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Abstract 
 
 
Blood-metabolite-based biomarkers are useful for the early-stage diagnosis, accurate 

prognostic prediction and personalized treatment of various diseases. Blood contains a 

massive number of metabolites that can potentially become biomarkers, but the 

metabolome coverage of current analytical techniques remains insufficient. Considering 

that traditional liquid chromatography-mass spectrometry (LC-MS) platforms are limited 

by the low metabolome coverage and quantification accuracy, our lab has developed the 

high-performance chemical isotope labeling (CIL) LC-MS platform which can 

significantly increase the metabolome coverage and efficiently overcome the detection 

variability. In general, blood biomarker discovery is susceptible to experimental 

interferences and biological variations. To improve the reliability of metabolomics 

discoveries, large sample sizes and time-resolved analysis are highly desirable. 

 

Towards these challenges, the major part of my thesis focuses on assessing and minimizing 

the experimental and biological variations that could interfere with biomarker discoveries. 

With the CIL LC-MS platform, experimental variations have been largely overcome and 

biological variability carefully evaluated. The establishment of a serum metabolome 

database can facilitate future studies, and the high-coverage analysis of one microliter 

finger blood opens new vistas for biomarker discovery and environmental exposure 

assessment. The major motivation of this thesis is to consider the time factor in blood 

metabolomics, and the reported technical improvement has made time-dependent 

metabolomics possible at a minimal cost. Additionally, to demonstrate the benefits of 
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adding the time dimension to the study design, we report a cohort study for the diagnosis 

and prognosis of Parkinson’s disease and an intervention study for the exposure assessment 

of DDT, which is a banned pesticide and an endocrine disruptor. Overall, this thesis work 

has demonstrated enhanced analytical performance for blood biomarker discovery, and 

high-quality biomarkers come from well-designed experiments, careful sample handling, 

high-performance analysis platforms, and a solid understanding of data analysis principles. 
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Chapter 1 

Introduction 

 

1.1 Introduction to Blood Biomarkers 

A biomarker has been broadly defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes or 

pharmacological responses to a therapeutic intervention”.1 This definition may include a 

thermometer readout, a urine test of a drug product, or whole-genome sequencing. During 

the past decade, biomarker-driven analyses of drug candidates have greatly boosted the 

decision-making process in the pharmaceutical drug development, significantly reducing 

the cost and risk of this expensive business.2-3 Unlike pharmaceutical companies, most 

academic researchers study the disease biomarkers, which can help with the understanding, 

prediction, diagnosis, prognosis, and treatment assessment of a disease state.4  

 

A diagnostic biomarker can differentiate patients with a specific disease from healthy 

people. For instance, hemoglobin A1c may serve as a diagnostic biomarker for type II 

diabetes.5 This example elucidates an important point that a disease biomarker is not 

necessarily involved in the pathogenic mechanism of the disease. Nonetheless, many 

biomarkers are directly related to the onset of the disease, and studying the biological 

processes behind them can profoundly deepen our understanding of the disease 
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mechanisms. Importantly, diagnostic biomarkers can sometimes demonstrate detectable 

changes before the disease symptoms become noticeable, enabling early diagnosis of the 

disease. With preventive interventions, the onset and progression of the disease may be 

dramatically delayed. Considerable efforts have been made to discover biomarkers for risk 

assessment or early diagnosis of cancer.6-8 In addition, a prognostic biomarker would 

indicate a likely outcome of the disease independent of the treatment.9 Thus, a biomarker 

could play both diagnostic and prognostic roles, according to its extent of alteration. For 

example, biomarker candidates have been reported for both the diagnosis and cognitive 

impairment prediction of neurodegenerative diseases.10-11 

 

Furthermore, biomarker-based analysis has opened new possibilities for personalized 

medical treatment. Since inter-patient variability in efficacy and toxicity has been observed 

for many medications,12 biomarkers that can predict the drug responses may lead the way 

in personalized treatment design. At present, U.S. Food & Drug Administration (FDA) has 

listed 198 drugs with pharmacogenomic biomarkers, which can direct the optimization of 

drug dose and management of adverse effects.13-14 The presence of certain biomarkers 

could determine the efficacy of the medication in a specific patient. While other biomarkers, 

involved in the metabolism of the drugs, could be used to vary the optimal dose among 

patients. 

 

The heterogeneity in medication response has also led us to notice the inter-individual or 

inter-population differences in disease pathophysiology.15-16 In addition to genetic factors, 
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the environment can also play a fundamental role in these differences. For example, Ng, 

Poon and their coworkers studied the cause of liver cancers and reported that in Taiwan, 

78% of the patients showed significant signature of exposure to aristolochic acids, which 

are strong mutagens and mainly originate from various Chinese herbs, while in North 

America only 5% of the subjects demonstrated obvious signature of the aristolochic acids.17 

Moreover, studies on many diseases that were believed to be highly genetic have suggested 

that the gene-environment interaction is the true cause.18 In recent years, the dramatically 

increasing prevalence of autism, which was thought to be a genetic disease, has convinced 

researchers to look into environmental exposures during pregnancy.19 This example 

illustrates the importance of studying environmental factors for the understanding and 

treatment of diseases. The biomarkers for the assessment of environmental exposures are 

called exposure biomarkers, and they could be adopted in the early-stage diagnosis of 

various gene-environment-cause disorders, such as neurological diseases.4 

 

Overall, disease-related biomarkers are commonly discovered by studying patients or 

animal models with a specific disease or environmental exposure. Before a biomarker is 

used in clinical practice, the workflow usually includes candidate discovery, biomarker 

validation and clinical assay development.20-21 According to how they work in clinical 

diagnosis, biomarkers can be classified into three types. The first type refers to the 

biomarkers that only exist in the diseased group, due to abnormally altered metabolic 

pathways or a specific environmental exposure. This is an ideal case since any qualitative 

detection of the biomarker is a strong indicator of the disease state. Most of the second type 

biomarkers are present in both the healthy and diseased populations, but there are 
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significant concentration differences between the two groups. The second type of 

biomarkers requires accurate quantification results for the clinical applications. Thirdly, 

levels of a group of biomarkers are sometimes used to increase the diagnosis power. In this 

case, they are called a biomarker panel, which can be a linear combination of multiple 

compounds.22-23 

 

Blood is the major biofluid of the human body, delivering nutrients and oxygen to tissues 

and transporting waste products away. Blood is also a complex treasury of blood cells, 

proteins, mineral ions, hormones and other small molecules, making itself an ideal material 

for biomarker studies. Unlike most of other biofluids (e.g., urine and sweat), which mainly 

contain the waste products of the body, blood can more accurately represent the ongoing 

biological processes in tissues. Importantly, compared with tissue samples or cerebrospinal 

fluid (CSF), the collection of blood is much less invasive. 

 

Blood analysis has a long history in clinical analysis. Analyses of blood cells (e.g., a 

complete blood count24) or even the physical properties of blood (e.g., a hemorheology 

test25) have been used as clinical indicators. A large number of compounds in blood have 

been found to be biomarker candidates. The application of blood glucose or hemoglobin 

A1c for monitoring diabetes is a commonly seen example. More comprehensive blood-

based biomarker analyses are also emerging for cancer screening. FDA has approved a 

handful of blood-based assays for the diagnosis or prognosis of cancer. For instance, 

researchers have found that several proteins in blood could improve the diagnostic power 
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for the detection of early-stage ovarian cancer. After seven years of assay development and 

validation, a biomarker panel of five proteins became the OVA1, an FDA-approved 

biomarker assay.26 Since a large number of blood biomarker candidates have been reported, 

more and more validated blood-based biomarker assays will become commercialized in 

the future. 

 

1.2 Small-molecule Biomarkers and Metabolomics Analysis  

Although many of the currently approved biomarker assays are based on RNAs or proteins, 

small-molecule biomarkers have attracted increasing attention. Small molecules are 

building blocks of larger biological components, function regulators of cells and 

messengers in signaling. Compared with the genome level or proteome level, small 

molecules are more time sensitive to the biological changes in the body. Also, because 

small molecules are directly involved in the body-environment interactions, they can 

provide firsthand information about the environmental stimulations. Most prescription 

drugs are small molecules, and personalized health management based on small molecules 

has never been far from our daily life, such as taking vitamin C for the prevention of scurvy 

and using glucosamine to delay the progression of osteoarthritis.27 

 

Because of the importance of small molecules, metabolomics, which is the comprehensive 

and systematic analysis of small biological molecules in a given biological subject, has 

become a rapidly growing field in biomarker discovery. Metabolites are the intermediates 

and products of metabolism.  In metabolomics, the term usually covers all the meaningful 
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small molecules (MW < 1,500 Da), including but not limited to endogenous nucleosides, 

oligonucleotides, amino acids, peptides, alcohols, amines, organic acids, ketones, 

aldehydes, lipids, steroids, as well as exogenous nutrients, food additives, toxins, and 

pollutants. The word “metabolome”, which refers to the complete set of metabolites 

synthesized by an organism, was first used by Olivier et al. in 1998.28 As the downstream 

end of genome, transcriptome and proteome, the metabolome is at the frontier of system 

biology29 and carries valuable information for viewing the whole picture of biological 

processes. Based on the hypothesis that certain metabolic changes may occur in the human 

body when a disease state develops, metabolites can potentially become powerful 

biomarkers for the early-stage diagnosis of diseases. Additionally, in some environmental 

studies, the total set of chemicals from environmental exposures is defined as exposome, 

and the corresponding assessment is called exposomics.30 

 

Blood serum is a primary carrier of metabolites, transporting all the small molecules that 

are being secreted or excreted by different tissues in response to various physiological 

conditions.31 Many blood biomarker candidates have been reported in the literature. For 

example, Sato and his coworkers have shown that the blood concentration of a small 

molecule, desmosterol, could be utilized for the diagnosis of Alzheimer’s disease.32 

Nishiumi et al. reported 18 blood metabolites to be biomarker candidates for the detection 

of pancreatic cancer.33 Efforts have also been made to profile the whole blood metabolome. 

Lawton et al. applied multiple analytical methods to study the blood metabolome of 269 

healthy adults and successfully quantified 300 metabolites.34 However, this number is far 

lower than the total number of blood metabolites. The Human Serum Metabolome 
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Database lists 4,229 confirmed human serum metabolites.31 In addition to the low-

abundance endogenous metabolites that have not been detected, there are also numberless 

food/environment-originated compounds and their downstream metabolites existing in the 

blood, so the size of the blood metabolome remains unknown. With more sensitive 

analytical techniques in the future, more blood metabolites will continue to be discovered 

and contribute to the realm of biomarkers. 

 

Generally speaking, metabolomics studies are inductive rather than deductive, expanding 

the limited biological understanding by digging into the huge amount of data. There are 

two routes of analyses for blood metabolome: targeted and non-targeted, depending at 

which stage the metabolite identification is performed. Targeted analysis focuses on a 

group of metabolites, which are usually associated with particular pathways or 

environmental exposures. After the samples are analyzed, the target metabolites are 

identified and quantified based on the raw data. The results are then used for biological 

interpretation. A targeted analysis is usually optimized to have high sensitivity and 

accuracy for the pre-defined group of metabolites.35-36 The high-confidence information of 

metabolite identities and quantities enables accurate and clear interpretation of the result. 

However, targeted analyses cannot find new biomarkers or new pathways. 

 

In contrast, a non-targeted analysis aims at detecting as many metabolites as possible in a 

given biological system. In this kind of studies, data processing is done before the 

identification of metabolites. Statistical tools are used to investigate the raw data and to 



8 
 

select the compounds that can significantly reflect the overall metabolome changes. After 

that, researchers identify these compounds with databases and try to interpret the biological 

implications. The non-targeted approach offers opportunities to discover more blood 

metabolites and metabolic pathways. However, non-target analysis is facing several 

technical challenges. First, unlike proteins which are composed of 20 amino acids and have 

similar chemical characteristics, metabolites encounter enormous diversity in physical and 

chemical properties, which has been the prime hurdle in detecting all the metabolites with 

a single platform. To maximize the metabolome coverage, many non-targeted blood 

metabolome profiling reports utilize a combination of multiple analysis techniques, such 

as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass 

spectrometry (LC-MS). Second, the concentrations of blood metabolites spread over a vast 

range of 9 orders of magnitude.37 Technical improvements are required to correct the bias 

towards detection of high-abundance metabolites. At last, metabolite identification is the 

most challenging part. In LC-MS-based metabolomics, positive identification, which 

means metabolites are matched to known standards, is highly preferred. However, the 

number of standards available in a research laboratory is always limited, and it is not 

practical to use standards to confirm every single LC-MS peak, let alone a large portion of 

the blood metabolome are unstudied compounds without available standards. Therefore, 

putative identification is often used, complementary to the positive identification.  

 

Putative identification is conducted based on an accurate mass match or MS/MS match to 

the metabolite databases. The Human Metabolome Database (HMDB)38 is one of the most 

widely used metabolite databases. Until now, the HMDB database has been enriched to 



9 
 

114,100 metabolites, including endogenous metabolites as well as 2,800 drug metabolites, 

3,670 toxins, and 28,000 food components. Created in 2004, METLIN39 has grown to a 

popular database that includes 961,829 compounds, ranging from endogenous metabolites 

to small peptides, drugs and toxins. Among them, over 14,000 metabolites have been 

individually analyzed, and another 200,000 have in silico MS/MS data. In addition, 

MassBank40 is another rapidly growing small-molecule database of mass spectral, 

especially ESI-MS2 spectra. Considering a large number of the unknown metabolites are 

biologically modified products of the known metabolites, our lab has developed an 

Evidence-based Metabolome Library (EML), which employs 76 commonly encountered 

metabolic reactions for the in silico biotransformation of 8,021 known endogenous 

metabolites provided by HMDB, expanding the coverage to 375,809 one-reaction-derived 

metabolites and 10,583,901 two-reaction-derived metabolites.41 To enable the MS/MS 

match, the predicted MS/MS spectra have also been simulated for the 8,021 known 

metabolites and 375,809 predicted metabolites.42 Overall, taking advantage of the 

metabolite-specific databases and high-accuracy mass measurement enabled by high-

resolution mass analyzers, we are able to generate putative identification results at 

acceptable confidence. 

 

A number of non-targeted metabolome profiling works of blood samples have been 

published.34, 43-46 Many of them adopted a combination of LC-MS and GC-MS to increase 

the metabolome coverage, but none of them reported more than 500 positively identified 

metabolites. Although some works provided 1,000 to 5,000 metabolite features (a 

chromatographic peak with a unique m/z), a large portion of them were not truly 
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metabolites, in most cases. More advanced analytical platforms with higher metabolome 

coverage and stronger identification power are needed for future studies in blood 

metabolome. 

 

1.3 Major Metabolomics Platforms for Blood Biomarker Discovery 

As discussed before, most blood biomarkers are concentration-based, so quantitative 

analyses with high accuracy are always preferred in blood metabolomics. Because many 

blood metabolites are at very low concentrations, the analysis should also provide adequate 

sensitivity. Although most clinical blood collections collect at least 4.0 mL of blood, the 

samples are commonly used for multiple analyses or studies, and the amount available in 

one specific experiment is usually limited. Therefore, the required sample amount is also a 

factor for evaluating the performance of a blood analysis platform. Among a number of 

analytical methods, nuclear magnetic resonance spectroscopy (NMR) and 

chromatography-mass spectrometry are the major platforms for blood metabolomics study 

due to their relatively high metabolome coverage and abundant database resources. 

 

The major advantage of NMR analysis is the ease of methodology.47 In general, sample 

preparation just involves mixing the plasma or serum sample with a buffer and transferring 

the mixture into an NMR tube.48 In NMR analysis, the signals correlate directly and 

linearly with compound abundance, and the reproducibility is very high.49 The metabolite 

identification can be done with several commercialized spectra libraries. HMDB also 

provides NMR spectra for a part of its library. A non-negligible drawback of NMR is the 
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relatively low sensitivity. High-resolution NMR analysis requires a minimum metabolite 

concentration of 5 µM,50 which is larger than the level of many blood metabolites. 

Subsequently, the required sample amount in NMR analysis is also relatively high, 

typically 200 µL of serum or plasma.48 Since the NMR analysis is not destructive to the 

samples, we can potentially reuse the sample in MS-based analyses,51 despite the fact that 

the buffer may cause severe matrix effects. 

 

Chromatography-MS-based methods are more sensitive than NMR by several orders of 

magnitude. Among the mass analyzers, quadrupoles and ion traps have been widely used 

in metabolomics applications but limited by mass accuracy and mass resolution in 

metabolite identification.52 These are good options in targeted analyses which have internal 

standards for metabolite identification, and can attempt to reach a balance between the 

performance and ease of maintenance. Particularly, they offer excellent detection 

sensitivity in the MS/MS mode.53 For non-targeted metabolome profiling, high-resolution 

mass analyzers, such as Quadrupole-time-of-flight-MS (Q-TOF-MS), Fourier transform-

ion cyclotron resonance-MS (FTICR-MS) and Orbitrap-MS, are often used.54 FTICR 

analyzers have the highest resolving power and mass accuracy of all mass analyzers.55 At 

m/z 400, a 21-Tesla FT-ICR-MS can reach the resolving power of more than 300,000 for 

a 0.76 s detection period.56 However, the scan speed of FTICR-MS is relatively low, and 

the cost of the instrumentation can be very considerable.57 Although the typical resolution 

for m/z 400 on our Q-TOF-MS is 30,000, it provides higher scan speed and acceptable 

mass accuracy for identification. Importantly, our group previously found that by injecting 

a large but optimized amount of sample into a Q-TOF-MS that equipped with a high-
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dynamic-range (HD) mode, the resulting metabolome coverage is higher than those on a 

non-HD Q-TOF platform or an FT-ICR platform.58 Orbitrap-MS is a relatively new 

technology. FT-ICR and Orbitrap share a number of similar features, such as the high 

resolving power, while Orbitrap-MS has a much smaller size. However, the mass analyzing 

process in an Orbitrap-MS usually does not favor low-abundance species, which might 

limit its applications in biomarker discovery. 

 

In order to reduce the complexity of the spectrum and thereby increase the metabolome 

coverage, a chromatographic separation is commonly used before the mass analyzer. The 

GC-MS platform using capillary columns has superior reproducibility and relatively low 

cost.59 Taking advantage of the highly reproducible GC retention indices and electron 

ionization (EI) spectra, researchers have constructed comprehensive standard libraries 

compatible with data from different laboratories, regardless of the manufacturer of the 

instrument. In addition to the high-confidence identification, GC-MS requires a smaller 

volume of the serum sample, typically 10 to 50 µL.44, 60-61 However, the metabolome 

coverage of GC-MS is limited because the metabolites must be volatile or can be volatile 

after derivatization.62 The targeted metabolites mainly have low molecular weights and low 

boiling points, such as alcohols and derivatized amino acids. 

 

Being complementary to GC-MS, the LC-MS platform is capable of detecting metabolites 

with higher molecular weights or boiling points. In LC-MS applications, the reversed-

phase-liquid-chromatography (RPLC) is used for moderately polar and non-polar 
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metabolites, and the hydrophilic-interaction-chromatography (HILIC) is used for highly 

polar compounds.63 Unlike GC-MS, LC-MS employs a soft ionization method, the 

electrospray ionization (ESI), to generate ions,64 and the MS/MS spectra can be obtained 

from collision-induced-dissociation (CID).65 With the accurate mass calculated by the 

measured m/z of the (M+H)+ ion (positive mode), putative identification can be easily 

performed by searching through the metabolite databases. However, the retention time and 

CID spectra are not reproducible between different systems.62 With 50 to 200 µL of serum 

or plasma sample, LC-MS analysis can detect more than 1,000 metabolite features,66-68 

which are defined as chromatographic peaks with a specific retention time and a unique 

m/z. It has long been a problem to differentiate the weak signal of very low-abundant 

metabolites from the background noise. Also, a single metabolite may be detected in 

multiple forms, including adduct ions, in-source fragment ions, dimers, trimers, etc.62 

Therefore, a large portion of the metabolite features are not truly existing metabolites. 

Another disadvantage of the LC-MS platform is the variability in quantification due to ion 

suppression. Sample matrix or coeluting compounds can contribute to this effect and 

interfere with the quantification of metabolites.69 When a large set of samples is being 

analyzed, the minor variability in sample matrix may significantly affect the quantification 

and mislead the data interpretation. 

 

1.4 Chemical Isotope Labeling in LC-MS-based Metabolomics 

As discussed above, even though the combination of GC-MS and LC-MS has been used in 

many metabolomics studies, the metabolome coverage remains low. The discovery of non-

volatile, low-abundance blood biomarkers depends on the improvement of LC-MS 
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technique. To improve the quantification accuracy of LC-MS, we can introduce an internal 

standard, preferably an isotopic internal standard, into the sample to overcome the ion 

suppression effect via relative quantification. In non-targeted metabolomics, it is not 

possible to acquire the isotopic standard for every single metabolite. Alternatively, 

chemical derivatization to the metabolites with isotopic tag groups can realize the relative 

quantification for each metabolite, as long as it exists in both of the two comparative 

samples. More specifically, a metabolite in the sample being studied is derivatized by a 

labeling reagent, while in a reference sample, the same metabolite is labeled by the isotopic 

counterpart of the labeling reagent. After the labeled samples are mixed, the metabolite 

from the reference sample serves as the internal standard, and the measured concentration 

is relative to it. This process is called differential stable isotope labeling. 

 

Previously, our group has reported a chemical isotope labeling (CIL) technique using 

dansyl chloride as the labeling reagent,70 and applied this method to the LC-MS-based 

metabolomics. In this platform, a pooled sample works as the reference sample for all the 

individual samples. Each individual sample is labeled by the 12C-dansyl reagent, and the 

pooled sample is labeled by the 13C-dansyl reagent. Then the mixed sample is analyzed by 

LC-MS. For each metabolite, a peak pair is detected instead of a single mass peak. The 

light peak of the pair represents the 12C-labeled metabolite from the individual sample, and 

the heavy peak of the pair is the 13C-labeled metabolite from the pooled sample. To avoid 

the interferences from the natural isotopic peak of the 12C-regent, the 13C-reagent has two 

13C atoms, and the distance between the two peaks equals 2.00671 Da (Appendix Figure 

2). We measure the relative concentration by calculating the intensity ratio of the two peaks 
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in a pair. Consequently, every metabolite has a corresponding internal reference to 

accurately measure its relative concentration. Although the quantification is relative, the 

information is adequate for metabolomics analysis to find the metabolites with significant 

changes. Absolute quantification of confirmed biomarker candidates can be conducted 

afterward. 

 

Importantly, the chemical isotope labeling also benefits the LC-MS-based metabolomics 

in other ways. First, after being attached to the hydrophobic dansyl group, the polar 

metabolites become relatively non-polar, improving their separation on an RPLC column 

and reducing the ion suppression effect due to co-elution. Second, the non-polar dansyl 

group provides good surface activity during the ESI process,71 and its tertiary amine group 

has excellent chargeability in the positive mode. Consequently, the detection sensitivity 

and metabolome coverage are significantly enhanced. Third, the addition of the dansyl 

group shifts low-mass metabolites to the higher mass region, which usually has cleaner 

background, so the signal-to-noise ratio is also improved. 

 

The dansyl-labeling platform detects metabolites in forms of peak pairs instead of single 

mass peaks, making it easier to differentiate metabolites from the background noise peaks. 

Although sometimes there are still adduct ions, in-source fragment ions, and dimers, the 

IsoMS software,72 which is designed to automatically pick the peak pairs, can filter out 

these interferences, as well as the constant background noises. Therefore, compared to the 

mass features in traditional LC-MS, the peak pairs are much more likely to be true 
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metabolites. Overall, the CIL LC-MS platform can significantly promote the blood 

metabolomics studies by quantifying a large number of high-confidence metabolites. 

 

 

Figure 1.1 Reaction schemes of (A) the dansyl-labeling and (B) the DMPA-labeling. 

 

Although the dansyl-labeling is limited to the reaction with amine/phenol-containing 

metabolites, other CIL reagents have been developed to study more groups of metabolites 

and to expand the metabolome coverage. This strategy is called “Divide-and-Conquer”, 

which means dividing the whole blood metabolome into several submetabolomes, and then 

studying each of them with corresponding CIL methods. The p-dimethylaminophenacyl 

(DMPA) bromide reagent has been used to analyze the carboxyl-containing metabolites.73 

The reaction offers the same beneficial effects as dansyl-labeling does, and it has good 

selectivity against other functional groups. Recently, our group has reported another two 

labeling methods, focusing on the hydroxyl-submetabolome and carbonyl-submetabolome 

respectively.74-75 With the four labeling methods, we are expecting more than 5,000 blood 

metabolites to be detected. 
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1.5 Blood Sample Handling Techniques 

Despite the CIL LC-MS platform that can effectively overcome the variations during the 

detection, the sample preparation can also greatly affect the quantification results. For 

example, during the sample handling process, some impurities might be introduced to the 

sample, and at the same time, some metabolites might experience degradation. Sometimes 

other matrices are added to the sample, so the changes in matrix effect should be carefully 

evaluated. 

 

Although there are a few studies on the blood cell metabolome,76 most blood metabolomics 

studies remove blood cells and store blood samples in the form of serum or plasma. 

Venipuncture is usually performed in a clinic by a trained personnel, and the whole blood 

is collected into a specific blood collection tube according to the needs. For collecting 

serum samples, whole blood is allowed to naturally clot in a common plastic tube. After 

centrifuging, the supernatant above the clot is the serum. Some serum collection tubes are 

equipped with clot activators, which are usually silica beads. These tubes should be avoided 

as evidence has shown that the clot activators can cause interferences to the analysis (e.g., 

surface adsorption).77-78 When whole blood is transferred into tubes coated with 

anticoagulants, the supernatant after centrifugation is called plasma. Commonly used 

anticoagulants include ethylenediaminetetraacetic acid (EDTA), citrate and heparin.79 

EDTA and citrate are very strong matrices that can significantly affect the quantification 

in the traditional LC-MS analysis, and heparin is relatively preferable.80 Using the same 
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type of sample is recommended in a specific LC-MS-based study, and caution should be 

exercised when comparing metabolomics data obtained with different sample types.81 

Regarding the CIL LC-MS platform, we previously examined three types of plasma 

(EDTA, citrate, and heparin) and serum, and we proved that the differential isotope 

labeling could largely overcome the variability in metabolite detection and quantification.82  

 

After collection, sample aliquots should be immediately frozen and stored at -80 °C. No 

detailed studies have assessed the stability of metabolites during storage, and the role of 

sample matrix (e.g., anticoagulant) is largely unknown. Nonetheless, it is recommended 

that the number of freeze-thaw cycles should be minimized and in one analysis all the 

samples should have experienced the same number of freeze-thaw cycles. 

 

When venipuncture blood collection is not feasible or necessary, other blood collection 

approaches are used. For example, the measurement of blood glucose is often performed 

by the diabetes patients themselves with a finger stick and a blood glucose monitor.83 

Starting from the 1960s, dried blood spot (DBS) method has been applied to newborn 

screening.84 The sample collection is done by a finger or heel prick, then typically 50 to 

200 µL of whole blood is directly applied onto the sampling paper/card within a pre-

marked circle. The sample is allowed to naturally dry at room temperature and then stored 

at room temperature or at -20 °C for many weeks, months or even years.85 There are a few 

metabolomics studies based on DBS that have been reported.86-87 However, the DBS is not 



19 
 

an ideal material for biomarker discovery due to the paper matrix, cross-contamination, 

metabolite degradation, etc.  

 

Because of the increasing need for high-throughput metabolomics analysis and point-of-

care diagnosis, microfluidic devices are rapidly emerging to increase the efficiency of 

sample preparation in metabolomics studies.88 Even if the sample volume is very small, 

blood cell separation can be easily achieved in a microfluidic device.89 More importantly, 

microchip-based LC separation has been added to mass analyzers,90 and the microchip-

LC-MS system has been widely applied to proteomics and other studies.91-92 Compared to 

traditional methods, the microchip elutes a smaller volume into the mass analyzer, 

therefore generating a greater response.93 With more microfluidic devices designed for 

blood metabolomics in the future, the metabolome coverage and analysis throughput will 

be significantly improved, making the metabolomics analysis feasible for personalized 

health monitoring or point-of-care diagnosis. 

 

1.6 Statistical Analyses for Biomarker Discovery 

Although the metabolome coverage is very limited compared to the number of metabolites 

existing in blood, current metabolomics analyses are generating a massive amount of data. 

In a typical study with 200 subjects, detecting 1,000 metabolite features means 200,000 

concentration values to be further analyzed. Therefore, both the discovery and application 

of biomarkers rely on statistics. The statistical analysis for biomarker discovery commonly 

follows two strategies: uni-variate analysis and multi-variate analysis. In these methods, 
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each metabolite (e.g., a mass feature or a peak pair) is considered as a variable, and each 

sample (e.g., a healthy participant or a patient) is regarded as an observation. The variable-

observation matrix contains all the quantitative values we have measured. The uni-variate 

analysis studies one variable at a time, while the multi-variate analysis treats the matrix as 

a whole. The two approaches complement each other and usually used together in 

biomarker discovery studies. 

 

1.6.1 Uni-variate Analysis 

In a biomarker discovery study, we usually have a control group and a disease group, and 

we assume the size of the control group is large enough so that these observations can 

statistically represent the distribution of the whole healthy population, and so is the disease 

group. The simplest way to visualize the concentration distribution of each metabolite is 

the box-and-whisker plot. A typical box plot, as shown in Figure 1.2, illustrates the 5th 

percentile (bottom whisker), 25th percentile (bottom of the box), median (middle line of 

the box), mean (small dot), 75th percentile (top of the box) and 95th percentile (top 

whisker). The difference between 25th percentile and 75 percentile is defined as the 

interquartile range (IQR), and sometimes (25th percentile – 1.5 IQR) and (75th percentile 

+1.5 IQR) are used to discover outliers. The box plot tells the difference between the two 

groups in an intuitive manner. 

 

We also need statistical tools to study the difference numerically. For each variable 

(metabolite), we calculate the average concentration of the control group and the disease 
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group, respectively. Then the ratio of these two average values is defined as the fold change. 

The fold change tells the magnitude of the difference between the two groups, or 

theoretically the two populations. There is no standard cut-off value to determine a 

significant fold change. Most researchers set the cut-off according to their experimental 

design. 

 

Figure 1.2 Box-and-whisker plot, showing the data distributions of the control group and the 

disease group. 

 

Although the fold change is a straightforward parameter, it does not consider the variability 

of data. Therefore, we need hypothesis testing to show the statistical significance of the 

inter-group difference. Welch's t-test and the one-way analysis of variance (one-way 

ANOVA) are the most used tools. Welch’s t-test determines if the two populations have 

equal means by analyzing the two groups of data. The null hypothesis (H0) refers to the 

situation that the mean of the disease population equals to that of the healthy population. 

In other words, the disease does not cause any concentration change to this metabolite. The 

alternative hypothesis (H1) means that the means of the two populations are different, 
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indicating that the disease causes a noticeable change in the blood concentration of this 

metabolite. In this case, the metabolite becomes a biomarker candidate that can potentially 

be used to differentiate between patients and healthy people. If we choose to accept the 

alternative hypothesis when the null hypothesis is actually true, we would make a type I 

error (false positive). And if we mistakenly reject the alternative hypothesis, we would 

make a type II error (false negative). The hypothesis testing is designed to gauge the type 

I error. 

 

Instead of the t-value, we usually calculate the p-value in metabolomics analysis. The p-

value is the probability of observing another set of data that is at least as extreme as the 

current observation, when the null hypothesis is true. Most researchers set a cut-off value 

of 0.05. When the p-value of a metabolite is smaller than 0.05, the difference between 

healthy people and patients is defined to be statistically significant. It is important to know 

that the p-value is not the chance of making a mistake by accepting the alternative 

hypothesis. Calculated based on the assumption that the null hypothesis is true, the p-value 

plays the role as a filter to select biomarker candidates but has no other clear statistical 

meanings. Furthermore, setting the cut-off at 0.05 is arbitrary. Some statisticians have 

criticised the misuse of the p-value in biological and medical sciences, and suggested 

lowering the cut-off to 0.005.94 However, for biomarker discovery, we may care more 

about the type II error than the type I error. The uni-variate analysis is a preliminary 

screening of the potential biomarkers, and we do not want to miss any mistakenly. The 

false positives can be excluded in the following analyses or validation processes. To avoid 

increasing the chance of false negatives, we can keep using 0.05 as the cut-off. Another 
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concern is the normality of the data. Welch's t-test requires the data follow a normal 

distribution. If not, the Mann-Whitney u-test is supposed to be used.95 Nonetheless, 

theoretical and data-based comparisons have elucidated that the performance difference 

between t-test and u-test is very minor.96-97 

 

An alternative to the Welch's t-test is the Bayesian t-test. It compares the posterior odds of 

the two hypotheses and calculates the Bayesian factor Ω = Pr (H0 | data) / Pr (H1 | data).98 

Unlike Welch's t-test, which does not tell the possibility that the alternative hypothesis is 

true, the Bayesian t-test quantitatively demonstrates which hypothesis is more likely to be 

true. If the Bayesian factor is 5, H0 is 5 times more probable than H1, given the data. The 

Bayesian approach surpasses Welch's t-test in many aspects. However, since Welch's t-test 

has been widely used for many years, the application of Bayesian factor in metabolomics 

remains very scarce until now. 

 

The Cohen’s effect size (Cohen’s d-value) considers both the difference in mean and the 

variability. It is the ratio of the mean difference to the pooled standard deviation. When d > 

0.8, it is called a “large effect”.99 More metabolomics studies chose to use the volcano plot 

(Figure 1.3) to visualize both the fold change and the p-value. In the volcano plot, -log (p-

value) is plotted against log2 (fold change), making a volcano-shaped scatter plot. Each 

point in the volcano plot represents a metabolite, and “significant metabolites” refers to 

those whose fold changes are larger than the cut-off and p-values smaller than the criterion. 

Again, there is no gold standard to set the cut-offs. As the fold change is also considered, 
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the false positive rate should be lower than using the p-value alone. We should keep in 

mind that the volcano plot serves as a screening method, and the significant metabolites 

need further validations. 

 

Figure 1.3 Volcano plot, showing the significantly decreased metabolites (FC < 1.2, p-value < 0.05, 

in blue) and significantly increased metabolites (FC > 1.2, p-value < 0.05, in red). 

 

One-way ANOVA examines more than three independent groups of samples. The null 

hypothesis is that all the mean values are equal, and the alternative hypothesis is that at 

least one mean is statistically different. One-way ANOVA splits the total variance of the 

data into between-group variance and within-group variance, then calculates the ratio of 

these two. A large ratio means the alternative hypothesis is likely to be true. With the ratio, 

one-way ANOVA produces an F-test and also reports a p-value. 

 

When there is a significant difference between the two populations (e.g., patients have 

significantly higher blood concentration) and this difference is validated by follow-up 

studies, the metabolite becomes a biomarker. In clinical diagnosis, when the blood 
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concentration of this biomarker is measured for a subject, we have to determine if the 

measured value belongs to the disease population. Logically, since we have the 

distributions of the general population and the disease population, we can do a one-sample 

t-test to prove the value is part of the disease population, and conduct another one-sample 

t-test to confirm that the value does not lie in the general distribution. A much easier and 

practical approach might be setting a criterion value, as shown in Figure 1.4. If the 

measured value exceeds the criterion, we can conclude that the subject has the disease. In 

the real-world, we rarely have a perfect separation between the two populations. Because 

of the overlap, we have to carefully adjust the criterion value to reach a balance between 

false positives and false negatives. In this case (disease > control), increasing the cut-off 

will decrease the number of false positives but increase the chance of false negatives. 

 

A receiver operating characteristic curve (ROC curve) (Figure1.5) is a graphical plot for 

evaluating the differentiating power of a binary classifier.100 It examines a series of cut-off 

points, from low to high. For each criterion value, the true positive rate is calculated and 

named as sensitivity, and false positive rate is reported as (1-specificity). Then the ROC 

analysis draws a curve of sensitivity against (1-specificity). The classification power is 

evaluated by the Area-Under-the-Curve (AUC). AUC is a value between 0.5 and 1.0. 0.5 

means no classification power at all, and 1.0 represents an excellent classifier. The AUC 

of a classifier is equivalent to the probability that the classifier ranks a randomly chosen 

positive instance above a randomly chosen negative one.101 The uni-variate AUC values 

can be used for confirming and comparing the statistical significance of the significant 

metabolites output by the volcano plot. Several metabolites with medium AUCs can also 
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be combined to become a biomarker panel with higher AUC. The optimal cut-off point is 

the value when the Youden Index (sensitivity + specificity – 1) reaches the maximum. 

Researchers can report the sensitivity and specificity at the optimal point to demonstrate 

the performance of a biomarker. 

 

Figure 1.4 (A) Schematic of the selection of criterion value and (B) the confusion matrix. 

      

Figure 1.5 An ROC curve with AUC = 0.915, showing the optimal cut-off value (-0.109) with 

sensitivity of 83.7% and specificity of 84.5%. 
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1.6.2 Multi-variate Analysis 

The limitation of uni-variate analyses is that simply counting the number of significant 

metabolites cannot tell us how different two groups are. Multi-variate analyses, which treat 

the data matrix X as a whole, can show us the inter-group differences in a broader 

perspective. Principal Component Analysis (PCA), Partial Least Squares-Discriminant 

Analysis (PLS-DA) and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-

DA) are the most widely used multi-variate tools in metabolomics. All of them are 

projection methods, which means they project the high-dimensional data onto a 2D surface 

or 3D space, enabling visual presentation of the distribution of the data points. The axes of 

the 2D surface or 3D space are the principal components (PC). 

 

PCA is an unbiased, high-confidence dimensionality reduction method. It finds the first 

principal component (PC1) by the linear combination of a set of variables. PC1 is supposed 

to account for as much of the variability in the data as possible. PC2, which is another 

linear combination of the variables, is orthogonal to PC1 and has the second largest 

variance. More PCs can be determined if needed. PCA decomposes data matrix X into two 

orthogonal matrices (X = VT∙U).102 Matrix U is called the scores matrix, which is a 

summary of the observations, and the loadings matrix V is a summary of the variables. The 

2D score plot projects all the observations onto the surface of PC1 and PC2. The distance 

between two data points is the variance, and when there is a statistically significant 

difference between two study groups, the inter-group variances should be more significant 

than the within-group variances. In other words, the observations in each group should 

cluster closely and there should be an obvious distance between the two clusters. PCA 
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provides a simple and graphical overview of the data without putting any extra assumptions 

into it. However, sometimes there is a true separation between the two groups, but the inter-

group variation only accounts for a small portion of the total variability. In this case, PCA 

is not the best choice for studying the difference that we are interested in. 

 

PLS-DA is a supervised method that considers the group assignment of the observations. 

It annotates the grouping information in numbers (e.g., 0 and 1) and then builds a linear 

regression model between the PCs and the group assignment. The chosen PCs should not 

only cover a relatively large portion of the total variance, but also satisfy a linear 

relationship to the observations. Although the variation coverage of PLS-DA PCs is usually 

lower than that of PCA PCs, PLS-DA provides a more focused view on the useful 

variations. OPLS-DA is an improved version of the PLS-DA with the stronger power to 

cope with unwanted variations. Fundamentally it has the same algorithm of PLS-DA and 

gives better-looking inter-group separation, which makes it easier to interpret the results.103 

OPLS-DA is more susceptible to over-fitting issues, and it can only be used after a 

significant separation is confirmed by PCA or PLS-DA. 

 

Figure 1.6 Score plots of the same data set given by (A) PCA, (B) PLS-DA and (C) OPLS-DA. 
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As mentioned before, multiple variables can be used to generate a multi-variate ROC curve. 

In this case, instead of a simple criterion value, we need a multi-variate classifier to 

determine the class of an observation. The development of the classifier is based on a part 

of the input data (as the training set), and then the other part of the data (as the testing set) 

is substituted into the classifier to generate the ROC curve. PLS-DA model can also be 

used as the classifier. However, as a regression model, PLS-DA is sensitive to missing 

values and the over-fitting problem if validations are not properly performed. 

 

Several machine-learning methods can be applied for building the classifier. For example, 

Linear Support Vector Machine (SVM) maps the data into high-dimensional space that 

allows for the separation of two groups of samples into distinctive regions. It searches in 

the input high-dimensional space for an optimal plane that enables the maximization of the 

difference between the two groups. Subsequently, a new observation is classified based on 

which side it falls.104 SVM outperforms PLS-DA because it is not influenced by the missing 

values and it can deal with non-linear models. However, it has no visualized scores and 

loadings, and the computational workload is burdensome. 

 

The random forest method belongs to the family of classification trees.105 It can easily 

handle missing values, outliers and relatively small sample sizes. A regular decision tree is 

the basic unit of the random forest. To generate an ROC curve, a multitude of decision 

trees are constructed using the training datasets. Then the testing datasets are classified 
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with these decision trees to generate the sensitivity and specificity values for plotting the 

ROC curve. 

 

Generally speaking, a larger number of significant metabolites in a biomarker panel can 

always make better classification power. However, for clinical diagnostic purposes, we are 

trying to balance (1) achieving high sensitivity and specificity with (2) minimizing the 

required number of metabolites in the diagnosis panel. For real-world applications, a 

smaller set of biomarkers will be easier to quantify. We can choose the biomarkers 

according to the uni-variate results, or we may want to use the metabolites that have been 

positively identified or play roles in an essential metabolic pathway. 

 

1.7 Challenges and Solutions 

In the past decades, metabolomics has discovered a large number of biomarker candidates, 

and the number is rapidly increasing. However, none of them has currently made the 

transition to routine use in clinical practice.106 One possible reason is that, similar to protein 

biomarkers, the development and clinical implementation of a biomarker assay usually take 

several years. A number of companies are developing metabolite-based tests for the clinical 

diagnosis. For instance, in 2016, a commercialized assay based on three urine metabolites 

was put on the market for the diagnosis of adenomatous polyps.107 In the future, more 

cooperative interactions between the researchers, the diagnostic industry as well as the 

clinicians will definitely speed up the application of metabolite biomarkers. Nonetheless, 
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metabolomics-based biomarker discovery is facing many challenges. Addressing these 

issues is a vital prerequisite for the wide application of metabolite biomarkers. 

 

1.7.1 Statistical Over-fitting 

Most of the discovery and validation reports on biomarkers are based on assessing the 

statistical power. However, the metabolomics community has noticed that statistical 

significance does not always lead the way to biological meaningfulness.108 Many factors 

may cause the false positive statistical outcome, such as the biological variability which 

will be discussed later. When the sample size is too small, or the sample collection is biased, 

the statistical analysis may not be able to accurately reflect the biological difference. As 

the metabolome coverage of the blood analysis is increasing, over-fitting is becoming a 

major problem, and fortunately, this issue can be largely overcome by careful statistical 

manipulation. 

 

Mainly due to cost concerns, the number of observations in a biomarker discovery study is 

usually below 200. Therefore, we are having a much larger number of variables than 

observations. This may cause the over-fitting and significantly increase the chance of false 

positive results. In multi-variate analysis, when the sample sizes are relatively small, we 

can always see a nice separation on the score plot. Given a large set of variables, the 

algorithm can always find a combination that can coincidently explain the pre-defined 

group separation. The over-fitting is monitored by internal validation methods, such as the 

cross-validation and the permutation test. 
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In PLS-DA, the cross-validation randomly picks 1/7th of the data as the testing set and 

leaves the other 6/7th as the training set. The training set is used for building a PLS model. 

The R2 value (1 – residual sum of squares / sum of squares) can represent the quality of 

fitting. After that, the training set is substituted into the model, and the model predicts its 

observation values. By comparing the original values and the predicted values of the testing 

set, the algorithm gives the Q2 value (1 – predicted residual sum of squares / sum of 

squares), which estimates the goodness of prediction. When over-fitting happens, the 

model might mistakenly give a high R2, but the wrongly selected PCs cannot have high 

prediction power to reproduce the testing set, so a low Q2 value can indicate the over-fitting. 

 

Most researchers accept that Q2 > 0.5 means an acceptable model and Q2 > 0.9 indicates 

an excellent model. However, the Q2 has no statistical significance to determine the proper 

cut-off. Therefore, we employ the permutation test to simulate the null distribution of the 

Q2 value. The group assignment of the observations is randomly permuted. Then for each 

permuted data set, we build a PLS-DA model and generate a pair of R2 and Q2. The 

distribution of these new Q2 values is the null distribution when the null hypothesis is true. 

If the original Q2 is much larger than the permuted values, we can conclude that the Q2 has 

statistical significance and the PLS-DA model is valid. If the permuted data can generate 

very high Q2 values, we can know that the over-fitting is very severe, raising doubts about 

the separation in the original model. A response permutation plot, as shown in Figure 1.7, 

plots the original and permuted Q2 values against the correlation coefficient, and draws a 

straight line connecting the original value and the mean of the null distribution. A negative 
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intercept on the y-axis accepts the original PLS-DA model and a positive intercept indicates 

that the original PLS-DA model is over-fitted. 

 

Figure 1.7 (A) Permutation test accepts a valid model. (B) Permutation test rejects an over-fitted 

model. 

 

Uni-variate analyses also need corrections due to the large number of variables. The 

multiple testing problem refers to the situation that when multiple comparisons are being 

interpreted simultaneously, the chance of false positives correspondingly increases. For 

example, if we have 100 variables, we will conduct 100 t-tests. With the significance level 

set at 0.05, even if the null hypothesis is true, the chance of having at least one significant 

result increases to 1 – (1 – 0.05)100 = 99.4%. Therefore, we will find at least one metabolite 

with statistical significance, but actually the observation is caused by random chance. With 

more variables, the multiple testing problem can become very significant. There are a 

number of tools for correcting the multiple testing problem. Bonferroni correction 

considers the most extreme case of over-fitting, and corrects the analysis by diving the 

significance level by the number of variables. In the example above, the significance level 

should be set to 0.05/100 = 0.0005.109 Bonferroni correction is a bit too conservative, and 
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as discussed before, we do not want the primary screening of biomarker candidates to be 

too strict. More researchers prefer monitoring the false discovery rate (FDR) rather than 

the false positive rate. Storey et al. have developed a method to calculate the FDR-adjusted-

p-value (q-value) based on the distribution of the p-value.110 Setting the q-value threshold 

at 0.05, we are expecting that 5% of the selected significant variables are false positives, 

which will be excluded in the following analyses or the validation steps. 

 

Overall, statistical over-fitting is mainly caused by the small or imbalanced sample sizes. 

When the variable-to-observation ratio is too big, it will be very hard to dig out the useful 

information from the countless false positive results. The ultimate solution is to increase 

the sample size. With the number of observations matched to or even larger than the 

number of variables, the reliability of the statistical analysis will be greatly improved. 

 

1.7.2 Biological Variability 

Because of the inductive nature of metabolomics study and the lack of knowledge on the 

biological functions of the metabolites, some biological confounding factors may interfere 

with the statistical analysis. Humans are very diverse beings, and various genetic, 

environmental and lifestyle factors can cause variations in the blood metabolome. Blood 

metabolome variations due to sex, age, race, body weight and smoking have been 

reported.34, 45 These variations may become confounding factors in biomarker discovery. 

For example, the onset rate of lymphedema in women is much higher than in men.111 

Therefore, in a metabolomics study, it is very likely that the majority of the disease group 
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are female. When the control group has more males, we will probably see some sex-

dependent metabolites mistakenly recognized as the significant metabolites for the 

diagnosis of lymphedema. Logically, the disease group and the control group should have 

all these parameters matched. However, it is not very practical in clinical studies and there 

may be other interfering factors that we are not aware of. To overcome this issue, we need 

to perform metabolome profiling of large and diverse populations and develop metabolome 

databases for assessing all the possible confounding factors. For instance, with the 

knowledge of the sex-dependent metabolites, we are able to exclude these false positive 

findings from the lymphedema study. 

 

In most metabolomics studies, the blood sample is only collected once from each subject. 

However, researchers have found significant time-of-day variations in the blood 

metabolome.43, 112 Consequently, a single observation may not be able to represent the 

average level of the metabolite and may lead to false interpretations. Multiple blood 

collections during a period is a must for overcoming the within-individual variations and 

enabling a more comprehensive understanding of the individual blood metabolome. In 

addition, diet effects can significantly affect the blood metabolome as well, but how long 

the diet effect can last and whether the participants should fast overnight before giving 

blood remain unclear. Consecutive blood collections can also help with assessing the 

metabolic effects of dietary stimulation and other environmental exposures. However, 

performing venipuncture for many times within a day can be very invasive, and the cost 

will be too high. Less-invasive and cheaper blood analysis platforms are needed to achieve 

this goal. 
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Finally, due to the diluting effect of water and other reasons, the total metabolite 

concentration of blood may vary. This effect is very significant in urine metabolome 

studies, and urinary creatinine is widely used as the standard to normalize the samples.113 

Despite not being as significant as in urine, variations of total metabolite concentration in 

blood (about 20%) have also been reported.114 According to our knowledge, most blood 

metabolomics studies only performed post-acquisition normalization (e.g., normalization 

based on the total useful signal). Pre-acquisition normalization, which is more accurate, 

has not been applied to the blood samples. And there is no assessment of the performance 

of post-acquisition normalization. Our group has previously developed an LC-UV based 

pre-acquisition normalization method, which measures the UV absorption of the dansyl-

labeled amine/phenol-containing metabolites.115 The pre-acquisition normalization can be 

performed for blood samples with our CIL LC-MS platform. 

 

1.7.3 Study Design 

According to the above discussions, a large sample size is highly desirable in metabolomics 

studies, and an ideal study design should involve well-balanced, diverse and large study 

groups. In uni-variate analysis, the ideal sample size can be determined by the power 

analysis.116 Unlike the t-test, the power analysis monitors the type II error. The power, 

defined as (1 – false negative rate), is the probability of making the correct decision if the 

alternative hypothesis is true. Given the desired effect size, significance level and power, 

power analysis determines the minimum sample size. Ferreira et al. have extended the 
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application of power analysis to multi-variate data.117 Nonetheless, this method is designed 

to guide the study design according to previously obtained pilot data. In the real world, it 

is not very realistic to perform a pilot study to determine the sample size, and the number 

of samples is mainly determined by ethical and economical restrictions.97 In a biomarker 

discovery study, we cannot pre-define the desired significance level and effect size, either. 

What we can do is to recruit as many samples as possible. Collecting the finger blood or 

heel blood is a cheaper and less-invasive alternative, however, with the small sample 

amount, the metabolome coverage and detectability of low-abundance metabolites should 

be carefully assessed. Since both increasing the sample size and performing the time-

resolved analysis require more convenient blood sample collection methods, developing 

such a platform plays a central role in improving the reliability of blood metabolomics 

analysis.  

 

Another important part of the study design is the validations. Most reported biomarker 

candidates do not have follow-up validation studies. Before a biomarker candidate goes 

into clinical use, multiple external validations should be conducted in independent, diverse, 

and large populations. This is not an easy task that can be achieved by one laboratory. 

Nonetheless, since many researchers are studying the same disease, sharing knowledge and 

collaboration among laboratories can largely promote the validation process. It is important 

to note that the external validation should be independent of the original study design. It is 

logically incorrect to add more observations into the study after the original analysis is 

done in order to improve the statistical performance, which is called “p-hacking”.118 This 

is because when the null hypothesis is true, the relationship between the p-value and the 
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sample size is totally random. Therefore, even though the alternative hypothesis is false, 

adding more samples will always have a chance to improve the statistical performance. 

 

Additionally, most biomarker discovery studies are case-control studies in epidemiology, 

in which there is a disease group and a control group. Adding the time dimension to the 

study design is also very beneficial. Despite the higher cost, cohort studies are more 

powerful than case-control studies. Cohort studies analyze the blood metabolome before 

the onset or progression of the disease, and examine the outcome after a period. Since the 

metabolic changes are measured before the outcome reveals, we have a temporal 

framework to assess the causality and therefore have more confidence in the biomarkers.119 

Similarly, intervention studies introduce an external stimulation to one of the two study 

groups and monitor the outcome. It is a useful tool for confirming the relationship between 

an environmental exposure and a disease, or assessing the performance of treatment. 

 

1.8 Overview of Thesis 

My research started from developing and optimizing chemical isotope labeling (dansyl-

labeling and DMPA-labeling) LC-MS platform for the analysis of blood metabolome. The 

first four chapters of my thesis focus on understanding and reducing the experimental and 

biological variations that interfere with biomarker discovery studies. The last two chapters 

are the applications of the CIL LC-MS platform for blood biomarker discovery and 

exposure assessment. 
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Extra matrices are commonly introduced to plasma or serum samples during the sample 

handling. Although the CIL LC-MS method can overcome the matrix effects during MS 

detection, the role of matrix effects during the chemical labeling process itself remains 

unclear. Chapter 2 assesses the matrix effects during the reaction and proposes a solution 

to minimize the interferences. To avoid confounding factors in biomarker discoveries, it is 

important to understand the metabolome variations among the general population due to 

genetic and environmental factors. In Chapter 3, we develop a serum metabolome database 

of 1,348 amine/phenol-containing metabolites and 1,065 carboxyl-containing metabolites, 

and by employing a universal serum standard, the information can be easily used in future 

discovery studies and clinical applications. The metabolome variations due to sex, age, and 

body weight are also assessed. Furthermore, a less-invasive and high-coverage 

metabolome profiling method plays a crucial role in increasing the sample size, 

overcoming the time-of-day variability and thereby improving the reliability of biomarker 

studies. Chapter 4 describes a dansyl-labeling LC-MS-based method that can accurately 

quantify 1,722 metabolites in one microliter of finger blood, opening the possibility of 

time-resolved metabolomics analysis. In Chapter 5, DMPA-labeling is added to the 

analysis of one microliter of whole blood, detecting more than 4,000 metabolites from the 

extremely low amount of sample. Additionally, the method is applied to the exposomics 

assessment of a dietary exposure. 

 

In Chapter 6, a cohort study is designed to monitor the progression of Parkinson’s disease 

(PD). Serum samples were collected three years before a part of the PD patients developed 

dementia. By analyzing the samples with CIL LC-MS, we report a 5-metabolite panel for 



40 
 

the diagnosis of PD and an 8-metabolite panel for predicting the onset of dementia. At last, 

animal models usually outperform humans in exposure assessment as animals are less 

diverse in terms of diet and living environment. In Chapter 7, we choose a silkworm model 

to study the metabolic changes in blood (hemolymph) under the exposure of an endocrine 

disruptor (dichlorodiphenyltrichloroethane (DDT)). 

 

Overall, the major objective of my thesis work is to add the time factor into blood 

metabolomics, including both biomarker discovery and clinical diagnosis. We have 

established a metabolome database listing the common biological variations among healthy 

population. In the future, with our finger blood analysis technique, we will generate more 

knowledge about the time-dependent metabolic changes associated with diet effect or other 

environmental exposures. In biomarker discovery, this information can help us determine 

if the significant metabolome changes are truly originated from the disease state. And in 

clinical diagnosis, considering all these variations and standardizing the sample collection 

procedures will make the result more reliable. 
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Chapter 2 

Matrix Effect on Chemical Isotope Labeling and Its Implication in 

Metabolomic Sample Preparation for Quantitative Metabolomics 

 

2.1 Introduction 

Chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) is an 

enabling analytical platform for generating comprehensive and quantitative metabolomic 

profiles for metabolomics research.70 Using a proper labeling reagent to react with a class 

of metabolites (e.g., all amine-containing metabolites), a chemical-group-based 

submetabolome can be analyzed with improved LC separation and enhanced MS 

sensitivity to generate a comprehensive profile of the submetabolome.70, 73 By combining 

the results of different submetabolomes generated using labeling reagents targeting 

different chemical groups, a large coverage of the entire metabolome may be achieved.120 

A growing number of CIL reagents have been developed for targeted metabolite analysis 

or group-based submetabolome profiling.121-131  

 

For quantitative metabolomics, CIL LC-MS is performed using differential isotope 

labeling of individual samples (e.g., labeled with 12C-reagent) and their control (e.g., 

labeled with 13C-reagent), which overcomes the problems of matrix effect and ion 

suppression associated with MS detection.70, 73 However, matrix compositions of 

individual samples such as the salt and buffer contents may be different from sample to 

sample or batch to batch. While it is important to control the sample collection and sample 



42 
 

preparation steps properly for quantitative metabolomics, differences in sample matrix are 

unavoidable due to inherent variations of sample matrix such as salt contents in a biofluid 

(e.g., urine and sweat) and logistical consideration in real world applications. An example 

of the latter is that samples may be collected at different centers or time under somewhat 

different conditions such as using different additives (buffers, EDTA, etc). By necessity, 

one may want to profile these samples for improving the overall performance of a 

metabolomics study (e.g., using samples from different centers after the initial work of 

disease biomarker discovery using a well-controlled sample set for biomarker 

validation).132 In another situation, valuable samples that have been subjected to NMR 

analysis may be re-used for MS-based profiling.51 The NMR samples with the addition of 

phosphate buffer (PB) or phosphate buffer saline (PBS) that are used for controlling pH 

and ionic strength to minimize the chemical shift changes133-136 would obviously have 

different matrices from those of other untreated samples. 

 

Blood metabolomics also encounters the matrix effect. Plasma samples are collected with 

the addition of an anticoagulant, such as EDTA, citrate and heparin. Serum samples are 

sometimes diluted by PBS solution due to specific experimental requirements. The matrix 

effect of these additives can potentially become confounding factors in blood 

metabolomics, and we should carefully assess the corresponding interferences during the 

CIL reaction. In this chapter, we report the presence of a matrix effect on chemical labeling 

in a dansylation isotope labeling LC-MS metabolomic profiling workflow. Since compared 

to blood, urine usually has a stronger matrix and more significant inter-individual variation, 

we use urine for the assessment of matrix effects. We illustrate that metabolomic profiles 



43 
 

of urine samples with and without the presence of high concentrations of NaCl, PB or PBS 

produced by dansylation LC-MS can be different. While matrix effect in LC-MS analysis 

can be overcome by differential CIL, our work points out the importance of using similar 

sample matrices for chemical labeling to maintain similar labeling efficiencies of 

individual metabolites in comparative metabolomics. We also demonstrate that for samples 

with varying concentrations of salts such as urine samples, simply diluting the samples to 

reduce the salt concentration prior to chemical labeling can overcome the matrix effect. 

 

2.2 Materials and methods 

2.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada (Markham, ON, Canada). For dansylation labeling reaction, the 12C-

labeling reagent (dansyl chloride) was from Sigma-Aldrich and the 13C-labeling reagent 

were synthesized in our lab using the procedure published previously.70 LC-MS grade 

water, methanol, and acetonitrile (ACN) were purchased from ThermoFisher Scientific 

(Nepean, ON, Canada). 

 

2.2.2 Urine sample collection 

Urine samples were collected from five age-matched healthy mice. Equal volumes of the 

five individual samples were mixed together to make a pooled sample. After sample 

collection, the urine samples were immediately stored in -80 0C freezer for further use. 

 

2.2.3 Dansylation labeling 
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The frozen urine samples were thawed in an ice-bath and then centrifuged at 14,000 rpm 

for 15 min. 12.5 µL supernatant was taken into an Eppendorf tube and totally dried using 

a Speed Vac. The sample was re-dissolved to 50 µL with water or a specific matrix 

solution. Then 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer and 25 µL 

of ACN were added into the sample. The solution was vortexed, spun down, and mixed 

with 50 µL of freshly prepared 12C-dansyl chloride solution (18 mg/mL) (for light labeling) 

or 13C-dansyl chloride solution (18 mg/mL) (for heavy labeling). After 45 min incubation 

at 40 0C, 10 µL of 250 mM NaOH was added to the reaction mixture to quench the excess 

dansyl chloride. The solution was then incubated at 40 0C for another 10 min. Finally, 

formic acid (425 mM) in 50/50 ACN/H2O was added to consume excess NaOH and to 

make the solution acidic. The 12C- or 13C-labeled sample was centrifuged at 14,000 rpm 

for 10 min before injecting onto LC-UV for quantification. For LC-MS analysis, the 12C- 

and 13C-labeled samples were mixed in equal amounts based on the quantification results. 

 

2.2.4 LC-UV quantification 

A Waters ACQUITY UPLC system with a photodiode array (PDA) detector was used for 

the quantification of dansyl labeled metabolites for sample amount normalization as 

described earlier.115 Briefly, 2 µL of the labeled urine or amino acid solution was injected 

onto a Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size) for a fast 

step-gradient run. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile/water, and 

solvent B was 0.1% (v/v) formic acid in acetonitrile. The gradient started with 0% B for 1 

min and was increased to 95% within 0.01 min and held at 95% B for 1 min to ensure 

complete elution of all labeled metabolites. The flow rate used was 0.45 mL/min. The peak 
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area, which can represent the total metabolite concentration in the sample, was integrated 

using the Empower software (6.00.2154.003). 

 

2.2.5 LC-FTICR-MS 

An Agilent 1100 series binary system (Agilent, Palo Alto, CA) and an Agilent reversed-

phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 µm particle size, 95 A pore size) 

were used for LC-MS. LC solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, 

and solvent B was 0.1% (v/v) formic acid in acetonitrile. The gradient elution profile was 

as follows: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18.0 min, 65% B; t = 24.0 min, 99% 

B; t = 32.0 min, 99% B. The flow rate was 180 µL/min. The flow from HPLC was split 1:2 

and a 60 µL/min flow was loaded to the electrospray ionization (ESI) source of a Bruker 

9.4 Tesla Apex-Qe Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer 

(Bruker, Billerica, MA, USA), while the rest of the flow was delivered to waste. All MS 

spectra were obtained in the positive ion mode. To monitor the instrumental performance, 

a quality control sample (i.e., a differentially labeled urine sample) was injected every 10 

to 12 sample injections. 

 

2.2.6 Data analysis 

The 12C/13C peak pairs were extracted by the IsoMS software reported.72 IsoMS-Align was 

used to align the peak pair data from different samples by retention time and accurate 

mass.72 The missing values were filled back by using the Zero-fill program.137 Multivariate 

statistical analysis was carried out using SIMCA-P+ 12 (Umetrics AB, Umea, Sweden). 
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2.3 Results and discussion 

2.3.1 Matrix effect on CIL 

Differential CIL LC-MS provides relative quantification of metabolites in a sample vs. a 

control of similar type (e.g., an individual urine vs. a pooled urine) or absolute 

quantification of metabolites in a sample vs. a list of standards with known concentrations. 

When the sample matrices are not identical, matrix effect during the labeling process may 

occur, which could decrease the quantification accuracy. To examine the matrix effect on 

dansylation labeling which targets the amine/phenol submetabolome, we analyzed five 

individual mouse urine samples and a pooled sample in triplicates. For each sample, 12.5 

µL of sample were dried and then re-dissolved in 50 µL of PBS or water. The individual 

samples were separately labeled by 12C-dansylation and the pooled sample was labeled by 

13C-dansylation. Note that the concentration of dansyl chloride which was in excess was 

kept the same for labeling samples; we did not investigate how different concentrations of 

dansyl chloride affect the labeling efficiency of a sample containing different 

concentrations of salts or buffers. In CIL LC-MS, as long as the labeling efficiency is 

consistent for labeling the samples and the pool, relative quantification can be performed 

without much error. The total metabolite concentrations of the labeled samples were 

measured by LC-UV for sample amount normalization before mixing. 

 

Figure 2.1 shows the LC-UV measurement results where the peak area was determined 

from a chromatographic peak of all the dansyl labeled metabolites eluted by using high 

organic solvent in a step-gradient LC chromatogram. The concentration of the 5 urine 

samples could differ by as much as 5-fold (sample #2 vs. sample #5). However, the total 
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concentration of labeled metabolites is not affected by the presence or absence of PBS. 

Based on the LC-UV results alone, we could not detect any significant matrix effect on 

labeling. To normalize the sample amount for LC-MS analysis, equal amounts of a labeled 

sample and a labeled pooled sample were mixed. The same amount of the mixtures was 

injected into LC-MS for all samples. The intensity ratio of the 12C-/13C-labeled peaks from 

a metabolite peak pair in mass spectra was measured and entered into a metabolite-intensity 

table for the samples and all the metabolite peak pairs. Since the same pooled sample was 

used as a reference for all the individual samples, the peak ratios found in the table for a 

given metabolite reflect the relative concentration differences of the metabolite in these 

samples. This is the basis of quantitative metabolomics using differential CIL LC-MS.  

 

 

Figure 2.1 LC-UV quantification of the total concentration of labeled metabolites in five mouse 

urine samples re-dissolved in water and PBS. 

 

 

For the triplicate analyses of five urine samples, a total of 1662 peak pairs or putative 

metabolites were detected. We applied partial least squares discriminant analysis (PLS-

DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) to these data to 
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study the metabolomic changes. Figure 2.2 shows the score plots. As Figure 2.2 shows, 

there is a significant difference among the mixtures of urine re-dissolved in PBS labeled 

by 12C-dansylation and the pooled urine re-dissolved in H2O labeled by 13C-dansylation 

(denoted as the PBS/H2O group), 12C-urine in H2O and 13C-pooled-urine in PBS (i.e., 

H2O/PBS group), and 12C-urine in H2O and 13C-pooled-urine in H2O (i.e., H2O/H2O 

group). The PBS/H2O group and the H2O/PBS group are clearly separated from the 

H2O/H2O group. 

 

Figure 2.2 (A) PLS-DA and (B) OPLS-DA score plots of dansylation LC-MS data obtained from 

five 12C-dansylated mouse urine samples mixed with a 13C-dansylated pooled sample. For each 

sample, three experimental replicates were performed. Label X/Y (X, Y=water or PBS) denotes a 

mixture of an individual urine re-dissolved in X and labeled with 12C-dansylation and a pooled 

urine re-dissolved in Y and labeled with 13C-dansylation. 

  

At the individual metabolite ratio level, taking urine #1 as an example, out of 1622 peak 

pairs detected, 402 pairs in PBS have peak ratios decreased by more than 15%, compared 

to those in H2O, while 396 pairs have ratios increased by more than 15% (Figure 2.3). 

Figure 2.4 shows four representative metabolites as an example to illustrate the matrix 

effect on labeling efficiency. Table 2.1 shows the p-values from t-test of the peak ratios 
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found in a given matrix group vs. the H2O/H2O group. The labeling efficiency of creatine 

was slightly increased in PBS, resulting in higher PBS/H2O ratio and lower H2O/PBS ratio. 

In contrast, labeling of leucine, lysine and tyrosine was suppressed by the PBS matrix. 

Because labeling efficiency of individual metabolites may increase or decrease, the total 

concentration of labeled metabolites was not affected by the presence of PBS as shown in 

Figure 2.1. 

 

Figure 2.3 Distribution of the PBS/H2O ratios (i.e., peak pair ratio in PBS vs. peak pair ratio in 

water) for metabolites in urine #1. 

 

 

Figure 2.4 Relative intensities of four representative metabolites in urine #1 vs. a pooled urine 

determined from experimental triplicate analysis of four different mixtures as shown in Figure 2.2. 
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Table 2.1 Results of t-tests (p-values) showing the significance of ratio difference obtained from a 

given matrix group vs. the H2O/H2O group (the ratios for each metabolite are shown in Figure 2.4). 

Creatine PBS /PBS PBS /H2O H2O /PBS 

H2O /H2O 0.051 0.035 0.012 

 

Leucine PBS /PBS PBS /H2O H2O /PBS 

H2O /H2O 0.98 0.26 0.033 

 

Lysine PBS /PBS PBS /H2O H2O /PBS 

H2O /H2O 0.76 0.094 0.25 

 

Tyrosine PBS /PBS PBS /H2O H2O /PBS 

H2O /H2O 0.15 0.0050 0.00026 

 

The results of PLS-DA and OPLS-DA plots and individual peak ratios clearly demonstrate 

that there was a matrix effect during the dansylation labeling process caused by the 

presence of PBS in a sample. Figure 2.2 also shows that the H2O/H2O group and the 

PBS/PBS group are overlapped on the score plots. The peak ratios of the four metabolites 

shown in Figure 2.4 are similar for the two groups. These results indicate that, while there 

was a matrix effect, the relative quantification results of metabolites was not affected if the 

individual samples and the pooled sample had the same or similar matrix.  

 

To confirm the presence of matrix effect and investigate how it can influence absolute 

metabolite quantification, we chose tyrosine, which had a 39% peak ratio decrease in PBS, 

to generate standard addition curves. In this case, 12.5 µL of urine #1 was dried and re-
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dissolved to 50 µL using either PBS or water spiked with 1 µM, 2 µM, 3 µM and 4 µM 

tyrosine standard solutions. The samples were separately labeled, followed by LC-MS 

analysis. The area of dansyl-tyrosine peak (m/z 324.5953) was measured and plotted as a 

function of the concentration of spiked tyrosine. Figure 2.5A shows two standard addition 

curves for urine in PBS and water, respectively. There was a matrix effect on the labeling 

of tyrosine, causing a 35% decrease in labeling efficiency. However, the same absolute 

concentration (2.16-2.17 µM) was found from the two curves. It is clear that there was a 

matrix effect on metabolite quantification which could be overcome by the standard 

addition method.  

 

Figure 2.5 (A) Standard addition curves for tyrosine in mouse urine labeled in water and PBS. (B) 

Comparison of relative intensities of tyrosine labeled in different matrices. 
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Table 2.2 Results of t-tests (p-values) showing the significance of ratio difference obtained from a 

given matrix vs. H2O (the ratio values for matrix solutions are shown in Figure 2.5B). 

Tyrosine 

10 mM 

Phosphate 

Buffer 

50 mM 

Phosphate 

Buffer 

140 mM 

NaCl 

350 mM 

NaCl 

8 mM 

EDTA 

H2O 0.010 0.00053 0.0017 2.4*10-6 8.8*10-5 

 

2.3.2 Origin of the matrix effect 

To find a way to minimize the matrix effect on CIL, it is important to understand the origin 

and possible mechanism of this phenomenon. PBS solution contains 10 mM phosphate 

buffer (PB), 137 mM NaCl and 2.7 mM KCl. At first, we wanted to study PB and NaCl 

individually to see which one of them mostly contributes to the matrix effect in PBS. 

Because of the interest of performing MS analysis of the same sample already subjected to 

NMR measurement in our future research, we also examined the effect of a higher 

concentration PB, i.e., 50 mM. It should be noted that, using the tube-in-tube method,138-

140 no isotopic solvent needs to be added to the NMR sample and thus the sample, albeit 

containing high salt or buffer, can be readily transferred for MS analysis without any 

interference caused by the isotope solvent. Finally, 8 mM EDTA, which is approximately 

the final concentration of anticoagulant used in plasma, was also added to the list to 

examine its effect on labeling efficiency. 

 

In our experiments, we dissolved tyrosine separately in water, 10 mM and 50 mM PB, 140 

and 350 mM NaCl, and 8 mM EDTA, followed by labeling with 12C-dansyl chloride and 

then 1:1 mixing with tyrosine in water labeled by 13C-dansyl chloride. Note that dansyl 

chloride is highly soluble in acetonitrile or in a mixture of water and acetonitrile. As we 
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increased the salt or buffer concentration in the dansyl chloride solution, we did not observe 

any precipitation. Thus the presence of varying concentrations of salts or buffers in the 

sample did not change the solubility of dansyl chloride. The peak pair ratios of tyrosine 

were calculated after LC-MS analysis and the results are shown in Figure 2.5B. Table 2.2 

shows the p-values from t-test of the peak ratios found in a given matrix vs. H2O. As Figure 

2.5B shows, 140 mM NaCl has a larger effect on labeling efficiency, compared to 10 mM 

PB. The matrix effect of 50 mM PB is similar to that of 140 mM NaCl. More significantly, 

the tyrosine labeling efficiency in 350 mM NaCl solution is greatly reduced. In addition, 8 

mM EDTA also causes matrix effect on tyrosine labeling to an extent similar to 50 mM PB 

or 140 mM NaCl.  

 

Although keeping the alkaline environment is crucial for the dansylation reaction,141 no 

significant pH change of the reaction mixture was observed for these samples. Hence, the 

buffering property of PBS or PB was not the reason causing the matrix effect. Considering 

the results of the two NaCl samples (140 mM vs. 350 mM), we argue that increasing ionic 

strength in the labeling solution by high concentration of salts might be the main cause of 

the matrix effect. In the case of phosphate buffer, since HPO4
2- carries two charges, the 

ionic strength of PB should be higher than NaCl solution at the same concentration. 

However, the concentration of Na2HPO4/KH2PO4 in PBS is much lower than NaCl. 

Therefore, the matrix effect of PBS could be considered mainly as the matrix effect of 

NaCl. The 8 mM EDTA solution only contains 16 mM Na+, but the matrix effect was also 

observed. This could be the effect of EDTA anion, which carries more charges than sodium 

cation. 



54 
 

 

 

Figure 2.6 Relative intensities of 16 amino acids as a function of NaCl concentration in the sample 

solution. 

 

To further examine how salt content or ionic strength can affect the labeling reaction, we 

dissolved a mixture of equal amounts of 16 amino acid standards in NaCl solution at a 

concentration ranging from 0 to 650 mM. When the salt concentration increased to 750 

mM, acetonitrile and water could be separated into two layers by centrifuging. This is 

because the salt ions weaken the interaction between water molecules and acetonitrile 

molecules and change the solvent into an emulsion. This layer separation should be avoided 

for carrying out the labeling reaction. The amino acid mixture dissolved in different 

concentrations of NaCl was separately labeled by 12C-dansyl chloride and then 1:1 mixed 
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with a control standard labeled with 13C-dansyl chloride in water. The peak pair ratios were 

calculated and plotted against the concentration of NaCl and the results are shown in Figure 

2.6. As Figure 2.6 shows, the 16 amino acids have different responses to the increasing salt 

concentration. The 8 relatively hydrophilic dansyl-amino acids (Figure 2.6A, B) have less 

effect by increasing NaCl concentration. However, the peak pair ratios of the relatively 

hydrophobic dansyl-amino acids except dansyl-cystine decrease significantly as the salt 

concentration increases (Figure 2.6C, D). For example, the peak pair ratio of dansyl-

tyrosine in 650 mM NaCl is only about 24% of the ratio determined in water. 

 

 

Figure 2.7 Schematic of dansyl-labeling for amine in the presence of salts. 

 

The fact that relatively hydrophobic amino acids are more sensitive to the salt matrix 

supports our hypothesis on the role of ionic strength on matrix effect. Carta and Tola 

reported the solubility of glycine, leucine, cystine and tyrosine in aqueous solution at 

different NaCl concentrations.142 As the NaCl concentration increases, the solubility of 

cystine increases, while the solubility of leucine and tyrosine decreases. Glycine solubility 

is not affected by the salt. Our results of the matrix effect on the hydrophobic amino acids 

follow a similar trend. Dansylation reaction between dansyl chloride and an amine-
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containing metabolite is initiated by nucleophilic attack of the amine to the dansyl sulfide. 

An intermediate or ion pair of dansyl and chloride is formed, followed by substitution of 

chloride by the amine (Figure 2.7). Ionic strength can influence the nucleophilic attack. 

Any ionic species from a matrix that surround the dansyl moiety may reduce or enhance 

the propensity of the amine to interact with dansyl to form a product, resulted in an decrease 

or increase in labeling efficiency. For amino acids with hydrophobic side chains, increasing 

ionic strength makes them less likely to interact with the dansyl moiety, which reduces the 

dansylation efficiency.  

 

2.3.3 Minimizing the matrix effect on metabolomic profiling 

From the above results and discussion, it is apparent that high salts in various forms such 

as NaCl, PB or PBS can cause matrix effect on dansylation labeling. PB or PBS is 

introduced during sample preparation for various reasons. On the other hand, salts such as 

NaCl are inherently present at high concentrations in several biofluids such as urine and 

sweat. The salt concentration can vary from sample to sample. For example, in the study 

of urine sodium excretion trend between 1988 and 2010 among U.S. adults (age 20-59 

y),143 the urine sodium concentrations in spot urine specimens were reported to be 111 mM 

(mean) with 22.8 mM at 5th percentiles, 103 mM at 50th percentiles, and 221 mM at 95th 

percentiles for 1249 adults collected between 1988-1994. Slight increases in urine sodium 

concentrations were found for 1235 adults collected between 2003-2006 and 525 adults in 

2010. The potassium concentrations in human urine are less than 1/3 of the sodium levels 

144 and other metal ions concentrations are even lower.145 For mouse urine samples, the 
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sodium concentration can range from ~40 mM to ~150 mM and the potassium 

concentrations can range from ~150 mM to ~500 mM, depending on diet and age.146 

 

To examine how the salt contents can affect the metabolomic profiling, we selected one 

mouse urine and then diluted by 5-fold using different concentrations of NaCl solutions 

(50 mM, 150 mM, 250 mM and 350 mM). All these urine samples were labeled by 12C-

dansyl chloride and then mixed with a control sample diluted by water which was 13C-

dansylated. After LC-MS analysis, 1294 peak pairs or putative metabolites were detected. 

Figure 2.8A shows the PLS-DA score plot of the samples. There is a positive correlation 

between the salt concentration and the matrix effect. The higher the salt concentration, the 

further the data points are separated from the sample diluted by water. After adding the 

results from the un-diluted sample to the plot, Figure 2.8B shows the new plot. The samples 

diluted by water, 50 mM NaCl, and 150 mM NaCl cluster together. The samples diluted 

by 250 mM and 350 mM are clearly separated from the other diluted samples. The 

undiluted urine is significantly different from the 5-fold water diluted sample. These results 

indicate that the high salt concentration in the original urine had a strong matrix effect. 

After 5-fold dilution using water or low salt solution (50 mM), the matrix effect is greatly 

reduced or eliminated. Therefore, a dilute-then-label approach can be used to overcome the 

matrix effect on the CIL of biofluid samples. Figure 2.8A, B indicates that the presence of 

50 mM NaCl in the urine samples does not cause significant matrix effect. This result is 

consistent with the data shown in Figure 2.6 where the peak ratios of most of the labeled 

metabolites do not differ significantly between the water and 50 mM NaCl samples. 
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The effects of varying concentrations of PBS were also examined. Similar trend to those 

of NaCl samples was observed for these samples (see Figure 2.8C). The samples labeled 

in 4-fold diluted PBS (2.5 mM phosphate buffer and 35 mM NaCl) are inseparable from 

the water-diluted samples as shown in Figure 2.8C. As the PBS concentration increases, 

the matrix effect becomes more significant. These results suggest that, for a NMR sample 

containing high concentration of PBS, we can simply dilute it to minimize the matrix effect 

on CIL LC-MS. 

 

Figure 2.8 (A) PLS-DA score plot for 5-fold diluted urine #1 labeled in water (red) and NaCl 

solutions (50 mM in orange, 150 mM in yellow, 250 mM in green, and 350 mM in blue). (B) PLS-

DA score plot for the comparison of an undiluted urine sample labeled with dansylation (black) 

and 5-fold diluted urine samples labeled in water and NaCl solutions. The injection amount for all 

the samples based on LC-UV measurement was the same. (C) PLS-DA score plot for the 

comparison of 4-fold diluted urine #1 labeled at different concentrations of PBS solution (e.g., 25% 

PBS refers to 4-fold dilution of the PBS solution). For each sample, five experimental replicates 

were performed in (A) and (B), while three experimental replicates were performed in (C). 
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2.4 Conclusions 

We demonstrated the presence of a matrix effect on chemical labeling that could affect the 

quantitative metabolomic profiling results in CIL LC-MS. Relative metabolite 

quantification in differential CIL LC-MS was not affected, if the same or similar matrix 

was present in comparative metabolomic samples. Because matrix effect is only present 

when the salt or buffer concentration is very high such as in some urine samples, the 

simplest way to minimize the influence of matrix effect on quantitative metabolomic 

profiling is to dilute all the samples by a specific factor (e.g., 4- or 5-fold for urine samples). 

Over-dilution is not recommended as it can increase the time required for concentrating the 

already labeled samples before LC-MS analysis. For different types of biofluids as well as 

different labeling chemistries, matrix effect on the chemical labeling process might be 

different and thus examining the matrix effect should be part of the protocol development 

for CIL LC-MS based metabolomics. 
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Chapter 3 

Development of a Human Serum Metabolome Database and Analysis of 

Metabolome Variations Using Isotope Labeling and High-resolution LC-MS 

 

3.1 Introduction 

Human blood, as one of the most important biofluids, contains a treasury of known and 

unknown species that could reflect the ongoing physiologic state of all tissues,147 and 

therefore it has long been used for clinical diagnosis, from the analysis of glutamic-pyruvic 

transaminase for assessment of hepatic diseases148 to the application of blood protein 

biomarkers for tumor screening.149 In addition to the large molecules, blood serum is a 

primary carrier of small-molecule metabolites, transporting all the small molecules that are 

being secreted or excreted by different tissues in response to various physiological 

conditions.31 The regulation of these blood metabolites is not only governed by genetic 

effects,150 but also determined by the interaction between human body and environmental 

factors.151 Based on the hypothesis that when a specific disease state develops, certain 

physiological changes, as well as the resulting metabolic variations, may occur in the 

human body, blood metabolites can potentially become biomarkers for the early diagnosis 

of diseases. 

 

Metabolomics, which is the high-throughput and systematic analysis of the small-molecule 

metabolites, has been emerging as a promising method for biomarker discovery.152 

Metabolomics analysis of serum has been used to discover metabolite biomarkers for the 
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diagnosis of various diseases, such as cobalamin deficiency,153 colorectal cancer,154 

Alzheimer’s disease155 and Parkinson’s disease.11 To diagnose a disease with the 

quantitative analysis result of a biomarker from a subject, the concentration distribution 

among healthy people is a must for telling the analysis result is normal or not. However, 

humans are complex and diverse beings, and the diversity of genetic and environmental 

factors may cause huge variations in serum metabolome.62 In order to accurately interpret 

metabolomics results, it is crucial to analyze the metabolomes of diverse populations that 

would allow us to determine if the presence, absence, over- or under-expression of specific 

metabolite(s) is a true representation of a disease state, and not due to other factors. 

Furthermore, biomarker discovery studies usually involve a comparison between the 

metabolic profiles of a control group and a disease group. Ideally, the populations to be 

compared are balanced for genetic and environmental factors (e.g., sex, age, race, and 

lifestyle), but this may not always be practical.34 A possible situation can be that the 

average age of one study group is higher than that of the other. In this case, as metabolome 

variations associated with aging effects may cause confounding influences to the biomarker 

discovery, it is necessary to evaluate the metabolome variations due to aging within the 

healthy people. Logically, all the factors that cause metabolic heterogeneity among the 

general population should be carefully studied, and a non-targeted metabolomics profiling 

of a large, diverse and healthy population is an effective way to understand these 

metabolome variations and the underlying metabolic pathways. 

 

There are only a few comprehensive assessments of blood metabolome variations in the 

literature. Lawton et al. conducted LC-MS and GC-MS analyses to study more than 300 
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metabolites in human plasma samples provided by 259 participants, and confirmed 

metabolome variations due to sex, age and race differences.34 Using LC-MS and GC-MS, 

Saito et al. determined the levels of 297 metabolites among 60 healthy Caucasian 

individuals and the result revealed inter-sex and inter-age differences.46 Dunn and his 

coworkers analyzed more than 1,500 metabolite features which were detected by GC-MS 

and LC-MS. By studying a large UK population, they reported that variations in serum 

metabolome could be related to differences in gender, age, body mass index (BMI), blood 

pressure, and smoking.45 

 

Although in these existing works the variations of hundreds of serum metabolites have 

been studied, there are at least 4,300 known human serum metabolites according to the 

Human Serum Metabolome Database,31 which means a large portion of the metabolites 

have not been evaluated, let alone the possibility that the number of unknown metabolites 

is even larger. The detected metabolites in a non-targeted metabolome profiling are 

generally high-abundance. Serum biomarkers, on the other hand, can be in very low 

concentrations,156 which require improved techniques with larger metabolome coverage. 

 

The low metabolome coverage has always been a challenge to metabolomics analyses. To 

overcome this issue, a differential isotope labeling approach can be applied with improved 

LC separation and enhanced ESI ionization efficiency. Previously, we have developed a 

dansylation labeling approach for studying the amine/phenol-containing metabolites70 and 

a p-dimethylaminophenacy (DMPA) labeling for studying the carboxyl-containing 

metabolites.73 In this chapter, we employ these two methods to achieve a high-coverage 
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metabolome profiling of serum samples from 100 healthy individuals, which can serve as 

a serum metabolome database for understanding the metabolic variations in the general 

population. With more than 2,400 metabolites detected, we also study the effects of sex, 

age and BMI. Importantly, we pooled these 100 healthy serum samples into a universal 

standard, which can be used as the internal reference in our metabolomics analysis. As a 

result, the findings of our work can be easily adopted to all the future studies that apply the 

same universal standard, regardless of the LC-MS platform. 

 

3.2 Materials and methods 

3.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada (Markham, ON, Canada). For chemical isotope labeling reactions, the 12C-

labeling reagents (dansyl chloride and DMPA bromide) were purchased from Sigma-

Aldrich, and the 13C-labeling reagents were synthesized in our lab using the procedures 

published previously.70, 73 LC-MS grade water, methanol, and acetonitrile (ACN) were 

purchased from Thermo Fisher Scientific (Nepean, ON, Canada). 

 

3.2.2 Serum sample collection and the universal serum standard 

A hundred healthy volunteers including 35 males and 65 females were recruited in 

Edmonton, Canada. At the time of sample collection, the eligible participants were between 

the ages of 19 and 39 years old, and all of them were non-smokers. They did not consume 
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any prescription medications, counter pharmaceuticals or natural supplements, either. The 

study was conducted in accordance with the codes of the University of Alberta’s Arts, 

Science, and Law Research Ethics Board, and all participants provided informed consent. 

Table 3.1 describes the detailed demographic information including gender, age, and BMI.  

 

Table 3.1 Description of the sample set. Number in the cell represents the number of individuals 

that meet the corresponding condition. BMI groups were defined as: Underweight (BMI < 18.5), 

Normal (18.5 < BMI < 24.9), and Overweight (BMI > 25.0). 

Age 19-25 26-39 All ages 

Sex Female Male Total Female Male Total Female Male Total 

Underweight 3 0 3 6 0 6 9 0 9 

Normal 27 13 40 18 11 29 45 24 69 

Overweight 5 4 9 6 7 13 11 11 22 

All BMIs 35 17 52 30 18 48 65 35 100 

 

The participants were refrained from eating or drinking (except water) for at least 8 hours 

before giving blood. 10 mL of venipuncture blood was collected into a BD Vacutainer 10 

mL serum collection tube. The raw blood was allowed to clot spontaneously at room 

temperature for one hour, and then centrifuged at 1,500 g for 15 min to separate the blood 

cells. The supernatant (serum) was divided into multiple 250 µL aliquots in 1.5 mL 

microcentrifuge tubes for analysis or storage in a -80 °C freezer. 
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A universal serum standard (USS) sample was made by mixing equal-volume aliquots from 

each individual sample, and finally the USS sample was stored in 1.5 mL micro-centrifuge 

tubes at -80 °C. In the future metabolomics studies by differential isotope labeling, the USS 

sample will be 13C-labeled and serve as the internal reference. 

 

3.2.3 Dansylation labeling of serum samples 

The frozen serum sample was thawed in an ice-bath and then centrifuged at 15,000 g for 

15 min. In a microcentrifuge tube, 30 µL of supernatant was mixed with 90 µL of methanol. 

The mixture was then incubated at -20 °C for 2 hours before centrifuging at 15,000 g for 

15 min to precipitate the proteins. 90 µL of clear supernatant was taken and dried using a 

Speed-Vac centrifugal evaporator. The sample was re-dissolved to 75 µL with 2:1 

H2O/ACN. After that, 25 µL of 250 mM sodium carbonate/sodium bicarbonate buffer was 

added to the sample to make a basic environment which is optimal for the dansylation 

reaction. The solution was vortexed, spun down, and mixed with 50 µL of freshly prepared 

12C-DnsCl solution (20 mg/mL) (for light labeling) or 13C-DnsCl solution (20 mg/mL) (for 

heavy labeling). After the sample was incubated at 40 °C for 45 min, 10 µL of 250 mM 

NaOH was added to quench the excess dansyl chloride. The solution was then incubated 

at 40 °C for another 10 min to allow the NaOH react will all the leftover amount of the 

labeling reagent. Finally, 50 µL of formic acid (425 mM) in 1:1 ACN/H2O was used to 

consume excess NaOH and to make the solution acidic. The labeled samples were sent to 

LC-MS analysis or stored at – 80 °C. For each subject, two aliquots of serum were labeled 

independently as experimental duplicates. 
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3.2.4 DMPA-labeling of serum sample 

After thawed in an ice-bath, the serum sample was centrifuged at 15,000 g for 15 min. In 

a microcentrifuge tube, 30 µL of supernatant was mixed with 90 µL of acetonitrile. The 

mixture was then stored at -20 °C for 2 hours to precipitate the proteins. After this, the 

mixture was centrifuged at 15,000 g for 15 min. 90 µL of supernatant was mixed with 20 

µL of 0.5 M triethanolamine, which worked as the catalyst, and 50 µL of freshly prepared 

12C-DmPA bromide solution (10 mg/mL) (for light labeling) or 13C-DmPA bromide 

solution (10 mg/mL) (for heavy labeling). In an incubator set at 85 °C, the reaction was 

allowed to proceed for one hour. Finally, the sample was cooled down in an ice bath. The 

labeled samples were ready for LC-MS analysis, as well as long-term storage at – 80 °C. 

For each subject, two aliquots of serum were labeled independently as experimental 

duplicates. 

 

3.2.5 LC-UV quantification and pre-acquisition sample normalization 

Inter-individual variations in total metabolite amount must be minimized in order to 

accurately assess the concentration differences caused by the factors being studied. An LC-

UV based method115 was applied to determine the total concentration of dansylated 

amine/phenol-containing metabolites based on the UV absorption of the dansyl group. The 

experiment was performed with a Waters ACQUITY UPLC system UPLC (Waters, 

Milford, MA, USA) and a Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm 

particle size) (Phenomenex, Torrance, CA, USA). Two microliters of each dansyl-labeled 

sample were injected for a fast step-gradient run. Solvent A was 0.1% (v/v) formic acid in 
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5% (v/v) ACN/H2O, and solvent B was 0.1% (v/v) formic acid in ACN. Starting at 0% B 

for 1 min, the gradient was then increased to 95% B within 0.01 min and held at 95% B for 

1 min to ensure complete elution of all labeled metabolites. The flow rate was 0.45 mL/min, 

and the total UV absorption of dansyl-labeled metabolites in the sample was measured by 

a photodiode array (PDA) detector. The peak area, which can represent the total metabolite 

concentration in the sample, was integrated using the Empower software (6.00.2154.003). 

According to the quantification results, the 12C- and 13C-labeled samples were mixed in 

equal amounts for the following LC-MS analysis. Based on the assumption that there is a 

linear relationship between the total amount of amine/phenol-containing metabolites and 

the total amount of all metabolites in the sample, the sample normalization of acid-labeling 

was also based on the LC-UV measurements of the dansyl-labeling. 

 

3.2.6 LC-FTICR-MS analysis 

The LC-FTICR-MS analysis was performed using an Agilent 1100 series binary system 

(Agilent Palo Alto, CA) connected to a 9.4 T Apex-Qe FT-ICR-MS (Bruker, Billerica, 

MA). The MS data were acquired in the positive ion mode with an electrospray ionization 

(ESI) source. An Agilent reversed-phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 

µm particle size, 95 A pore size) was used for chromatographic separation. Solvent A was 

0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and solvent B was 0.1% (v/v) formic acid 

in ACN. 

 



68 
 

The 32-min gradient for all dansyl-labeled samples was as follows: 0 min (20% B), 0-3.5 

min (20-35% B), 3.5-18 min (45-65% B), 18-21 min (65-95% B), 21-24 min (95-99% B), 

and 24-32 min (99% B). The column was re-equilibrated with the initial mobile phase 

condition for 15 min before injecting the next sample. The flow rate was 180 µL/min, and 

the injection volume was calculated according to the optimal injection amount.  

 

The 40-min gradient for all DmPA-labeled samples was: 0 min (20% B), 0-9 min (20%-

50% B), 9-22 min (50%-65% B), 22-26 min (65%-80% B), 26-28 min (80%-98% B) and 

28-40 min (98% B). The column was re-equilibrated with the initial mobile phase condition 

for 15 min before injecting the next sample. The flow rate was 180 µL/min, and the 

injection volume was calculated according to the optimal injection amount. 

 

The representative LC-MS chromatograms are provided in Appendix Figure 1. 

 

3.2.7 Data processing and statistical analysis 

With the 12C/13C-mixed sample, metabolites are detected as 12C/13C-peak pairs instead of 

metabolite features given by single peaks. For each metabolite, a 12C-labeled peak 

represents the individual sample, and a 13C-labeled peak represents the USS sample. 

Therefore, the intensity ratio of these two peaks is the relative concentration of the 

metabolite in the individual sample. The picking of peak pairs was done by our in-house 

developed IsoMS software.72 The second step was aligning the detected metabolite 
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concentrations from the individual samples into a summarized data sheet. After the 

alignment, it is common to have missing values in the data set, which are due to the loss of 

weak signals during the data processing. We have developed a Zero-fill program to recover 

most of the missing information.137 Since the IsoMS calculates the peak pair ratio by the 

intensity values at the highest chromatogram point, imperfect LC peak shapes may affect 

the accuracy of the relative quantification. To overcome this issue, we employed the 

IsoQuant software to re-calculate the peak pair ratios by the LC peak areas.157 The final 

file with relative metabolite concentrations was exported to SIMCA-P+ 12.0 software 

(Umetrics, Umeå, Sweden) for multivariate statistical analysis. 

 

3.2.8 Metabolite identification 

We performed three levels of metabolite identification: positive identification, putative 

identification with the Human Metabolome Database (HMDB) library,158 and putative 

identification with the Evidence-based Metabolome Library (EML).41 The positive 

identification of the dansyl-labeled metabolites was done by a Dansyl Library159 which 

contains 315 metabolite standards. Meanwhile, the definitive identification of DMPA-

labeled metabolites was conducted with a developing acid standard library, which currently 

has 187 carboxyl-containing metabolite standards. Putative identification refers to a 

structure in the database with its accurate mass matched to that of a detected peak pair or 

metabolite in the samples. These matched structures can be used as the starting point for 

future confirmation including the synthesis of standards to positively identify the putative 

matches. In our work, putative identification was done based on accurate mass matches to 

the metabolites in the HMDB library (8,021 known human endogenous metabolites) and 
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the EML library (375,809 predicted human metabolites with one biological reaction). The 

mass accuracy tolerance window was set at 0.008 Da for database search. 

3.3 Results and Discussion 

3.3.1 Quality control and sample normalization 

One of the major goals of our work in this chapter is the establishment of a high-coverage 

human serum metabolome database that can provide the average metabolite concentrations 

and variations among healthy people for future biomarker discovery studies. To achieve 

this goal, the metabolite quantification should be as accurate as possible. For large-scale 

metabolomics profiling works, especially those employing LC-MS, the issue of signal 

intensity drift over time is a major confounding factor which makes the metabolite 

quantification less accurate.62 Also, as the serum is a complex biological mixture, the MS 

analysis may also suffer from the matrix effects.160 Hence, the quality of the LC-MS data 

acquisition needs to be carefully monitored. 

 

A major advantage of our differential isotope labeling methods is that the metabolite 

concentration is measured by the intensity ratio of a peak pair, instead of the absolute 

intensity of a single mass peak. According to the workflow shown in Figure 3.1, an 

individual sample is labeled by the 12C-labeling reagent (12C-dansyl chloride or 12C-DMPA 

bromide), and then mixed with the 13C-labeled USS sample. Consequently, for each 

metabolite, a peak pair is detected in the LC-MS analysis. The light peak is from the 12C-

labeled metabolite in the individual sample, and the heavy peak is from the 13C-labeled 

same metabolite in the USS sample. The intensity ratio of the two peaks can represent the 
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relative concentration of the metabolite in the individual sample. The absolute intensities 

of the light peak and the heavy peak may vary over time, but the ratio of them in a specific 

sample will remain constant. We have also confirmed that, even if the sample matrix is 

very extreme, the accuracy of relative quantification will not be affected.161 

 

Figure 3.1 Workflow of the non-targeted serum metabolome profiling using chemical isotope 

labeling and high-resolution LC-MS. 

 

In our work, we applied a QC run after every tenth LC-MS analysis of samples.  The QC 

sample was an equal-volume mixture of the 12C-labeled and 13C-labeled USS samples. The 

variations among QC runs represent the technical variations. If the technical variations are 

larger than the inter-subject variations, we will not be able to differentiate between the 

background noise and the metabolome changes that truly represent biological conditions. 

Therefore, the variations among QC runs must be smaller than the inter-subject variations. 
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As this is a typical multi-variate problem, we employed Principal Components Analysis 

(PCA) as an effective and straightforward way to study the variations. PCA linearly 

converts a combination of variables (metabolites) into a principal component. The first 

principal component (PC) accounts for as much of the variability in the data as possible. 

The second PC is orthogonal to the first and covers the second largest variance. The PCA 

score plots, as shown in Figure 3.2, project the high-dimensional data onto the 2-

dimensional surface of PC 1 and PC 2, so that the inter-sample variances and inter-group 

variances can be visualized. In Figure 3.2A, the individual data points and the QC data 

points are plotted on the same surface. Unlike the individual data points, which randomly 

spread over the surface, the QC data points closely cluster, suggesting that technical 

variations are much smaller than the inter-subject variations. The comparison between 

DMPA-labeled individual samples and QCs in Figure 3.2B also confirms that our 

differential isotope labeling is a robust quantification technique and the quantification 

accuracy through our work is reliable. 

 

Figure 3.2 (A) PCA score plot for dansylation LC-MS data obtained from 100 healthy subjects (in 

blue) and 20 QC runs (in red). (“PC” represents for “principal component” and the corresponding 

percentage is the percentage of the variance among all the data points that this principal component 
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covers.)  (B) PCA score plot for DMPA-labeled LC-MS data obtained from 100 healthy subjects 

(in blue) and 20 QC runs (in red). 

 

In addition to the instrumental drift, the inter-sample variations in the total metabolite 

concentration may also interfere with the metabolite quantification.  For example, the 

concentration variability of urine due to the dilution effect of water can be very significant 

and the corresponding normalization is an indispensable step.162 For serum metabolome, 

Roy et al. reported that the extent of concentration variation was between 0.8 and 1.2.114 

Although the variation of total metabolite concentration in serum is not as large as that in 

urine, it should be adjusted in order to acquire the high-quality data for the metabolome 

database.  

 

In our work, we employed an LC-UV based method to quantify the total concentration of 

amine/phenol-containing metabolites in a dansyl-labeled sample.115 Figure 3.3 shows the 

distribution of total metabolite concentration among serum samples from the 100 subjects. 

The average value is 0.34 mM, and the standard deviation is 0.04 mM, demonstrating a 

relatively narrow distribution. The most concentrated sample is 40% more concentrated 

than the average level, and the most diluted one’s concentration is 29% lower than the 

average. According to the LC-UV quantification result, each dansyl-labeled individual 

sample was mixed with the USS sample at the same total metabolite amount. Based on the 

assumption that the total amount of the amine/phenol-submetabolome can proportionally 

represent the total amount of the whole metabolome, as well as other submetabolomes, we 

also used the LC-UV result to implement the normalization of DMPA-labeled samples. 
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Figure 3.3 Distribution of the total metabolite concentration among the serum samples from 100 

people. 

 

3.3.2 Development of a human serum metabolome database 

A high-quality metabolome database should have as many high-confidence metabolites as 

possible. Since traditional LC-MS based profiling comes with background noise, 

protonated and deprotonated ions, adduct ions, fragment ions, dimers and trimers, the 

number of actually detected metabolites are always lower than the number of reported 

metabolite features.62 Our method, on the other hand, gives a much more credible number 

of metabolites. This is because the derivatization can provide enhanced ionization 

efficiency of metabolites and thereby improve the MS signal by 10 to 1,000 fold. This not 

only allows us to achieve a much higher metabolome coverage, but also helps with 

differentiating the true metabolites from the background noises that cannot be labeled as 

peak pairs. Moreover, the addition of the labeling group shifts low-mass metabolites to the 
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higher mass region, which usually has cleaner background than the low-mass region. So 

the signal-to-noise ratio is also improved. Although sometimes there are still adduct ions, 

in-source fragment ions and dimers existing, the IsoMS software is designed to 

automatically filter out these interferences, as well as the background noises. Furthermore, 

we manually checked the output to make sure each reported peak pair is high-confidence. 

At last, the peak pairs with more than 50% missing values were excluded. 

 

The sample injection amount was also optimized to obtain an optimal number of peak pairs. 

As shown in Figure 3.4, different amounts of the QC sample was injected into the LC-MS 

system. The number of detected peak pairs increased with larger injection amount, and we 

found the optimal injection amount when the number of peak pairs saturated. Consequently, 

1 nmol dansyl-labeled QC or 5 µL of DMPA-labeled QC was injected, and the injection 

volume of each individual sample was calculated to reach the same total metabolite amount. 

No carryovers were observed at the chosen injection amount. In our serum metabolome 

database, we report 1,348 amine/phenol-containing metabolites and 1,065 carboxyl-

containing metabolites.  Undoubtedly, a total number of 2,413 high-confidence metabolites 

can cover many more potential biomarkers, and the study of variations among normal 

population can be more broad and comprehensive with this data set. The DMPA-labeling 

focuses on relatively hydrophobic organic acids, and it has very good selectivity against 

other functional groups. Therefore, the overlap between the two labeling methods should 

be very small. Nonetheless, we note that there are a limited number of metabolites labeled 

by both reagents, and we will address this issue in the future by studying more standards 

and developing filtration algorithms. In our work, we study the amine/phenol-
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submetabolome and carboxyl-submetabolome separately to avoid false findings due to the 

overlap. 

 

Figure 3.4 (A) Injection optimization curve, showing the numbers of dansyl-labeled peak pairs 

when different amounts of the QC sample are analyzed by the LC-MS system. (B) Injection 

optimization curve, showing the numbers of DMPA-labeled peak pairs at different injection 

volumes of the QC sample. 

 

The database includes the retention time, labeled mass, accurate mass, and identification 

result of each peak pair. The average concentration and relative standard deviation (RSD) 

are also provided. Three levels of identification are annotated as “Library”, “HMDB” and 

“EML”. “Library” refers to the 56 dansylated metabolites which are positively identified 

with our standard library of 315 amine/phenol-containing compounds and the 32 DMPA-

labeled metabolites which are confirmed by the standard library of 187 carboxyl-containing 
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compounds. These 88 metabolites provide the highest confidence for further analyses. The 

standard libraries are being enriched, so in the future the structures of more metabolites in 

this database will be definitively verified.  

 

For the rest of peak pairs, we conducted putative identification by matching the accurate 

mass to the HMDB library, which contains 8,021 known human endogenous 

metabolites.158 499 dansyl-labeled peak pairs and 298 DMPA-labeled peak pairs are 

putatively identified by this approach. With the high-resolution LC-MS platform, the data 

have very high mass accuracy and resolution. Also, unlike the other libraries which may 

include exogenous drugs and other artificial compounds, the HMDB library that we used 

focuses on known endogenous metabolites. As a result, the confidence of the identification 

should be highly acceptable. We note that this level of identification cannot be as accurate 

as the positive identification. In the future we will confirm the HMDB identification results 

with more standards or MS/MS spectra.  

 

At last, one of the major challenges to metabolomics is that there are a large number of 

metabolites which remain unstudied and no standards are available for their identification. 

One possible origin of these unknown metabolites is the modification of primary 

metabolites. In the body, a known metabolite can be involved in various metabolic 

reactions in biological systems, producing different metabolic products.41 In order to cover 

these modified metabolites, we have previously developed an EML library, which 

simulates 76 common metabolic reactions to the known metabolites of HMDB library and 
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enriches the library to 375,809 predicted human metabolites with one reaction. The EML 

library can identify 661 of the remaining dansyl-labeled metabolites and 658 of the 

remaining DMPA-labeled metabolites. With the suggested structures, it is easier to confirm 

the identities of them by MS/MS experiments in the future. Although the three levels of 

identification have covered 91% of the peak pairs, there are 132 dansyl-labeled and 77 

DMPA-labeled peak pairs remaining unknown. With more metabolites and metabolic 

pathways discovered in the future, the structures of these metabolites will be eventually 

revealed. 

 

Determining the inter-individual variation of each metabolite is also of great importance, 

as in a biomarker discover study, we need this information to evaluate how extreme an 

abnormal value is. The distributions of the RSDs are shown in Figure 3.5. For both the 

amine/phenol-submetabolome and the carboxyl-submetabolome, the majority of the RSDs 

are smaller than 100%. The RSDs of more than half of the metabolites are between 25% 

and 50%. We can conclude that the inter-individual variations for most metabolites are not 

extreme. However, these inter-individual variations can possibly be large enough to 

interfere with the application of biomarker candidates as many disease-dependent 

variations are not larger than 100%. 
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Figure 3.5 (A) Distribution of relative standard deviations defining the inter‐subject variability in 

the  amine/phenol‐containing  metabolites.  (B)  Distribution  of  relative  standard  deviations 

defining the inter‐subject variability in the carboxyl‐containing metabolites.  

 

In the future, we can employ our isotope labeling methods to any individual sample. As 

the labeled sample is mixed with the USS standard, we are able to collect the relative 

concentrations of the 2,413 metabolites. And for any of them, we have the RSD information 

to determine whether the concentration in the sample being studied is normal. This kind of 

experiment can be done in any laboratory with any LC-MS platform, and the relative 

quantification result will not be affected. The USS standard can also be applied to multiple 

biomarker discovery studies, enabling the inter-study comparisons. 

 

3.3.3 Variations associated with sex 

In addition to the concentration variability among the whole general population, the 

metabolome changes due to specific genetic or environmental factors should also be fully 

understood for the discovery and application of metabolite biomarkers. Sex, as a major 

genetic factor, has long been studied for the down-stream differences in proteome and 

metabolome.163-164 According to Table 3.1, there are 65 female and 35 male subjects in our 
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study. Here we study the metabolome difference between males and females by another 

multi-variate statistical tool, the Partial Least Squares-Discriminant Analysis (PLS-DA). 

Unlike PCA, which is an unsupervised method, PLS-DA not only generates principal 

components, but also considers the group assignment and finds a linear regression model 

between the PCs and the grouping information. PLS-DA copes with the unwanted 

variances and focuses on the differences between study groups. 

 

Figure 3.6A is the PLS-DA score plot for the separation between males and females. 

Clearly we can see that the two groups are separated in the direction of PC1, despite the 

fact that the inter-group variance is not much larger than the within-group variances, which 

are demonstrated in the direction of PC2. To evaluate the performance of a PLS-DA model, 

SIMCA-P outputs the R2 and Q2 values by the cross-validation process. When the data set 

is split into a training set and a testing set, the R2 value represents the quality of fitting for 

the building of the model, and the Q2 value demonstrates the power of the model to predict 

the testing set. Although the large number of variables in our study may always make the 

R2 relatively optimistic, the Q2 value can work as a major performance indicator of the 

separation model. 

 

For the separation between males and females, the R2 is 0.978 and the Q2 is 0.750. It is 

generally accepted that Q2 > 0.9 means a perfect model and Q2 > 0.5 indicates an acceptable 

model, so our PLS-DA model can illustrate that there are statistically significant 

differences between the amine/phenol-submetabolomes of males and females. Since a 
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single Q2 value has no statistical significance, and the model can sometimes be over-fitted, 

a validation process is necessary to confirm the statistical findings. We used a permutation 

test to validate the PLS-DA models, and the result is shown in Figure 3.6B. The group 

assignment of the original data was randomized to generate multiple permuted data sets, 

and each of them outputs a pair of R2 and Q2. The permuted data sets with low correlation 

efficient to the original data set should not be able to generate a good model and their Q2 

values should be close to zero or even negative. On the permutation plot, if the y-axis 

intercept of the blue line is high, we will know that even totally randomized data can 

generate good models, raising doubts about the reliability of the original model. Usually, 

the intercept of the Q2 value should be negative. In Figure 3.6B, 200 permutation 

calculations were performed to the PLS-DA model described above, and the test 

successfully validated the model by showing a negative intercept. 

 

 

Figure 3.6 (A) PLS-DA score plot for studying the statistical differences in the amine/phenol-

submetbaolome between males and females. (B) Response permutation test result of the PLS-DA 

model for males vs. females (amine/phenol-submetablome). 
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Figure 3.7 (A) PLS-DA score plot for studying the statistical differences in the carboxyl-

submetbaolome between males and females. (B) Response permutation test result of the PLS-DA 

model for males vs. females (carboxyl-submetablome). 

 

Figure 3.7A is the PLS-DA score plot for the differences in carboxyl-submetabolome 

between males and females. Unlike the amine/phenol-submetabolome, the separation 

between the two groups is not very significant. Interestingly, in Figure 3.6A there are two 

outliers of the male group positioning at the center of the female group, and in Figure 3.7A, 

the data points of these two outliers are lying at the same position, demonstrating 

consistency between the sub-metabolomes. The R2 value is 0.984, and the Q2 value is 0.594. 

Although the Q2 is larger than 0.5, when Q2 is substantially lower than R2, the robustness 

of the model is questionable. The permutation plot in Figure 3.7B has a positive intercept, 

confirming that the model is not valid. We can conclude that although the amine/phenol-

submetabolome has demonstrated clear sex-wise differences, the variations in the 

carboxyl-submetabolome is not significant. 
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We also examined the outcome of combining the data of the sub-metabolomes. The PLS-

DA score plot is shown as Figure 3.8A. The distance between the two groups is clear, but 

not much more significant than that of the dansyl-labeled submetabolome. The Q2 value 

slightly increases to 0.814, but the permutation plot in Figure 3.8B rejects this model by 

showing a positive intercept. These results have illustrated that combining the data will not 

increase the discriminating power, and the large number of variables can increase the 

chance of over-fitting, which might account for the invalid permutation test. 

 

 

Figure 3.8 (A) PLS-DA score plot of the combined amine/phenol-submetabolome and carboxyl-

submetabolome, showing a separation between male and female subjects. (B) Response 

permutation test result of the PLS-DA model in Figure 3.8A. A total of 200 permutations were 

implemented. 

 

To study the metabolites that have different concentration distributions in males and 

females, we did uni-variate analyses and made the volcano plot. A fold change was 

calculated as the ratio of the average concentration in the female group to that in the male 

group. For each metabolite, a t-test was employed to statistically study the concentration 

difference between the two groups. In order to overcome the multiple-testing problem, we 
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calculated the False-Discover-Rate-Adjusted p-value (q-value) for each metabolite. The 

calculation was performed by the “QVALUE” R package.110 To control the false discovery 

rate, we let the q-value < 0.05 and found the corresponding p-value threshold for selecting 

the statistically significant metabolites. A volcano plot is made by plotting – log (p-value) 

against log2 (fold change), as shown in Figure 3.9A and 3.9B for the amine/phenol-

submetabolome and carboxyl-submetabolome, respectively. If a metabolite’s fold change 

is larger than 1.2 (or smaller than 0.83) and its p-value is smaller than the threshold that 

makes q < 0.05, we define it as a significant metabolite from the volcano plot. In Figure 

3.9A, there are 147 significantly decreased metabolites (in blue) and 59 significantly 

increased metabolites (in red), making a total number of 206 dansyl-labeled metabolites 

having statistically significant sex differences out of the 1,348 metabolites in the whole list. 

In Figure 3.9B for the DMPA-labeled metabolites, there are seven significantly decreased 

ones, and 31 significantly increased ones. The number of significant metabolites is smaller 

because the statistical difference is not very significant. Furthermore, we note that 

statistical significance does not always lead to biological significance. Particularly, the p-

value serves as a selection parameter but provides limited statistical meanings of the extent 

of variability for each metabolite. So in order to further improve the confidence of the 

findings, we also applied the uni-variate receiver operating characteristic (ROC) analysis, 

which illustrates the diagnostic ability of a binary classifier, to the significant metabolites 

in the volcano plots. For each metabolite, the ROC analysis reports an Area Under the 

Curve (AUC) as an indicator of the discriminative power. The AUC values are calculated 

with MetaboAnalyst 3.0.165 In total, 148 dansyl-labeled and 31 DMPA-labeled significant 
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metabolites have been positively or putatively identified. Their identities, fold changes, q-

values and AUCs are listed in Table 3.2. 

 

 

Figure 3.9 (A) Volcano plot for males vs. females (amine/phenol-submetabolome), showing 147 

significantly decreased metabolites (fold change (female/male) < 0.83, p-value < 0.034) in blue and 

59 significantly increased metabolites (fold change > 1.2, p-value < 0.034) in red. (B) Volcano plot 

for males vs. females (carboxyl-submetabolome), showing 7 significantly decreased metabolites 

(fold change < 0.83, p-value < 0.0062) in blue and 31 significantly increased metabolites (fold 

change > 1.2, p-value < 0.0062) in red. 

 

As shown in Table 3.2, 15 of the dansyl-labeled significant metabolites are positively 

identified: L-serine, homovanillic acid, L-aspartic acid, phenyl-alanyl-phenylalanine, L-

aspartyl-L-phenylalanine, aminoadipic acid, leucyl-proline, L-glutamic acid, 3-

hydroxymandelic acid, L-glutamic Acid [-H2O], L-tyrosine, L-leucine, L-methionine, 

trans-4-hydroxyl-L-proline and L-proline. In addition to the positively identified 

metabolites, 49 significant metabolites are putatively identified by the HMDB library and 

another 84 are putatively identified by the EML library. For the DMPA-labeled significant 

metabolites, five of them (hydroxyphenyllactic acid, 2-hydroxycaproic acid, 2-hydroxy-2-
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methylbutyric acid, cholic acid and linoleic acid) are positively identified. Another five 

metabolites are HMDB-identified, and 21 metabolites are EML-identified.  

 

Most of the positively identified dansyl-labeled compounds are amino acids or their 

derivatives, which agrees with the findings in many other metabolomics studies that amino 

acids are related to the sex-wise metabolome differences.34, 46, 166 Importantly, sex 

differences in the regulation of amino acid metabolisms have also been reported,167-168 

underlying the sex differences in metabolome phenotype. For instance, we found that the 

average concentration of tyrosine in the male group was 24% higher than that in the female 

group. In Kawaguchi and his coworkers’ report, they stated that testosterone, which is a 

sex hormone and a regulator of the synthetic enzyme of tyrosine, should be responsible for 

the significantly higher serum tyrosine levels in the male group, and the increased tyrosine 

level ulteriorly increased the insulin resistance.169 This example tells us that a number of 

metabolic pathways can be different between sexes and studying these sex-wise 

metabolome differences can help us develop a deeper and more comprehensive 

understanding of the metabolic processes. Homovanillic acid has the second-highest uni-

variate AUC (0.763) among the positively identified metabolites, demonstrating a high 

discriminating power for the sex-wise separation. Although the biological reason 

underlying the sex-dependent property of homovanillic acid is not clear, the concentration 

difference was also observed in other studies, showing the robustness of our method. For 

example, Koreen et al. studied the plasma homovanillic acid levels in 19 healthy volunteers, 

and reported that the concentration of the female group (7.0 +/- 2.3 ng/mL) was higher than 

that of the male group (6.3 + 1.9 ng/mL).170 Homovanillic acid has been reported to be a 
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biomarker candidate for the diagnosis of Parkinson’s disease23 and also believed to be 

related to Alzheimer’s disease.171 In a biomarker discovery study, if the control group and 

the disease group are not sex-matched, the sex-wise difference of homovanillic acid will 

become a confounding factor. As the metabolome variability of sex is considerable, we 

suggest that in biomarker discovery studies the sex factor should always be carefully 

considered. The box plots showing the concentration distributions of tyrosine and 

homovanillic acid are shown as Figure 3.10A and 3.10B, respectively. 

 

The DMPA-labeled significant metabolites are also important for revealing the biological 

differences between males and females. For example, hydroxyl-phenyllactic acid is a 

tyrosine metabolite, and its fold change (0.78) is close to that of tyrosine (0.82), suggesting 

the variability in the same metabolic pathway. Cholic acid is a primary bile acid, and our 

work shows that the serum concentration of cholic acid in men is almost twice as large as 

that in women, which is consistent with Fisher and Yousef’s finding that the bile acid 

composition of human bile is sex-dependent.172 Figure 3.10C and 3.10D are the box plots 

for the concentrations of hydroxyl-phenyllactic acid and cholic acid in males and females. 
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Figure 3.10 Box plots, demonstrating the metabolite concentration distributions in the male group 

and the female group for (A) tyrosine, (B) homovanillic acid, (C) hydroxyl-phenyllactic acid, and 

(D) cholic acid. 

 

3.3.4 Age effects  

The aging process is believed to induce metabolome changes,173 and the age-dependent 

metabolome variations have been reported in many reports.34, 174-175 In our work, the 

participants aged 19 to 39 years old, with a median of 25 years old. So we split them into 

two groups: 52 participants younger than 26 years old, and 48 participants equal to or older 

than 26 years old. The PLS-DA score plots for the amine/phenol-submetabolome and 

carboxyl-submetabolome are shown as Figure 3.11A and Figure 3.11B, respectively. 

Neither of them demonstrates a clear separation between the two age groups. And as we 

can expect, both of the two Q2 values, 0.582 and 0.606, are very low. Only three dansyl-

labeled metabolites are recognized as significant metabolites. One of them is EML-

identified as Cystine [+CH2] and the other two are not identified. None of the DMPA-



89 
 

labeled metabolites has q-value smaller than 0.05. The evidence leads us to believe that 

there are no age-related metabolome variations between our two age groups. Compared to 

the other works that always involve subjects older than 50 years, our study has a relatively 

young and narrow distribution of age. The aging effects can be significant among old 

people, but may not be noticeable among the relatively young population. We can conclude 

that, when all the subjects in a biomarker discovery study are younger than forty, the age 

factor can be safely ignored. 

 

 

Figure 3.11 (A) PLS-DA score plot for studying the statistical differences in the amine/phenol-

submetbaolome between the young group (< 26 years old) and the old group (>= 26 years old). (B) 

PLS-DA score plot for studying the statistical differences in the carboxyl-submetbaolome between 

the young group (< 26 years old) and the old group (>= 26 years old). 

 

3.3.5 BMI effects 

Obesity is a serious health problem that increases the risk of diabetes, cardiovascular 

disease, and cancer.176 Metabolic abnormalities are believed to underlie this disorder and 

efforts have been made to find biomarkers for obesity.177 Morio et al. have found that, in 
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comparison to normal people, the obese subjects demonstrated a different metabolic 

response to over-nutrition,178 suggesting differences in metabolic pathways. As overweight 

and obesity are commonly seen conditions in the general population, it is worthwhile to 

study the related metabolic variations. Overweight can be defined as BMI between 25 and 

30, and obesity refers to BMI larger than 30. In our work, the range of BMI is from 13.4 to 

38.4, with a median of 22.5. For statistical analysis, we defined 9 subjects with BMI < 18.5 

as the underweight group, 69 subjects with BMI between 18.5 and 25 as the normal group, 

and 22 subjects with BMI > 25 as the overweight group. 

 

 

Figure 3.12 (A) PLS-DA score plot for studying the statistical differences in the amine/phenol-

submetbaolome between the normal group and the overweight group. (B) PLS-DA score plot for 

studying the statistical differences in the carboxyl-submetbaolome between the normal group and 

the overweight group. 
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Figure 3.13 (A) Response permutation test result of the PLS-DA model for overweight vs. normal 

(amine/phenol-submetabolome). (B) Response permutation test result of the PLS-DA model for 

overweight vs. normal (carboxyl-submetabolome). 

 

The normal group has 35% of males and the overweight group has 50% of males. So the 

sex will not become a significant interfering factor. Figure 3.12A is the PLS-DA score plot 

for the dansyl-labeling data, showing a clear separation between the normal group and the 

overweight group. Although the Q2 (0.576) is relatively low, the model passed the 

permutation test, suggesting a minor but valid separation. For the DMPA-labeling data in 

Figure 3.12B, the two groups are visibly overlapping. Although the Q2 is higher than that 

of the amine/phenol-submetabolome, the model is rejected by the permutation test. The 

permutation test results are provided in Figure 3.13. 

 

Figure 3.14A and 3.14B are the volcano plots for studying the overweight condition. The 

amine/phenol-submetabolome has 18 decreased (overweight/normal) metabolites and 22 

increased metabolites. Meanwhile, the carboxyl-submetabolome still shows four decreased 

metabolites and two increased metabolites, despite the fact that the multi-variate difference 
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is not significant. Table 3.3 provides the information of 25 identified dansyl-labeled 

metabolites and six identified DMPA-labeled metabolites. Among them, taurine is the only 

positively identified one. Nonetheless, six are putatively identified by the HMDB library 

and another 24 are putatively identified by the EML library.  

 

Taurine has a significantly lowered concentration in the overweight group, as shown by 

the box plot in Figure 3.15A. It has been proved that taurine produces a beneficial effect 

on lipid metabolism and helps with reducing body weight.179 The concentration decrease 

of this beneficial regulator in the overweight subjects might be one of the reasons 

underlying the obese phenotype.  Palmitic acid is an HMDB-identified metabolite, and its 

overweight/normal fold change is 0.74 (Figure 3.15B). It is one of the most common 

saturated fatty acids, and it also plays a role in the fat oxidation process.180 
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Figure 3.14 (A) Volcano plot for overweight vs. normal (amine/phenol-submetabolome), showing 

18 significantly decreased metabolites (fold change (overweight/normal) < 0.83, p-value < 0.005) 

in blue and 22 significantly increased metabolites (fold change > 1.2, p-value < 0.005) in red. (B) 

Volcano plot for overweight vs. normal (carboxyl-submetabolome), showing 4 significantly 

decreased metabolites (fold change < 0.83, p-value < 0.00066) in blue and 2 significantly increased 

metabolites (fold change > 1.2, p-value < 0.00066) in red. (C) Volcano plot for underweight vs. 

normal (amine/phenol-submetabolome), showing 2 significantly decreased metabolites (fold 

change (underweight/normal) < 0.83, p-value < 0.0016) in blue and 27 significantly increased 

metabolites (fold change > 1.2, p-value < 0.0016) in red. (D) Volcano plot for underweight vs. 

normal (carboxyl-submetabolome), showing one significantly increased metabolite (fold change > 

1.2, p-value < 0.000018) in red. 

 

Figure 3.15 Box plots, demonstrating the metabolite concentration distributions in the normal 

group and the overweight group for (A) taurine and (B) palmitic acid. 
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 We also studied the metabolome variations due to the underweight condition. The 

underweight is a small group of nine subjects, and all of them are female, so the sex effect 

might be a confounding factor. The volcano plot analyses give 37 significant metabolites 

from the dansyl-labeling data and one significant metabolite from the DMPA-labeling data. 

Eight out of the 37 dansyl-labeled significant metabolites are also in the list of the sex effect 

and have similar fold changes in the two different comparisons. We excluded these eight 

metabolites from the following analysis to avoid interference of the sex effect. Moreover, 

to study the interactions among the three factors, we made the Venn diagram (Figure 3.16). 

For the amine/phenol-submetabolome, sex and age factors share one common significant 

metabolite, but the identity of this metabolite is unknown. 22 of the BMI-associated 

metabolites have significant sex interactions. Among them, eight are from the underweight 

group and have been excluded. Another 14 significant metabolites are shared by sex effect 

and overweight effect. These metabolites should be involved in the metabolic pathways 

that are not only regulated by sex-dependent genetic factors but also altered in the abnormal 

biological conditions of overweight. 11 of them have been putatively identified and 

highlighted with asterisks in Table 3.3. None of the DMPA-labeled metabolites 

demonstrated the inter-factor interactions. 
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Figure 3.16 Venn diagram for the volcano plot significant metabolites associated with sex, age and 

BMI. (All of these numbers refer to dansyl-labeled metabolites only.) 

 

Figure 3.17A is the PLS-DA score plot for the underweight effect of the amine/phenol-

submetabolome, showing a clear separation between the two groups. Although the Q2 

(0.650) is relatively low, the model passed the permutation test (Figure 3.18A), suggesting 

an acceptable statistical difference. We can also find the group separation of the carboxyl-

submetabolme in Figure 3.17B. However, the model failed the permutation test (Figure 

3.18B).  

 

Figure 3.17 (A) PLS-DA score plot for studying the statistical differences in the amine/phenol-

submetbaolome between the normal group and the underweight group. (B) PLS-DA score plot for 
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studying the statistical differences in the carboxyl-submetbaolome between the normal group and 

the underweight group. 

 

 

Figure 3.18 (A) Response permutation test result of the PLS-DA model for underweight vs. normal 

(amine/phenol-submetabolome). (B) Response permutation test result of the PLS-DA model for 

underweight vs. normal (carboxyl-submetabolome). 

 

The volcano plot for the amine/phenol-submetabolome in Figure 3.14C has two decreased 

metabolites and 27 increased metabolites due to underweight. An isomer of methionine 

sulfoxide, an isomer of hypoxanthine and tryptophyl-phenylalanine are positively 

identified, with another 15 metabolites identified by HMDB and seven metabolites 

identified by EML library. Only one DMPA-labeled metabolite, which is putatively 

identified as glycoursodeoxycholic acid, is a statistically significant variable, as shown in 

Figure 3.14D. The information of these metabolites is given in Table 3.4. Although the 

metabolomics studies on underweight condition are scarce compared to those on obesity, 

our result has revealed that there should be abnormally regulated metabolic processes 

associated with the low body weight. With more positively identified metabolites and well-
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studied pathways available in the future, the metabolic information about the BMI factor 

will be greatly enriched. 

 

3.4 Conclusions 

Overall, we have successfully developed a high-coverage human serum metabolome 

database. In future metabolomics applications, with the use of differential isotope labelings 

and universal standard, the relative concentrations and statistical significances of these 

metabolites can be easily obtained from any individual sample, even with a very limited 

sample amount. Moreover, our work has demonstrated metabolic variations associated 

with sex and BMI. On the one hand, these variations are potential confounding factors in 

biomarker discovery and need to be carefully monitored. On the other hand, they can reveal 

the potential of metabolomics toward personalized health assessment. By studying these 

variations and the related metabolic pathways, we may develop a deeper understanding of 

the individual-dependent metabolic responses to environmental stimulations. Other 

lifestyle-related factors, such as coffee consumption and smoking, were strictly excluded 

in this study. However, they are very common variables accompanied with most clinical 

blood collections, so the metabolic impact of these factors should also be studied in the 

future. 

 

Interestingly, the variability in the carboxyl-submetabolome is insignificant compared to 

that of the amine/phenol-submetablome, suggesting differences in metabolic pathways for 

different groups of metabolites. In addition to our future plans of increasing the number of 
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positively identified metabolites in the current database, we will also expand the database 

with another two labeling techniques targeting at the hydroxyl-submetabolome74 and 

carbonyl-submetabolome.75 At last, this work is part of a collaborative project with 

Zhejiang University, Hangzhou, China, in the area of developing a Canadian and Chinese 

Metabolome Database (CCMD). By studying subjects living in different environments, it 

is possible to discover the metabolic responses to more environmental factors. 

 

Note: In the work of this chapter, Tran Tran helped with the blood collection and Minglei 

Zhu helped with the DMPA-labeling of serum samples. 

 

Table 3.2 148 identified dansyl-labeled metabolites and 31 identified DMPA-labeled metabolites 

that have fold change (female/male) > 1.2 (or < 0.83) and q value < 0.05 for the difference between 

males and females. 

Label Retention 

Time (min) 

Detected 

m/z 

Accurate 

Mass 

(Da) 

ID 

Level 

Compound Name HMDB 

ID 

Fold 

Change 

q-

value 

Uni-

variate 

AUC 

Dansyl-

36 

4.02 391.0633 157.0050 EML Alloxan [+NH] HMDB

02818 

1.26 2.67

E-02 

0.740 

Dansyl-

56 

4.63 373.0885 139.0301 EML Taurine [+CH2] HMDB

00251 

0.62 1.85

E-02 

0.550 

Dansyl-

62 

4.78 531.1029 297.0446 HMDB L-Cysteinylglycine 

disulfide 

HMDB

00709 

0.83 4.35

E-05 

0.555 

Dansyl-

63 

4.84 385.0883 151.0300 EML Homocysteine [+O] HMDB

00742 

1.29 3.54

E-02 

0.658 

Dansyl-

71 

5.05 385.0341 150.9757 EML Thiocysteine [-H2] HMDB

03585 

0.77 2.90

E-02 

0.597 
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Dansyl-

78 

5.22 558.1586 324.1002 EML L-Aspartyl-L-

phenylalanine [+CO2] 

HMDB

00706 

1.42 7.44

E-03 

0.761 

Dansyl-

80 

5.24 509.1695 275.1111 HMDB Gamma-

Glutamylglutamine 

HMDB

11738 

0.80 7.76

E-12 

0.622 

Dansyl-

88 

5.36 363.1008 129.0425 HMDB Pyroglutamic acid HMDB

00267 

0.79 3.28

E-12 

0.627 

Dansyl-

106 

5.59 380.1637 146.1054 EML Pipecolic acid [+NH3] HMDB

00070 

0.73 3.37

E-02 

0.576 

Dansyl-

132 

6.25 452.1482 218.0898 HMDB 5-L-Glutamyl-L-

alanine 

HMDB

06248 

0.80 1.47

E-05 

0.551 

Dansyl-

141 

6.41 423.1339 189.0756 HMDB S-Prenyl-L-cysteine HMDB

12286 

1.20 2.76

E-02 

0.678 

Dansyl-

144 

6.43 367.0956 133.0373 HMDB Iminodiacetate HMDB

11753 

1.29 2.11

E-04 

0.769 

Dansyl-

152 

6.55 339.0993 105.0410 Library L-Serine HMDB

00187 

1.31 5.42

E-08 

0.843 

Dansyl-

153 

6.55 424.1132 190.0549 HMDB L-beta-aspartyl-L-

glycine 

HMDB

11165 

1.21 3.61

E-02 

0.736 

Dansyl-

155 

6.55 362.1905 128.1322 EML Spermidine [-NH3] HMDB

01257 

0.77 6.63

E-03 

0.508 

Dansyl-

158 

6.58 371.0861 137.0278 EML Aminomalonic acid 

[+H2O] 

HMDB

01147 

1.25 6.95

E-07 

0.826 

Dansyl-

163 

6.61 410.1042 176.0459 HMDB Ureidosuccinic acid HMDB

00828 

1.23 4.14

E-03 

0.739 

Dansyl-

165 

6.61 339.1376 105.0793 HMDB Diethanolamine HMDB

04437 

1.22 2.94

E-05 

0.812 

Dansyl-

168 

6.65 505.2224 271.1640 EML Homoanserine [+NH3] HMDB

05767 

0.76 5.06

E-04 

0.565 

Dansyl-

169 

6.68 477.1432 243.0849 HMDB Cytidine HMDB

00089 

1.41 3.41

E-03 

0.746 

Dansyl-

172 

6.83 477.1798 243.1215 EML 5-

Methyldeoxycytidine 

[+H2] 

HMDB

02224 

0.77 1.14

E-05 

0.572 
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Dansyl-

181 

6.96 381.1108 147.0525 Library L-Glutamic Acid HMDB

00148 

0.83 1.34

E-02 

0.593 

Dansyl-

182 

6.96 367.0924 133.0341 Library L-Aspartic Acid HMDB

00191 

1.41 6.57

E-03 

0.749 

Dansyl-

184 

6.97 403.0897 169.0314 HMDB 2-Furoylglycine HMDB

00439 

0.83 2.28

E-02 

0.545 

Dansyl-

186 

6.98 365.1160 131.0577 Library Trans-4-Hydroxyl-L-

Proline 

- 0.83 4.07

E-02 

0.516 

Dansyl-

218 

7.47 395.1272 161.0689 Library Aminoadipic acid HMDB

00510 

0.74 3.85

E-06 

0.639 

Dansyl-

238 

7.58 511.1745 277.1162 HMDB Queuine HMDB

01495 

0.78 4.31

E-05 

0.582 

Dansyl-

254 

7.79 428.1366 194.0783 EML N-Formyl-L-

methionine [+NH3] 

HMDB

01015 

2.08 1.96

E-02 

0.646 

Dansyl-

272 

8.05 379.1321 145.0738 HMDB (S)-5-Amino-3-

oxohexanoate 

HMDB

12131 

1.73 4.16

E-02 

0.654 

Dansyl-

275 

8.10 480.1789 246.1206 HMDB L-beta-aspartyl-L-

leucine 

HMDB

11166 

0.80 1.54

E-10 

0.637 

Dansyl-

277 

8.10 512.1514 278.0931 EML L-Aspartyl-L-

phenylalanine [-H2] 

HMDB

00706 

0.75 4.14

E-14 

0.685 

Dansyl-

294 

8.31 452.1852 218.1269 EML Diaminopimelic acid 

[+C2H4] 

HMDB

01370 

1.28 2.11

E-02 

0.698 

Dansyl-

295 

8.35 418.0816 184.0233 EML Cysteic acid [+NH] HMDB

02757 

0.72 1.73

E-10 

0.668 

Dansyl-

305 

8.66 348.1381 114.0798 HMDB 3-Amino-2-piperidone HMDB

00323 

0.77 8.58

E-05 

0.583 

Dansyl-

312 

8.79 402.0862 168.0279 EML Xanthine [+O] HMDB

00292 

0.70 6.73

E-09 

0.686 

Dansyl-

321 

8.86 431.1727 197.1144 EML 1-Methylhistidine 

[+C2H4] 

HMDB

00001 

0.70 3.48

E-02 

0.581 

Dansyl-

324 

8.94 420.1222 186.0639 EML 2-Furoylglycine 

[+NH3] 

HMDB

00439 

1.25 1.23

E-02 

0.665 

Dansyl-

326 

9.06 374.0808 140.0224 EML Taurine [+NH] HMDB

00251 

1.36 3.77

E-03 

0.757 
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Dansyl-

349 

9.33 502.1763 268.1180 EML Carnosine [+C2H2O] HMDB

00033 

0.50 4.14

E-14 

0.800 

Dansyl-

353 

9.41 399.1011 165.0428 EML 2-Aminobenzoic acid 

[+CO] 

HMDB

01123 

1.46 5.77

E-04 

0.751 

Dansyl-

354 

9.49 420.1588 186.1004 EML Glycylproline [+CH2] HMDB

00721 

0.83 5.16

E-03 

0.527 

Dansyl-

356 

9.53 478.2015 244.1432 EML L-leucyl-L-proline 

[+O] 

HMDB

11175 

0.67 2.27

E-03 

0.574 

Dansyl-

359 

9.59 379.1329 145.0746 HMDB Isobutyrylglycine HMDB

00730 

1.41 3.89

E-02 

0.616 

Dansyl-

369 

9.94 416.0648 182.0065 EML Phosphoguanidinoacet

ate [-NH] 

HMDB

03705 

0.72 1.41

E-03 

0.613 

Dansyl-

370 

9.94 293.0951 59.0368 HMDB N-Methylformamide HMDB

01122 

1.31 2.03

E-02 

0.699 

Dansyl-

371 

9.94 459.1690 225.1107 EML Anserine [-NH] HMDB

00194 

0.72 1.36

E-06 

0.635 

Dansyl-

372 

9.95 478.1996 244.1413 EML L-isoleucyl-L-proline 

[+O] 

HMDB

11174 

0.76 8.80

E-04 

0.568 

Dansyl-

375 

10.04 402.0861 168.0278 EML Oxypurinol [+O] HMDB

00786 

0.77 2.79

E-04 

0.583 

Dansyl-

382 

10.22 494.1958 260.1375 HMDB L-gamma-glutamyl-L-

isoleucine 

HMDB

11170 

0.79 3.15

E-09 

0.642 

Dansyl-

390 

10.52 500.1845 266.1262 EML Gamma-

Glutamyltyrosine 

[+CO2] 

HMDB

11741 

1.36 3.19

E-02 

0.695 

Dansyl-

395 

10.60 402.1131 168.0547 EML Imidazoleacetic acid 

[+C2H2O] 

HMDB

02024 

0.82 1.22

E-02 

0.546 

Dansyl-

398 

10.83 399.0674 165.0091 EML 2-Pyrrolidinone 

[+SO3] 

HMDB

02039 

0.82 2.35

E-04 

0.519 

Dansyl-

403 

11.00 390.1113 156.0529 HMDB 5-Hydroxymethyl-4-

methyluracil 

HMDB

00544 

1.27 3.67

E-02 

0.674 

Dansyl-

409 

11.19 514.1634 280.1051 HMDB L-beta-aspartyl-L-

phenylalanine 

HMDB

11167 

1.23 2.39

E-02 

0.653 
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Dansyl-

411 

11.25 363.1010 129.0427 Library L-Glutamic Acid [-

H2O] 

HMDB

00148 

0.83 3.48

E-03 

0.573 

Dansyl-

419 

11.44 480.1806 246.1223 HMDB L-gamma-glutamyl-L-

valine 

HMDB

11172 

1.32 6.02

E-03 

0.681 

Dansyl-

429 

11.67 393.1485 159.0902 HMDB 2-

Methylbutyrylglycine 

HMDB

00339 

0.74 2.84

E-02 

0.528 

Dansyl-

435 

11.77 514.1632 280.1048 Library L-Aspartyl-L-

phenylalanine 

HMDB

00706 

1.23 2.35

E-02 

0.653 

Dansyl-

436 

11.82 438.0623 204.0039 EML 4-Hydroxybenzyl 

alcohol [+SO3] 

HMDB

11724 

1.80 4.02

E-02 

0.643 

Dansyl-

441 

11.97 420.1161 186.0578 EML L-glycyl-L-

hydroxyproline [-H2] 

HMDB

11173 

0.83 2.55

E-03 

0.522 

Dansyl-

443 

11.99 411.0908 354.0649 EML 5-amino-1-(5-

phospho-D-

ribosyl)imidazole-4-

carboxylate [+NH] 

HMDB

06273 

0.73 1.85

E-04 

0.615 

Dansyl-

444 

11.99 349.1201 115.0617 Library L-Proline HMDB

00162 

0.82 5.52

E-04 

0.514 

Dansyl-

446 

11.99 349.1383 115.0800 EML Creatinine [+H2] HMDB

00562 

0.82 9.12

E-04 

0.524 

Dansyl-

454 

12.05 349.0732 115.0149 EML Homocysteine 

thiolactone [-H2] 

HMDB

02287 

0.82 1.53

E-03 

0.516 

Dansyl-

466 

12.39 411.0911 354.0657 EML Famotidine [+NH3] HMDB

01919 

0.72 7.78

E-05 

0.625 

Dansyl-

480 

12.64 383.1210 149.0627 HMDB 1-Methyladenine HMDB

11599 

0.79 2.72

E-02 

0.538 

Dansyl-

488 

12.71 383.1057 149.0474 Library L-Methionine HMDB

00696 

0.83 7.99

E-04 

0.521 

Dansyl-

491 

12.74 411.0847 354.0528 EML Phloretin [+HPO3] HMDB

03306 

0.64 6.42

E-06 

0.684 

Dansyl-

500 

13.15 418.1428 184.0845 EML Pyridoxine [+NH] HMDB

00239 

0.82 8.78

E-04 

0.517 

Dansyl-

501 

13.16 400.1071 166.0488 HMDB 3-Methylxanthine HMDB

01991 

1.74 1.81

E-02 

0.660 
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Dansyl-

503 

13.22 448.1897 214.1314 HMDB Dethiobiotin HMDB

03581 

0.77 7.22

E-07 

0.613 

Dansyl-

525 

13.47 364.6244 261.1321 HMDB Aspartylysine HMDB

04985 

0.77 6.95

E-07 

0.639 

Dansyl-

530 

13.57 442.1081 208.0498 EML L-Dopachrome [+NH] HMDB

01430 

0.82 1.60

E-03 

0.575 

Dansyl-

549 

14.14 371.6321 275.1475 HMDB L-a-glutamyl-L-Lysine HMDB

04207 

0.81 1.98

E-09 

0.581 

Dansyl-

563 

14.49 462.2066 228.1483 Library Leucyl-Proline - 0.76 8.33

E-06 

0.626 

Dansyl-

582 

14.82 386.1165 304.1164 EML D-Pantothenoyl-L-

cysteine [-H2O] 

HMDB

06834 

0.83 3.20

E-04 

0.548 

Dansyl-

586 

14.89 395.6170 323.1174 EML Bisdemethoxycurcumi

n [+NH] 

HMDB

02114 

0.76 1.36

E-04 

0.599 

Dansyl-

591 

14.91 402.0941 168.0358 Library 3-Hydroxymandelic 

acid 

HMDB

00750 

0.81 9.72

E-05 

0.593 

Dansyl-

595 

14.98 395.1220 322.1273 HMDB D-Pantothenoyl-L-

cysteine 

HMDB

06834 

0.83 5.29

E-04 

0.558 

Dansyl-

597 

15.01 365.1947 131.1364 HMDB Norspermidine HMDB

11634 

0.83 6.75

E-04 

0.540 

Dansyl-

610 

15.05 436.1452 202.0869 EML 4-Aminophenol 

[+C4H3N3] 

HMDB

01169 

0.80 5.65

E-04 

0.566 

Dansyl-

620 

15.21 365.1500 131.0917 Library L-leucine HMDB

00687 

0.80 1.76

E-05 

0.556 

Dansyl-

622 

15.24 397.1361 163.0778 EML Aminoadipic acid 

[+H2] 

HMDB

00510 

0.83 1.30

E-02 

0.548 

Dansyl-

624 

15.30 410.1307 176.0724 EML Aminoadipic acid 

[+NH] 

HMDB

00510 

0.83 2.40

E-02 

0.543 

Dansyl-

663 

15.96 462.1701 228.1117 HMDB Prolylhydroxyproline HMDB

06695 

0.70 6.40

E-04 

0.610 

Dansyl-

666 

16.04 349.1580 115.0997 EML Isovalerylglycine [-

CO2] 

HMDB

00678 

0.71 1.25

E-02 

0.592 
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Dansyl-

673 

16.14 612.2140 378.1557 EML FMNH -[HPO3] HMD0

11742

B 

0.75 9.61

E-05 

0.622 

Dansyl-

677 

16.18 305.0952 71.0369 HMDB Acrylamide HMDB

04296 

0.73 1.10

E-10 

0.634 

Dansyl-

680 

16.26 416.1157 182.0574 HMDB Hydroxyphenyllactic 

acid 

HMDB

00755 

0.76 1.51

E-06 

0.594 

Dansyl-

681 

16.30 307.0925 146.0683 HMDB Alanylglycine HMDB

06899 

0.72 7.36

E-04 

0.580 

Dansyl-

684 

16.37 377.1530 143.0947 EML Pipecolic acid [+CH2] HMDB

00070 

1.25 1.56

E-02 

0.685 

Dansyl-

703 

16.95 496.1894 262.1311 HMDB L-phenylalanyl-L-

proline 

HMDB

11177 

0.80 4.09

E-06 

0.640 

Dansyl-

704 

16.95 402.5971 337.0775 HMDB 2,8-

Dihydroxyquinoline-

beta-D-glucuronide 

HMDB

11658 

0.82 1.64

E-03 

0.525 

Dansyl-

706 

17.16 331.1113 97.0530 EML 3-Amino-2-piperidone 

[-NH3] 

HMDB

00323 

0.81 5.90

E-03 

0.543 

Dansyl-

738 

17.85 355.6374 243.1582 EML L-isoleucyl-L-proline 

[+NH] 

HMDB

11174 

0.82 3.54

E-04 

0.546 

Dansyl-

745 

17.95 371.1069 137.0486 HMDB 2-Aminobenzoic acid HMDB

01123 

1.30 3.52

E-03 

0.731 

Dansyl-

750 

18.03 348.6296 229.1425 EML Gamma-

Aminobutyryl-lysine 

[-H2] 

HMDB

01959 

0.76 2.29

E-04 

0.578 

Dansyl-

760 

18.15 356.6460 245.1754 EML Gamma-

Aminobutyryl-lysine 

[+CH2] 

HMDB

01959 

0.74 2.41

E-03 

0.613 

Dansyl-

761 

18.16 546.2048 312.1465 Library Phenylalanylphenylala

nine 

HMDB

13302 

1.21 2.07

E-03 

0.739 

Dansyl-

768 

18.25 416.1159 182.0576 Library Homovanillic acid HMDB

00118 

1.22 2.57

E-02 

0.763 

Dansyl-

784 

18.79 355.6192 243.1217 EML Porphobilinogen 

[+NH3] 

HMDB

00245 

0.65 3.50

E-03 

0.571 
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Dansyl-

787 

18.88 460.1654 226.1071 HMDB Carnosine HMDB

00033 

1.30 5.36

E-03 

0.743 

Dansyl-

818 

19.37 355.6372 243.1578 EML Propranolol [-O] HMDB

01849 

0.82 1.19

E-04 

0.557 

Dansyl-

851 

20.10 370.1111 136.0528 EML 4-

Hydroxybenzaldehyde 

[+CH2] 

HMDB

11718 

0.82 9.81

E-03 

0.539 

Dansyl-

869 

20.77 394.1804 160.1221 HMDB Isoputreanine HMDB

06009 

0.69 1.17

E-02 

0.589 

Dansyl-

877 

20.99 368.1111 268.1056 EML N-Acetylvanilalanine 

[+NH] 

HMDB

11716 

1.28 1.25

E-02 

0.686 

Dansyl-

879 

21.03 379.1684 145.1100 EML L-Norleucine [+CH2] HMDB

01645 

0.82 1.91

E-03 

0.532 

Dansyl-

883 

21.07 370.1099 136.0515 EML p-

Hydroxyphenylacetic 

acid [-O] 

HMDB

00020 

0.82 4.84

E-04 

0.543 

Dansyl-

884 

21.08 510.2048 276.1465 EML L-phenylalanyl-L-

proline [+CH2] 

HMDB

11177 

1.34 1.11

E-02 

0.649 

Dansyl-

894 

21.32 362.1169 128.0586 HMDB Dihydrothymine HMDB

00079 

0.79 3.41

E-03 

0.538 

Dansyl-

903 

21.54 431.5981 395.0797 EML Quercetin [+C4H3N3] HMDB

05794 

1.55 8.26

E-03 

0.709 

Dansyl-

908 

21.73 402.0857 168.0274 EML 6,8-Dihydroxypurine 

[+O] 

HMDB

01182 

0.78 5.29

E-04 

0.606 

Dansyl-

910 

21.79 316.0922 164.0677 EML L-Methionine [+NH] HMDB

00696 

0.83 1.37

E-02 

0.520 

Dansyl-

911 

21.80 544.1888 310.1305 EML Olanzapine [-H2] HMDB

05012 

1.20 4.09

E-03 

0.727 

Dansyl-

916 

21.86 392.1644 158.1061 EML Isoputreanine [-H2] HMDB

06009 

0.61 4.36

E-03 

0.581 

Dansyl-

920 

21.88 315.1158 162.1150 EML Tryptamine [+H2] HMDB

00303 

0.69 7.87

E-03 

0.579 

Dansyl-

921 

21.88 314.1187 160.1208 HMDB N(6)-Methyllysine HMDB

02038 

0.66 6.63

E-03 

0.580 
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Dansyl-

956 

22.48 402.0863 168.0279 EML 3-Methyluric acid [-

CH2] 

HMDB

01970 

0.75 3.85

E-06 

0.629 

Dansyl-

965 

22.60 403.6250 339.1333 EML 5-Hydroxytryptophol 

[+C6H10O5] 

HMDB

01855 

1.28 1.99

E-02 

0.705 

Dansyl-

969 

22.75 336.1211 204.1255 EML Serotonin [+C2H4] HMDB

00259 

0.79 1.62

E-03 

0.546 

Dansyl-

975 

22.83 318.0724 168.0281 EML 1-Methyluric acid [-

CH2] 

HMDB

03099 

0.74 9.81

E-10 

0.663 

Dansyl-

991 

23.29 325.0929 91.0346 EML 4-Hydroxy 

tolbutamide [+C2H4] 

HMDB

06408 

0.82 3.52

E-04 

0.582 

Dansyl-

995 

23.32 324.5927 181.0688 Library L-Tyrosine HMDB

00158 

0.82 2.69

E-04 

0.559 

Dansyl-

1003 

23.37 401.0806 167.0222 HMDB Homocysteinesulfinic 

acid 

HMDB

06462 

0.69 1.98

E-09 

0.685 

Dansyl-

1007 

23.38 337.1164 103.0580 EML Ethanolamine 

[+C2H2O] 

HMDB

00149 

0.74 5.42

E-08 

0.648 

Dansyl-

1008 

23.40 319.0691 170.0216 HMDB Gallic acid HMDB

05807 

0.75 1.78

E-07 

0.606 

Dansyl-

1011 

23.47 320.0999 172.0832 EML Diaminopimelic acid 

[-H2O] 

HMDB

01370 

0.81 3.38

E-02 

0.557 

Dansyl-

1035 

23.99 359.6162 251.1158 EML N-Acetyl-L-tyrosine 

[+C2H4] 

HMDB

00866 

0.78 3.93

E-05 

0.591 

Dansyl-

1050 

24.23 363.1734 129.1150 EML 2-Heptanone [+NH] HMDB

03671 

0.79 2.98

E-07 

0.636 

Dansyl-

1051 

24.25 284.1082 100.0998 EML Cadaverine [-H2] HMDB

02322 

0.83 4.43

E-02 

0.528 

Dansyl-

1057 

24.43 342.1318 216.1470 EML Gamma-

Aminobutyryl-lysine 

[-NH] 

HMDB

01959 

0.75 4.34

E-02 

0.547 

Dansyl-

1067 

24.93 323.1024 178.0882 EML 5-Hydroxylysine [+O] HMDB

00450 

1.30 1.02

E-03 

0.740 

Dansyl-

1068 

24.93 322.1056 176.0945 HMDB Canavanine HMDB

02706 

1.31 1.60

E-03 

0.734 
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Dansyl-

1069 

24.95 318.0796 168.0426 HMDB Homogentisic acid HMDB

00130 

0.67 1.85

E-05 

0.597 

Dansyl-

1089 

25.27 323.6064 179.0962 HMDB 2(N)-Methyl-

norsalsolinol 

HMDB

01189 

1.36 1.50

E-03 

0.726 

Dansyl-

1150 

26.44 338.5839 209.0511 EML 1-Methylguanine 

[+CO2] 

HMDB

03282 

0.79 4.32

E-02 

0.508 

Dansyl-

1180 

26.93 432.6178 397.1189 EML 2'-Deoxysepiapterin 

[+C6H8O6] 

HMDB

00389 

0.65 4.24

E-02 

0.516 

Dansyl-

1187 

26.99 577.4068 343.3485 EML Homophytanic acid 

[+NH3] 

HMDB

02337 

1.28 4.88

E-02 

0.655 

Dansyl-

1188 

27.00 327.1272 186.1378 EML 1-(3-Aminopropyl)-4-

aminobutanal 

[+C2H2O] 

HMDB

12135 

0.77 4.99

E-02 

0.591 

Dansyl-

1204 

27.17 309.5878 151.0590 HMDB Acetaminophen HMDB

01859 

0.61 2.20

E-03 

0.571 

Dansyl-

1221 

27.38 535.2666 301.2082 EML Androstenedione 

[+NH] 

HMDB

00053 

0.82 1.23

E-02 

0.513 

Dansyl-

1248 

27.64 526.2275 292.1692 EML Gingerol [-H2] HMDB

05783 

1.79 4.51

E-02 

0.616 

Dansyl-

1282 

28.40 377.6158 287.1150 HMDB N-Ribosylhistidine HMDB

02089 

0.72 1.59

E-04 

0.577 

Dansyl-

1288 

28.50 496.1798 524.2429 HMDB Phe Cys Gln Lys - 0.83 5.91

E-05 

0.531 

Dansyl-

1300 

29.04 474.1549 240.0966 EML Vanillactic acid 

[+C2H4] 

HMDB

00913 

0.75 2.15

E-02 

0.574 

Dansyl-

1302 

29.07 400.0708 166.0125 EML Uric acid [-H2] HMDB

00289 

0.79 7.84

E-03 

0.541 

Dansyl-

1316 

29.38 493.1362 259.0778 EML Kinetin [+CO2] HMDB

12245 

0.51 2.35

E-02 

0.501 

Dansyl-

1333 

30.62 533.3398 299.2814 HMDB Sphingosine HMDB

00252 

0.69 1.25

E-02 

0.532 

DMPA-

14 

6.33 502.1087 178.9323 EML S-Carboxymethyl-L-

cysteine 

HMDB

29415 

1.28 8.30

E-04 

0.607 
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DMPA-

44 

7.26 896.3784 573.2019 EML Aminopterin 

[+C5H3N5] 

HMDB

01833 

1.27 8.30

E-04 

0.597 

DMPA-

45 

7.30 488.1691 164.9926 EML 3-Sulfinylpyruvic acid 

[+CH2] 

HMDB

01405 

1.29 5.50

E-04 

0.617 

DMPA-

55 

7.58 504.2513 181.0748 HMDB 4-Hydroxy-4-(3-

pyridyl)-butanoic acid 

HMDB

01119 

1.26 4.74

E-02 

0.582 

DMPA-

92 

9.18 491.2025 168.0261 EML Butyric acid [+HPO3] HMDB

00039 

1.31 3.28

E-02 

0.629 

DMPA-

98 

9.26 344.1490 182.0571 Library Hydroxyphenyllactic 

acid 

HMDB

00755 

0.78 8.61

E-03 

0.733 

DMPA-

128 

10.43 353.1712 191.0793 EML Glutarylglycine [+H2] HMDB

00590 

1.21 1.73

E-02 

0.602 

DMPA-

142 

10.76 280.1538 118.0619 Library 2-Hydroxy-2-

methylbutyric acid 

HMDB

01987 

0.81 4.47

E-02 

0.690 

DMPA-

217 

12.52 294.1696 132.0777 Library 2-Hydroxycaproic acid HMDB

01624 

0.83 3.99

E-02 

0.723 

DMPA-

222 

12.56 601.3375 278.1610 EML Aspartylysine [+NH3] HMDB

04985 

1.24 4.81

E-02 

0.579 

DMPA-

231 

12.77 696.3856 373.2091 EML 6-Keto-

decanoylcarnitine 

[+CO2] 

HMDB

13202 

1.21 4.27

E-02 

0.569 

DMPA-

270 

14.30 489.3312 327.2393 EML 13-L-

Hydroperoxylinoleic 

acid [+NH] 

HMDB

03871 

0.83 4.27

E-02 

0.688 

DMPA-

363 

16.91 503.3471 341.2552 HMDB trans-2-

Dodecenoylcarnitine 

HMDB

13326 

0.82 2.63

E-02 

0.760 

DMPA-

381 

17.44 466.1582 304.0663 EML Biotin sulfone [+CO] HMDB

04818 

1.23 3.21

E-02 

0.597 

DMPA-

462 

22.06 570.3778 408.2859 Library Cholic acid HMDB

00619 

0.53 1.33

E-02 

0.613 

DMPA-

510 

24.78 421.1580 259.0661 EML Phthalic acid 

[+C4H3N3] 

HMDB

02107 

1.23 4.74

E-02 

0.568 

DMPA-

539 

26.19 461.3726 299.2807 EML Oleic acid [+NH3] HMDB

00207 

1.20 7.40

E-03 

0.599 
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DMPA-

599 

28.57 489.4041 327.3122 EML Phytanic acid [+NH] HMDB

00801 

1.25 2.73

E-03 

0.616 

DMPA-

652 

29.67 530.2788 368.1869 EML Epsilon-(gamma-

Glutamyl)-lysine 

[+C4H3N3] 

HMDB

03869 

1.21 2.40

E-03 

0.593 

DMPA-

708 

30.15 371.1242 209.0323 EML 5,6-Dihydroxyindole-

2-carboxylic acid [+O] 

HMDB

01253 

1.24 4.74

E-02 

0.585 

DMPA-

909 

32.90 554.2848 392.1929 EML 13-L-

Hydroperoxylinoleic 

acid [+SO3] 

HMDB

03871 

1.23 2.94

E-02 

0.629 

DMPA-

928 

33.65 381.1676 219.0757 EML L-beta-aspartyl-L-

threonine [-NH] 

HMDB

11169 

1.33 2.63

E-02 

0.626 

DMPA-

947 

34.38 428.3170 266.2251 EML 7,10-Hexadecadienoic 

acid [+CH2] 

- 1.20 4.47

E-02 

0.567 

DMPA-

959 

34.65 442.3318 280.2399 Library Linoleic acid HMDB

00673 

1.21 3.90

E-03 

0.586 

DMPA-

968 

34.88 416.3122 254.2203 HMDB Hypogeic acid HMDB

02186 

1.50 2.69

E-02 

0.624 

DMPA-

988 

35.56 518.3640 356.2721 HMDB Tetracosahexaenoic 

acid 

HMDB

02007 

1.28 2.94

E-02 

0.566 

DMPA-

995 

35.72 397.1442 235.0523 EML 5-Hydroxy-N-

formylkynurenine [-

NH3] 

HMDB

04086 

1.27 6.69

E-03 

0.634 

DMPA-

1004 

35.85 464.3128 302.2209 HMDB Eicosapentaenoic acid HMDB

01999 

1.29 3.18

E-02 

0.588 

DMPA-

1019 

36.47 430.3329 268.2410 EML Elaidic acid [-CH2] HMDB

00573 

1.24 4.74

E-02 

0.578 

DMPA-

1033 

37.31 456.3485 294.2566 EML Linoleic acid [+CH2] HMDB

00673 

1.21 4.35

E-02 

0.583 

DMPA-

1060 

38.51 466.3194 304.2275 EML Putreanine 

[+C7H13NO2] 

HMDB

06078 

1.31 1.71

E-02 

0.602 
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Table 3.3 25 identified dansyl-labeled metabolites and 6 identified DMPA-labeled metabolites that 

have fold change (overweight/normal) > 1.2 (or < 0.83) and q value < 0.05 for the difference 

between the normal group and the overweight group. (Asterisk means the metabolite is also a 

significant metabolite for sex differences.) 

Label Retention 

time (min) 

Detected 

m/z 

Accurate 

mass 

(Da) 

ID 

level 

Compound Name HMDB 

ID 

Fold 

Change 

q-

value 

Uni-

variate 

ROC 

Dansyl-15 2.66 521.0892 287.0308 EML N-Acetylgalactosamine 

6-sulfate [-CH2] 

- 1.27 1.74

E-02 

0.599 

Dansyl-54 4.61 359.0724 125.0141 Library Taurine HMDB

00251 

0.81 2.03

E-02 

0.642 

Dansyl-62* 4.78 531.1029 297.0446 HMDB L-Cysteinylglycine 

disulfide 

HMDB

00709 

1.24 2.56

E-04 

0.639 

Dansyl-281 8.18 542.1348 308.0765 EML Prolylhydroxyproline 

[+HPO3] 

HMDB

06695 

0.82 4.53

E-02 

0.643 

Dansyl-285 8.23 381.1423 147.0840 EML 5-Hydroxyhexanoic acid 

[+NH] 

HMDB

00525 

1.24 3.64

E-02 

0.573 

Dansyl-

294* 

8.31 452.1852 218.1269 EML Diaminopimelic acid 

[+C2H4] 

HMDB

01370 

0.78 4.53

E-02 

0.585 

Dansyl-

295* 

8.35 418.0816 184.0233 EML Cysteic acid [+NH] HMDB

02757 

1.23 1.64

E-02 

0.538 

Dansyl-327 9.09 396.1357 324.1547 HMDB Galactosylhydroxylysine HMDB

00600 

0.82 4.03

E-02 

0.672 

Dansyl-

349* 

9.33 502.1763 268.1180 EML Carnosine [+C2H2O] HMDB

00033 

1.36 3.82

E-02 

0.616 

Dansyl-

353* 

9.41 399.1011 165.0428 EML 2-Aminobenzoic acid 

[+CO] 

HMDB

01123 

0.70 3.88

E-02 

0.645 

Dansyl-

375* 

10.04 402.0861 168.0278 EML Oxypurinol [+O] HMDB

00786 

1.25 4.23

E-02 

0.546 

Dansyl-420 11.44 436.1900 202.1317 EML Glycyl-L-leucine 

[+CH2] 

HMDB

00759 

0.78 1.80

E-02 

0.677 

Dansyl-

610* 

15.05 436.1452 202.0869 EML 4-Aminophenol 

[+C4H3N3] 

HMDB

01169 

1.24 1.75

E-02 

0.582 
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Dansyl-720 17.49 478.2361 244.1778 EML N(6)-(Octanoyl)lysine [-

C2H4] 

HMDB

11684 

0.69 6.59

E-03 

0.716 

Dansyl-861 20.49 345.1269 111.0686 EML 4-Aminophenol [+H2] HMDB

01169 

1.69 4.24

E-02 

0.575 

Dansyl-863 20.61 405.5682 343.0198 EML Epinephrine sulfate 

[+HPO3] 

HMDB

01876 

1.33 1.22

E-02 

0.626 

Dansyl-872 20.87 476.2206 242.1622 EML L-isoleucyl-L-proline 

[+CH2] 

HMDB

11174 

0.78 3.88

E-02 

0.689 

Dansyl-888 21.18 324.5772 181.0377 EML 3-Hydroxyanthranilic 

acid [+CO] 

HMDB

01476 

0.64 1.80

E-02 

0.693 

Dansyl-933 22.13 575.2056 341.1473 EML Tyramine glucuronide 

[+C2H4] 

HMDB

10328 

0.66 1.22

E-02 

0.644 

Dansyl-

1003* 

23.37 401.0806 167.0222 HMDB Homocysteinesulfinic 

acid 

HMDB

06462 

1.28 1.22

E-02 

0.571 

Dansyl-

1070 

24.96 453.1077 438.0987 EML 2-Phenylaminoadenosine 

[+H2O] 

HMDB

01069 

1.47 2.35

E-02 

0.612 

Dansyl-

1150* 

26.44 338.5839 209.0511 EML 1-Methylguanine 

[+CO2] 

HMDB

03282 

1.49 2.35

E-02 

0.601 

Dansyl-

1173 

26.79 450.5982 433.0797 EML Se-

Adenosylselenomethioni

ne [-CH2] 

HMDB

11118 

0.69 1.22

E-02 

0.678 

Dansyl-

1204* 

27.17 309.5878 151.0590 HMDB Acetaminophen HMDB

01859 

1.65 3.49

E-02 

0.594 

Dansyl-

1316* 

29.38 493.1362 259.0778 EML Kinetin [+CO2] HMDB

12245 

2.28 4.23

E-02 

0.551 

DMPA-89 9.13 435.1276 273.0357 EML Phenylacetylglycine 

[+SO3] 

HMDB

00821 

0.73 2.37

E-02 

0.577 

DMPA-121 10.29 450.1455 288.0536 HMDB Orotidine HMDB

00788 

0.67 4.60

E-02 

0.617 

DMPA-662 29.79 483.1086 321.0167 EML DOPA sulfate [+CO2] HMDB

02028 

1.41 2.37

E-02 

0.658 

DMPA-787 30.75 418.3373 256.2454 HMDB Palmitic acid HMDB

00220 

0.74 2.95

E-02 

0.599 
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DMPA-817 30.98 418.3345 256.2426 EML Pentadecanoic acid 

[+CH2] 

HMDB

00826 

0.69 4.22

E-02 

0.599 

DMPA-861 31.83 545.3392 383.2473 EML Linoleic acid 

[+C3H5NOS] 

HMDB

00673 

0.69 2.37

E-02 

0.573 

 

 

Table 3.4 25 identified dansyl-labeled metabolites and one identified DMPA-labeled metabolite 

that have fold change (underweight/normal) > 1.2 (or < 0.83) and q value < 0.05 for the difference 

between the normal group and the underweight group. 

Label Retention 

time (min) 

Detected 

m/z 

Accurate 

mass 

(Da) 

ID 

level 

Compound Name HMDB 

ID 

Fold 

Change 

q-

value 

Uni-

variate 

ROC 

Dansyl

-38 

4.06 388.1072 154.0489 EML 1,3-Diaminopropane 

[+SO3] 

HMDB

00002 

3.23 1.25

E-02 

0.616 

Dansyl

-118 

5.94 321.0907 87.0324 HMDB 2-Aminoacrylic acid HMDB

03609 

1.74 4.61

E-02 

0.501 

Dansyl

-154 

6.55 399.0987 165.0404 Library Methionine Sulfoxide - 

Isomer 

- 1.46 4.06

E-02 

0.531 

Dansyl

-190 

7.05 466.1648 232.1065 HMDB 4-(Glutamylamino) 

butanoate 

HMDB

12161 

0.66 4.94

E-02 

0.528 

Dansyl

-308 

8.71 351.1005 117.0422 HMDB L-2-Amino-3-

oxobutanoic acid 

HMDB

06454 

4.07 4.52

E-03 

0.571 

Dansyl

-348 

9.32 279.0794 45.0211 HMDB Formamide HMDB

01536 

1.23 4.06

E-02 

0.552 

Dansyl

-386 

10.35 528.1781 294.1198 HMDB Glutamylphenylalanine HMDB

00594 

1.75 4.61

E-02 

0.532 

Dansyl

-412 

11.32 370.0973 136.0390 Library Hypoxanthine - Isomer - 2.98 1.25

E-02 

0.571 

Dansyl

-458 

12.15 454.1447 220.0864 EML Canavanine [+CO2] HMDB

02706 

1.32 4.06

E-02 

0.563 

Dansyl

-498 

13.12 323.1375 89.0791 EML Ethanolamine [+C3H4] HMDB

00149 

3.35 1.36

E-02 

0.657 



113 
 

Dansyl

-522 

13.42 340.0672 106.0089 EML 3-Methylthiopropionic 

acid [-CH2] 

HMDB

01527 

1.66 2.34

E-02 

0.513 

Dansyl

-560 

14.37 363.1015 258.0864 HMDB O-Desmethylangolensin HMDB

04629 

1.88 4.06

E-02 

0.532 

Dansyl

-654 

15.85 387.1007 153.0424 HMDB 3-Hydroxyanthranilic 

acid 

HMDB

01476 

3.93 1.25

E-02 

0.595 

Dansyl

-725 

17.60 585.2147 351.1564 Library Tryptophyl-

Phenylalanine 

- 0.77 3.78

E-02 

0.626 

Dansyl

-821 

19.47 441.1472 207.0889 HMDB 3-

Phenylpropionylglycine 

HMDB

02042 

1.23 4.61

E-02 

0.634 

Dansyl

-985 

23.21 311.0825 154.0484 EML 1,3-Diaminopropane 

[+SO3] 

HMDB

00002 

3.71 1.25

E-02 

0.557 

Dansyl

-986 

23.21 388.1072 154.0489 EML 6,8-Dihydroxypurine 

[+H2] 

HMDB

01182 

3.12 1.25

E-02 

0.614 

Dansyl

-1009 

23.44 297.0851 126.0536 HMDB 2,4-Diamino-6-

hydroxypyrimidine 

HMDB

02128 

4.21 2.34

E-02 

0.525 

Dansyl

-1013 

23.50 302.0774 136.0381 HMDB Hypoxanthine HMDB

00157 

4.05 1.25

E-02 

0.590 

Dansyl

-1073 

25.02 711.1806 244.0713 HMDB 3,3',4'5-

Tetrahydroxystilbene 

HMDB

04215 

1.30 4.69

E-02 

0.542 

Dansyl

-1076 

25.07 512.2095 278.1512 HMDB Alpha-CEHC HMDB

01518 

2.83 2.34

E-02 

0.524 

Dansyl

-1132 

26.16 303.0751 138.0336 HMDB Gentisate aldehyde HMDB

04062 

4.05 2.66

E-02 

0.578 

Dansyl

-1149 

26.43 302.0782 136.0399 EML Purine [+O] HMDB

01366 

4.26 1.25

E-02 

0.646 

Dansyl

-1178 

26.90 648.1830 181.0736 HMDB Beta-Tyrosine HMDB

03831 

1.31 4.06

E-02 

0.543 

Dansyl

-1260 

27.87 467.0908 233.0325 HMDB Dopamine 4-sulfate HMDB

04148 

1.39 4.06

E-02 

0.578 

DMPA

-415 

19.17 611.4051 449.3132 HMDB Glycoursodeoxycholic 

acid 

HMDB

00708 

1.88 1.64

E-02 

0.607 
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Chapter 4 

High-coverage Metabolomics Analysis of One Microliter of Blood Using 

Chemical Isotope Labeling and High-resolution LC-MS 

 

4.1 Introduction 

Metabolomics, the comprehensive study of the complete set of small-molecule compounds 

within a biological sample, has become a powerful tool in biomarker discovery,35  clinical 

diagnosis,37 nutritional studies,181 and toxicology applications.182 In recent years, it has 

been increasingly accepted that environmental exposures, as well as gene-environment 

interactions, contribute to the development of many diseases.183-185 When the body is under 

an environmental exposure, certain direct and indirect metabolic changes may occur, 

underlying the more complicated biological changes at the proteomics and genomics levels. 

Because metabolomics can monitor all metabolic variations caused by an environmental 

stimulation, it is also a promising technique for understanding the gene-environment-health 

relationship.186  

 

Blood is a primary carrier of small molecules in the body, and according to the Human 

Serum Metabolome Database,31 there are more than 4,600 already known small-molecule 

metabolites in the blood. As an important and easily accessible biological fluid, blood has 

been used in clinical tests for many years. And in recent years, blood metabolome analysis 
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has been used to study the metabolic changes caused by various environmental factors 

including diet,187 smoking,188  gut microflora,66 medication189 and air pollution.190 

 

For metabolomics analyses, it is crucial to determine if the over- or under-expression of 

specific metabolites in blood is a true response to internal or external stimulations, and not 

due to the normal time-of-day or day-to-day variations. Using an non-targeted LC-MS 

approach to study 1,069 metabolites in human plasma, Ang et al. found that at least 19% 

of the metabolite features in their study exhibited significant 24-hour variations.115 

Therefore, if a blood sample is only collected once from each subject, the measured 

concentration of a specific metabolite may not be able to represent the average 

concentration of the metabolite within the day of sample collection. And if this metabolite 

is chosen as a biomarker candidate, the biological implications according to its 

concentration will become less reliable. This calls for multiple blood samples collected 

from the same subject at different time points to more accurately and comprehensively 

represent the blood metabolome. Furthermore, time-resolved metabolomics analysis is an 

important tool for the assessment of an environmental exposure and the resulting biological 

changes. For instance, Chorell et al. collected blood samples every 15 min from the 

participants during 90 min of ergometer-cycling to study the metabolic responses.191 

However, many metabolomics studies only have one blood sample from each subject under 

each experimental condition. This is partially because the commonly used venipuncture 

blood collection is very invasive and a trained phlebotomist is required.  
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Efforts have been made to find easier and less invasive alternatives to venipuncture blood 

collection. For example, starting from the 1960s, the dried blood spot (DBS) method has 

been used for clinical purposes, especially for newborn screening.84 In addition to its 

advantages in sample collection and storage, DBS is believed to be less invasive than 

venipuncture, as the sample collection is done by a finger or heel prick. In recent years, 

other paper-based devices that perform both blood cell separation and targeted analysis of 

specific biomarkers have emerged, aiming to provide a low-cost and point-of care 

diagnosis platform.192-193  

 

According to our knowledge, there hasn’t been any non-targeted metabolic profiling 

investigation based on finger blood, as when the sample amount is too small, the 

metabolome coverage and detectability of low-abundant metabolites are usually limited. 

In this chapter, we apply our CIL-LC-MS method to the metabolic profiling of one 

microliter of finger blood. The blood sample is easily collected by a commercially available 

finger pricking device which is designed for diabetes patients to monitor the blood glucose 

level. With this technique, we achieve the high-coverage blood metabolome analysis of 

small sample amount, enabling time-resolved metabolomics analysis for various future 

studies. 
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4.2 Materials and methods  

4.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada (Markham, ON, Canada). For dansylation labeling reaction, the 12C-

labeling reagent (dansyl chloride) was from Sigma-Aldrich and the 13C-labeling reagent 

was synthesized in our lab using the procedure published previously.70 LC-MS grade water, 

methanol, and acetonitrile (ACN) were purchased from Thermo Fisher Scientific (Nepean, 

ON, Canada).  

 

4.2.2 Universal serum standard 

For making the universal serum standard (USS) sample, 10 mL blood samples were 

collected from 100 healthy volunteers in Edmonton, Canada. The participants are between 

the ages of 20 and 39 years old, and they were refrained from eating or drinking (except 

water) for at least 8 hours before giving blood. The University of Alberta health ethics 

review board approved this study, and all participants provided informed consent. The 

collected whole blood was allowed to clot by leaving it undisturbed at room temperature 

for 60 min. After clotting, the blood sample was centrifuged at 1,000 rpm for 15 min. An 

equal volume of supernatant was taken from each sample, and these aliquots were mixed 

to be the USS sample. The USS sample was finally stored in 1.5 mL micro-centrifuge tubes 

in -80 °C freezer. 
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4.2.3 Dansylation labeling of serum sample 

In a 0.2 mL PCR tube, 1 µL of USS sample was mixed with 55 µL of methanol to 

precipitate the proteins. After being incubated at -20 °C for 1 hour, the mixture was 

centrifuged at 14,000 rpm for 15 min. 45 µL supernatant was taken and totally dried using 

a Speed Vac. The sample was re-dissolved with 7.5 µL of 85 mM sodium carbonate/sodium 

bicarbonate buffer, which makes a basic environment for the dansylation reaction. Then 

7.5 µL of freshly prepared 12C-dansyl chloride solution (20mg/mL) (for light labeling) or 

13C-dansyl chloride solution (20mg/mL) (for heavy labeling) was added to the tube. The 

mixture was vortexed, spun down and then incubated at 40 °C for 45 min. To quench the 

excess danysl chloride, 2 µL of 250 mM NaOH solution was mixed with the reaction 

mixture before another 10 min incubation at 40 °C. Finally, 5 µL of formic acid (425 mM) 

in 1:1 ACN/H2O was added to consume excess NaOH and to make the solution acidic. 

After centrifuging at 14,000 rpm for 15 min, 15 µL supernatants were taken from the 12C-

labeled and 13C-labeled samples and mixed together for the following LC-MS analysis. 

 

4.2.4 Finger blood sample collection and processing 

The finger surface was cleaned with 70% isopropyl alcohol. Then the finger pricking was 

done by Bayer’s Microlet 2 lancing device. When a blood drop formed, 1 µL of whole 

blood sample was taken from the punching site with a micropipette, and immediately 

transferred to a 0.2 mL PCR tube which had 10 µL PBS solution in it. The tube was 

vortexed gently to let the blood thoroughly mixed with the PBS solution, and then stayed 

at 4 °C for 0.5 hours. After that, the mixture was centrifuged at 1,000 rpm for 10 min and 
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8 µL of supernatant was taken into another PCR tube. Finally, the supernatant was mixed 

with 48 µL of methanol to precipitate the proteins. After centrifuging, 45 µL of the 

supernatant was transferred to a new tube and dried. The labeling process is the same as 

the labeling of serum described above. Before the labeling reaction, the sample can also be 

stored in a -80 °C freezer for future studies.  

 

4.2.5 Sample quantification and normalization 

For the pre-acquisition normalization of blood samples, we used an LC-UV based sample 

quantification method, which was previously developed in our lab.115 With a Waters 

ACQUITY UPLC system UPLC (Waters, Milford, MA, USA), two microliters of each 

labeled sample was injected into a Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 

μm particle size) (Phenomenex, Torrance, CA, USA) for a fast step-gradient run. Solvent 

A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and solvent B was 0.1% (v/v) formic 

acid in ACN. The gradient started with 0% B for 1 min and was increased to 95% B within 

0.01 min and held at 95% B for 1 min to ensure complete elution of all labeled metabolites. 

The flow rate used was 0.45 mL/min, and the total UV absorption of dansyl-labeled 

metabolites in the sample was measured by a photodiode array (PDA) detector. For the 

post-acquisition normalization, the individual samples were normalized according to the 

total intensity of dansyl-labeled peaks. 
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4.2.6 LC-FTICR-MS 

An Agilent 1100 series binary system (Agilent, Palo Alto, CA, USA) and an Agilent 

reversed-phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 µm particle size, 95 A pore 

size) were used for LC-MS. LC Solvent A was 0.1% (v/v) formic acid in 5% (v/v) 

ACN/H2O, and Solvent B was 0.1% (v/v) formic acid in ACN. The gradient elution profile 

was as follows: 0 min (20% B), 0-3.5 min (20-35% B), 3.5-18 min (35-65% B), 18-24 min 

(65-99% B), and 24-32 min (99% B). The flow rate was 180 μL/min, and the flow was 

loaded to the electrospray ionization (ESI) source of a Bruker 9.4 Tesla Apex-Qe Fourier 

transform ion-cyclotron resonance (FTICR) mass spectrometer (Bruker, Billerica, MA, 

USA). All MS spectra were obtained in the positive ion mode. 

 

4.2.7 Nano-LC-QTOF-MS 

The nano-LC−MS experiments were performed on a Waters nanoAcquity connected to a 

Bruker Impact HD Quadrupole Time-of-flight (QTOF) mass spectrometer equipped with 

a nano ESI-source. LC separations were performed on an Acclaim PepMap RSLC C18 (75 

μm × 150 mm, 2 μm) and Acclaim PepMap 100 trap column (75 μm × 20 mm, 3 μm) 

(Thermo Scientific, Sunnyvale, CA, USA). LC Solvent A was 0.1% (v/v) formic acid in 

water, and Solvent B was 0.1% (v/v) formic acid in acetonitrile. The 55 min gradient 

conditions were as follows: 0 min (15% B), 0-2.0 min (15% B), 2-4min (15-25% B), 4-34 

min (15-60% B), 34-40 min (60-90% B), and 40-55 min (90 %B). The flow rate was 350 

nL/min, and the injection volume was 5 μL. Prior to separating on the analytical column, 
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the sample is first pushed through the trap column by 98% mobile phase A at 7.0 μL/min 

for 1.5 min. All MS spectra were obtained in the positive ion mode. 

 

4.2.8 Data processing and metabolite identification 

The 12C-/13C-peak pairs from each LC-MS run were extracted by the IsoMS software.72 

IsoMS-Align was used to align the peak pair data from different samples by retention time 

and accurate mass. The missing ratio values were filled back by the Zero-fill program.137 

IsoMS-Quant157 was used to generate the final metabolite-intensity table, which was 

exported to SIMCA-P+12 (Umetrics AB, Umeå, Sweden) for statistical analysis. 

Metabolite identification was performed by matching mass and retention time to a dansyl 

standard library using DnsID.159 Putative identification was done based on accurate mass 

matches to the metabolites in the human metabolome database (HMDB) (8,021 known 

human endogenous metabolites) and in the Evidence-based Metabolome Library (EML) 

(375,809 predicted human metabolites with one reaction) using MyCompoundID.42 The 

mass accuracy tolerance window was set at 0.008 Da for database search. 

 

4.3 Results and Discussion 

4.3.1 Finger blood collection and sample preparation 

The starting point of our work is to determine the amount of blood we can collect each 

time. There is a common perception that the lower the collection volume is, the less 

invasive it is, and studies have shown that the finger sticking devices that give a larger 

sample volume usually create more pain.194-195 Although many blood analyzing methods 
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based on finger blood have been developed, the sample collection amounts of those 

techniques have not been low enough to achieve a painless blood collection. For example, 

the typical sample collection amount for DBS is between 25 L and 100 L,85 and many 

of the fresh blood analyzing devices require at least 10 L of raw finger blood.193, 196 

 

In our current work, we use a finger sticking device originally made for self-monitoring of 

blood glucose level. Various lancing devices have been made for the blood glucose meters, 

and the manufactures have put a lot of efforts into minimizing the required sample volume, 

which is usually one microliter nowadays. According to the result of Grady et al.’s study, 

the mean blood collection volume from 64 diabetes patients with their own lancing devices 

was 3.1 μL, and 89% of the patients agreed that getting enough blood to fill a 1 μL-testing 

strip was not painful.197 The finger sticking device in our work creates blood drops of 2 μL 

to 10 μL, varying among individuals and sites of finger pricking. To avoid occasional 

difficulties in having enough sample, we have decided to collect a relatively small amount, 

one microliter of whole blood, for our metabolomics analysis. With this collection volume, 

the blood donors didn’t experience any significant pain during serial blood collection. One 

major advantage of our dansyl-labeling method is that the MS signals of metabolites are 

improved by 10 to 1,000 fold, enabling high-coverage metabolmics analysis with a 

relatively small sample volume. Although the available blood volume is only one microliter, 

compared with other finger blood analyzing methods, our method can detect a larger 

number of metabolites. 
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After the finger pricking is done and a blood drop is formed, one microliter of finger blood 

is immediately collected by a disposable glass capillary micropipette and transferred into 

a 0.2 mL-PCR tube. For separating the blood cells, we prefer centrifugation than filtration, 

as the filter may absorb some metabolites and the resulting sample loss may greatly affect 

the detection of low-abundant metabolites. In addition to a laboratory centrifuge, which is 

the most convenient choice in a research lab, many point-of-care blood centrifuging 

devices have been reported.198-200 For example, Haeberle et al. designed an on-disk device 

that can separate 2 μL of plasma from 5 μL of whole blood. We use a traditional centrifuge 

in our work, but in the future, we can switch to a smaller device and the sample collection 

can be done outside the lab. Also, we dilute the fresh blood with 10 μL of PBS solution 

since the dilution makes it easier to separate the supernatant layer from the blood cells on 

the bottom. The processed sample can be considered as a PBS-diluted plasma, and can be 

long-termly stored in a -80 °C freezer for future analysis.  

 

Since adding PBS makes the sample matrix more complicated, we note that it is very 

important to evaluate the matrix effects associated with the sample collection process. 

Blood metabolome analyses and further inter-study comparisons have long been 

accompanied by the concerns about matrix effects, as different types of blood samples (i.e., 

serum and plasma prepared using different anticoagulants) with vastly different matrix 

compositions are being used for different metabolomics analyses, and there is no universal 

standard for the sample collection protocol. To overcome the matrix effects, we have 

examined the results produced by dansyl-labeling LC-MS analysis of serum and plasma 

samples with different anticoagulants (EDTA, heparin and citrate). Among the four types 
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of samples, there is no significant difference in metabolite detectability and relative 

quantification precision.82 We have also studied the matrix effect of PBS solution. The 

result showed that high concentrations of NaCl and phosphate buffer (>50 mM) or PBS 

could reduce or enhance the labeling efficiencies of metabolites. Nonetheless, by 

maintaining similar matrix contents in all the individual samples and the reference sample, 

accurate relative quantification of metabolites can be performed.161 In our work, the 

concentrations of salts in the 1X PBS are not high enough to cause severe matrix effects, 

and more importantly, all of the collected blood samples have the same matrix, so the 

matrix effect will not significantly affect the analysis results. 

 

4.3.2 Relative quantification and internal standard 

For the metabolome analysis of a large set of samples using our CIL-LC-MS method, a 

13C-labeled sample is needed as the internal reference. As each blood sample is 12C-labeled 

and mixed with the internal reference, the LC-MS analysis can generate the 12C/13C-peak 

pairs of all the labeled metabolites. To achieve the relative quantification of these 

metabolites, the intensity ratios of the peak pairs are calculated. Each peak pair ratio 

represents the relative concentration of a specific metabolite in an individual sample, with 

respect to the internal reference. Since all the individual samples are mixed with the same 

internal reference, any change in the concentrations of metabolites can be easily detected. 

 

A pooled sample, which is usually made by mixing equal aliquots of all the individual 

samples, can be used as the internal reference. The pooled sample is easy to obtain, but it 

has some disadvantages. First, this method takes an aliquot from each sample to generate 
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the pooled sample, which may not be feasible if the available sample amount is limited. 

Only a very small volume of finger blood can be collected each time and the sample should 

be processed immediately after collection, so making a pooled sample can be very difficult. 

Moreover, when each metabolomics study has its own internal reference, results of 

different studies of the same sample type are not comparable. For a large-scale 

metabolomics study in which multiple sample sets are analyzed at different times or even 

different laboratories, a universal standard is preferred.  

 

We have collected serum samples from 100 healthy blood donors and mixed the 100 

samples to make a universal serum standard (USS). All the 12C-labeled individual samples 

are mixed with the 13C-labeled USS, so the measured metabolite concentrations are relative 

to the average level among the general population, which is represented by the USS sample. 

The isotopic labeled USS can be mass-produced in advance by making a large-scale 

reaction, and then stored for any future studies. This makes the experimental process easier 

than the pooled sample approach. Using the same reference sample, blood analysis results 

from different subjects and different time points can be readily compared. 

 

Figure 4.1 summarizes the workflow of our metabolomics profiling of finger blood. After 

the collection of one microliter of whole blood, we perform protein precipitation using an 

organic solvent, and then the dried sample is labeled by 12C-dansyl chloride. Meanwhile, 

0.5 μL of the USS sample is labeled by 13C-dansyl chloride. We use 0.5 μL of the USS 

sample because the total metabolite amounts in 0.5 μL of serum and 1 μL of whole blood 

are similar and the peak pair ratios of most metabolites will be close to 1. After equal 
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volume mixing of the 12C-labeled individual sample and the 13C-labeled internal standard, 

the mixed sample is analyzed by high-resolution LC-MS. 

 

Figure 4.1 Work flow of the finger blood analysis based on CIL-LC-MS. 

 

4.3.3 Optimization of the labeling method 

Although we have a previously developed a labeling protocol for the large-scale labeling 

of serum and plasma samples, the old protocol cannot be directly applied to the finger blood 

analysis as the sample amount is too small. In order to achieve a high metabolome coverage, 

we have optimized the small-volume protocol with one microliter of the USS sample. For 

each experimental condition, one microliter of the USS sample was 12C-labeled and another 

one microliter aliquot was 13C-labeled. The volume of the mixed sample was 30 μL, but 
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we injected only 3 μL into the LC-MS system to avoid saturating the system and thereby 

making the difference between experimental conditions less significant. With a larger 

injection amount, more peak pairs will be detected.  

 

The protein precipitation solvent was first optimized, and the results are shown in Figure 

4.2A. For each organic solvent, 1 µL of serum sample was mixed with 55 µL of the solvent 

to precipitate the proteins. The labeling process and LC-MS analysis are the same for all 

the solvents. It is very clear that the methanol group gives more peak pairs than the acetone 

and acetonitrile groups. This is because most of the amine/phenol-containing metabolites 

are relatively hydrophilic and have better solubility in methanol, which is more hydrophilic 

than acetone and acetonitrile. Because of the same reason, adding a small portion of water 

into methanol can increase the number of detected metabolites. On the other hand, adding 

too much water decreases the protein precipitation performance, and the leftover proteins 

can consume labeling reagent during the reaction and thereby affect the detectability. In 

our experiment, we mixed methanol and water in ratios of 8:1, 6:1 and 4:1 (v/v), 

respectively. With more than 25% water in the solvent, no visible protein precipitates can 

be observed. The result shows that 6:1 methanol/water, which gives 468 peak pairs, is the 

optimal solvent for the protein precipitation. For the labeling of freshly collected finger 

blood sample, since the sample is already in 8 µL of PBS solution, 48 µL of pure methanol 

is added to the sample to precipitate the proteins and 45 µL of the supernatant is taken for 

the following steps. And 6:1 methanol/PBS solution was used for the USS sample to 

maintain the same matrix. 
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In our previous dansyl-labeling protocol, in order to maximize the yield of the labeling 

reaction, an excess of labeling reagent was used. In this experiment, as the total amount of 

metabolites in the sample is smaller, we also tried to use a smaller amount of the reagent. 

We labeled one microliter of serum with dansyl chloride solutions at 5 mg/mL, 10 mg/mL, 

15 mg/mL, 20 mg/mL and 25 mg/mL, respectively. When 25 mg/mL dansyl chloride was 

mixed with the buffer solution, a small amount of solid dansyl chloride formed on the 

bottom of the vial, so higher dansyl chloride concentrations were not studied. Figure 4.2B 

shows the number of detected peak pairs of these experimental conditions. Although the 

amount of dansyl chloride in 7.5 µL of 5 mg/mL solution is much larger than the amount 

of amine/phenol-containing metabolites in one microliter of serum, there is a clear trend 

that a higher reagent concentration helps the labeling of metabolites. The concentrations of 

some low-abundant metabolites can be as low as several nano-molars during the reaction, 

and the main reaction has to compete with the side reaction between dansyl chloride and 

water, so an extremely high concentration of the labeling reagent is preferred to ensure the 

labeling of metabolites at low concentrations. As the difference between 20 mg/mL and 25 

mg/mL is not significant (p = 0.08), we choose to use 20 mg/mL as the optimal 

concentration of the labeling reagent. 
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Figure 4.2 (A) Numbers of peak pairs detected with different protein precipitation solvents. (B) 

Numbers of peak pairs detected with different concentrations of dansyl chloride reagent. (C) 

Numbers of peak pairs detected with different reaction lengths and reaction temperatures. 

 

In fact, the danylation reaction can easily happen right after mixing the sample and the 

labeling reagent. Figure 4.2C shows the numbers of peak pairs detected with different 

reaction temperatures and reaction time lengths. The most important point is that, 

regardless of the reaction time, there is no significant difference between reactions at room 

temperature and at 40 °C. This characteristic of the reaction makes our technique possible 

to become a point-of-care analysis kit in the areas where an incubating oven is not easily 

accessible. Furthermore, there is no fundamental difference among different reaction time 

lengths, indicating that the main reaction completes within several minutes. In our work, 

45 min is used to be consistent with our previous works. However, the reaction time can 

be shortened as needed in the future. 
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4.3.4 Metabolome coverage of the optimized method 

With the optimized labeling protocol, we investigated whether we can achieve an adequate 

metabolome coverage with only one microliter of the blood sample. We are also interested 

in the possibility to further decrease the required sample amount while maintaining a large 

number of metabolites that can be quantified. To perform a more complete and 

comprehensive whole metabolome analysis of blood, in the future, we will apply our other 

chemical isotope labeling methods for studying the carboxylic acids73, hydroxyl groups74 

and carbonyl groups75. In that case, the sample volume available for each analysis has to 

be minimized as we prefer not to increase the sample collection volume. 

 

With the same labeling protocol, 0.1 µL, 0.2 µL, 0.5 µL, 1.0 µL and 1.5 µL of the USS 

sample were processed and the same volume of 12C/13C-mixed sample (15 µL) was injected 

into the LC-MS system. The numbers of detected peak pairs are shown in Figure 4.3A. 

There were 299 peak pairs detected in the method blank. The background peaks are from 

the side reactions between dansyl chloride and water, a minor amount of leftover methanol 

and the impurities in the plastic tubes. Most of the background peaks are very weak, and 

when a real sample is being analyzed, the signals of more abundant metabolites will 

suppress their MS signals. Also, our research group has developed software to recognize 

the background peak pairs and then subtract them from the following analysis. As our 

IsoMS software can automatically filter the adduct ions and method blank, we can 

confidently say that the number of peak pairs reflects the number of metabolites detected. 

With just 0.1 µL of serum, our method detected 1,045 amine/phenol-containing metabolites, 

demonstrating superior metabolome coverage. And as expected, a larger starting volume 
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gives more peak pairs. The result of 1.0 µL of serum has 2,125 detected metabolites, which 

is the highest number in this experiment. The same number of metabolites are detected 

from 1.5 µL of sample, indicating that the LC-MS detection saturates when the injection 

amount is too large. Because approximately a half microliters of serum can be separated 

from one microliter of whole blood, it is important to gauge the metabolome coverage with 

one-half microliters of serum. The result shows that with 0.5 µL of the USS sample, we 

can detect and quantify 1,951 metabolites, which is very close to the highest number given 

by 1.0 µL of serum. Although 0.2 µL serum gives a smaller peak pair number (1,456), it 

has demonstrated the significant technical advancement that more than a thousand 

metabolites can be quantified at the same time with less than 0.5 µL of whole blood. 

 

 

Figure 4.3 (A) Numbers of peak pairs detected with different starting volumes of the USS sample 

(The injection volume was fixed at 15 μL). (B) Metabolome coverage with different starting sample 

volumes when the nano-LC-MS system is used. 

 

Our CIL method is also compatible with nanoflow-LC-MS, which is a high-sensitivity 

platform for analyzing a small amount of samples.201 A nano-LC-QTOF-MS system was 

used to test if any improvement of detectability can be achieved. Different volumes of the 

USS sample was labeled with the same protocol and the final 12C/13C-mixed sample was 
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diluted by 5-fold with water. 5.0 µL of the diluted sample was analyzed and the results are 

shown in Figure 4.3B. Starting with only 0.05 µL of serum, which is equivalent to 0.1 µL 

of whole blood, the platform can detect 703 metabolites. With 0.2 µL of serum, 2,337 

metabolites can be detected. This number is larger than that of 1.0 µL serum on the micro-

LC, demonstrating the high detection sensitivity of the nano-LC-MS platform. When it 

goes higher than 1.0 µL, as the detection saturates, the number of detectable metabolites is 

not remarkably increased. Nonetheless, these results have proved that it’s possible to split 

one microliter of whole blood into multiple aliquots for performing multiple metabolic 

analyses at the same time. In addition, since only a small fraction of the labeled product is 

injected into the nano-LC-MS system, the leftover amount can be used to run instrumental 

replicates or be stored for future studies. 

 

4.3.5 Sample normalization 

Sample normalization may also be a necessary step to minimize the inter-sample variations. 

The total concentration of metabolites in blood may differ among individuals, in other 

words, some people can have a bit more concentrated blood than the others. Since our 

major goal is to determine the concentration changes of individual metabolites in multiple 

comparable blood samples, the variations in total metabolite concentration, which can 

affect the relative quantification result, should be adjusted. We previously developed a pre-

acquisition normalization approach, which is an LC-UV based method that determines the 

total concentration of dansyl-labeled metabolites by measuring the UV absorption of the 

dansyl group.115 However, this approach is not applicable to the finger blood analysis due 

to the large amount of sample it consumes.  
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Fortunately, the inter-sample variations of total metabolite concentration among blood 

samples are relatively small, compared with those in other biofluids. As discussed in 

Chapter 3 and shown in Figure 3.3, the total concentrations of amine/phenol-containing 

metabolites in 100 dansyl-labeled serum samples were measured by the LC-UV method. 

The average value is 0.34 mM, and the standard deviation is 0.04 mM, showing the total 

metabolite concentrations of most blood samples are very close. The serum sample with 

highest total metabolite concentration is 40% more concentrated than the average level, 

and the most diluted one’s is 29% lower than the average. In most cases, to be considered 

as a significant change in metabolite concentration, the fold change should be at least 1.5. 

Therefore, the small inter-sample variations, which can only make an error not greater than 

40%, cannot greatly affect the metabolic analysis. 

 

With the pre-acquisition normalization skipped to save the limited amount of sample, we 

did post-acquisition normalization, which is more convenient and easier to perform, to 

minimize the inter-sample variances. Warrack et al. have proposed a method called “MS 

total useful signal”, using the total intensity of components that are common to all samples. 

Compared with using the total ion intensity, the total useful signal excludes the possible 

interference from xenobiotics and artifacts and gives more accurate measurement results. 

202 In our study, sum of the peak intensities from all the peak pairs is considered as the total 

useful signal. We collected 120 finger blood samples from 10 subjects, and the relative 

standard deviation of the total 12C-peak intensity among the 120 measured samples is 

15.3 %, which confirms that variations in the total concentration of blood are small. As the 
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total metabolite amount of the individual sample and that of the reference sample are 

supposed to be the same, the ratio of the total 12C-peak intensity to the total 13C-peak 

intensity is used to normalize the measured peak pair ratios. 

 

4.3.6 Studying the dietary effect of coffee with finger blood analysis 

In order to demonstrate the performance of our finger blood metabolome analyzing method, 

we did a pilot study on the diet effect of coffee. It is not surprising that there is a close 

relationship between diet and human metabolomes. After a dietary intake, the blood 

metabolome may experience changes including the concentration increase of nutrients, 

metabolic processes of the compounds from the food and also other indirect effects. As 

discussed before, the dietary variations and the following metabolome variations can 

interfere with finding the true metabolome changes that are caused by the factors being 

studied. Walsh and her coworkers have studied the effect of dietary standardization on the 

metabolomic profiles of healthy humans,203 and they found that urine metabolome was 

sensitive to the dietary intake, but the standardization of diet failed to make the plasma 

samples cluster closer in the multi-variate discriminative analysis. Still there was not 

enough evidence to prove that diet effect is insignificant in blood metabolome studies, 

since in Walsh’s work, the subjects were asked to fast from midnight to the collection of 

biofluids. It is possible that certain blood metabolome changes occur after a dietary intake, 

and the blood metabolome can recover to a stable state within several hours or even a few 

minutes. Fasting is usually required for research purposes. However, there is no common 

agreement about how many hours the blood donors should fast before giving blood. In the 

real world, the blood banks often suggest a healthy meal before blood collection. If these 
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clinical samples are used for metabolomics research, the diet effect may become more 

significant. Therefore, it is very important to perform a time-resolved study for assessing 

the effect of dietary intake to the blood metabolome so that in future studies the sample 

collection time can also be carefully controlled. Moreover, as the compositions of foods 

are complicated and diverse, it might be difficult to monitor the metabolic changes when 

considering the blood metabolome as a whole. Nonetheless, a specific compound at a high 

concentration in the food should be detected in the blood, or at least its down-stream 

metabolites should be observed. Even if the dietary intake cannot make any global changes 

to the blood metabolome, when biomarkers being studied are also involved in the 

metabolism pathway of an ingested food, the diet effect can become a major issue. 

 

Due to the considerations above, we decided to study the diet effect of coffee, a very 

common and relatively simple source of dietary stimulation. To make the model as simple 

as possible, no sugar or cream was added to the dark roast coffee used in the study. Coffee 

is known to have a large amount of caffeine, which is a central nervous system stimulant 

and an active small-molecule metabolite, so the metabolism of caffeine was monitored. To 

study the short-term metabolic effects, the interval between coffee intake and blood 

collection was set to two hours. Another major objective of this study is to demonstrate 

that the finger blood analysis has good metabolome coverage, repeatability and robustness 

comparable to those of the venous blood analysis. 

 

Ten participants were asked to refrain from consuming caffeine-containing food and drink 

for at least one day and to fast overnight before donating blood. Two aliquots of one-
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microliter finger blood were collected as experimental duplicates. After that, the 

participants finished 350 mL of regular dark roast coffee (from Starbucks) within 20 

minutes. Two hours after the first blood collection, we collected the second blood sample 

from each participant. This process was repeated for another two days, so totally 120 

samples were collected and analyzed. Each individual sample was 12C-dansyl-labeled, and 

then mixed with equal volume of 13C-dansyl-labeled USS sample. The mixed samples were 

analyzed by the LC-FTICR-MS system. On average, 1,647 peak pairs were detected from 

each sample. Finally, the acquired peak pairs were aligned together, and their ratio values 

were normalized. 

 

We applied the Partial Least Squares-Discriminant Analysis (PLS-DA) to reveal the 

statistical differences between the samples collected before and after coffee intake. To be 

included in the final list for statistical analysis, each peak pair should have valid ratio values 

in more than 80% of the samples of at least one study group (“before coffee” or “after 

coffee), so that the percentage of missing values can be minimized and the statistical result 

can be more accurate. Finally, a total of 1,722 peak pairs and their ratio values were studied. 

Among them, 73 were positively identified by the Dansyl-library, 578 were putatively 

identified by the HMDB library and another 815 were putatively identified by the EML 

library.  

 

In Figure 4.4A, the score plot of the PLS-DA analysis, there is no obvious separation 

between the cluster of green dots (“before coffee”) and that of red dots (“after coffee”), 

indicating that there is no statistically significant difference between the two groups, which 
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is further confirmed by the permutation test result shown in Figure 4.4B. The performance 

of the discriminative model is gauged by two indicators: R2 and Q2, which are 0.995 and 

0.754, respectively. The permutation test result tells us that with totally randomized group 

assignment, the model may give similar R2 and Q2 values, which means the model is not 

valid. 

 

 

Figure 4.4 (A) PLS-DA score plot, showing that the clusters of data points before and after coffee 

intake overlap each other. The performance indicators, R2 and Q2, are 0.995 and 0.754, respectively. 

(B) Permutation test result, confirming that the statistical separation between the two study groups 

is not valid. 

 

We also used uni-variate analysis to study the changes of individual metabolites. For each 

metabolite, a fold change is calculated as the ratio of the average concentration in the “after 

coffee” group to that in the “before coffee” group, and an FDR-adjusted p-value (or q-

value) is used to monitor the statistical significance. If the fold change of one metabolite is 

larger than 1.5 or smaller than 0.67, and the q-value is smaller than 0.05, we consider this 

metabolite is significantly changed. A volcano plot, which plots the q-value against the 

fold change, can visualize the results and it is shown as Figure 4.5A.  
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Figure 4.5 (A) Volcano plot, showing 6 significantly increased metabolites (in blue) after coffee 

intake. (B) Box plot of theophylline, showing the distributions of its blood concentration before 

and after coffee. (C) Box plot of catechol sulfate, showing the distributions of its blood 

concentration before and after coffee. 

 

The volcano plot agrees with the result of the PLS-DA analysis that no significant 

difference between the two study groups was observed. Only six metabolites experienced 

significant concentration change after coffee, and all of them had a concentration increase. 

The information of these six metabolites is given in Table 4.1. Theophylline is the only 

positively identified metabolite among them, and its fold change is 2.08. Figure 4.5B is the 

box plot that shows the distributions of theophylline’s relative concentration before and 

after coffee intake. Caffeine plays a major role in the dietary exposure of coffee, but 

unfortunately, our dansyl-labeling method cannot label and detect caffeine itself. 

Nonetheless, theophylline is one of the major down-stream metabolites of caffeine, and the 
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concentration increase of theophylline can indirectly tell the absorption and metabolic 

degradation of caffeine. The other significant metabolites, except the one that cannot be 

identified, are putatively identified as prolyl-proline, catechol sulfate, xanthine [+C2H4] 

and oxypurinol [+C2H4]. Catechol is a known metabolite formed during coffee roasting204 

and by dansyl-labeling we detected the dansylated catechol in coffee. In blood, catechol is 

conjugated to sulfate, so an increased level of catechol sulfate was observed after coffee 

intake, as illustrated by the box plot in Figure 4.5C. 

 

Table 4.1 List of 6 metabolites that have significant concentration changes among the 10 

participants after coffee intake. 

Retention 

time (min) 

Mass of 

dansylated 

metabolite 

(Da) 

Mass of 

metabolite 

(Da) 

Metabolite HMDB ID Identificaion 

type 

Fold 

change 

q value 

7.14 446.1643 212.1060 L-prolyl-L-

proline 

HMDB11180 Putative 1.74 3.20E-02 

8.91 424.0538 189.9955 Catechol 

sulfate 

HMDB61713 Putative 2.63 4.67E-10 

11.05 414.1243 180.0660 Xanthine + 

[C2H4] 

NA Putative 2.63 4.67E-10 

12.36 414.1245 180.0661 Oxypurinol 

+ [C2H4] 

NA Putative 4.11 5.77E-18 

12.39 472.1784 238.1201 NA NA NA 4.00 1.22E-17 

14.85 414.1249 180.0665 Theophylline HMDB01889 Defenitive 2.08 7.55E-06 

 

The result shows that for the amine/phenol-submetabolome, there is no statistically 

significant change that can be observed two hours after coffee intake. However, please note 
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that certain changes may happen at different time scales or at other submetabolomes. The 

purpose of this study is to demonstrate that the finger blood analysis can cover an adequate 

number of metabolites, sensitively detect concentration changes to individual metabolites 

and have good repeatability among experimental replicates. The results have proved that 

the finger blood can readily replace the venous blood in various metabolomics studies. 

 

4.3.7 Time-resolved metabolic analysis 

We also used our technique to perform a time-resolved monitoring of blood metabolome 

after coffee consumption. One subject fasted overnight and the finger blood samples were 

collected before drinking coffee. Thereafter, more samples were collected at 0.5, 1, 2, 3 

and 4 hours after coffee intake. For each time point, experimental triplicates were analyzed, 

and the whole process was repeated for another two times named as “Day 2” and “Day 3”. 

The blood concentrations of theophylline and catechol sulfate, the significant metabolites 

confirmed in the first study, were monitored during the 4-hour period. In Figure 4.6A, the 

relative concentration of theophylline is plotted against the sample collection time, and the 

results from different days are shown in different colors. The subject was not a habitual 

coffee drinker, so the initial value before coffee was close to zero. Right after the coffee 

was consumed, the blood concentration of theophylline started to increase. At the 4-hour 

point, the concentration of theophylline reached a considerable level, which is many times 

higher than the starting point. This implies that if some metabolites of caffeine are 

considered as biomarkers, coffee intake before sample collection may interfere with the 

analysis and the sample collection time matters a lot. Importantly, the same changing trend 

was observed on three different days, indicating good biological and technical 
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reproducibility of the study. Catechol sulfate shown in Figure 4.6B reached its highest 

blood concentration between 0.5 and 1 hour after the coffee intake and then started to 

decrease to the original level. The metabolism of some metabolites can be as fast as 

catechol sulfate, or even faster, and this explains why no significant metabolome change 

was observed 2 hours after coffee. Overall, our technique has demonstrated the ability to 

sensitively and accurately monitor the blood concentration of an adequate number of 

metabolites based on frequent sample collections, which can be very aggressive in the 

conventional studies based on venous blood. 

 

The concentration-time curves of glutamic acid and proline are also shown in Figure 4.6 

as examples of biological variations in metabolites that are not directly associated with the 

coffee intake. Although the concentration of glutamic acid was fluctuating, it was never far 

away from the average level, showing the blood metabolome’s ability to stabilize itself. 

The highest relative concentration of glutamic acid among all the data points is 1.27 and 

the lowest is 0.74. As the ratio of the highest to the lowest is 1.73, we can tell the variations 

in blood metabolome is a non-negligible factor in metabolomics studies and the time-

resolved analyses can help us minimize the interference. The concentration of proline, as 

shown in Figure 4.6D, was more stable and the ratio of the highest to the lowest is 1.44. 

 

The day-to-day variations of these metabolites were also studied and the results are shown 

in Figure 4.7. The same subject donated blood in this study and the diet was not controlled. 

On each day during a week, finger blood samples were collected one hour after breakfast.  
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Figure 4.6 Concentration-time curves of (A) theophylline, (B) catechol sulfate, (C) glutamic acid 

and (D) proline, illustrating their concentration changes during the 4-hour period after coffee intake. 

The blue curve represents data acquired on Day 1, the red curve represents Day 2 and the green 

curve represents Day 3. 

 

The subject was not a habitual coffee drinker, so theophylline was not detected in his blood 

without any caffeine exposure. Catechol sulfate, which exists in many other kinds of food, 

was detected and it showed very significant concentration fluctuation, as shown in Figure 

4.7A. In Figure 4.7B and 4.7C, glutamic acid and proline also demonstrated day-to-day 

variations in their blood concentrations. During the week, the ratio of the highest glutamic 
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acid concentration to the lowest is 1.43, and that of proline is 1.50. We can conclude from 

the results that if only two sample collection points are included in a metabolomics study, 

any fold change not higher than 1.50 should be carefully assessed as interference due to 

biological variations can be considerable. 

 

Figure 4.7 Concentration-time curves of (A) catechol sulfate, (B) glutamic acid and (C) proline, 

showing the day-to-day variations of their blood concentrations during a week. 

 

4.4 Conclusions 

We have successfully developed a high coverage metabolomics analyzing method for one 

microliter or even lower volumes of finger blood based on CIL and high-resolution LC-

MS. Our technique has demonstrated adequate detection sensitivity, repeatability and 

robustness, showing that the finger blood can be used to replace venous blood in various 

metabolomics studies without any significant drawbacks or limitations. Particularly, the 
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finger blood collection method that we used is much less invasive than venous blood 

collection and it can be done without any specially trained personnel. As more samples can 

be collected without a significant increase in financial and time costs, the accuracy and 

statistical power of measurements in metabolomics studies will be greatly improved. And 

more importantly, our method can readily achieve the frequent blood collection and time-

resolved metabolomics analyses. As an example, we performed accurate and time-resolved 

monitoring of metabolite concentrations after a dietary exposure to coffee. 

 

In the future, the method can be applied to study the metabolic consequences of various 

environmental exposures. Compared with the other time-revolved studies, our method has 

a major advantage that the relative quantification of a large number of metabolites can be 

done at the same time. In the future, with more peak pairs positively identified and some 

of them proved to be biomarkers, our technique will become a powerful tool for time-

resolved studies of specific biomarkers during the progress of diseases. And such analyses 

will help with understanding the metabolic processes associated with a disease state. We 

note that there might be differences between venous blood and finger blood, however, since 

we mainly study the metabolite changes caused by a disease state or an environmental 

factor, and our pilot studies have demonstrated that the finger blood can sensitively reflect 

these changes, the relationship between venous blood metabolome and finger blood 

metabolome is not our major concern. If we want to compare the results of venous blood 

studies and finger blood studies in the future, the difference between the two materials will 

be further studied. 
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Chapter 5 

High-coverage Metabolomics Analysis of One Microliter Blood Using Two 

Isotope Labelings and High-resolution LC-MS 

 

5.1 Introduction 

Despite the fact that many reported biomarker candidates are amino acids or their 

derivatives, which belong to the amine and phenol categories, carboxylic acids have also 

demonstrated biological significance in various physiological processes. For example, it 

has been reported that short chain carboxylic acids, such as acetic acid, propionic acid, and 

butyric acid, can alter the function of cells.205-206 Particularly in human blood, the short 

chain carboxylic acids play roles in the regulation of leukocyte function.207 Furthermore, 

the deregulation of fatty acids has been discovered in hepatic diseases,208 obesity,209 and 

diabetes.210  

 

Moreover, carboxylic acids have long been used as food additives and preservatives for 

expending the shelf life, though the antimicrobial mechanism is not fully understood.211-212 

In animal husbandry, carboxylic acids are also utilized as animal feed additives to improve 

the growth rate and feed conversion rate.213 Consequently, the profile of carboxylic acids 

can become a powerful indicator for studying the metabolic interactions between human 

body and the environment, especially the diet effects. For instance, Hodson et al. 

demonstrated in their work that fatty acids could potentially be used as biomarkers of 

dietary intake.214 
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In chapter 5, we described the importance of time-resolved metabolomics analyses for 

assessing the metabolic outcomes of environmental exposures, and we also reported a high-

coverage metabolome profiling method of one microliter of finger blood using dansylation 

isotope labeling and high-resolution LC-MS, enabling time-resolved metabolomics 

analyses with maximized metabolome coverage and minimally invasive sample collection. 

Since carboxylic acids are commonly seen species in the environment, especially in diet 

sources, time-resolved analyses of carboxylic acids will provide us abundant information 

about the body’s physiological responses to environmental stimulations. To study the 

carboxyl-containing metabolites, we have previously developed a differential isotope 

labeling technique which uses p-dimethylaminophenacyl (DMPA) bromide as the 

reagent,73 and this method has been used for profiling the carboxyl-submetabolome of 

venipuncture blood samples. In this chapter, we apply two isotope labeling methods, the 

dansylation labeling and the DMPA-labeling, to the metabolomics analysis of one 

microliter of finger blood. The metabolic responses of both the amine/phenol-

submetablome and the carboxyl-submetabolome to a dietary stimulation are also assessed. 

 

5.2 Materials and methods  

5.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada (Markham, ON, Canada). For chemical isotope labeling reactions, the 12C-

labeling reagents (dansyl chloride and DMPA bromide) were purchased from Sigma-

Aldrich, and the 13C-labeling reagents were synthesized in our lab using the procedures 
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published previously.70, 73 LC-MS grade water, methanol, and acetonitrile (ACN) were 

purchased from Thermo Fisher Scientific (Nepean, ON, Canada). 

 

5.2.2 Finger blood sample collection 

First, the finger surface was cleaned with 70% isopropyl alcohol. A Bayer’s Microlet 2 

lancing device was used for the finger pricking. After that, 1 µL of whole blood sample 

was taken from the punching site with a micropipette, and immediately transferred to a 0.2 

mL PCR tube to mix with 10 µL of PBS solution. Then the mixture was centrifuged at 

1,000 rpm for 10 min. One 5 µL aliquot of supernatant was transferred into another PCR 

tube for the danyl-labeling, and another 5 µL aliquot was taken for the DMPA-labeling. 

 

5.2.3 Dansyl-labeling 

5 µL of the supernatant from the last step was mixed with 2.5 µL of 250 mM sodium 

carbonate/sodium bicarbonate buffer and 7.5 µL of freshly prepared 12C-DnsCl solution 

(20 mg/mL) (for light labeling). The solution was vortexed, spun down, and then incubated 

at 40 °C for 45min. After that, 2 µL of 250 mM NaOH solution was added to quench the 

excess dansyl chloride. The solution was then incubated at 40 °C for another 10 min. 

Finally, 5 µL of 425 mM formic acid in 1:1 ACN/H2O was added to consume excess NaOH 

and to make the solution acidic. For the internal reference, 0.25 µL of the universal serum 

standard (USS) was diluted to 5 µL with PBS, and then labeled by 13C-DnsCl with the 

same protocol. 
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5.2.4 DMPA-labeling 

5 µL of the supernatant from the sample collection was mixed with 5 µL of 0.2M 

triethanolamine and 15 µL of freshly prepared 12C-DMPA bromide solution (7.5 mg/mL) 

(for light labeling). After the solution was vortexed and spun down, the reaction was 

allowed to proceed at 75 °C for 45 min. Finally, the excess amount of DMPA bromide was 

quenched by 15 µL of 0.2M triglycine. For the internal reference, 0.25 µL of the USS 

sample was diluted to 5 µL with PBS, and then labeled by 13C-DMPA bromide with the 

same protocol. 

 

5.2.5 LC-QTOF-MS 

For LC-QTOF-MS, an Agilent 1100 series binary system (Agilent, Palo Alto, CA) and an 

Agilent reversed-phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 µm particle size, 

95 A pore size) were used. The flow was loaded to the electrospray ionization (ESI) source 

of a Bruker maXis impact high-resolution quadrupole time-of-flight (Q-TOF) mass 

spectrometer (Bruker, Billerica, MA). All MS spectra were obtained in the positive ion 

mode.  

 

LC solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and solvent B was 0.1% 

(v/v) formic acid in ACN. The gradient elution profile for dansyl-labeled samples was as 

follows: 0 min (20% B), 0-3.5 min (20-35% B), 3.5-18 min (45-65% B), 18-21 min (65-

95% B), 21-24 min (95-99% B), and 24-34 min (99% B). The column was re-equilibrated 

with the initial mobile phase condition for 15 min before injecting the next sample. The 

flow rate was 180 µL/min, and the injection volume was 15.0 µL. 
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The 42-min gradient for all DmPA-labeled samples is: 0 min (20% B), 0-9 min (20%-50% 

B), 9-22 min (50%-65% B), 22-26 min (65%-80% B), 26-29 min (80%-99% B) and 29-42 

min (98% B). The column was re-equilibrated with the initial mobile phase condition for 

15 min before injecting the next sample. The flow rate was 180 µL/min, and the injection 

volume was 25.0 µL. 

 

Representative LC-MS chromatograms are provided in Appendix Figure 3. 

 

5.2.6 Data processing and statistical analysis 

A software tool, IsoMS,72 was used to process the raw data generated from multiple LC-

MS runs by peak picking, peak pairing, peak-pair filtering and peak-pair intensity ratio 

calculation. The same peak pairs detected from multiple samples were then aligned 

together by IsoMS-Align. The missing ratio values were filled back by using the Zero-fill 

program.137 Finally, IsoMS-Quant157 was used to determine the chromatography-peak-

intensity ratio of a 12C-/13C-pair. The final datasheet of metabolite concentrations was 

exported to MetaboAnalyst 3.0165 for multivariate statistical analysis. 

 

5.2.7 Metabolite identification 

Metabolite identification was performed based on mass and retention time match to a 

dansyl standard library159 which contains 315 metabolite standards and a carboxylic acid 

standard library which includes 187 standards. Putative identification was done based on 
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accurate mass matches to the metabolites in the human metabolome database (HMDB)158 

(8,021 known human endogenous metabolites) and in the Evidence-based Metabolome 

Library (EML)41 (375,809 predicted human metabolites with one reaction) using 

MyCompoundID. The mass accuracy tolerance window was set at 0.008 Da for database 

search. 

 

5.3 Results and Discussion 

5.3.1 Metabolome coverage of the two differential isotope labeling methods 

In this work, each microliter of raw blood is split into two equal aliquots. One of them is 

labeled by 12C-dansyl chloride and then mixed with equal volume of 13C-labeled USS 

sample. The other aliquot is labeled by 12C-DMPA bromide before being mixed with the 

same volume of 13C-labeled USS sample. For each labeling, the available sample amount 

is approximately equivalent to only 0.25 µL of serum. Although the sample volume is 

extremely small, the isotope labeling techniques, accompanied with high-resolution LC-

MS, can generate an adequate number of detected peak pairs. To examine the metabolome 

coverage of the two-labeling platform, different volumes (0.05 µL, 0.2 µL, 0.2 µL, 0.5 µL, 

1.0 µL, and 1.5 µL) of the USS sample were labeled and 12C/13C-mixed correspondingly. 

The injection volume of dansyl-labeled samples was 15 µL, and that of DMPA-labeled 

samples was 25 µL. The QTOF-MS was set to High-dynamic-range (HD) mode during the 

acquisition. Since the concentrations of different metabolites are very diverse, the HD 

mode can significantly increase the detected number of peak pairs.58 The numbers of peak 

pairs acquired at different sample volumes are shown in Figure 5.1.  

 



151 
 

With just 0.05 µL of serum, the dansyl-labeling provides 1,407 peak pairs and the DMPA-

labeling gives 2,238 peak pairs, demonstrating the high detection sensitivity enabled by the 

differential isotope labeling. Both of the two techniques are able to detect more peak pairs 

as the starting volume increases. The dansyl-labeling reaches the highest number of peak 

pairs (3,333) at 0.5 µL of USS serum, while the saturation point of the DMPA-labeling is 

at 1.0 µL, having more than 3,900 peak pairs. Starting with 0.2 µL of serum, whose total 

amount of metabolites is close to that in the 5 µL diluted finger blood, the dansyl-labeling 

shows 2,806 peak pairs, which are only 16% fewer than the optimal number. Meanwhile, 

2,810 of DMPA-labeled peak pairs are quantified, 28% lower than the highest number. 

Seeing that the analysis of 0.2 µL of USS serum gives much higher metabolome coverage 

than traditional methods, we may conclude that our technique is qualified for monitoring 

the changes of amine, phenol and carboxyl submetabolomes by studying a minimal amount 

of finger blood. 

 

Figure 5.1 Numbers of peak pairs detected from different volumes of USS sample by dansyl-

labeling (in blue) or DMPA-labeling (in red). 
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5.3.2 Time-resolved metabolomics analysis for studying day-to-day metabolome 

variations 

The day-to-day metabolome variations within one subject are potentially confounding 

factors to biomarker discoveries and clinical applications. Notably, the diet is usually not 

strictly controlled in many studies, and therefore it could be a major environmental 

stimulation to cause day-to-day metabolic changes. To assess these variations, we collected 

finger blood samples from one male subject consecutively for seven days. During the study, 

the diet was not controlled, and on each day, finger blood samples (experimental triplicates) 

were collected one hour after breakfast. The individual samples were 12C-dansyl-labeled 

and 12C-DMPA-labeled before being mixed with the corresponding USS standards. As the 

same internal reference is applied to all samples, the concentrations of each metabolite over 

this period are directly comparable and can demonstrate the day-to-day variations. 

 

After excluding the peak pairs with more than 50% missing values, we successfully 

detected 2,074 dansyl-labeled and 2,254 DMPA-labeled metabolites. We positively 

identified 72 dansyl-labeled metabolites and 26 DMPA-labeled metabolites using the 

standard libraries. The accurate masses, average concentrations and relative standard 

deviations (RSD) of these 98 metabolites are given in Table 5.1. Also, 490 dansyl-labeled 

metabolites and 501 DMPA-labeled metabolites are putatively identified by searching 

through the HMDB library. The EML library putatively identified 983 dansyl-labeled 

metabolites and 1237 DMPA-labeled metabolites. 
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For each metabolite, we calculated the RSD among the concentrations measured during the 

week. The distributions of the RSDs are shown in Figure 5.2. For the amine/phenol-

containing metabolites (Figure 5.2A), the majority of the RSDs are below 100%, with a 

very small number of outliers, which mostly belong to the metabolites with a high 

percentage of missing values. The median of the RSDs is 32.52%, and more than half of 

them lie between 25% and 50%, showing that the day-to-day variations are existing but not 

very severe. Figure 5.2B illustrates that the RSDs of the carboxyl-containing metabolites 

are generally smaller than those of the dansyl-labeled metabolites. Except for a few outliers, 

most of the RDSs are also below 100% with a median value of 21.49%. And almost 60% 

of them are below 25%, suggesting that the day-to-day variations in the carboxyl-

submetabolome are not very significant. 

 

 

Figure 5.2 Distribution of relative standard deviations defining the day-to-day variability in (A) 

amine/phenol-containing metabolites and (B) carboxyl-containing metabolites. 

 

The concentration-day plots of four dansyl-labeled metabolites are shown in Figure 5.3 as 

examples. Among the positively identified amine/phenol-containing metabolites, alanine 

has the smallest  RSD (11.07%). As shown in Figure 5.3A, the highest concentration (1.05) 

occurred on Day 1, and the lowest concentration (0.83) was on Day 3. Compared to the 

average concentration (0.92), the fold change is 1.14 for the highest value and is 0.90 for 
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the lowest level. As most biomarker candidates require fold change to be at least 1.2, the 

day-to-day variations in alanine concentration will not affect the biomarker studies. The 

concentration of tyrosine was also relatively stable, with RSD equal to 23.39%. Tyrosine 

is a proved indicator that can differentiate between males and females,169 with the fold 

change of 0.82 (female/male). The fold change of the lowest concentration in Figure 5.3B 

is 0.95, indicating that the inter-sex variation is more significant than the within-individual 

variation. Taurine has multiple biological functions in the human body,215 and it has been 

reported to be biomarker candidate for various diseases. For instance, Engelborghs et al. 

found that taurine levels in the cerebrospinal fluid of Parkinson’s disease patients were 

significantly lower compared to the control group (fold change = 0.788).216 Unlike the 

relatively stable alanine and tyrosine, taurine had a more fluctuating curve, as shown in 

Figure 5.3C. The lowest concentration (Day 4) is 38% lower than the average (fold change 

= 0.622). The evidence has led us to believe that the blood level of taurine is sensitive to 

multiple biological and environmental factors including the diet effects. As the fold change 

by chance is larger than that found in Parkinson’s disease, if taurine is used as a biomarker, 

multiple sample collections over a period will be necessary to accurately profile the blood 

taurine level of one individual. Salicylic acid has one of the largest RSD (80.26%) among 

these metabolites. However, by looking at the plot in Figure 5.3D, we can find that the high 

RSD is mainly due to the concentration jump on Day 7. This metabolite is present in fruits 

and vegetables, and higher blood concentration can be found in vegetarians than non-

vegetarians.217 The origin of salicylic acid from food explains why the blood level of it 

soared 2.7-fold on Day 7. The discovery also confirms that diet effects contribute 
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significantly to the variability of some metabolites, and our technique is an ideal platform 

for studying these exposomics effects. 

 

   

Figure 5.3 The concentration-day curves of (A) alanine, (B) tyrosine, (C) taurine and (D) salicylic 

acid, showing variations in their concentrations during the week. 

 

For the DMPA-labeling, the concentration-day curves of heptanoic acid, ursodeoxycholic 

acid, perillic acid and hexadecanedioic acid are shown in Figure 5.4. Their RSDs are 

14.71%, 30.24%, 23.41% and 69.36%, respectively. Heptanoic acid, a medium-chain fatty 

acid, demonstrated very stable blood concentration over the week. Ursodeoxycholic acid 

is an endogenous bile acid, and it protects against the membrane-damaging effects 

associated with hydrophobic bile acids.218 The fold changes (compared with average) of its 

highest and lowest concentrations during the week are 1.39 and 0.79. This tells us that the 

within-individual changes can sometimes be larger than 1.2-fold, and increasing the fold 

change threshold to 1.5 can effectively cope with the variations of many metabolites. 

Perillic acid is an intermediate in the degradation pathway of limonene and pinene. It has 
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been discovered that perillic acid has protective functions against radiation219 and 

cancer.220 Its blood concentration also remained very stable during the study period. 

Hexadecanedioic acid is one of the carboxyl-containing metabolites that have prominent 

variations. Similar to the case of salicylic acid, its high RSD is mainly because of the 

remarkably high concentration on Day 1. Since hexadecanedioic acid has been found in 

some plants,221-222 the abnormal concentration may also due to diet effects. These results 

have shown that our method has the adequate sensitivity and accuracy for the assessment 

of metabolic responses to dietary stimulations. 

 

   

Figure 5.4 The concentration-day curves of (A) heptanoic acid, (B) ursodeoxycholic acid, (C) 

perillic acid and (D) hexadecanedioic acid, showing variations in their concentrations during the 

week. 

 

5.3.3 Studying the diet effects of an energy drink with two labeling methods 
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To study the diet effects more specifically within a shorter period, we chose the energy 

drink as the dietary stimulation. Compared with other food sources, the energy drink is a 

relatively simple mixture of a few compounds at very high concentrations. In addition to a 

large amount of sugars, an energy drink usually has caffeine and taurine as its active 

ingredients. Caffeine is widely used as a central nervous system stimulant, and taurine is 

believed to improve the force of skeletal muscles.223  In a 16 oz. can of the energy drink 

(Monster Energy) we studied, there is approximately 160 mg of caffeine and 2000 mg of 

taurine, which can be a very strong environmental stimulation to the blood metabolome. 

Except for the active ingredients, the energy drink also has benzoic acid, citric acid and 

sorbic acid added as preservatives. It is also interesting to study the metabolism of these 

non-nutritional ingredients. 

 

In this experiment, one subject fasted overnight before the experiment. The finger blood 

samples were collected in the early morning, labeled as time “0”. Then the subject finished 

a 16 oz. can of the energy drink within 10 min. More finger blood samples were collected 

at 0.5 hours, 1 hour, 2 hours, 3 hours and 4 hours after the energy drink intake. These 

samples were processed with the two chemical isotope labeling methods, and then mixed 

with the 13C-labeled USS sample for LC-MS analysis. Forty-eight hours after the first 

experiment, the whole process was repeated as experimental duplicates, annotated as “Day 

1” and “Day 2”. We studied the concentration changes of theophylline, taurine, lactic acid, 

sorbic acid and citric acid. For each metabolite, the concentrations are plotted against the 

sample collection time, and the curves are shown in Figure 5.5. 
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Figure 5.5 Concentration-time curves of (A) theophylline, (B) taurine, lactic acid, (C) sorbic acid 

and (D) citric acid, showing the concentration changes after the energy drink intake. 

 

Theophylline is one of the major metabolites of caffeine. As shown in Figure 5.5A, its 

relative concentration rose from zero to 0.59 during the 4-hour period. The increasing trend 

is consistent with the literature indicating that mean serum caffeine half-life for the healthy 

subjects is 5.7 hours.224 On Day 2, despite a small leftover amount of theophylline as the 

baseline, the concentration change followed the same trend, proving the excellent 

reproducibility of this experiment. In Figure 5.5B, taurine demonstrated a shorter half-life, 

reaching the highest blood concentration at 1 hour and then starting to decrease to the initial 

level. Taurine plays a crucial role in the function of skeletal muscle,225 and its concentration 

in skeletal muscle decreases after exercising.226 Importantly, Manabe et al. studied rats and 

reported that the blood concentration increase of lactic acid after exercising became less 

significant with chronic treatment of taurine.227 The accumulation of lactic acid in skeletal 
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muscle has long been noticed, though its relationship to the muscle fatigue is not clear 

yet.228 It can be seen in Figure 5.5B that the blood levels of taurine and lactic acid changed 

in exactly the same manner. Our result suggests that even without the exercising and lactic 

acid accumulation in the skeletal muscles, taurine intake can prompt the skeletal muscle to 

release lactic acid and increase the blood lactic acid level. Sorbic acid is used as a 

preservative, and has very low level of toxicity.229 In Figure 5.5C, its concentration 

significantly increased to the highest point within half an hour after the consumption of the 

energy drink. However, it had a remarkably high metabolism rate and decreased to a very 

low concentration within two hours. Another preservative, citric acid, only showed a minor 

concentration increase at 1 hour (Figure 5.5D). This can be expected since citric acid has 

multiple biological functions230-231 and the energy drink was not the only source of it. 

 

We also applied multi-variate analysis to study the dietary effects of the energy drink. 

Figure 5.6A and 5.6B are the PLS-DA score plots for the amine/phenol-submetabolome 

and carboxyl-submetabolome, respectively. On both of them, we can clearly see the 

separation from the 0-hour point to the 4-hour point. As the time increases, the distance to 

the initial state (0-hour) gets more significant. The Q2 value for the PLS-DA model of the 

dansyl-labeling data is 0.519, and the Q2 for the DMPA-labeling data is 0.574. They are 

relatively low because the energy drink only has a limited number of compounds and its 

impacts on the blood metabolome are limited in a limited number of pathways. Nonetheless, 

the changing trends successfully demonstrated the metabolome variations as responses to 

a dietary stimulation, and our method can effectively study this process. 
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Figure 5.6 PLS-DA score plots, showing the statistical differences between samples collected at 

different time points in (A) amine/phenol-submetabolome and (B) carboxyl-submetabolome. 

 

5.4 Conclusions 

Overall, we have successfully applied the dansyl/DMPA-labeling LC-MS platform to the 

high-coverage metabolome analysis of one microliter of finger blood. Taking advantage of 

the high detection sensitivity enabled by the chemical isotope labeling, we can accurately 

quantify the blood concentrations of more than 4,000 metabolites from the extremely small 

amount of sample. The within-individual variations have been studied. Although these 

variations are not very significant, they should be considered in biomarker discovery 

studies, especially when the fold changes of biomarker candidates are not very large. In 

these applications, our method can become an ideal choice for the more accurate 

quantification of metabolites by taking the average of multiple measurements over a period. 

Furthermore, we have clearly demonstrated the metabolic responses to a dietary 

stimulation. Compared to traditional exposomics studies which focus on a limited number 

of target metabolites or target pathways, our method monitors how the whole metabolome 
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responds to environmental factors in a high-throughput and effective way. Future studies 

of these metabolic responses will significantly enrich our knowledge of the metabolic 

processes. 

  

Table 5.1 Average concentrations and RSDs of the 98 positively identified metabolites from one 

microliter of finger blood sample. 

Retention 

time (min) 

Detected 

m/z 

Accurate 

mass (Da) 

Compound name HMDB ID Average 

concentration 

RSD 

(%) 

2.16 375.0763 141.0179 O-Phosphoethanolamine HMDB00224 2.36 40.01 

2.48 403.1424 169.0840 3-methyl-histidine HMDB00479 0.63 24.40 

2.54 359.0736 125.0153 Taurine HMDB00251 0.45 27.37 

2.56 388.1063 154.0479 Hypoxanthine + H2O HMDB00157 0.27 26.65 

2.79 408.1694 174.1111 L-Arginine HMDB00517 0.63 14.75 

3.31 366.1117 132.0533 L-Asparagine HMDB00168 0.66 15.33 

3.38 422.1848 188.1265 Homo-L-arginine HMDB00670 1.18 21.60 

3.64 380.1280 146.0697 L-Glutamine HMDB00641 0.46 14.46 

3.83 409.1531 175.0948 Citrulline HMDB00904 0.67 20.87 

3.98 399.1028 165.0445 Methionine Sulfoxide HMDB02005 0.80 34.20 

4.13 307.1217 73.0634 Methylguanidine HMDB01522 0.70 18.33 

4.30 399.1033 165.0450 Methionine Sulfoxide - 

Isomer 

HMDB02005

_2 

0.82 36.33 

4.47 339.1025 105.0441 L-Serine HMDB00187 2.09 33.61 

4.84 381.1118 147.0535 L-Glutamic Acid HMDB00148 0.86 17.18 

4.90 367.0966 133.0383 L-Aspartic Acid HMDB00191 2.26 47.57 

4.99 365.1162 131.0579 Trans-4-Hydroxyl-L-

Proline 

HMDB00725 0.35 19.60 

5.44 353.1177 119.0594 L-Threonine HMDB00167 0.83 24.36 

5.49 395.1258 161.0675 Aminoadipic acid HMDB00510 0.57 16.57 

5.70 295.1109 61.0525 Ethanolamine HMDB00149 0.68 16.96 
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5.86 348.1016 114.0433 L-Asparagine - H2O HMDB00168

_2 

0.76 13.65 

6.08 309.0909 75.0326 Glycine HMDB00123 1.00 30.43 

6.94 323.1068 89.0485 L-Alanine HMDB00161 0.92 11.07 

7.03 478.1264 244.0681 Uridine HMDB00296 0.65 22.60 

7.08 337.1216 103.0633 Gamma-Aminobutyric 

acid 

HMDB00112 1.21 28.57 

7.76 460.1165 226.0581 Uridine - H2O HMDB00296

_2 

0.66 21.67 

7.92 337.1216 103.0633 3-Aminoisobutanoic acid HMDB03911 1.58 19.64 

8.00 386.0909 152.0326 Xanthine HMDB00292 0.59 36.62 

8.02 351.1371 117.0788 5-Aminopentanoic acid HMDB03355 0.66 54.91 

8.48 363.1019 129.0436 L-Glutamic Acid - H2O HMDB00148

_2 

1.03 17.33 

8.62 337.1279 103.0695 D-Alpha-aminobutyric 

acid 

HMDB00650 3.98 93.87 

8.70 369.0930 135.0347 Methylcysteine HMDB02108 0.81 24.38 

9.29 349.1229 115.0646 L-Proline HMDB00162 0.89 16.28 

9.85 361.1321 127.0737 4-Guanidinobutanoic acid 

- H2O 

HMDB03464

_2 

0.76 21.04 

9.90 383.1089 149.0506 L-Methionine HMDB00696 0.75 43.39 

9.92 351.1386 117.0803 L-Valine HMDB00883 0.71 14.51 

10.25 346.0851 112.0268 Uracil HMDB00300 1.86 37.89 

10.41 442.1448 208.0864 L-Kynurenine HMDB00684 0.76 24.94 

10.41 436.1888 202.1305 Alanyl-Leucine HMDB28691 1.01 50.92 

10.45 438.1480 204.0897 L-Tryptophan HMDB00929 0.53 16.62 

10.66 456.1576 222.0993 Glycyl-Phenylalanine HMDB28848 0.54 34.78 

11.71 399.1380 165.0797 L-Phenylalanine HMDB00159 0.84 15.23 

11.92 402.0982 168.0399 3-Hydroxymandelic acid HMDB00750 0.78 28.94 

11.96 365.1538 131.0955 L-Isoleucine HMDB00172 0.79 22.11 
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12.11 363.1369 129.0786 L-Pipecolic acid HMDB00716 0.44 13.20 

12.22 365.1538 131.0955 L-leucine HMDB00687 0.74 21.47 

12.27 372.1006 138.0423 Urocanic acid HMDB00301 4.93 34.89 

12.99 354.0707 240.0247 L-Cystine HMDB00192 2.87 15.79 

13.12 551.2367 634.3567 Tryptophyl-Leucine HMDB29087 1.79 54.25 

13.14 416.1149 182.0566 Hydroxyphenyllactici 

acid 

HMDB00755 0.63 18.42 

14.12 372.0892 138.0308 Salicylic acid HMDB01895 0.37 80.26 

14.83 319.1108 85.0525 3-Aminoisobutanoic acid 

- H2O 

HMDB03911

_2 

1.33 18.27 

14.87 385.1220 151.0637 Acetaminophen HMDB01859 1.05 116.8

4 

15.08 416.1152 182.0569 Homovanillic acid HMDB00118 1.01 30.98 

15.11 300.1037 132.0908 Ornithine HMDB00214 1.66 41.23 

15.18 386.1045 152.0462 3-Hydroxyphenylacetic 

acid 

HMDB00440 0.93 18.53 

15.46 386.1050 152.0467 3-Cresotinic acid HMDB02390 0.97 25.07 

15.93 402.0991 168.0408 Vanillic acid HMDB00484 0.93 32.22 

15.96 327.1146 93.0563 Aniline HMDB03012 0.40 22.47 

16.13 307.1114 146.1061 L-Lysine HMDB00182 0.66 19.44 

16.15 372.0895 138.0312 4-Hydroxybenzoic acid HMDB00500 1.02 14.59 

16.47 400.1205 166.0622 Desaminotyrosine HMDB02199 0.56 77.54 

16.83 398.1044 164.0461 m-Coumaric acid HMDB01713 1.09 23.84 

16.88 389.1276 155.0693 L-Histidine HMDB00177 2.97 78.04 

17.58 393.1848 159.1264 2-aminooctanoic acid HMDB00991 0.82 31.94 

17.70 395.1068 161.0485 Indole-3-carboxylic acid HMDB03320 1.13 18.59 

19.61 278.1078 88.0989 1,4-diaminobutane HMDB01414 0.77 53.06 

20.88 358.1108 124.0525 Guaiacol HMDB01398 0.61 20.04 

21.25 324.5960 181.0753 L-Tyrosine HMDB00158 0.85 23.39 

21.79 328.1004 94.0420 Phenol HMDB00228 0.18 13.48 



164 
 

22.05 373.0839 139.0256 4-Nitrophenol HMDB01232 0.17 37.00 

23.21 342.1154 108.0570 o-Cresol HMDB02055 0.06 40.80 

25.10 289.0818 110.0470 pyrocatechol HMDB00957 2.44 67.53 

7.57 266.1386 104.0467 3-Hydroxybutyric acid HMDB00357 0.42 35.40 

7.98 266.1383 104.0464 Hydroxyisobutyric acid HMDB00729 0.72 32.73 

8.61 266.1380 104.0461 2-Hydroxybutyric acid HMDB00008 1.19 20.39 

11.65 300.1215 138.0296 3-Hydroxybenzoic acid HMDB02466 0.83 18.65 

15.24 298.1411 136.0492 Phenylacetic acid HMDB00209 0.44 17.74 

15.58 264.1586 102.0667 Isovaleric acid HMDB00718 0.64 22.00 

16.00 264.1591 102.0672 Valeric acid HMDB00892 1.73 22.69 

18.21 278.1732 116.0813 Isocaproic acid HMDB00689 0.79 26.16 

18.35 392.2407 230.1488 Dodecanedioic acid HMDB00623 0.52 34.98 

22.07 554.3847 392.2928 Ursodeoxycholic acid HMDB00946 0.35 30.24 

22.13 292.1893 130.0974 Heptanoic acid HMDB00666 0.91 14.71 

23.81 306.2039 144.1120 Valproic acid HMDB01877 0.47 24.59 

23.87 328.1894 166.0975 Perillic acid HMDB04586 2.33 23.41 

27.19 368.2192 206.1273 Ibuprofen HMDB01925 0.19 56.10 

28.96 554.3868 392.2949 Chenodeoxycholic acid HMDB00518 0.43 29.83 

29.19 553.3246 234.1625 Dodecanedioic acid HMDB00623 0.87 28.91 

31.03 476.3336 314.2417 Octadecanedioic acid HMDB00782 0.47 50.94 

31.18 360.2508 198.1589 5-Dodecenoic acid HMDB00529 0.37 30.17 

31.92 362.2673 200.1754 Dodecanoic acid HMDB00638 0.37 30.77 

32.33 444.3450 282.2531 Oleic acid HMDB00207 1.46 19.82 

32.43 305.1961 286.2084 Hexadecanedioic acid HMDB00672 0.97 69.36 

34.42 390.3002 228.2083 Myristic acid HMDB00806 8.58 22.39 

34.47 442.3334 280.2415 Linoleic acid HMDB00673 0.26 54.57 

34.86 404.3152 242.2233 Pentadecanoic acid HMDB00826 0.10 33.50 

34.91 468.3476 306.2557 Eicosatrienoic acid HMDB02925 0.24 25.18 

36.23 444.3481 282.2562 Vaccenic acid HMDB03231 0.15 51.30 
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Chapter 6 

Profiling Novel Metabolic Biomarkers for Parkinson’s Disease Using In-

depth Metabolomic Analysis 

 

6.1 Introduction 

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder associated 

with the loss of dopaminergic neurons in the substantia nigra and production of Lewy 

bodies composed of α-synuclein proteins.232 Clinical PD diagnosis is based, in part, on 

impaired motor abilities such as bradykinesia, rigidity, tremor and postural instability. To 

date, no definitive single or set of biomarkers for PD have been discovered.233 PD 

misdiagnosis rates were about 10% in 2001234 and 6% in 2009235, rates which may depend 

on duration and stage of disease.236 Therefore, the first goal of this research was to use 

systematic and unbiased metabolomics technology to detect a set of biomarkers that reflect 

disease pathways and might contribute to accurate discrimination. In addition to motoric 

impairment, up to 80% of PD patients eventually show cognitive impairment, including 

dementia, over the course of the disease, compromising quality of life and raising economic 

costs.237 Therefore, the second goal of this research was to discover biomarkers that can be 

useful in discriminating PD patients who may remain dementia free (PDND) from those at 

risk for developing dementia. A better understanding of the metabolic pathways of PD 

patients with incipient dementia (PDID) can lead to improved disease monitoring and 

interventions targeted to patients according to dementia risk. 
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Metabolomics is an emerging field for biomarker discovery in human aging and 

neurodegenerative diseases.238 A previous metabolomics study on cerebrospinal fluid (CSF) 

detected an increase in concentration of 3-hydroxykynurenine and decrease in 

concentration of glutathione in PD patients, suggesting the involvement of neurotoxicity 

and oxidative stress in PD pathogenesis.239 Several potential biomarkers have also been 

identified in serum samples, which is less invasive to collect, including those involved in 

oxidative stress,240 purine metabolism,241 caffeine and xanthine metabolism.242 However, 

because of the complexity of the metabolome, new technologies providing larger coverage 

and better quantitative capability will enable the discovery of more specific metabolic 

biomarkers, for both PD discrimination and early PDID sub-classification. Chemical 

isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) that uses 

different labeling reagents to target chemical-group-based submetabolomes is a relatively 

new analytical platform for generating comprehensive and quantitative metabolomic 

profiles for biomarker research.70 In the present study, we applied dansylation CIL LC-MS 

targeting the amine/phenol submetabolome to find the key metabolic differences in serum 

between two sets of groups. The overall study used a longitudinal design with baseline 

serum collection and two 18-month follow-ups. Using the baseline serum we performed 

two comparisons of metabolomics profiles: (1) PD patients and healthy controls and (2) 

PD patients who remained dementia-free for three years and PDID patients who developed 

dementia within this interval. 
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6.2 Methods 

6.2.1 Participants 

Clinically established PD patients (n = 52) and age-and-sex matched healthy controls (n = 

50) between 64-84 years old volunteered for a 3-wave (18-month intervals) longitudinal 

study in Edmonton, Canada as previously detailed.243-244 At baseline PD patients (1) met 

standard criteria for PD, (2) did not meet criteria for atypical parkinsonism, and (3) did not 

have unstable health conditions compromising survival. Patients who developed abnormal 

imaging such as a stroke or atypical features with follow up were also excluded. They were 

recruited from movement disorder clinics, the Parkinson’s Society of Alberta, and from 

community neurologists. The control group was recruited by advertisement in seniors’ 

centers and magazines, control and patient contacts, and general medicine clinics. The 

University of Alberta health ethics review board approved this study and all participants 

provided informed consent. For both groups, we excluded participants with baseline 

dementia, stroke, atypical parkinsonism, or attrition. In addition, one control participant 

was excluded as an outlier in the metabolomics analysis. Thus, there were 43 patients and 

42 controls in the final groups. 

 

We identified significant cognitive decline/dementia by caregiver and patient report of 

cognitive impairment in more than one cognitive domain that interfered with function. This 

was rated using the Clinical Dementia Rating (CDR), which was administered as a semi-

structured interview. The investigators also used the Mini-Mental State Examination 

(MMSE), the Dementia Rating Scale (DRS), the Frontal Assessment Battery and the Short 

Orientation, Memory Concentration Test, which allowed assessment of a broad range of 
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cognitive function. This classification was highly correlated with cortical atrophy, 

suggesting validity. We did not use the Movement Disorder Society (MDS)-criteria, which 

were not available at the time of classification of subjects; however, we recently 

retrospectively examined all subjects using our CDR-based or DRS based classification 

and showed considerable overlap (57-78%) with classification using an independent 

neuropsychological battery (using cutoffs 1.5-2 SD suggested by MDS) (McDermott K, 

unpublished data, presented at the International Conference on Dementia, Banff, AB, May 

2016). Our classification was more comprehensive taking into account all clinically 

available information. 

 

Participants performed three waves of standardized assessments, including assessment for 

cognitive function and dementia. Of the 43 baseline PD patients 16 were diagnosed with 

dementia at wave 3. No further blood was taken and therefore the analyses (group 

comparison and prediction of dementia group at waver 3) were based on baseline blood 

work. Note that the exclusion described above was done before the metabolomic analysis. 

One outlier in the control group was excluded after the analysis, as its metabolomic data 

were too different from those of other participants. A possible reason of having this outlier 

could be contamination during sample collection. 

 

We performed two pairwise metabolomics analyses. The first comparison evaluated the 

metabolomic profiles of the full available baseline groups, including 43 PD (no dementia 

at baseline) patients (M age = 70.71 years; sex = 44% female) and 42 controls (M age = 

71.49 years; sex = 45% female) (see Table 6.1). The second comparison evaluated the 
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profiles for two PD subgroups, those who remained dementia-free at wave 3 (n = 27; M 

age = 69.58 years) and those who were diagnosed with dementia at wave 3. The latter were 

classified post hoc as PDID at baseline (n = 16; M age = 72.62 years). Duration of disease 

did not differ significantly between PDID (9.59±5.1 years) and those remaining cognitively 

intact (7.75±4.1, p=0.19). 

 

Baseline comparisons are shown in Table 6.1. PD patients did not differ from controls in 

age, education, sex distribution or cognitive status. The PDND and PDID subgroups were 

similar, differing slightly only on age and initial cognitive status. It is important to note 

that although there was minor statistical difference in the MMSE score, both means were 

above the impairment cut-off, which means there was no cognitive impairment in any of 

the patients at baseline. While they did not differ statistically on the key comparisons of 

levodopa equivalents and the Unified Parkinson’s Disease Rating Scale (UPDRS), the 

average levodopa equivalent dose was higher in the PDID, despite slightly lower UPDRS 

part 3. 
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Table 6.1 Baseline demographic and clinical characteristics.  

 Control  PD p-value PDND PDID p-value 

N 42 43 -- 27 16 -- 

Age (years) 71.49 
(5.01) 

70.71 
(4.14) 

.434 69.58 (3.55) 72.62 (4.46) .018 

Education (years) 15.00 
(3.42) 

14.28 
(2.98) 

.303 14.74 (3.36) 13.50 (2.07) .190 

Sex (F/M) 19/23 19/24 .923 12/15 7/9 .966 

MMSE 28.56 
(1.48) 

28.33 
(1.67) 

.503 28.85 (1.29) 27.36 (1.91) .006 

Folate (nmol/L) 879.81 
(236.25) 

842.56 
(207.45) 

.442 799.00 
(185.45) 

916.06 
(227.41) 

.073 

Vitamin B12 
(pmol/L) 

393.79 
(198.05) 

293.26 
(112.82) 

.005 295.70 (92.16) 289.13 
(144.52) 

.856 

Levodopa 
equivalents (mg) 

N/A 644.00 
(360.06) 

-- 611.83 
(392.94) 

703.76 
(293.41) 

.448 

UPDRS part 3 N/A 16.12 
(7.90) 

-- 16.67 (8.08) 15.19 (7.77) .559 

Note. PD, Parkinson’s disease; PDND, Parkinson’s disease no dementia; PDID, Parkinson’s disease incipient dementia; 
MMSE, Mini Mental State Exam; UPDRS, Unified Parkinson’s Disease Rating Scale. Standard deviations are in 
parentheses. 

 

6.2.2 Serum samples and dansylation LC-MS metabolomic profiling 

Serum was collected at baseline only from all participants and stored at -80 °C. To reveal 

small concentration variations of metabolites in comparative samples, we applied the CIL 

LC-MS technique to overcome potential inaccuracy due to matrix effects, ion suppression, 

or instrumental drift in MS detection. In our workflow, individual samples were labeled 

using 12C-dansyl chloride and a pooled sample generated by mixing small aliquots of 

samples was labeled by 13C-dansyl chloride. Each 12C-labeled sample was mixed with an 

aliquot of 13C-pooled sample, followed by LC-MS analysis of the mixture. All the labeled 

metabolites were detected as 13C- and 12C-peak pairs and the peak ratios were determined 

and used for quantitative metabolomic analysis of the individual samples. 
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We minimized variations in total sample amount in different samples in order to detect the 

individual metabolite concentration differences in comparative samples more accurately 

by performing sample normalization. Specifically, we applied an LC-UV method to 

determine the total concentration of dansyl-labeled metabolites based on the UV absorption 

of the dansyl group.115 Before the LC-MS analysis, we mixed the 12C-labeled individual 

sample with the same total amount of 13C-labeled pool, according to the total 

concentrations of labeled metabolites, for sample amount normalization.  

 

For LC-MS, an Agilent 1100 series binary system (Agilent, Palo Alto, CA) and an Agilent 

reversed-phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 µm particle size, 95 A pore 

size) were used. LC solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN/H2O, and 

solvent B was 0.1% (v/v) formic acid in ACN. The gradient elution profile was as follows: 

t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18.0 min, 65% B; t = 24.0 min, 99% B; t = 28.0 

min, 99% B. The flow rate was 180 µL/min. After one injection, the column was re-

equilibrated with the initial mobile phase conditions for 15 min before injecting the next 

sample. The flow was loaded to the electrospray ionization (ESI) source of a Bruker maXis 

impact high-resolution quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, 

Billerica, MA). All MS spectra were obtained in the positive ion mode. According to the 

UV-quantification result, 1.5 nmol of each labeled and mixed samples were injected into 

the LC-MS system. 

 



172 
 

6.2.3 Data processing and statistical analysis 

The 12C-/13C-peak pairs from each LC-MS run were extracted by the IsoMS software.72 

IsoMS-Align was used to align the peak pair data from different samples by retention time 

and accurate mass. The missing ratio values were filled back by using the Zero-fill 

program.137 IsoMS-Quant157 was used to generate the final metabolite-intensity table, 

which was exported to SIMCA-P+ 12 (Umetrics AB, Umeå, Sweden) for analysis. We 

followed the method described in the work of LeWitt et al.239 for statistical analysis. To 

avoid over-fitting, we calculated the q-value for each p-value using QVALUE.110 

Metabolite identification was done using a DnsID standards library159 for positive 

identification as well as the HMDB library and EML database for putative identification.41 

 

6.3 Results 

6.3.1 Submetabolome and metabolite identification 

Dansylation labeling LC-MS targets the analysis of the amine/phenol submetabolome; 

many metabolomic pathways contain the amine- and phenol-containing metabolites. A 

total of 719 metabolites were commonly detected in 80% of the 85 samples. Among them, 

66 metabolites were positively identified using an in-house developed dansyl standards 

library consisting of 273 compounds. For the remaining peak pairs, accurate mass search 

with a mass accuracy tolerance of 0.005 Da putatively identified 333 metabolites using the 

HMDB database and 282 metabolites in the EML database using MyCompoundID.41 In 

total, 681 of the 719 metabolites (95%) were either definitely or putatively identified. 
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6.3.2 Comparative metabolome analysis for PD biomarker discovery 

The Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Partial Least 

Squares-Discriminant Analysis (OPLS-DA) score plots are shown in Figure 6.1. Figure 

6.1A and Figure 6.1B show that there was a significant difference between the healthy 

controls (in green) and the PD patients (in red). This group separation was validated in a 

permutation test (Figure 6.1C). Note that in our data analysis the PLS and OPLS methods 

were used as multivariate calibration processes, and the resulting score plots helped with 

visualizing the inter-sample and inter-group variances. For the multivariate classifications 

(Control vs. PD, or PDND vs. PDID), we used random forest analyses. The model 

performance indicators (the R2 and Q2 values) are provided in the corresponding score plots. 

 

The volcano plot shown in Figure 6.1D displays 28 metabolites with Fold Change (FC) > 

1.2, q < 0.1 (in red) and 48 metabolites with FC < 0.83, q < 0.1 (in blue). Table 6.2 lists the 

significant metabolites identified. Four significant metabolites, identified as 4-hydroxy-

benzenepropanedioate, vanillylmandelic acid-isomer, alpha-methyldopa, and 

methylguanine, were observed only in the PD group. The dansyl library identified citrulline, 

methionine sulfoxide, pantothenic acid, glycyl-valine, pipecolic acid, serotonin, vanillic 

acid, vanillylmandelic acid, theophylline, and hydroxykynurenine. 

 

Among significant metabolites, there were several catecholamine metabolites. Some 

metabolites from the tryptophan pathway were also detected and quantified. Biopterin had 

an increased concentration in the PD group. Some significant metabolites in Table 6.2 were 
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related to oxidative stress, such as citrulline and methionine sulfoxide. Finally, caffeine 

metabolites were detected as altered in PD. 

 

Figure 6.1 (A) PLS-DA and (B) OPLS-DA score plots of dansylation LC-MS data obtained from 

42 healthy controls (in green) and 43 PD patients (in red). (“PC” represents for “principal 

component” and the corresponding percentage is the percentage of the variance among all the data 

points that this principal component covers.) R2 and Q2 values given by cross-validation are: 0.977 

and 0.791 for PLS-DA; 0.974 and 0.866 for OPLS-DA. (C) Response permutation test result of the 

PLS-DA model in Figure 6.1A. (D) Volcano plot of the comparison between healthy control and 

PD showing 28 variables with FC > 1.2, q < 0.1 (in red) and 48 variables with FC < 0.83, q < 0.1 

(in blue). 

 

6.3.3 Comparative metabolome analysis of PD with and without incipient dementia 

Figure 6.2A and 6.2B show the PLS-DA and OPLS-DA score plots, respectively, for the 

comparison between PDND and PDID. The permutation test result is shown in Figure 6.2C. 
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These analyses indicate that the two groups were separated based on the metabolomic data 

set. Post-hoc comparisons showed the metabolic data discriminated subgroups of dementia 

severity but not age.  

 

The volcano plot (Figure 6.2D) shows 21 metabolites with FC > 1.2, q < 0.1 (in red) and 

15 metabolites with FC < 0.83, q < 0.1 (in blue). Among the 36 significant metabolites, 16 

were identified (see Table 6.3 for the list). Among these 16 metabolites, two metabolites 

were definitely identified by the library and the others were putatively identified based on 

a database search. The two definitely identified metabolites are desaminotyrosine and 5-

hydroxylysine. 

 

Figure 6.2 (A) PLS-DA and (B) OPLS-DA score plots of dansylation LC-MS data obtained from 

27 PD patients without dementia (PDND in red) and 16 PD patients with incipient dementia (PDID 
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in blue). R2 and Q2 values given by cross-validation are: 0.974 and 0.866 for PLS-DA; 0.982 and 

0.813 for OPLS-DA. (C) Response permutation test result of the PLS-DA model in Figure 6.2A. 

(D) Volcano plot of the comparison between the PDND subgroup and the PDID subgroup showing 

21 variables with FC > 1.2, q < 0.1 (in red) and 15 variables with FC < 0.83, q < 0.1 (in blue). 

 

6.3.4 Common discriminating metabolites 

Comparison of the metabolites listed in Table 6.2 and Table 6.3 indicate that there are five 

common significant metabolites. For example, 3, 4-dihydroxyphenylacetone, a significant 

metabolite in the PDND-PDID comparison (Table 6.3), also significantly differentiated PD 

patients from the healthy controls (Table 6.2). For this metabolite, the averaged peak pair 

ratio in the control group was 0.006 ± 0.012. In the PDND subgroup and the PDID 

subgroup, the averages were 2.16 ± 1.63 and 3.34 ± 1.95, respectively. 

 

6.3.5 ROC curves 

Receiver operating characteristic (ROC) curves are graphical plots that illustrate the 

performance of a binary classifier system as its discrimination threshold is varied. In our 

work, ROC analysis was used to show to diagnosis power of one or a group of metabolite 

candidates. There are several classification models available for building an ROC curve, 

such as the PLS, random forest, support vector machines, etc. Among them, we have 

chosen the random forest method for our analysis. Metaboanalyst 3.0 was used to generate 

the ROC curves for differentiating PD (baseline) from healthy controls and differentiating 

between PDND and PDID. 
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For building the ROC curves, we did not simply input all 709 variables into the model and 

then let it find the best five biomarker candidates to use in building the ROC curve. Instead, 

we manually selected the candidates based on standard procedures. To select the potential 

biomarkers for differentiating PD vs. control, 5 metabolites were selected according to the 

following criteria: (1) a large fold change, (2) a p-value of smaller than 0.05 and (3) 

metabolite identification with high confidence (positive IDs were preferred as they could 

be immediately used as biomarkers if they could be validated in future studies using large 

cohorts of samples). 

 

The metabolites were first ranked according to their fold change. There were seven 

putatively identified significant metabolites with fold changes of larger than 10, and each 

of these generated an ROC curve with very high AUC (the lowest one was 0.914). If these 

metabolites could be positively identified, they would work as very strong biomarkers for 

the diagnosis of PD. In order to use more positively identified metabolites to build the 

classification model, the positively identified metabolites were selected from the top 20 

ranked metabolites (according to fold change). We excluded vanillylmandelic acid as it is 

potentially related to catecholamine metabolism, which can be affected by the DOPA 

medication. The three selected metabolites were vanillic acid, hydroxykynurenine and 

theophylline. Since the discrimination power of these three positively identified 

metabolites were not strong enough (AUC=0.944, but we wanted to go higher than 0.95), 

two putatively identified metabolites with large fold changes and high-confidence putative 

identifications, isoleucyl-alanine and 5-acetylamino-6-amino-3-methyluracil, were added 

to make a 5-metabolites biomarker panel. The ROC curve of this panel of 5 metabolites 
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produced an AUC value of 0.955. Adding more metabolites to this panel resulted in only 

minor increase in sensitivity and specificity. Considering that in real world clinical 

applications a panel of a few metabolites is preferred over a panel of many metabolites, we 

concluded that this panel of 5 metabolites was sufficient to illustrate the overall 

performance of the metabolic profiles for differentiating PD vs. Control.  

 

We note that using CIL LC-MS there is no need to select the panel for targeted analysis in 

a validation study. CIL LC-MS is a quantitative method where thousands of metabolites 

can be analyzed in one LC-MS run. Thus, the selected biomarkers discussed in our work 

are only used to illustrate the separation performance. These biomarkers, along with all 

other labeled metabolites, will be monitored in our future validation studies. This approach 

will increase the likelihood of finding the high performance biomarkers which may be 

different from the initial biomarkers determined using a small cohort of discovery samples. 

 

In summary, the classification model was built by the random forest method based on five 

metabolites: vanillic acid, 3-hydroxykynurenine, isoleucyl-alanine, 5-acetylamino-6-

amino-3-methyluracil and theophylline. The AUC value for each of the metabolites 

separately was found to be 0.939, 0.781, 0.794, 0.730 and 0.714, respectively. Of interest, 

using vanillic acid alone we could achieve both sensitivity and specificity at 90.0%. The 

discriminating power was improved by combining these five metabolites into a biomarker 

panel. The corresponding ROC curve shown in Figure 6.3A produced an AUC value of 

0.955, which is within the range of 0.896−0.990 at the 95% confidence interval. 
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Discrimination of PD from controls can be achieved at 87.5% sensitivity and 92.0% 

specificity. Using a permutation test, we did not find any over-fitting of the ROC results.  

 

Figure 6.3 (A) The receiver operating characteristic curve generated by the random forest model 

using the following 5 metabolite biomarker candidates: vanillic acid, 3-hydroxykynurenine, 

isoleucyl-alanine, 5-acetylamino-6-amino-3-methyluracil, and theophylline. (B) The receiver 

operating characteristic curve generated by the random forest model using the following 8 

metabolite biomarker candidates: His-Asn-Asp-Ser, 3, 4-dihydroxy-pheny-lacetone, desamino-

tyrosine, hydroxy-isoleucine, alanylalanine, putrescine [-2H], purine [+O], and its riboside. 

 

For differentiating the PDND and PDID subgroups at baseline, we found that the 

discrimination power of a panel based on the two definitely identified metabolites was not 

strong (AUC=0.673). The univariate AUC of 5-hydroxylysine is 0.659 and that of 

desaminotyrosine is 0.674. Thus, we selected the following eight putatively identified 

biomarker candidates with highly ranked independent AUCs to form a panel: His-Asn-

Asp-Ser (AUC=0.597), 3, 4-dihydroxyphenylacetone (0.677), desaminotyrosine (0.640), 

hydroxy-isoleucine (0.610), alanyl-alanine (0.737), putrescine [-2H] (0.736), purine [+O] 

(0.627) and its riboside (0.597). As can be seen in Figure 6.3B, the ROC curve for this 
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biomarker panel produced an AUC value of 0.862, which is within the range of 

0.757−0.955 at the 95% confidence interval. This panel can provide discrimination with 

sensitivity of 80.0% and specificity of 77.0%. 

 

We have examined whether the use of any unidentified significant metabolites (there were 

38 in total) could increase the differentiation power. We found that there was no significant 

increase in performance when one or more of these were used to replace the panels 

described above.  

 

Table 6.2 List of 46 identified significant metabolites found in human serum samples that 

differentiate the PD group and the healthy control group. 

Retenti
on time 
(min) 

Mass of 
dansylated 
metabolite 
(Da) 

Mass of 
metabolite 
(Da) 

Metabolite HMDB ID ID Fold 
change 

q-value 

2.65 432.1329 198.0746 5-Acetylamino-6-amino-3-
methyluracil 

HMDB04400 Putative 0.61 2.47E-
03 

3.20 502.1385 268.0802 Inosine HMDB00195 Putative 0.74 6.86E-
02 

3.58 471.1422 237.0839 Biopterin HMDB00468 Putative 1.36 1.74E-
04 

3.90 409.1534 175.0951 Citrulline HMDB00904 Library 0.83 2.23E-
05 

4.08 399.1035 165.0452 Methionine Sulfoxide HMDB02005 Library 1.21 2.55E-
02 

4.60 399.1037 165.0454 Methionine Sulfoxide - 
Isomer 

HMDB02005 Library 1.24 2.68E-
02 

4.90 410.1372 176.0789 Ornithine [+CO2] HMDB00214 Putative 0.78 7.71E-
06 

6.81 415.1316 181.0733 L-Threo-3-Phenylserine HMDB02184 Putative 0.76 9.15E-
05 

7.40 436.1894 202.1311 Isoleucyl-Alanine HMDB28900 Putative 0.66 1.92E-
08 

7.63 309.1269 75.0685 1-Amino-propan-2-ol HMDB12136 Putative 1.90 5.32E-
06 

7.75 465.1792 231.1209 Norophthalmic acid [-
CO2] 

HMDB05766 Putative 1.34 1.51E-
02 

        

8.21 415.1314 181.0731 L-Threo-3-Phenylserine HMDB02184 Putative 0.82 2.04E-
02 

8.56 453.1683 219.1100 Pantothenic acid HMDB00210 Library 0.76 1.95E-
02 

9.34 408.1574 174.0991 Glycyl-Valine HMDB28854 Library 1.45 1.91E-
02 
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9.52 307.1116 73.0533 Aminoacetone HMDB02134 Putative 1.48 1.02E-
07 

11.58 430.0946 196.0363 4-Hydroxy-
benzenepropanedioate 

HMDB59809 Putative 179.70 6.28E-
08 

11.77 400.1053 166.0470 Methylxanthine HMDB10738 Putative 0.62 2.46E-
03 

12.02 400.1066 166.0483 3-Methylxanthine HMDB01866 Putative 0.65 4.44E-
03 

12.90 382.5800 297.0434 L-Cysteinylglycine 
disulfide 

HMDB00709 Putative 0.83 9.87E-
08 

13.27 432.1101 198.0518 Vanillylmandelic acid HMDB00291 Library 3.80 2.07E-
19 

13.66 363.1361 129.0778 L-Pipecolic acid HMDB00716 Library 0.80 1.93E-
02 

14.61 434.1739 200.1156 Glycylproline [+C2H4] HMDB00721 Putative 0.82 1.18E-
02 

15.05 432.1101 198.0518 Isovanillymandelic acid NA Putative 164.05 3.25E-
07 

15.87 414.1232 180.0649 Theophylline HMDB01889 Library 0.48 4.42E-
07 

17.58 355.6188 243.1210 Aspartylysine [-H2O] HMDB04985 Putative 1.24 2.07E-
04 

17.77 372.0888 138.0305 4-Hydroxybenzoic acid HMDB00500 Putative 0.80 7.15E-
03 

17.88 402.1001 168.0418 Vanillic acid HMDB00484 Library 3.48 3.96E-
20 

20.43 414.1364 180.0781 p-Hydroxyphenylacetic 
acid [+C2H4] 

HMDB00020 Putative 3.75 5.91E-
02 

20.81 333.1627 99.1044 Cyclohexylamine HMDB31404 Putative 0.60 1.71E-
02 

20.82 539.3191 305.2608 Capsaicin HMDB02227 Putative 1.65 7.89E-
06 

21.00 314.1180 160.1193 N(6)-Methyllysine HMDB02038 Putative 0.65 2.91E-
03 

21.01 315.1180 162.1193 Tryptamine [+2H] HMDB00303 Putative 0.68 6.05E-
03 

21.75 386.1039 152.0456 Vanillin HMDB12308 Putative 1.27 1.01E-
02 

22.21 338.1026 208.0885 5-Hydroxyindoleacetic 
acid [+NH3] 

HMDB00763 Putative 0.61 2.55E-
19 

22.28 679.1967 212.0873 Histidinyl-Glycine HMDB28885 Putative 29.32 4.66E-
06 

23.42 346.0986 224.0805 Hydroxykynurenine HMDB00732 Library 2.73 1.30E-
08 

23.75 328.0712 188.0259 L-Homocysteine sulfonic 
acid [+NH3] 

HMDB02238 Putative 0.82 1.23E-
02 

24.23 310.0751 152.0336 6,8-Dihydroxypurine HMDB01182 Putative 0.59 6.15E-
02 

24.38 302.0852 136.0538 Dopamine [-NH3] HMDB00073 Putative 0.75 1.76E-
03 

24.38 342.1314 216.1461 Valyl-Valine NA Putative 0.82 9.95E-
02 

24.69 302.0841 136.0515 Dopamine [-NH3] HMDB00074 Putative 0.83 1.70E-
02 

25.06 322.1050 176.0933 Serotonin HMDB00259 Library 0.79 1.07E-
02 

27.48 304.4142 211.0677 a-Methyldopa HMDB11754 Putative 231.42 3.64E-
02 

27.54 304.0826 140.0485 Vanillic acid [-CO] HMDB00484 Putative 11.77 3.81E-
03 

27.74 399.1134 165.0551 Methylguanine HMDB03282 Putative 240.60 6.28E-
08 

27.76 317.0911 166.0655 3,4-Dihydroxy-
phenylacetone 

HMDB31132 Putative 208.33 1.38E-
22 
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Table 6.3 List of 18 identified significant metabolites found in human serum samples that 

differentiate the PDND subgroup and the PDID subgroup. 

Retention 
time 
(min) 

Mass of 
dansylated 
metabolite 
(Da) 

Mass of 
metabolite 
(Da) 

Metabolite HMDB ID ID Fold 
change 

q 
value 

3.20 502.1385 268.0802 Riboside of Purine [+O] NA Putative 0.51 8.63E-
02 

10.38 381.1466 147.0883 Hydroxyisoleucine NA Putative 1.47 8.20E-
02 

        

11.58 430.0946 196.0363 4-Hydroxy-
benzenepropanedioate 

HMDB59809 Putative 1.33 9.22E-
02 

12.87 363.1360 129.0777 L-Proline [+CH2] HMDB00612 Putative 0.81 8.17E-
02 

13.74 351.1000 117.0417 L-2-Amino-3-oxobutanoic 
acid 

HMDB06454 Putative 1.35 3.32E-
02 

14.18 315.1080 162.0995 5-Hydroxylysine HMDB00450 Library 1.23 7.94E-
02 

16.71 727.2133 493.1550 His-Asn-Asp-Ser NA Putative 1.72 1.64E-
02 

18.39 427.1304 193.0721 Phenylacetylglycine HMDB00821 Putative 1.27 4.33E-
02 

18.41 400.1196 166.0612 Desaminotyrosine HMDB02199 Library 0.64 8.91E-
02 

19.09 370.0962 136.0379 Purine [+O] HMDB01366 Putative 0.44 8.17E-
02 

20.83 314.1014 160.0862 Alanyl-alanine NA Putative 1.44 3.28E-
02 

        

21.43 321.1081 174.0995 Ornithine [+C2H2O] HMDB00214 Putative 1.37 7.55E-
02 

21.43 322.1082 176.0997 Tryptamine [+O] HMDB00303 Putative 1.33 8.20E-
02 

22.42 303.1154 69.0571 1-Pyrroline-2-carboxylic 
acid [-CO2] 

HMDB06875 Putative 1.32 2.38E-
02 

22.43 277.1000 86.0834 Putrescine [-2H] HMDB01414 Putative 1.41 1.64E-
02 

24.03 284.1077 100.0988 Cadaverine [-2H] HMDB02322 Putative 1.20 8.17E-
02 

24.92 338.5921 209.0675 Hydroxyphenylacetylglycine HMDB00735 Putative 1.23 8.17E-
02 

27.76 317.0911 166.0655 3,4-
Dihydroxyphenylacetone 

HMDB31132 Putative 1.54 6.65E-
02 
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6.4 Discussion  

We performed two two-group metabolomic comparisons for identifying novel biomarkers 

of PD. First, using baseline serum samples and clinical characterizations and diagnoses, 

we compared a PD group with a comparable older adult control group (no PD, dementia, 

or impairment). Our results showed clear differentiation between groups. A panel of 5 

metabolites in the ROC analysis gave an AUC of 0.955 with sensitivity of 87.5% and 

specificity of 93.0%. Second, we compared two subgroups of the initial PD group, again 

using baseline serum samples. PD patients who have yet to meet the criteria for a dementia 

diagnosis represent a detectably early and more advanced transitional phase of PD. Chia 

and colleagues observed metabolomic changes in the cerebrospinal fluid of PD patients 

already diagnosed with dementia and depression.245 Notably, these subgroups were 

determined three years after the baseline clinical evaluation did not detect incipient 

dementia. The present task met the challenge of detecting biomarkers of PD dementia prior 

to clinical diagnosis.  Specifically, using a panel of 8 metabolites in ROC analysis, we 

obtained an AUC of 0.862 with sensitivity of 80.0% and specificity of 77.0%. These results 

hold promise for PD discrimination and prognosis, as well as identification of pathways 

leading to dementia within PD patient groups that may assist in identifying targets for 

intervention. While the markers we have identified are not in presymptomatic or early 

patients, patients with established disease are at risk for cognitive decline and dementia, 

features which are critically relevant to clinical decisions regarding future planning and 

treatment options (such as having deep brain stimulation).  
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Although currently there is no metabolite biomarker has moved to the stage of clinical 

practice, many studies have reported promising biomarker candidates for the diagnosis of 

PD. For example, LeWitt et al. developed a 19-metabolite panel providing sensitivity of 

83% and specificity of 91%.23 Among these reports, our work also differentiated PD with 

very good diagnostic power. Considering the outstanding performance of these biomarker 

panels, in the future, we may combine the most significant and commonly existing 

metabolites from them to establish a more powerful biomarker panel with well-understood 

biological meanings. Importantly, our work contributes to the prediction of dementia 

during the progress of PD. According to our knowledge, there is no other cohort study that 

has achieved this goal. In clinical testing, screening examinations mentioned above are 

currently being used for the diagnosis of dementia. The AUC of the MMSE test remains 

low at 0.76, with sensitivity of 67% and specificity of 85%.246 In the future, the application 

of biomarkers will definitely boost the diagnosis or prediction of dementia. 

 

As Gerlach and colleagues suggested, biomarkers for PD should not only be linked to 

fundamental features of PD neuropathology, but also be correlated to the disease 

progression assessed by clinical rating scales.247 Our approach targeted the amine/phenol-

containing metabolites; other metabolites would require other labeling approaches. For the 

first set of results, the pathway analysis showed that catecholamine metabolism, tryptophan 

metabolism and caffeine metabolism were the most relevant metabolomics pathways found 

to be affected by PD. In addition, metabolites related to oxidative stress were also identified. 
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6.4.1 Catecholamine metabolism 

The metabolites in the catecholamine pathway were excluded in order to avoid the 

interference of levodopa medication. However, vanillylmandelic acid (VMA), which is the 

end product of the catecholamine pathway, was retained as a significantly changed 

metabolite, because some studies showed that urinary excretions of VMA and its up-stream 

metabolites (epinephrine and normetanehrine) were not greatly affected by levodopa.248-249 

The fold change of VMA between the PD group and the control group was as large as 3.80, 

suggesting a significant metabolic change caused by PD rather than medication. In addition, 

the isomer of VMA was detected only in the PD group. Moreover, the vanillylmandelic 

acid-isomer showed very similar fold changes, although its origin and biological function 

is unclear. 

 

This relationship between VMA and PD has not been previously reported; this change is 

likely related to a disorder of the catecholamine pathway, in which dopamine is produced. 

Vanillic acid is a food metabolite, which is often found in the urine of humans who have 

consumed coffee, tea and vanilla-flavored food.250 It may have an increased concentration 

in PD via conversion from VMA or homovanillic acid. The derivative of vanillic acid, 

vanillic acid [-CO], was also a unique metabolite in the PD group. The relative 

concentrations of these metabolites in the control group, the PDND subgroup and the PDID 

subgroup are shown as box plots in Figure 6.4. Despite the fact that all four have an 

increased concentration in the serum of PD patients, the relative concentrations in the PDID 

subgroup were higher than those in the PDND subgroup. These results support our previous 
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discussion that a more advanced transitional phase of PD can be detected in PD patients 

biologically, even if not yet clinically. 

 

 

Figure 6.4 Box plots of the relative concentrations of vanillylmandelic acid (A), vanillylmandelic 

acid-isomer (B), vanillic acid (C), and vanillic acid (D) in the control group, the Parkinson’s disease 

with no dementia subgroup, and the PD patients with incipient dementia subgroup. 

 

 

Both methyldopa and 3, 4-dihydroxyphenylacetone were increased in the PD samples. 

Methyldopa is known to be an aromatic-amino-acid decarboxylase (AADC) inhibitor in 

animals and in humans.251 Declining levels of AADC may contribute to decreasing 

effectiveness of L-dopa medication over time.252 A metabolite of methyldopa via AADC, 

253  3, 4-dihydroxyphenylacetone, was greatly increased in concentration in the PD group, 

but its role is unknown.  
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6.4.2 Tryptophan metabolism 

Although the concentrations of tryptophan and kynurenine did not change greatly, 

increased relative concentration of 3-hydroxykynurenine in the PD group was observed. 

Figure 6.5 shows the relative concentrations of tryptophan, kynureinine and 3-

hydroxykynurenine in different groups. Metabolites of the kynurenine pathway are 

believed to play crucial roles in maintaining normal brain function.254 Kynurenine is the 

down-stream metabolite of tryptophan that can be further converted to 3-

hydroxykynurenine or kynurenic acid. 3-hydroxykynurenine is a neurotoxic metabolite 

which causes neuronal death.255 However, kynurenic acid behaves as an endogenous 

neuroprotective agent.256 Consistent with our results, LeWitt and colleagues reported that 

the CSF concentration of 3-hydroxykynurenine was increased in PD patients.239 

 

Figure 6.5 Box plots of the relative concentrations of tryptophan (A), kynurenine (B), and 

3-hydroxykynurenine (C) in the control group, the Parkinson’s disease with no dementia 

subgroup, and the PD patients with incipient dementia subgroup. 
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6.4.3 Caffeine metabolism 

Although caffeine cannot be labeled by the dansylation reagent, some of its metabolites are 

labeled and were detected as significantly changed metabolites (Figure 6.6A). 

Theophylline can be labeled by the dansylation reagent. Paraxanthine cannot be labeled, 

but its down-stream metabolite, 5-acetylamino-6-amino-3-methyluracil, was detected as a 

significant metabolite. Although methylxanthine was detected and was in the VIP list 

(Table 6.2), we could not differentiate its three isomers without standards. Xanthine is the 

end product of caffeine metabolism. It was detected and identified by the dansyl standards 

library. Figures 6.6B-D show the relative concentrations of theophylline, 5-acetylamino-6-

amino-3-methyluracil and xanthine in different groups. The concentrations of caffeine 

metabolites were lower in the PD group. Xanthine can also be converted from 

hypoxanthine and guanine in the purine pathway, and its concentration changed marginally. 
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Figure 6.6 (A) A simplified schematic of the caffeine metabolism pathway. Box plots of the 

relative concentrations of theophylline (B), 5-acetylamino-6-amino-3-methyluracil (C) and 

xanthine (D) in the control group, the PDND subgroup and the PDID subgroup.  

 

It has been widely reported that coffee and tea consumption could protect against the risk 

of PD.257 A possible reason for this phenomenon is that caffeine is an antagonist of the 

adenosine A2A receptor, which has a role in the regulation of glutamate and dopamine 

release.258 Adenosine A2A antagonists can modify motor function and are being tested for 

the treatment of PD.259 Caffeine metabolites, such as theophylline, may act as adenosine 

A2A receptor antagonists.260  We did not determine caffeine intake in our participants; 

however, in recent work by Hatano and colleagues, serum levels of caffeine and caffeine 

metabolites were lower in PD patients than controls, even though there was no difference 

in caffeine consumption.242 

 

6.4.5 Oxidative stress 

Figure 6.7 shows the relative concentrations of methionine, an isomer of methionine and 

citrulline. According to our results, methionine sulfoxide and its isomer had increased 

concentrations in the PD group. Methionine sulfoxide is an oxidation product of 

methionine with reactive oxygen species so it is considered as a biomarker of oxidative 

stress.261  It has also been reported that the oxidation of methionine residues could play an 

important role in the aggregation of normally soluble α-synuclein in PD.262 The average 

concentration of methionine sulfoxide in the two subgroups was similar, implying that the 

extent of peripheral oxidative stress does not increase dementia risk. On the other hand, 
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citrulline, an oxidization product of arginine, had a decreased concentration. It is reported 

to be an efficient hydroxyl radical scavenger.263 Increased oxidative damage occurs in all 

human neurodegenerative diseases, including PD,264 and some studies suggest that 

oxidative stress may be a factor in the loss of dopaminergic neurons.265  

 

Figure 6.7 Box plots of the relative concentrations of methionine sulfoxide (A), methionine 

sulfoxide-isomer (B) and citrulline (C) in the control group, the PDND subgroup and the PDID 

subgroup. 

 

6.5 Limitations 

First, our study examined a single cohort of subjects who were on treatment for PD at one 

center. Future studies should replicate and extend our results. One specific direction would 

be to examine untreated patients in order to estimate the potential confounding of 

medications. In our work, although not statistically significant, the PDID group did differ 

from the cognitively stable PD group in some characteristics, including baseline disease 

duration, UPDRS part 3, and Levodopa equivalents. We note, however, the important point 
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that the groups did slightly differ at baseline on global cognitive performance (MMSE), 

but no subject had functionally significant impairment (dementia). This highlights the 

importance of replicating and extending the present study with careful attention to 

matching on baseline characteristics.  

 

Second, diet may affect the metabolic profiles. On diet effect, in our work, subjects came 

to the study in the morning after taking morning medication but no food or caffeine. They 

were given a breakfast after the samples were obtained. While it would have been ideal to 

take samples before medication this was a symptomatic group of patients and we felt it 

would be challenging (logistically and ethically) to withdraw patients from medication. 

Clearly this is something to consider in follow up validation studies. 

 

Third, we collected blood only at baseline and thus intra-patient comparisons of 

metabolomic changes or correlations of changes with PD progress are not possible. We 

would recommend this follow-up blood collection for future research. We note that, in our 

work, our research goal was to compare PD with PDID, where the PD group was stable for 

the full period (and thus PDND) and the PDID is PDND at baseline but PDID 3 years later. 

This is a very interesting challenge, comparing two groups who, for all clinical purposes, 

were members of the same phenotype at baseline, with one developing dementia during 

the ensuing three years. We asked whether there would be detectable biomarker differences 

between these groups prior to their bifurcation into two subgroups. This attempt to discover 

early biomarkers of incipient dementia in PD patients was successful.  
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Fourth, the dansylation labeling mainly enhances the detection of the amine/phenol-

containing metabolites, but it cannot detect other important metabolites in related pathways. 

Applying other labeling techniques to target different groups of submetabolomes will 

expand the overall metabolome coverage in the future.  

 

Fifth, in our work, there was no external dataset for validation and the sample size was 

relatively small for validation work. In the future, more participants will be enrolled for the 

validation of the novel biomarker candidates comprising the panels observed in this study. 

 

6.6 Conclusions 

Metabolomics analyses of serum are useful tools for identifying novel biomarker panels 

for both PD discrimination and the early detection of established PD patients who are at 

risk for transitioning to dementia. The significantly altered metabolites reported in our 

work can be used to differentiate (1) PD patients from healthy controls with high accuracy 

and (2) the stable PD with no dementia group from those with incipient dementia. 

Following further validation in larger cohorts, these metabolites could be used for both 

discrimination and establishing prognosis in PD. Follow-up studies can provide insights 

into potential pathways of PD neuropathology, including those associated with early 

discrimination and identification of risk for dementia. 
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Chapter 7 

Development of Chemical Isotope Labeling Liquid Chromatography-Mass 

Spectrometry for Silkworm Hemolymph Metabolomics 

 

7.1 Introduction 

Silkworm, Bombyxmori, has been an economically very important insect for over 5000 

years, mainly for silk production. With recent advances in genetic engineering technology, 

silkworm may be potentially used to produce other functional proteins and biomaterials.266 

Because silkworm is very sensitive to pollutants such as pesticides,267 heavy metals268 and 

fluoride269 as well as other chemicals such as pharmaceuticals,270 it has been used as a 

target species in environmental and health safety evaluation. It has also been traditionally 

used as a model system for lepidopteran study.271 Since the completion of silkworm 

genome sequencing,272-273 functional genomic studies of silkworm on diverse areas of 

biological importance including developmental biology, reproduction and physiology have 

been extensively reported.271 Many of these studies were focused on transcriptomic274-276 

or proteomic277-279 investigation of silkworm. Very recently, research on using 

metabolomics to examine the metabolic changes induced by various stimulants or 

processes has been described.280-283 Because metabolomics can provide complementary 

information to other Omics technologies, it is poised to play an increasingly important role 

in the future in large scale study of silkworm biology and related processes including 

developing genetically engineered silkworms.271 
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Metabolome profiling is a critical part of metabolomics studies of silkworm. Traditional 

methods including NMR, GC-MS and LC-MS have been used for metabolome analysis of 

silkworm hemolymph280-282, 284 and larva brain,283 but with limited metabolic coverage. 

Because of a small volume of sample available from each silkworm, generation of a 

metabolome profile with high coverage, which is often achieved by analyzing aliquots of 

the same sample using multiple techniques, is currently an analytical challenge. Mixing 

samples from a number of silkworms to form a pooled sample may increase the sample 

volume for analysis. However, this is not ideal to account for intra-group biological 

variations in individual silkworms to reveal inter-group metabolic differences, particularly 

if the changes are small. In this chapter, we report a sensitive method based on high-

performance chemical isotope labeling (CIL) LC-MS141 to perform in-depth 

submetabolome profiling of silkworm hemolymph. To demonstrate the utility and 

analytical performance of this method for silkworm metabolomics, we applied this method 

to examine the metabolomic changes in hemolymph samples collected from individual 

silkworms with and without the exposure of dichlorodiphenyltrichloroethane (DDT). 

 

DDT was a popular organochlorine pesticide several decades ago, but is now regarded as 

an endocrine disruptor.285 It can modulate the endocrine system through mimicking 

endogenous hormone action and can cause adverse effects in wildlife and human.286-287 

Although DDT had been banned since 1970, the negative effects will still exist for a long 

time because of the presence of residues in the environment and ecosystem. Silkworm 

should be particularly suitable for the evaluation of endocrine disrupting effects of 

exogenous chemicals such as DDT. It is known that the complete endocrine system of 
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silkworm consists of brain neurosecretory cells, suboesophageal ganglion, prothoracic 

glands, corpora allata, which can control the processes of growth, production, development 

and other aspects completely.288 In addition, a wealth of background knowledge about 

genetics, physiology, biochemistry and genomics of silkworm271 can provide us valuable 

information on endocrine disruption research. In our work, we applied CIL LC-MS 

metabolomics to generate metabolomic information in order to understand further how a 

simulant such as DDT affects silkworm growth as well as search for potential metabolite 

markers of DDT exposure. The latter is relevant to silk production in some part of the world 

where DDT residual levels in fields planted with mulberry trees could be still high.289-291 

 

7.2 Materials and methods 

7.2.1 Chemicals and reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada. The pesticide DDT was purchased from AccuStandard USA. For 

dansylation labeling, the 12C-labeling reagent (dansyl chloride) was purchased from 

Sigma-Aldrich and the 13C-labeling reagent was synthesized according to the method 

published previously.292 These reagents are also available from the University of Alberta 

(mcid.chem.ualberta.ca). 

 

7.2.2 Silkworm rearing and DDT treatment 
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The eggs of bivoltine hybrid “HuangKang 3” of silkworm were obtained from Sericultural 

Research Institute, Chinese Academy of Agricultural Sciences. The larvae were raised 

in incubator using a sterilized artificial diet developed at Zhejiang Academy of Agricultural 

Sciences, Hangzhou, China. The silkworms were raised intensively during the first instar 

with a condition of 29°C and 90% humidity, followed with 1°C temperature decrease and 

5% humidity decrease in each instar. The door of incubator was kept open for 5 min to 

ventilate three times a day. Right after the first larval molted, size-matched larvae were 

selected and assigned randomly into the batches for the DDT treatment. Four 

concentrations of DDT (A=1.0 ppm, B=0.1 ppm, C=0.01 ppm, D=0.001 ppm) were used 

in this experiment. DDT was mixed with the diet. Meanwhile, the silkworms fed without 

DDT were considered as control. There were 3 replicate experiments for each DDT 

concentration as well as the control and 30 silkworms were used in each experiment. The 

diet was changed on alternate day from the first to the third instar, and every day in the 

fourth and fifth instar. 

 

7.2.3 Hemolymph collection and preparation 

From mid to late fifth instar, silkworm started to prepare for cocoon spinning. Because this 

period is very crucial to silkworm development, we analyzed the metabolome of silkworm 

after DDT exposure at this point. Five out of thirty larvae were randomly selected from 

each replicate experiment on the third day of the fifth instar (i.e., after 12 days of DDT 

exposure). By cutting through the caudal horn, about 50 μL of hemolymph was collected 

from each larva into a 1.5 mL Eppendorf tube. From 75 individual samples, 20 μL of 

aliquot was taken from each sample and mixed with other aliquots to form a pooled sample 
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as control. The hemolymph sample was centrifuged for 10 min (14,000 rpm, 4°C) to 

precipitate the blood cells, and then 15 μL of the supernatant was taken into a new tube. 

After adding 45 μL of methanol, the sample was incubated in -20°C freezer for 2 h to 

precipitate the proteins. After centrifugation for 15 min (14,000 rpm, 4°C), 45 µL of the 

supernatant was taken out and dried using a Speed Vac at room temperature. 

 

7.2.4 Dansylation labeling of hemolymph 

For labeling, the dried sample was re-dissolved to 600 µL with 2:1 water/ACN and two 75 

µL aliquots were taken for experimental duplicates. To each aliquot, 25 µL of 250 mM 

sodium carbonate/sodium bicarbonate buffer were added and the solution was vortexed, 

spun down, and mixed with 50 µL of freshly prepared 12C-dansyl chloride solution (18 

mg/mL in ACN) (for light labeling) or 13C-dansyl chloride solution (18 mg/mL in ACN) 

(for heavy labeling). After 45 min incubation at 40°C, 10 µL of 250 mM NaOH was added 

to the reaction mixture to quench the excess dansyl chloride. The solution was then 

incubated at 40°C for another 10 min. Finally, 50 µL of formic acid (425 mM) in 1:1 

ACN/H2O was added to consume excess NaOH and to make the solution acidic for analysis. 

 

7.2.5 LC-UV quantification 

The quenching reaction by adding NaOH after sample labeling converted the excess dansyl 

chloride to dansyl-OH which is very hydrophilic and can be washed away during the first 

step (aqueous solvent) in a step-gradient LC-UV analysis. The quenching reaction was 

actually very fast and complete and thus there was no leftover dansyl chloride in the labeled 
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sample from which the LC-UV measurement was performed. This was confirmed by 

targeted LC-MS analysis of dansyl chloride in a labeled sample; we could not detect any 

residual dansyl chloride. For LC-UV, a Waters ACQUITY UPLC system with a 

photodiode array (PDA) detector was used for the quantification of dansyl labeled 

metabolites for sample amount normalization as described earlier.115 Briefly, 4 µL of each 

labeled sample was injected onto a Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 

μm particle size) for a fast step-gradient run. Solvent A was 0.1% (v/v) formic acid in 5% 

(v/v) ACN/H2O, and solvent B was 0.1% (v/v) formic acid in ACN. The gradient started 

with 0% B for 1 min and was increased to 95% within 0.01 min and held at 95% B for 1 

min to ensure complete elution of all labeled metabolites. The flow rate used was 0.45 

mL/min. The peak area related to the total labeled metabolite concentration in the sample 

was integrated using the Empower software (6.00.2154.003). Based on the quantification 

results, the 12C-labeled sample and the13C-labeled pool were mixed in equal amounts. 

 

7.2.6 LC-MS 

The HPLC system was an Agilent capillary 1100 binary system (Agilent, Palo Alto, CA). 

A reversed-phase Eclipse plus C18 column (2.1 mm×100 mm, 1.8 µm particle size, 95 A 

pore size) was also purchased from Agilent. LC Solvent A was 0.1% (v/v) formic acid in 

5% (v/v) acetonitrile, and Solvent B was 0.1% (v/v) formic acid in acetonitrile. The 

gradient elution profile was as follows: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18.0 min, 

65% B; t = 24.0 min, 99% B; t = 32.0 min, 99% B. The flow rate was 180 μL/min. The 

flow from HPLC was split 1:2 and a 60 µL/min flow was loaded to the electrospray 

ionization (ESI) source of a Bruker 9.4 Tesla Apex-Qe Fourier transform ion-cyclotron 
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resonance (FTICR) mass spectrometer (Bruker, Billerica, MA, USA), while the rest of the 

flow was delivered to waste. All MS spectra were obtained in the positive ion mode. A 

quality control sample (QC) were injected several times to monitor the performance of LC-

MS running during the whole experiment. 

 

7.2.7 Data analysis 

The 12C-/13C-peak pairs from each LC-MS run were extracted by the IsoMS software.72 

IsoMS-Align was used to align the peak pair data from different samples by retention time 

and accurate mass. The missing ratio values were filled back by using the Zero-fill 

program.137 IsoMS-Quant157 was used to generate the final metabolite-intensity table which 

was exported to MetaboAnalyst 3.0165 for multivariate statistical analysis. Positive 

metabolite identification was done using a dansyl standards library consisting of 273 

standards.159 Putative metabolite identification was done by accurate mass matching of the 

experimental masses with those of the metabolites in the HMDB library and the EML 

database using MyCompoundID MS search.41 
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7.3 Results and discussion 

7.3.1 CIL LC-MS analysis of labeled hemolymph 

 

Figure 7.1 Workflow for silkworm hemolymph metabolome profiling using CIL LC-MS. 

 

Figure 7.1 shows the workflow for silkworm hemolymph metabolome profiling using CIL 

LC-MS. One key step in the workflow is sample amount normalization. Variations in total 

sample amount in different samples can be greater than the analytical variation. This 

variation must be minimized in order to detect the concentration differences of individual 

metabolites caused by the DDT treatment. In our approach, we mixed the 12C-labeled 

individual sample with the same total amount of the 13C-labeled pooled sample, according 

to their total concentrations of labeled metabolites determined by the fast step-gradient LC-

UV method. Figure 7.2A shows the average concentrations of labeled metabolites for the 
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five groups of samples. The concentrations of the non-treated samples are similar and 

within the range of 0.6 to 0.8 mM. The average concentrations of the other groups are 

similar to the control group. This result demonstrates that there is no significant change in 

total concentration of labeled metabolites caused by the DDT treatment. After applying 

sample normalization, sample amount variation in individual samples should not be an 

issue in our metabolomic dataset. 

 

Figure 7.2 (A) Averaged total concentrations of labeled metabolites in five groups of hemolymph 

samples. (B) A representative base-peak ion chromatogram obtained from LC-FTICR-MS analysis 

of a 12C-/13C-labeled hemolymph sample. (C) Expanded mass spectrum showing peak pair of serine 

with the m/z 339.0957 peak from the 12C-labeled serine in an individual sample and the m/z 

341.1032 peak from the 13C-labeled serine in the pooled sample. (D) The peak pair number detected 

and the percentage of common peak pairs as a function of the number of samples. 
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One benefit of knowing the concentration of labeled metabolites is that we can optimize 

the sample injection amount into LC-MS to ensure that a maximum number of peak pairs 

or metabolites are detected and the same sample amount is used for all the runs. By 

injecting varying amounts of a 12C- /13C-labeled hemolymph sample while monitoring the 

number of peak pairs detected in LC-MS, it was found that the number of peak pairs 

reached the plateau at 8 nmol of injection. Subsequently, 8 nmol injection was used for all 

the sample runs. With this amount injection, no sample carryover from run to run was 

found and thus only a simple blank run was needed to re-equilibrate the column between 

sample runs. 

 

Figure 7.2B shows a representative base-peak ion chromatogram obtained from LC-

FTICR-MS analysis of a 12C-/13C-labeled hemolymph sample. The advantage of using a 

rationally designed labeling reagent (e.g., dansyl) in CIL LC-MS is that metabolites with 

different polarity or even ionic species can be retained on a reversed-phase (RP) column 

after labeling. Figure 7.2B shows that many peaks are detected over the entire gradient 

elution window, indicating that labeled metabolites with a wide range of hydrophobicity 

are present in the sample. Figure 7.2C shows a typical mass spectrum covering the 

molecular ion region of a peak pair. The 12C-labeled peak is from the labeled serine in an 

individual sample and the 13C-labeled peak is from the pooled sample. Their peak ratio 

reflects the concentration difference of serine in the sample vs. the control. Since the same 

amount of the 13C-labeled pooled sample was spiked to all the 12C-labeled individual 

samples (see Figure 7.1), the ratio values of the peak pair determined from all the mass 
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spectra could be used to measure the concentration differences of the metabolite in these 

samples. In our work, after finding the peak pair, we actually reconstructed the extracted 

ion chromatograms of the 12C- and 13C-labeled peaks to calculate the chromatographic peak 

ratio and use it to measure the relative concentration more accurately and precisely, 

compared to using mass spectral peak intensity ratio.157  

 

7.3.2 Metabolome profile of silkworm hemolymph 

In total, 150 samples were produced from duplicate experiments of 75 silkworm 

hemolymph samples. From the combined LC-MS results, we detected a total of 2,044 

unique peak pairs with an average of 1,467 ± 41 peak pairs from each individual sample. 

It was found that 6 duplicate-samples had significantly lower peak pair numbers than the 

other runs (i.e., less than 750 peaks); these were considered to be the outliers. After 

examining the possible causes of these outliers, it was deemed that vials of these samples 

might not be sealed properly and thus during shipment and storage the samples might be 

degraded. These samples were excluded from the final dataset and the remaining 138 

analysis results were used for statistical studies. We note that spotting outliers is important 

in multiple sample analysis in metabolomics. Our workflow of using the 13C-labeled pool 

as the global standard for all the 12C-labeled individual samples and strict control of the 

same total amount used for sample normalization and sample injection allows us to find 

the outliers with ease. 
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Figure 7.3 shows the Venn diagram of the metabolite distribution for the five groups. There 

are only a small percentage of metabolites detected as unique metabolites in each group. 

This result indicates that applying different concentrations of DTT to silkworm only caused 

a minor alternation to the composition of metabolites; however, as it will be shown in the 

next section, the concentrations of some metabolites could be changed significantly after 

DTT exposure. 

 

Figure 7.3 The Venn diagram of the metabolite distribution for the five comparative groups. 

 

For quantitative metabolomic profiling, it is important to detect and quantify as many 

metabolites as possible in all samples. To gauge the consistency of peak pair detection in 

all the 138 samples, Figure 7.2D shows the peak pair number detected and the percentage 

of common peak pairs as a function of the number of samples in this study. There are 658 

peak pairs detected in all the samples. There are 1582 peak pairs found in >50% of the 

samples in at least one study group and these pairs were retained for statistical analysis in 
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our work. These data show that CIL LC-MS is a robust technique for quantifying a large 

number of metabolites that could be consistently detectable in the silkworm hemolymph 

samples. 

 

Metabolite identification for the 2044 peak pairs was carried out using two levels of 

database search. Positive metabolite identification was performed based on mass and 

retention time match (e.g., M-RT search) to the dansyl standard library containing 273 

unique amines/phenols using DnsID.159 We did not use MS/MS, as we have already shown 

in a previous paper159 that accurate mass and retention time matches are already sufficient 

for identifying a dansyl labeled metabolite positively without the need of using MS/MS. 

This is because each labeled metabolite standard in the dansyl standard library has a unique 

combination of accurate mass and retention time. For each dansyl standard, we do have the 

MS/MS spectrum. However, if retention time is available for matching, this information 

can be used to replace MS/MS spectral match. This process of positive metabolite 

identification works in the same manner as we spike a standard into a real sample for 

accurate mass and retention time comparison for positive identification. In our previous 

paper,159 we have shown that M-RT search gave 105 matches from a human urine sample, 

and manual inspection with MS/MS data did not find any mistake in the match result. 

Overall, according to our experiences in working with many different samples, M-RT 

search using the dansyl library is a reliable approach for positive metabolite identification. 

In total, 65 metabolites were identified by using the dansyl library searching in this study. 

In addition, using MyCompoundID MS search, 338 and 1,471 peak pairs were putatively 

identified based on accurate mass match against the HMDB library and the EML library, 
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respectively. It should be noted that while we designated this accurate mass match as a 

putative identification, the match is highly speculative and requires further information 

such as retention time or MS/MS comparison to that of a standard for more confident 

identification. 

 

7.3.3 Metabolome comparison of silkworm hemolymph with different DDT treatment 

We used PCA, an unsupervised chemometric method, to provide an overall view of the 

whole data sets in order to determine if there are any clustering, trends or outliers. Figure 

7.4A shows the PCA score plot of the 138 sample runs and 6 QC runs. Group A (red dots), 

B (green dots), C (dark blue dots) and D (sky blue dots) represent the samples from 

different concentrations of DDT treatment. The QC data (yellow dots) cluster together, 

indicating that excellent analytical reproducibility was achieved in LC-MS data acquisition. 

The PCA analysis shows some separations among the groups. Group A treated with the 

highest DDT concentration is largely separated from the control group, while Groups C 

and D with lower DDT concentrations are only slightly separated from the control. 

 

The supervised method, PLS-DA, was used for further analysis of the five groups. Figure 

7.4B shows the PLS-DA score plot of the five groups. Group separation is observed 

(R2Y=0.999, Q2=0.942), although there are a few overlapping data points between the 

adjacent groups. Figure 7.4B also shows a clear trend of increasing separation between the 

treated and control groups as the DDT concentration increases.  
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Figure 7.4 (A) PCA score plot for QC data (yellow), control group (pink) and the samples from 

different concentrations of DDT treatment (1 ppm in red, 0.1 ppm in green, 0.01 ppm in dark blue 

and 0.001 ppm in sky blue). (B) PLS-DA score plot for the control group (pink) and the samples 

from different concentrations of DDT treatment (1 ppm in red, 0.1 ppm in green, 0.01 ppm in dark 

blue and 0.001 ppm in sky blue). 

 

Figure 7.5 shows the study of any correlation between the metabolite concentration in each 

group and their DDT concentrations for the top 40 metabolites based on PLS-DA VIP 

scores. Different trends in concentration change are observed. For example, metabolites 

#2194 and #2097 increase their concentration with the increase of DDT concentration, 

while metabolites #2217 and #959 decrease their levels with the increase of DDT 

concentration. Most of the metabolites do not show strong correlations with the DDT 

concentration change. Thus, the metabolome of silkworm hemolymph was affected 

through various ways of individual metabolite level changes under different levels of DDT 

exposure. 
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Figure 7.5 List of 40 significant metabolites with the highest PLS-DA VIP scores, showing the 

correlation between the metabolite concentration in each group and their DDT concentrations. 

 

To reveal the changes of individual metabolites upon DDT exposure, binary comparison 

of the metabolome of treated group vs. control was carried out using volcano plots. A 

metabolite with a concentration change of ≥ 1.2-fold and a p-value ≤ 0.05 was deemed to 

have a significant change. In this study, un-adjusted p-value was used but the volcano plot 

is just a relatively loose screening of potential biomarkers and we will mainly focus on the 

biological meanings of these candidates with pathway analysis. The numbers of up-

regulated metabolites and down-regulated metabolites were found to be 224 and 214 in the 

comparison of the 1 ppm DDT group vs. the control group (Figure 7.6A), 231 and 100 in 
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the 0.1 ppm DDT group vs. the control group (Figure 7.6B), 260 and 45 in the 0.01 ppm 

DDT group vs. the control group (Figure 7.6C), 131 and 28 in the 0.001 ppm DDT group 

vs. the control group (Figure 7.6D). There is a trend of increasing the number of down-

regulated metabolites as the DDT concentration increases. 

 

 

Figure 7.6 Volcano plots (fold change ≥ 1.2 and p ≤ 0.05) for the binary comparison of (A) the 1 

ppm DDT group vs. the control group, (B) the 0.1 ppm DDT group vs. the control group, (C) the 

0.01 ppm DDT group vs. the control group, and (D) the 0.001 ppm DDT group vs. the control 

group. 
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On the list of the significant metabolites found from the binary comparisons that may 

potentially serve as biomarkers related to DDT exposure, 33 of them could be positively 

identified (see Table 7.1) and many with large fold changes (fold change of  ≥ 2 with a p-

value ≤ 0.05) could be matched to some metabolite structures in HMDB or EML libraries. 

The positively identified metabolites are involved in various metabolic pathways. For 

example, tryptophan and alanine are involved in glycolysis and Krebs cycle process. 

Methyl-histidine and imidazoleacetic acid are involved in histidine metabolism process. 

Citrulline and ornithine are involved in arginine and proline metabolism process. 

Cystathionine is involved in serine metabolism process. These metabolic processes are all 

crucial to silkworm development as discussed below. 

 

Table 7.1 List of positively identified metabolites showing significant concentration changes after 

DDT treatment. (Number in bold and italic means the fold change was ≥1.20 or ≤0.83 with p-value 

≤ 0.05) 

Ret. 
Time 
(min) 

Accurate 
Mass 

HMDB ID Compound Name 

Fold Change (vs. Control) and p Value (in 
brackets) 

1 ppm 

A 

0.1 ppm 

B 

0.01 ppm 

C 

0.001 
ppm 

D 

15.65 104.0564 HMDB02006 
2,3-Diaminoproprionic 

acid 

1.57 

(0.0022) 

1.29 

(0.12) 

1.33 

(0.066) 

1.11 

(0.56) 

13.69 222.0652 HMDB00099 
L-Cystathionine- 

Isomer 

1.49 

(0.00021) 

1.46 

(2.4E-05) 

1.22 

(0.071) 

1.15 

(0.24) 

12.74 165.0775 HMDB00159 L-Phenylalanine 
1.39 

(0.0046) 

1.01 

(0.91) 

1.32 

(0.012) 

1.14 

(0.23) 

22.65 181.0708 HMDB00158 L-Tyrosine 
1.34 

(0.00065) 

1.10 

(0.51) 

0.61 

(0.00022) 

0.96 

(0.69) 

11.44 204.0883 HMDB00929 L-Tryptophan 1.30 1.09 1.26 1.14 
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9.7E-09 (0.25) 1.5E-06 (0.0019) 

5.79 119.0576 HMDB00167 L-Threonine 
1.27 

(0.0024) 

1.25 

(0.11) 

1.41 

(0.00095) 

1.36 

(2.2E-06) 

4.40 105.0416 HMDB00187 L-Serine 
1.26 

(7.1E-05) 

1.05 

(0.56) 

1.12 

(0.10) 

1.04 

(0.53) 

4.52 130.1199 HMDB01432 Agmatine 
1.21 

(0.0027) 

1.36 

(0.00037) 

1.26 

(0.0050) 

0.98 

(0.82) 

7.57 89.0440 HMDB00161 L-Alanine 
1.21 

(0.033) 

1.11 

(0.42) 

1.15 

(0.22) 

1.18 

(0.16) 

13.06 131.0933 HMDB00172 L-Isoleucine 
1.21 

(0.031) 

1.27 

(0.17) 

1.26 

(0.0095) 

1.17 

(0.12) 

15.80 118.0711 HMDB02362 
2,4-Diaminobutyric 

acid 

1.21 

(8.0E-06) 

1.11 

(0.025) 

1.14 

(0.00094) 

1.00 

(0.88) 

13.34 222.0638 HMDB00099 L-Cystathionine 
1.20 

(0.015) 

1.23 

(0.029) 

0.97 

(0.63) 

0.95 

(0.54) 

2.17 169.0841 HMDB00001 1-Methylhistidine 
1.19 

(0.028) 

1.50 

(6.0E-06) 

1.13 

(0.28) 

1.23 

(0.048) 

18.09 155.0681 HMDB00177 L-Histidine 
1.19 

(0.00054) 

1.16 

(0.019) 

1.25 

(8.0E-06) 

1.09 

(0.061) 

8.67 103.0619 HMDB03911 
3-Aminoisobutanoic 

acid 

1.12 

(0.0015) 

1.11 

(0.078) 

1.20 

(8.3E-08) 

1.12 

(0.00086) 

14.11 240.0192 HMDB00192 L-Cystine 
1.12 

(0.50) 

1.02 

(0.94) 

1.52 

(0.034) 

1.72 

(0.020) 

3.32 146.0690 HMDB00641 L-Glutamine 
1.11 

(0.061) 

1.25 

(0.080) 

1.23 

(0.0056) 

1.22 

(0.020) 

11.12 126.0414 HMDB02024 Imidazoleacetic acid 
1.10 

(0.10) 

1.16 

(0.017) 

1.24 

(0.0079) 

1.12 

(0.051) 

3.05 202.1415 HMDB03334 
Symmetric 

dimethylarginine 

1.07 

(0.45) 

1.61 

(0.023) 

1.55 

(0.061) 

1.06 

(0.65) 

8.87 142.0362 HMDB00469 5-Hydroxymethyluracil 
1.06 

(0.19) 

1.09 

(0.38) 

1.21 

(0.0011) 

1.06 

(0.18) 

8.95 152.0320 HMDB00292 Xanthine 
1.05 

(0.60) 

1.03 

(0.71) 

1.38 

(0.0023) 

0.97 

(0.69) 
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2.44 174.1100 HMDB00517 L-Arginine 
1.00 

(0.91) 

1.24 

(0.0051) 

1.12 

(0.12) 

1.16 

(0.046) 

9.39 240.0725 HMDB00884 Ribothymidine- H2O 
1.01 

(0.84) 

1.20 

(0.0046) 

1.15 

(0.044) 

0.94 

(0.39) 

5.82 17.0253 HMDB00051 Ammonia 
1.00 

(0.95) 

1.24 

(0.023) 

1.75 

(4.7E-07) 

1.27 

(0.0050) 

17.57 138.0305 HMDB00500 4-Hydroxybenzoic acid 
0.99 

(0.83) 

0.78 

(0.012) 

0.97 

(0.83) 

0.99 

(0.79) 

10.89 149.0506 HMDB00696 L-Methionine 
0.98 

(0.92) 

2.09 

(0.050) 

1.46 

(0.27) 

0.87 

(0.52) 

21.64 122.0349 HMDB00750 
3-Hydroxymandelic 

acid - COOH 

0.94 

(0.18) 

0.75 

(0.0034) 

0.77 

(0.0021) 

1.01 

(0.91) 

4.20 165.0462 HMDB02005 
Methionine Sulfoxide - 

Isomer 

0.93 

(0.17) 

0.82 

(0.023) 

0.97 

(0.63) 

0.93 

(0.21) 

6.00 61.0479 HMDB00149 Ethanolamine 
0.91 

(0.31) 

1.47 

(0.00038) 

1.50 

(0.018) 

1.16 

(0.29) 

3.00 59.0470 HMDB01842 Guanidine 
0.66 

(0.0071) 

1.13 

(0.44) 

0.74 

(0.078) 

0.57 

(0.0011) 

7.53 147.0540 HMDB02393 
N-methyl-D-aspartic 

acid 

0.66 

(0.0012) 

0.73 

(0.015) 

0.95 

(0.69) 

1.27 

(0.028) 

3.74 175.0936 HMDB00904 Citrulline 
0.56 

(0.010) 

2.08 

(0.23) 

1.64 

(0.16) 

0.68 

(0.072) 

16.58 132.0877 HMDB00214 Ornithine 
1.59 

(9.8E-07) 

1.22 

(0.11) 

1.21 

(0.039) 

1.24 

(0.0033) 
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7.3.4 Significance of candidate metabolite biomarkers 

 

Figure 7.7 (A) Overview of metabolic pathway analysis. (B) Pathway of glycine, serine and 

threonine metabolism. 

 

The 65 definitively identified significant metabolites were exported into Metaboanalyst 3.0 

for pathway analysis.165 These compounds were matched to an insect pathway library 

which contained 79 pathways found from the fruit fly, and their concentration changes 

from the control to group A were also used to calculate their importance factors. A pathway 

impact and a p-value were calculated for each pathway, depending on how many hits it had 

and the importance factors of the hit compounds. The result is shown as Figure 7.7A in 
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which -log (p-value) is plotted against the pathway impact. The pathway on the top right 

corner has the highest pathway impact and statistical significance, and the mostly affected 

pathways include: “phenylalanine, tyrosine and tryptophan biosynthesis”; “phenylalanine 

metabolism”; “tryptophan metabolism”; “arginine and proline metabolism”; “methane 

metabolism”; and “valine, leucine and isoleucine biosynthesis”. 

 

Among the list of other affected pathways from pathway analysis, we selected “glycine, 

serine and threonine metabolism” as an example (Figure 7.7B) for in-depth discussion, as 

this metabolic pathway has a direct relevance to silk production and a larger number of 

metabolites in this pathway were positively identified in our work. On the pathway 

schematic, light blue means the metabolite is not in the list of the 65 positively identified 

metabolites but is used as background for enrichment analysis. The six metabolites with 

other colors (varying from yellow to red) are the positively identified metabolites, 

including threonine, glycine, sarcosine, ammonia, serine and cystathionine. A red color 

indicates the corresponding metabolite has a more significant change between the control 

and group A comparing to a yellow-colored metabolite. For example, sarcosine is not a 

significantly changed metabolite. Both serine and its downstream metabolite, cystathionine, 

are important metabolites and serine has a larger fold change than cystathionine. With the 

help of the pathway analysis, some metabolite changes were thought to be likely due to 

endocrine system disrupted in silkworm by the DDT treatment, and the biological 

processes underlie these changes were also studied (see below). In addition to the 

comparison between the control and group A, the trend of the metabolite concentration 

change among the four different groups can also help us understand the DDT’s interference 
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on biological processes of silkworm. Figure 7.8 shows the metabolite concentrations in the 

control and the four study groups of four example metabolites. For example, the 

concentration of serine shows an increasing trend with the concentration of DDT, which 

may reveal a positive relationship between the DDT exposure and serine up-regulation. 

 

 

Figure 7.8 Box plots of four metabolites showing their relative concentrations in the control group 

and four DDT treatment groups. 

 

Serine is derived from glycine and crucial in maintaining health of the neuron.293 Alanine 

is one of the most important amino acids released by muscle.294 Through pathway 

searching, we found that serine is included in both the “glycine, serine and threonine” and 

“methane” metabolism pathways. It is illustrated that serine is a crucial metabolite in 



216 
 

silkworm development. Serine, alanine and glycine are the three most important amino 

acids for silk protein synthesis in silkworm.295 With 1 ppm DDT feed to silkworm from 

start of second instar to cocoon, 9% decrease of the weight of cocoon shell was observed 

in our previous test (unpublished). In the present study, we discovered that serine and 

alanine were both up-regulated in hemolymph of silkworm after 1 ppm DDT treatment 

(Figure 7.8). It might imply that serine and alanine had not fully been utilized in silk protein 

production. Since the process of silk protein synthesis is controlled by endogenous 

hormones, particularly juvenile hormone (JH) and molting hormone (MH),296 it is possible 

that DDT disturbed the balance of JH and MH, thereby hindering the silk protein synthesis. 

 

Methionine is an essential amino acid for growth and development of animals. It is required 

for cysteine synthesis, and the sulfur atom from methionine is transferred to cysteine.297 

Cystine is formed by linking two cysteine residues via a disulfide bond (cys-S-S-cys) 

between the -SH groups. Thus, methionine, cysteine and cystine have a close relationship 

in the “cysteine and methionine metabolism” pathway. In this study, we discovered that 

methionine and cystine were up-regulated in different DDT concentrations, which would 

hint that “cysteine and methionine” metabolism pathway was disturbed. Meanwhile, 

cysteine is very important to the structure of silkworm prothoracicotropic hormone (PTTH), 

which needs one inter-chain disulfide linkage (Cys-Cys) and three intra-chain disulfide 

linkages for manifesting biological activity.298 PTTH is a neuropeptide hormone, and can 

stimulate prothoracic gland to produce MH.296 The up-regulating of methionine and cystine 

in silkworm hemolymph suggests that the process of larva molting might be affected. 
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Tryptophan is an essential amino acid, and may contribute to mental retardation when it is 

in excess in the blood. Assessments of tryptophan deficiency had been done by studying 

excretion of tryptophan metabolites in the urine or blood from people who had nervous 

system disease.299-300 Tryptophan is also the precursor of serotonin, a neurotransmitter and 

neurohormone found in many animals.301-303 Serotonin had been proved to have antagonist 

roles in female reproduction and can stimulate reproduction in male of M. rosenbergii.304 

In our work, the concentration of tryptophan was up-regulated in silkworm hemolymph 

under 1 and 0.01 ppm DDT group. The disorder of the tryptophan metabolism might induce 

the change of serotonin, which could affect the reproduction of silkworm moth. However, 

in our work, we could not detect serotonin directly, probably due to very low level of 

serotonin present in silkworm hemolymph during the 5th instar. We believe that tryptophan 

may be a potential biomarker for endocrine disruptor evaluation using silkworm as a target 

insect. 

 

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase 

(NOS). Symmetric dimethylarginine (SDMA) is a stereoisomer produced alongside 

ADMA, and has been considered as a risk factor for cardiovascular diseases. SDMA does 

not inhibit NOS activity directly, but might have an indirect effect by limiting cellular 

uptake of L-arginine.305 Some researches had showed that the SMDA levels of plasma were 

raised in women with polycystic ovary syndrome306 and people with hyperthyroidism.307 

The healthy postmenopausal women always have an insufficient level of estrogens. 

Verhoeven et al. found that SDMA concentration of plasma was reduced and arginine was 

transiently decreased after oral 17 β-estradiol combined with norethisterone.308 So far, 
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there is no correlated report about the change of SDMA in insect. In this study, the SDMA 

and arginine levels of silkworm hemolymph increased 1.61 and 1.24 fold, respectively, in 

the 0.1 ppm DDT treatment group. DDT is a pesticide that has homologous estrogen 

biologic character. The changing trends of SDMA and arginine in our experiment were 

contrary to the results of Verhoeven’s report. We propose the reason of difference is that 

the changes of SDMA and arginine could show difference between the male and female 

silkworm larvae after DDT treatment. Thus, in the future work, SDMA, ADMA and 

arginine will need to be measured using male and female silkworm larvae, respectively. 

The results of SDMA changing may imply that the balance of hormone in silkworm was 

broken by DDT treatment. 

 

N-Methyl-D-aspartic acid (NMDA) receptor plays significant roles during the 

development of nervous system in animal. It involves in many physiological processes, 

such as apoptosis, learning and memory.309 NMDA acts as a specific agonist at the NMDA 

receptor.310 In our study, NMDA had 1.27-fold increase in the silkworm hemolymph at 

0.001 ppm DDT compared to the control (Figure 7.8D). The excess of NMDA might bind 

to more NMDA receptor, which would cause interference on the nervous system of 

silkworm and hormones synthesis. However, at 0.1 ppm and 1 ppm of DDT groups, 

NMDA had 0.73-fold and 0.66-fold decreases conversely, which would lead the NMDA 

receptor excessive and make the silkworm under an excited state. These results implied 

that different doses of DDT affected the silkworm development through different ways. 
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L-tyrosine can be changed into L-dopa with tyrosine hydroxylase catalysis. And L-dopa is 

the precursor for dopamine and melanin.280 In lepidopterans insect, melanization is 

controlled by melanization and reddish coloration hormone (MRCH), which is an 

important neurohormone.311-312 In our study, DDT exposure increased the tyrosine level 

(1.34 fold) at 1 ppm and decreased the level (0.61 fold) at 0.01 ppm, which might hint that 

the process of pigmentation was disturbed and the balance of endocrine hormone was 

broken by DDT feeding. This is an interesting finding, as if we could prove the relevance 

between the epidermal color and DDT concentrations, the color of larva might become a 

potential indicator for endocrine disruption evaluation using silkworm as a target. 

 

These potential biomarkers discussed above demonstrated that our metabolomic analysis 

method could be used to discover untargeted metabolic biomarkers. At present, there are 

only limited amount of metabolomic data available on silkworm. The biomarkers found in 

this study need to be further verified to confirm the relationship with endocrine disruption 

effects by other methods such as determination hormone level of silkworm after DDT 

treatment. 

 

7.4 Conclusions 

In this study, we have developed a chemical isotope labeling LC-MS method for silkworm 

hemolymph metabolomics and apply this method to study the metabolomic changes in 

silkworms with and without different levels of DDT exposure. Using this method, a total 

of 2,044 peak pairs have been detected in 138 samples of five groups. By searching the 
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HMDB database and the EML library based on accurate mass match, 338 and 1471 

metabolites have been putatively identified, respectively. Based on the mass and retention 

time match in the dansyl standard library, 65 unique amines/phenols were positively 

identified. Among them, 33 metabolites have ≥ 1.20-fold or ≤ 0.83-fold in one or more 

groups with p-value ≤ 0.05. 

 

Hemolymph metabolomic study on DDT treated silkworms showed that metabolomic 

profiles could differentiate the different DDT treatment groups from the control group. 

Several metabolite candidate biomarkers identified in this study had been detected in 

silkworm hemolymph in previous work, such as serine, alanine and arginine. These amines 

are very important to silkworm growth, and have been found in silkworm hemolymph 

throughout the whole stages of development. Many potentially new biomarkers were found 

in this work. For example, based on the functional analysis, we predict that the changes of 

methionine, cysteine and tyrosine could be due to the endocrine system disrupted by the 

pesticide DDT. We expect that other chemicals besides DDT could illicit similar responses. 

In the future, we will further explore the relationships among different pesticides or 

chemicals, biomarkers and endocrine disrupting effects and mechanism of endocrine 

disruption. 

 

The present study focused on the use of dansylation labeling for the detection of 

compounds containing primary, secondary amines and phenol groups. However, the CIL 

LC-MS workflow described herein should be applicable to other submetabolome profiling 
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using other labeling reagents. In our future work, we plan to screen more biomarkers by 

using other labeling methods. In addition, we plan to verify the authenticity of these 

biomarkers using biochemical or molecular biology methods. 
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Chapter 8 

Conclusions and Future Work 

 

Blood-metabolite-based biomarkers are promising tools for the early-stage diagnosis, 

accurate prognostic prediction and personalized treatment of various diseases. LC-MS-

based metabolomics profiling provides a sensitive and robust methodology for biomarker 

discovery and delineates the underlying metabolic pathways. Considering that traditional 

LC-MS platforms are limited by the low metabolome coverage and quantification accuracy, 

our group has developed the CIL LC-MS methods which can significantly increase the 

metabolome coverage and effectively overcome the detection variability. Nonetheless, 

blood metabolomics remains susceptible to biological variations and experimental 

interferences during the sample preparation. Large sample sizes and time-resolved studies 

are highly desirable in order to improve the reliability of findings. Adding the time 

dimension to the study design is also preferable, so cohort and intervention studies are 

recommended. The first part of my thesis focuses on assessing and minimizing the 

variability in blood metabolomics studies. The second part of my thesis describes the 

application of CIL LC-MS method to a cohort study and an intervention study. 

 

Chapter 1 provides an overview of the basic concepts of the biomarker, metabolomics, CIL 

LC-MS platform, blood sample handling, statistical analyses and the challenges in blood 

biomarker discovery. Particularly, possible solutions to the challenges are proposed, 

leading the storyline of this thesis. 
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Matrix effect from various constituents in biological samples can reduce the accuracy of 

quantitative metabolomics. CIL LC-MS can overcome the matrix effect on MS detection 

based on measuring the intensity ratios of metabolite peak pairs detected in a mixture of a 

light-isotope labeled sample, and a heavy isotope labeled reference sample. However, the 

chemical labeling process itself may encounter matrix effect which can influence the 

overall quantitative results. Chapter 2 reports the effects of salts and buffers commonly 

present in metabolomic samples on dansylation labeling. It is shown that high 

concentrations of NaCl and phosphate buffer (>50 mM) or PBS can reduce or enhance the 

labeling efficiencies of metabolites. By maintaining similar matrix contents in an 

individual sample versus a reference sample, relative quantification of metabolites can be 

performed without compromising the metabolomic profiling results. For samples 

containing varying amounts of high salts such as urine, we demonstrate that the matrix 

effect can be largely overcome by diluting the original sample before dansylation labeling 

(e.g., fourfold dilution for urine). 

 

As serum metabolomics is widely used for biomarker discovery, it is crucial to characterize 

the “normal” metabolite concentrations and inter-subject variations in the general 

population, as well as the potential confounding factors. In Chapter 3, non-targeted 

metabolome profiling was performed on serum samples from 100 healthy subjects, using 

two differential isotope labeling methods and high-resolution LC-MS. A high-coverage 

serum metabolome database including 1,348 amine/phenol-containing metabolites and 

1,065 carboxyl-containing metabolites has been developed, providing the relative 

concentrations and inter-individual variations. In addition, this study demonstrates the 



224 
 

impact of sex and body mass index on human serum metabolome, indicating that these 

factors should be carefully assessed in metabolomics studies. 

 

Blood is an important biofluid for metabolomics study and clinical diagnosis. Compared 

with venous blood, capillary blood collected by finger pricking is a more convenient and 

less invasive alternative. However, the detectability of low-abundant compounds is usually 

limited with these low-volume samples. Therefore, in Chapter 4, we developed a CIL 

method accompanied with high-resolution LC-MS to achieve metabolomics analyses with 

superior sensitivity and high metabolome coverage. By collecting only one microliter of 

finger blood from the participants, we detected and quantified 1,722 amine/phenol-

containing metabolites. Among them, 73 have been positively identified and another 1,393 

have been putatively identified. An even smaller sample volume also works without 

significant decrease of metabolome coverage, opening the possibility of analyzing other 

groups of metabolites without increasing the sample collection amount. Using the dietary 

exposure to coffee as an example, we have demonstrated that our technique has excellent 

sensitivity, repeatability and robustness for both biomarker discovery and time-resolved 

exposomics studies. With our method, finger blood can replace venous blood for 

metabolomics studies, making low-cost and point-of-care metabolic analyses feasible in 

the future. 

 

Carboxylic acids have also demonstrated biological significance in various physiological 

processes. And since carboxylic acids are widely used as food additives, they can become 
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ideal biomarkers of dietary intake. In Chapter 5, the finger blood analysis method is further 

improved, and from only one microliter of whole blood we successfully detected 2,074 

dansyl-labeled and 2,254 DMPA-labeled metabolites. Time-of-day variations of 

metabolites are studied. And the method is used to assess the metabolic response to energy 

drink consumption. We have proved that our method has the adequate sensitivity and 

accuracy for exposure studies. 

 

In Chapter 6, we profiled the amine/phenol submetabolome to determine potential 

metabolite biomarkers associated with Parkinson's disease (PD) and PD with incipient 

dementia. It is a cohort study design that at baseline of a 3-wave (18-month intervals) 

longitudinal study, serum samples were collected from 42 healthy controls and 43 PD 

patients. By wave 3 (year 3) 16 PD patients were diagnosed with dementia and were 

classified as PD with incipient dementia at baseline. Metabolomic analyses detected 719 

common metabolites in 80% of the samples. Some were significantly altered in a pairwise 

comparison of different groups (fold-change of >1.2 or < 0.83 with q < 0.1). We 

discriminated PD and controls by using a 5-metabolite panel, vanillic acid, 3-

hydroxykynurenine, isoleucyl-alanine, 5-acetylamino-6-amino-3-methyluracil, and 

theophylline. The Receiver Operating Characteristic curve produced an Area-Under-the-

Curve value of 0.955 with 87.5% sensitivity and 93.0% specificity. In comparing PD with 

no dementia with PD with incipient dementia we used an 8-metabolite panel, His-Asn-

Asp-Ser, 3, 4-dihydroxy-phenylacetone, desaminotyrosine, hydroxy-isoleucine, alanyl-

alanine, putrescine [-2H], purine [+O] and its riboside. This produced an Area-Under-the-

Curve value of 0.862 with 80.0% sensitivity and 77.0% specificity. The significantly 
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altered metabolites can be used to differentiate (1) PD patients from healthy controls with 

high accuracy and (2) the stable PD with no dementia group from those with incipient 

dementia. Following further validation in larger cohorts, these metabolites could be used 

for both clinical diagnosis and prognosis of PD. 

 

Silkworm (Bombyxmori) is a very useful target insect for evaluation of endocrine disruptor 

chemicals (EDCs) due to mature breeding techniques, complete endocrine system and 

broad basic knowledge on developmental biology. Comparative metabolomics of 

silkworms with and without EDC exposure offers another dimension of studying EDCs. In 

Chapter 7, we report a workflow on metabolomic profiling of silkworm hemolymph based 

on CIL LC-MS and demonstrate its application in studying the metabolic changes 

associated with the pesticide DDT exposure in silkworm. Hemolymph samples were taken 

from mature silkworms after growing on a diet that contained DDT at four different 

concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They 

were subjected to the differential 12C-/13C-dansyl labeling of the amine/phenol 

submetabolome, LC-UV quantification of the total amount of labeled metabolites for 

sample normalization, and LC-MS detection and relative quantification of individual 

metabolites in comparative samples. The total concentration of labeled metabolites did not 

show any significant change between four DDT-treatment groups and one control group. 

Multivariate statistical analysis of the metabolome data set showed that there was a distinct 

metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 

and 1471 metabolites have been putatively identified against the HMDB database and the 

EML library, respectively. 65 metabolites were identified by the dansyl library searching 
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based on the accurate mass and retention time. Among the 65 identified metabolites, 33 

positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or 

more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, 

methionine, tryptophan, asymmetric dimethylarginine, N-Methyl-D-aspartic and tyrosine 

were identified. The changes of these biomarkers were likely due to the disruption of the 

endocrine system of silkworm by DDT. Our work illustrates that the method of CIL LC-

MS is useful to generate quantitative submetabolome profiles from a small volume of 

silkworm hemolymph with much higher coverage than conventional LC-MS methods, 

thereby facilitating the discovery of potential metabolite biomarkers related to EDC or 

other chemical exposure. 

 

Overall, we have successfully developed a high-coverage CIL-LC-MS platform for 

profiling the amine, phenol and carboxyl submetabolomes of blood. Experimental 

variations have been largely overcome and biological variations have been carefully 

assessed. We have established a metabolome database listing the common biological 

variations among healthy population. With the figure blood analysis, we can conduct more 

time-dependent studies on the diet effect and other environmental exposures, and establish 

databases of these time-dependent metabolic changes. In biomarker discovery, when 

researchers focus on a relatively small list of biomarker candidates, which demonstrate 

significant changes in a comparison study, they can use this information of biological 

variations to determine if the change of a specific biomarker candidate is truly due to the 

disease. And in clinical diagnosis using biomarkers, this information can help us determine 

the criterion range. For example, setting the fold change at 1.5 for classification may work 
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well for a biomarker with very stable blood concentration, while for another biomarker 

with significant time-dependent variation following the circadian rhythm, we may need to 

increase the criterion to a 2-fold change. Moreover, the time-dependent metabolomics can 

tell us the length of diet effect for each food metabolite and whether the subjects need to 

fast before the testing of specific biomarkers. Importantly, we will be able to determine 

how long the subjects should fast or if any computational algorithms can cope with the diet 

effect, which is very useful in clinical practices. 

 

The first work to be done in future is the enrichment of the serum metabolome database. 

The profiles of hydroxyl and carbonyl submetabolomes will be added. The overlap region 

of the four submetabolomes should be evaluated, and these metabolites can potentially be 

used to monitor the performance and consistency among the four labeling reactions. The 

dependent pairs of metabolites should also be noticed by algorithms and further studies. 

Second, the metabolite identification should be improved. We will obtain more standards 

to enlarge our standard libraries. The putatively identified metabolites in the serum 

metabolome database will also be further confirmed by MS/MS spectra. Third, for the 

finger blood analysis, we will try to simplify the sample handling process and to make the 

point-of-care analysis feasible. Microfluidic chip is a promising choice for the separation 

of blood cells and proteins. At last, with the less-invasive blood analysis method, larger 

sample sizes become more realistic to obtain, and the biomarker candidates will be 

validated for future clinical applications. In summary, qualified biomarkers come from 

well-designed experiments, careful sample handling, stable analysis platforms, and a solid 

understanding of data analysis principles. 
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Appendix 

 

 

Appendix Figure 1. Representative LC-MS chromatograms from (A) a dansyl-labeled human 
serum sample, (B) a DMPA-labeled human serum sample, (C) a dansyl-labeled human plasma 
sample, and (D) a DmPA-labeled human plasma sample (acquired from LC-FT-ICR-MS, with an 
ESI source at positive mode). 

 

 

Appendix Figure 2. Mass specrtum of a representative peak pair (dansyl-labeled analine). 
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Appendix Figure 3. (A) A representative base peak chromatogram of dansyl-labeled 0.5 µL finger 
blood, and  (B) a representative base peak chromatogram of DMPA-labeled 0.5 µL finger blood. 
(acquired by LC-Q-TOF-MS) 

 

 


