. The generation of such large tables, in place of strict real-time algo
rithms, is likely to facilitate substantial improvements [44] in programs written 
with the traditional recurrence relation algorithms. This is an avenue that will 
soon be explored, and in the immediate future, it is likely that both algorithms 
will be employed in order to determine the ultimate potential of each.

"I predict that within 100 years computers will be twice as powerful, 
10 000 times larger, and so expensive that only the five richest kings 
of Europe will own them."

Professor Frink (The Simpsons)
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Chapter 11 

Muon g  —  2

Measurements of the anomalous magnetic moments of the electron and muon 
provide us with extremely sensitive tests of the Standard Model. Minute devia
tions between the experimental measurements and the corresponding Standard 
Model predictions might be indicative of N ew  Physics. In this chapter, we will 
outline the components of the Standard Model prediction for the muon anoma
lous magnetic moment and explain how preliminary deviations between theory 
and experiment were distorted by three distinct calculational errors. Most sig
nificant among these was an error in the light-by-light scattering contributions; 
the paper [45] on which Section 11.2 is based was instrumental in settling this 
issue. We conclude with an update on the current status of the theory and ex
periment.

11.1 Background
A charged lepton, such as an electron or muon, can interact with an electro
magnetic field in one of two parity-conserving ways, so that the most general 
interaction vertex is

—ie 'y fiF i ( q 2) + ^  a ̂ q v F2{q2) . (11.1)

In relativistic quantum mechanics, Ft =  1 and F% =  0, therefore only the Dirac 
term —ie7M is present; the Pauli term is absent because it is proportional to the 
anomalous magnetic moment, which in Dirac theory is

  n
a = —-— =  F2(0) =  0 . (Dirac theory) (11.2)
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A nonzero anomalous magnetic moment can arise from the radiative corrections 
induced by a quantum field theory, as was first calculated by Schwinger [5].

For any charged lepton, the QED contribution to the anomalous magnetic 
moment can be calculated as a series in powers of the fine-structure constant:

“QED =  Ai 0 + A i  0  +  As 0  + '''  ’ (U -3)

where the dimensionless numerical coefficients A{ depend, at most, on rae, m^,  
and m T. The contribution to the anomalous magnetic moment from any other 
kind of physics is characteristically suppressed by the ratio m2/A 2, where m  is 
the mass of the lepton under consideration and A is the mass scale at which the 
other kind of physics resides (with the assumption that A > m). As a result, even 
though a e has been measured about 150 times as precisely as (8 a e ~  0.4 x l0 ~ u 
and 8 a ^ ~  60x l0~u ) [46,47], the ratio r r v ^ /m l ~  43 000 indicates that is almost 
300 times more sensitive than a e to non-QED physics. It is for this reason that 

is so important. The measurement of a e is not discarded, however, because 
it can be used, along with (11.3), to determine a value for a  that is more precise 
than is currently possible using any other means.

There are three classes of contributions to from the Standard Model. We 
will describe them only briefly here, but a more detailed discussion and addi
tional references can be found in [48]. The largest Standard Model contribution 
to ap is due to QED:

oed =  ^ - +  0.765857376(27) f - ) 2 + 24.050 50898 (44) ( - ) *
2 TT \TT /  \7T/

+126.07(41) +  930(170)

=  116 584719.4(1.4) x HT11 . (11.4)

This result has been obtained analytically through three loops [49] (the uncer
tainties arise from lepton mass uncertainties), the complete four-loop calcula
tion has been evaluated numerically [50], and the five-loop diagrams have been 
estimated numerically [7,51]. The important thing to note is that the uncer
tainty in a^ED is significantly smaller than the current experimental uncertainty 
of 60 x 10~n .

The next largest Standard Model contribution to comes from QCD, or 
more specifically, from the effects of virtual hadrons. The primary component of 
aEad arises from the vacuum polarization diagram of Figure 11.1. Since we can
not use perturbative QCD to evaluate the vacuum polarization contribution, we 
must instead employ the optical theorem to derive a dispersion relation that re
lates the "stuffed" photon propagator in Figure 11.1 to the experimentally mea-
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hadrons

Figure 11.1: Vacuum polarization contribution to a£ad.

sured cross section for e+e hadrons. Using this approach, a recent analysis 
of the vacuum polarization effects [52] leads to

ahad =  6 938 (80) x 10-n  (11.5)

The uncertainty in this contribution is obviously quite substantial. Note that 
there is an alternate method for obtaining the vacuum polarization contribu
tions which relies on experimental data for r decays (see, for example, [53] for a 
discussion).

The third and smallest Standard Model contribution to aM is caused by the 
electroweak sector, involving virtual Z°, W ±, and H  bosons. This contribution 
has been obtained analytically through two loops [54], resulting in

%
bGum l  f 1 , n s2 /  m l

“  + 1  +  024\/27r2 1 5 \M & rJ )
+a®w (2 loops)

-  152 (4) x 1(TU . (11.6)

As was the case with the QED contribution, the uncertainty in the electroweak 
contribution to is significantly smaller than the experimental uncertainty.

Combining these three classes of contributions, we obtain the current Stan
dard Model prediction for the muon anomalous magnetic moment:

a S M  =  a Q E D  +  G h a d  +  f lE W

-  116 591809 (80) x l(T n . (11.7)

Let us now backtrack to the year 2000. At the time, the best experimental
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determination of dated back to a 1977 experiment at CERN [55]:

(a/TP) 1977 =  H6592300 (840) x l(T n . (11.8)

While this was an impressive measurement for its time, a more precise experi
ment began collecting data in 1998 at the Brookhaven National Laboratory. At 
this time, the theoretical prediction was

( 4 M)2000 =  116 591597 (67) x KTU , (11.9)

in agreement with the CERN measurement. The BNL experiment, E821, aspired 
to reduce the experimental uncertainty by more than an order of magnitude, 
though, and in February of 2001, the most recent E821 analysis [56] had modi
fied the world-average experimental result to

(<*7 )2 0 0 1  =  116 592 023(151) x KT11 . (11.10)

Although the absolute discrepancy between theory and experiment had de
creased, the significance of the discrepancy had become substantial,

a*xp -  aJM =  (426 ±  165) x l(T n => 2.6a , (11.11)

and scores of particle physicists scrambled into action to try to account for the 
discrepancy. Much of the theoretical effort involved contributions from various 
kinds of N ew  Physics that would exactly produce such a discrepancy. Others set 
about double-checking the Standard Model calculations and their efforts paid 
off when it was suggested that the light-by-light scattering contributions to a^ad 
had been incorporated with the wrong sign [57,58]. The previous contribution,

aBBL =  -8 5  (25) x 1CT11 , (11.12)

resulted from the combined efforts of two independent groups [59,60]. It can 
be seen from (11.11) that if we change the sign of aBBL, the resulting increase 
in a®M decreases the discrepancy between theory and experiment by about one 
standard deviation.

11.2 Light-By-Light Scattering
The light-by-light scattering contributions to ah®d arise from diagrams like the 
one in Figure 11.2. Here, the virtual hadrons are irreducibly connected to four 
photons and there is no known way to relate these contributions directly to ex
perimental observables. Instead, the diagrams must be calculated with the help
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hadrons

\L

Figure 11.2: Light-by-light scattering contribution to a ^ .

of specific models of hadron physics. The choice of model will undoubtedly 
affect the magnitude of the contributions, but the overall sign should be model- 
independent, and thus we shall restrict ourselves to a specific model for our 
own calculation of the light-by-light scattering contribution.

The hadronic blob interacting with four photons in Figure 11.2 can be mod
eled as the exchange of a neutral hadron between pairs of photons. Since the 
7T° is by far the lightest neutral hadron, and thereby provides the dominant 
contribution to aBBL, w e will ignore the other neutral hadrons and model the 
light-by-light scattering by the two diagrams in Figure 11.3. To calculate the

11

(a) (b)

Figure 11.3: Pion pole contributions to aBBL.

contribution from the "giraffe" diagrams of Figure 11.3, w e require a Feynman 
rule for the interaction of a pion with two photons. This interaction results from
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the Adler-Bell-Jackiw anomaly [61,62], and at low energies, it is described by 
the Wess-Zumino-Witten Lagrangian [63,64],

rvM ~
£wzw =  - j T r ^ r F ^ w 0, (11.13)

where Nc =  3 is the number of colors in QCD and F„ ~  92.4 MeV is the pion 
decay constant. This interaction is only valid at low  energies, and so it should 
not be surprising that we would obtain ultraviolet divergences if we naively 
used it in the loop diagrams of Figure 11.3. We can tame the incorrect high- 
energy behavior in an approximate way by multiplying the 7r077 interaction 
vertex by a form factor whose value is essentially 1 at low energies and 0 at 
high energies. This transforms the 7r°77 interaction vertex to

4 )  qiQ2 , (11.14)

where qi and q2 are the outgoing momenta of the two photons and F7ro11(qf, ql) 
is the form factor. The simplest choice for F ^ o ^ q ^ q l )  is the Vector Meson Dom
inance form factor,

„ . 2 2x M 2 M 2
^77(91 > ft) ~  M 1 _  q2 „  q2 ’ (11.15)

where the parameter M  is phenomenologically determined to be very close to 
the mass of the p meson:

M & m p ~  769 MeV . (11.16)

This form factor, as its name suggests, has a nice physical interpretation. The de
nominator factors of (M 2 — q2) can be regarded as p meson propagators, so that 
we can think of one vector particle (the photon) behaving like another vector 
particle (the p) when interacting with the 7r°.

At this stage, we have now reduced the light-by-light scattering contribu
tions of Figure 11.3 to calculating a pair of two-loop integrals. The main compli
cation is that these loop integrals depend on three external scales: m p, m n, and 
M.  To solve these integrals analytically, w e will employ the expansion tech
niques of Chapter 7. Since m p and m*. are fairly close together, w e can perform 
the expansion procedure in two stages.

In the first stage, w e use a Taylor expansion to remove to*, from the loop 
integrals:

1 _   1_________
k2 + m l  k2 + mjl — m 2 + m l
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k2 + m 2
1

We will denote this first expansion parameter by 8,

and w e can see that 8 is only small because of the proximity of m^  and an ex
tension to r] meson exchange, for instance, would require a different expansion 
procedure.

For the second stage, we will employ an asymptotic expansion in the small 
parameter m2/M 2. To do this, we need to divide the loop integrals into five 
regions based on the scales of the two loop momenta. As explained in Sec
tion 7.3, within each of the regions, one or more propagators will contain both 
soft (O (m^)) and hard ( 0  (M)) terms. After expanding these propagators, the 
original two-scale, two-loop integrals in each region will simplify to either single
scale two-loop integrals or products of a soft-scale one-loop integral with a hard- 
scale one-loop integral. Integrations in all five regions can then be carried out 
analytically, and the coefficients of the two expansion parameters, 8 and m2 /M 2, 
can be obtained to an arbitrary order.

The result can be written as

(11.19)

and w e find

24V3 2 3456^3 128
155 Tj __ /_65_ +  _ t t _ \

7T 17tt 19
— p r 0 2 --------------------7= "T  7 7 7 2 7 ^ 2

„ C(3) ll!T2
^2 ~  ---288 15552

m l  r 155 
M 2 1296

 L -  ----- + ------7= L
1296 \1296 16V3J

r 11915
62208 

C(3) , 347^
——— 7 'r1̂ ; 7288 93312

C(3) 53tt2
216 +  31104

(11.20)
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where L — lc)g(M/mjU), £(3) ~  1.202057 is the Riemann zeta function, and S<z = 
^=C l2 (f)  ci 0.260434. The positive sign of the coefficient of L 2 in the leading 
order in m ^ / M  confirms the result of [57,58]. Using terms in (11.20) to (m2/ M 2)3 
and 86 and substituting a =  1/137.036, Nc — 3, M  — 769 MeV, =  105.66 MeV, 
m,r =  134.98 MeV, and Fn =  92.4 MeV into (11.19) we obtain

aLBL,*° _  + 5 6  x 10-n  _ (1 1 .21 )

The key feature of this result is that the light-by-light scattering contribution 
is indeed positive and that the discrepancy between the Standard Model and 
experiment is thereby reduced.

Our result can be checked in several ways, in particular to ensure the cor
rect treatment of the Feynman rules in our computer programs. For example, 
using the WZW Lagrangian (11.13) one can evaluate the vacuum polarization 
contribution to where the virtual photon splits into a 7r° and a 7 , as shown in 
Figure 11.4. The contribution of this diagram to should be positive, since a

7C°

Figure 11.4: Vacuum polarization contribution of the neutral pion. 

dispersion relation relates it to the cross section a(e+e~ -+ 7r°7 ). We find

,2 /  AT \  2

where
L  181 7r 7tr2 „  f m 2

^  =  I2D6 +  15662 -  ^ l  +  7776 (1L23>

Including several more terms in the m ^ /M  and 8 expansions, w e obtain

a ^ ’ 7 ~  +3.7 x 10 , (11.24)

a positive contribution which lends further proof to the assertion that aBBL is 
positive.
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11.3 g  — 2 Epilogue
Shortly after our confirmation [45] of the positive sign in a^BL, the validity of the 
revised result was reinforced by a chiral perturbation theory calculation [65]. 
Meanwhile, the errors in the original negative-sign determinations of aBBL were 
traced to a misunderstanding of how the Levi-Civita tensor is normalized in 
FORM [66,67]. A subsequent investigation [68], in which perturbative QCD is 
used to constrain the form factors of (11.14) at high energies, has suggested that 
the magnitude of the light-by-light scattering contribution may be larger than 
previously thought.

Meanwhile, the increased scrutiny of the Standard Model prediction for 
uncovered two other errors. The first of these was a minor adjustment of the 
O (a4) QED contribution which was found to have been in error due to prob
lems with the numerical integration of the loop integrals [70]. The other was an 
error in the experimental determination of the cross section a(e+e~ —» hadrons) 
used for the vacuum polarization contributions to resulting from luminos
ity miscalibrations at the CMD-2 experiment [71].

With all three corrections in place, we restate (11.7) as the current Standard 
Model prediction for the anomalous magnetic moment of the muon,

qsm _  H 6591809 ±  72yp ±  35lbl ±  4qed+ew

=  116591809(80) x 10~u , (11.25)

where in the first line, we have provided a breakdown of the sources of the
theoretical uncertainties.

On the experimental side, E821 continued to collect data until 2001. In this 
final year of running, negatively-charged muons were used in place of the posi
tively-charged muons that had been measured previously. Based on the analysis 
of the final data set at E821 [47], the current experimental determination of the 
anomalous magnetic moment of the muon is

a®xp =  116592 080 (60) x 10~n . (11.26)

From (11.25) and (11.26), we see that the current discrepancy between exper
iment and theory is

ae*p -  af*  =  (271 ±  100) x IQ"11 => 2.7a . (11.27)

Although this discrepancy could stem from still undiscovered errors, or perhaps 
be just a statistical noncoincidence, it is hard not to consider it as a tantalizing 
hint for N ew  Physics beyond the Standard Model. For example, supersymmet-
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ric models typically [48] provide a contribution at the one-loop level of

K - l - l S O x l O - ^ ^ X )  tan /3 , (11.28)

where rh is roughly the mass of the supersymmetric particles in the loop and 
tan /3 is the ratio of the vacuum expectation values of the Higgs doublets. For 
plausible regions of supersymmetric parameter space [72], (11.28) has both the 
correct sign and magnitude needed to account for the discrepancy in (11.27). 
Pending a possible direct observation at the LHC, this is only speculation of 
course, but hopefully we will soon have the concrete evidence available to look 
back fondly at the muon g — 2 saga.

"They are illusions, they're not the solutions they promised to be, the 
answer was here all the time."

Evita (Don’t Cry For Me Argentina)
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Chapter 12 

Energy Levels of QED Bound States

Bound states formed by the attractive force between oppositely charged parti
cles provide us with a sensitive test of Quantum Electrodynamics via precise 
measurements of the energy levels; such measurements are often very impres
sive, owing to the characteristically low energies of these processes. In this 
chapter, w e shall explore the energy levels of a general QED bound state formed 
between two particles whose charges, e and Ze, and masses, m  and M,  are ar
bitrary. After reviewing the basic hierarchy of energy level corrections, we will 
see how the techniques of perturbative quantum field theory can be used to 
evaluate new  classes of energy level corrections for a general QED bound state.
In particular, two new classes of results — the O (a(Za)5) radiative recoil and
O ((Z a )6) pure recoil corrections — are evaluated in this chapter, as first pre
sented in the paper [73].

12.1 Classification of Energy Level Corrections
Let us begin by looking at a simple hydrogen atom consisting of an electron of 
mass m  and charge —|e| and a proton of mass M  and charge +|e|. The Coulomb 
attraction between them is responsible for the binding of the particles and in the 
absence of any other complications, there is a set of energy levels

E h in d in g  = ------- ’ (12 .1 )

where n is a positive integer and a  ~  1/137 is the fine-structure constant. Rough
ly speaking, we can interpret (12.1) as implying that the speed of the electron (in 
units of c) is

v ~  -  , (12.2)
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which suggests that the electron is, to a good approximation, non-relativistic. 
Relativistic effects can thus be treated as a small perturbation to the Schrodinger 
equation, and since the relativistic kinetic energy is

K E  — m (  -fL == -  1 )
Vn/1 -  v2 )

— \ m v 2 +  ~mv4 +  . . .  , (12.3)
2 8

w e expect the leading relativistic effect to be O (ran4). The contribution of the 
spin-orbit interaction is also of the same order and these two O (ran4) effects 
are known collectively as fine structure. Beyond this, w e have two more ef
fects to consider: hyperfine splitting and the Lamb shift. Hyperfine splitting, 
arising from a spin-spin interaction, is analogous to the spin-orbit effect, only 
now the angular momentum to which the electron spin couples is suppressed 
by the ratio m /M .  The Lamb shift, meanwhile, is an O (m a 5) effect whose ori
gin is irreducibly field-theoretic. The hierarchy of these effects is summarized 
in Table 12.1. Strictly speaking, these effects refer to experimentally measured 
differences between specific energy levels. The leading-order contributions of 
Table 12.1 to these effects are supplemented by higher-order contributions.

Binding energy 0  (ma2)

Relativistic Correction
Fine Structure O (ma4)

Spin-Orbit Interaction

■ Hyperfine Structure O (ma4(m/M))

Lamb Shift 0  (ma5)

Table 12.1: Energy hierarchy for a non-relativistic QED bound state.

N ow  let us generalize the problem. First, we will allow the magnitudes of 
the two charges to differ from each other. Specifically, we will keep the mag
nitude of the first charge as e and we will denote the magnitude of the second 
charge by Ze. Although Z  has an obvious interpretation as the number of pro
tons in a hydrogen-like atom, we will soon see how  its inclusion is useful even 
for the ubiquitous systems in which Z  = 1, such as positronium (e+e~), muo-
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nium (/ie), or muonic hydrogen (pp).
The second generalization we would like to make is that the pertinent mass 

scale should not be m,  but rather, the reduced mass

m M
p   -------— . (12.4)m + M

When m  -C M , p ~  m,  but eventually we are going to derive results that are 
valid for any choices of m  and M ,  and thus it is important to incorporate p. 
This does not mean that m  and M  are absent, though. For example, the O (a4) 
hyperfine splitting for structureless spin-1/2 particles, as was first derived by 
Fermi [74], is

b "  =  3 ^ ( z “ )4 - (123)
The factors of m  and M  in the denominator of (12.5) arise directly from the 
dipole moments of the particles, while the p3 must be present to provide Ep 
with an overall dimension of energy.

At this stage, w e have three small parameters in the problem: a, Za,  and 
either m / M  or (1 -  m /M ).  While the entries in Table 12.1 summarize the lead
ing order effects, there will be additional corrections that can be expressed in 
terms of one or more of these three small parameters. These additional correc
tions are given descriptive names based on which of the small parameters they 
incorporate. Energy level contributions that only depend on additional factors 
of Z a  are known as binding corrections or, occasionally, relativistic corrections. 
Radiative corrections, meanwhile, depend on both a  and Z a  and are a result of 
Quantum Electrodynamics. Recoil corrections depend on m  and M i n a  non
trivial way that cannot be derived directly in terms of p. Finally, radiative recoil 
corrections are those which depend on all three of the small parameters.

We can also distinguish energy level corrections based on the source of the 
contribution, rather than the form of the result. With the lowest-order binding 
effect known exactly, every additional contribution will be obtained via tradi
tional time-independent quantum-mechanical perturbation theory. The "soft" 
contributions arise from the long-range interactions of the bound state con
stituents, whereas the "hard" contributions correspond to the short-range in
teractions characterized by 5(r) terms in the perturbing potential. The soft con
tributions can be evaluated for arbitrary masses of the constituent particles be
cause the essential soft dynamics of a non-relativistic bound state, as described 
by the Schrodinger equation, are characterized by the reduced mass of the sys
tem rather than the individual masses of the constituents. As a result, once the 
soft contributions are obtained in the equal mass case [75,76], the more gen
eral mass case follows easily. The hard contributions, on the other hand, result
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from the relativistic region of loop-momentum integrals, and they are usually 
obtained as Taylor expansions of scattering amplitudes in terms of the spatial 
momentum components of the external particles, which are taken to be on mass 
shell. At lowest order in a, the hard diagrams should be evaluated exactly at 
threshold, whereby the constituents have zero relative velocity. This implies 
that the relevant loop-momentum integrals depend on only two scales: m  and 
M.  The hard contributions have a much more complicated dependence on the 
mass scales than the soft contributions do, and this is why we will expand the 
hard scattering diagrams in powers of either m / M  or (1 — m /M ).  In the next 
section, we will see in detail how to calculate these hard contributions.

12.2 Calculational Method
Consider the scattering amplitude between particles of masses m  and M  in Fig
ure 12.1. We can construct the amplitude for this process by assembling the

Figure 12.1: Sketch of a general scattering amplitude which produces correc
tions to the energy levels of a QED bound state. The thin and thick lines denote 
particles of mass m  and M,  respectively, and the central blob represents an un
specified QED interaction.

Feynman rules while moving backwards along each fermion line:

M  = i  [u(p)Qiu(p)} [ v ( P ) Q 2v ( P ) \  . (12.6)

Qi and Q2 incorporate every Feynman rule needed to describe the interactions 
in the blob. u(p) and u(p) are the spinors for the light particle and in Minkowski 
space, the onshell condition is p2 = m 2. Similarly, v(P)  and v(P)  are the spinors 
for the heavy particle and P 2 — M 2. Since w e are working at threshold, where 
the particles have no relative velocity, we do not allow a net momentum transfer 
from one particle to the other. This assumption already requires that the blob in 
Figure 12.1 contain at least one loop, since the propagator for a single photon, 
—ig^u/q2, would be singular when we constrain q2 to be zero.

The amplitude (12.6) can be regarded as a perturbing potential via

A U  = - M .  (12.7)
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Since we work with momentum-space Feynman rules, we will need a Fourier 
transformation in order to obtain the configuration-space potential:

A V  = A U  <53(r) . (12.8)

As anticipated in the previous section, these hard contributions are character
ized by the 5-function in the perturbing potential. The energy shift induced by 
the perturbation A V  is simply

A E  = <V>(r)|AV|V>(r))
=  - M  |^(0)|2 . (12.9)

All hydrogenic wavefunctions vanish at the origin except for the 5  states (£ — 0), 
and if we further restrict ourselves to the I S  states, w e have

I * s (0)|2 =  ^ £ ^ .  (12.10)
IX

Already we can see that a minimal two photon exchange in Figure 12.1 will 
lead to O ((Za)5) energy level shifts. Depending on the relative alignment of 
the spins of the constituent particles, a 15 state can either belong to the J =  1
triplet or the J  — 0 singlet. The triplet and singlet states are often represented
by the prefixes ortho- and para-, respectively. The hyperfine splitting represents 
the energy gap between these formerly degenerate states:

E h f s  — -^'triplet — -^singlet • ( 1 2 . 1 1 )

The average energy shift — which is very closely related to Lamb shift — will 
be defined as

r p  -^'triplet d  +  -Esinglet n. 1

= --------d + 1  ’ (12'12)
where d — 3 — 2e is the number of spatial directions, in dimensional regulariza
tion, in which the polarization vector of the triplet state can point.

We now have most of the formalism in place except for one key point: how  
do we choose the spinors u, u, v, and v in (12.6) so that the incoming and outgo
ing pairs of particles have a well-defined total spin? With the particles at rest,
we can define a bound state wavefunction ip =  uv so that ip* = vu and (12.6)
becomes

M = i T r { i P * Q l i P Q 2 }  . (12.13)
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The wavefunctions can be expressed [75] as

%  =  (12.14)

d 2-15)

where £ is the polarization vector. We will average over the d directions of £ 
immediately after taking the trace in (12.13) by creating the polarization four- 
vector £ =  (0 , £) and using the identity

{(( = \  (A0B„ - A - B ) .  (12.16)

Note that since p = (m, 0), we can remove any explicit reference to the zeroth 
component of the four-vectors in (12.14), (12.15), and (12.16) via 70 =  rf/m and 
A q — A  ■ p /m ,  leaving us with scalar products that are much more convenient to 
work with than specific components of vectors.

One-Loop Results
Recapitulating the formalism of the previous section, we can calculate the en
ergy level shifts to the IS1 singlet and triplet states with the expression

AE  =  - i  {Za^  Tr Q11PQ2} , (12.17)

where -ip is taken to be either ipp or depending on the spin of the bound 
state, and Qi and Q2 depend on the specific structure of the scattering diagram. 
We will now illustrate this procedure by calculating the O ((Za)5) energy level 
shifts induced by the one-loop diagrams in Figure 12.2.

(b)(a)

Figure 12.2: Diagrams contributing to the O ((Za)5) energy level shifts of a QED 
bound state.
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The contribution to the energy shift from diagram (a) is

AEu, =  - i  [ \d°k] ^  (—ie)2(—iZe)2 (12.18)
7T J K K

x Tt [ + ^  + m)  , ■(> - P  + M ) \
X k2 + 2k p  7 ^  k2 ~ 2 k P  7 J '

Notice that the incoming momentum P  runs backward with respect to the arrow 
in the propagator for the heavy fermion, but since the loop momentum k is 
circulating clockwise, the denominator is (k — P )2 +  M 2, or more compactly,
k2 -  2 kP.

The next steps are to insert either the spin-zero or spin-one wavefunctions 
and to take the trace. This will lead to various scalar products involving p, P, 
and k ,  all of which are either constant or can be expressed in terms of existing 
denominator factors, thereby leaving us with loop integrals of the form

/ [dDk]
k2a(k2 +  2kp)b(k2 -  2k P f  '

Since p =  (m, 0) and P  = (M, 0), the partial fraction identity

(12.19)

1 _  1 f r a  M l
{k2 +  2kp)(k2 — 2kP) k2(M + m ) \  k2 +  2kp k2 — 2kP  J

allows us to express the original two-scale integral as a pair of one-scale inte
grals, each of which can then be solved exactly. The integrals with p will finish 
with a factor of m r 2t, whereas the integrals with P  will produce a factor of M -2e. 
If the integrals were finite, these factors could be set to 1, but since the contribu
tions of the individual loop integrals are typically divergent, w e will need to be 
more careful. By writing

—2e
M ~ 2t =  m~2e ( — \  =  m - 2t ( 1 — 2e In —  +  2e2 In2 —  +  O  (e3) ) , (12.21)

V m 1 V m m  v ' >

w e can collect a factor of ra~2e from every loop, regardless of how  the integral is 
calculated.

Our final result for the hyperfine splitting due to the diagrams in Figure 12.2

SEl f  =  -  J f iM 2 —  h  — , (12.22)M 2 — m 2 7r m
in agreement with the result first obtained by [77], as expressed in the encyclo
pedic review article [78]. Notice that (12.22) is symmetric in m  and M,  as well
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as finite in the limits m  <C M  and m  = M.

Expansions in Mass Ratios
With an additional loop in the calculation, it will no longer be feasible to obtain 
compact solutions for the energy level shifts that are valid for any possible val
ues of m  and M.  Instead, we will employ the expansion techniques of Chapter 7. 
In particular, w e will consider two types of expansions.

If m  ~  M,  we will use the Taylor expansion technique of Section 7.2 to write

1 _  1 
k2 +  2 kp k2 + 2kP(l  — y)

1 2 kP  2 (2 kP )2
k2 + 2 k P +V (k2 +  2kP)2 +V (k2 + 2k P f  + “ ' ’ ( )

where the expansion parameter y is defined by

77?
» =  l -  jjjr ■ (12.24)

This allows us to remove the small scale p  from the loop integrals so that they 
only depend on the large scale P. Our result for the hyperfine splitting is

SEi» = E^  ( - 1  + J  + J  + T  + - )  • <12-25>

which, after a bit of algebra, can be shown to be in agreement with the exact 
result of (12.31). If the constituents of the bound state are a particle-antiparticle 
pair, for example positronium, we can simply set y  =  0, although it must be em
phasized that we are including neither the annihilation diagram nor the anoma
lous magnetic moment diagram in Figure 12.3.

If m  <C M,  w e will use the asymptotic expansion technique of Section 7.3. 
At the one-loop level, this entails dividing the loop integrals into two regions: 
A; ~  m and k ~  M .  When k ~  M ,  we can expand the light fermion propagator 
via

1
k2 +  2 kp k 2 + 2rkP

1 2kP  2 (2k P f
j ? - r ~ v + r  i f  • (12-26)
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k / V W i

(b)
— ^ H A / X A J —

(a)

Figure 12.3: Annihilation and anomalous magnetic moment diagrams — con
tributing to the O ((Za)5) energy level shifts of a QED bound state — that we 
do not consider here.

where the expansion parameter r is defined by

r = £ .  (12.27)

This allows us to remove the small scale p  from the loop integrals so that they 
only depend on the large scale P. Turning to the other region, when k ~  m  we 
must expand the heavy fermion propagator:

1 1 k2 k4
k2 -  2kP  2kP  (2kP)2 { 2 k P f

1 o k2 , k4 
= - r 2 k p - r J 2 k p f ~ r  ( 1 2 ' 2 8 )

Although w e have succeeded in removing the large scale P  from the loop in
tegrals, it has come at the price of eikonal propagators. As explained in Sec
tion 6.2, the pole terms of these propagators require extra attention. At the 
one-loop level, eikonal propagators are not much of a concern, since the par
tial fraction identity

1 1 /  1 1 \
(12.29)

(2kp)(k2 +  2kp) k2 \2 k p  k2 +  2kp

allows us to remove either the eikonal propagator or the light fermion propa
gator. In the case of the former, this leads to a simple one-loop integral. In the 
case of the latter, the p  in the eikonal propagator does not provide a true scale to 
the loop integral when p =  0, and so the scaleless loop integral is discarded, in 
accordance with the discussion in Section 2.3. Pictorially, w e will denote eikonal
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propagators with a double line so that

After calculating and combining the contributions from both regions, we obtain

Za
SElh = 3EF —  In r  (r +  r 3 + r 5 +  r7 +  . . .) , (12.31)

7T

in agreement with the exact result of (12.22). Although the asymptotic expan
sion method (around m / M  =  0) is more difficult to implement than the Taylor 
expansion technique (around m / M  =  1), it is extremely useful given the small 
m / M  ratios which characterize most of the phenomenologically important QED 
bound states. For example, in ordinary hydrogen m e/ m p ~  1/2000, in muonium  
m e/ m p ~  1/200, and in muonic hydrogen m p/ m p ~  1/9.

12.3 Radiative Recoil Corrections
The first class of two-loop contributions we will consider are the O (a(Za)5) 
radiative recoil corrections to the bound state energy levels. The additional fac
tor of a  relative to the O ((Za)5) corrections of Section 12.2 suggests that the 
additional photon will couple entirely to the light fermion, and thus we need 
to consider the 6 diagrams in Figure 12.4. We will multiply diagrams (c) and 
(f) by 2 in lieu of calculating their mirror images. In addition, w e will need to 
incorporate renormalization contributions in accordance with the methods of 
Chapter 9. Specifically, this entails a wavefunction renormalization on the light 
fermion line of the one-loop diagrams in Figure 12.2, as well as a mass renor
malization on the light fermion propagators in those diagrams.

Expansion About m/M — 1
Starting with the case of m  ~  M,  we can expand each of the light fermion prop
agators as a Taylor series in y  = (1 — m/ M)  so that the small scale is removed 
from the loop integrals. At this stage, the most general loop integral we can 
have is from diagram (c) in Figure 12.4, containing the denominator factors:

k\ k\ k% +  2k2P  (kx +  k2)2 + 2(ki + k2)P k\  +  2k\P k\ — 2k\P .
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(a) (b) (c)

(d) (e) (f)

Figure 12.4: Diagrams contributing to the O (a(Za)5) radiative recoil corrections 
to the energy levels of a QED bound state. Diagrams (c) and (f) are multiplied 
by 2 for symmetry.

The partial fraction identity

1
(ki — 2k\P){k\  +  2k\P) 2k\ {  {k\ -  2k\P)  +  (kI +  2k\P)  }  (1232)

can be used to remove one of the propagators so that the remaining five propa
gators constitute an integral of either the "N5" or "NP" type. These topologies 
are listed in the Appendix. The remainder of the calculation is straightforward 
and so we shall skip right to the results. Restoring the explicit mass dependence, 
w e find for the hyperfine splitting that

/ m \ 3 (  1 3 55 \
+  (  M )  \  8?r2 16 n 576/
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/  m \ 4 /  57 3 2147 \
+ V M J  \4007t2 32 n 23040)

m \5  /  11 3 631 \
M J  \40tt2 64 n 7680/

/ m \6  /  41389 3 0 46679 \
+ \  M J  \1176007t2 128 n 645120/

/ m \ U  141709 3 , n 10561 \
+  (  M J  \3528007r2 256 n 161280j  '

/  m \  8 /  5539481 3 0 157753 \ )
+ \  M J  V12700800tt2 512 H 2580480/J !

and for the spin-independent energy shift we obtain

/ ra\ /  9C(3) 39 7 45 \
+  ( 1 - S )  ( - ^  +  2 ^ - 2 l n 2 + 32j  

/  m \ 2 (  61 9,  n 119\
+ ( 1 - S f )  \247t^ "*"4 72")

/ 1 m \ 3 {  29 l 31 \
+ ( l _ s )  \  247t̂  "*" 8 288/

/ m \ 4 f  233 l  571 \
+  V M / V600tt2 +  16 n 11520/

/  m \s  /  509 1 , n 187 \
+  V M J  V1200tt2 +  32 n 3840/

/  m \ 6 f  135311 1 0 13439 \
+  V M J  V352800?r2 +  64 n 322560/

/ m \ 7 f  39721 1 , 0 1427 \
+  ( m ) (ll76007T2 +  128 n 40320/ '

/  m \8  /  5683891 1 0 16901 \ )
+  V M J  \19051200tt2 +  256 n _  552960/ J ‘

There is, however, another set of diagrams that produces O (a(Za)5) effects. 
The vacuum polarization diagrams in Figure 12.5, along with a charge renor
malization factor applied to the photons in the one-loop diagrams, should also 
be considered. This additional class of contributions will be separately finite, 
as can be justified using the group theoretical considerations of Chapter 8. By 
including these vacuum polarization effects and setting m  — M ,  we can obtain

SEradiec ~  —  E —
{ } m? 1 I 2tt2 4tt2 12
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(a)

Figure 12.5: Vacuum polarization diagrams contributing to the 0  (a(Za)5) en
ergy level shifts of a QED bound state.

the energy level corrections for positronium, provided we multiply our results 
by 2 to allow the radiative photon to couple to either line and w e do not double
count the vacuum polarization contributions. With p  =  m /2, w e obtain

" S -  -  < “ >}•
r p r a d r e c  6 f  ^ C ( 3 )  9 7  1 0 2 5  )  .
« w  -  m a  +  ' (1 2 3 6 )

in complete agreement with the analytic result first derived in [79].

Expansion About m/M — 0
N ow  that we have checked our (1—m /M )  calculations against the known positro
nium results, the next step will be to examine the m  <C M  limit using an expan
sion in m /M .  Our goal is to show that the two expansions match for a range of 
intermediate values of m / M  so that for any choice of m  and M, at least one 
of the expansions will produce reliable results. For consistency with (12.33) 
and (12.34), w e will not include the vacuum polarization contributions of Fig
ure 12.5. This will allow us to focus on the most difficult aspects of the calcula
tion for which our method can provide new results.

In order to apply the asymptotic expansion techniques of Section 7.3, we will 
need to consider five distinct momentum regions of the loop integrals, as shown 
in Figure 7.4. Since the expansion procedure is somewhat subtle, w e will take a 
moment to describe the process for each of the five regions. As before, the most 
general integral that we must consider is from diagram (c) in Figure 12.4, and 
prior to any expansions, it contains the denominator factors

k± k% E  2&2P (k\ -F 2̂)̂  ~t~ 2(&i -f- k%)p kf  +  2k\p k^ — 2k \P  .

In Region 1, we have k\, k^, and {k\ +  ^2) all ~  M,  and therefore we can
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expand all of the light fermion propagators,

1 1 ( m s U P  ( m y  ( U P f
P  +  2 I p  P  \ M )  P  \ U )  P  '  '  ’

where I  represents ki, k2, or (k\ + k2). These expansions will hereafter be ab
breviated as (£2 + 2ip) -» I2 since we are primarily concerned with the set of 
denominator factors which might appear in the loop integrals. After the expan
sions, the set of denominator factors in Region 1 is transformed to

kf Ef (ki -1- k2)2 kf  — 2k\P  ,

so that we can first evaluate the fc2-integral as a massless subloop and then solve 
the A;i-integral.

In Region 2, k\ ~  M  and k2 ~  m.  Here, we will expand (kf  +  2kxp) —> kf  and 
((ki +  k2)2 +  2(ki + k2)p) kf, leaving us with

kf kf kf  +  2k2p kf  — 2k\P .

The k\- and ^-integrals have factored and can easily be evaluated.
In Region 3, k± and k2 are ~  M  but (ki +  k2) ~  m. This situation was dis

cussed in detail at the end of Section 7.3, where w e found that the expansions 
(kf +  2kip) kf, (kf +  2k2p) —> kf, and kf —> kf  were required, so that we have

kf (ki + k2)2 + 2(k\ +  k2)p kf — 2k\P .

After the shift k2 —)• (k2 — k\), we can see that the k\- and ^-integrals have been 
factored.

In Region 4, k\ ~  m  and k2 ~  M.  After the expansions (kf + 2k2p) —> kf 
and ((ki -(- k2)2 + 2(k\ + k2)p) kf,  the only fc2-dependent denominator factor 
is kf. We can therefore discard Region 4 due to the presence of such scaleless 
integrals.

In Region 5, k\ and k2 are both ~  m. Here, we can only expand the heavy
fermion propagator (kf — 2kiP)  —> 2k\P. This eikonal propagator can be writ
ten in terms of 2k\p so that only the small scale remains in the integral. The 
resulting two-loop eikonal integrals belong to the "E2" topology. This topology, 
as defined in the Appendix, was solved for the first time in conjunction with 
this calculation.

We can assemble the contributions from the four nontrivial regions to pro
duce the final result. For the hyperfine splitting we obtain

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



123. RADIATIVE RECOIL CORRECTIONS 141

( m \  (  15 . M  1 6C(3) 17
+  ( m )  ( s 5 l n m + 2 +  l ^  +  8^  +  31n2

/ m y
\ M )

61 , o M  1037„ M
127T2 m  72?r2 m  
133 +  9 « 3 ) + i 521 +31n2
72 2tt2 288tt2 

m \ 4 f  163
1,48 +61a2;  

m \ 5  /  331 ,  2 M 5761 M_ 691
VM/ \407t2 m 300tt2 m 240

9C(3) 206653 nl n
' +  • n +  3 In22tr2 8000tt2

_  f ~ ) 6 f —  +  61n2 \ M /  \120

while for the spin-independent energy shift we find 

S K t™  ^  a (Z a)6^ { ^ - 2 1 i > 2

( m \ 3 / __ 8_ 2 ^ _ _ 5 5 _ i  M
\ M /  I 37t2 n m  187T2 n m  ^  36

: ) 3 f -
r'  V :

3C(3) 85

/ m \ 4 /  55 , ,  „
+  y  ( ~ ~  +  4 1 n 2

7T2 97T2

55 
24

2 In 2

/ m \ 5  (  37 , o M 29 , 
+ VM7 I 607T2 m +  900^2

M  1027 
m  360

3C(3) 370667
7T2 36000tt2

2 In 2

+
/ m \ 6 (  67 , .  A
( m )  ( “ M +41n2J

(12.38)
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/ m y /  199 2 M 1759 M  887
~ \ M /  \707r2 m  73507T2 m  "*” 210

3C(3) 241491119 \ )

The terms up to O {(m/M)2) were known previously [78] and the remaining 
terms of the expansions, save for the last one, were first presented in [80]. The 
coefficient of the 0 (m /M )  term in (12.39) was the subject of some controversy, 
since two different numerical results have been reported, [81-83] and [84]. Our 
result for this term,

a(Za)5^ ^ -  ( ^  +  _  11 _  2 In 2) ~  -1.32402796 , (12.40)m l M  \4  7r 7r J m 2 M

is in excellent agreement with the numerical result of [84] where the coefficient 
— 1.324029(2) was obtained, and has since been confirmed in an independent 
analytical calculation [85].

Computationally, it becomes quite expensive to calculate additional terms in 
the expansions of (12.38) and (12.39). Furthermore, the presence of large loga
rithms in these results does not bode well for the convergence of these expres
sions for moderate values of m/M.  Comparing the results from the m /M  expan
sion with those of the (1 — m/M )  expansion, as expressed in (12.33) and (12.34), 
we find that we do have a region of overlap where the two expansions match, 
but that the region is very narrow. In Figure 12.6, we show this matching for 
both the hyperfine splitting and the average energy shift by plotting the m /M  
expansion from the left and the (1—m/M)  expansion from the right. The two ex
pansions match at m / M  — 0.15, a reflection of the poor convergence of the m /M  
expansions resulting from the large logarithms. Nevertheless, we have achieved 
our goal of calculating the radiative recoil corrections for arbitrary values of m 
and M.

12.4 Pure Recoil Corrections
Now that we have carefully constructed a procedure by which we can calcu
late certain classes of corrections to the energy levels of QED bound states, we 
will now use this machinery to evaluate the O ((Za)e) pure recoil corrections 
generated by the diagrams in Figure 12.7.

Unlike the radiative recoil contributions of Section 12.3, these O ((Z a f ) pure 
recoil corrections require no renormalization factors. This is because the one- 
loop results, to which the renormalization factors will be applied, are O ((Z a f ) 
and all possible renormalization factors are either O (a) or O (Z2a), thereby
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Figure 12.6: 0 (a (Z a )5) radiative recoil contributions to the hyperfine splitting 
and average energy shift for arbitrary values of m  and M.  The curves from the 
left, taken from the m /M  expansion, match at m /M  = 0.15 with the curves from 
the right, obtained by the expansion in (1 — m/M).
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(a) (b)

(c) (d)

Figure 12.7: Diagrams contributing to the O ((Za)6) pure recoil corrections to 
the energy levels of a QED bound state. Diagrams (c) and (d) are multiplied by 
2 for symmetry.

making it impossible to generate any contributions of O ((Za)6). On the other 
hand, the soft-scale effects that we discussed at the end of Section 12.1 can gen
erate O ((Za)6) corrections, and thus the hard-scale contributions that we are 
about to calculate need not be finite. The O (a(Za)5) radiative recoil corrections 
of Section 12.3, conversely, receive no such soft-scale contributions and therefore 
these hard-scale effects must be finite.

Expansion About m/M =  1
As before, the m ~  M limit suggests an expansion in (1 — m /M )  which removes 
the small scale p from the light fermion propagators. The only complication that 
arises is that there are as many as seven different types of propagators for each 
diagram after the expansion. Since a two-loop topology only has five nontriv
ial scalar products, we will be able to construct partial fraction identities that 
reduce the number of propagators in each loop integral to five.

The result for this contribution to the hyperfine splitting is

_ 8 (Z a )V m -4' f /  1 51C(3) 5 3
SEm- ^  — i r s ' ~ 8 ^ + 5 p - 4 ln2

m \  f  1
+
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/ m y  f  1 21C(3) 1 1 , „ 17
+ ( M / ' “  +  “̂ ^  +  ' ^  +  “ ln2 +32e 32?r2 48tt2 16 144 ,

V m )  \128e 128tt2 43200tt2 64 11520 7
/  m \ 5 /  l

+  V m )  \64e ' 64tt2 21600tt2 ‘ 3 2 “ “ ' 1152

and for the spin-independent energy shift we obtain

^rechard ^  (Za)6 ^  _ H  13
m 2 IV 7r2 27t2 24 /

+  )1 — , |'!£S S  +  i L  + 15
1 • '  M x2 ^  2x2 24("S)(;

-  c  - s r  f - w  -  l i * -  S )
/  m \4  /  413 203 \
\  ~~ M / V1800tt2 5760/
/ m \ 5 (  413 203 \  ...

+  ( ~ m )  (i800tt2 “  5760 )  ( • )

By setting Z  =  1, m  =  M,  and fj, =  m/2 in (12.41) and (12.42), we produce 
expressions for positronium,

§E™ ĥ d = m ae f 1 1, 17<(3) 5 1, 1
\ _  246 " * " 0  g^2  ̂ J25T2 _  4 }  ’ <1Z43)

k„ d  6 I X(3) ll 13 \—  (12.44)

in agreement with [75,76].

Expansion About m/M  — 0
Turning to the m  <C M  limit, we construct an expansion in m /M  by following a 
similar procedure to the one we discussed in Section 12.3 for the radiative recoil 
contributions. Since none of the four diagrams in Figure 12.7 is more general 
than the others, it is easiest to devise an algorithm for diagrams (a) and (b) first 
and then to construct an algorithm for diagrams (c) and (d). The most notable 
complication is that with two distinct heavy fermion lines in each diagram, we 
encounter a new class of eikonal integrals; a detailed listing of these integrals 
can be found in the Appendix.
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Our result for the hyperfine splitting is

r prechard _  B (Z a )6^ m ~ 4t f  TO f  1 5
SE * ’ ~   3 m M  \  A? V 2e _  12

/ to n 2 / 1  9 2 M  ( 27 \  M  23 33C(3) 93
( m )  \ e  +  2tt2 n to +  V2tt2 J to 12 +  tt2 +  4tt2

The divergences in this result, as well as those in (12.41), are canceled by soft- 
scale terms, which can be calculated by extending the calculation of [75,76] to 
the unequal mass case, resulting in

r  p re c  soft _

hfs to2M2
1 6 / ,  7 , 1 \  4toM 230T (log(2 „ Z tt) - - j + _ r - +  _ (12.46)

Combining the results of (12.45) and (12.46), we find that the total O ((Za)6) 
pure recoil contribution to the hyperfine splitting is

_  8(Z o )V  f3  a2 
°Ehfz -  \  j3toM  12 toM

/  TO '
+

65
— -  8 In2 + 2 ln(Za)-1 ) (12.47)
18

/ t o \  /  9 . 2 M /  27 M  in l o 13 33C(3) 93 \
( jw) V27T2 ” m + (̂ TT2 )  m 12+  jr2 +  5 ? J

( £ ) ’ ln2 H  +  ( * L  _  2\  ln "  _ 131n2 _  1 +  S S M  +  i l V ]  1 .
\ M J  \ i r2 to \27r2 J  to 3 7r 27t2/  J

The terms in the first line of (12.47) are in agreement with the result first obtained 
in [86]. The remaining terms, arising solely from the hard-scale contributions 
in (12.45), can be used to obtain an analytic approximation to the function f ( x ) 
near x = 1 in Equation (72) of [87].

For the hard-scale contribution to the spin-independent energy shift we find

( Z a f t I { ^ ( 4 l n 2 - I

/ t o n 2 ( f  A 8 \  M  12C(3) 3 8

+ \ M ) ( ( t t 2 3 /  n TO ”  7T2 +  ^  + 3
I3 .  31+ (£ ) (41"2- t ) (12-48)

/ t o n *  /  11 M  /  113 AT 6<(3) 1565 62 \1
+ ( m ) (  3tt2 n to V18tt2 +  j  n to 7t2 72tt2 +  9 j  J '
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Figure 12.8: Finite portion of the 0 ( (Z a )6) hard-scale radiative recoil contribu
tions to the hyperfine splitting and average energy shift for arbitrary values of 
m  and M.

The m /M  term of this expansion is in agreement with a calculation in [88]. To 
the best of our knowledge, the subsequent terms of this expansion are new. The 
computational overhead is greater for the pure recoil corrections than it was for 
the radiative recoil corrections and thus the expansions in this section contain 
fewer terms than their counterparts in Section 12.3. Nevertheless, we are still 
able to splice the two expansions together to produce smooth functions that are 
valid over the entire range of m/M .  Figure 12.8 illustrates this behavior for the 
expressions for the average energy shift in (12.42) and (12.48).

In spite of the fact that the hard-scale contribution to the average energy 
shift given by (12.48) is finite at this order, soft contributions are also present 
and are needed to arrive at the physical result for this quantity. These soft con
tributions can be obtained by a calculation completely analogous to the one that 
produced (12.46).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



148 CHAPTER 12. ENERGY LEVELS OF QED BOUND STATES

12.5 Summary
In this chapter, we have demonstrated a method by which the corrections to the 
energy levels of a QED bound state, with constituents of mass m  and M, can 
be expanded in either powers of m / M  or (1 — m/M).  Both expansions are ap
plied directly to the integrands of the loop integrals arising from the hard-scale 
contributions to the energy shifts. We have demonstrated the utility of these 
procedures by computing several terms in the expansions for the a(Za)5 radia
tive recoil and (Za)6 pure recoil corrections to both the average energy shift and 
the hyperfine splitting of a general QED bound state. The O (a(Za)5fx3/(mM))  
term in our result for the radiative recoil corrections to the average energy shift 
has resolved a discrepancy between two previous numerical results in the liter
ature.

Further studies of QED bound state problems, using the methods described 
in this chapter, might involve higher-order corrections to the energy level shifts. 
Even in the absence of a complete calculation of such terms, it might be fea
sible to extract the terms enhanced by one or more factors of 1 n(M/m)  by ex
amining the singularities of the contributions from different expansion regions. 
Since these singularities must cancel in the complete result, their coefficients can 
be found by a partial calculation of the divergent parts of those contributions 
which can be evaluated most easily.

"They'll learn much more than I'll ever know and I think to myself 
what a wonderful world."

Louis Armstrong (What a Wonderful World)
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Chapter 13 

Top Quark Decay

The penultimate piece of the Standard M odel— the top quark— was finally dis
covered in 1995 at Fermilab. Its unusually large mass, comparable to that of a 
large atom like tungsten, gives it a special status relative to the other quarks [89]. 
The Large Hadron Collider will produce about a million top quarks per day, 
therefore it is important to understand top quark behavior in order to distin
guish this background from possible New Physics signals. This chapter deals 
with the decay of a top quark. After using the previously known tree-level 
and O (os) results to explain the method of calculation, new O (o^) analytic re
sults [90] are presented in Section 13.3.

The top quark primarily decays into a b quark and a W  boson, as shown in 
Figure 13.1. It is a simple textbook exercise [1] to calculate the decay rate,

13.1 Tree-Level Decay Rate

b

t

W

Figure 13.1: The tree-level decay t —> bW.
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T(t —» hW), for this process. Neglecting tob, the result is

(13.1)

where Gp is the Fermi constant defined by

(13.2)

If we rewrite (13.1) as

2

T{t -+ bW) = T0 1 -  3 + 2 (13.3)

where
„ Gp\Vtb\2mf
^ "  Sv^TT....

(13.4)

we see that the analytic behavior of T(t —> hW) with respect to the two mass 
scales mw  and m t is that of a series in powers of (to^/to j). Hereafter denoting 
this ratio as

we anticipate that perturbative corrections will modify (13.3) to

and the higher-order corrections Xi  and X 2 will also be polynomials in tu. Un
fortunately, it is not particularly convenient to evaluate the higher-order correc
tions in terms of t -» bW diagrams like Figure 13.1 because in addition to gluon 
loops, we will have to consider diagrams with one or more gluons in the final 
state. We can circumvent this complication by using the optical theorem, the 
details of which we introduced in Section 6.3. The optical theorem asserts that 
we can obtain the decay width from

f  (t -» bW) = T0 X 0 + —Xi +  ( — ) 2X 2 + O (cxl) , (13.6)
7T \  7T /

where X 0 is already known to be

X 0 = 1 - 3  u;2 + 2u>3 (13.7)

r  Im(S) (13.8)
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The r  in (13.8) includes decay modes with one or more low-energy gluons in 
the final state. The E in (13.8) denotes top quark self-energy diagrams with a 
b quark and W  boson appearing as virtual particles in a loop. At tree-level, no 
gluons are present, and thus we need only consider the diagram in Figure 13.2. 
Applying the Feynman rules from Chapter 1, we find that

Figure 13.2: The self-energy diagram corresponding to the tree-level decay
t —>■ bW.

i S  =  [  i l l  s ( p ) ( l i l y (1 _  (  K * + A A  ( _  7s)
l s } )  \ ( k + p f + i i )  \  2v ^ 7 '  7s)

\  k2 -  TJlyy + 10 J

By the conditions of the optical theorem, the t quark spinors u(p) and u(p) rep
resent identical states, and therefore if we average over the initial spin states of 
the decaying quark, we can use a completeness relation [1] to replace the spinors 
in (13.9):

U(p)[- ■ •]»(,,) -> i n  { 0  + m,)[. • ■]} . (13.10)

Employing this simplification and using (13.2) to write gw in terms of Gf , (13.9) 
becomes

i t  __________________________
2\/2 J (2tt)d [(A: +  p)2 + i8\ [k2 -  +  i5]

E =  (13.11)

X Tr{(^ +  mt) 7^(1 -  75) (Jf + -  75 ){m2wg ^  -  k^K)} .

After evaluating the trace, Wick rotating, and writing the numerical factor at the 
front in terms of the F0 defined in (13.4), we have

^  327rF0 [ .  D,, [k2(k ■ p) +  m \k2 -  2m^v(k ■ p) +  2(k ■ p)2 + 2rri^m2]
~  J 1 J (k + p)2(k2 + m2w ) ■

(13.12)
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The loop integral in (13.12) depends on two scales — mw  and m t (via p2 =  —m2) 
— and thus we will apply the asymptotic expansion method described in Chap
ter 7 to reduce the loop integrals to single-scale topologies. Specifically, we will 
divide the loop integral into two regions based on the magnitude of the loop 
momentum relative to the external scales. We use the term "soft" when the loop 
momentum is comparable to the scale of mw  (or more rigorously, |fc| < mt), and 
"hard" when the loop momentum is comparable to the scale of mt (|fc| > mw)- 

For the soft region, the b quark propagator contains terms of different scales, 
thereby allowing us to expand

i 00
=(k + p )2 P

k2 + 2k • p

4 7 1 = 0  V 4

This leaves the W  propagator 1 /{k2 + m ^) as the only denominator factor in 
the loop integral of (13.12). Due to the absence of p, this is a vacuum bubble 
integral, and as we saw at the end of Section 6.3, such integrals are strictly real. 
Since we are only interested in Im(E), we can therefore discard the soft region 
at tree-level.

In the hard region, it is the W  propagator that contains terms of different 
scales, thereby leading to the expansion

1 1 00 /  2 \  n 

F T ^  = ' ( m 4 )
vv n = 0 N 7

The denominator factors of the loop integral (13.12) are now (k + p)2 and k2, 
and as we showed in Section 6.3, such integrals can produce imaginary terms. 
Using (13.5) to write =  urn2, we see that the loop integral now depends on 
the hard scale only. Writing all momenta in units of mt/ we obtain

v, ootF  mn—s y v  • - r  f  •p) + k‘2~  M k  ■ p) + 2(k ■ p)2 + 2w]
E =  327rr0m t J ^ ------------------------( k ~ + p f k ^ T)------------------------- '

n”° (13.15)
It is clear from (13.15) that we will be able to write E as a series in powers of uo. 
As we first noted in Section 6.3, the imaginary terms for this particular class of 
loop integrals arise from an overall factor of

7r2e2 i7 r3e3e47r£ =  1 + m e   --------   (13.16)
2 6
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and thus, the only non-zero imaginary contributions to S correspond to 1/e di
vergences in the loop integral. An explicit calculation shows that only three 
terms in the cu-series diverge, with the result that

Im(S) =  m‘ +  e) 327T2m ,r0 Q  -  ^  . (13.17)

Substituting this into (13.8) and sending D —> 4, we obtain the final result for 
the tree-level decay width,

r = r 0 (1 -  3u2 + 2a;3) , (13.18)

in agreement with (13.3).
For the tree-level computation, the optical theorem formalism is admittedly 

more cumbersome than the traditional calculation. In particular, we have added 
a loop integral where there was not one before. The utility of this approach will 
only become evident when we extend the calculation to O (as) contributions 
and beyond. Essentially, we are willing to pay the price of an additional loop in 
exchange for being able to cast our results in terms of the self-energy-type loop 
integrals for which we have such a large number of techniques available to us 
(namely, Chapters 2-10).

13.2 O  (as) Corrections to the Decay Rate
With the optical theorem formalism for the tree-level calculation in place, it 
turns out that the O (as) corrections are relatively easy to obtain. In order to 
generate O (as) corrections from a self-energy diagram, we need only consider 
the different ways that a single gluon can be added to the tree-level diagram of 
Figure 13.2. Figure 13.3 shows the only three diagrams of this type. We multi
ply the contribution from the (a) diagram by 2 to account for its mirror image 
whereby a gluon runs from the b line to the outgoing t line.

(c)(b)(a)

Figure 13.3: Diagrams contributing to top quark decay at O (as).
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As far as the loop integrals are concerned, diagrams (b) and (c) are specific 
cases of diagram (a), and thus we will focus on the latter. In Section 7.3, we saw 
how the method of asymptotic expansions gives rise to five momentum regions 
when applied to a two-loop integral with two scales. As we will soon see, only 
two of these are non-zero for the O (as) diagrams of Figure 13.3. We will route 
the momenta through the diagrams as follows: kx will run clockwise through 
the W  and b lines; k2 will run counterclockwise through the gluon, t, and 6; p 
will flow along the quark lines (t or b) from left to right. The five propagators 
are:

(,kx +  m ^ )  (kx + p)2 (kx + k2 + p)2 {k\ + 2k2p) k\ . (13.19)

Labeling the regions using the convention in Figure 7.4, we will now discuss the 
five regions in sequential order.

In Region 1, kx, k2, and (kx +  k2) are all hard. This allows us to expand the 
(kf + rriw) propagator in terms of k2 propagators, just as we did in (13.14) for 
the tree-level process. This leads to a single-scale two-loop integral belonging 
to the "T l" topology. The details of this topology can be found in the Appendix.

In Region 2, ki is hard and k2 is soft. This means that expansions can be used 
to remove k2 from the (kx + k2 + p)2 and (Af +  2k2p) denominators, leaving us 
with k2 as the only /^-dependent propagator. In other words, the &2-integral is 
scaleless and Region 2 does not contribute.

In Region 3, kx and k2 are hard but (kx + k2) is soft. The only difference be
tween this and Region 1 is the scale of (kx + k2), but this specification was not 
needed to transform Region 1 into a single-scale integral. This is the counterex
ample behind the "Proviso to Step 3" discussed in Section 7.3. We are to discard 
Region 3, as a failure to do so would result in a double-counting of contribu
tions.

In Region 4, kx is soft and k2 is hard. This allows us to expand kx out of 
the b quark propagators (kx + p)2 and (kx +  k2 + p)2 so that the ^-integral is 
just a one-loop vacuum bubble at the soft scale and the A^-integral is a one-loop 
self-energy diagram at the hard scale.

In Region 5, kx and k2 are soft. Just as in Region 2, k2 will be expanded out 
of the quark propagators (kx + k2 + p)2 and (k2 + 2k2p), resulting in a scaleless 
integral so that Region 5 does not contribute.

To summarize the list above, we have two regions to consider, both of which 
have hard k2. We can allow kx to be either hard (Region 1) or soft (Region 4). 
This analysis extends to higher-order corrections to top decay. Specifically, we 
will always have two regions. The momentum circulating through the W  and b 
lines may be hard or soft, but all gluon momenta must be hard.

Having established the expansion regions, we can return to the diagrams in
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Figure 13.3. As mentioned above, the hard region is a straightforward calcula
tion involving two-loop integrals from the "Tl" topology. The soft region is in 
principle an even easier calculation because it involves the product of two one- 
loop integrals. Unlike the tree-level calculation, where the soft region produced 
no imaginary terms, there will be a non-zero contribution at O (a3). The leading 
contribution from this region is at u>2, though. We can see this by noting that 
after we write the amplitude for a diagram in terms of Gp, the W  propagator 
contribution to the loop integral is

im \y9nv ~ {ki)ji{kx)w) (13 20)
k{ + m 2w

Written in this form, the W  propagator has no overall mass dependence and 
when k \  is soft, it is O (1) with respect to uj. The ^ -integration element has a 
mass dimension of m ^ , therefore the soft-scale vacuum bubble produces uuDI2 
terms. With D —  4 — 2e, the "4" leads to uj2 being the leading contribution from 
the soft region, and the "(—2 e ) "  gives rise to logarithm terms, In uj,  arising from

m^2c =  ml~2eu)~€

= m ^2e ^1 — elnu; + In2 a; +  O (e3)^ • (13.21)

Since we only have two regions, In2 uo terms will be absent, lest we have (In w)/e 
terms that cannot be canceled.

Once we calculate the contributions from the diagrams in Figure 13.3 and, 
referring to Chapter 8, multiply by an overall color factor of Cp, all that remains 
are the O {as) renormalization contributions, as explained in Chapter 9. There 
are no gluons in the tree-level diagram, thus there is no charge renormaliza
tion to consider. The only internal quark line is massless, therefore no mass 
renormalization is required. This leaves the wavefunction renormalization as 
the only effect to consider. We need to multiply the O (a s) QCD wavefunction 
renormalization factor

WF =  0 + 4  + 0  (e)j (13.22)

by the tree-level result (13.3). Since (13.22) has an O (1/e) term, we will need to 
include the the O (e) terms of the tree-level result.

Our final result for the O (a„) top decay w idth is

n  =  r 0c v ( ^ )
5 3 . . „ 3 ,
-  -  —  J  +  - u i  +  uj f 7r — 6  +  -  In a ;
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+ O(oog) ,(13.23)

in agreement with the result first obtained in [91], and cast in a notation similar 
to ours in [92].

Let us now take another step forward and address the O (a2) corrections to the 
decay rate. This is undeniably a difficult calculation, and as a consequence, we 
will be well-served to divide it into more manageable pieces:

X 2 is the (as/n )2 coefficient in (13.6), X L, X H, X a, and X Na are the contributions 
associated with four sets of color factors, Nl is the number of quark species that 
are lighter than the top, and N r  is the number of quark species whose mass 
is equal to that of the top. Although these factors take on specific values in the 
context of QCD calculations for top quark decay, the cancellation of divergences 
and the gauge invariance of X 2 cannot arise from coincidental cancellations be
tween the four terms in (13.24). Instead, each of the four terms must be finite 
and gauge invariant in isolation.

Renormalization Contributions
We will start by describing the renormalization contributions to the O (a2) top 
decay w idth so that we can provide results for each of the four X  factors within 
the appropriate sections. There are three ways to generate O («?) renormaliza
tion contributions: we could apply an O (as) renormalization factor to an O (a*) 
diagram, we could apply an O («2) renormalization factor to the tree-level dia
gram, or we could apply an O (a„) renormalization factor to an O (as) renormal
ization factor applied to the tree-level diagram. This sounds more complicated 
than it really is.

Assuming that we have calculated the tree-level diagram to O (e2), the O (a2) 
onshell wavefunction renormalization factor was first calculated in [93]. It was

13.3 O (afj  Corrections to the Decay Rate

*2 -  CF (TrN lX l +  TrN hX h + CFX A + CAX NA) • (13.24)
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extended to 0  (af) in [94], from which we use

0'~'F \ TrNl 

+t rn h

ECp

+CA

_1_ _9_
8e2 + 16e +

"_L i i
4e2 + 48e +

9 51-----
32e2 64e

V  59 
.12 +  32

7T 1139'
T  + ~288,

(13.25)

137T

where

11
32c2

a o —

16
101 /  5w2
64^ +  \  m

a sT(l + e)mt

433 
' 128 
803
128 +

3C(3)
2

3C(3)

+ 7r In 2

"  T ln2

-2e

7r(47r)'
(13.26)

The M S  charge renormalization renormalization factor is

PH -  1 +  a0 ( T R N L j - e  + T r N h ±  -  C A ^ (13.27)

This follows directly from the leading term of the M  S  QCD /5-function, as cal
culated to O  (o^) in [95]. The observation that, for the QCD color factors of 
Tr =  1/2 and CA =  3, there are not enough species of quarks in the Standard 
Model to make the /5-function positive is the smoking gun of asymptotic free
dom.

Finally, the onshell mass renormalization constant, taken from [94], is

(13.28)

With the renormalization factors in place, let us recapitulate the required 
renormalization contributions. First, we take the mass renormalization constant 
in (13.28) and apply it to a set of one-gluon diagrams analogous to Figure 13.3 
except with one of the top quark propagators included twice. Second, we ap
ply the charge renormalization factor in (13.27) to the complete O (as) result, 
including terms of O  (e), in (13.23). Remember that (13.23) includes the O (a„) 
wavefunction renormalization factor applied to the tree-level result. Finally, we 
apply the wavefunction renormalization factor (13.26) to both the tree-level and 
O (as) results.
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Light Quark Loop Contributions
The simplest class of O (a2) corrections to the top quark decay width involves
a light virtual quark loop. The three diagrams of this type are shown in Fig
ure 13.4. As before, diagram (a) requires a symmetry factor of 2. Provided that

we ignore the mass of the light quark altogether, the integral for the virtual 
quark loop can be performed immediately. The resulting topologies are identi
cal to those of the O (a„) diagrams in Figure 13.3 except that the gluon propaga
tor will now have a non-integer exponent. For the hard region, this means that 
we must use the "Tlep" topology instead of the "T l" topology. The recurrence 
relation algorithm for the "Tlep" topology was discussed in Section 4.5.

An analytic result for the light quark contribution to the top decay width at 
O (cr2) was first obtained in [96] in the limit of mw  =  0. Once we calculate the 
three diagrams in Figure 13.4 for both the hard and soft regions, and include the 
relevant renormalization contributions, we reproduce this result as the leading 
term in an expansion in uj =  /m |:

(a) (b) (c)

Figure 13.4: Quark loop contributions to top decay at O (a?).

X L

27000 15 900
13187 tt2 1
181440
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,  (  2282381 t t 2 2263 \  _ ,  8X
+ u j  [ ----------------------------- 1------------ 1------------------ I n  a ;  I +  O (uj  ) . (13.29)

V 37044000 70 88200 J K '

Numerical results for the first three terms of this series were obtained in [92] 
as follows. First, they suspended the Minkowski-space onshell condition p2 =  
m.2 and instead defined a parameter 2 =  p2/ m 2. Next, they isolated the coef
ficient of u n by taking the n-th derivative of the integrand with respect to 
and then setting mw = 0. With two scales remaining in the loop integrals (p2 
and m2), they performed an asymptotic expansion in 2 to obtain single-scale 
integrals which, in this case, no longer contain massive lines. The resulting 
integrals were analytically solved using the MINCER [97] package. Having ob
tained an analytical result in the unphysical parameter 2, their last step was to 
employ Pade approximations to estimate the numerical value of the series for 
2 — 1. For the light quark O (a2) contribution, they obtained

X L = 2.8(1) -  1.0(1) u; + [-1.3(7) -  1.75 In w] u j2 , (13.30)

in agreement with the exact results of (13.29).

Heavy Quark Loop Contributions
The next class of O (a2) corrections to top quark decay that we shall consider 
involves a heavy quark in a loop. Once again, only the three diagrams in Fig
ure 13.4 contribute, but now, the mass terms in the quark loop prevent us from 
doing an easy loop integral. These are genuine three-loop integrals that require 
the full force of our techniques to solve. Our final result is:

/12991 53tt2 C(3)\ (  35 4tt2 _  A
=  ( m 6 - - - 5 T - ¥ j + A " i 0 8 “  + 4<(3))

^ 6 3 7 7  2 5 ^
v 432 18

4 /  76873 8tt2\  5 /  237107
+W V 8640 9 )  +  W V 27000

Surprisingly, this result does not contain any In a; factors. This follows from the 
spectacular total cancellation of the soft contributions from the O (a2) diagrams 
with the soft contributions from the O (na) diagrams with O (as) renormaliza
tion factors. The reason for this unexpected simplification is not known.

The numerical estimate in [92] for the heavy quark loop contributions,

X H = -0.06360(1) +  0.09766(3) u j  + 0.15(5) u? , (13.31)
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agrees very well with the exact results of (13.31).
Another numerical estimate for the O (a2) corrections to top quark decay at 

mw  =  0 was presented in [98], in which the b quark was originally assumed 
to be quite heavy, and the calculation was extrapolated to the m& =  0 limit. 
The resulting numerical prediction for the heavy quark loop contribution is 
also —0.06360(1). This calculation represents one specific case of the general 
Q q W  heavy quark decay that we will discuss further in Section 13.4.

Abelian Contributions
Although we have now discussed two of the four classes of O (a2) top decay 
contributions, we are nowhere near halfway finished, for we still have to ad
dress diagrams with two gluon loops and there are quite a few of them. In 
Section 8.2, we showed that we can expect diagrams with color factors of CF, 
CF(CF — C a / 2 ) ,  and Cf Ca-  A s  a result, regardless of which two combinations 
of CF and Ca that we select to be our independent color coefficients, some of 
the diagrams will contribute to both groups. We will use C \  and C f C a  as our 
independent color coefficients, as expressed in (13.24). Only Abelian diagrams 
— diagrams with two independent gluon loops — give rise to C% factors, either 
directly or via CF(CF — C a / 2 ) .  There are 19 such diagrams to consider for O (a2) 
top decay and these are shown in Figure 13.5. Note that 11 of these diagrams 
are to be multiplied by a factor of 2 in order to account for their mirror images.

Dozens of new topologies and some particularly unpleasant master integrals 
are required to evaluate these contributions. Many months of work culminated 
with the result:

X A
119tt2 53C(3)

-\-uj

+UT

-for

+uf

+a;°

48
73 41tr2

—— + ——

8
417T 
"~9Q~

llTT4 19 2l 0
I 20 + T
41

7537 523?r2 295((3)
288 96 + 32

1917T4 27 2l n
---------------7r In 2

720 16

+
115
48~

16499 407tt2 7((3) 7tr
864 216 +

120
— 7r2 In 2 + ( —

57T2

~16

367
144

(13.32)

+

In a)

57T2
In a;

1586479 , 2951?r2 , 9C(3) , (31979 
4----------- 1---- ~---- h

7V
259200
11808733
6480000 2400

6912
37tt2 6C(3)

v 17280 16
13589 tt2 

27000 _  60

In u j  

In a; +  O  ( u j 6 )  .
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(c)

(q) (r) (s)

Figure 13.5: Abelian contributions to top quark decay at 0  (o^).

The numerical result in [92] is

X A = 3.2(6) -  2.73(6) a; + [4.5(2.2) -  0.7(1) Inw] a;2 . (13.33)

While the u j °  and u j 2  In u  coefficients agree with our exact results, there are dis
crepancies of 3 and 1.5 error bar lengths for the u j  and u i 1  coefficients, respec
tively. We will refrain from passing judgement on the significance of these dis
crepancies until we see how the non-Abelian comparisons fare. The numerical 
prediction from the heavy b quark extrapolation in [98] for the leading term 
of (13.33) is 3.5(2), in agreement with our exact result.
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Non-Abelian Contributions
Following the ordeal of the Abelian contributions, the non-Abelian portion of 
the calculation is surprisingly manageable. There are 11 new diagrams to con
sider, as shown in Figure 13.6, along with the CfCa contributions from the 8 
Abelian diagrams whose gluons are crossed when drawn above the quark line. 
The diagrams with a gluon or ghost subloop are completely analogous to the 
light quark contributions. Propitiously, the remaining non-Abelian diagrams 
can easily be transformed into topologies associated with the Abelian diagrams.

(e)

(d)

(h)

(i) (j) (k)
Figure 13.6: Non-Abelian contributions to top quark decay at O (a2).

Our result for the non-Abelian contribution is

19
X na =

521 505tt2 9<(3) l b r4
576 +  864 +  16 +  1440 8

7r2 In 2

+u>

+CU

+UT

91 329tt2
48 +  144 

12169

13tr4 
60

576
2171tt2 +  377C(3) 77ir4

576 64
27 2l 0

H 7r In 2
288 32

13685 4777 19C(3)
864 72 +

73
16

43t74 1 2l
n o + r l n2 +

3772

12"
1121

~~432

In a;

77" 
“  "6

In a;
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+ur

Ecu'

420749 3263?r2 9C(3) / 1 1941 3tt

103680
4868261
12960000 

+0 (a;6) .

13824 
5577T2 

~ 4800

+ 6912 32
3<(3) /153397

+  U10 216000
7r
40

In a;

In a;

The numerical result in [92] is

X NA =  -8.0(3) +  3.356(3) u  +  [2.4(1.2) +  3.62(1) lnu;] u j 2

(13.34)

(13.35)

The a;0 and u j 2  coefficients agree with our exact results, but there are discrepan
cies of 5 and 1.5 error bar lengths in the u j  and u i 2  lnu; coeffients, respectively. 
These discrepancies, along with those for the Abelian contributions, suggest 
that, at best, the theoretical errors have been badly underestimated. This ex
ample of yet another numerical calculation gone awry reinforces the efficacy 
of analytic results like (13.34). The numerical prediction from the heavy b quark 
extrapolation in [98] for the leading term of (13.34) is —8.1(2), in agreement with 
our exact result.

13.4 Applications of the Result
We are now in a position to assemble the various pieces of our results in order to 
obtain a precise determination of the second-order QCD corrections to the top 
quark decay rate. Using mw  =  80.423(39) GeV and mt =  174.3(5.1) GeV as the 
measured masses [99] of the W  and t, we obtain u j  — 0.213(12) as the value of the 
mass-square ratio at which we are to evaluate our expression for X2. The result 
is X 2 — —15.5(1), where the uncertainty is almost entirely due to the experimen
tal uncertainty in m t. The theoretical error, which originates from taking a finite 
number of terms in our expansion, is 20 times smaller and, if needed, could be 
reduced further by calculating additional terms. Using as(mt) =  0.11 in (13.6), 
we find that the two-loop correction decreases the tree-level decay rate by about 
2%, in agreement with earlier expectations [92].

Only at the very end of our calculation have we used specific values for m t, 
mw,  and as, which suggests that our results have a much more general interpre
tation as the decay of a heavy quark Q into a massless quark q and a light boson 
W.  As the W  might decay immediately into nearly massless leptons, we can 
regard mw  as the invariant mass of these leptons, and we describe such decays 
as semileptonic decays. Kinematically, the allowed range of masses for q and W  
spans a triangle, as shown in Figure 13.7. Semileptonic quark decays at O (a2) 
have been calculated in at least three other kinematic regions, all of which are as-
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Q .

q-quark mass

Figure 13.7: Kinematical boundaries of the semileptonic decays
Q —> q + leptons. The solid arrow shows the expansion presented in this 
chapter. Previously known expansions are indicated with dotted arrows.

sociated with the zero recoil limit. In the zero recoil limit, the quark q remains at 
rest with respect to the original quark Q. Our calculation in this chapter marks 
the first time that a complete analytic result at O (a2s) has been obtained away 
from the zero recoil limit. The dotted arrow in the lower-right of Figure 13.7 de
notes the expansion in [98] which was used to provide the numerical estimates 
for top quark decay at mw  =  0 that we used in the previous section to compare 
with our results. The dotted arrow in the upper left of Figure 13.7 denotes the 
expansion in [100]. This expansion was used to study the semileptonic b quark 
decay b -» ulv. It is of particular interest to us, not just because it extrapolates 
toward the starting point of our expansion, but because it does so along the 
same line. The expansion parameter in [100] is S — 1 — m ^ / m 2, so that if we 
replace S with (1 — u) in these expansions and then divide them by 2 to provide 
the right normalization for a top quark decay interpretation, we can compare 
the resulting functions of u j  with our results for X L, X H, X a , and X NA• These 
functions, as shown in Figure 13.8, provide a striking visual confirmation of the 
validity of both expansions. Although each expansion cannot cover the entire 
range 0  < u j  < 1 reliably with only a small number of terms, a suitably chosen 
hybrid of the two expansions will be valid for all values of u j .

Instead of interpreting the four O (aI) X ( u j ) functions as contributions to the 
top decay width, we can instead consider them as contributions to the differen
tial w idth dT/duj of a  semileptonic decay. Since u j ,  in this context, corresponds 
to the invariant mass-square of the leptons produced by the W,  we will need to
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Figure 13.8: Matching of expansions around uj — 0 (thick line) and uj = 1 (thin 
line) for the four O (a^) top quark decay coefficients. The solid lines denote 
the resulting decay width valid in the full range of u j . Outside their regions of 
validity, the expansions are shown as dash-dotted lines.

integrate over all possible values of uj in order to determine the total semilep
tonic decay width. For the semileptonic b decay b -> ulu, when we use NL = 4 
and Nu  =  1, we obtain

2 f  duj X 2(uj) — —21.288 (13.36)
Jo

from the solid curves in Figure 13.8. This agrees almost perfectly with the 
—21.29553 obtained in [101]. This result is an important ingredient in the ex
traction of mb and |K&| from experimental measurements of b quark decays.

In a very similar fashion, we can use our results to determine the O (a2) 
QED corrections to the muon lifetime via the decay /z —> evV. In this context, 
there are no non-Abelian contributions, and if we further restrict ourselves to 
the two-photon contributions in X A, we find that our result,

2 [  duo X a (uj) =  3.5594 , (13.37)
Jo

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



166 CHAPTER 13. TOP QUARK DECAY

agrees with the 3.55887 obtained in [102,103]. It should be mentioned that [103] 
was a valuable source for leading-order analytic solutions to some of the most 
difficult master integrals we encountered.

At this stage, there can be no doubts about the validity of the results of our 
calculations in this chapter. Although the most obvious application of these re
sults is to top quark decay, we have now illustrated connections to other decays 
mediated by the W  boson. The true significance of these results is more general 
still. By adding a large new class of three-loop integrals to our library, we are 
now in a position to consider some of the increasingly difficult physical prob
lems that await. Of particular interest are the O (a perturbative calculations 
of mixing processes such as Bd -h- B d and Bs B s. These processes are cur
rently under intense experimental scrutiny and they represent sensitive probes 
of New Physics.

"I could think of things I never thunk before and then Fd sit and 
think some more."

The Scarecrow from The Wizard of Oz (If I Only Had a Brain)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



167

Chapter 14 

Conclusion

In this thesis, we have shown how m odem  calculational techniques can be used 
to obtain increasingly detailed predictions from the Standard Model of parti
cle physics. In Chapter 1 we started with the Feynman rules for the Standard 
Model and saw how the terms of a perturbative expansion can be constructed 
from Feynman diagrams with certain numbers of loops. When we integrate 
over all possible momenta flowing through these loops, we might obtain diver
gences; dimensional regularization was introduced in Chapter 2 to keep track of 
these divergences without discarding other features of the integrals. Loop dia
grams usually contain several factors which depend on the loop momenta, and 
the loop momentum integrals are most easily evaluated if we first combine these 
factors with a parameter using one of the identities in Chapter 3. In Chapter 4 
we showed how to derive the recurrence relation identities which allow us to 
express an arbitrary integral of a given topology in terms of a small set of master 
integrals or integrals from simpler topologies. Recurrence relations only apply 
to scalar integrals, though, and in Chapter 5 we saw how to rewrite numerator 
factors in a loop integral. In Chapter 6 we discussed a number of techniques 
that can be used to calculate the master integrals that cannot be reduced by 
recurrence relations. Particular attention was given to the cutting rules which 
allow the extraction of the imaginary parts of loop integrals. In Chapter 7 we 
introduced techniques which allow loop integrals w ith more than one external 
scale to be expanded as a series of single-scale integrals. The color factors that 
are present in perturbative QCD were explained in Chapter 8 and in Chapter 9 
we showed how to incorporate renormalization effects in a perturbative calcu
lation. Finally, in Chapter 10 we looked at why symbolic computation is such 
an indispensable tool for most multiloop calculations.

With these calculational techniques in place, we then applied them to solve 
outstanding problems in three very different areas of particle physics:

• The pion-pole light-by-light scattering contribution to the muon g—2, char
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acterizing the low-energy interaction of a muon with a magnetic field [45].

• The small corrections to the energy levels of QED bound states for use in 
atomic spectroscopy [73].

® The dynamics of the heaviest fermions in the Standard Model, and in par
ticular, the decay of the top quark [90].

Previously, only numerical results existed for these problems, and these results 
were fraught with discrepancies, poor estimation of uncertainties, and calcula
tional errors. Our approach provides a unique and definitive analytic solution 
to each of these three problems.

Chapter 11 deals with the anomalous magnetic moment of the muon. A 
troubling discrepancy between the Standard Model prediction and a recently 
improved measurement of the muon g — 2 was exacerbated by a sign error in the 
calculations of the light-by-light scattering contributions to the Standard Model 
prediction. In response to the original claims that this contribution was actu
ally of positive sign, we evaluated the contribution analytically and confirmed 
the positive sign. Nevertheless, a discrepancy between theory and experiment 
persists, and while much effort is still being devoted to the theoretical predic
tions, this discrepancy could be indicative of New Physics beyond the Standard 
Model.

Chapter 12 addresses the energy levels of QED bound states. Beyond the 
basic binding effect of the long-range Coulomb interaction is a cornucopia of 
corrections that are suppressed by various powers of one or more small param 
eters of the system. Even though the bound states themselves are low-energy 
systems, many of the energy level corrections depend intimately on the short- 
distance features of QED. We showed how our calculational techniques for per
turbative quantum field theory can be used to extract predictions for certain 
classes of higher-order effects, regardless of the masses of the bound state con
stituents. Incredible experimental work is being done with these low-energy 
systems, thus it is essential that there are corresponding improvements in the 
theoretical work in order to keep pace.

Chapter 13 presents the second-order QCD corrections to the decay of a top 
quark into a b quark and a W  boson; this corresponds to a particular kinematic 
limit of a more general weak decay process. Our calculations are an important 
complement to a group of other second-order QCD corrections corresponding 
to different kinematic limits of heavy quark decays. Beyond top quark de
cay, our results are applicable to m uon decay and the semileptonic decays of 
b quarks, and the new class of loop integrals which we solved will provide an 
important piece of a future study of b quark mixing in mesons.
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The common feature of these calculations is the analytic formulation of the 
results. Every coefficient of the series expansions in small parameters like a and 
m / M  is expressed as an exact linear combination of transcendental constants 
such as 7r, In 2, and £(3). Given the amount of work that goes into these calcu
lations, it is surprising how the final results can be so compact. As Broadhurst 
put it [104]:

It is as if QFT were taunting us with our ignorance of the mapping 
between diagrams and numbers that results from the Feynman rules.
A vast quantity of data, collected by painfully inadequate methods, 
collapses to an amazingly simple answer. We are, physicists and 
mathematicians alike, stumbling on the edge of a structure that is 
far more refined than the clumsy methods by which we investigate 
it.

Nevertheless, in the absence of a better way to obtain these results, we must con
tinue forward. The Standard Model — and its quantitative description, where 
possible, through pertubative quantum field theory — has been so stunningly 
successful thus far that we would be remiss not to push this theory to the limit 
of its (and our) abilities.

"Ohh, that just kept going, huh?"
Krusty the Klown (The Simpsons)
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Appendix A 

Catalog of Topologies

This appendix contains a description of all the loop integral topologies encoun
tered in this thesis, most of which were programmed for the first time in con
junction with this work. Associated with each topology are three FORM pro
grams: one which derives the recurrence relations, one which implements the 
solution algorithm, and one which performs tests on the topology in order to en
sure the validity of the algorithm. This appendix is not intended to explain the 
inner workings of these programs. In order to provide the user with sufficient 
information to run the programs, we provide:

• A sketch of the topology. Massive lines are solid and massless lines are 
dashed.

• A numerical labeling of the lines in the topology, as used in the FORM 
programs.

• An indication e for the massless lines with non-integer exponents which 
arise from massless subloops of a higher topology.

• An expression for the Euclidean-space loop integral which indicates the 
algebraic form of each propagator for a particular choice of routings of 
the momenta. Since these are single-scale integrals, the overall mass di
mension is assumed to have been factored out already, leaving us with
p2 =  —m2 =  —1.

•  Where required, a statement about the auxiliary propagators or tensor re
duction procedure used to cast arbitrary scalar products in the numerator 
in terms of propagators, as explained in Chapter 5.

•  Where required, expressions for the master integrals of a topology. We 
will denote the loop factor F(1 + e)/(4n)°/2 by T .
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178 APPENDIX A. CATALOG OF TOPOLOGIES

A .l One-Loop Topologies

gm2

/ [dPk]
A,2(a1+a2e)(p +  l) “ 3

Tensor reduction is automatic 
A general solution is used

/ (k2 +  2kp)ai (k2 +  1)°2

2n + - ^ l n 3 - 9  S2̂ je + 0(e2)

M3
/  1,5e n

/  \
/ \

II ̂  llll I P M ̂  I
3 , 4e

/ [ « ]
fc2(ai+a5e)(̂ .2 + 2fcp)a2 (fc +  p)2(a3+a4e)

M 3(l, 1,0,1,1) _ 1 4 / 16 llTT2 . \
S  +  3 + ( T  + T 8 “ + !V e

/64  57r2 . /  7r2
+  l Y  +  T i"  +  7C( ) +  M r(

e2 +  0(e3)
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one i,2e
\  f  [dPk]

i. y  J  A:2(ai+°2£)(A: +  g)2(a3+a4£)

Tensor reduction is automatic
q can be any momentum 
A general solution is used

onshell
/  l , 2 e  \

/  \
/ \ /

[dDk]
I___________ i J  k2(ai+a2e) (k2 + 2kp)2a3

3

Tensor reduction is automatic 
A general solution is used

A.2 Basic Two-Loop Topologies

gm3

1 , 2e

/ [dDki][dDk2
( h  +  k2)2<-ai+a2£Kki  + l ) a3(k% + 1)C&4

Average over directions of p  in numerator 
A general solution is used
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M 5
^ l ^

/ I  12 \ 3 f ______________ [ r f % p c fe2]______________
! 1 \ J kjai ( h  -  k2f<*k\a* (kf + 2klPy* {kl + 2 M “6

4 5

N5
N

'  \  ^5(1 .1 .1 ,1 ,1) 3C(3) , ^
3 ( 5   ̂ tt2 o ve) i £ _ ._____ ;__  ^

V  / '  4

/*?
[<(%][<(%]

klaikla2{k\ +  2A;1p)“3(A:22 + 2/c2p)“4[(A;1 +  A;2)2 +  2{kx +  A)2)p]a5

N5a „£ '-s.

==? + ( ¥ + 3 C ( 3 ) ) £ +  0 ( e 2 )

/ /  \  Im N5a(l, 1,1,1,1) n2 : ^7r2
J — I —.----I  7r J72

1

[cP&ijfoPA ]̂
/*?klaikla2{k\ + 2kip)a3{k2 + p)2a4[{h +  A;2)2 + 2(h  + &2)p]a5

N5b _i
/ X

/ \  f  [dDki][dDk2]
1—2— L  - 5-  .  -  -  -l—  /  *»"»*•(*? + 2kip)"(*2 + p )2“ (*i + fe +  J>)2«

1
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N5c
/  \  J  [dDki]\dDk2]

1  -  “  T —  •/ +p)2a*{k2 +  j>)2“4(V +  fc2 +  p)2a5I 4

1

N5d
/ s

3 i 5

C 7
l

\  Im iV5d(l, 1,1,1,1) 7r2 /  7r2 . . \  , o\
\  =  y  + ( y +  7C(3)je + 0 ( e 2)

TrJ72

/
\dDk]\{dDk2

k\axkla*{kl + 2/cip)“3(fc2 +  2 k2p)a*(h + k2+ p)2a*

N5e

/

1

[dDki][dDk2
k\aik^'l {ki +p)2a*(k2 +p)2a*[(k i + &2)2 +  2(A?i + A:2)p]a5
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NP
/ X

I!■ i« I 101 I I II .
\  / 4

/

/
[dDki\[dPk2

klaikla2{kl + 2ktp)a3(k% -  2k2p)a4[(ki + k2)2 + 2(ki + k2)p]ati

N P ^ : .h t l  = ^ 2 + m
T 2 2 +  o (e)

P5

Z1 I2 f ______________ [ d ^ U ^ h ] ______________
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4
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1 2

' f  [dDk1][dDk2
*  x \ J  k 2cj  X .  \ ______  J  k ^ k ^ i h + p ^ K h  + k2 + Py  + 1]“*

4 3

Tensor reduction: k2 J_ ( k i+  p)

T4b

/
[dDki][dDk2

{k2 + p)2a2kla3{kf +  l]a4[(A;i +  k2)2 + 1]
2

Tensor reduction: ki ±  k2 

ImT46(l, 1,1,1) 1 /  tt2\  ^  , 2,
 ^ - ^  =  7 + 2 + ( 4 " t J { + ° ( £ )

A.3 Two-Loop Topologies With an e-Propagator

Tlep

/  klaik22{a2+* \ h  -  fc2) 2aa(A:i +  p ) 2a4(A;f +  2 k2p)
/  1 13 \2e /*

/  I \
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/  2 I3e Y  f  [dDki][dDk2

/ I \
I  .  II I I I |t"

5 4
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Y la
i

/  \
' V - O e  \  f ________________ [■dDh][dDk 2]_____________

J  + p ) 2“4 p X +  k 2 + p ) 2 +  1]‘
//' \

4  i I
5 4

Tensor reduction: k2 -L {k\ + p)
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i r F 2 2 e  2  \  2  1 2 /  ^

Y2
^ i ^

/  2 13 \ le  f  [dDk\\[dDk 2
I I \

5 4
I  kt

Y2a
le
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\
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Tensor reduction: fc2 -L + p)
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Y2b
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1̂ 11  0 1 \
5 2 4

Tensor reduction: k2 ±  ( k i + p )
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/  i ^

/ / 2 13 Y 1
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Y6
2 / '

/ / [dDki}[dDk,2
(fc1 + p )2(a1+t)A;2a2(A.2 +  1)a3[(jfcl +  ^  + p )2 +  l]a4

Tensor reduction: -L

Y6a

Tensor reduction: k2 -L ki

I [dDki][dDk2
(ki + p)2(ai+e) kl°2 (k% +  l)“3[(fci + k2 + p)2 + l]“4(^i +  2kip)a5
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" T

4 6e
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Y8
I

/  2e 13 N\* f  [dDki ] [dD k2
t I \

4______ l_ _____ i.
5 4

h

Y9

'  5e 7  4\ /
\  /

I k i
[dDki][dD k2]

k \ aik l a2(k \  +  2kip)a3(k2 +  2k2p)a4(ki  +  /c2 + p ) 2(“5+e)[(A;i +  k^ +  p )2 +  l ] a«

Im F9(l, 1,1,1,0,0) (  . 7r2\  (  57r2 \ 2
= -1  +  — e +  -1 2  +  —-  + 9C(3) e2

7T T2 V 6 7 V 6

+ ^-91 +  5tt2 +  45C(3) +  ^ 0  e3 + 0  (e4)

A.4 Two-Loop Topologies With an Eikonal Propaga
tor

i

/
[dDki][dDk2

k laik 22a2{ h  -  k2)2â (kj  +  2k2p ) ^ { 2 k lP)

A general solution is used 
Pole term for (2kxp)  is +  or — in Minkowski space
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E2
/  ^

— I— l — l— i — —   1 —  f __________________________ [dDk 1][dDk 2]_________________________

\ j  5 J  k laxk22a2{kl + 2Ma3Pi + k2 + Py  + \Y*{2k2p)<* 
1
£72(1,0,0,1,1) =  Ji £72(0,0,1,1,1) == J2
The and J% master integrals are listed in (6.37) and (6.38)
Pole term for (2k 2p)  is + or — in Minkowski space

E3
x ' N Scaleless integrals =$> Zero/  I \

/ I \
J------- --1 .... 1

A.5 Three-Loop Topologies

T3 4
N

\

/3  2\ Tensor reduction: k3 ±  k2
■*A

I  klai(ki

l_ /

[ d H k ^ h W d P h
+ p ) ^ ( k t +  k2 + p ) ^ k i ai{kl +  2 k2p)^ l (k2 + h f  +  1 M k j  +  1

Im T3(l, 1 ,1 ,0 ,1 ,1 ,1) 1 + ! + A 5 _ ^ _ 2C(3)

<2-7

tt£ 3 2e2 2e I 2 6

+  ( f - ^ 9 C ( 3 )  +  g e + 0 (^ )
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T3a i  
/ v

7 I 6 5 2N— Pill IP 111 ■! ■■■̂
\  /  v / Auxiliary propagator: [9] = (2k1k3)

\  /  ^ /

/
[rfI,A:i][d£)A;2][(i£)A;3

^iai(^i + p)2a2(fci +  k2 + p ) 2̂ k l a4(kl + 2k2p)a5[(k2 +  k3 + p )2 + l]a«
1

x
(ki + 2k3p)a7kia8(2k1k3)2a°

T3b ._^_8_ ___ 7

/  /  \
/  l 3 ^4 t I4 2V_ Auxiliary propagator: [9] = (2k2p)

6 5 v , P

/ klai ( h  + p)2“2 (fci +  k2 + p)2“3 (&i + k2 + k3 +  p)2a4 [(k2 + k3 + p)2 +  1]“5
1x

(ki +  2k3p)a6 klai k f s (2k2p)2a»

Im T3b(l, 1,1,1,1,1,1,1,0) 3tr4
V r *  _ "io + O (e)

T3c ^ \/  \
/  ^ - - 7  \

/ /  Nv - j - \
4 !  f i  2\ _  Auxiliary propagator: [9] = (2k2p)

6  5  v  >
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I
[dDki][dDk2][dDh

kiai(ki + p )2a2(ki +  ks + p )2as(ki + k2 + k3 + p)2a4[(k2 4- k3 + p)2 + 1]“5
1

x
(,kI +  2 k3p) a« k^0,7 (2 k2p)2ag

T3d
/  6  N

'  A N/  ± \
!  - ^ 0  
1 1 ' i

/

1̂  II ■■■■ ■ t.    .̂.nil*.^
7 8 5 '  ,

V i X

[dD fci] [dD k2] [dD k3

Tensor reduction: k3 _L (k3 + p)

kiai ( h  + k3 + p)2a* (ki + k2 + k3 + p)2a*klai [(k2 + k3 + p)2 +  1]°5 
1

x
k ^ 6(ks + p)2a?(k$ + 2k3p)a&

T3e

7 5 8 7 -/3 2N{----- ]----- ♦—  Tensor reduction: k3 ±  (k2 +p)
1v x \  1 /

4

[dDki][dDk2][dDk3]I k T l { h  +  p)2a2(ki +  k2 + p )2a*kla4[(k2 + ks + p )2 + l]as 
1

x
k2m {k2 + p)2a7(k2 + 2k2p)c
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T3f

• H n — f6 ' ' ; /
\ / Auxiliary propagator: [9] = (2fcip)

V  ; X

/fcj'-ft + k2 +  p)2a2(kx + k 2 + k3 + p )2a3 (fcf +  2 k2p)ai [(k2 + k3 + p)2 +  1]°6 
1

X (A:| + 2ksp)a«k%l7k l a8(2klp)a°

T3h t
/

I 5," ^ 6, 2 _  Auxiliary propagator: [9] =  (2ft2p)
s t — ;

1\  * /

I  ki [dDki][dDk 2][dDk3
klai ( h  +  p)2a2 (A* + k2 + p)2as (kx + k2 + k3 + p)2“4 (&i +  k3 +  p)2“5

1x
k%*klai(kl  +  2k3p)as (2k2p )a<>

T3i 6 5

/  \  N / /  2 \I ,4 3n | Auxiliary propagator: [9] =  {2kxp)
j / 7

I  k2^(ki

X

+ k2 + k3 + p )2ct2 (kx + k2 + p)2“3 (&i + fc3 +  p)2a*k2 
1

^ { k l  +  2k2p)a2(k$ + 2k3p)as (2kip)2as>

205
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Im T3i(l, 1,1,1,1,1,1,1,0) 49tt4 ^  ,
V r 2--------------  =  ~ m ~ 2T2 + ° {e)

T2 is a finite combination of transcendentals whose analytic value is not 
needed for our results. More specifically, it is the (leading) O (e) term of 
a similar integral which can be used as a master integral.

T3k s

_ 4  I4 3\  l —  Auxiliary Propagator: [9] = (2k2k3)

7

/ [dPkx][dDk2\[dDk3}
k\ai (k\ +  p)2a2(ki + k2 + p)2a3(kx + k3 + p)2"4̂ 05

1
X kf«{k2 +  2k2p)ar(k2 + 2k3p)a& (2k2k3)2af>

Im T3/s(l, 0,1,1,1,1,1,1,0) 7T4
7T t 2 15 0(e)

z -5  4 - n \
A  ^  7 -A I

2 / " -------- " 1 Tensor reduction: kx ±  (kx + p)
J_____________

/
1

[dDkx][dDk2][dDk3]
k\ai (kx + p)2a2 (kx + k2 + p)2«3 (kx + k2 + k3 + p)2a*(kx + k3 + p)2<* kla« k23a7
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T3nd

5 '  18 \ 4
7  , ' L» '■ I 3 2\  ' Auxiliary propagator: [9] =  (2k\p)

7 '  j ~ i r *
i

[dDh}\dDk2][dDh \

x

+ k2 + p)2a*(h + k3 + p)2a3kla*kla5(kj + 2k2p)aa 
1

(fcf + 2k3p)a7(k2 -  k3)2as(2kip)a9

T3ne
6

T  !8 / " * ■ 'I I < 3 2\  Auxiliary propagator: [9] =  (2k3k3)
5

t

I  k îh
V i

[dD ki][dD k2)[dD k3
+ p)2“2 (ki + k2 + p)2as (k% +  2k2p)a4 (k% +  2k3p)as 

1
x

k22a6k23̂ ( k 2 -  k3) ^ ( 2 h k 3)

T3ng
x «r ^ 6

/  \  N7 /  8 \ ___\
1 v  3I .4 2X Auxiliary propagator: [9] =  (2k2p)

5 \  }
V l /

[dDki \[dD k 2][dDk 3]I  kfai(ki + p)2a2( h  + k2 + p)2aa(ki + k3 + p)2a4(k2 +  2k3p )a5
1

x
k2a6kla7(k2 -  k3)2as{2k2p)a9
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X I

/

i
Tensor reduction: k2 -L k% then &3 _L k\

I [dD ki][dD k2][dD k3

kfai ( h  +  p ) 2a*{ki  +  h ) 2a* k l a% k 2 +  h ) 2 +  \ Y * k la7{kl  +  l ) a«

X2
'  19 \ l

/o ^
/ 6 ^ / 3  \  Tensor reduction: &2 _L (A4 — &3)

7 2

+  jp)2“2 A;f“3 [(Â i +  fc2 — &3) 2 +  1]“6(& | +  2k3p )ar k f 18 (kx — A:3)2°9

Im X2(l,  1,1,1,1,1,0) _  1 + 1 + / 3 3 _ ^ _ 2C(3)
7T .F3 2e2 2e 2 3

X3
/ '  _ C \' /  N/ ^  ^  ̂ Tensor reduction: k2 I. kx then kx J_ (fc3 +  p)

4___ ____ I— —  X

I  kfa i (kx

1 5 1

[dDkx][dDk2][dDk3]

h + p ) 2a*(kx +  k2) 2a3(k2 +  l ) a^ f 6 (A;3 +  p ) 2^ ( f c 2 +  2 k3p)\a&
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X4

i f  6 4 ^ / 3  \  Tensor reduction: A;2 _L &x then &x _L (A)3 +  p)

/
5 2

3̂ai(̂ 3 +  p)2a2(fci + k2)2a*{k2 +  l)^[(fc! + h +  P f  +  l]“5£f6

X4a j.
\

// d  ( ) s  ̂ Tensor reduction: t j i i :  then X (fcj +  p )

— 1-------_ \ 2 l ----- 1—

/
5 2

^|ai (A:3 + p ) 2â [(h + k2)2 + 1]“3 (k2 +  +  h + p ) 2o*klas

X5

I^ ^ 4 6 1  ̂ Tensor reduction: fc3 J_ (k2 + p)
I \ __

8 7 5 1

[dDki][dDk2][dDk3]
+ p)2"1 k2a2klasklai(k2 + p)2a5(fcx -  k2)2a*(k% + 2k2p)a7[(k2 +  k3 + p)2 +  1]£

X5a _
/  I \ 2

/  1 x
^ 4 6 1  ̂ Tensor reduction: k3 ±  {k2 + p)

J  \  ........« - - « l
8 7 5 1
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[dDki][dDk2}[dDk3]/ {k\ +  2klp ) ^ k 2la2kla3k23ai(k2 + p)2as (h  -  k2)2̂ ( k 2 +  2k2p)a?[(k2 +  fc3 + p)2 + 1]“8

X6

I

6 5 4

Tensor reduction: k3 _L (kx + k2 +p)  then k2 A. ( k i+ p )

___________________ [dDki][dDk2][dDk3]___________________
klaikla2kla3{ki +  p)2<H(ki + k2 + p ) 2̂ [{kx + k2 + k3 + p)2 + I]®6

X6a

A .  2 ' '
/ / ^  3 \

1 
\
\

4 ____ \

I

6 5 4 7

Tensor reduction: k3 J_ (kx + k2+p)  then k2 jL (kx +  p)

_____________________________ I ______________________________
+ p )2a*(kl + k? +p)2a5[(ki + fca +  +  p)2 ■+- 1J +  2 kip)a7

X7

/ f  > Tensor reduction: k2, k3 JL (kx +  p)
—— — ~ ~   * ~~ ^ - ®  

5 2 6

k2tai (kx +  p)2̂ k 22a3kla‘‘[(fci +  k2 +  p)2 + 1]“® P i  + &3 + P)2 + 1]C
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X8
/ \  \

6 /  4 Xx5
f  | 1  ̂ Auxiliary propagator: [9] =  (2k$p)

■— — l —.........................................TUI

3 7

I  (h [dPki] [dDk2] [dPk,3J

- h ) ^ k l a2( h  +  p)2a*(k2 +  h ) 2a*kla5k*a6 
1 

[k\  +  2k2p)a?[(k1 +  h ) 2 +  l ] as(2fe3p )a9

X9a
r  4 ^ n \

' 7 — -A *
2 / " -------- " 3\ / Tensor reduction: _L (&i +  p)
-i--------------------- isĴ

/ &iai (A:i

l

+  p )2a2(A;i +  k2 +  p)2as{ki + k 2 + k s +  p)2a4[(ki + k3 + p )2 +  l )a^k \a6k l ai

5 4 N  1
2 / " — — — " / Tensor reduction: fci _L (&i +  p)
-h!_____________

1

f __________[d^p^p^]__________
J  k \ai (ki + p)2a2 [(A)x + k2+ p )2 +  l ] a3(fci +  k2 +  k 3 +  p )2“4

1
x

{(h + h + p y  + l l ^ k ^ k ^ 7

Im X9b(l,  0,1,1,1,1,1) =  /  2 | 7r2 | 13C(3) tt2 , ^
7r J73 V 6 4 2
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(  203 83tt2 , 59tt4
+  — —  +

2 12

'W'TT4 \
+  ?C(3) — + 7r2 In 2 +  T2 — C2J  e +  (9 (e2)

Im X 96(l,0 ,1,2,1,1,1) _  1 / _ 7  tt2
7T .F3 2e I 2 12

/  35 3tt2 31C(3) 7r2 \  „ ^  ~
+ { - Y  + ~4---------4~^ T- — ln2 j  e + C2e +  O (e )

T2 and C2 are finite combinations of transcendentals whose analytic values 
are not needed for our results.

X9c

 " 3\ / Tensor reduction: k\ ±  (ki + p)
/

/ k\a\ k x
[dP ki}[dD k-z\ [dDkz]

x

_|_p)2a2(^i -f k2 +p)2a*{(ki + k2 + k3 + p )2 +  l]a4 
1

p 1 +  A:3+p)2 + l]“*A:2a6A:2a7

Im X9c(l, 0,1,1,1,1,1) _  A _  tt2 +
7T F 3 I  6

+ 14 -  3£(3) + — ̂  e + O (e2)

X 1 0  3

/ A .  Ay  | \ Tensor reduction: k2 ~L h
~ . 1 jj — »»»- i«mi j( 1 1 

1 2

/ k + p)2ai(&| + 2%>)2“2(A +  &2)2a3(&2 + l)a4* |a5(A:i -  kz)2<*k\a7
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Im X10(l, 1,1,1,1,1,0) 1 7T

7T J - 3

+ 7 7 -
137T"

- 13«3)- ? r ) £+0(£2>

X l l

Tensor reduction: £;2 _L fcj and kz -L ( h + p )

[dD k i } [ d D k 2] [ d P k z
+ +  +  ^  +p)2 + 1 a6

X12 ^
/  /  \  \

4 /  ^3 ^2 Auxiliary propagators: [8] =  (A:|) and [9] = {2k\kz)

[djDjfci][dDfc2] [dDfc3

x

A:2)2“2(A;2 -  kz)2a3k f H(ki +  p)2a5p 2 + p)2 + 1]
1

P a +  p)2 +  l]a?kla8{2kikz)^ 

ImX12(l,1,1,1,1,1,1,0,0) tt4

7T JT3 18 + 0(6)

Auxiliary propagators: [8] =  (k2) and [9] = {2k\kz)
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[dD ki\[dD k2}[dD k3]

x

k2)2 + l]a2 {k2 — k3)2a3(k% + l ) a4(ki + p)2a5(k2 + p )2ae 
1

(A* + p)2a? k\a% (2kiks)ag

X14

/  !*
i i in
6 5 i 1 Auxiliary propagators: [8] — (2k\p) and [9] = (2k%p)

\ * y

I [dDki][dDk2}[dDks\
(k2 +  p f ^ k l ^ k l ^ k l ^ H h  + h  + P ?  +  l}as[(ki + h  + P ?  + l]"6 

1
x

( h  -  k2)2a7(2kip)a3(2k3p)c

X15

{ 6 ^—  * g" y  ^—  Tensor reduction: ki ±  {k3 +p)
\  /

V  4  '

/ (&2 + p) 2ai &2 02 ̂ 103 ̂ 3 04 [ ( k2 + h  + p)2 + 1]“S
1

X
[(ki + k3 + p )2 +  l]a8(A;3 +  p)2a7

Im X15(l, 1,1,1,1,1,0) _  1 | 5 | /15  | 5C(3) tt2 ^
tt 2e2 2e V 2 4 2

(29 7T 9C 3) 117T 2l n
+ ------------------- h  7T2 In 2

V 2 6 2 240
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—3~ 2 +  — In4 2 +  8Li4(l/2) ] e

/7  3tt2 , 79tt4 n 2l n ^  v o
+  V 2 “ ^  +  4C(3) + W  +  2?r l n 2 - C« ) e
+ 0  (e3)

Im X15(l, 1,1,1,1,1,1) = ^ + / V  +  5C(3l _ f _ ln2 + N
7r JF3 6e \  4 4

/7?T2 117T4 2
+ ( i t  +  c(3) -  H o  “  * ln2

7T2 1 \
In2 2 +  - ln 42 +  8Li4(l/2) +  IV e

u O /

+   10£(3) -  — +  7r2ln2 -  C6 + n  \ e2

+ 0  (e3)

Cq and N  are finite combinations of transcendentals whose analytic values 
are not needed for our results. Since Li4(l/2), In2 2, and In4 2 do not appear 
in our final results, there must exist a simpler basis set of master integrals.
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