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On Detecting Fake Coin Flip Sequences
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University of Alberta, Random Knowledge Inc., and Invidi Technologies Corporation

Abstract: Classification of data as true or fabricated has applications in fraud
detection and verification of data samples. In this paper, we apply nonlinear fil-
tering to a simplified fraud-detection problem: classifying coin flip sequences as
either real or faked. On the way, we propose a method for generating Bernoulli
variables with given marginal probabilities and pair-wise covariances. Finally,
we present the empirical performance of the classification algorithm.

1. Introduction

The problem of classifying data samples as either true or fabricated is discussed at
length in [4]. Applications of such classification algorithms include the verification
of crucial empirical data and fraud detection in financial data [4]. In this paper, we
develop an approach to a simplified fraud-detection problem: classifying coin flip
sequences as either “faked” (i.e., generated by a person) or “real” (i.e., generated
by perfect flipping of a true coin).

An algorithm for classifying coin flip sequences was developed by T. Varga (see
Csörgő and Révész in [1], p. 97) . Varga had determined that real coin flip sequences
of length two hundred almost always had a run of at least six heads or tails in a row;
naive fakers rarely generated such long runs, feeling they appeared conspicuous,
and instead favoured short runs. He used this algorithm to impress his students
by classifying, at a glance, a coin flip sequence as real or fake. This illustrates an
important property of the problem: people usually have strong misconceptions of
what random behaviour entails.

To explore classification methods further, we challenged a set of undergraduate
probability students to implement accurate and robust methods of classifying coin
flip sequences. All methods had to be computationally efficient.

The Run Length Method: One can extend Varga’s method to handle many
different run lengths. For example, we can use the simple error metric err =√∑n

k=0(ck − EXk)2, where n is the length of the flip sequence, ck is the num-
ber of runs of length k found in the sequence, and EXk is the expected number
of runs of length k in a flip sequence of length n. We can then classify a sequence
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as fake if err is above a threshold, which is chosen so that 95% of real coin flip
sequences are classified correctly. We call this approach the Run Length Method.

The Binomial Method: Another algorithm, which we call the Binomial Method,
considers each flip to be a (p = 1

2 )-Bernoulli random variable, and so the number
of heads in a real coin flip sub-sequence of k flips is a (k, p = 1

2 )-Binomial random
variable. This algorithm simultaneously examines sub-sequences with k = 3, 4, 5, 6
of the 200 flips, and computes the error of a given flip sequence as the difference
between the empirical average and expected number of heads in each sub-sequence.
Based on this error metric, the sequence is then classified as real or fake.

The Frequency Method: This class challenge also led to the Frequency Method,
which estimates P (ζi = 1 | ζi−1 = mi−1, . . . , ζi−k = mi−k) for all combinations of
mj ∈ {−1, 1}, where

ζi =
{

1 : Flip i is a head
−1 : Flip i is a tail.

This estimate is computed empirically using flip frequencies in sub-sequences of
length k. A real coin flip sequence should give P (ζi = 1 | ζi−1 = mi−1, . . . , ζi−k =
mi−k) = 1/2 due to its independence; fakers, however, tend to exhibit forms of
dependence, skewing this quantity from 1/2.

The Static Probability and Covariance Method: In the Static Probability
and Covariance Method, we assume that the marginal probability of a head at any
given flip position and the pair-wise covariances between flips are constant quanti-
ties. For a given flip sequence, we estimate these quantities using flip frequencies,
and classify the flip sequence as fake if the distance between these estimates and
the expected quantities on a real coin flip sequence is greater than a predetermined
threshold.

The Filtering Method: The aforementioned algorithms use the average prop-
erties of the entire flip sequence; as a result, a faker that deviates from the expected
behaviour in one time period can compensate by later deviating from the expected
behaviour in an opposite way, such that the deviant behaviour averages out. In-
deed, this type of inhomogeneous behaviour was observed repeatedly in our faker
data. Furthermore, as noted above, these algorithms are attempting to capture the
properties of the real flip sequence, and assume that a faker will simply deviate
enough from the expected properties to be detected. It would be more powerful to
model the faker’s behaviour also.

In our approach, we remedy these weaknesses by modeling the properties of both
the real coin and the faker. To balance computational efficiency and power, we use
marginal probabilities and pair-wise covariances between each flip and the flips that
preceded it in time. Furthermore, we model the changes in the faker’s strategy as
he/she attempts to evade classification algorithms based on sample averages. The
models of the real coin and the fakers are called signals in filtering terminology,
and the coin flips in a sequence are the observations. Based on the observations,
we provide real-time estimates of the likelihood of these competing signal models
using our filtering algorithm.

This paper is organized as follows: in Section 2, we discuss how we obtained faked
data and our observations of the properties of the faked data; in Section 3, we discuss
algorithms for simulating flip sequences from marginal probabilities and pair-wise
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covariances; in Section 4, we present the problem in a particle filtering framework;
in Section 5, we present empirical results of our filtering solution implementation;
in Section 6, we compare our results to the alternative classification methods; in
Section 7, we present our conclusions and future work.

2. Fake Coin Experimentation

To obtain an understanding of how fakers evade detection, we acquired a large
sample set of faked coin flip sequences by enlisting probability students as well as
employees from two companies. They were tasked with producing fake sequences of
200 flips each of which mimicked the behaviour of a real coin as closely as possible.
The participants discussed the different properties of a real coin amongst themselves
so they became aware of what faked data would be harder to detect; it also led to
several of the alternative methods discussed in Section 1.

We imposed the constraint that each sequence must be produced by a single
individual in a single sitting for two reasons. First, this allows us to investigate
how the strategy of a faker changes over time. Secondly, we believe that the most
significant difference between the real coin and fakers is that fakers have a memory of
the recent flips, and are somehow influenced by it. If fakers were allowed to combine
flip sequences then each faker’s memory of recent coin flips would only apply within
sub-sequences; if fakers were allowed to generate the sequence over extended time
periods, their memory of recent flips would be weakened or eliminated. These two
factors could reduce the dependence between flips to insignificance.

Based on the data collected, we observed that two properties of real coin flip se-
quences proved difficult for fakers to maintain simultaneously: the marginal proba-
bility of each flip being a head should be 1/2 and the pair-wise covariances between
all current and past coin flips should be 0. For example, a faker can maintain the
marginal probability of a head at 1/2 by alternating between heads and tails; how-
ever, this will lead to a negative correlation between certain pairs of flips and a
positive correlation between other pairs. On the other hand, a faker can maintain
all pair-wise covariances at 0 by producing a flip sequence of all heads; however,
this will lead to a bias in the marginal probability of a head.

We observed that, although fakers can produce sequences with nearly equal num-
bers of heads and tails without too much effort, they tend to accomplish this by
attempting to undo what they have done: they balance out their recent flips with
their current flips. However, this produces positive covariances between near pairs
of flips, and negative covariances between far pairs of flips. More sophisticated fak-
ers also use their current flips to try to undo positive and negative correlations
observed in their past flip sequences. Under these circumstances, simple sample
averages (i.e., measurements that average the properties of the entire flip sequence)
would not distinguish fake sequences from real sequences, because the opposing
properties in different sub-sequences cancel each other out.

In total, we obtained 345 fake coin flip sequences of 200 flips each. We incorporate
the above observations into our solution in Section 4.

3. Fake Coin Simulation

In this section, we introduce an algorithm for simulating coin flip sequences, which is
required by our approach to detecting faked coin flip sequences. This algorithm must
be capable of adequately simulating real coin flip sequences; capable of adequately
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simulating faked coin flip sequences; and computationally feasible for use in the
filtering algorithm, as discussed in Section 4. It must also be capable of producing
a filtering weight. This means that we need to know the transition function of
the flip sequence as a function of the corresponding marginal probabilities and lag
covariances (see Equation (4.5) in Section 4).

We consider a real coin flip sequence to be a sequence of i.i.d. (p = 1
2 )-Bernoulli

random variables. A fake coin flip sequence has either (time-varying) dependence
between flips in the sequence, or periodic bias towards either heads or tails (i.e.,
p 6= 1

2 ). The simulation algorithm will generate a sequence of flips of either type.
The most obvious and complete solution to this problem is to model coin flip

sequences using the pmf of all possible flip sequences of length n+1. However, this
method brings severe space demands in implementation for large n. Furthermore,
each of the 2n+1 entries in the pmf are parameters that must be estimated by
the particle filtering algorithm; as the number of parameters grows, the number
of signals that must be created in the filtering algorithm must also grow so that
the parameter space is adequately represented. For these reasons, we pursue an
alternative simulation algorithm, described next.

3.1. Marginal Probabilities and Covariances

We now explore simulating the coin flip sequence using only covariances between
pairs of flips and the marginal probabilities P (ζi = 1).

By using only pair-wise covariances and marginal probabilities, we have reduced
the number of parameters from 2n+1 to only n+1 marginal probabilities and

(
n+1

2

)
covariances. We obtain further gains by assuming that, since we are generating
a sequence over time, covariances of equal lag are related (e.g., cov(ζj , ζj−l) =
cov(ζi, ζi−l) for j = i− 1, . . . , i− n + 1, l = 1, . . . , n), which reduces the number of
covariance parameters from

(
n+1

2

)
to n.

Furthermore, we can model fakers in a more intuitive way than with a pmf; for
example, we can now easily say that some fakers generate flips that are negatively
correlated with the most recent flips, explaining the frequent H → T and T → H
transitions. We can also represent pair-wise dependence with pair-wise covariances
(i.e., if cov(ζi, ζj) = 0, then ζi, ζj are independent for Bernoulli random variables).
Finally, this approach is supported by the empirical data gathered in Section 2.

Modeling only these attributes does have weaknesses. For example, pair-wise
independence does not imply full independence, and so a faker who behaves in-
dependently of any specific flip in the recent history, but is instead dependent on
some collection of recent flips, may not be adequately represented in this model.
However, this is compensated for by the gains in implementation feasibility.

3.1.1. Methods of Simulating Correlated Binary Variables.

Herein, we discuss alternative methods of simulating binary variables using pair-
wise covariances and marginal probabilities.

A good overview of methods of generating correlated binary variables is given
in [6], which reviews those proposed in [2], [5], and [3]. As discussed in [6], these
methods all require computationally-intense processes: [2] and [5] require solving
nonlinear equations; [3] involves an iterative fitting procedure. [6] also proposes a
method that does not require complicated numerical procedures, but the method
cannot generate binary variables from negative correlations.
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The above methods are not suited to our approach to the problem due to
their limitations and computational requirements. As a result, we develop our own
method in Section 3.1.2.

3.1.2. Our Method of Simulating Correlated Binary Variables

The following proposition will enable us to simulate a coin flip sequence of length
N ∈ N with given marginal probabilities and pair-wise covariances. It will also be
instrumental in setting up our observation model to follow in Section 4.2. We assign
conditional probabilities P (ζi = 1 | ζi−1 = mi−1, . . . , ζi−n = mi−n) such that we
maintain the desired covariances and marginal probabilities as i increases:

Proposition 3.1. Suppose that N, l ∈ N, {pi}N
i=1 and

{
βl

i,j

}N,l

i=1,j=1
satisfy pi ∈

(0, 1), and all the numbers on the RHS of (3.1) are between 0 and 1. Form the
conditional probabilities recursively, starting with i = 1, as

P (ζi = 1 | ζi−1 = mi−1, ..., ζi−n = mi−n)(3.1)

= pi +

∑n
j=1(mi−j × βl

i,j)
2n+1 P (ζi−1 = mi−1, ..., ζi−n = mi−n)

and

P (ζi = −1 | ζi−1 = mi−1, ..., ζi−n = mi−n)
= 1− P (ζi = 1 | ζi−1 = mi−1, ..., ζi−n = mi−n)

for each mi−1, ...,mi−n ∈ {−1, 1}, i = 1, 2, 3, ..., N , n = l ∧ (i − 1). Then, {ζi}N
i=1

are pi-Bernoulli {−1, 1} random variables with covariances βl
k,j = cov(ζk, ζk−j) for

all j = 1, ..., l ∧ (k − 1) and k = 1, 2, 3, ..., N .
Remark: N is 200 in our experiments; l is the number of flips that we track in

the recent history; n allows us to start-up when we have seen fewer than l flips (e.g.,
when dealing with the first flip, n = 0); {pi}N

i=1 and lag correlations
{
βl

i,j

}N,l

i=1,j=1

are quantities that vary in time (e.g., pi is the probability of flip i being a head).
Remark: If the right hand side of (3.1) is not between 0 and 1 for some i ∈

{1, 2, ..., N} and some mi−1, ...,mi−n ∈ {−1, 1}, then we cannot use this algorithm
to create {ζi}N

i=1 with the desired marginal probabilities and covariances. However,
we will see in the sequel that this rarely happens when {pi}N

i=1 and
{
βl

i,j

}N,l

i=1,j=1

are consistent with a Bernoulli sequence. Conversely, if the right hand side of (3.1)
is always between 0 and 1, then we can let ζ0, ζ−1, ..., ζ1−l be independent fair coin
flips (so βl

i,j = 0 for j ≥ i) and find

P (ζi = 1, ζi−1 = mi−1, ..., ζi+1−l = mi+1−l | ζi−1 = mi−1, ..., ζi−l = mi−l)

= pi +

∑l
j=1(mi−j × βl

i,j)
2l+1 P (ζi−1 = mi−1, ..., ζi−l = mi−l)

for all i = 1, 2, ..., N and similarly for ζi = −1. Therefore, we created an inhomo-
geneous l-step Markov chain, which will be used later as our observations and also
guarantees existence of such {ζi}N

i=1.
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Proof. By (3.1), one has that

P (ζi = 1) =
∑

mi−1,...,mi−n∈{−1,1}

P (ζi = 1, ζi−1 = mi−1, ..., ζi−n = mi−n)(3.2)

= pi +
n∑

j=1

∑
mi−1,...,mi−n∈{−1,1}

(mi−j × βl
i,j)

2n+1

= pi +
n∑

j=1

2n−1βl
i,j

2n+1

∑
mi−j∈{−1,1}

mi−j

= pi,

since
∑

mi−j∈{−1,1}
mi−j = 0. Now, we take k ∈ {1, 2, ..., n} and find by (3.1) and

(3.2) that

P (ζi = 1, ζi−k = 1)(3.3)

=
∑

mi−1,...,mi−k+1,mi−k−1,...,mi−n

P (ζi = 1, ζi−1 = mi−1, ..., ζi−k+1 = mi−k+1,

ζi−k = 1, ζi−k−1 = mi−k−1, ..., ζi−n = mi−n)

= piP (ζi−k = 1) +
∑

mi−1,...,mi−k+1,mi−k−1,...,mi−n∈{−1,1}
mi−k=1

∑n
j=1(mi−j × βl

i,j)
2n+1

= pipi−k +
n∑

j=1

βl
i,j

2n+1

∑
mi−1,...,mi−k+1,mi−k−1,...,mi−n∈{−1,1}

mi−k=1

mi−j

= pipi−k +
n∑

j=1
j 6=k

βl
i,j

4

∑
mi−j∈{−1,1}

mi−j + 2n−1
βl

i,k

2n+1

= pipi−k +
βl

i,k

4
,

and similarly,

P (ζi = −1, ζi−k = −1) = (1− pi)(1− pi−k) +
βl

i,k

4
,(3.4)

P (ζi = −1, ζi−k = 1) = (1− pi)pi−k −
βl

i,k

4
, and(3.5)

P (ζi = 1, ζi−k = −1) = pi(1− pi−k)−
βl

i,k

4
.(3.6)

Therefore, taking expectations,

E[ζiζi−k] = (1− 2pi)(1− 2pi−k) + βl
i,k

and using E[ζi] = 2pi − 1, we find that cov(ζi, ζi−k) = βl
i,k.

Thus, Proposition 3.1 gives us the desired pair-wise covariances and marginal
probabilities. Moreover, if every βm

i,j = 0, then Proposition 3.1 produces independent
Bernoulli trials.

The following algorithm is used to simulate the coin flip sequence.
Repeat for flips ζi, i = 1, . . . ,∞:
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1. given the past k = i−1 flips, compute P (ζi = 1 | ζi−1 = mi−1, ..., ζi−min(k,n) =
mi−min(k,n)) using Proposition 3.1.

2. set

ζi =
{

1 : if U ≤ P (ζi = 1 | ζi−1 = mi−1, ..., ζi−min(k,n) = mi−min(k,n))
−1 : otherwise

where U is a [0, 1] uniform random variable.

3.1.3. Simulation Results

Herein, we present the empirical results of the algorithm’s ability to simulate a
coin flip sequence with given marginal probabilities and pair-wise covariances. For
testing purposes, we hold pi and

{
βl

i,j

}N,l

i=1,j=1
constant for i = 1, . . . , N and denote

them as p and
{
βl

j

}l

j=1
, respectively. We use the following empirical methodology

to measure error.
This process takes two inputs: Nc and Nf . Nc is the number of pair-wise covari-

ances; Nf is the number of coin flips to be generated in this sequence. We repeat
the following process for 1000 trials for each chosen input pair Nc and Nf . In
order to sample the performance over all possible marginal probabilities and pair-
wise covariances, we use randomly-generated marginal probabilities and pair-wise
covariances in each trial.

1. Randomly generate a marginal probability p, uniformly distributed in [0,1],

and pair-wise covariances
{

βNc
j

}Nc

j=1
, each of which is uniformly distributed

in [-1,1]. Reject them and try again if they cause Proposition 3.1 to produce
a value out of bounds (further discussed in Section 3.2); otherwise, continue
to the next step.

2. Use the algorithm to generate a coin flip sequence with Nf flips.
3. Estimate the marginal probability and pair-wise covariances, denoted p̄ and{

β̄Nc
j

}Nc

j=1
respectively, by estimating P (ζi = 1, ζj = 1), P (ζi = 1, ζj =

−1), P (ζi = −1, ζj = 1), P (ζi = −1, ζj = −1), P (ζi = 1) using flip frequencies
in the generated sequence and applying Equation (3.8).

4. Calculate the error on this trial as err =
(p−p̄)2+

∑Nc

j=1
(βNc

j
−β̄Nc

j
)2

Nc+1 .

Empirical results are given in the table below. ME is the average of err (given
above) after 1000 trials.

Nf Nc ME
100 2 0.0362142
200 2 0.0242806
500 2 0.0116569

1000 2 0.00454978
100 5 0.228708
200 5 0.207152
500 5 0.176541

1000 5 0.135316

As can be seen from the above results, ME increases with Nc; it is likely that this
is due to the increased complexity of producing multiple pair-wise covariances when
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the covariances may influence the next flip in opposing ways. Also, ME decreases
with Nf , indicating that, as expected, shorter sequence samples are likely to have
higher error.

3.2. Algorithm Constraints

Herein, we investigate the limitations of Proposition 3.1 by determining the con-
ditions that cause it to produce a value x /∈ [0, 1]. We begin with a theoretical
constraint relating a particular βl

i,k to the marginal probabilities, then pursue more
difficult multiple βl

i,k compatibility questions empirically.

Proposition 3.2. Suppose l ≥ 1 and k < i ∧ (n + 1). In the case of a single
conditioning random variable, a necessary and sufficient condition for βl

i,k to be
consistent with a proper right hand side of (3.1) is

(3.7) βl
i,k ∈ [−4 pipi−k ∨ −4(1− pi)(1− pi−k), 4 pi−k(1− pi) ∧ 4(1− pi−k)pi] .

Proof. We have by (3.3) that

P (ζi = 1 | ζi−k = 1) ∈ [0, 1]

⇔
4 pipi−k + βl

i,k

4 pi−k
∈ [0, 1]

⇔ 0 ≤ 4 pipi−k + βl
i,k ≤ 4 pi−k

⇔ −4 pipi−k ≤ βl
i,k ≤ 4 pi−k − 4pipi−k .

Similarly,

P (ζi = 1 | ζi−k = −1) ∈ [0, 1]

⇔
4 (1− pi−k)pi − βl

i,k

4(1− pi−k)
∈ [0, 1]

⇔ 0 ≤ 4 (1− pi−k)pi − βl
i,k ≤ 4(1− pi−k)

⇔ −4 (1− pi−k)pi ≤ −βl
i,k ≤ 4(1− pi)(1− pi−k)

⇔ −4(1− pi)(1− pi−k) ≤ βl
i,k ≤ 4 (1− pi−k)pi.

Neither P (ζi = −1 | ζi−k = 1) nor P (ζi = −1 | ζi−k = −1) require additional
constraints.

Using

cov(ζi, ζj) = 4[P (ζi = 1, ζj = 1)P (ζi = −1, ζj = −1)(3.8)
−P (ζi = 1, ζj = −1)P (ζi = −1, ζj = 1)]

(with ζi = ζi−k on sets with maximal and minimal probability), we see that (3.7)
is exactly the constraint required for βl

i,k to be a valid covariance.

The next question to ponder is: Are there βl
i,k compatibility issues that limit

the applicability of our algorithm (i.e., could covariances from a valid covariance
function fail to be implementable by our algorithm)? The following simple exam-
ple answers this question in the affirmative by producing values outside [0, 1] in
Proposition 3.1:
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m3 m2 m1 P (ζ3 = m3, ζ2 = m2, ζ1 = m1)
1 1 1 0.2
1 1 −1 0.25
1 −1 1 0.15
1 −1 −1 0.06

−1 1 1 0.11
−1 1 −1 0.225
−1 −1 1 0.004
−1 −1 −1 0.001

Using the above pmf and Proposition 3.1, we compute

P (ζ3 = 1) +
(−1)× β2

3,1 + (1)× β2
3,2

22+1P (ζ2 = −1, ζ1 = 1)
= 0.66 +

(−1)×−0.2724 + (1)× 0.17504
8× 0.154

≈ 1.023.

However, as we see below this is a very limited problem.

As described by [7], the bounds on the covariances become tighter when we
have more constraints imposed by conditioning on more than one random variable.
Therefore, we further pursue our investigation of the constraints on Proposition
3.1 empirically to determine if there are multiple βl

i,k compatibility questions. We
use the following empirical methodology to determine if and when Proposition 3.1
produces a value outside of [0, 1] when ζ1, ζ2, . . . , ζn is a sample from a proper pmf.

1. Generate a random pmf pmf 1 of n binary random variables by generating
each of the 2n entries with a [0, 1] uniform random variable; each entry is
then normalized by the sum of the entries so that each entry is in [0, 1] and
the sum of the entries is 1.

2. Calculate the marginals and pair-wise covariances from pmf 1.
3. Using these marginals and covariances, use Proposition 3.1 to generate a pmf

pmf 2.
4. Calculate the marginals and covariances from pmf 2, and compare them to the

marginals and covariances computed from pmf 2; According to Proposition
3.1, the marginals and covariances should be equal. If they are not, then it
can only be because (3.1) produced at least one number outside [0, 1].

It should be noted that pmf 1 and pmf 2 need not be equal: Proposition 3.1
generates a pmf giving the desired marginals and covariances, but there are multiple
pmf’s capable of producing a set of desired marginals and covariances.

The empirical results of this methodology are given in the table below. Nv is
the number of binary random variables used in the experiment; Nt is the number
of trials of the experiment; NWB is the number of trials in which the procedure of
Proposition 3.1 produced a pmf (pmf 2) with all entries within the bounds of [0, 1];
WB = NWB/Nt; C is the fraction of pmf 2’s that had the expected pi and βl

i,k

when Proposition 3.1 produced a pmf 2 with all entries within bounds.



116 Michael A. Kouritzin, Fraser Newton, Sterling Orsten, and Daniel C. Wilson

Nv Nt NWB WB C
2 181040 181040 1.000000 1
3 181040 158633 0.876232 1
4 181040 155366 0.858186 1
5 181040 163441 0.902789 1
6 181020 174530 0.964148 1
7 181020 180137 0.995122 1
8 179000 178985 0.999916 1
9 179000 179000 1.000000 1

10 179000 179000 1.000000 1

The central conclusion that can be drawn from this methodology is that Propo-
sition 3.1 has stricter constraints on βl

i,k than a pmf entails, since WB 6= 1 for some
experiments. Also notice that for Nv = 2, WB = 1; this is because the constraints
on βl

i,k imposed by Proposition 3.1 in the bivariate case are no stricter than those
imposed by the pmf or the marginals pi, as described by [7]. Furthermore, as Nv > 2
increases, WB → 1; however, this is likely due to the empirical methodology of gen-
erating pmf’s uniformly rather than indicating that the constraints on βl

i,k become
looser as Nv > 2 increases. Finally, note that C = 1, which further supports the
correctness of Proposition 3.1 in practice.

4. The Filtering Problem

Herein, we present the fake coin detection problem in a filtering algorithm frame-
work. As noted previously, we require adequate and efficient models of the potential
signals and the observations. In this problem, the signals are time-inhomogeneous
marginal probabilities and covariances as well as an indicator of real coin or type
of faker. The observations are the coin flip sequences. We begin by describing the
signal and the observation.

4.1. Signal

In the sequel, we think of the marginal probabilities pi and the covariances βl
i,k as

being unknown or random and try to estimate them or, rather, determine which
model they conform to. In filtering terminology, we call the probability and covari-
ances the signal. In the simplest case, the signal does not vary in time but consists
of random but static quantities.

4.1.1. Trivial Faker Signal

Here, we take the given parameters pi and
{
βl

i,j

}l

j=1
to be nearly time homogeneous.

In particular, suppose that ε ∈ (0, 1
2 ] is small. Then, we suppose that

(4.1) pk+1 = pk + εpk(1− pk)ξp
k and βl

k+1,j = βl
k,j + ε(βl

k,j + 1)(1− βl
k,j)ξ

j
k.

Here, {ξp
k}
∞
k=1

and
{

ξj
k

}l,∞

j,k=1
are all independent p = 1

2 -Bernoulli {−1, 1} dis-

tributed random variables, independent of everything else.
We can let Xk =

(
pk, βl

1(k), ..., βl
l(k)

)T and find that

Xk+1 = Xk + εσ(Xk)ξk,
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where σ and {ξk}∞k=1 are defined implicitly through Equation (4.1).
For efficiency and robustness reasons, it is often better to run particles according

to (4.1) even when p and
{
βl

j

}l

j=1
are time homogeneous.

4.1.2. Random Sign Change Signal

In this section, we consider a more sophisticated faker.
The motivating idea is that a faker will try to undo what he/she has already done,

as discussed in Section 2, which would be modeled as a sign change for covariances
or switch of bias between heads and tails for the probability. We take

{
βl

0,j

}l

j=1

to be small enough and p0 to be close enough to 1
2 that the probabilities given by

Proposition 3.1 are in [0, 1]. We let

pk+1 = pk + ρp
k(1− 2pk) + εpk(1− pk)ξp

k and

βl
k+1,j = ρk,jβ

l
k,j + ε(βl

k,j + 1)(1− βl
k,j)ξ

j
k

(4.2)

where ε > 0 is small, {ρk,j} , {ρp
k} are independent and P (ρk,j = −1) = P (ρp

k = 1) =
1 − P (ρk,j = 1) = 1 − P (ρp

k = 0) = δ for some small number δ > 0 and {ξp
k}
∞
k=1

,{
ξj
k

}l,∞

j,k=1
are all independent 1

2 -Bernoulli {−1, 1} distributed random variables,

independent of everything else. This small δ captures the occasional switching of
strategies by fakers over longer sequences of coin flips (e.g., switching between
alternating heads and tails to long runs of heads and tails), which is why we keep δ
small. Equation (4.1) models a faker who is being influenced by the recent history in
a manner which may change slightly over time; Equation (4.2) introduces switching
between multiple strategies in an attempt to deliberately “average-out” the evidence
of any single strategy.

A variant of this model would be to wait a geometrically distributed time before
changing a randomly selected subset of m of the covariances, where 1 <= m <= l.
To make things more precise, at this geometrically distributed time we let each
covariance either switch sign or not with equal probability and we let the bias
switch between heads and tails with some probability.

The faker procedure often produces a collection (of marginal probabilities and
covariances) that are inconsistent with a covariance function. Moreover, it infre-
quently produces a valid collection that is incompatible with Proposition 3.1. Both
situations are treated the same in the sequel by assigning an impossible observation
sequence.

4.1.3. Real Coin Signal

A true coin’s flips are i.i.d. p = 1
2 -Bernoulli, i.e., p0 = 1

2 and βl
0,j = 0 for j = 1, ..., l

and

(4.3) pk+1 = pk and βl
k+1,j = βl

k,j .

So our signal is

Xk =

 θ
pk{

βl
k,j

}l

j=1

 ,
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where

θ =

 1 : trivial faker, with probability 1
4 , for example

0 : random sign change, with probability 1
4 , for example

−1 : real coin, with probability 1
2 , for example,

and -1, 0, and +1 are arbitrarily assigned values for each of the above three cases.
When θ = 1, 0,−1, we evolve according to Equation (4.1), (4.2), and (4.3) respec-
tively.

4.2. Observation

The observations are the real or fake coin flips described in the first section. They
are modeled as a Markov chain according to the equations described above. In
particular,

P (ζi = 1, ζi−1 = mi−1, ..., ζi+1−l = mi+1−l | ζi−1 = mi−1, ..., ζi−l = mi−l)

= pi +

∑l
j=1(mi−j × βl

i,j)
2l+1P (ζi−1 = mi−1, ..., ζi−l = mi−l)

and so

P (ζi = −1, ζi−1 = mi−1, ..., ζi+1−l = mi+1−l | ζi−1 = mi−1, ..., ζi−l = mi−l)

= 1− pi −
∑l

j=1(mi−j × βl
i,j)

2l+1P (ζi−1 = mi−1, ..., ζi−l = mi−l)
,

where we substitute the particular signal model of interest in for {pi}∞i=1 and{
βl

i,j

}l

j=1
.

We define the observations as the most recent l coin flips: Yk = (ζk, ζk−1, ..., ζk−l)
T ,

so

Yk =


mk

mk−1

...
mk−l



→ Yk+1 =




1
mk

...
mk+1−l


with probability
pYk→Yk+1(Xk) =

pk +
∑l

j=1
(mk−j×βl

k,j)

2l+1 P (ζk−1=mk−1,...,ζk−l=mk−l)
−1
mk

...
mk+1−l


with probability

1− pk −
∑l

j=1
(mk−j×βl

k,j)

2l+1 P (ζk−1=mk−1,...,ζk−l=mk−l)

.

Note that, as discussed in Section 3.2, pk +
∑l

j=1
(mk−j×βl

k,j)

2l+1 P (ζk−1=mk−1,...,ζk−l=mk−l)
is ca-

pable of producing a value outside of [0, 1] (i.e., the signal marginal probabilities
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and pair-wise covariances are incompatible with Proposition 3.1). In this case, we
transition to a cemetery state 0 that receives no weight and cannot be revived:

Yk =


mk

mk−1

...
mk−l

 → Yk+1 =


0
mk

...
mk+1−l



→ Yk+2 =


0
0
...
mk+2−l

 → · · · → Y∞ =


0
0
...
0

 .

The above two paragraphs give pYk−1→Yk
(Xk) as required in the sequel.

In the sequel, we will also be interested in the information, FY
k $ σ{Y1, ..., Yk},

generated by the observations up to time k, as well as FXY
k $ σ{X1, ..., Xk;

Y1, ..., Yk}, given by the signal-observation pair up to time k. As in classical fil-
tering, the observation model is not perfect, prompting questions like: “Is there a
robust nonlinear filter for this model?”

4.3. Particle Filter Approach

Developments analogous to classical nonlinear filtering theory, to be published else-
where, establish that we only need to approximate

(4.4) µj(dx) .=
Ē[1Xj∈dxηj | FY

j ]
Ē[ηj | FY

j ]
.

Here Ē is the expectation with respect to a reference probability measure P̄ , where
X is independent of the observations and the observations are a vector obtained by
storing the n most recent real coin flips, and

ηj =
j−1∏
k=0

2pYk→Yk+1(Xk)

is the weighting function. Now, suppose that we introduce independent signal par-
ticles {Xi

k, k = 1, 2, ...}∞i=1, each with the same law as the signal, and define the
weights

(4.5) ηi
j =

j−1∏
k=0

2pYk→Yk+1(X
i
k).

Then, it follows by deFinnetti’s theorem and the law of large numbers that

1
N

N∑
i=1

ηi
jδXi

j
(dx) ⇒ µj(dx).

Moreover, we can apply re-sampling to improve performance. Finally, we convert
back to the original measure

P (Xj ∈ dx | FY
j ) =

µj(dx)
µj(1)
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so 
p̂j

β̂j,1

...
β̂j,l

 = E(Xj | FY
j ) =

∫
xµj(dx)
µj(1)

≈
1
N

∑N
i=1 ηi

jX
i
j

1
N

∑N
i=1 ηi

j

.

5. Filtering Results

Herein, we present the filter’s classification performance on coin flip sequences.
Performance P is calculated as the number of correct classifications divided by the
number of trials Nt; we use an equal number of real and fake coin flip sequences.
We also present the performance in relation to the number of particles Np that
were initialized and the number of variables Nv that were tracked; the number of
seconds S required on a computer is also given. Recall that if we have Nv variables,
we have Nv − 1 pair-wise covariances. For each Nt, Nv, Np combination presented
in the table below, the results using the best performing parameters are given.

Nt Nv Np S P
690 2 200 189.691 0.87971
690 2 5000 1100.15 0.87971
690 2 1000 340.456 0.885507
690 6 200 222.646 0.897101
690 6 25000 8299.74 0.897101
690 4 200 206.154 0.898551
690 6 1000 466.005 0.901449
690 6 5000 1729.94 0.901449
690 4 1000 402.127 0.905797
690 4 125000 32399.4 0.905797
690 4 5000 1402.79 0.907246
690 4 25000 6585.35 0.910145

A number of conclusions can be drawn from these results. First, we examine
the effect of increasing Np. Notice that as Np increases, holding Nv, Nt constant, S
increases as expected, since there are more particles that must be updated for each
observation and evolved. Furthermore, the experiments show that the performance
is relatively independent of the number of particles, provided that at least 200 are
used.

Secondly, we examine the effect of increasing Nv. As Nv increases, holding Np

and Nt constant, S increases as expected since calculating Proposition 3.1 has a
time complexity in O(n2), and the procedure of Proposition 3.1 is used to update
the particle weights with each observation. However, as Nv increases, holding Np

and Nt constant, P does not consistently increase; in fact, the best observed per-
formance is achieved with Nv = 4. This may be because most fakers are strongly
influenced by their very recent past, but are weakly influenced by their distant past.
By attempting to represent the distant past with a high Nv, we are increasing the
complexity of the signal and the difficulty of the estimation task, but there may be
very little potential performance gain.
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6. Comparative Results

In this section, we present the classification performance of alternative methods,
including methods discussed in Section 1.

The first method, introduced in Section 1 and described in more detail in Section
3.1.3, assumes pi and

{
βl

i,j

}∞,l

i=1,j=1
are static quantities and statically estimates

the marginal probability and pair-wise covariances (denoted p̄ and β̄l
j , respectively)

using flip frequencies in the coin flip sequence. The distance between the estimates
of p̄ and β̄l

j and the real coin (p = 1
2 and βl

j = 0 for j = 1, . . . , l ∧ (k − 1) and
k = 1, 2, 3, . . .) is used as an error metric; a threshold on the error metric is then
empirically determined such that 95% of real coin flip sequences fall within the
threshold. For a given sequence, if the error metric falls within the threshold, then
the sequence is real; otherwise it is fake. This yields a performance of P = 0.894203
on the same dataset used in Section 5.

The second method, developed and implemented by applied probability students
Kevin Swersky and Mark Zschocke, extends Varga’s method by empirically deter-
mining the expected number of runs of lengths 4, 5, 6, 7 in a real sequence of 200
coin flips. A threshold on the error metric is then empirically determined such that
95% of real coin flip sequences fall within the threshold. The classification algorithm
for each sequence is then as follows: if the error metric is within the threshold, then
the sequence is real; otherwise, it is fake. This yields a performance of P = 0.885507
on the same dataset used in Section 5.

The third method we applied increases its performance by employing a weighted
combination of alternative methods. It examines the following properties of the
sequence: the number of heads in sub-sequences of length k = 3, 4, 5, 6, which
would follow the (k, p = 1

2 )-Binomial distribution in a real coin flip sequence; a
frequency-based estimate of P (ζi = 1 | ζi−1 = mi−1, . . . , ζi−k = mi−k), which
would show independence in a real coin flip sequence; a frequency-based estimate
of the pmf for sub-sequences of varying lengths k, which would have approximately
equal entries in a real coin flip sequence; a count of the number of runs of length
1, which tend to be over-represented in faked flip sequences; and a count of the
number of switches between heads and tails, which also tend to be over-represented
in faked flip sequences. This yields a performance of P = 0.904348 on the same
dataset used in Section 5.

The fourth method we applied, which we use as a performance baseline for other
classifiers, is an implementation of Varga’s original method. This method classifies
a flip sequence as real if and only if it contains at least one run of at least six
heads or tails in a row; otherwise the flip sequence is classified as fake. This yields
a performance of P = 0.672464 on the same dataset used in Section 5.

7. Conclusions and Future work

This paper’s work focused on two areas: the development of a method of simulating
correlated binary variables; and the application of nonlinear filtering to the problem
of detecting fabricated data.

Proposition 3.1 gives conditional probabilities for binary variables with given
marginal probabilities and pair-wise covariances with a reasonable time-complexity
(O(n2)). Furthermore, our analysis in Section 3.2 showed Proposition 3.1 to have no
more constraints than those imposed by the pmf in the bivariate case. However, we
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also found that the algorithm has (slightly) stricter constraints than those imposed
by the pmf in the k-variate case when k > 2.

We will further pursue development of this algorithm in two ways: first, we
will further develop analytic forms for bounds on Proposition 3.1 by extending
Proposition 3.2 to the k-variate case; secondly, we will extend Proposition 3.1 to
include higher-order terms, as described in [7], so that the bounds on pair-wise
covariances can be made looser when applying Proposition 3.1 to the k-variate
case.

As the empirical results show, our initial application of nonlinear filtering resulted
in an algorithm that beat alternative (in one case very elaborate) methods described
in Section 6, even when the alternative method examines far more properties of
the coin flip sequence. Furthermore, our algorithm provides a real-time estimate
of the likelihood of a faker at any point in the coin flip sequence; the alternative
methods are empirically tuned to the properties of a sequence of 200 flips, and
thus only provide a classification of the coin flip sequence once all 200 flips have
been observed. However, our performance appears to plateau, or at least suffer
from diminishing returns, as the number of covariances and particles are increased.
Overall, the results are promising and encourage future development, especially on
the signal model.

The classification algorithm can be further developed by extending the faker
models and by attempting new methods of modeling the signal. Faker models can
be extended by improving the existing faker strategy models; for example, we could
extend the evolution of the covariances with a finite state machine. New signal
models will largely be motivated by the weakness of the current signal model: an
inability to capture the full dependence of each flip on the recent history. One alter-
native is to use the full pmf, which would contain the full probability information
about a coin flip sequence; for a recent history of length n + 1, we will have 2n+1

parameters. Another alternative is to directly use the conditional probability of the
current flip given the recent past, which gives all dependence between the present
and the past and the marginal probability of the current flip; for a history of length
n + 1, there will be 2n parameters. These signal model alternatives are much less
computationally efficient, but they may offer significant performance gains.
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