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: ‘ ThlS thesis reviews recent work in quantum field theory
based on solutions/to c- number field equations which possess
topologically nonetrivial boundary conditions» Chapter I
;introduces the basic concepts within the framework of

’several model field theories and outlines some relevant '
| topoloéical methods and results. In Chapter II the analysis
ds‘egtendedhto‘pure‘Yang—Mills theory in Euclidean space-and N
Cthe pseudoparticle‘SOlution is derived - Chapter III intro-
k’°'cal solitons and pseudoparticles into quantum'
: field theory by utiliZing the path integral formulation of
'fquantdm field theory. ThlS chapter assumes- no previousv
”knowledge of path integral quartization and develops the
'formalism for bot gauge fields and ‘scalar and fermion |

fields Chapter IV introduces)p0351ble applications of the

analysis of the preceding chapters/to elementary particle

physics.
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 CHAPTER I

CLASSICAL FIELD CONFIQYATIONS WITH
NON-TRIVIAL TOPOLOGY

L

-

1.1 Zntroduction and Motifation

'Quantum field theory has traditionally been approached
by solving the free field equations and then incorporating
the interaction terms by a systematic expansion in powers ofA
the coupling.' This approach has proven extremely successful
‘for quantum electrodynamics and that theory remains the most
raccurate theory known. The advent of non- -Abelian gauge
theories, however, has made 1t apparent that perturbation
theory is inadequate to give a complete description of the °
corresponding quantum field theory. For example, the problem
of'quark'confinement’is expected to involve effects of gauge>
fields 1n regions where the coupling constant is extremely
large or even infinite;/and a perturbatiOn expanSion in the
coupling becomes meaningless. ; 7

| The inherent limitations of perturbatio/ theory- can
be. traced to the non-linear nature of quantum field theory.
‘The perturbation expansion, in contrast, involves only the
free fields which are solutions to the linear free field
equations. Fielqﬁconfigurations with properties peculiar
to the non-linearity of the interacting field configurations
may therefore be missed. It 1s just such configurations -
which may give the qualitatively new effects expected in aon-
Abelian gauge theories This 1s .especially true since the sequa~

tions of motion'for non—Abelian gauge fields without the

~

1
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presence of matter are in themselves n—linear,yand R
@ . - L]

3

asymptotically free fields don't exist.

Applied mathematiclans have in fact been aware of . . <.

qualitatively new effects in non- linear field theo/}e ~for

some time. The corresponding fileld configurations are’ , '
‘ &
commonly referred to as solitqrs or solltary wavestand-were

first explored in hydrodynamics. These‘solitary anESIcEn be

found as exact solutions to certaln non-linear‘field equations -
§ 3
. and have been shown to posspss a number of peculiar proper— v '

(1)

ties In particular, solitary waves do not dissipate as

do ordinary waves and if several .isolated solitary . ‘waves are :

[}

allowed to interact they will emerge from the interaction .'.g

*

region unchanged in form or velocity. "The similarity of this,'

behavior to that of elementary particles is certainly sugges— T

tive. : : - : ‘: |
The complexity of the combined system of interacting

field equations and commutation” relations of a realistic

quantum field theory makes an analagous searcq for exact !

-
2

solutions impractical. If the quantum fields are treated as'
c-numbers, however, exact solutions of the field equationsu;
.ean be found s some cases. These soﬂutions exhibit many of
~the properties of solitary waves and are commonly referred to
as*s~;dtons These soliton\i\ngyeyer gain their stability
in a completely different manner than the solitary waves, oﬁ
~applied mathematics. there the solitary waves, mentioned :
earlier, gain theilr stability from a balance between disper-‘;_;

. [}
‘-sion and self-interaction, the field configurations underf

L - o




consideration here are stable due to;the peculiar topology of

Co +
,their boundary conditions., These peculiar boundary conditions

\
are ‘made possible by the existence of degenerate minima for

fthe field energy. Thus the field theorices which exhibit these

"topological solitons" are restricted to the. classical versions

g_.of quantum field theories with spontanyﬁusly broken symmetry

o5y

;.

\

¥

';(although techpically speaking, dh?pter IT deals with ah

'exception to th's rule)

Associated with their classical stability, topological

.solitons possess a conserved topological current and a

2

: corresponding topological charge / This charge is always'

‘forced_to‘take on discretevvalues'and is‘in many ways analagousé

to a conserved quantum number emerging at a purelyfclassical

level. SRR ) s

©

The present chapter explores some’ of the properties of

these classicalnfield configurations within the framework of

S

a few model theories, empha5121ng their topological proper-.

@

‘ties ‘ Chapter IT also deals With solutions to c-number

field equations which possess topologicallJ non- triv1al

' boundary ~onditions. These are conSidered in. Euclidean _’,

space,‘however- and as will become clear later; they are, for

 this reason, not purely classical configurations when

cons1dered in’ Minkowski space
Although such "claSDical" configurations are

interesting in their own right from the’ point of view of

"Relativistic field theories may also be constructed which”

‘-exhibit soliton solutions whish are stable by dynamical rather

than topological mechanisms
considered Here.

but these will not be

@

1
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mathematics,. their primary significance arises from their

/ - x3

role in the.complete quantum theory, and this will be the

}‘concern ofNChapters-IIIfand Iv..

,1,5' The 6" Kink z~;, PR e T -

| The simplest example of a classical field theory which
' exhibits topologically stable soliton ‘type soiutions is the 4
¢ theory in 2. dimensions (l space, 1 time). = This can be:
described by the Lagrangian |

. ./'
N

=tf—~’de<¢>.= .f,d_x_’[%s b,03% - u(e)] Ty
with the fleld potential |
: R U
o b 2 , . ’
CUG) = 5ol - mfef ¢ Ts Xt
Here u=0/l~(t X) and the'integral is'over 1 dimensional space.
This Lagrangian could be. interpreted as describing
+
the dynamics of . scalar "mesons" ' in a A.dimensional world,
however{ the sign»oi the'maSS term is wrong. When this
-ftheory is‘used'to illustrate?sbontaneous symmetry breaking a

_ new "shiftedﬁ,field)ol'is defined

. ;o9 =4 - (_mz/k)2
"‘ -\\b'\/ ) E § . » ‘ . J

and the’field'potential‘is rewritten in terms of ¢'’

~ -

S U(e') = %¢,u + 2m/X ¢ 3 +.£§%l— 912

5

-

. .
Everything in this chapter isg purely classical and any
terminology borrowed from quantum field theory i1s used
merely for convenience. .




i

e (T

‘Thus the physical "mi!on"‘has mass‘ém'and'a cublc self-

>

interaction in addition to the- original quartic self-

‘ 'interaction;. Now, the original form of the Lagrangian was

invariant‘under the transformation ¢ > —¢ but ‘the cubic
self interaction of the physical meson clearly breaks the

symmetry d' - —¢' and the properties of the physical mesons’ )

would conceal any ev1dence of the underlying‘reflection

symmetry of the basic fields. That is?_reflection symmetry;,_
has been’spontaneously broken In this instance, however,
the obJects of. interest are not the mesons that would emerge

from quantis1ng ‘the field d or ¢' but rather the clumps of

field energy, solitons, which already look like particles in .

| the cla331cal theory. For this reason i1t is unimportant

.whether the - Lagrangian is written in terms of ¢ or ¢' and

for convenience theooriginal field ¢ w1ll be used

vThe_classical;field‘energy is given by'

E'= J dxH GL ¢ - L]
--”j*dx[%mz + %—_(mﬁ +Ue)] | vf a.2)
where § = 30 =22 ana a9 =%%’

The classical vacuum or ground state can -be defined as

~ the field c0nfiguration for which the energy . is a minimum

(redefining the field potential always makes possible putting
this minimum at zZero. enercy) From equation (1 2) it can be

seen that a ground state mus?t correspond to a field configur-

- ation with ¢ independent of.space and time ‘and equal-to‘a

~ .
. P s




zero of“U(¢) Figupe 1 shows the form of the field potential N

given in equation (l 1) The two minima at ¢ .+m//_
correspond to degenerate ground s%ates which break the i’
@ *+ - symmetry of the Lagrangian.3 This degeneracy of the .

classical vacuum is. a characteristic of all theories with

ffspontaneously broken symmetry and is precisely what allows

the -existence of soliton type solutions.

-

e

e

' Figure 1. The fileld potential of the kink model as a .

function of ¢

vy : S R . 3 i Lt R [T N R I S
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Co Applying the Euler Lagrange equations to the ¢

;Lagrangian gives - f'f‘l'.. o y'iiv k»' N 'g".n
o :‘aU' L 3 ‘2\\47 \ PR
e 5y = (;5 - —,—2)9 27 - ‘zm; ¢ =0 - .3

93X

Now' if,the'o topological solitons are to possess true,

soliton characteristics; they m' represent stable, finite_

energy, non-dissipative solutions_ o the above equation

" The last criterion can clearly be met if ¢ is restricted to

-

- be static,.in which case (l 3) becomes .
.2 Sl B 1d . 'f
e L
. This can bée integrated’oncevtoggiye;\

R

L1e3¢y2 _ o o G D
237 - o) N T .<i.5>.
. ' ‘ o BN v
Ny
where the intevration constant has been discarded Eo\keep the

\

'energy integral finite - This allows the energy integral to\

'be simplified_to

S ax[309)% + ]

"

N dx(%¢)27=de[2U(¢)J% R ,<i26>

The requirement of (classical) stability can be made-
vamore precise by looking at the' time dependent equation of

motion (1.3). A time dependént solution to this equation'

can be written | ~ ‘ s T
$06,8) = 6 (x) + 8(x,8)  F (1.7)
e T

o



where G(X t) is a time dependent perturbation added to the‘
static solution ¢ (x) G(X t) can.be expanded in a Fourier

"series?’ |
iwkt

b S 8(x,t) =T e 5
: Lo . : .k n‘ o - ™.

Substituting (1.7) into (1.3) with the above form for
ﬂégx,t) gj:»Ve,S:' ’ ' :
»bv, o ‘, e = : .

' : ' - -B¢Zx t5 e
‘Whére.ﬁoifirst;order-in;d(x;t) aU/a¢(x t) is ': L S
.a¢zx’t;"_ a¢ ¢=¢”,* A 6<Xrt) + f”f.’i
‘fhijk{¢s ¥ 6(x,t)}‘+r§_;

Cana . DO{ze Ky (x)} + 30 py e

‘kax? o (X)L f[<if8?ff

a p%tential e R é’ ;;_r : o

. . , 3 U'T"fg SR

SR e E T e R e
v P g o)

»Thus the requirement of classical Suability can be" simply

reduced to the demand that the Schrodinger equation (1 8)
_have non- negative eigenvalues This~assures that. small
perturbations will not grow in time Equation (l 8) can alsov

be. derived by demanding that ¢ (x) be a 1ocal minimum of E[¢]




‘u”inbfield space. That is o
s SE[¢]] 0= - d"¢g +
. 3¢(x ) ¢=¢S . dx2 5 |
is the requirement that ¢ (x) be a solution ahd thus the
demand that T "
. ; A N
O N ST SR i ‘ » o
. 6 E[¢] r_as 37Ul e | .
¥ = [- — + =—5|". 1 s(x-y) (1.9)

" Dbe a'non;negatiye.operator is the requirement that ¢ (x) be

‘(p'a local minimum 'Studying the eigenvalue spectrum of this

”boperator is again Just the study of equation (1. 8) fThe
l.importance of class1cal stability as stated An this manner
Scan be seen by noting that when the theory is finally
vquantized ¢ must represent a state which lS not destroyed
‘by quantum fluctuations

An important property of the stability equation (1. 8)
"is that it always possesses a zero eigenvalue associated
nwith the ‘so called translation mode This can be seen by :
bdifferentiating equation (1. M) with respect to X. ‘This.gives

2 -

R . ut +,9~.—‘§ ! ot =0 . (dao)
o ax® ae ¢s=¢s Da
de , -
‘Where'o',f 5 Thus ¢ is a. solution of equation (l 8)

7with w= O "~ The reason this solution is called the translation

"mode is that it follows from the translation symmetry of the- -

. 1theory That is if'¢}(x) is a solution S0 isv¢s(x+a) due to

‘ the arbitrariness of the choice of origin 'i'But'

- és(lta)f"¢s(19'* a¢;(x) to first order. Comparing this with,"

ETITP. T T TP PRV S RS Y

o pa ey A A e B E s d o

T S 2
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l

equation (l 7) it is clear that ¢! (x)/represents a
: fluctuation with w= 0 Similarly, any symmetry of the theory

,gives rise to a zero frequency mode since expanding ¢ along,gm

.»'

the symmetry'direction in field space will give a 6¢ which

o
2t
7

) represents a perturbation with w=0.
The above argument for the existence of the transla—

tion mode also holds for more than one spatial
' ”f . o

dimension. The stability equation (1. 8), however, now . -

posseSSe;\an'n—fold degenerate translation mode corresponding
to the freedom to make(translations in any of the n directions 'i
This conclusion allows a simple proof of an. important theorem. |
'The theorem states that for a theory with scalar fields'

obeying an equation of motion (l 3) (for arbitrary U(¢)) .

"there ex1st no nonSingular; time independent solutions of

'finite energy for spage dimens1on greater than one. This.'

:theorem follows by merelj recalling that for ‘the usual

Schrodinger equation the lowest eigenstate is nondegenerate

However for space dimension n greater than one, the zero °
’ffrequency mode 1s n fold degenerate Thus . w2=0 cannot be .

’ythe lowest eigeeyalue and solutions with w2<0 must exist.
'~Hence perturbations will grow in time and no static solutionsz

can exist. | R
| ' (3)

The above'theorem‘was originallyxproven by Derrick

using a Simple scaling argument He demanded'that static
solutions be stable under transformations of the form

o(x) + ¢ (A~ %) which can be interpreted as a "stretching

&
o
]
o
o
3
A

of the soliton.‘hFor-a static solutionvthe ‘energy of the N




11

soliton is given by
E=T+V\ ..

-~ where . T =% [ (¥6)%a"  and V= [U(¢)d"x
'With nfthe"number of space dimensions.f Under the transfor-

. 4

™ mation ¢(X) % ¢(A-l;)

T +An'2T and VAW &
e, EM)=ATTCr 4y
' B o a .o
Now for stability, we require X = 0 which implies
| : ; A=l B
(n=2)T + nV = 0 . (

. However, since both T and V are positive;'this condition can
wonly be satisfied for n=1. This shows that a static solution
lwill minimize the energy’ integral only in one space dimension
‘and hence in higher dimensions static‘"solutions" will not
satisfy the field equations.

Returning to the simplified field equation for ¢,

_equation (1. 5),”one can easily check that a space dependent

solution is:

. 6, = ;//fetanh[m(x—xo)]<»

Inserting_this‘in equation'(1.6) gives;

_b o3
E = 3"? /A: | v | 2




This shows a characteristic property of all soliton solhtionsb
that 1s, the energy'or mass of the solitcﬁ is alWaye.inversely
prOpdrtional to the’coupling constant. Figﬁre 2 shcﬁs the
form of the kink solution ¢k The kink interpolates bebween
different zeroes of U(¢) at += and 1ts energy is concentrated

Qnear $=0; x=xol This figure al;o clearly shows the topologi-

ﬁ{ al nature of the kink solution. Finite.energy requirements
fﬁéix l¢| + m/vYX (zero of U(¢)) as x + + ». The discrete

:;}tgfe of the zeroes of U(¢) thus- keeps a zero of ¢ with

SBge A
x{jgg.trapped in the finite region of space To allow the

‘%
kinﬁ to dissipate would require contlnuously distorting ¢

over 1/2 of the 1- D space so that the value of ¢k correspond-\
3¢ |

ed in the + directions. This would require atﬁ‘# 0 over an

infinite region'and hence infinite energy.

— . e - ar- — om—  — — — n

e

\]
*

Uy

Ko

Figur£.2.‘ The kink'solutipn.
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| LIt 1is possible to associate a conserved current JH

with this topologlcal: conservation law
Mo MV
Jo = e’ 3v¢

where 801 = —elo =1and €20 = ¢l < 0 and a corresponding

topologicaltcharge ar "quentum number"
k= [ axd® = [ dé/dx dx = ¢(x)| - ¢(x)
. ' X+ x+..oo

When the ¢ field 1is in the kink sector, ¢ takes different -

\

values as x .+ +» and k is non-zero, whereas when ¢ approaches
- BN ) . -

the same "vacuumﬁ as x‘ﬁ + ®, k=0 and there is.no topological
stability. | . S |

" This intuitive understanding of ;the stability of the
kink may be verlfied by substituting ¢k into the stability

s

equation (1.8). This gives:

(- 2 4 im? - J——i——]w (x) = w2y, (x)

' dx _ cosh mx:
This equation'can be solved exactly and,is found to have a
non—negative eigenvaiue spectrum beginning with the zero
frequency'translation mode Wy Thus the  kink solution is
indeed stable.

The kink solut%on nhs been studied extensively, in
both- classical and quantum contexts, and a number of |
additional properties are known Sources for a number of
these results, as well:es additional details on'some ofﬂthe

above méntioned properties,imay be found in{Reference (4) to

(8). o

,,‘a,‘ h !




1.3 The Vorﬁex

N
R

The kink solution found in ‘the last section showed
‘several very interesting properties, however, it is not
clear how it can be generalized to more realistic theories

.in higher dimensions Dbrrick's theorem clearly shows that

\~e/ /

searching for static solutions to scalar field equations in _
2 or 3 space dimensions will have no success. Thus
additional fields must be added and the logical choice

- would of course be to add gauge fields rThe.Lagrangian N

will-therefore have'the general form:

- 2 . :
: = - D - .
L ‘? Fiv F uv +( ¢) e - U(oe) . (1.11)»
‘where FE = 3 a% | 5 a0 +'gf aPsC (g=coupling)
. HV ~ Tpy vV abc TuTv- :

cqonstant

- where fabc are the structure constants of the gauge group G,
defined by: '

v' :'1 *
[TayTb] - ifabcTC

>and where the e are the generators of the Lie group G. ¢ thus -

'is a column matrix transforming under some representation

of G. The covariant derivative Du is defined by (12):

: a_a '
= 3 -
_DP¢'“ u¢ - igAuT (0 -

It will often be convenient to express the gauge fields 1in a

.. form contracted over groupdindiCes:

T A =t o (1.12)
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Py = Ay -(avAu + g4 [A,A] . - (1.13a)

[p,,D,1¢ = 1gF & (1.13b)

Also, 1t will oftgn be convenient to work in the temporal i
‘ A ‘ 4
gauge: - . : ‘ ; |

In this gauge : : \

. a ‘ _ ’
Do = 3,6 and Fgy = B.Ay

The energy,inte%ral assoclated with };ﬂiiz is: .

~F 3 e

) '+ . u . . ‘ ‘ ) . "
j a"x {x Fuv uv + (Du¢) (D) + U<¢?}.' (1.14)

. The reguirement that this integral remain finite, imposes the

.

restriction o : » S o v
~ ) L > 0
‘ | X I -0
¢ . " j% ] 1 | » . o ’
i.e. — T A (x) — == ¢ 73 b ' (1.15)
o - P H lx |+oo g H . o
‘For the'situations we will deal with the fields F e wili -
»ﬁk purely régial hence A (x) = 0. Also we assime static
N 3 {
'M‘“”fﬁvfields 9 ¢ b ean therefore have only an angular

’

r - . .
”dependence as |x|+m In 2-dimensions-¥1.15) becomes

’.. . E ) . i <0 ‘ s - ,M g
- .- B R i l _l -3—9 . Lt ~—-J g e
: . <A — . = = ¢ ‘ u:L i ) - 7:’;“«‘—'

% e BT 386 ;o

and in 3 dimensions the additional cqnstraint/ ) f;;/*
121 1 39 -
Ay =™ - 2 7 75The W |
¢ . " g’ rsine W »

- hd ° —_—
o




. ‘ . ,é K ' l' 6 .

with 6, y and r the standard spherical coordinates. Thus . ,
PN A Y R Al ‘ A
for large r, Ad has in general a 1/r dependence.

Convergenoe of (1.14) also requires ¢ to go to a

zero of U(¢) as Ifl+w. If we denot% ;\zero of U(d) by "
|¢|=F, ¢ can be written at large r.as N -
- Vo s
o + g() F o (1.16)

4

where Q denotes a general angular dependence 1in n dimensions
and geG. Rewriting (1.15)

B -

1 -1
Au(X) - g»g(ﬂ) Bug(Q) | (1.17)

" we see that Au(X) goes .to a pure gauée field at infinity and.

the vanishing of F is guaranteed. . The finite ‘energy

HV
requirements are therefore_simply given by (1.16) and (1:17).
The'simplest/éaagg,tneory ofithe form (1.11) which
possesses topologically stable soliton solutions 1is tne
Abelian Higgs model in 2 space. dimensions, first studied
in this context by Nielsen and Olesen (9) Tnis model is}i
Just 2 dimensional scalar electrodyhamics with tne field
potential of the Higgs scalags chosen so as toquontaneously
break the Abellan U(l) gauge symmetry “In addition-this T
model is formallJ a relativistic generalization of the
Ginzburg- Landau equations of superoonductiv1ty with the

Higgs scalars identified with the order parameter of super—

L : .conductivity T It is this correspondence which led Nielsen

. and Olesen to look for vortex solutiohs«analagous to the "

. PR s
P . .

+For a formulation of superconductivity in termigﬁf/apon-
‘““-——————-_$angously broken phase invariance; see e.g. (10). ,
e . /

Lo . o)
. - : T
- ' : . . o .



| 'physical particles in the quantized theory will be assoclated.

S e 17
SR N
Abrikosov.vortices or_flux'tubes:of.superconductivityL

Although- we are in 2—D'we can. turn our cichlar SOlitOnsA

¥

into vortices by adding on a third dimension along which
| the fields are independent. ExpliCitly, the field, L
-potential is - -

CUe) = 5T -2 (1)

%,
o
®
2]
o)

©-

It

4+ (au+1egu)¢f(a“-iéA“)¢\+ wlo’e - %(¢*d)2—ug/x

(1219)

The form of the potential U(¢) is shown in Figure 3. This

clearly shows the U(l) symmetry corre;ponding to rotations
“about the-origin. ile. N | |

D 6(x) + exp{+ix(x)}6(x)

and o) - exp{-iX<X)}¢*(k)

while e Ap(x) - AUKX)‘— s aux(x) : since

we have allowed X , the rotationiparameter,'to depénd on x.
U(¢) can be seen ‘to'have a form similar to U(¢) for thé kink
with however a continuous rather‘than discrete symmetry’

(quantized theory will have'Goldstone'bosons) Since the

: with fluctuations around the zero energy configuration &we v
must define our classical vacuum as a point on the circle
' ¢ ¢ = F2 = /K - To write the Lagrangian in terms of the

vi"physical" fields, we reparametrize ¢ in terms of a "shifted"




o>

v_.,/
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. ‘ &> ‘
field n and a field K3 associated with the U(l) symmetry
' direction(12) | ‘
1.e, ¢ = ekp{iE/F}(F+n)//§i i
’A U(l) rotation corresponds to a variation in & (i
R R e” X¢ corresponds to & > & - Fx) ’ It should . .oted
that since ¢ is reparametrized in terms of 2 new fields,
’i,lthey are both real. Rewriting L in terms of S and n and
keeping only first order terms (i e. ¢ = l//2 (F+n+i£+ cea )
gives: ' ‘ |
L =.;%Fqu“Y + gauna“n + 43 ga“g + %ezeA Y

-./_ | 4 @EFAHBUE _ u2ﬂ2'.+

ignoring-higher order and constant terms /‘This shows that
‘the n field can be’ interpreted (in the quantized theory) as
a physical meson with mass/m-1 however the would be Goldstone T
boson mode £ and the photon A N have been mixed in an ; |
'unusual way To make the physical interpretation easier it

is convenient to choose a gauge (usually called the unitary -

_ gauge or physical gauge) defined by IR
* . .
= (F + n)/V2 \
and . ar =g L3¢
- .o H H ‘eF' u

-That.is .the'gaugevhasfbeen ‘chosen to absorb the £ field and

as a result the A field has gained a longitudinal component




%F.auﬁt. Now since L is invariant under gauge transforma--
tions, L ¢an be- written directly in terms of ¢' and AL

,Equation (1. 19) becomes

SO L = -%F' F'uv + (a +1eA')¢'(au leAu')¢'

._+.v?<b' o1 - 3ot -t
~=§—%FQ§F“V' iy 3 na n+ »F2e2A'A'” N _
s zez.% (2F+n) - & 232072 = 42
X w3 AW C e
T2 Fn B e (lféﬁ)

fﬁlTherefore, in this cnoice: of gauge there appears an n meson

‘witnnmss —(3/2KF —U )2 and a mass1ve vector meson with mass

|
Fe and no massless Go dstone boson The appearance of a

mass for the ohoton im:lies the eXistence of a Meisner effect
and hence the expeotati.n that this model will possess
solutions corresponding to tubes of flux confined by the i

Meisner effect as in superconduetiv1ty

Sinc% the Vortex solutions we' ‘are looking for Will be B

o N

independent of°the parametrization of our elementary fields,E
//we can for convenience work with L in the form (l l9) rather

v than.(l.ZO). The Euler Lagrange equations

S VAR T AU
LAY T ae
and o 3 oL Lo

Y aca Aty aat

. imply thefcoupled field equations
e

T T T T



(3,+41ea )% = = 2% + 4% - (1.21a)

o v , e * L S
and. 3~ F ., =] -%ie(¢‘an¢—¢au¢ ) +-e Ao o - (1:.21b)

The latter implies

13y L o
l U+ la X(x) R =

A RO |

 where ¢ has been taken to have the form - T | . fu{:

v ARG
6 = |9l e
 The flix through a surface ¢ of our 2-D piane‘inythe zZ.
direction is‘given'by

R - - " — o g i .
Sty = fanat e

o
1]

iAssuming‘ju = 0 around the loop enclosing o yields
Lt iy o laas 2
? =g faxox(x) =3 fa8 g5
Single valuedness of ¢ requires x(2m) = 270 + x(0) and. e

' therefore
_[i , ) e _orn
= e{x(?ﬁ) x(O)}v e

This ié the‘fiuxkqﬁantizatibn familiar.froﬁ_type,il
\supercdnducfiQity |

To. find a soliton solution (vortex in 3- space) to this
'model would require finding an exact’ solution to the. coupled ;

‘equations (1.2la and b). Such a solutionrhasbnever been -
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G &

ﬁdﬂnd‘ however in.the general case. +"The gerieral form"of

"the vortex can be found however, by chooSing an appropriate
Ansatz and looking at the equations for laﬁge r. Following

“Nielsen and Olesen, it is convenient to choose the gauge

A 9, A —O and the cylindrically symmetric Ansatz (in

‘3-space, circular in 2- space) R f.v_‘ 1 - ;5‘_ N -
N .
Ai,—fff¥;%'LA(r)l L

ie. . E=amoe

‘andﬂml S f“pi¢f=;f(f) 10

Equations (l,Zla and b) reduceftof

(a) - %g_- (r df(1“)) % [( )2+ 2 (r(r)2-au? /) Ie(r)=0
ooda 1d e A
(b‘)‘ = & (F ar (}"A‘).,* ;f(r) (’Ae - ;), 0 | !

If we now restrict ourselves to large r, equation (l 16)
himplies f(r) v const =;F, From (b) one can now get the

wvsolution

"A(r)v+bl— + C e—eu//x Foy large'r_i
‘ er v SR T
P -rr; r 1
i.e. ad l—_+ Ce .Y w .

where mQ is thé‘photon mass;wlThus,the magnetic field:of the.
vortex is'noneneglible'only over diStance of the order of
. the penetration_length-é‘=*l/mv e Also one can show that. the

\

fAn exact numerical soluticn ‘has been found when an extra ~
eonstraint on ‘the coupling is- imposed - reference (11) u %@,




distance over'which the Higés'field'¢'vafies appreciably
from its vacuum value, is given by the coherence length
§=l/m where m, is the mass of the n meson vZu. (9), The forma

. of A(r) and er) are shown in Flgure‘u (9)(11)
B @ .

Figure 4. The form of the vortex solution..



‘i by their topology

1.4 Topological Methods

The existence of field configurations with non-zero
"topological charge may be determined quite simply for any
arbitrary field theory by utilizing methods from topology

Such an analy51s does not in- general prove the existence of -
solutions to the field equations, however. 'Nonetheless, a
great deal of insight into the global properties of the theory

may Be gained»and solutions once found, may be classified

|

The role of such an analysis may be demonstrated by
3
| reconsidering the ‘Abelian Higgs model of the last section
o
- As pointed out abOVe, the field ¢ must go . to a zero of U(¢)

., for large.r.

$ —> F eix<9> = Fg(e) I (1.22)
Single Valuedness of ) imposes the requirement x(e) e.or

' yx‘=‘constant When X equals a constant the trivial solution
p= F over all space and A=0, satisfies the boundary condition "
(M l) and the field equations (Figure S(a)) Therefore any
ipfield configuration with this boundary oonditien can ff

-dissipate tc the trivial vacuum configuration - However,

‘when x=F in -one. direction (i e. 8 O) and -F. in the other.

directic Continuity‘of o'implies that somewhere'near

;the ori: ace ¢ must have ‘a zero. .Thils is illustrated
. in Figu: Zero ¢ implies U(¢) #0, therefore the

ene?gy densdlil} -7 the field is non—zero over a region which

| can”be chosen as centered.at the origin. In1other words,
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(a) The vacﬁum sector with the Higgs vectors aligned over
all space and |¢|=F : »

. . l
T . . . » . 2

(b) The one vortex sector where the nontrivial angular _
dependence of the Higgs field forces a zero at the origin.
As in (a) the wvectors are normalized to F at infinity. f

- Figure 5. The Higgs field superimposed on two dimersional
. ) Space. : . .

~
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choosing a boundary condicion for.¢(x) or g(xi,lwith a non-

trivial 6 dependence implies the existence of a lump of

energy at the origin. | | |
The soability of this lump of‘energy is made evident

by noting that it is impqssible to continuousl§ transform the

boundary  condition Xx=6 to * = constant without breaking the

requlrement of single valuedness‘of $. A similar argument

.fof ‘arbitrary n Showsfthat possible field configurations

fall into discrete sectors%Vdepending on their boundary

conditions and labelled byﬁthe integers n where

’\.)

2™ ‘ ‘ .2
i SRS S S ROIC (LT

A field configuration with n#0 cannot dissipate into the

vacuum configuration with n=0 without developing a singularity

'(discontinuity) in itsytime developﬁent. n may therefore be
consldered an absOlutely conserveditopological charge It

is normally referred to as the winding number and 1s related
‘to the flux of the vortex or lump via ° = 2mn/e .
The_existence of nontrivial winding number fof'this¥
model follows in a trivial way from a simple result in
!homofopy theory. The co?respondence may be seen by noting
‘that the gauge function g(x) assoc1ates~an element of the
gauge group, in this oese Uu(l1l), for each value of x. That
Iis g(x) is a maﬁping from space into the group manifold In
particujar, g(e) of equation (4, l) is a mapping from the

boundary of 2-space onto a circle in the complex o} plane

(Figure 6). In other: ‘words g(8) is a mapping from one circle
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Figure 6. The gauge fudétion as a map.
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" onto another, or in mathematical terminology, a mapping from
st to st.” Such maps are known to. fall into disconnected

i

classes, called homotopy classes, labelled by,the integers
Thus the existence of a topological charge 1in the Abelian
Higgs model follows trivially from the mathematical result , =
' that maps from the boundary of 2-space (E ) to the group,
manifold of U(l)yfall into distinct homotopy classes
» The concept of homotopy class—sh\uld be given a more
careful treatment f‘ Two maps,\fO and fl,tfrom a topological
space X to a topological space Y (f(x)=y for xeX er) are o
- said to be homotopic, or members of the same homotopy class, |
if they can be continuously deformed 1nto each other More

and [ are homotopic if there exists a one(

1°

~.

formally, fo

parameter family of maps f F(x t) such that F(x O) f and;

~.

F(x l) f for all X. The family of maps f

‘ & is called a
homotopy frbm £q to fl}'k simple example 1s afforded\by the )
FJ maps f from I ; [O'l]' ‘the unit interval of the real line,»
to ES _ -{0,0}; 2- s%ace with the origin removed fThe; . 7715\

‘_clas51fication of these maps into homotopy classes may be ij' oo
funderstood in an 1ntuitive manner by considering the images |

of the maps on E2 - {O 0}. Two maps are th n homotopic ir

the images of the unit interval can be cont nuously distorted

into ‘each other without breaking the path and keeping the

| 'endpoints fixed. Thus, in Figure 7(a) the maps f and f' w%th' e
£(0) = £ (0)'= a and £(1) =yf'(l) =.b are clearly homotopic _ o ;
, , ) ; : . . o :

+'I‘wo standard mathematical references are (13) careful
approaches for physicists may be found in (6) (14), (15)
and (16). . o o ////
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hereas.f“ belongs to a separate homotopy class.

A more useful classification can be gained by
identifying the ends of the unit interval This leads to
the classification of the maps of closed loops (topologically
equivalent to S ) onto the image space. 'In Figure 7(b), the
1oops £,£, and " all belong to separate nomgggpy*classes

where the classes are distinguished by the number of times.

~the loop encircles the origin ;

A composition law « for maps may ve defined. For
example, in Figure 7¢a)
IR { £(2x) 0<x<%

libx-1) % €x ¢ 1

£ e £

i
}
R

®

/ K o : o ’

Here-e refers to the identity map, "the map of the entire
déhain onto a single point and ~ means "homotopic to"

The inverse map 1s defined by
(x) f(l X) ) -

and -its image is merely the image of f(x) traced in the

;

opposite direction .

h Y

With these definitions of composition and identity,msh‘\iilim

the set of hombtopy classes of maps of S1 .or the unit

b

interV‘I‘with"endpoints~identified:J

space Y can be seen to have a group structure. This group

:is called the fundamental ‘group of Y and 1s denoted i (Y)

A g

into a given topological




Thus‘ for the example of Figure 7(b)

and I (Y) = Z,. the additive group of integers - SRR

| In an exactly analagous manner,_maps of 82 .@r I2 .

W

Wiﬁnuboundary ooints identified, onto a given space Y can be"df .
placed in nomotopy"olasses'andgform.a group HE(Y). Similarly:'
.maosfof'Sé onto'Y‘form abgroup Hh(Yi.' lt snould.be noted

khowever tnat Af the'image spacetY is not oathbconnected,‘the'

homotopy groups must be defined at a given point in Y, and

are denoted H (Y X E | _
T Returning to the two dimensional Abelian Higgs model 4 ,//
"1t can now be seen that the discrete sectors of solutions are !
‘simply labelled by the elements of 1 (U(l)) = 1 (S Yy = 7. o /h
The elements OI Z-are Just the Winding numbers which distinguish/

vnomotopically inequivalent maps g(6). . - .

I3

/

/

This’ result generalizes immediately To any gauge group.,,

/

If G is the. gauge group and H the 'subgroup wnich l\aves the /

class1cal vacuum invariant then, ignoring the pOSSibility of o
© - other internal symmetrves, the factor group G/H acts _//
transitively,on_the/space of‘ZefOS of U(¢) 'That is, ifﬁ¢o
is'a zero of U(¢), then any other Zero may be giVen by g ¢
forggeG/H. Thus, -in-a space of dimension d, ‘the requirementv
of finite energy (or action in.u—dimensions) imposes,the

§ e ;
restriction o - o ,} . -

¢ —> g(ﬂ)w | e G/H

r\—bot)

where @ denotes all angular variables. Tne_homotopy

-

'cl&sSesvof the mapping g£(R) thén divide the space of non-
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'singular field.configurations ¢ into discrete sectors
labelled &y Hd l(G/H)

The ‘existence of topologlcal conservatlon laws may
thus be deduced for any gauge field theory in any number oﬁ
Adlmensions, merely by inspecting the appropriate IL (Y) If
the homotopy group has only one elemént {e}, then the_fleld
theory possesses only one sector, the vacuum sector andv

any lumpsiof fleld energy may dlssipate into’ ‘the vacuum

has more than one element however, the field

I Ty, (G

'theory possesses a correspondlng number of dlscrete sectors .
and. field~configurations in sectors other than the macuum'

' sector will not be able to dlSSlpate

Mathematicians have cla551f1ed the H (Y) for Y the

group manifold of a large number of Lie groups Most of

the results likely to. be useful in physics‘are summarized

in Table';.(7)’(l3)’(l9> Some additional resultSpare(lu) ,(15),
(17) ' . o ' o
My (SUCN)/Z)) =}Zn-__ ' RS (1.23a)
M,(G/H) = I (K) for G any simply (1.23b)
: connected, compact '
Lie group
n(s™). =z (1.23c¥
| ne Sl i
M4 (ST = 255 m33 Co (1.23d)
,l‘ B N n _ .'.' B .
i T L Mg (8T) = 2,5 n33 | - (1.23e)
3y o 2. ~ ’ .
nn(s‘),- nn(s y; n>2 _ (1.23f)

I (AxB) = T_(A) x I, (B) ’ (1723g)
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»Also\'denoting the simply‘connected covering-group'of G by

', | The topological analysis of the pr:&

'Sactions»(e.g. SU(S)(lg)), ‘the gauge group G always'contains

'Jhased onvthe,gauge,group'SU(2)®U(1) which does not have a
*compact covering group. Relation (1.23b) does not apply

" and instead

34

‘% ana defining a subgroup c of the center of G by G = é/c,

‘then o ‘ :

Hi(G/H) =C and n,(G/H) =0 . (1.23n)

1.5 The Monopole or Hedgehog

eding section;j
indicates that for a gauge field theory in three spatial
dimensions, the criterion for th% existence of topological

conservation laws is that I (G/H) be .non- trivial For the

lunified models of the weak and electr&@agnetic interactions,.

or the grand unified models which 1ncorporate strong inter-

Aanfunbfoken U(l) subgroup. Hence, for these models U(l) may

‘be identified with H (or a subgroup of Hfor -the grand ey

”ufunifled models) If G has a compact covering group then

the relation (l 23b)

|

Mo (G/H) = 1, (1) R R AT S

leads to a consideration of H (U(l)) Since this has non -

trivial elements labelled. by the 1ntegers, topologically

‘stable field configurations should exist. a
Unfortunately, the most pODular model ofpweakhand - ‘» - i

electromagnetic interactions, the Weinberg—Salam'model, is

o




tit

n2<sU(2>eU(1>4U<l)> 1,(s0(2)) = (o}

and no'solitons'are'expected;

| -’It“is veryrpossible though, that observed phendmenology
l_is due to the complicated breaking of some larger compact_
group for mhich (1. 23b) holds For such a group broken to U(l)
’the expected solitons have indeed been found, F‘irst by

(20) (2 l> independently for G = SO(3), -

"t Hooft and Polyakov
and later by>a number of others for more general groups(22) (25?
(reference (24) contains exten51ve references) These |
"solitons have been shown to be stable magnetic monOpoles
assoc1ated with the unbroken U(l1) electrq@ynamics ‘ In this
'sense they are essentially Dirac monopol. ,wlthrhowever,'the‘
Ladded feature of finite enePSY.' In addi ”on, the‘unphXSical
vDirac string is not required in all gauges | o

The simplest model in which to exhibit the properties'f
'.of these monopoles is the gauge group SO(3) considered as in
ithe treatment of 't Hooft. The gauge group SO(3) was. originally

(26) as the basis of a model

proposed'by Georgi arid Glashow
to unify weak and electromagnetic 1nteractions without the
introductioﬁ of weak neutral currents It was.aband@ned
when weak neutral currents were discovered’but remains a
usefulvmodel since it contains all the'elements of unified
theories based on larger compact groups : AIOng with the
vpure SO(3) gauge fields, the model contains an 1sotriplet of

Higgs,scalars,which breakvthe gauge symmetry and fermions .

"which'may~be.excluded for this analysis. The Lagrangian

density is given gy rf/;// S : e

“

: . : . £
S . et ek e e ; . i s e e e e e o ey ;
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‘unique "vacuum" is Qhosen by taking th Higgs vector as

'vpossesses ‘an. infinite number of t‘pologically distinct sectors,

‘showing why magnetic monopoles should appear when electro-~

by 't Hooft

36

fL(k)y=>;g Gﬁveauv+ %.(bu¢a)¢Dp$a)»;‘%'(¢a¢a “‘“?/X>2c Kl‘24)’
0

a =1,2,3 |
- W,v = 0,1,2,3
.. : - -lk
' o S va .t .a - _abe b c
. e S D .= 3. ¢ +t e e T A .
“ wh?r?_ Wt T e . - 3¢~ e
and S 6B 25 A% oy 4% e g gDy

The degenerate "vacua" of this theory are defined by

2 2

the 'sphere in isospace satisfying ¢ ¢ -/k,%fF . If;ar

pOinting in a specific direction (e. g the z direction), “{” 'i‘, v;
then the group of SO(2) rotations in the plane perpendicular ‘
to this direction, defines the little group H. That is, a
SO(2) U(§T symmetry remains unbn&ken with. a corresponding

massless-vector partic1e~(photon) A3 - The other two gauge -

‘y?bosons become massive via the. Higgs mechanism

_ Now G/H = SO(3)/SO(2) is top logically equivalent to
s2 ana therefore I, (G/H) = n (s° 3

A EQuivalently,

i (G/H) = I (H) = TI. (SO(2)) = Z:> This theory‘consequently

which can be classified by the w apping number associated
with the,map 52+ 82. The fields in these sectors have been

shOWn to"correspond to magnetic;monopoles'asSociated‘with

the unbroken U(1) gauge~symmetry ' An'intuitive'argument

dynamics is embedded in a non-Abelian group, has been given
(20) - o ‘ co




' which is Dirac s condition
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Consider a tube of magnetic flux entering a.
spherical‘regiOn as shown in Figure'S»m Outside the tube

'.Fuv“-_o but there must exist a vector potential K such that

f R-aX =6 = flux = 27n/e

w
(]

Here electrodynamics has been considered embedded in the

non-Abelian group (but F VG e see below) and the gauge

condition A ,' 0 has been adopted In the.region‘outside

the flux tube E1s given by

'f;‘ o ‘K"% g(é)f?ig<e> 29 x<e>

c

(Dll—"

| where the subécript e indicates that K can depend on the s

:choice of curve cl” Asfbefore g(e; may be,considered a map

onto G/H from ‘the, curves c ,c, .,; If g(e) may be varied
continuously,'as the curves‘c are contracted to a. point- at\

the bottom of the sphere, thén the/ilux tube may end inside ' ', | L
the sphere This leads to a consideration of H (G/H) Sincef

SO(3)VE SU(2)/ZZ, H (SO(3)/U(1)) =v22 and flux tubes with
S ¢ = 2Wn/3 o oono=2,b,6 L S : AP

may terminate with magnetic monopoles at their endpoints..

Since flux equals UH x magnetic charge, these monopoles

‘ carry magnetic charge €&, = 1/e. For the case of SU(2) broken

to U(1), n (G/H) = {e} and monopoles carry charse 8 = %g >
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Figﬁre 8. 't Hooft's intuitive construction for a flux tube .
Lo cending in a monopole. : :



The possibility of the existence of stringless
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: monopoles in non—abelian gauge theories may also be seen
from & simple comparison with normal electrodynamics. In

normal abelian electrodynamics, the requirement that B can

be written in terms of a vector potentialvvia
B=VxZk

implies tne condition
i\

R

Magnetic monopoles would spoll this however since " )

A ; 5
\ E7»-B—LHT‘pm

y

whereipm is the monopole charge density. A Dirac string must - °

therefore be introduoed so that " s »

’ : \
C o }
where . ﬁ‘ gmonopoie T Bstring

i For non-abelian theories
§_ - 3 y Ka abc Kb'Kc

and the aboye analysis does‘not apply. Introducthon of a
magnetic charge does therefbre not require abandoning the .
vector potential or introducing an unphysical string. _

" Returning to the problem of finding solutions for
the Georgi—Glashow model; the fie1d~equations‘which follow

i from the Lagrangian (1.24) are



Lo

‘a . . .
‘ u.a - _ abe,b c , ‘

D Guv,— - e € o) DvQ . : ” (l.25a)h
and | DD ¢% = - A62 (P00 - F9) (1.25b)
Making the spherically symmetric Ansatz

‘- 02 = xaH(r)/er2 o

a _ , a _ : J 2

A =0 nAi‘- €a13% [1-K(r)]/er

The field equations (1.25) now become
2 a°K(r) 2,3 2 .
r& S5 = K(r) (K7(r)-1) ¢ K(r)H (r) - (1.26a)

\dr .
. v )
and 2 LEE) - oa(r)KP(r) + —2(H (r) - F2e2r EIC)

dr ) e _

' (1.26b) .«

’“Although it is known that these equations possess exact

(28) L

'solutions of finite energy the only exact analytic

solutions that  -have been obtained were found for the 1limit

A»0(27),

The corresponding K and H are {

K(r) eFr/sinh(eFr)

H(r)- ~eF§hcoth(eFr) -1

Although this solution is essentially trivial, it retains
enough of “the complete theory “to prov1de a testing grou d
for asymptotic and numerical investigations of the complete

<

equations.
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~motion leads to , ' R
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't Hooft and Polyakov considered the asymptotic form

of the solutions to the complete equations Finite energy

requirements impose the conditions

e} = F as r o+ o

and therefore . . - \

H(r) —> eF r .

>

Also ) must.be covarlantly constant

D.¢ —> 0.
iv r->co -
which implies
A? — £ c=constant
"paow T s

Substitution of these asymptotic forms into the equations of

o €

‘ , K(r) — 0
o -

and thus at large r, the Higgs and vector fields are

, a : ‘
" % = F%‘ B - ~(1.27a)
- o X v ,
and , | Ai =Sy (1.27b)
' s er -

\

~.

To exhibit cieaﬁuy»the physical nature of these fields

it 1s necessary to c}arify the connection with normal U(1)

electrodynamics. Since this S0(3) theory possesses an, invariant

U(l) gauge group, there must exlist a fileld tensor formally
equivalent to that of Abelian electrodynamics, which can be

written in an»SO(3) invariant form. This ‘tensor was,given

by 't Hooft'20),

S



b2
D 6D ¢° o (1.28)
whefe | ga = &a/(¢b¢b)% | ' .

This clearly shows that the choice of orientation of the
- Higgs vectors, determines the structure of the Abelian
subgroup.

' Substitution of the asymptotic fields (1.27) into

va gives

Xk'/er'3

€1jk

5|
t

13 ~
) ' _ _ ;
and | By €4 4k ij rxi/er )
which corresponds to the field of a magnetic monopole with
" magnetic charge g, = 1/e.;

A magnetic current Ku‘may be associated with this

2e ,uvpc abe’

charge by the relation(29)
K = %e  3YpPo
u *Lvpo
Now, Fuv may be.rewritten in the form
F =M + H
SHV v uv ,
. . & "é
= _ - - a
with Mpv = aqu avBu where Bu ¢ A
: _1 ~a,. ’b. Sc )
and Huv =3 Eabc¢ 8u¢ Bv¢‘
X _
K, then becomes /
SReYe; :
K = 9. H :
T g Euvpc c“ _
=L e e 3V(6%2PeP0%C)
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since SUVQOBUMQG -0 if there are no singularity lines 1in

the ‘gauge field (that is, if [Bu,av]Bp = 0). Now the.

divergence of Ku vanishes

T Wy VPO
o, k"= xe | 9MoVH

) \ -

again assuming' commute, and the current K is

A-T‘K

_\conserved. Thus the magnetic charge

1 3
8?€;f abe 1Jkai(¢ % ¢ JOSEE

satisfies ’ - g =0

s

Inserting ¢a given by equation (1.27a) into the expression
o : e R

 for gﬁ gives g = 1 as eapected

€
The dependence ofI( solely on the Higgs vectors is

somewhat surprising but serves. to emphasize the topological .

‘rather than dynamical nature of the magnetic current. lt is

the peculiar alignment of the Higgs vectdrs as p01nting

radially outward,‘when isospace is superimposed on real- .

space, that giVes the monopole its stability and it 1s this

property of the Higgs field which prompted Polyakov to dub
this solution the hedgehog. ° The magnetic charge -as given
by equation (1.29) just classifies the map of the sphere

defined Ry the Higgs vectors onto the sphere bounding 3~

space, by the wrapping number (which is isomorphic to the

«

elements of I, (S »(29)
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C !
As was mentioned above, the.vanishing ofithe vector
field contribution to the magnetic current only occurs wheﬁ
the field has no singularities In fact, Qh agnetic ;,?’5"
A (1S ,

charge may be "transferred” completely from thg‘Ziggs’f&@&ﬁ

rmagiﬁnf

to the vector field by a "singular" gauge tra@;

'»f.

fayw

g,;ho

~;a

The necessity of a line along which g x) is iibg&lar is‘

svz& St
s

intuitively illustrateq in Figure 9.

.\'f '4

3

For the asymptotic form of the Hig&seand Vector

fields, applying the gauge transformation‘fg

H

(x) = exp(-107;)exp(14T,)exp(16T,)

3

where Ta =|Oa/2 anq 6=arctan(x2/xl)”and Y = arc cos(xs/r)&

# L ; I N
yields the transformed fields * ,
. s a - a Ly . ~
' o= ' gt ' - = .
¢ (¢7T) g(};)w T e (x) 7 = 8,37, »
| . o &
- a a N ) | —
AL = (ATT) = g(x)Aﬁ Lx) + 5 g(mig-' (x)
. 5 % [ , ST . \
a3 & F13k X /r r-x )]T . | - '

In this gauge, the Higgs vectors are all aligned in

|
one direction and only one isospinjéomponent of the vector

field survives. Also, the,elecpromagnetic field tensor is ¥

& .
P =5 A3 - 3 A3
TAV RS TR vy

now : - o T

The flelds are all,\therefore, formally equivalent to normal -
electrodynamics, and this gauge is correspondingly referred
“to as the Abelian gauge .

N
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R, «gﬁigure 9. The gauge transformation of the monopole into
§§?~ ; . the Abelian gauge. Thé dotted lines in (a)
, indicate the direction of ithe rotation of the ,
/),/«~« Higgs ‘vectors required. to reach the configuration
' in (b). These rotetions clearly become undefined
along the negative Z axils. .
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Rt . ’ (7‘) E
In this gauge, the vector field possesses a Dirac -

Y‘Strinv singularity exactly as in conventional electrodynﬂéics.

This string appears to compensate for the loss of the
topolbgical configuration carried by .the Higgs field and

allows the magnetic charge, _which is 1nherently topological

to be carried by the gauge. field Explicitly

o«

[
aE
D

gy.= I S 4oy ey M0 = |

t : ‘. R
The mass of the monopole .may be identified with the

energy obtained from the energy integral

3

E=- [ L’k - f a3x[%65,6%1 - xp, 4?p%e?

Inserting the asymptoticm%ields (l.27).yields an infin@te

result since these iorms of the fields do not incorporate

the correct boundary properties as r+O -Modifications tO‘

'(l,27) occur inside the Compton wavelength'of the heavy gauge

bosons. Approximate numerical values for E have been obtained -

by 't Hooft and others however, and these give .
S : .

M A 137 Mw

>

where M is the mass of the heavy vector particlesw @ﬁw

shows that for realistic compact gauge modeLs, the masgmof
: \

the monopole would be enormous and its experimentgl absence

‘]

ot surprising; STy

L



CHAPmER IT

TOPOLOGICAL CONFIGURATIONS IN EUCﬁIDEAN SPACE

2:1‘ Introduction -
| Having QOHSidered~in Chaptar 1 thevpossibility of
topological solitons in theholaSSical version of:unified
'gauge models of the weak and eleotromagnetic interactions,
the next step would logically be to look for analogous. J~ﬁ.;

(7).

solutions 1n quantum chromodynamics

true since quantum chromodynamics is expected to éontain
certain. important non- perturbative aspects. In exploring
this’ possibility, however, the topological analysis of
Chapter I seems to immediately imply. negative results . First’

of all, quantum.chromodynamics is an

gbfoken theory and
one does not want to introduce’ thg ggsoalars which have

been present in.the'previouscm‘ Teh possessed soliton

solutions. '
~This problem may be circumvented, however, since the
classical vacuum, defined by Fiv'= 0, in:general includes

',fieldS‘which are non-vanishing. These are just the gauge

'transforms.of Ai = O,igiven by: .' oy
2% = 2 (g7h 08 ()% geo

- Thus 1if the mappings, g(x),'from,the boundary of space into
the grbup~manifold fall into non-trivial homotopy classes,
pure gauge fleld solitOns may be expected. In other words,

‘ " for three dimensional space, 1if Hg(G)#{e}, the spaoe of finite



. i.’\ T ' . . | u 8

o
energy gauge field configurations Will fall into distinct.

sectors determined by the topology of the pure gauge field

‘vat the boundary Lumps of gauge field energy ("glueballs"

for Q C. D ). in a sector other than that with the trivial
boundary condition A —O could,not dissipate. This follows
due to an important connection’betweenbthe topology.of“the

\
gauge fields and the existence of non- vanishing F in the

UV
pmanifold (see below; e. g- equation 2.0L). ’

Unfortunately, Table 1 of Chapter I shows that HZ(G)
is trivial for every group of interest ’Also, including
fermion fields’mill not help since their vacuum expectation
values must vanish and they thenefore cannot contribute to-

the formation of topologically distinct vacuum sectors

(ignoring possibility of dynamical symmetry breaking via
fermion bound ztates) This negative result from homotopy
theory has also been verified by use of a scaling argument

(30)

by Coleman (note also,(3l)),

' An examination of Table 1 does” show however, that

i (G) 1is non-trivial for every G but U(l).‘ Since.ﬂ (G)
represents the classes of maps from hyperspheres (83) into
the group manifold and since four dimensional space is bounded
be a hypersphere (S )s the nontriViality of - H (G) implies
topologically stable solitons should exist in four 'space

dimensions (energy conservation rules out a localized soliton

in four dimensional Minkowskil spacetime) Therefore a pure SU(3)

or SU(N) Yang ~Mills theory in Euclidean’ spacetime should

possess seliton solutions labelled by the integers Z=H (SU(V))
Ty
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‘arbitrariness in choice of a pure gauge boundary condition,

g !

-

At first, the eXistence of solitons in four dimensional

Euclidean spacetime seems totally irrelevant to considerationS-

in Minkowski spacetime : Polyakov<33)(3u),Ahowever- was the

'first to point out that the path integral formulation of
field theoryxis (properly) defined in terms of integrals

over classical field configurations in Euclidean space, each

weighted hy e—S where-S is the action, and the resulting

Greens functions are then analytically continued into

' Minkowski space Therefore classical Euclidean fields.with

stationary action could produce important contributions,

non-per¥urbative in nature -In»fact -he argued that in

1

-kcertain-regimes‘(for'instance the infragedbregion), these'
COntributions could dominate the path integraliand possibly.-

. provide an explanation for quark confinement Althouch these

speculations have yet to be confirmed in their entirety,

S

they provide strong motivation for searching for these o

solutions and exploring their effects in a Yang-Mills theory.

At this point, howeVer' it should be checked that

i
6

required by these'solitons, actually,does exist in the quantu

‘theory. In the Schrodinger representation of quantum field

theory, a physicallstate‘is represented by‘a‘wave_functional

'W[Au...]. Now, any gauge transform of Au(Aﬁ) serves to

" define an,edually valid functional W[A%...]. In particular,

the vacuum functional anc[Au=O] may be equally well des-

' cribed by the functional anc{Aﬁ], where A% is a gauge

transform of Au=o' The requirement that physical states be

. ¥



\

50

igauge’invariant (in particular the vacuum), mayfbe met»hy
formihg physical states whichhare Superpositionslof gau e

transforms

"ongsThy ] - Lag] vIaf]

: , : 7 ~ _ :
'Clearly;gauge fields with honétrivial topological boundary
conditiOns‘must.be includeo in this superposition. In:
particular,aa'time slice at the boundaryvfor a Euclidean
soliton (note equation 2.7), uwill give a gauge field'which
represents one. (topologically non trivial) contribution to

the physical vacuum at that time

pure.
gauge

f [dg] Voure (%]

Evaluatioh of matrix eiements of physicai states suéh'
as‘described involves'ihfihities in ‘the fuhétional ihtegra->
tion due to'the'infinite contribut%on of thevgroup‘integra—
tion [dg]. These factors may be subtracﬁed out,choweuer,-in
~a consistent manner to yleld finite resuits (see section 3.3).
This procedure is equivalent to fixing a gauge~

. At this point it might be thought that a more correct -
approach would be to specify physical states in terms of
purely "physical" degrees of freedom, such as A, Q= transverse)
by working in a gauge such as the Coulomb gauge-. i In this way,

'-configurations which go 'to topologically non=trivial boundary

conditions would apparently be avo&ded. For-example, the

JrSee section 4.1 for more details on this point.

N
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vacuum would be fixed as ?Vaé[A¢ = 0]"and the vacuum

configuration required at t = +w by a Euclidean soliton’

- should be excluded."Invfact this is not the case and

as pointed out by Gribov, even the Coulomb gauge possesses

1

ambiguities These ambiguities are in fact just ‘the necessary

degrees of freedom required to incorporate solutions with‘

(32)

The role of these solutions is

much more transparent, howeVer,Ain‘more general gauges.

X

2.2 The Instanton or Pseud;particle

n?

The preceding arguments lead to a conSideration of

,pure, sourceless Yang Mills theory in Euclidean spacetime

Since the”nomotopy arguments are identical‘for gauge group N

G = su(2) or SU(3) it is simpler to work with SU(2) even

though SU(3) is the group of interest for Q:C.D._ The action

~for a pure Yang Mills field is(12> o
S = -5 I‘Fiv FHva a'x , metric=(1,1,1, 1)
R ey
J | ; A . I
where — P2, =842 - 3 A”a; + gfabCAbAc

I Wy

f .

When the group index a is omitted, the fields are to be:

interpreted as contracted with group generators, i.e.

Au i AuTa’ Fuv 1 FuvTaiA
=>F =293.A -3 A +.[a ,A]

A
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The factoré of g/1 are to conform with mathematicai convénf
tion(and sincefthey make the fields énti:hermitian;_theylw111'
only be used for this chapter which is primarily formal.‘

Under a local gauge transformation g(x),

Lo

N R €3 W-ICO I COLI-IC DI .

‘. [}

. . - 1 - ) '
and . Fuv > g KX)Fuvg(x)

For gauge group SU(Z),.Ta = Ua/2 with .Oa the Pauli spin

EabcT ife. bl : = €

‘matrices and [Ta’Tb] =1 o

Also C Tr(TTP) = 3620 .

) Tr(TaTch) - i €abc

-

_With group indices contracted, the Yang-=Mills fieldvequations'

may be written in the compact form:

D PV = QUF““.+ [Au,FPVj = 0 o (2.2)
:Defining the tensor dual to FMY:
* |
Py T euvkp Fxo
implies the Bianchi identity: ’
N (2.3)

o : . i _V* . ' . R
which follows from the definition of pr'in terms of,Au.

 Now, our soliton configurations afe characterized by

integer topological quantumbnumbers, corresponding to
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7 = H3(SU(2)). These integérs can be written in the form:

1
16m

q=—

s J Tr(*\Fquu\)).dux o (2.1)

1

ol 1s.referred to as the Pohtryagin index or winding number
of the manifold (Here manifold means the direct productvof
the group manifolq and the 4-D spacet%ge manifold, 1.e.

u .

the principal fiber bundle over E The interpretation
of this integral form of these integers will be discusseqd
in ‘somewhat more detail below.

Thé integrand of equation (2.4) can be written as a

divergence:
> : ™~
* TAAN u
TrOEE _,) SRt
with® k" = 2 ei‘VY‘STr('A 3 A' + 24 ) | (2 5)v
T W vYTs 3 vy el , '
1 nL U
=> q = - J 3 K"d'x
- 1ene M |
LS
N . 'L,{.\‘: l ’ «
or ’ g o= - S - kHa30 (2.6)
16w S3 . »

[~}

where d3du is . a volumé element on the'hypersphere at

infinity Sg . Requiring the action to :be finite'imposes

the restriction that Fuv go to zero on the hypersphere at =,

=

and therefore A must pé pure gauge:

iy arey
Au =g (x)aug(x), o (2.7)

where g(x) is an element of SU(2), or more correctly, g(x)

assoclates an element of SU(2), for each value of x. Now

‘equation (2.5) can be rewritten
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- 2/3 A A

2'EY)

A T y

Ag) (2.8)

Since FY6 must vanish on the hypersphere at infinity, using

(2.7) gives (2.6) in the form:

Q== 5 ] EuW‘STr{(g'la’\)g)(g‘la g)(g—ladg)}d3c (2.9)
2um 53 . Y ’ u

This shows that the g(x), the mappings from x € 83. onté

the - SU(2) groﬁp ﬁanifold, determine the winding number or
vhomotopy class of the gauge field, as expected.  Fp fact the
integrand of equation (2.95 1s Just the Jacobian of the

change from the coordinates on SE o, 83 U i.e.:

u(2)’

\‘dﬁ(g)

//,—ﬁun \ SU(E)

where du(g) 1is ¥he invariant measure on the group manifold

437

The integral g ves a factor 2&n for an integration once
over the group manifold hence q measures the number of times
the SU(2) group manifold is covered when x is integrated |
over 53 . |

(The integrai;éxpression (Z.M)lis a specific exaﬁblerf
a general mathematicai.relation for what is usually refeffed
to as ﬁhé Pontryagin-numbef or index of the manifold. Siﬁce,
for Yang-Mills theories, thé'fiber‘bﬁndle is normally complex;
the correct~topological'invariént i§"in‘general the Chern
number (eduivalent to the Pontryagin index for SU(2)) . The
Chern nﬁhber for a given manifold may be found by‘integrating
. the'correSponaing Chern form C(M); M répre#ents the q

o

manifo1q¢35)(36)
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The expression for C(M) is:

2) : \ (2.10) .

5™

C(M) = det(1l +

where @ is the curvature 2-form of the manifold. In Yang-.
MiIls theories the components 'of the 2-form make ug/the field

tensor, i.e.

Uy = F. = % F axMax

'where A represents ‘the wedge product satisfylng

axM A ax" ‘ﬂx A dx" . Cc(M) can be expanded :

c(M) = CO.+ C1 +;02 e )

« o , ("

‘ - .
Wwhere CO is a O0-form, c, a 2~form, Gé a M-form,~etc.,-end
Cy 1s always equal to 1. The series is finite since‘the

base'space of ,the bundle ( of dimension n)'cannot~admﬂt

higher than an n-form. . - o - )

- Recalling that F is in a form contracted with the

-

SU(2) generators, we can write 1t in the form

T g
= p2 &° - g2 B
F =F 1 F oa 3T ,
‘r.3 ‘ 2 -
' F F -iF°©
A - 8 1 »
2 1 pligp? g3 e
and . 3 1 g2y ]
/ 1l+g/UnF g/Un(F =1iF°)
C(M) = det .
1 2 3
g/4m (F +1F") 1 - g/4nF

>

= ] e S _(Fa A Fa)r
161r2



56

“where multiplication of the F's must be 1interpreted as wedge

products since the F's are forms. This shows that the second
" Chern form is non-zero. Integfgting C2 gives an expression

for the Chern number ds-

"J
' 2
Qs = - - [ T™r(F A F)
— 161r2

- 1
16™

2

e pvys 4

1
16m

/ Tr(FUQ*FuV)dux

2

which corresponds with equatiqn (2.4). This also shows (2.4)
. .remains valid for any gauge group G. Qne can also check that,

in the cése of the Nielsen-Olesen vortex, one gets from

equation (2.10):

i C(M) = det(l # 33) 0
_ iR °
= 1 + 55

F is a closed form (i.e. the exterior derivatiYe'dF = Q)
which implies it can be written as the exterior derivative

iF/27 therefore gives:

of a 1-form A.Integration of C1
1 L
v q, =35 J, F =3 [, dA
T1T2F g 7T AW g2
= 1 = & - € _
Toan ¢2A To2m ?1 Audx ? x 55
aR S :

(]
o]

the windiné number ya
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where to conform with ¥Yang-Mills conventien we ﬁave set .
A=A dxu x e/1.~ This shows that the ?opologicai'classifi— A
cation of the vortex *in Chapter I, was simply based on the
1st Chern number of the U(1) bundle over R.

Returnihg to the Yang- Mills case, it can also easily
"be shown'that.non—trivial g(x) on the boundary‘SE . ;mplies a
’ nen—zero Yang~Mills~fie;d somewherelwithin the boundary of the

Euclidean U4-space. This follows; since one may insert the .

gauge function g&i) into (2.9). If this gives a_ non-zero

18

a4, then equation (2.4) implies FUQ must be non-zer

in E”. Thus, non-trivial boundary conditlons imply the
u—dimensionai analogy of a soliton as expected from our
homotopy arguments mentioned earlier.. ' B o

_An example of a non-trivial g(x) is(38)

(xu—ix 0)

where X 'is(Euclidean time

g(x) ime .
and u= 1;...,H4 (2.11)

v o (2&12)

¢
e
EAy

k)

f;l

of g(x) gives Q =f1{7

b -
- v 0 o )
L o e
- Solegs, SRR e e K
. i Ll CoEn e
3% Lo o s . R

A solution of the Yang-Mills field equations with F v

i % ' - .
;é ) %regular over all space and with nontrivial boundary /

‘o A

,i)ﬁ yc onditions, was*Tirst found by Belavin, Polyakov, Schyartz
I Q ‘5‘

‘%and Tyupkin(39).g They exploited the fact that the Bianchi
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1dentity (2.3) is identically satisfied merely from the

% -
definition of Fuv.‘HenCe the self-duality condition L
: : .

*

Fuv = Fuv‘ %6?13)
L . 4 i

1s equivalent to the {ieid equation (2.2). They looked fop
a solution with g = 1 and thé boundary condition (2.12).
This . led them to consider the ansatz: '

oHVx

AM =.2217(x2) ¥
X ’

where £(x°) » 1 as |x |+, and £(0) = 0 to cancel the

'divergence of lg required by boundary conditions of (2.12).

X .
Substitution of this ansatz into equation (2.13) leads to .

the .equation for f(x2)4

2 dr a2 )
X == - £f+ M = 0
dax ;

ﬁfsélution:

, , L2
o | f(x2) - X

which gives AM = -2 NV | o (2.1ka)

and | | pHv - Bip” gHV ) (2.14p)
‘ (x +p .

The parameter p determines the range over which A" differs -

significantly from the vacuum ,value (2.12), hence p is
commonly referred to as the "siﬁé"e;;\zhe instanton+.

v RN

~f-Be'-zl"avin et al. dubbed the solution the pseudoparticle but

't Hooft introduced the name instanton because of the localized
nature of the solution in time. Both terms are commonly used.
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The solution (2.14) is also commonly written in a-

. form:introduced by 't Hooft:

(ST
[~

N2 n X ' ' . -
a2 HZ lau T Gas
g(x"+p")
2
S _ bon p '
and ., F =t (2.15Db)
L - - 8 (x7+07)

with 'leooft's n tensor defined by(l6)

n = e + % €

_ . el
o o auv oauv abc "becuv

*

An anti-instanton solution, with{é:—l, may also be -
‘ found by requiring va be anti-self-dual and requiring ,
f(0)=1 and f(«)=0.-

e The action associated with the instanton can be

simply found'by*exploiting‘the inequaldity:

oy fd“xTr(F““;*F“V)2;> 0 o (2.16a)
‘or “ - Q'I aMxre (FRVE ) 4 &'j'deTr(Fqu y -
, : . : ' v : AT
% [ d xTr( Fly Fipr? 0 '{2.l§b)

>
3%

Noting that the action S is -
, o N

S = - —35 [ a' Te(F*VE ) S
_ ‘ 5 uv
. 2g | |
£ * %
and - _ pPYF = TR TFMY

uV 3Y)

equation (2.16b) becomes

[ €]
. W
"] oo
“*ﬂ
n
e
REV]
[
L3
~

Ca
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Now (2.16a) shows that when F ~1s self- dual"the inequality

becomes an equality and ‘the action for the 1nstanton is : 'g e

(/8H It can also be seen that ‘the instantOh represents
2

a minimum action configuration for fields with non- ~trivial ‘
topology.’ (2 l7) also éhows the featz}e:charaoteristic of
solitons that the action is inversely proportional to the
eoupling. \

For the Yang-Mills field in Euclidean 'space,. the
' (34)

stress-energy tensor can befwritten
_ ., ,
% : *

0., = - T5Tr((F - F, O (EVTEY N (R

MY 4g2 _

uk

%
u)\
VA~ va>(F F )_

This form of e N clearly shows that self-dual (or anti- self—

ual) field configuratiors will have. vanishing stress enevoy

‘This property of the ins@ahton supplies,us with a hint-

that the instahton Will be important in conSidering the

. vacuum in Yang- Mills theories (Section b, l) o e

2.3 Multi Instanton Configurations
E (41)

[

Atiyah and Ward have shown that the 1nstanton is

~

) the only solution to the self duality” constraints for q“l

- This leads one to the conSideration of field configurations

with g>1. These solutions can Be 1nterpreted as multi—
instanton configurations. The key to finding such solutions
is in ﬁaking a judiciousvchoice of Ansatz for A . A
contenient choice turns out to be (42)(38):

, : . . - —Auv ’ . . .
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with gHY = _FGHY
and ,Eijv= o1 and Eig s - Eal'= - 014

The self-duality condition:

Fuv - Euv
then becomes: ;
.‘;‘ = -1/ ‘] ‘ ‘- . “ ) " R N
aua\)"a\)auv, 2 eU\)Y(S(aYa(S aGaYv) 3 (2.19&)\

and o aaEtetaat oo | (2.190)

(2.19a) 1s’ clearly satisfied ir a is written as a gradient

.m-
I

=2 (1n x) : | (2.20)

and therefore o Au »1E“Vav(1n X) (2.21) o

i

Equation (2.19b) now takes the simple form:

'_4 \ 3U3“x=E3x =0 | (2.22)
Ly |

-ATﬁe Pontryagin index may also be eXpressed in a simple form:

) qg = - ———— I d X Dﬂ(ln X) \ (2.23)
161° -
A solution for lequation (2.22) was found by 't Hooft(ua):
| ] |
:"J. ) a P
, n Py :
X*= 1+ I 5 (2.24)
‘ 1=1 (x- yi)

3This has the s}mp}e physical 1nterpretation of representinqu
instantons wiﬁh sizes pi and positions yi, hence the n

/
i
!
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) ) " A:’"\ @
"instanton solution is- characterized by 5n parameters Also,
it can be venified that (2.23) gives g=n for X given by (2.24).

Jacxiw, Nohl and Rebbl have pOinted out however that this is .
not the most general form of x A soldtion to (2. 22) depen—

ding on 5n+U paramefers may be written(€§)<38)

n+l ‘Oi - ' " - ‘

X = I —=— . (2.25)
i=l (x-y.) o - “

The additional M parameters do not have such a simple physical

interpretation and in fact they are not physically relevantj\“'
tL N \\\

AN
N

\_\

in all.cases.m ln particular.for n=1, the only relevant:
parameters are}the five corresponding to the pOSltgggﬁandA“
size of the 1nstanton : "‘ o o Wﬁ‘.‘

The solution (2.25) has the feature that it results in

u ‘and ‘F v which are invariant under the full conformal group
'(minus inversions), if conformal transformations ‘are coupled_
with suitable gauge transformations That is conformal
transformations generate new A and i " corresponding to the

same Pontryagin index and gauge equivalent to the old Aa and

a : - . . - s v

“;’fl These conformally invariant multi'instantOn’
' configurations,_are not in fact the most general It has

- been shown that the most general form of the multi instanton

(46) (48)";'?These havea

vsimple physical interpretation as M ‘space- time,iscale and

_solution depends on 8n 3 parameters

3 group orientation parameters for each instanton- minus

J3 parameters correspdnding to an irrelevant global group

N
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orientation. Belavin and Zacharov have obtained a form of

this more géneral solution utilizing'the inverse scattering

(h4).

.method A summary of ‘-more. mathematical approaches to

this problem may be found in reference (50).

‘\,

2.4 The Meron

Although the instanton represents the only solution -
to the Yang-Mills field:eQuatidns with Pontryagin index
equal to one, it 1s interesting to cbnSiderla certain class

/ .

gf cdnfigurations with q=% which satisfy the field equations

"almost everywhere". These are,phegso—called merons+. More
correctly,:we.consider configuratio@s with g=0 which . : ~

correspond to pairs of merons and anti-merons.

The general- form of the meron solution is(Sl):
a0 =3 g 0 E() (2.26)
- '.’ ) g ) = - - . . ' “
and L Fuv T 3uby = 3 AL Y [a,,4,] | |
oL R R (2.27)

5.

' This last line indica%és that—the non-vanishing of F, 1s

due to'Au being % of a puré gauge field. Thiﬁﬁélso shows
that the meron has Fuv#03 over all space ahd hence infinite
action; The’Pontryagin index 1is given by: - : !
I
‘l6n2 . : .
L 1 o Ll ‘ - _HVY$ S
. 5 [ d'xTr{([a ,Av][A ,Asle o) (2.28)
2n° - W MV ' '

| dngr(F#Q*F”v9 -

* Although these configurations were first discussed by de Alfaro,
- Fubini and Furlan, the name meron was colned by Callan, Dashen
and Gross; the word merpn comes from the  Greek .word for fraction.

‘. o o -

..
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b,c

Now, moting that [A,,80% = e  A0AS + % &0l L5 Te (o),

abc [TRIRY}

it can be seen that the term in brackets in (4.3) will vanish
.except where the gauge, gynction is singular. Also, since the

- form (2 26) for A. will iﬁply singularities one cagy 'E

utilize - the form (2 9)%&or d A choice .of g(x) equivalent to

that specifying the instanton bou?Eary conﬁition

v_) T
.

- M—id X ‘ o
g(x) = v (2.29)

X X i »

u
leads in (2.26) to:

o . cuvxv ' | o '
' - ' B . (2.30)

Au B —i_ xuny ’

The gauge function of. (2. 29) is. Singular in the sense that

[a , 9 ]g#O at O and infinity. Now, since the action

_density S(x) and Pontryagin charge den51ty Q(x) (= 1ntegrand

of (2.28)) are conformally invariant it is convenient to

utilize a conformal transformation to shift the 31ngularities

-to two arbitrary points a and b. The .gauge function g(x)

_now has the form:

GH(x-a)  o"(x=b). 3 $(a- b)
g(x) = | B Y . s o
x-a] Jx-pT" )

: 0

“and the topologieal charge_density has the form:

Qx) = % <afx;a) - 8(x-0))

¥

. %}w” a

The Sggglogical singplarities at a and b are termed merons

.

and anti—merons respectively
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solitons of Chapter I if one looks at lower dimensional

' 65

&

In.a similar manner, 1t is possible to'interpret
configurations with’ topological qharge equal one as systems n
of two merons and the ﬁnstanton may be deformed SO that its
smooth topological charge density Q(x) dissociates into
two.points, each w1th a= +3.

At . this pOint one might ask whether integer ‘
topological charge may be dissociated in this\m@nner into
an arbitrary number oﬁ fractional charges. This however,
does not appear to be pOSSible in any well defined mannerA .
for‘q <%. TFor a detailed discu$sion of this point,vsee

reference (56).

2.5 . Discussion

As mentloned in the introduction to this chapter,
examining tobological field configurations in Euclidean

space might provide important non-perturbative information

about the MinkoWski:space theory. It shouid”be noted,

therefore, that this "trick" applies equally well to the

. , R4
thedries;v£§or example, the vortex»of sectlon <1.3 may be

‘considered an instanton in the + dimensional Abelian Higgs

model and.can be shown to haVe dramatic effects in that

mode .~ Similarly, the}mbnopole'of section 1.5 may

'be3considered as an instanton’in compact quantum electro—_'

dynamics in 2+1- dimensions, and Polyakov has in fact shown

‘J"instanton" contributions lead to charge_

b

‘(3u) ) . .

Such considerations_can serve
o \ A

ooniin- L eatimodel
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to give valuable insights into theiﬂéle;of the instanton in
thé much more int?actable céSe’of 3+1 dimensional quantum
chromodYﬁamics. | " !
)It‘should‘also»be noted that insfanton effects may
be relevant for the Weinberg-Salam model of weak and
electfomagnetic interactions. For that model G/H=SU(2)
and‘therefcre_n3(é/H)=Z and topological solitons in .
Euclidean space may exlst. Because of the Higgs scalars‘

the equations are more complex than those of the pure

Yang—Mills case and aﬁ interprétation also correspondingly

(16)- , : ) ’

more difficult



'CHAPTER III
QUANTUM THEORY OF SOLITONS

° ) )

3.1 Introduction : ' , “E‘

Up to this point, all the considerations have been

purely classical. At least classical in the sense that all

the fleld equations considered have been treated as C~ number
equations The relevance of the preceding analysis thus‘
depends on the role which the topological solitons . which
have been found play in a quantized theory Although all
the problems associated with this question have not yet

1

been resolved considerable insight has been gained through

a variety of approaches (e.g. (5[)5(6M)). ~Reference (57)

utilizes a generalization of the W:K.B., semi-classical

approximation; reference'(58) a self—consistent formulation‘
of soliton matrix elemgnts; reference (605ﬁutilizes canonical
quantization methods and reference (52) utilizes the boson
method. Of 'these approaches the‘most consistent is‘probably
that of Umezawa et al (60), since it begins with a quantum
field theory and generates soliton solutions in the treeé
approx%ﬁation via the boson method . In all these approaches
however, the generalization of the methods to include
instantons is eXtremely difficult.

Here the path integral formulation of field theory will
be used to incorporate solitons and instantons. This approach

has the advantage of glving an extremely intuitive insight

67

o




into the‘role of solitons, and instantons -in oanticular
and.also“follows the current trend»towaro usiné tne path
integral method 1n quantizing gauge theories.

In this chapter the path inteéral formulation of
quantum mechanics and quaﬁtum“field’theory will be outlined
and the modificationSvrequired}for’the introduction of solitons
~described. ‘ The essential modification isvtﬁe introduction
~of collective coordinates to describe the location of the

(63)(6&). .With a few alterations(72)(75), these

soliton
collective coordinates allow a consistent treatment ofpthe- - *;

- instanton with the path integral now in Euclidean space.

3.2 PatH'Integral QuantiZation

2

The path integral formalism developed by T:‘eynman/'
provides an extremely elegant formulation of quantum
mechanics which can bé derived directly from the standard o B }

formulation oflquantum mechanicsaz)(65)
(66)

or motivated.
directly from first principles Here we will merely
outline the formalism.

In the path integral approach to guantum mechanics,
the transition amplitude between a single particle state
‘lq,t> and another state <g',t'], is given by the
expression: | | !

<q',t'|q,t> = <Q'Ie iTH/h|q> = f[ég*g][~9——]exp[—
i

g |
J (pq - H(p,q>)dt] | (3.1)
t SRR | ,

where T = t'-¢t




That is, the total quantum mechanical amplitude is just a’
sum over all possible paths in phase’ space, with each path

weighted by the action (S) for the path, times 1/h.

The integral over the functions q(t), p(t) must be . | é
understood as g infinite product’ofnordinary integrals at
fiied times . That is, one divides the time interval T into

n+l equal segments with spacing ¢ i._e._ti-ti__l = €. Equation

i

(3.1) is thus more correctly written:

;
h
3
3
*
7

1 /

| ’ f n n+l dpi % [ }
<q',t'lg,t> = 1lim I da, . exp (& : p.(a,-q, )
. e = Loy 2H Byl 9 Y
( Tt 'x_ ________________ : o :
- H(DJ, %(qJ qy_ l))(t J 1)}? ~———_faL3L;L_________f§

I
R J vyorh /2Wh : J - 2Th

The factors of h Bave been explicitly exhiblted in these
>expressions but from here on we will set h=1 again, and
absorb the factors 1//§FE into dq and dp.  The path
integrations in (3. 1) and (3.2) must be performed with the |
boundary conditions'q - q' as t - t' and g+q as t-t.
Equation (3.1) immediately generalizes to the case

with n particles (noﬁ interacting)- or 2n degrees of freedom

'described by a, P ' . : -

n
"N - ' ii"
<ql, ah -e- q)t'1a3a,,0 a8 2 [ T [dq dp lexp
n=1l &
£ N :
{1f T pga, - H(py,a)lark’ | (3.3)

t n=l

*For a careful mathematical treatment of 1ntegration over
function spaces, see (67).

-
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=

Now the only path integrals which one can do explicitly

are géneralizations oﬂ the simple Gaussian integral

dx =/CZE

_an2/2
< a

— 8

The generalization of this to an N dimensional integral is

N/2

jjf j axy ... dxpexp{si IoxgKyXy) = (2m)7 (e t K) i

13 171377
&3;4)

where K 1s some matrix. This'can be easily checked (for K

diaéonal) to follow from the one-dimensional Gaussian

integral. A somewhat more general form of (3.4), whith will

be useful later, is

_ o

[ff-ax .. .dxy expl-% I xK; x5+ La,x;}
i i~

N/2

2

(det K)™ “la )

= (2m) exp{%s L aiKijaj

X (3.5)
ij : :
If the argument of theﬂexpoﬁent in (3.2) can - be written as a
simple quadrétic form in p or q, equetioﬁ (3.4) can be _
applied immediately to the eXpression (3.2) for the‘path
integral. Eqﬁivalently,gene canﬁconsider é‘continuuh
generalization of (3.4) with X néw in general avdifféfeniial
obefator, and apply it (carefully)-directl& to the compact
form of the path integral’(3.1) or (3.3). The factors of’
(2H) cém be seen to}cancelJthe factors of (21r)_1 ehosen in
the integration measure.

A trivial example is the case where the Hamiltonian

takes the form:
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B AP : .2
Lo g NN . S ok g S "
y o L ‘ Ca S "*‘g + V(Q)

| LAy e . \
. The p functional 1%%:gration\ig 342) can’now be performed
R AR i ‘ - . . -
,using (3. u) to‘ ' . :
& ° Nv :7§§;, £ . &?
<q'tMqt> = [ [dqlexp{i [ L(g,q)dar} . (3.6)
R, | :

action'=k5[q] and where

&)

L(g,q) = % §2 - V(q) = Lagrangilan

Here equations (3.2) and (3.5) have been used»in the form

[Lap] eif{—p2/2+pé}dr - eif%ézdr —

The path.integral is often expressed in the simpiér foﬁ{;g
. . . ,‘l ) - :' "Du,'

(3.6), and in fact this was the form originally intFoduced
by Feynman. It is not, however, valid fer a ﬂeloéfty

dependent potential V(g,p).

\1%\*

The expression (3.3) allows for a straightforward

i {‘.

generalizatiOn to field theory (q=-¢:, n+x)(l2) Fo?‘p single" |

scalar field'o, the time evolutidn operator evalﬁated

between two - states, |i> and <f|.1s_?’ o ja'%:' -hh‘ °nﬂ
tr. | o , )
<fle iTH|j_> = [ [d¢][dH]exp{i J dtf d3x[H(qu) a¢.(x?r
t S ]
\, | o ,u H(x r)]}(; 7‘)
with I = §~ s T=t' -t and H = Hamiifonian density.
a¢ / ‘ - :;;

| This expression must also be understood ‘as a compact‘

notation for an infinite product of 1ntegrals at fixed time

r

PR

3
1
:
1‘
4
B
i
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:and now also fixed polnts 1in spmce. This'is done by dividing
3 .

P space into cells of volume € , labelled by an index a.
Equation (3.7) is thus in essence a limit of equation’ (3 3)

. as N with q identified with ¢ and n( za) describing the

(12)

'x dependence of ¢ Again, boundary condlitions*must be °

correctly incorporated into the path integral. .

A convenient way to make contact wilth perturbation

theory is to use>§he path integral to represent SchWinger S ‘Q
](Su) .« < . :

z[7] is basically the Vac -

- to vacuum transition amplitude in the presence of an external -
e
.source J(x). In the path integral formalism Z[J] is given by

, generating functional Z[J

2651 = v | [ae]lanlexp(s j,d“x[npxdi(x)_u<x> NI

- 00 | ¢

(3.8)

In this expression the limit_t';+w,_t+-& has been taken of
the form given in equation (3.7). N is a’normalization ;
factor, which wgll never have to be exp1101tly evaluated
which basically ensures Z[J] = <0|Q>J - i as J+0. Now the
Green's functions,.and hence all the information»COntained
in the theory, may be obtained by repeatedlfunctiOnal

differentiations of Z[J] with pespect: to J.

P

vy = gay-n _ 8%2[J] - C
Glxy...xy) = (1) 530y .. 89 (x) Co (3.9)
. l 2 \ . n J-=0 - <
‘where d(x Cee Xy ) rgg%esents the complete n4point Green's

function defined by

d

G(xl. Xy ) ﬁ? <0{T(¢(x )¢(x ). ..¢(x ))|0>

. -
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A ; P - ‘ S |
and where T denotes time ordering Fhese Green's functions

_ contain contributions from allFeynman diagrams including
~disconnected vacuum to vacuum graphs. The connected Green s
o o - _ : : \
functions are given by

)

:"G¢<X1-4;xg>1*'<i>;é i[J] 5J(x )[ 8T(x,) 1320 (3}105?
r Equivaientlygone‘can define: | k'i’> . . = . -
| z[j]i= exp{1WEJ]}”
~and then d ‘ ‘: S .' - B . ’ o
.G,(xl.,fQA) = ()t stiggf{iaJ(XhS; ’ f(é.lbb)

=0

S matrix elements may be obtained from these connected

QGreen's functions by applying the L. S Z reduction formula,

@

i:eff- N R o S LT v- Qiﬁ
- : . AN U= L %
- - S o , . ”ﬁfﬁsis” %?
~Sey =,‘Pl--*Ph;°9ﬁ’q1-;-qni1“> EE T R
S B I d“yj (x )@, )
Yz i=1. wj=l v iﬁ, - w".
- wE - : o A F—:—-ZL '*v"‘ RTI ‘v_ . .
)g', o Gc(yl,..yn,xl...xm)g(Dyj+m~)fpj(yj) R .(3.11)';

The meaning of. /—'(not to be confused with Z[J]) and fq ;'are
. 1
explained in reference (68) Chapter lé

To give a well defined meaning to the path integral
in equation (3 8), ~the integration is normally performed in
Euclidean space (xu--ix ) andfthe resulting Green '8 functions‘”

~ .
ar% analytically continued back 1nto ninkmvski spaee by a



e

,9;(

,// ‘ 7“

Wick rotation. It has been proven that ‘1f. tho fields in

Euclidean space satisfy certain axioms, this procedure is

(12)

well defined- st can also be seen that in general it

.B

is not necessary: to specify boundary conditions on ¢ 1n the
functional integration in equation (@ﬁ8) This is.: true

\ _
because (e.B. in Euclidean space) as the time goes to

infinity, all configurations suffer an infinite damping

»

P’

' factor except t with Zero energy,.the vacuum 'That is
o z[J] = <ole HTlo> 5 ‘<,,o’|e‘°°|~o>J as T +
@»‘ P .

éisuperselection rule'(or topological quantum number).

A*ﬂ . .

unleSS H|¢> = 0. This*@rgument only, appliess however
| when the fields ¢ are not separated from the vacuum by a °
é
Most field theories have ‘a form which allows'
,equation (3.8) to be simplified. ‘That isy, if’ the Hamiltonian
density can be writgen in the form- ' ‘

w ,,9',

a

A H(x) = % T°(x) +"f[¢(x>,,,§§x>l]

then the II integrations in (3,8)'may,be carried_out,triviallvlif

to give N

2[5] = N | tdelexplt [ [L(x) + J(x>¢<x>]a“x} o (3.12)

“with L the Lagrangian densityrgiven by: R

"L@&> =3 ()2 - f[¢<x> v¢<x>] R

pﬁhdatybn~(3 &ZQ is ‘the expression normally given for the

Jgenenatimg fpndﬂional The normalization factor N is used t0~v'

< i ™
]

PRrN
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«
'  straighthrward way. One can write the action as: > ‘ ,&“ é}
S[¢] = [ L dax =% [ ¢(x)K(x,y)e(y) d xdy + f LId_y-w.(3.13)
‘The first term corresponds to the free-field part'of/tne,
~action - o o / : >
’ : : S f o
= fLa'x =% f [(au¢)2‘-,u2¢2]du5, (for scalar field)
andktherefore A ' Lo
LN Ky (3% - u?)et(x-y)
B O ‘ s ' :

'absorb anyf constants from the expresSion for z['J] since
equation (3 10a) shows that these will be irrelevant when

_ computing phy51cal quantities

‘perturbation expansion for the Green S functions in a

‘Again, equations (3 13) and. (3 1u> must be understood as

Also, the source term in -equation (3.12) allows us to rewrite

Z[J] = Nj[d¢]exp{ifLI 1 33(§T)d x}exp{if{L tJ(x)¢(x)]d x}

('9:/‘ v : . ‘. .‘ : 75

Equation (3.12) (or (3 8)) can be used to develop>a

4
limiting forms of expressions defined on.a, discrete

space—time'lattice. The propagator A(x,y) = (x,y)emay

" be defired by: ¢ ¢

. R . P

]

J{K(x,2z)A(z,y) a2

n
0y .

or 0 - W2)a(x,y). = 6% (x-y);0 =22 ",(3.1145.)»,

[

(3.12)

L
‘ >

= Nexp{ifi (l ?T)d x}[[d¢]exp{iI[L (¢)+J(x)¢(x)]d x}
o (3 15)
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i
o : One can now do the patﬁwintegration over“¢'eiplici¥ly by
f;,¥ o 'applying equation (3. 5) to the discrete form of the ¢

‘integration in (3. 15) and then taking the continuum limit
More transparently, the continuumdgeneralization of equation

P | (3.5) i
Jla¢lexp -5/ [o(x)K(x,3)8(y)a xa"y1+ 7 ()0 (x)a x}

| eﬁ(detK)’%exp{%fJ(x)K'l(x,y)J(y)dMXduy} C(3.16)

may be applied directly to (3.15) to give

~xd3y} 3ﬁﬂ>

LT 1=Nexp {1 fLp(f gp)a ehexp (-1 [7(x)0 (r, ) T4

- L. “4_,. ' : - _;/ - .‘ ) ) E . )
where the factor‘gdetK) * has been absorbed into N."Expanding%g

@

‘the first ekponential:

i Jixi)] &/

) ) o
L 8 : .
exp{i f LI(% m)du X} = - 7 L1
‘in'%guation.(3.17)' allowslone~to generate a Feynman grapg\
perturbative expansion of Z[J] Equation (3.10a) then

allows one to compute the perturbative Green s functions

to any order (ignoring renormalization problemsﬂ

The preceding analysis extends in a straightforw‘rd
| .
way to fermions if one utilizes results of functional ;

integration over anti- commuting c- numbers(7o)(7l) VThe

. relevant® formula 1s, "f_j ’ e

~

s .I [ax]lay] exp{?zJ 4By J} ffdet B (3.18)

¢
If one identifies X with(%?e fermi field c-number ¥ and- y € 7

g

“wT-equation (3 17) can be used g

with 1ts Hermitian condnif

»
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to‘incorporate‘fermiOns into the‘formalism described above.

For example, ingcontinuum‘notation'eQuation‘(B.IYX generalizes'
. . . 4 ° [ 3 . . '

to
. . ) ’ - v . u u ) . - “‘S‘)Lv, . i
Jlav'Ilavlexot] 7By (rIa'xa’yl = det B (3.19)
with B some diagonalizable”differential operator t : s
. Where the path integral can be done explicitly, the -
determinant in (3.19) or (3. 16) is Just the product. of the
eigenvalues of the correspondinc differential operator - o
For example, for equation (3. l6) a ﬁb B e
Det K = T E, . (3:.20a)
. ° % o ’ I'l.;-, ' : * - ’. = . ’
‘ L | N f
for E_"defined by - ‘ B
i 5 d S -
. ‘ $ = “A » ‘, N :
% ” Cruye, = E 6 (3.200) :
S g oo ﬁ% g0 : R o : !
& and ¢ may be exﬁénded in terms of the ¢ ER T T o
3.3 Incorporatio% of Gauge Fields }
AR 2= . A
The direct %lication of equation (3.12) of the last
\ rd

.section with L a pure gauge field Lagrangian*, yields a
meaningless infinity for the generating functional€3§ﬁ%is
infinity results from funotional integration over- gadge |
equivalent paths %section 2. l) Therefore one must find a
way to incorporate a gauge fixing term into the functionalc

integral in, a consistent way This problem can be solvg!lby f e

+The gauge field notations are now ‘those of Chapter I & a
AE i F hermitian rathe; than anti hermitidn, e. g A -A T
eCo' . N
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utilizing an elegant method due“te Fadeev and Popbv(la)f81?<82).

. W}:

The naive form of the generating functional is:
Z[JﬂrﬁPNf[dA ]exp{if[L(A ) + 74" YT (3i21a)

E Nj[dA ]exp{i(s[A ])+ Sz )} . "“;"‘ 5 (3.21b)

ey ! )
= , . - . &

If -we represent an arbitrary 1nfinites1ma1 gauge transforma—

tion" by ‘the operator S o - R

.

BeY =1+ 163% 4 L. gea S @)

S , e
. “l R : v ; ’ o C '

“,with 6%(x) an arbiltrary ﬁaremeterbandVTagthe generators' of G,

‘an arbitrary gauge transferm'of'Aufis'given'by | 2
' ’ e B N T , ;

- N ) R gl :

AL 2 U(g)A U “(g) - gU(g)auU:}(g) (3.23)

(the g in the denominator of the‘anuterm'is\the coupling

. constant). One next defiines a quantity AFP by the- ef@ression ‘

g g o
FP[A 1 f [dg<x>] i a[F <Ag<x>>] ‘ (3. 2u>
X,a A - ’
R : : v : ,,4“ -
Here ;; 5[ ] represeJ!s en‘infinite proddet‘of delta
. X,a . L
functions defined at fixed x's (i.e. a delta-functional) and
. a o Y ' L .
NG F (A“(X)),_ o (for ali\f) - : (3f25)

represents an erbitrary linear gauge condition. F& 15 in
general an operator, e. g. for the Lorentz gauge Fa (A ) = 0 -

represents ) Au = 0. Also in equation (3 2&) the integra—

PR .
Co- L ; .o ’

. B A U 4 s . ‘e

; . . N

tien over g(x) is interpreted
"“pfi} "H‘. f [dS(X)] ] H [a8? (x)]

)
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‘for 6% defined by (3.22) and{g(x)=l. Inserting the identity

(3 2&) into the R.H. St of eqliation (3,1) yields

g s

z[J] NI[dA Jlag(x)]s ppla ] 1 ‘5[F'a(\A%,)]e"p{vi-('S[Au]J’SJ)}
! . | %.8 '

$ince quantities of physicalrunterest in (3.26) are gauge»

>
<

invariant (in particular SL@L] [A ] and [dA 1), a gauge L:
transformation i@ the integrand of equation (3 26) will not

affect Z[J] ﬁ judiciq@gﬁchoice of such a gauge transforma-

. : . g l . “ﬁ? - : H‘“.: )
Y L \ . P
AU, (x)

Wl )“

: AU(X) r
Vo ] | -
& This removes the gauge dependence of‘Ag and the entire %

.integrand of (3 26) is independent of . g(x) The path = igﬂ

s integral f[dg(x)] can now be seen as an infinite factor
a9 J

independent of the filelds. Absorbing this factor into N

gives

. P B

271 é-Nf[dAp]AFP[Au].H_6£Fé(Au)]exp{if[L(x)+Jp(x)Au(r)idux}

(3.27)

T : o o i »43
The path integral thus cons%sts of a gaugelfixing delta

functional along with B, %@gobian factor AFP which corrects

for changes of the gauge fixing condition E.(A ) =

Some Tormal manip‘ ations are required to put- ﬂ¢-

R I

equation¢£§‘27) in a tractable form First of all the

delta funotional in (3. 27) may be rewritten(gz) H
ﬁd.'~_* SR a[F ()] = expi- - % IEFa(A et (3eae)
~ v x’a o ‘ R )

. R (a a. real parameter)

&
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. . R L ’ +,} - ":.q .
- The complex anti—commuting'canquers, c and c are the -

80

Equal signs-were not used since the two sides differ Dby a

constant term‘which may be absorbed into N in equation (3.27).

Next, 1t can be shown(82) that bpp takes the form:
- 3F% _be U4 - 4 N
\AFP = det(aAb Du $ (X—Y)).- det MFP \ (3.28h)
. p ' , o
where Dbc is an element of the covariant derivative matrix,
*_ab be,C ., . .\ab e
D =6 3 + gf "FA~ = (9 -
u T %ty *E p o= (3 -ieh )7 _.

The rule for functional integration over ang} commuting
: W

c—- numbers given in equation (3 l7)»al&ewsgthe determinantﬂin

VAL

(3.28b)1to te wriften;as a funotionaleintegral

.

s coa ) ': : a o . . oy >

Ay = 'jEdc*][dc]exp{i j;c+. 3F_ pbe o i
. FP ’ b u . C RN st
: BAU AT 1Y J‘%f

f[dc ][dc]exp{i f kd tMFP(X”y3] ;éhnd y} (3 29)

£
r PN
R

et

. E’”‘i

so- called Fadeev Popov ghost Pields Thei are Lorentz *

scalars which obey* Fermi Dirac statistics, and are introduced

'n\!g

merely as a convenient device for keeping track of the

edeterminant AFP‘in perturbation theory The ghost fields

. serve to counterbalance the unphysical longitudinal modes of

the vector'field when one quantizes with a covariant (non-

gcanonical) gauge fixing term In quantum electrodynamics

these fields are ot required 51nce the ghost fields do not
<

"couple to the.photon field-and the unphysical phpton

polarization states also decouple from the‘sfmatrix;

o

LY
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Utiiizing.equations (3.28a) and (3.29), equation (3.27) f?
' for the generating functional takes-the form: E
_ SR 3
. ‘ E + . . ‘ . ’ u ' ) ';
z[J3] = f[dAu][dc Jldclexpl{ils pp + / JU(X)A“QX)d x1}  (3.30) :
- where: _ : ) ( ;
) R A “
_ av_uva l -+ aF :
Sope = JI-XF P - (F [a, (x))° ﬂg.a e ]d X n
WF
i . i .
E‘Sgauge * Sgauge * Sghost. ‘?
field . fix - - i
o ! 2

' g
Equation (3.10) may be usedﬁto generate a consistent

“ perturbation theory in agg gauge Complete Feynman rules

‘may be found in (12) and Tv)

3.4 Incorporatiom of Solitons . 9

The path integral approach to quantum field theory 8
shows clearly that solltons will play a role’ in the full
quantum theory. Since;the path integral covers ali classica}
field configurations, weighting each.with'a factor e (in
Euclidean space), and since solitons represent local minima
of S, they can be expected to give an important contribution
to the complete path integral. ‘The exact nature‘of -this
contribution is not clear, however, . since soliton field o
configurations do not’ satisfy the boundary conditions required

of the generating fuhctional and hence do not fit in a

: straightforward manner,into the conventionalvperturbative

-t e

approach = L . | -_\p»
A convenient manner }n which to get some insight into

the role of solitons in the quantum theory, is to use the o

(! . - ;
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stationary pnase.approximation. This gives asemi-classical‘
approximation to the full quantum theory( )(57) For the
integral of a function f(x) with a local minimum at x=a; the
. stationary phase approximation gives the result

f dx-g(x)eif<x)«=f 'dx{g(a)+(xea)g'(a)+...}Xexp{i[f(a);+

- OO - OO

(x-2)°

S COUT bR

= /2m exp{+if(a)}g(a)X(if"Ca))f%~

That is, one expands f(x) and g(x) to second order 1n

§xzx-a. This approximation clearly depends on g(x) being a @
slowly varying function and on f”(a)#o
., The generalization to an n*dimensional integral with
> ¥ s
£(x) (x=(x1,.:.,gn)) having a local minimum ap{x=a, is: N
fdxi Jeedx g(x)eXo{iffﬁ)} Iexp{if(a)}g(g) E - (3.31)
v _ ' > o ’ gn : » i
. . where B I = fdyl...dyn exp{3 Ej‘yiAinJ}
= (ZON2 (pet a)™®
' a
wherev A ='§E£4—— ' and’ = x,-a : -
S S Y E T Vi 174y (

- R . . .
/;‘—/, -

-If f(x) ha's several local minima the integralrgets a
contribution from expanding about ‘each minimum.

»fIn field theory, the analogous procedure isito expand
the aopion about 15€a1‘m1n1ma; That is, one writes the field
near the minimum ¢ | ‘

.
¢(x) = ¢ (x) +.n(x)



83
" and then expands the action to second order in n(x):

§230 1 y

{ “ Ll o
: S = S + - n(x)n(yld xd RSN
O 9 (o] [¢O] f 3 (x)0h(y) oot (X), (y xd y | .
- o . ',l/“)\
1The path integral may_thus be approximated by:
<alb> = [[d¢lexp{1s[¢]}
= expl1S(6_1} (Det &) " C(3.32)

|

.where ﬁ‘is now given by:

>

- If the Lagrangianttakes the form T

L = 33 6){(3%) - U(e) -

»

T .. L.

then the eigenwalue equation for A equivalent to (3.20b) is

ey,

a?ﬂ¢mdgwwwﬁéuwhﬁ'"Tﬁ_ "
( 5 = 5 ¥ = ) nn(x,t) = Knnn(x,t) " (x = all space
at " dx RYoS e ‘ o . . coordinates)
=0, .
(3.33a)
¥ _ : : -
where the. perturbation n(x,t) is expanded: \
) n(x,t) = I.n_(x,t) * [ (3.33Db)

n

In conventional field theory without solitons only
fluctuations about the Vacuum‘aré gonsidered. <The action

S[¢d] is then'zero and ¢Oaiswhormally_set'ehua1 to zero. - The ,
application of the semi-classical, stationary phase apprbximation‘ 3



bi”FQ}QQJt; L 8
is then eQuiValent to a Eeynman graphvenpansion,‘includiné
graphs with one closed loop (a.g{lreference (55)). ~To
include solitons at this level would merely seem to require
including contfibutions of the form of equation"(3.32) with
9, =~soliton'¥$vefunction., TWo compliCations must be
considered, however. The first.is the requirement that field
configurations included in the functional integral satisfy-

the proper boundary conditions. Since solitons possess

\ non-trivial tOpology, they will in general only contribute

A
ya

to matrix elements between soliton states or soliton plus

X

< - ! , A
meson states. Such states may‘be referred to as being in the

soliton sector”.whereas conventional states arg in: the
\

\ . @ ) H N BN
"vacuum sector"(58> : . L e 1
N @ o }w“ \
‘The second problem concerns the existence of the

!

trarislation mode discussednin Chapter I The opergtor A 7\

*has an n-fold degenerate: (n number of soacé‘dimen31onsf z%ro

¥

eigenvalue mode- With eigenfunction « : \

, 3 | L .
no. —vi-(¢o) l—l,...,l’l .
i 9X ’

where oo is the solitontsolution corresponding tovthe L
translation-mode SXScussed in section 1.2. ‘This may be seen

-

by writing

ntx,t) = flave™%y (o) .

. Equation {



the éx@dtence of the zero eigenvalue A, will make Det A

‘within the semi-classical approximation to the path integral

85-

v

- This equation is’ Just the gtability equation (1. 8)
which was shown to,have an n—fold degenerate zero mode '

%

Since v2 is positive, this also *implies a zero eigenvalue

Ao for e%i.:ion (3 33a) Since the determinant of ‘A is given

’1’
ot

b y . : E s '. 'R ‘ L: . . "; o ’ . \)M
“ . Dok at=.m A .

- . _ ‘n

©

vaq&!?f This will give an infinity in equation (3.32). This
infinity s due to the arbitrariness, of the l/catien/of the

soliton:

05(0) T 95 (x-x,)

There is thus an arbitrariness about the choice of ¢, (i.e.
choice of Xg ) to perturb about and this gives rise to the
infinity.in the path integral. This problem does notwarise
when perturbing about the vacuum-since the vacuum state is
tranQJationally 1nvariant and unique |

The- solution to tdis zero mode problem has. been found.

To allow‘perturbative calculations in the soliton sector. to

any order, however, 1t is necessary to consider a somewhat

more general method the method of‘collective_coordinates(63)

(6“). In this approach ‘the ‘position of‘the soliton xo ‘iS»

7 0

‘allowed to become a dynamical quantum variable x (t) (i e.

~one : ddes a path integration over X (t)) referred to as a
’?M %

collective coordinate -/Having introduced an eftra degree of' -
>

freedom into ‘the path integral it is necessary to introduce

y ! o : : "r

(57)




8¢

! ] T o ' \
.a.constraint; If we write: %
6(x,8) = 95 (x=x,(£)) + n(p,t) jwﬁere‘p=x-;o<t>d o (é.aua>;
a'convenient/constraint is: ) i
’J’l¢é(p)n(p,t)dnp =0 - (pr"i;me me;ns dy o '. (‘3.“3%)

dp

- This ensures that in the expansion of n(x t) in terms of the.f

,W (x) as in equation (3. 33b) the zero mode w .excluded.

« For the proper treatment of this transformation it is

necessary to use the form (3 7) fok the oath integral It is - 1‘)
thus necessary to introduce a momentum P(t) canonically _;
.conjugate to xo(t)“and the momentum congugate to_n(o,t) mnichfr;r

we will denote X(p,t) and = . -

) i w : Ll
H(x t) = H (x ~X, (t)) +. J(p t) X -~ (8.353) |
, o ‘ | SR ' L
The corresponding constraint i u '; ‘ LA "."fj?;~
| 3. . v‘ . . // N “ : .
fd)(')(o)H(o,t')do -0 | T (3.3%B) v

directly 1nto the original form of the path integral

lform of F. and F are found by requiring n and H &s defined ;"

‘ 1 2 ,
by (3. 3ua) and (3. 35a), to be canonic&lly conjugate as well *ff



£ the new functional integration variables x (t),_P(t) (in ;ﬁ

'°":shifted from x to x-xdap \vThe result is

g ;,?sVu‘<t> and P(t) The(resulting Fl and F2 are given‘by the .t e
< L H. s. -of (3 3ub) and (3 35b) respectively 5~;"7»9§¥;5'?’i7r;j}

qqé One must next reexpress the action S[¢ Hﬂ in terms of f;;}fgl
LRt \3
-general vectors in n- space)“and n(p) and H(p),?takingqmnto
?afaccount the fact that the arguments of n and H have been R
(63)05) 3’A* : 1rvjf:vx'.?

|

7 5 lb t ‘ ‘: !
{fn¢ d x - HQ¢ n]}dt = [ L dtf_
- , S

fs[¢gﬂ}

j
N ‘ _ S Sl
] {Px (t) + jnndp - H} dt o (3.36a) -
Ly I e |

"‘,iWhere_f"~H~é;M5 + P4 /2M f@b{%Hk+a(n“) + U(n 0y )} (3.365>fm'31f
B I £ ‘/A,_j SR S e

- WitH;Mofthe sbiitbﬁ_massfana "

- {P(t) + fdp ”'E

cand d(h;¢5§,. R +n) —~U(¢ ) —.%%;‘V'Wnij~w'._',' T

“s;(ﬂt-)( f ap 9} <o)n (o, t)

-

Here primes denote differentiation wrt arguments (excluding t)
;dot means time differentiation and all o8 x integrations areyiv'
vover all space dimensions | | ’ | ’
The path integral is now: iﬁ,jvf-:;m;‘;;-'
,<f11>v=.j[dx ][dP][dn][dn]6[1¢ ndpjs[f¢'ndp]exp{1s[x P . n]}

o . . . . t

3 ) V B b .
S & ' e LSRN L, (3 37)
where 1> and !f> are in general states containing onei‘”.

L

3 SOliton plus meSOns. L : : ' ’ , . .. S /"‘ ; s ' ‘ »‘,"
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To generate a perturbation series about soliton states

one may introduce & Senerating anctional for the one soliton‘
sector in a way Completely analoSous to that in the vacuum.
Loy 8

o2gl3,9] =

1
oo
54

(S
. L . A
. L N ¥ -
4 - :
O TSR

R

: ‘/~

13Eb) and P and P' areioné'solitbh‘
1¥ oné’writes H in the form-‘ .
J SR

%I dp[H * (n 92

statesa

: Now,-

| H,= M \*"H\'hfi

. éju;,;‘
+ K UL n J QQ7*¢:7?*‘
RS
then the path 1ntegna1 in n. and H o§ 'H jmay be explic%fly
evaluated by expanding n and H 1n terms of then
<3 P (omitting n, >(3 ).

N
of equation
Z [J J] can therefore be written
: - T ; . 'q. '
. 1 &
S[J 7, X ,P] Nexp{ ifdtH 1 &7
_ .-'therte o

;1f_v)}z 0, Il ;°'<_’(3,385?}_ 3
. [J J] = I[dn][dH]6U¢ ndo]6[1¢'H] x

.:) |“‘o‘ DU
. \

exp{ifdt[fdp@qn + Jn + JH)dp - H ]}
s

where the exact form of Z [J J] depends on the form of U(¢)

Equation (3 38) is oompletely analogous to equation (3 17) and

the same manner
i
A\

'\;

can be used to generate a Feynman graph expansion in exactly
S

The expressions obtained however, have a




1leS brings out three kinds bf proéagators, that is, n-n,

v‘?and H anropagators corresponding to functional differentia—

v*[ftions in HI in (3. 38) on. 7. [J 3T wrt 37, J-J and JJJ

jfrespectively ﬁﬁ”-." f'"f ﬁf'~_;ﬂ'f"“'

Using these methods, one can in principle calculate %?ifi ;57;

Ct

fmatrix elements between _soliton plus meson states to any ‘5ﬁ;¥lﬁh

3ifarbitrary accuracy This allows one to calculate such

"fthings as the S—matrix fbr meson—soliton scattering to any

vvorder Also,'corrections to the soliton energy may be

c - N .. A vl - ) e . (SO

ﬁ"'”¢computed since '”,mf fva c”:;*l;u; ;,: va,ijv_w‘,;*;*,s.flgﬂ,s

Pl

: '?This may he evaluated perturbatively as in (3 38), With P

iIHdtl ;tékﬁ[;i}fiéﬁ;E%P5];p;rgs?£:;i;13} ;fﬁu?;%?j

treated approxi ately\as a constant Even for simple models;:fﬂ’;

«lhowever,/such cFl‘blations are quite complicated since the jd’fl?yi”’

??bterm in equation (3 36) is non polynomial in nature ‘and o fff%é

‘“,‘as a result an infinite number of vertices appear in the ,f{fﬁ,g“ b
: . S0 : C R

'iFeynman graph expansion,beyon//the standard vertices found i;jl?;*3'a

;in the vacuum sector

‘;Eglh',: cExplicit calculations have peen done using the‘above

meth ds for B ‘case of the one soliton sector of the ¢ 'iﬁlkyjflvl

(61)‘

v“‘kink(63) o At the level of the graph corrections it was fr“‘”*“~f
found that explicit Lorentz covariance,vlost by introducing “liilfw

1 a soliton collective coordinate, was restored and

‘:‘;vav'. . -
L

E(P) = (P2 + M )% ”bi.lfhx



That is the soliton behaves as a. relativistfc particle. _]}\J]

At the one 1oop level renormalization is required and
.. '_’t‘-vv ‘ v.‘m N g . ﬂ : \ )
’*;it,td%ns out that the counte;terms are the same as those in
'T»fthe vacuum sector One loop corrections to the soliton mass

: may thus be found It may also be checked that(63)

.

Yff;:<P’l¢(x t) P> R

RNy Tt T e e R P e T R R
REIE R L ,,AJ,,WH,4~-\ R L

R These results agree]With similar calculations done in
3_3 other quantization schemes(57)<58?._ At the two loop level and

i higher however, an additional term enters H in equation (3 36)

which is missed in the appliCation of the canonical transfor-f§'

R . .

SRR e !
;,¢w;ji 'i*ﬁ mation as described above This term is due to the necessity

of keeping track of the order of the quantum operators while
'Wf;;;} doing theéﬁhunﬁcal transformation to collective coordinates,ﬂ;ﬁ‘

This term becomes evident in the canonical quantization V7

(60)

fje“rtnvﬁf'ﬂ‘scheme o whereas it is obscured in the path integral

approach where the variables are treated as c numbers Theffii.'f
ptoper correction can be found within the path integral‘n

'l;i;,_’ approac%#.however, by doing a

ve careful treatment of the

N _\ ; v: ‘
- L e transformation(6u) : L
o 5 . ; f‘ -?; ' L
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fgCollective coordinates are required for the zero modes ]fiiﬁlf"d.
. S
hresulting from the ine arbitrary parameters Which specify

Ml_the instanton,_that is, the four position coordinates and

tj'one scale parameter In addition there exist zero modes’f55w

”~jf;corresponding to the<possibility of arbitrary global gauge

”7fsolitons Since the instantonddegrees of freedom are

-%mjﬂintegral need not be formulate_

L
SN 3

“,:f{tion in compléxity in the intraduction of the collectivej»f” et

';ffr:straightforward as for soli

‘l{rdtations For SU(2) these require three additional collec-”ijrt“
¢ftive coordinates Integration over these three co'lective f;xh:.
“rcoordinates is trivial however,_and yields a Simple

lnumericai factor,;;ﬁ'yle - j

] V‘\_ ‘

The fou_edimensional nature of the instanton of coursef[fﬁie

. ?requires a modif&cation qﬁ the procedure adopted for spatial;ﬁyva“

T
fo

’ufcovariant in natu§e4_}he collective coordinates may be
:‘frintroduced in an explicitly covariant m:nner and the path

gin;terms of canonically f'ﬁ
: - S §
;conjugate variables This amountszﬁo a considerable reduc—**

'ikcoordinates Alsd since the path integration is in Euclidean s

5;space, the interpr‘tation of the instanton is not as f;“

"ns in Minkogski space

st is the vacuum* to vacuum SR

g . _. .5‘_'/.:..

The quantity of inter}

;“hifamplitude in the presence of a, single instanton, where”;"°ffft;j””

fu As it turns out (section U 1) the vacuum;r selffneeds a
careful definitiok ror nen-Abelian gauge theories

- -\.=e_~'



]

‘ = v< 0 l 0>

f[dA ][dw ][dW][dc+][dc]exp{ f[Lgauge fermion Lgéuge+ ghos ]d x}
: T L fix R <

l

amplitude with no instantons present.,

‘ t;e action becon‘s

‘ S[A mp] = s

Sl L (ﬁygi
".v‘ d T ) )

The normalization factor <O|O> _
. \\

L

1s’the1Va¢uam\t¢'vacuum'

Zl may be calculated to the one loop level using the

stationary phase approximation(72)(73) That is, one expands

classical minima, the vector %;

. ‘ . ":.'-‘

ﬁcl)“~‘instanton S

v’*’;{' ffhf“a* ‘~L‘¢=I;gj;¥_;_ A

R AR
(°1) is just the instanton action '

(°1) + %A(qu)MAA(i

(Cl) 8'" //g

and the matrix notation 1s a sh

expansion of the action in each of the fields

l

5f‘qu>)

e (qﬁ) 2
;SD A ) +3Au abc BV

c( u)
LAy q ]d x

B

®

orthéndhfoffﬁhe*éeQ@ﬁdfofaeﬁ;'7*371*

a(qu) s (cl){if;f;j;



: L - R -
',VWMww fwcx><n-m>w<x>d x:~vwhereA‘<E =y

Sl k(F(A)) is the gauge fixing term and the ghost matrix

'”_<OIO>';1-“

? L

LE

‘represents~the usual ghost term., In these expressions the

‘ifnt derivative is taken at A(Cl) ,.‘ 1‘ R

fD»A<gu> B A(Qu) ; 1g[A<c1> (Qu)]m

i

'intf we' now introduce collective coordinates‘<r~:;§1 a.?ﬁ%& ;;-“ i
. f_.corresponding Jacobian factor J(y) into (3 39) lbfsisivén- :
’“.:(at the one 1oop leVel)‘by(72)(7ﬂ)(75) AU L

ngiJ(Y )[dA(qu)][dw ][dw][dc ][dc]exp{——g—}exp{ S"T»f

n}:<0|0> .

2 e,

'Ffjv?Nfde J(Yi)(DetM (Y)) 2(DetM (Y))(DetM (Y))exp{~———}

i"{where N—(DetM );5 (DetM )‘1 (DetM

- !ar;d g ] Dth =1 -'.E. |

1t e R ,s |

gh);'l‘where the subscript o

: ['_means the determinants are evaluated at A(dl)-o It should be |
-;noted that the Y are not time dependent so these are '

-,normal integrations

o P . . . ey

o The determinants are. as before evaluated by solving the; o

‘eigenvalue equations Mw =fE w and Det M B E (e. 8 ) '

. n. ,q

| :ka (ﬁ—m)w é,Fﬁmnf




For SU(Z) the collective coordinate integrations over “
‘the three global gauge.orientations yield a simple numerical
) vz: S ' factor and. one is left with an integration over instanton
positions and scale sizes ‘ Writing the instanton in 'tHooft'
notation - L S |
R | - o palel) | 2Nayy (X- z)”
A z) 59y

j,with the instanton position parameter Z explicitly displayed

3 - tt o ff:rations are; "f;, s -
yi Iry) = c j a" 'z do Jéo)\

_where Cb is the numerical factor associated with the global
'vgauge integrations and is ba51cally the volume of the gauge
,i" growg o Now since the fermion determinant is independent éf
| (qu) at th one looep’ level the A and ghost determinant may
be evaluated independently of the fermion determinant These

=‘determinants’contain infinities which must be renormalized

,‘The net result at this one loop level- 1is to replace the

coupling g by an effective coupling g(p) which satisfies the

renormalization group equation(56)(77) ' ﬂ} R _ e
V d“". S . Y
d(In p; "*:‘5(5)* S
. .o=>for small p g (o) l/ln(pu)

R - M = mass scale

' The final result for Zy is:-t o B . - By
-<blo> = kv.f €2 <§3;§> o (-2 }atm,0) - . (3.40a)
Sl g SN

¢



. ‘)w»i
" where x.='4i§‘é'“(1); v =18n2/3_= result of'z;integrationsfg
N O ,_un,, : Ty T '
_ : . f Y I R
(Det M) - N 5 .
¥ ' \

and A(m D) —~ ; \
o - et M v T, o | |
fially embedded inra\pighér
SU(N) gauge group to. yield an SU(N) instanton(69‘ Ehe .

i\

analagous. expression to (3. Loa) for SU(N) is(7u L

‘The’ SU(2) instanton may be t€i

_ 4V exploa(1)-2(N- 2)a(3)} 0 iy 2 2N ~862/§2; ‘
1 2 (N 1) (N- 2>' f ( =) e ,Agm,p)‘

<O|O>
- e ‘ g .

\ . N . - . - " ‘\A )

a(l) and q(%) are numerical fac%ors,numerieally evaiuated \
By 't Hooft; a(¥%) = 0415 and a(l) = 0,44,
Since non—Abelian gauge theories are asymptotically/ "\"

cree, g(p)*o as D*O hence the p.integration in equation (3.40)
’ . . - . . . ) I - . -
: Will Converge for small p. Infrared eﬂﬁects, however, cause

" g to be poorly defined at large p and thus the large o] portion
of the integration in (3 MO) remains ambiguous until the
infrared behaviour of noanbelian gauge theories 1s well

understood. Large p also. corresponds, though to ~the region

) 'where‘the'semi—classical3 stationary phase approximation will
(56) ' R

‘no longer be valid

~ The fermion determinant A(m,p) has been ecomputed for'

(72) 4 ¢ (76Y;

small p ~and. for large p

s

.2, .

1-Ore, refegence (73)— the finite result for the volume inte—f‘
" gration is due to the. boundary condition of the instanton ,
effectively compactifying spacetime to. the 0(5) hypersphere




. - in the form

| | I R T N
O 0 [rsssems . emesaii. 4 Yo
© A(mp) = L | R .
— o iv4*0.16Cpm)2 ~opm>>1 "

' The vacuum expectation vaiu.vof some operator 6(A,M0“
'"including the,presence qﬁra'single/instanton may be written‘

“ -
B 4

flan,, ][dw ][dw]O(A w)exp{ S[A<Cl)+A(qu),¢]}
‘ 010> -

<013(A,v5|o$1
| | A(3 Mla)

where ghost and gauge fixing terms have been Omitted both f

numerator and denominator include O+1 instanton contributions}-

At the one loop‘ieVel this:beCOmes T f.ﬂ -
, ~ - N : Md;~8ﬁ2 ".”’8w2 L A aiﬁ A
<Qlo(A,y)|0>=<0[0(A,p)|0> +KVfdz =B(=—)exp{-—5—1}a(mp){<0> ;-<0> }.
b : - : o] 5r=2 -2 - EM : cl o’
, ' - o pT B 8 : A : .
' .8 . :
(1' - ’ °
. ) ’ . : "\ . (3' ulb) -
. ‘ . o b_ . " . . . ‘ : ‘ \ R
'Here <O>A is the expectation value of the operé?or in the‘ -
' cl ‘

\

'gfield of a single instanton and.will in general be. P and z_‘
‘dependent (and also global gr up orientatiorupepenjent, which
we will ‘assume averaged over 6))and <O|O|O> =<0>, is the‘ -
r(normalized) vacuum expectation value of the operator
excluding instanton contributions . |

; The effects of multi instanton (and Anti- instanton)
contributions\may be included if one approximates the'ﬂ«

A8 :
,fcontribution of n,(n_ ) instantons (anti instantons) by thet

~fsum of n, (n ) one instanton (ahti instanton) contributions

The value of the deterninant here axcludes 8 contribution which

was implicitly. included An Ki 2) in replncing E hy 2 e g.n
“compare with {76). . . _ , :




oA,
s

SR j”“V N m__'_ o . U ‘
| Since the sum of two single 1nstanton field; ‘does not satisfy

fl

the Yang-Mills field equations,isuch an approximation can be ;

=expected to be valid when the action for the sum of the n J‘f ‘.5‘

'_';A,fields is. no\ much greater than the action for the exact -

oinstanton SOlution QI%Q The difference may be considered«a
3 g g

Vform of 1nteraction energy between the instantons and heﬂce-u.,
'tne approximation becomes accurate for isolated non—interacting

instantonsqﬁhly For this reason 1t is called the dilute gas

- -
,,..v.w)
. .
»

'",approximation (D G.A. )(56%616) : It“is convenient to introduce u
a quantity D(p) Which may .be interpreted as.a sort of instanton |
denSity(56) “ .. ) . v ,., . N o : ,-:".. » S o
. L A o LU B
‘ 2 v.u o >8W2 A :;;. R o Ty
o D(p) = K ( -y exp{-=5—=1 = for SU(2) SO P
PO , ® ( ) ’ g : ‘
IR g<o> R e .
" Equation (}.40) may thuszbe,rewritteni
26T021 = V.f 2 pip) A(me) |
. \ e “p5 , .
' * ' : 0, / . -
The vacuum expectation value of an’ operator O(A W), including_
multi instanton contributions may now be formally written in

‘the D.G.A. as (76)

. . n . ,
pesc. : +"- dz ae, . ,
__l___ = d2ydpy |
| SN f AR J e ?;"335.D(91>A< °I)<°>A(c1) |
<0|0(A w)‘0>’ + - : ‘ n+n-=
et ' dz dp _ o .
Z.;rﬁ—* DwﬂMmr)
nys -dn+.n‘ 1 (p_)S vi',i; R R .
IR < N _.: | E - ,‘»" (é.uz)'
where' : . . : R LT,

St

is a sum,of’singxev1ns£anton§ena_an:i;instanton.fieids;;

- N LR ’ -

T - ;' -"

. X . 1" w & ‘(") .

- ! ; i \

R / .
- . a SRS
10 N T LAPYY -
e g4 VRS T——
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3.6 Fermion Zero Modes ' ] ;f L ' .
.‘ The fonm of the fermion deti'nant A(m p) is propor— R
x'tional to mp for small p. +This.impliés that, for an .
identically vanishing fermien-mass, the detquinant would\be\

'zero and the fermion operator M would develop a zero

v
.'leigenvalue.; This would give a zero value for Zl at the one
‘loop lebVel. fln other words, at the one loop level instahton
effects disappear when massless fermions are present

The existence of zero eigenvalues for Mw when massless )
- fermions are: coupled to ‘a selﬁ-dual instanton field can be ~
';rigorously proven using the Atiyah Singer 1ndex theorem |

‘ This theorem is. a modern result from pure mathematic;>§hich

~0
~ .

relates the analytical index of a differential manifold toAff.; ‘
the topological index The analyt%cal index "is an integer‘“
associated with elliptic operatorson the manifold and the »
topological index is defined ;n\terms of the Chern numhers of

iy A . ',_ R ) Y

. .. °
LY -~., . -

: the manifold
More specifically, for one~elliptic oper tor L and

. its adJoint Lf, the analytical index is the difference\between fc‘

* tthe number of normalizable zero eigenvalues of L(n ) and "‘j

. L (n ) o ;1" 0 . L ."." '_:-».i‘ " N . /( - 5.
- . I =n_ - n, '_," b " ~v - ‘ ‘- o =

o : ﬁ," . .‘ w8 ‘Y - . ‘3) . e . '
Now, it is possible to choose a representation of the Diracix

.x

Y matrices so that the massless Dirac equation in a ?ang-Mills o

~ field takes a form suitable for the applieation of the index ’

(38)

-theorem Explicitly% the massless Dirac equltian

- .

« ‘Ht




.“ '."u . ‘i \\: L‘ A ‘,, . ‘ ' .. "":
the two decoupled equations, Y L o
S TN S . I L e e

cat s AN =G T T e D

_-u ! ;. ".: ;a '\ " + “ " n. N —‘ '_ ! v ‘- '
¥ (13 SA Y =0 o

C Co SN _ . . R
’ \\v T . ., » U .- o 1‘0.. L - . ! ) . L . . N '-‘ ] ’l ”' -
h with ¥ of (6.1) given by: -~ = -+ ' - o7 SRR

-

. I ) Y * L *
. ) A S e ;
oo ' ‘ - . .V ‘ o ) . S ' ’*-". N

N . S \w ol T T S S SR
| ayd w and_w+ states of definite chirality eWitﬁﬂtpe' ;f““lﬁv*r:

. . . identification‘

&v ‘ : . c . . ‘ “'
' : | L= o“(iap»- K)ot e (3 uua)

L? = c“(ia = A D ’ ¢-f{  (3 uub) %5'

__; S
the index theorem states.‘_ } e Tt A T
. ;, ‘n -n, = f a xTr( F““" ) f(F“” hermitiani: (3 us)w

RO 16w2° | By s i

7»’47 That 1s, the difference of the number of zeno eigenvalues df 50 17

]

\ >

L and Lf is’ Just the Pontryagin number or Cherﬁ number bf af,e

, S
: N the manifold Fer a self—dual A it cah Be' shown thab oqu
, 'ép] one of n Qr n+ is non zero(38) The'zero eigenvalue ,:‘N,V?jfv'z

\ - =~ R
- u \Huﬁtion (3 43) therefore neduces to eitﬁeﬁ ?.,.L BRI 5
9 . v . a A‘ ; v " e - ‘ b I L e L& . ) . . « ) -_._ 3 R 4 . x“ ‘A‘.

L L] . Ct e ) A _“.‘- .

e L - AR Lﬁ7-3~d:‘,_ar,“, Lw'--\o L e e A

- > . PR} . X - - A - . LATRRT

=
.
s
. Ce



',anomaly and its divergence is not the naive term u12J

. 100

/t'“( -

L. .)‘.,_"

’-hence A(mp) is identically"éro'as expected from {trHooft:s

calculation(72)- v"iti SR h_,; ' o
' The existence oJ:Zero modes of,Mw fortmass1ess”=="

'fermions ‘can also be traced to the'existence of.an'anomaly

' in the axial vector current operator<u5)(78)<79) ’rThe_v

axial vector current is the current assoc1ated with the,"

:"";Lsymmetry (for massliss particles) ;>95 .,"Vl
| ¥n T Enty NG
'lQr““ _.'~ ' .‘Yu(iau"iAﬁ)¢5-=wEn?n:f_ . f B i. L p'(3r469

then the axial vector current may be’ expressed in terms of

SRt Zwmw (x) W
Jh = Tr 17" 5 B.=mdss term
5(x) - PRI RTmEss terh
=.Tp iy”ys SR('k__,X)..»
Where SR satisfies ' B TR ,
[iy (8 L FiA ) + iu]S (x; ) #'Sg(?fy)' S

This current is the axial current for a theory with massive

v
fermions and S is the corresponding propagator Now in the

v

- process of regularization and renormalization, J“ acquires an-

5
, 5
Rather it 1s given by(eoa g



Logon
?‘ RAGE: 8——/Tr ') FW> S aan T
T M LAY
.wherey "»‘,jJ5(x) 5;% ﬂ_,ggEn+1p - '

.wo can be chosen an eigenstate of y5 whereas for w

.i(eigenvalué E), y5w has eigenvalue -E This follows from

‘multiplying equation (3 M6) by YS and noting Y5 antiécommutes\ o5

'with Yy ij This then imnzies L -

‘/
/

eyf'dg?lw (x)YSw (x) ). 0.

frdwﬁ T( )( )st( )(x) (+)l whera + denotes L
SRR » o positive or: negative :
:=Chirality '

'ﬂEquation (3 M?) may now be integrated and only the w terme

will surv1ve in‘J (x) to give 2(n -n_ ) Assuming J; vanishes

N

A

"fon the/boundary of U= space gives;g

Ean

0 - _ri.';f'=" L2 fa x"”Tr< ¥, F:“"js-q"'
T 161r E S
That is, the’anomalous divergence of the axial vector ourrent

i]implies this version of the Atiyah Singer index theorem (or'

'vice-versa) Equation (3 M?) may also be con51dered as a |

vlocal version of the index theorem | | o

v It should also be noted that when considering only the o

strictly massiess case, the lim“t u*O should be taken in

’

(3 u7) and when integrating J5 can in generalsno longer be_«I

1‘,2*PaZsumed to vanish i.e (3 ﬂ7) becomes R

f dvxfavJuS)., ngkf:d.xTr( ?FVF )-f22q‘_ o (3.48) .




 Clewhere 3 denotes boundary of the physical system under .

¥

tconsideration



y 'G‘dUZl Introduction ,f?cait ;_"fﬁ -ivl ’j ‘i*llf‘a; yd

CHAPTER IV

1.;-3-_fp APPLICATIONS

The analysis of the preceding chapters has concentrated lff*’

on the formal properties of solutions to non linear field ;

;df,equations w1th non-triwial topology T There has, however,

."*particular, the role of instantons in noanbelian gauge,"

:effects thought to originate from instantons *o”

4.2 The Vacuum in Non-Abelian Gauge Theoriesﬁ.'d

'i,instahton solutions has important implications for the"'

RO S ; a .
':gbeen no solid connection made with realistic physical theories.

|

',‘To this point therefore, there is Ao reason to suppose that _;?',W

;.. S

’llsuch field configurations are - any. more. than mathematical .?fi.ft']"

2

[

;ifu?curiosities K i":iﬁ';“,rflvi’lhfggt-v: ‘if::{m_f"”“‘

o )

'In this chapter some possible physical implicationsr‘u

'pqoi the existence of such configurations will be outllned 'In”

'j'theories of elementary interactions will be explored Most

¥

"*ﬂof the effects described here are highly speculative and no
real consensus exists as to,bhe correct approach to

: ﬂ;incorporating instanton effects For this reason,.thef

¥

*jimain arguments will be very briefly outlined for the major'L_:hf

As mentioned in section 2 l- the existence of

/

definition of the vacuum in non Abelian gauge theories

.fBefore the discovery of the instanton, the vacuum of non-7
Abelian gauge theories was assumed to be analogous to that

”7Jin QuE.D- That is, a unique vacuum state could be defined as'?:.,'

é

e#




ja superposition of vacua, [g> (W[Ag]) gauée;equivaient to

.

;the trivial state with A i e

‘_’. |o> f[dslls>

_where the gauge group integrations are,tas &n section 3 3,

'over infinitesimal gauge transformations.w Specifying a
;fphysical gauge condition or utilizing the Fadeev-Popov

-V\procedure'of section 3 3, thén yielded a well defined

7f'unique vacuum
’ With the advent of instanton solutions to pure nonw

Abelian gauge t&eories,vit became evident that this was an

f_/incomplete definition of the vacuum v The true vacuum alsof

L4

;@nsists of pure gauge fi\lds with g(f) not obtainable

tinuously from g(x) l 3 That’is,_the vacuum consists

e

of pure gauge fields sepaqated into\fopologically distinct

sectors» which may be labelled by the int ogers.

This may be seen most easily in the gaug_;lﬁ-.”‘

”sidering the vacuum at some fixed time, implies

:;>A.(x) - l(x)aig(x)




-

.

ng;This follows since th%se g(x) which do not satisfyothis

ffcondition give A (x) wnich¥? e separated by an infinite \j‘¢{'~€

“

"ﬂ,energy barrier from the normal vacuum field A;nf

5ijsnch field'configurations woul

'fyftherefore transition amplitudes,from the trivial vacuum

ﬂ05nfigurations with g(x) l would involve A #O over an}.j:p_

”*lygy“infinite volume Such infinite energy transitions have L

'”ipzero amplitude and therefore configurations not satisfying

'.‘»r Lo

e

Vjﬁf(ﬂ 2) may be ignored

To topologically classifylthe remaining configuratiOns;i"h
}ione may, as before, COHSideP S(X) as a mapping from space ,vu,i
.i“afi(now 3= space) into the group manifold The conditio:f(ﬁ Z)ILfifif
‘”t:however, effectiVely identifies all points at infinity for T
/tﬁe purpose of °14$Sifyin€ the mapping s(x)._ Now, a° f;j_&ngJ?[
‘i‘x2 dimensional surface WIth the boundary points identified.isgij;g

2

'ftopéyogically equivalentrto a sphere S and in\the same way,fgpi’

.3 Space with the bowndary points identified is tOpologicallyQ; :
_ﬁffequivalent (homeomorphic) to a sphere 53 Therefore,vpbé;ji;ji;;ﬁ

ﬂ'§+S3,(for SU(2)) s?here are therefore;

: ‘g(x) ar'e pappings fro"

?ons classified by

}]inumber of times the grbup man;fold was covered for each
' jcovering of space was given,by the wrapping number

'\".-'n"zu gfd3xeijkTr{<g (X)Big(x))ﬁs <x)ajscx>><g (X)Bkg(x))}

& Zlm f a xeiJkTr(Ai s k) - "75"5%’ CRLLe T (tt 3)




:“-[fewhich gives

73h;lo5f“

gl(x)a (x) — =~ + S (U-’-la)

'ffK (x) 151 V sl(x)z_L (3‘4b)7”

R ' ol ' ”""i‘ i ‘v*»m*,a:y.;_,“w
"a*éA g(x) which gives n for equaﬂion (u F) is J:”~'T717e
)

'..ft-,f_”fl(x)J“ 'g {¢:

0 Vacuum configurations with differing n are separated

’ff?by a finite energy barrier This maf\be demonstrated by ;j'

"itf5multiplying (4 Hb) by a factor (%—a) and allowing a to vary

'.I-""-.=_icontinuo'sly::‘A”'-‘;5 t° +%‘ J is now no longer zero and

7 .
. v

.tituthe energy

f d3xTr6F
”r';This shows that the energy has a barrier form between n= 0
: _fand n=l, and similarly between other n This is illustrated

”V;jschematicaiiy in’ Figure 1o

”iFiguféfIO:f Periodicity of the vacuum in nen-Abelian gauge R
T theories. j_ e i sl el , _.455”79




?’tginstanton

'v_;.instanton takes the form R W T

""‘tunnelling between vacua with n differing by q. -

L

‘dfei The understanding«of the topological nature of the .

'ﬂ‘}gauge theory vacuum allows a simgle interpretation of the

(3#)(85) The instanton is a configuration which

5_interpolates between vacua with n differing by 1. This is a
'j¢{Semiclassical effect which has no simple description in'
aninkowski space but in Euclidean space takes the form of a

ffclaSsical phenomenon._ By gauge transforming to A —0,:th B

0

|
Lo

‘f§§§'.,ff‘ A (xu—_m)
~L»vaJﬂ¥ o L R

: Also, in this gauge, it can be seen that

PR 1.0 L vHV”_ ';
B S -2.} Tr( Fqu Via'e

'"F16ﬂ>b1£" H> ;prt“,: ;‘i.llin.;f,.,u ‘ ,he,‘  ‘3.*  EEN _.H
'2uﬂ u=+¢

e 2 . - aé""r
et L o vv-.v Hi: SR

n(xu—+m)'- n(xu-—w) (— l for instanton)

'3,Consequently, multi instanton configurations represent

\

b Sinceiwacua with n#O are connected with the normal

"'fvacuum by instantons, the unique vacuum must be considered

oal superposition of vacua with different n.i‘

i /fs"

+°° - ‘ TR S

-n-.--:-oo- »

N & : L P
".>This vacuum should be- invariant underjylarse ' &uSef

'-9“3fsrtransformations, that is, those which change n.u‘This .
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| d?g@g(g' )eijk — £ d3xeijkTr(Ai JAk)’7
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réquirement forces cnwtoibe,"~
v ‘ . o ) ‘ i ’ B
. in6 ° , ‘
o OO
and under a large gauge'transtrmation'(e,g; gl)
e ~‘r0>e-+a e-ie[U>e  0ges2l .
~ . ' \ .
The phasegangle 6 emerges as an arbitrary parameter
,characterizing the vacuum, which cannot Dbe. dqﬂbrmined a
'priori by any’ apparent means |
The vacuum to vacuum amplitude may now zfuwritten
,in Euclidean space - T - " 8
. é<0l0>e’*u‘z i(n m)e<m|e HT|n> R TTRTE N (f
= i_e_ivef[dA ]exp{ [d xL(A(x))} for v=m-n and T+wb
. v o Ly
: ‘s;;f[dAu]exp{—fd XEL(x)+Lé(x)]}:
where - ;'Lé(x)'--ie 5 o('F, F“V)
- e Sooodemh

'.;and the path integrals are over: A Which\carry topoiogical

'bcharge v for each term in the sum over v The net effect

'_of ‘the new vacuum structure is therefore an effective‘ o
'»Lagrangianjterm‘proportionaL-to.e.-_Now,, EquHV-is not
' i'P'T”invariant-so fér 6#0, the theory'wiliéin‘éehegal!not'
5conserve parity or time reversal invariance 'FOr'Q C. D
,therefore, 9 must be very nearly zero ‘ For weak interactions,_

‘however, such a term may provide an explanation for cbs@rved ’

P and 7 violations(ss) SRR *a”_“f;jL | .T'fv‘d’c_ N dff‘fX-
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by, 3 The U(l) Problem

» If one begins a study of Q. C D. by ignoring Weak

; interactions, all quark f‘lavors may b‘& assumed to have the

,ﬁsame mass. If the mass - is initially assumed to be zeno,‘,

;symmetry | For simplicity, ‘one can assume only two quarks:
.'; nd therefore chiral SU(2)XSU(2) is the relevant symmetry
3 The masslessness of the quarks also implies, however,
“paural U(l)XUsi) symmetry The successes of P .C. A.C. (87)
_one to belleve that the SU(2)XSU(2) symmetry is |
\dynamically broken to SU(2) with the triplet,, of pseudo—
scalar pions the Goldstone b0sons required by Goldstone s
'*theofem(8,) -The fact that these pseudo scalar pions are not
‘i. massless is accounted for by adding a flavor breaking mass to
.'_w."l;-the quarks in the initial Lagrangian ,-
| » b Similarly,,the U(l)XU(l) symmetry should be broken'to

!

,U(l),kotherwise hadrons would appear in degenerate parity

Al

"-,doublets Standard current algebra techniques show that the

corresponding Goldstone boson should have a mass less than

l /§ m. <89). Unfortunately, no such pseudo scalar boson exists:,

This ponstitutes the U(l) problem circa 1975 (note also (90))ﬁ

. Since Goldstone s theorem requires a. current '
,fsatisfying 3. Ju = O“, a possible solution is that the - axial
U(l) current J; is not conserved as naively expected As‘ .7
:was noted in section 3 5, thls is in fac% the case since

b 4

the axial current possesses an anomaly and

,§then for N flavors, the theory possesses a chiral SU(NSXSU(N)»
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\‘ . S L . - B ‘110
A | | 7
\‘\ n o * ! -
IR N __1:‘_2. Tr( F VF“".), = -2 K“) ’
R \\ ] W u 8‘"‘ : 1 81‘_ : a
with KR\ n by. equatiop (2 8) This does not howevér,.
solve th: __1) problem since a new current ‘may be defined
R S , L _
) kY . b ' B u R : . P - . . s
o .\\\ : i Ju = J‘-H - HK__ o ‘“ - , . B
N4l . . '\\ 5 N 5 8'“'2 o . N ‘ ) . .
\. : ' A C . » . . ' ’ \
-\~ (N=2 in the case of 2 flavors)’
- » \“,‘ : . . N L . ﬂz ‘
‘which 1s” consexved: P | o - &
. .‘v\ ‘ \\. .(v‘ | ]; - O ‘ L" . o . ‘. ] : | -
JaY R o ,
‘Sian,thé new current“satisfies*the same Commutators~withf'
f‘quark mass terms as Jq the U(l) problem reappears as the
| question of the non—existence of a pseudo—scalar boson
- associated with the spontaneous breaking of Jg symmetry
) The generator associated with the current Ju is o ’::

QS ».j‘_.deS('x_).

and ‘since QS generates a symmetry .

[QS,H] =0

‘This symmetry is different than those generated by the other

L2
chiral charges, however A chiral U(l) transformation

generated by QB’ has the following effect on-a 6 vacuum

The U(l) chiral charge thus changes 9 vacua 5Normallyvan

;expression such as (M 6) wpuld signal the Goldstoné theor%m

(84)(85)




O

SO

Y

-+

this case, however, not a physical symmetry of the theory

into a 8 vacuum, these’"virtua‘“ tunnellings are sufficient ;,

S o - e =1

and a corresponding massless mode.; The'e‘symmetry is in

e . %

and a careful analysis of corresponding Ward Takahashi e

-

' identities shows that the massless mode has positive and \

negative metric components in the corresponding Hilbert
” .

space and thpse components cancel for all gauge invariant

quantities (e. g (53)(“0)(90)) ;' f} : 'f\ﬁ\ N

/ . : v N v . [ ’

U(l) chiral symmetry is thus seen td be broken by .

o~ -

' ‘the vacuum without a corresponding Goldstone mode.and .' _*”

therefore when SU(E)XSU(Z) Symmetry is broken, the chiral

&

Uu(l) symmetry does not imply a pseudo scalar meson in the
same manner as chiral SU(2) breaking implies the pionfq

The above result depended on the. character of the

6 vacua fOund by interpreting instantons as- tunnelling

configurations In Chapter III however, it ‘was shown that R
£ ‘ ) . . "
the Atiyah—Singer index theorem implies zero tunnelling T

. amplitude, in’the one-loop approximation, When“,assless

fermions are present _ It is therefore not apparent ‘tnat

the eevacua are: the correct vacua, fo! a theory incorporating

A )

massless quarks The index theorem ‘can be avoided however'
by considering tunnelling configurations (instantons) ;; ]3

followed by anti—tunnelling\configurations (anti instantonsj/

~

so that the net topological charge is zere : Since any -:“ L
tunnelling at all between the n vacua requires a superpOsition

s L ) 9,

s - .
.7 : > v,

R . . S
. . R T .
s - [ " E ‘ - o .
. . EE - : ! .

The adequacy of this solution is not yet completely clear, rli’,*-“ B

c-g! (91)(92) T S

P
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Lo ‘ . . 4
to retain our vacuum structure'of section 4. 2. A more

complete treatment of this question can be found in>

K

e ®

references (53), (84) (85), (91)

4.y Mass Qeneration by Instantons o ‘ Lo

-

It was mentioned in the last section that the : ;
SU(N)XSU(N) symmetry of massless Q C.D. is expected to be N
q'l'mically broken tq SU(ND to correspond with the successes .

¥ o

of current algebra phenomenolqu. .Rec nt calculations

Sy )
. . utilizing the dilute gas approximation indicate that

f'}'“”i instantons may be responsible for this symmetry breakinga

qby dynamfually generatin can effective quark mass ((96) (93)—
5

?1fﬁ" ; : (96)) In these treatments 1t is assumed that the mass’ ’
| generation effects occur at distances small compared to .
. o 'scales where quark confinement is- expected and)hence the |
X o t:ij two probIbms can be treated independently SRS : " s

B C e

To consider mass generation effects in the dilute gas

,approximation we begin by considering the propagation of

‘a- massive fermion infthe presence of ‘a single instantOn(95)(9u3

SET (97) SR oo L b R
T S | A (l)»g.: R SO e LT
- ':""' , ,/J o ¢ B [ . g
o \\Comparison with equation (3 Mlb) of the last chapter shows
e }’ RS 'S | e o .
o | S(l)—s +Kjd°d Z(8Tr ) -87°/g” A(mp){<s > o =783y e
T W . . R 5 \2D cl F o ,
. e 8 oo B S '
e = SFQ+'§F - ; , . (4.7)
where7SF”is;the‘normal,-free propagator: - L é“ ‘
c e R
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o | " A
/ . 113 e%’/"
/ - w ‘ w ! Tl e
\-rl} " ! - ' : ¢
| : R S
= o i - - \ : , o e
sF; <. lypml v = <o|n'rgqa(‘x)w<y))|o>d R
nd <S = <‘|' ‘ 1 ‘|y> ' *"=‘T;kfxw
A F A(017 ; u “Tc1) I o AL
[ - I ¢ *ié(f\ Moo
The contribution Qf an anti- inaxanton\gixgg a term identical = .
to (4.7) with <Sp> ( 1) replaced with <S (cl) B .
14y | 1(e), A (1)
(SF - SF' ). The total S 1ncluding one instanton

. A . . o
‘and one anti-instantoﬁ i§ thus

s(l)‘ o I(+)"
B « B

o

-y .. -
+ S + SF P _ -

.
Sp t 3p

i
S

* e
*

Expanding -to second order -in the dilute gas qppfoximatidn
so, ‘ ) o . ' @ : o o oA
(1.e.+second order in equation 3.42) gives Sp including up” .

‘;'to two instantons (an{i-instantons). The result is just'

0 d2) L w0 L oI, lI,l04-1 I
R I Y SF(SFQ Sp
. .1 o \ >, .. ,'-a v.e. - ) L 2a - X o " g
ﬁ'where the factor (S )" comes(frsm expanding the denominator ~Vf

t‘

PR 3

in (3 M2 and ignorihg terms of higher than second order 1n_

lD(p) The inclusion of n instanbons in the D G. A is now
clearly. - . j; L .t
’ . « -

(n) I ”I’ Y I, -1 .T(n)

/}SF 5 sF ‘,s (s9)7 Sp teo ¥ SRSy

SO (1) o e T
D52 B ofsts ™). e el
T )= h e R

,'The complete propagatorx~including all numbers of 1nstantons

in the D.G.A. 18 |




o ‘l.< - | " . J o ‘ii y . ; 'v !
g oA e T
S E T sl st T s A

LR

This shows that the instantons generate a/fermion
| Ry
self energy Z Z bossesse terms even:.in Y matrices and

' also terms odd in Y matrices The ood terms can be

P

iinterpreted as a- wavefunction renormalization whereas t?

(95)

even terms can be interpreted as a. dynamical mass term
. = :
Applying the above analysis to the generation of mass

' for initially massless quarks of course, runs»into the'

.f problem of-the fermion Zero. modes which cause S; to vanish

(96)

E .

, In reference (56) Callan, Dashen and GPOSS argue that )

"thls does not prevent mass generation however TheJ consider'

| the v1rtual tunnellings which remain as: instanton anti-“

——

57instanton bound states, and argue/fhat these bound states

undergo a: phase transition to an approx1mately free gas of
D

'ginstantons and anti- instantons at ‘some value of effectiver

-coupling g,;and in thiskphase.the-D G A is valid and mass

L S e
generation results. In_(QS} mass generatioh is approached
self4conSis%?ntly;with an‘in tial mass term introduced along

with'a counterterm - Self consistency then requires 1nstantonh

'effects to caricel the counter term. »Using the conSistency-

:equations they find approximate solutions for cynamical

‘mass generation. : T 4

N
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4 5 Sﬁecuﬁations on Quark Confinement o

Y

D .“:/,f
Quark confinement remains one of the major problems

k2

e

in modernvelementary particle physics Since quark confinement
is expected to be a non—perturbative effect in Q C D ..itpA _ 4
bvwas hoped from the beginning of the exploration Oftopological 1‘)k<ﬁ;w
emon perturbative soliton states that such an approach would ‘ o =
sexplain quark confinement | | : | ' | v
) iv,One approach is to consider unbroken Q C.D. (Withj
”_H (SU(3)) O) as: equivalent V1a some dynamical mechanlsm to
ufhf;a theory w1th H (G) _r3f This then 1mplies the existence
| of - generalized Nielsen Olesen vortex\tubes Which can be
nterpreted as. strings" Joining quark pairs or criplets

ne problem of quark confinement thus reduces to explaining

the relationship between Q C. D and the "effective" theory
J(l6)(98)(99)

L.

_ L An alternate approach was iniated by Polyakov(33)(3u> o
Vli p_l and ended by Callan Dashen and Gro’ (52)(56)(107Xl00) 1‘a?";bf'€
G ‘Thiszj:gumes Euclidean soliton configurations will dominate B
'.‘the Euclid%an path integral to generate quark confinement |
,inon perturbatively Bince this approach relies heavily on

,the D. G A it follows ‘the type of approach outlined above

As a measure of quark confinement one can consider

,-the vacuum expectation value of the non integrable phase

(101) )(102)

vfactor around a Euclidean loop (rigure'll(a)

1{A ax¥
o _<O|Pexpi ¢ A dx“]o> = [[dA] B

©




'_ created (e g by an e+e beam) and then subseque ¥4 _' .

L -‘-.\ii< | _{lis;a
S t R

where P represents path ordering(lOI)

and on the right hand
side, S represents the g!uge field and quark field action
One may subsequently do the quark field integration, summing

x over(?ll loops, to giVe the amplitude for a quark to travel

| over a closed path as in Figure flh This amplitude is"vf,f

Just proportional to the amplitude for quark pairs to bef._
annihilate = The manner in which the integration over loops B
is damped for large R via the R dependence of equation M 8

thus determines the amplitude for observing "free" quarks

Ry

Ty

BT S

" Figure 11. Wilson's Quark Loop.

X "ii‘:‘__‘ R




"as R then quarks are confined

(3 MZ) (a perturoation theory calculation gives

1ar

Working in %pe gauge AQ‘O, where only the R integra-f_'
tions contribute to 4.8 (note Figure lla) one can write '

- ‘ ¢A dx o "-
<OIPTre CE e —— & E(R)T
' : large T ' ‘

fwhere E(R) may now be interpreted as the interaction energy

e

“of a massive quark—anti-quark gair If E(R) goes to infinity:'ﬂ'

<102)

Instanton effects may be 1ncluded by calculating

| equation (“ .8) using the dilute gas expansion of equation. L

3 RV o

.tE(R) (g /uw)R which is Just a Coulomb type interaction.

)‘energy and is ce”tainly not confining)(60>(56) The net

_effect of summing the - terms 1n the D G. A is to exponeniate

rthe one instanton contribution to. equation (4 8)(56)

E(R) =-1in & f 4z 9% D(p)eXp{¢ A“dx -1}

T-)—oo

30

°

f(e;constant) L
J N

iFor large R this approaches a constant andrinstantons do not -

‘ appear to confine quarks at this level of approximation(52)(56)

Callan, Dashen Gross have argued however that

~;‘although instantons do not appear to confine quarks ,merons, :

(Chapter III) become important in the functional integral

and their contribution may possibly create a confining f_ '?_Q

al. Although the meron configuration writtenqdown in

' II had infinite action due to ‘the point localization»i\y

of top 5ogical charge, Callan et al argue that higher order S



n"*_ﬁgquantum fluctuations will smear this charge over a finite

ﬁ_,region resulting in finite action for the meron.'n

'V’;considered as %eron bound states with the instanton the

":xwhere AS ca:

'f‘ ”effective coupling g, the merons can be considered as:

' f” For g /8ﬂ ) 3/28 this becomes a confining potential andTn”

ifoffgf“’,'"”f’.'f)”f’}}d;jl" fi‘ﬂgLAlLff{i anﬁ”if";nllef“’

‘fConfigurations w1th topological charge of one may thegfbelﬂﬁné_"i“‘“"hi
.__minimum energy configuration The action of a 2 meron .--" S R

,lcqnﬁigurationgis‘thereforevl;ﬁ_.g_l

g 8w e
S >S:7“—§f“+ Asl-

;be considered a meron interaction energy and<-‘

(56)

lffcan be estimated to be

;,Bﬁ /g 1n(R//r ) i;b;”;i?ilﬁlf Vgi:;léi‘w?

With”R‘thehmeron'SeparatfonTand'ri(r2)-thefradii.of the“g
»;merons. ; S s & |

It 1s then argued that for a certain value of the BRI

appxoximately free, and the D G A.vshould be over a meron~- :

" zas The application of the D. G A, is the same as for.lv“

.:instantons and the result is(SS)KIOO)

-

(R)' " R7 61r /g R)

- ', - . P

'MK

';it becomes linear for g /8n = 1/8

o This then is the baSis for the hope that the quark
'ffconfinement problem can be solved utilizing Euclidean.V
"topological solitons The physical interpqetation given to 71\"/

(99) (107)

the con:ining meron- gas is that a time slice oﬁx'




%of (approximate) color magnetic monopoles‘ia,hds gas is~e”

‘then a: kind of color magnetic superconductor with h ons”_V
\ o

f’fgrepresenting bubbles of "normal"‘vacuum where merons are*““”

! }f~bound iﬁto“i"tantons and gluons can propagate freely xt*"

ulgFThese "bubbles" which represent hadrons are expected tc be ,373‘}§gri

B QWitten

o -
urthe field theoretic basis for the phenomenologically i
:lgisuccessful M I T bag model ‘i ‘ o L
v - : —
| " Although this is quite an attractive‘@ﬁﬁroach to the
”ﬂsolution of the confinement problem,‘it relies heavily on
several approximations which may turn out to be invalid
'ben particular, the method is inherently semi classical and
"1"ignores the effect of higher order quantum effects In fact
(102) has recently argued non the basis of the l/N |

.;ﬂexpansion that higher order effects should "smear out" the

EER ttopological charge of ‘an’ instanton or meron gas ,so that the

:D G A, is invalid Of course such arguments apply also to ,1:

| "vcalculation of mass generation mentioned in the preceding

.

L section _ Witten S arguments are, however, no more than

-_efspeculations themselves.;:

vU:S,fConclusion :;Lwy”

The question whether topologic l_solitons are'

.Hfav. S

:physically relevant or’ mere mathematical curiosities remains LT

;wunresolved If the correct theory of we'k and electromagnetic
',interactions is based on ‘a compact gauge group with non—:17“

“-trivial I (G/U(l)) then magnetic monopoles shoulﬂ exist

PR




:.in the theory as perfectly stable particles 'Assuming‘Such

“:5;a theory were to be well established experimentally, however,,fV

B

‘T"Tproof of the existence of magnetic monopoles would st{%l

qf*require detection of suchfan obJect Since the minimum‘f’

‘*g&ass of sudh a monopble would be well into the TeV energy ;ﬁf"i‘ii;r

'

| range, the experimental Verification of this prediction
|
of topology as applied toLparticle physics remains unlikely N

in the near future

There seems to be no question that pure non Abelianuv'

Tﬁories do possess instanton solutionsﬁQfThere also'j'

.;;7seems- fvbe little Question that these solutions can be 7”5h7
interpreted as. tunnelling events between topologically LA e
¥y N :

distinct classical vacua The key question is of course _Lf\\.t

N

whether these instantons have any true physical significance

The preceding sections of this chhpter indicate how several

v_»*extremely important effects in elementary particle physics C

-
© »‘;

could be due: to instantons ‘ All these instanton applications,

L ?lt v
y : -

however :suffer from two very serious problems, the semi—,pv'

classical nature of all calculations done up to this. point

'i in time and the ambiguity inherent in the integration over Ean

instantons of varying size

“b The semi-classiéal nature of instanton calculationi is:

a serious flaw and it is precisely the higher quantum-'_'?n,iji

A

: effects which Witten has argued will destroy the concept_}
f,of an,instanton gas i His analysis is based on another non-'
perturbatIVe approach the lVN expansion and it appears

(although this point is oertainly unclear at this time) that

\ ,v‘”g- }"' ,.:;'““;;“

»w. - ‘ e ‘_- o ,‘v._:':: a . 2




-

oec.D ~ s reason, arbitrarily truncating the scale

‘:theSe tWO:nonlperturbativeltechniques are incompatiblé:',A

¥ .

complete solution to the question of whether the instanton,(“”'

‘calculations outlined above are reliable will undoubtedly
h

about instanton and multi instanton configurations Some o
'progress has begn made and the formalism has been developed

cto the point that quantum effects about a single instanton

:can be calculated to any order(lo )

AR

or to any order within

G

‘t'the D G A.<}03) , The calculations that have been done to

,“,0‘
Loy

(103)

'ulthé two loop level show no- qualitatively new effects

<

T bt the calculations remain within the D. G A.]-
”3ﬁi; The problem associated with the scale 1ntegrations

in instanton calculations is closely related to the validity

of the D G. A If the behaviour of the scale integration is

;3~a such that large scale size instantons contribute very little

to the effects considered abqye,vthen the D-G A"should.be a.

:valid approximation In fact the quark confinement and mass

generation calculations depend crucially on instantons larger

than the scale under consideration having little effect thus_ .

_giving an. effective cutoff to the scale in%zgrations - Such
lapproximations must be dealt with very cautiously however,_fﬂ
'»since the scale integrations are present to restore the scale

'Qinvari“ “st when instantons are introduced into a massless

121

‘:require calculations to higher orders of quantum fluctuations




- and. although the mechanism of reference (86) has not yet

o proVided a fascinating connection with pure mathematics

122

‘lation of quantum effects about’ exact ti-instanton

PR
e B

configurations as well as a detailed unde stand ng of the scale

dependence of the effective coupling for Q C; Although “‘ - _»-\E

viapproximate calculations have been made with respect to the

(10 5), e

‘former the: latter w1ll require a much deeper

v_understanding of Q C. D

oo

Of course," the appdications of 1nstaﬁtons to partiole

physics could be vindicated by an experimental prediction : B S
-, Jore . ‘

directly verified HSuch a possible experimental effect ::,"’ R
'"was provided by the prediction of a new light boson, the

vaxion as a "natural"_explanation for 8 being zero in strong

- l

(86)- o SRR

The axion, however,,has not been oHserved

B e L

iimteractions

3

8l o

.. -

been ruled out the experimental evidence makes verification'

i i

‘of instanton physics in this manner unlikeyy (see e.g. (MO));
'  Even if one adopts the ({ feel extreme) point of
.v1ew that instantons Wlll prove to be merely interesting R

COnfigurationswof Euclidean.Yang-Mills theories, with_no'

important physical consequences, they have nonetheless

Relationships such as that between the Atiyah Singer index
theorem and the axial vector anomaly have sparked a great

8

~dea1 of interest among physi01sts in pure mathematics and.
lce versa This mutual interest ‘has already led toqa
ﬁl'considerably deeper understanding of the Yang—MiLls field
equations and work is currently being done by both pure

;:fmathematicians and theoretical physicists

) /'.‘




FOOTNOTES

Relativistic field theories may also be constructed
which exhibit soliton solutions which are stable )
by dynamical rather than topological" mechanisms *?
but these will not be considered here.’

EVerything in this chapter is purely classical and
any terminology borrowed from quantum- field theory
1s used merely for convenience

For a- formulation of superconductivity 1n terms of
spontaneously broken phase invariance See o
ce.g. (18). e o

An exact numerical solution has b@e’*found when an‘.
extra .constraint on the coupling is imposed =
B reference (ll) o A -

Two standard mathematical references are (13)
‘ careful approaches for physicists may be found in
(6) (14), (15) and (167). e

'See ‘section 4 1 for more details on t_is p01nt

~Belavin et al dubbed the solution tie pseudo—

' particle but 't Hooft introduced <€he name.
instanton bec¢ause’.of the localized nature of the
solution in time Both terms are - commonly used.

'Although these configurations were first discussed
. by de Alfaro, Fubini.and Furlan, .the name meron -
was coined by Callan, Dashen and Gross; the word:
meron comes. from the Greek word for fraction

J“For a careful mathematical treatment of integration
over function spaces . see (67)

‘The gauge field notations are now those of Chapter I
1.e., A ‘Fuvghermitian rather than anti hermition,

e.g. A —A T etc

As it turns out (section b, l) the vacuum itself needs‘
a careful definition for non—Abelian gauge theories.

: Ore, reférence (73), = the finite result for the

volume integration is du€ to the boundary condition

"of the instanton’ effectively'compactifying space- :
time to the 0(5) hypersphere. . . :

123

Page

3

22

28

50

58

63 -

69

(VA

91

,95




~

e

o
¥

AN

The value of?theldeterminant’heré excludes'a

contribution which was implicitly included 1
g by g, e.g.~compare with

(5.2) in replacing

A discussion in more
The adequacy of this

£

"solufidn;is_ﬁdgﬂ
- completely clear,be,g..(9l)(92)a

"ﬂ",

: g"e‘né ral gauges “
complex, e.g._(§3),:-_,& T €

1

R

e

yet

&

is more "
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