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Abstract

Work zones, being a critical component of roadway transportation systems, can ben-

efit greatly from computer vision-enabled roadway infrastructures, specifically in con-

nected vehicle (CV) environments. Connected infrastructures, such as roadside units

(RSU) and on-board units (OBU), can greatly improve the environmental awareness

and safety of CVs driving through a work zone. In this regard, the contribution of

this thesis lies in developing a vision-based approach to generate work zone safety

messages in real-time, utilizing video streams from roadside monocular traffic cam-

eras that can be used by CV work zone safety apps on mobile devices to reliably

navigate through a work zone. A monocular traffic camera calibration method is pro-

posed to establish an accurate mapping between the image plane and Global Position

System (GPS) space. Real test scenarios show that our algorithm can precisely and

effectively locate work zone boundaries from a monocular traffic camera in real-time.

We demonstrate the capabilities and features of our system through real-world ex-

periments where the driver cannot see the work zone. End-to-end latency analysis

reveals that the vision-based work zone safety warning system satisfies the active

safety latency requirements. This vision-based work zone safety alert system ensures

the safety of both the worker and the driver in a CV environment.

Winter roads that are covered by snow or ice, as seen in Alberta, can cause severe

traffic accidents. Current winter road surface conditions (RSC) monitoring meth-

ods often generate incomplete RSC maps in city center areas. Cameras mounted

on CVs and traffic cameras can be used as sensors to detect RSC. In this case, the

contribution of this thesis focuses on developing automated RSC classification ap-
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plications using CVs and traffic cameras in Alberta. Three state-of-the-art machine

learning algorithms are trained and tested on RSC datasets. The pipeline of auto-

mated RSC classification applications in a CV environment is proposed. Comparisons

of our methods versus current methods in real-world scenarios reveal our method can

provide more detailed RSC maps in city center areas and narrow roads. Our RSC

methods ensure the safety of drivers on winter roads.
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Chapter 1

Introduction

1.1 Background

Roads that are covered by snow or have work zones can cause accidents according

to National Highway Traffic Safety Administration (NHTSA) [1] and Alberta Trans-

portation [2–6]. Every day, at least one traffic-related injury occurs in one of 70 work

zones in North America [1]. Employees on highway construction and maintenance

projects are frequently placed in close proximity to moving traffic. Despite the fact

that various safety procedures are frequently taken to safeguard employees, these

precautions may occasionally be insufficient due to a range of environmental and

human variables, such as inattentive driving, severe weather, and poor road condi-

tions. Larger vehicles, such as trucks or buses, typically require more room to merge,

putting neighbouring cars and pedestrians in danger [7, 8]. Furthermore, cars behind

trucks lose their ability to determine the precise position of lane merges as well as the

appropriate speed to maintain, increasing the chance of rear-end collisions [9].

Drivers are constantly put in danger due to bad winter road conditions. When

there is snow or ice on the roads, driving becomes more difficult and dangerous.

Winter weather is recognized to be a major contributor to an increased chance of

collisions due to factors such as lower friction on the road surface [10]. According to

Alberta Transportation [2–6], slush, snow, or ice was involved in 27% of total casualty

collisions in total from 2015 to 2019. Monitoring the status of roads is critical for those
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who manage winter roads as well as the public. Transportation officials must organize

and coordinate several efforts to keep roads as clear of snow and ice as possible so

that automobiles may use the road network safely. Road Surface Condition (RSC) is

a measure that transportation authorities frequently use to identify the current state

of the road in terms of snow or ice coating, as well as a communication method.

Given that the majority of work zone-related accidents may be prevented with

early vehicle alerts, work zone safety research in a connected vehicle (CV) setting

is a developing topic of research [11]. Drivers can benefit from greater situational

awareness regarding future risks or situations by leveraging wireless communications

such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), and Vehicle to

Everything (V2X) [12]. In recent studies including Han et al. and Schonrock et

al. [13, 14] of giving early work zone safety alerts to drivers, to locate the work

zone borders in a CV environment, special equipment such as smart traffic cones and

wearable localization devices are necessary. Such sophisticated technology is difficult

and expensive to deploy. For example, it is doubtful that all personnel or traffic cones

would be equipped with a localization device akin to a GPS sensor.

In terms of winter roads problems, recent studies including Carrillo et al., Wu et

al., Pan et al., Ramanna et al. [15–18] have concentrated on the use of machine learn-

ing methods to automatically categorize and monitor RSC by images collected from

cameras in vehicles or traffic cameras. However, little research has been conducted

in Alberta on machine-learning approaches for automatically classifying RSC images

in a CV environment. In Alberta, the major RSC monitoring methods are using the

data from stationary and mobile Road Weather Information Systems (RWIS) stations

[19], resulting in incomplete RSC maps, especially in city center areas.

1.2 Research Problem Statement

One of the problems of current research in the study of work zone alert systems in

a CV environment is the work zone localization equipment. For example, in work
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zone alert systems developed by Han et al. [13], every construction worker attached

a sensor that could provide accurate location in real-time. Although work zone alert

systems have proved to be effective in some ways, installing such work zone alert

systems in real-world scenarios can be troublesome and expensive. Thus, a research

problem is how to safely navigate CVs through the work zone in a CV environment

without using too many localization sensors.

In addition, some rear-end crashes happened near work zones because the driver’s

vision was blocked by front vehicles, such as large trucks [9]. If there is a way to

tell the driver there is a work zone ahead, these kinds of accidents can be avoided.

Sometimes large vehicles like buses or trucks need very early warnings of work zones

ahead since these large vehicles require more room to change traffic lanes [7, 8]. It is

safer to give bus or truck drivers safety alert messages before they can even see the

work zone.

We directed our research to design a way to give drivers a warning that is not

reliant on the driver’s vision. Sometimes the work zone appeared on Google Maps or

the 511 Alberta website [20] after the work zone had been there for hours or days.

The drivers were endangered on these roads without knowing there was a work zone

ahead. Thus, our research also focused on real-time work zone detection and warning

broadcasting.

In terms of the monitoring problems of winter road conditions, we directed our re-

search to use CVs and traffic cameras as sensors for detecting and classifying different

RSCs since current methods usually result in an incomplete RSC map. 511 Alberta

is the main source citizens can access and know which roads are covered by snow or

ice. The main data used by 511 Alberta is from Road Weather Information Systems

(RWIS) stations that are located in rural areas [19]. Thus the RSC maps provided

by 511 Alberta often have detailed RSC reports on highways, yet no or little RSC

reports on city center areas and some narrow, accident-prone roads. Traffic cameras

and cameras mounted on vehicles can be used as sensors to collect RSC information,
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and with low latency communication like Dedicated Short Range Communications

(DSRC), Cellular Vehicle-to-Everything (C-V2X), as well as Fifth-Generation Wire-

less (5G), drivers can receive RSC reports in real-time. We directed our research to

RSC maps generated by CVs and traffic cameras.

The relationship between the work zone warning system and the RSC warning

system is that cameras can be used as sensors in both systems. In specific, a traffic

camera in Edmonton can be used to detect work zones in the summer months and

classify RSC in the winter months. In a CV environment, the work zone or RSC

information detected by the traffic camera can be broadcast from RSU to OBU to

give drivers early warnings.

1.3 Research Objectives and Scopes

Considering the issues discussed in the previous section, the research needs to include

localizing work zone items without a Global Positioning System (GPS) sensor, real-

time work zone warning broadcasting, and RSC maps generated by CVs and traffic

cameras. Reflecting on these major focuses, this research intends to design a video-

based road conditions (work zone and snow) alert system in accident-prone roads

under a CV environment. The overall objective of the research can be broken down

into two major objectives: (a) Designing the work zone safety alert system in a

CV environment. In contrast to earlier studies like Han et al. and Schonrock et

al. [13, 14], this model will require no GPS sensor attached to construction workers

and work zone items. We will select a real-time object detection algorithm to train

our dataset containing work zone images in a real-world scenario. A few work zone

localization strategies will be designed under different types of roads. The work zone

detection and localization accuracy will also be studied. Additionally, this study will

explore ways to broadcast lane closure information as well as work zone location to

drivers via C-V2X. We will also present latency tests from a system level in a CV

environment using C-V2X. The effect of different weather and camera resolution on
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our method will also be discussed; (b) Using CVs and traffic cameras as sensors to

detect snow on roads and give RSC reports based on three main categories, including

bare, partly covered, and fully covered according to 511 Alberta. State-of-the-art

machine learning models will be studied and selected to train datasets that have

RSC images in Alberta. The advantages and drawbacks of our methods will also be

explored based on the comparisons with current in-use RSC monitoring methods by

511 Alberta.

The research scope will be restricted to roads in Alberta, Canada. The test site

for work zone warning systems will be approximately 1.5 kilometres (km) long on 118

street northwest near the University of Alberta South Campus. The studied roadway

has a static speed limit of 40 kilometres per hour (kph) and multiple traffic cameras,

as well as many Road Side Units (RSUs) installed. The data collected on the studied

roadway will be used to train the machine learning algorithm, verify the effectiveness

of our work zone warning systems, and study the effect of different weather and

camera resolutions. As for winter RSC classification problems, highways in Alberta

will be used to collect data to train and test machine learning algorithms. Live traffic

camera images from the 511 Alberta website will also be used as data sources to form

datasets to train and test algorithms.

1.4 Contributions

1.4.1 Research Contributions

The research contributions of this thesis include: (1) Designing a work zone warning

system using a monocular traffic camera as an input data source. (2) Proposing two

work zone localization methods using a monocular traffic camera. (3) Investigating

the performance of localization methods using different traffic cameras. (4) Propos-

ing two automated RSC monitoring methods. (5) Investigating the performance of

automated RSC monitoring methods in different locations.
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1.4.2 Practical Contributions

The practical contributions of this thesis include: (1) Creating a work zone dataset

with pixel-wise labels on traffic cones, traffic barrels, traffic barricades, vehicles and

construction workers. (2) Implementing the communication framework for the work

zone warning system in a CV environment. (3) Constructing a RSC dataset with

image-wise labels on three categories, bare pavement, part snow-covered and full

snow-covered. (4) Implementing the automated RSC methods in different locations.

1.5 Organization of the Thesis

As stated previously, this research is focused on two major issues, including work zones

and snow on road detection, localization, and warning broadcasting, and the thesis

is formed keeping those issues in mind. Chapter 2 focuses on the literature review of

recent studies. We first discuss work zone detection methods, work zone safety alert

systems in a CV environment, and standards for work zone information broadcasting

conducted by researchers in recent years, then investigate various research applying

machine learning algorithms to the problems of winter RSC classifications. Chapter

3 starts by discussing the background of work zone issues faced by governments and

the public. The data collection is covered in terms of dataset collecting and labelling,

training and testing the machine learning algorithm, calibrations of our localization

methods, and localization error analysis. Then, a case study on 118 Street NW,

Edmonton, Alberta is explored with a detailed experiment setup, design, and results.

The limitations of our method are studied under different weather conditions and

camera resolutions. The lane closure information broadcasting is then explored by

different work zone standard messages and field tests as well as latency tests using C-

V2X. Chapter 3 ends by summarizing the findings of our work zone warning systems

in a CV environment. Chapter 4 begins by discussing the current issues and dangers

caused by slippery winter roads and methods we can use to ensure the safety of drivers.

6



Three state-of-the-art machine learning algorithms are then selected for training and

testing. Then we explain the location, device, and methods we used to establish

our winter RSC datasets in Alberta. The training and testing on different machine

learning algorithms are explored, with performance comparisons in terms of accuracy

and processing time. The applications of our methods using CVs and traffic cameras

are then explained and tested on roads in Alberta. Chapter 4 ends by summarizing

the findings of automated RSC classifications using machine learning algorithms.

Chapter 5 is the last chapter of this thesis, covering conclusions, limitations, and the

direction of future research.

7



References

[1] N. H. T. S. Administration et al., “2015 motor vehicle crashes: Overview,”
Traffic safety facts: research note, vol. 2016, pp. 1–9, 2016.

[2] Alberta traffic collision statistics 2015, 2017. [Online]. Available: https://open.
alberta . ca / dataset / 25020446 - adfb - 4b57 - 9aaa - 751d13dab72d / resource /
97980388-9327-46fc-b01f-9451d5e076b6/download/ar2015.pdf.

[3] Alberta traffic collision statistics 2016, 2018. [Online]. Available: https://open.
alberta . ca / dataset / 25020446 - adfb - 4b57 - 9aaa - 751d13dab72d / resource /
edf10f2d-9056-4d34-8470-9378f590c80d/download/ar2016.pdf.

[4] Alberta traffic collision statistics 2017, 2020. [Online]. Available: https://open.
alberta . ca / dataset / 25020446 - adfb - 4b57 - 9aaa - 751d13dab72d / resource /
15f070d4 - e0ee - 4e49 - b107 - 95fb036ee7d1 / download / trans - alberta - traffic -
collision-statistics-2017.pdf.

[5] Alberta traffic collision statistics 2018, 2021. [Online]. Available: https://open.
alberta . ca / dataset / 25020446 - adfb - 4b57 - 9aaa - 751d13dab72d / resource /
982e6d4f - 64d5 - 4167 - 81ca - b8c10d76fa59 / download / trans - alberta - traffic -
collision-statistics-2018.pdf.

[6] Alberta traffic collision statistics 2019, 2022. [Online]. Available: https://open.
alberta . ca / dataset / 25020446 - adfb - 4b57 - 9aaa - 751d13dab72d / resource /
30344114 - e6b3 - 459d - a74d - 850b6b0d7c07/download/ trans - alberta - traffic -
collision-statistics-2019.pdf.

[7] S. D. Schrock, G. L. Ullman, A. S. Cothron, E. Kraus, and A. P. Voigt, “An
analysis of fatal work zone crashes in texas,” Report FHW A/TX-05/0-4028,
vol. 1, 2004.

[8] J. Daniel, K. Dixon, and D. Jared, “Analysis of fatal crashes in georgia work
zones,” Transportation Research Record, vol. 1715, no. 1, pp. 18–23, 2000.

[9] N. J. Garber and M. Zhao, “Distribution and characteristics of crashes at differ-
ent work zone locations in virginia,” Transportation Research Record, vol. 1794,
no. 1, pp. 19–25, 2002.

[10] I. Juga, P. Nurmi, and M. Hippi, “Statistical modelling of wintertime road
surface friction,” Meteorological Applications, vol. 20, no. 3, pp. 318–329, 2013.

[11] A. Dehman and B. Farooq, “Are work zones and connected automated vehicles
ready for a harmonious coexistence? a scoping review and research agenda,”
Transportation research part C: emerging technologies, vol. 133, p. 103 422, 2021.

[12] X. Wu et al., “Vehicular communications using dsrc: Challenges, enhancements,
and evolution,” IEEE Journal on Selected Areas in Communications, vol. 31,
no. 9, pp. 399–408, 2013.

8

https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/97980388-9327-46fc-b01f-9451d5e076b6/download/ar2015.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/97980388-9327-46fc-b01f-9451d5e076b6/download/ar2015.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/97980388-9327-46fc-b01f-9451d5e076b6/download/ar2015.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/edf10f2d-9056-4d34-8470-9378f590c80d/download/ar2016.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/edf10f2d-9056-4d34-8470-9378f590c80d/download/ar2016.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/edf10f2d-9056-4d34-8470-9378f590c80d/download/ar2016.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/15f070d4-e0ee-4e49-b107-95fb036ee7d1/download/trans-alberta-traffic-collision-statistics-2017.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/15f070d4-e0ee-4e49-b107-95fb036ee7d1/download/trans-alberta-traffic-collision-statistics-2017.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/15f070d4-e0ee-4e49-b107-95fb036ee7d1/download/trans-alberta-traffic-collision-statistics-2017.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/15f070d4-e0ee-4e49-b107-95fb036ee7d1/download/trans-alberta-traffic-collision-statistics-2017.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/982e6d4f-64d5-4167-81ca-b8c10d76fa59/download/trans-alberta-traffic-collision-statistics-2018.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/982e6d4f-64d5-4167-81ca-b8c10d76fa59/download/trans-alberta-traffic-collision-statistics-2018.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/982e6d4f-64d5-4167-81ca-b8c10d76fa59/download/trans-alberta-traffic-collision-statistics-2018.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/982e6d4f-64d5-4167-81ca-b8c10d76fa59/download/trans-alberta-traffic-collision-statistics-2018.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/30344114-e6b3-459d-a74d-850b6b0d7c07/download/trans-alberta-traffic-collision-statistics-2019.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/30344114-e6b3-459d-a74d-850b6b0d7c07/download/trans-alberta-traffic-collision-statistics-2019.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/30344114-e6b3-459d-a74d-850b6b0d7c07/download/trans-alberta-traffic-collision-statistics-2019.pdf
https://open.alberta.ca/dataset/25020446-adfb-4b57-9aaa-751d13dab72d/resource/30344114-e6b3-459d-a74d-850b6b0d7c07/download/trans-alberta-traffic-collision-statistics-2019.pdf


[13] W. Han, E. White, M. Mollenhauer, and N. Roofigari-Esfahan, “A connected
work zone hazard detection system for roadway construction workers,” in Com-
puting in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience,
American Society of Civil Engineers Reston, VA, 2019, pp. 242–250.

[14] R. Schönrock, F. Wolf, and T. Russ, “Smart traffic cone-dynamic detection and
localization of traffic disruptions,” in FAST-zero’15: 3rd International Sympo-
sium on Future Active Safety Technology Toward zero traffic accidents, 2015,
2015.

[15] J. Carrillo, M. Crowley, G. Pan, and L. Fu, “Comparison of deep learning
models for determining road surface condition from roadside camera images
and weather data,” in Transportation Association of Canada and ITS Canada
2019 Joint Conference and Exhibition, 2019.

[16] M. Wu and T. J. Kwon, “An automatic architecture designing approach of
convolutional neural networks for road surface conditions image recognition:
Tradeoff between accuracy and efficiency,” Journal of Sensors, vol. 2022, 2022.

[17] G. Pan, M. Muresan, R. Yu, and L. Fu, “Real-time winter road surface con-
dition monitoring using an improved residual cnn,” Canadian Journal of Civil
Engineering, vol. 48, no. 9, pp. 1215–1222, 2021.

[18] S. Ramanna, C. Sengoz, S. Kehler, and D. Pham, “Near real-time map building
with multi-class image set labeling and classification of road conditions using
convolutional neural networks,” Applied Artificial Intelligence, vol. 35, no. 11,
pp. 803–833, 2021.

[19] Emerging transportation technologies. [Online]. Available: https://www.alberta.
ca/emerging-transportation-technologies.aspx.

[20] 511 alberta. [Online]. Available: https://511.alberta.ca/#:Alerts.

9

https://www.alberta.ca/emerging-transportation-technologies.aspx
https://www.alberta.ca/emerging-transportation-technologies.aspx
https://511.alberta.ca/#:Alerts


Chapter 2

Literature Review

In this Chapter, work zone-related studies will be discussed first, then RSC classification-

related studies will be investigated.

2.1 Work Zone-Related Studies

In this section, we will look at the current literature on work zone detection methods,

work zone safety-related research in a CV environment, and work zone safety message

requirements.

2.1.1 Work Zone Detection Methods

Existing work zone detection research is primarily concerned with identifying the

existence or absence of a work zone. Their detection results are generally vague

and lack work zone boundary information. Abodo et al. (2018) find work zones

by employing a CNN to identify work zone photos [21]. Seo et al. (2015) use the

vehicle’s camera to recognize traffic signs [22]. This approach then identifies work

zone signs and utilizes them to indicate the starting and ending point of a work zone

road segment. Mathibela et al. (2012) also identify traffic signs and traffic cones

[23]. This method employs the detection findings as characteristics to calculate the

likelihood that the vehicle is in a work zone. Kunz et al. (2017) create a Bayesian

network for detecting a work zone [24]. The Bayesian network uses identified traffic
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objects and vehicle statuses as input to forecast the likelihood of a work zone at

various distance bins. None of these studies infer detailed geometric properties like

work zone areas and borders. Knowing the work zone geometry is crucial for CVs to

drive safely.

Graf et al. (2012) investigate a more limited example in which temporary lane

markers assist drivers through a work zone [25]. This method monitors the lanes

even if both temporary and original lane markers are present. As a result, it al-

lows the vehicle to follow the lanes in a work zone. However, such a strategy is

reliant on lane marking regulations and is unable to deal with regular work zones

that lack temporary lane markers. Shi et al. (2021) [26] develops work zone de-

tection, which detects and locates the boundaries of a work zone. They give many

baseline implementations utilizing various sensor combinations, such as camera and

LiDAR. Several cutting-edge deep learning-based object detection strategies, such

as the Region-Convolutional Neural Network (R-CNN) [27], Fast RCNN [28], Faster

R-CNN [29], Single Shot MultiBox Detector (SSD) [30], and You Only Look Once-

Version 5 (YOLOv5) [31], are used for real-time applications, taking advantage of

high-performance GPU-enabled computing devices. The YOLOv5 outperforms all

previous state-of-the-art object detection deep learning models [31, 32], with higher

detection accuracy and lower detection time. Unfortunately, all of the studies men-

tioned in this subsection do not have the capability of determining the precise location

of a work zone in terms of latitude and longitude in real-time.

In order to address these research gaps in work zone detection methods, we in-

troduce a YOLO-based work zone detection and localization method in Chapter 3.

We contribute to the existing work zone detection methods by precisely positioning

a work zone area, and then broadcasting work zone safety messages to nearby CVs

in a CV environment.
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2.1.2 Work Zone Safety-Related Studies in a CV Environ-
ment

Researchers began to think about how CVs may be combined with work zone safety

as they became more prevalent. Vehicles that are connected can communicate with

the driver, other vehicles on the road (V2V), roadside infrastructure (V2I), and the

cloud server (V2C) via various communication methods through DSRC, Wi-Fi, and

cellular communication technologies [33, 34]. DSRC technology has reduced connec-

tion latency less than existing Wi-Fi and Cellular LTE technologies, making it a far

faster two-way communication alternative for information sharing [35].

Vehicles may now be viewed as integrated components of a system rather than as

independent actors on the road, thanks to the incorporation of communication tech-

nologies. When the effects of CVs on safety performance are investigated in a work

zone context, Abdulsattar et al. (2018) [36] reveals that V2V/V2I communication can

increase work zone safety performance at low traffic flow rates. Genders et al. (2015)

[34] also investigated how employing CVs in a network with work zones affected traf-

fic safety. The Michigan Department of Transportation and 3M [37] constructed the

first connected work zone in the United States. In this connected work zone setting,

orange barrels with 2D barcodes were supplied by 3M, and the CV’s infrared devices

sent information to the vehicle and the driver by reading the barcode. Han et al.

(2019) [13] designs a connected work zone alert system with wearable localization

devices that can be placed on workers in work zones. This method monitors the po-

tential danger between CVs and workers by calculating the collision risks from both

CVs and workers’ trajectories. Schonroack et al. (2015) [14] developed a traffic cone

with GPS and communication sensors that can be placed at a work zone boundary to

give the location of a work zone in a CV environment. In this approach, the location

of this special traffic cone is sent to a central server and then broadcast to nearby

CVs. Mishra et al. (2021) [38] developed work zone alert systems from work zone

intrusion technologies and Qiao et al. (2017) [39] used a cell phone app to give drivers
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early warnings of work zones. The development of location sensing technologies and

CVs have made it possible to gather data from all parties involved in a work zone,

including vehicles, equipment, and workers on foot, and use it to ensure the safety of

the work zone. However, current research in the localization of work zones for a CV

environment usually requires localization devices, including GPS sensors attached to

construction equipment, traffic cones, or workers, which makes it costly and difficult

to set up.

In summary, Table 2.1 shows comparisons of different warning systems in a CV

environment and three commercially available warning systems analyzed by Mishra

et al. [38] are compared and explained in Table 2.2. These methods utilize pressure,

radar sensors, or additional equipment to recognize incoming traffic. Unfortunately,

such equipment usually costs a lot and has poor mobility. In comparison, our method

uses a camera for object detection, which has two main advantages. First, it can rec-

ognize various types of objects than traffic, including cones, barrels, vehicles, people,

etc. Due to the nature of computer vision, we can feed our YOLOv5 models with as

many object types as desired. Second, Our method has a lower expense and higher

mobility than other proposed method devices. The only device we need onsite is the

camera. The device is easy to obtain, move around, and adapt to work zones with

different shapes and environments.

To overcome the limitations of current research in localizing work zones, we provide

a framework in Chapter 3 to increase work zone safety using a vision-based deep

learning technique, assuming that workers, construction equipment, and traffic cones

do not have a localization device.

2.1.3 Standards for Work Zone Safety Messages

The SAE J2945 standard [41] defines the work zone safety messages for safety data

communication between the work zone and other associated components (e.g., vehicle

and traffic signals). Although the work zone safety messages standard is defined
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by SAE J2945, the format, and structure of the message, data frames, and data

components for sharing data between work zones and vehicles, as well as between

work zones and infrastructure, are defined by SAE J2735 [42]. In contrast, the SAE

J2945 considers all of the data items established in the SAE J2735. Work zone safety

messages data items are shown in Table 2.3.

Work Zone Activity Data (WZAD) – Data Dictionary Report [43], developed as

part of the Federal Highway Administration’s Work Zone Data Initiative Project,

defines and standardizes digital descriptions of work zone activities, allowing trans-

portation authorities and third-party providers to describe and communicate work

zone information. Work zone activities data structure based on WZAD is shown in

Figure 2.1.

Figure 2.1: Work Zone Activities Data Structure Based on WZAD.

2.2 RSC Classification-Related Studies

Considerable research had been conducted using deep-learning models to classify

weather conditions. Elhoseiny et al. [44] used ImageNet (a large dataset contain-
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ing usual objects) [45] to train a Convolutional Neuron Network (CNN) to categorize

weather photos as sunny or cloudy. Lu et al. [46] propose a collaborative learning

strategy that uses innovative weather variables to categorize a single outdoor photo-

graph as sunny or cloudy. To extract characteristics, a CNN was employed, which

was then input into an SVM framework to generate individual weather features. A

data augmentation strategy was also applied to supplement the training data. Lin et

al. [47] constructed a multi-class benchmark dataset with six common categories for

sunny, overcast, rainy, snowy, hazy, and thunder weather. To identify visual concur-

rency on area pairs of weather categories, a region selection and concurrency method

were presented. A deep-learning framework was used to test this model. Carrillo et

al. [15] created a CNN with a basic architecture from scratch and compared its results

in terms of classification accuracy to automatically categorize winter RSC pictures

(from stationary RWIS cameras) to other pre-trained CNN models. This experiment

was conducted with three categories of RSC: dry/wet, partly snow-covered, and to-

tally snow-covered. The results supported CNN’s efficacy in detecting RSC using

imaging, as all CNN models provided high classification accuracy, with the author’s

model being the best. However, the authors cautioned that the results might only be

informative for their unique application.

Zhu et al. [48] developed severe weather characteristics and recognition mod-

els from a large-scale extreme weather dataset in which over 16,000 extreme weather

photos with complex scenarios were classified into four classifications including sunny,

rainstorm, blizzard, and fog. Pre-training and fine-tuning are used to create an ex-

treme weather identification model. Rain-Fog-Snow (RFS) Dataset is a new open-

source weather conditions dataset published by Guerra et al. [49] that consists of

photos illustrating three types of weather: rain, snow, and fog. A unique approach

that uses superpixel delimiting masks as a kind of data augmentation has also been

suggested, yielding respectable results in comparison to 10 CNNs. Li et al. [50]

proposed a method for data augmentation based on generative adversarial networks
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(GAN). It can augment and complete picture data diversity. The author built a sys-

tem that uses a deep convolution generative adversarial networks (DCGAN) model

as a generator to generate pictures to balance the unbalanced data and a CNN model

as a classifier to check the classification results. The author also presented an assess-

ment approach on three benchmark datasets as a comparison experiment to validate

the performance of DCGAN. The empirical results showed that high-quality weather

images can be created on weather data sets using DCGAN. Weather recognition was

considered by Zhao et al. [51] as a multi-label classification challenge, in which a

picture was assigned many labels based on the exhibited weather conditions. Then,

a multi-label classification strategy based on CNN-RNN was presented. To extract

the most associated visual information, the CNN was enhanced with a channel-wise

attention model. The Recurrent Neural Network (RNN) analyzed the information

further and discovered the correlations between weather types.

Wu et al. [16] suggested a novel method for autonomously designing RSC CNN ar-

chitecture without sacrificing classification accuracy. The suggested method employed

a weighted sum method, which allowed for the selection of the relative relevance level

between accuracy and efficiency. The findings of this study bridged a gap in existing

CNN design approaches that do not account for the tradeoff between accuracy and

efficiency, while also offering insight into the impact of different architectures on CNN

model performance. Ramanna et al. [18] used cutting-edge CNNs to categorize pho-

tos captured by street and highway cameras across North America. To identify photos

by road condition, road camera images were used in studies with several deep learning

frameworks. These studies employed photos labelled as dry, wet, snow/ice, poor, and

offline as training data. The trials evaluated the suitability of six CNNs in various

configurations. The identified photos were then utilized to create a map of real-time

road conditions across North America at various camera sites. By Pan et al. [17, 52],

photographs from stationary weather/traffic cameras or in-car electronics were used

to train and fine-tune four state-of-the-art CNN models. The results of their studies
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demonstrated that CNN was a promising method for addressing the RSC recognition

issues and can be useful in assisting winter road maintenance decision-making. Sim-

ilar findings were also revealed by a number of other researchers including Linton et

al. [53, 54], Kuehnle et al. [55] and Zhang et al. [56]. However, there is no public

RSC dataset collected in Alberta and little automated RSC classification application

in a CV environment in Alberta.

We contribute to the existing RSC classification methods by proposing a RSC mon-

itoring pipeline using onboard and traffic cameras as input data, and ML algorithms

trained by datasets collected in Alberta and Ontario to automatically classify RSC

in Chapter 4.
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Author Real-
Time

Lane Level
Localization

Special Local-
ization Device

Summary

Han et al.
[13]

Yes Separate a sin-
gle line into four
zones for detec-
tion.

Wearable local-
ization devices
that can be
placed on work-
ers in work
zones.

Using risk score to calculate the
collision risks from both CVs
and workers’ trajectories. The
algorithm can also be used in
the vehicle turning and work-
ers from different categories have
their own risk score.

Schonroack
et al. [14]

Yes By extending
smart traffic
cone (STC)
using the GNSS
model, the posi-
tion accuracy is
in the sub-meter
range.

Traffic cone
with GPS and
communication
sensors.

The location of these 16 special
traffic cones is sent to a cen-
tral server and then broadcast to
nearby CVs.

Qiao et al.
[39]

Yes N/A No extra device
needed.

Pre-installed application detects
the approaching construction
zone based on geo-location in
a phone to give drivers early
warnings of work zones.

Islam et al.
[40]

Yes Not at lane
level.

Site camera
and personal
safety mes-
sages(PSMs)
devices carried
by roadside
users.

Generate PSMs using real-time
video streams collected from
a traffic camera. Train the
YOLOv3 model with the video
data from a roadway section to
detect pedestrians.

Genders et
al. [34]

N/A N/A N/A Build a control simulation of a
network with a work zone to
simulate various market penetra-
tions of 20%, 40%, 60%, 80%,
and 100% connected vehicles to
determine their effect on the
safety of the network.

Table 2.1: Comparisons of Recent Studies
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Method Real-Time Lane Level Lo-
calization

Special Local-
ization Device

Note

Intellicone Yes Not at lane level. Need traffic cone
mounted sensor
and portable site
alarm.

Results are in-
consistent and
not available in
the US.

Advanced Warn-
ing and Risk
Evasion

Yes Lane intrusion
system (not yet
available for
evaluation).

Onsite sentry
needed.

Warning equip-
ment is worn by
personnel and
sentry in front of
the work zone.

Worker Alert
System

Delayed Not at lane level. A pneumatic
trip hose sensor
with a signal
transmitter, a
Portable Alarm
case, personal
safety device.

Workers and
pedestrians are
alerted when
sensors on the
ground detect
vehicle pressure.

Table 2.2: Commercially Available Methods

Data Element Purpose

Road Segment Store complete description including road Geometry allowed nav-
igational paths, and any current disruptions such as a work zone
or incident event.

Road Sign ID Used to provide a precise location of one or more roadside signs.

Traveler Data Used to send a single message in traveller information message.
It uses the ITIS encoding system to send well-known phrases but
allows limited text for local place names.

Public Safety and Road
Worker Activity

Used to describe the type of activity a worker or workers are
engaged in.

Speed Limit Type Relates the type of speed limit to which a given speed refers.

Personal Safety Message Used to broadcast safety data regarding the dynamic state of var-
ious types of Vulnerable Road Users (VRU), such as pedestrians,
cyclists, or road workers.

Table 2.3: Data Elements for Work Zone Safety Messages Based on SAE J2945 and
SAE J2735.
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Chapter 3

Vision-Based Work Zone Safety
Alert System in a
Connected-Vehicle Environment

3.1 Introduction

Transportation authorities and the public are concerned about safety in work zones

on highways. According to the National Highway Traffic Safety Administration

(NHTSA) [1], there is at least one traffic-related injury in 70 work zones daily. Ad-

ditionally, NHTSA shows that work zone collisions have greater mortality rates than

crashes outside of them. It is common for employees on highway construction and

maintenance projects to be in close proximity to moving traffic. Although many safety

precautions are routinely taken to protect workers, these precautions may be insuf-

ficient owing to a variety of environmental and human variables, such as distracted

driving, bad weather, and poor road conditions.

Work zones typically feature advanced warning zones with visual warning signs to

alert oncoming vehicles. Static signs are the most prevalent type of warning system.

Furthermore, dynamic warning systems are frequently utilized to improve traffic flow

in work zones [57]. Because diverse operating characteristics of arriving vehicles and

their relative positioning near a work zone are rarely considered in the design phase

of these alerts, they typically fail to adequately aid drivers. Larger vehicles, such as
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trucks or buses, usually require more space to merge, endangering adjacent vehicles

and pedestrians [7, 8]. Furthermore, vehicles behind trucks lose their ability to dis-

cern the precise location of lane merges and the proper speed to maintain, increasing

the likelihood of rear-end collisions. Rear-end collisions are the most prevalent kind

of crash in a work zone’s advanced warning area, according to Garber et al. (2002)

[9]. According to Garber et al. (2002) [9] and Nemeth et al. (1978) [58], the advanced

warning region accounts for 10%-35% of all work zone collisions. Furthermore, com-

parative accident evaluations conducted by Hall and Lorenz (1989) and Rouphail et

al. (1988) [59, 60] demonstrated that rear-end collisions are more likely in work zones

than in non-work zones.

Given that the majority of work zone-related events can be avoided with early

alerts to vehicles, safety research relating to work zones in a CV environment is an

emerging area of research [11]. Through vehicle-to-infrastructure (V2I) communica-

tion, enabling a low latency communication channel, such as dedicated short-range

communication (DSRC) [12] and upcoming 5G technology, may dramatically improve

work zone safety. The drivers of CVs are alerted to potential collision hazards using

work zone early warning messages provided by the DSRC or 5G-enabled V2I com-

munication. Through communicated proactive decision-making aids using in-vehicle

displays, also known as the Human Machine Interface (HMI), drivers can benefit

from increased situational awareness about upcoming hazards or conditions by utiliz-

ing wireless communications such as: V2I, vehicle-to-vehicle (V2V), and vehicle-to-

everything (V2X). The transmission of early warnings is one benefit that CVs can use.

For instance, early in-vehicle lane closure alerts can be used to meet the demands of

heavy truck drivers who need to move to the available lane in the work zone, well in

advance of the lane closure area [61]. Significantly, a survey conducted by Benekohal

et al. (1995) [62] revealed that over half of truck drivers preferred that warning signs

for work zones be put up to 3 to 5 miles in advance of the work zone.

In current research studies of work zone alert systems in a CV environment, special
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equipment including smart traffic cones (traffic cones mounted with a GPS sensor)

and wearable localization devices (mobile tags that can be placed on the worker with

a localization sensor) are required to locate the work zone boundaries [13, 14]. Such

specialized equipment is difficult to deploy and expensive. For instance, all workers

or traffic cones are unlikely to attach a localization device similar to a GPS sensor.

To solve the research question of how connected infrastructures can help vehicles

to navigate through a work zone, the objective of this study is to provide CVs with

work zone safety alerts in real-time. We provide a system for generating work zone

safety alerts, utilizing real-time video feeds gathered from traffic cameras, in order

to get around these restrictions and improve work zone safety. The contribution of

this study is the real-time generation (every 100 milliseconds) of safety warnings and

work zone safety messages in accordance with the Society of Automotive Engineers

(SAE) J2945 standards [41]. The roadside infrastructure generates and broadcasts

work zone safety alerts to approaching CVs using work zone information (such as

location). No localization device attached to workers or work zone boundaries (traffic

cones) is necessary for our work zone boundaries localization method. We evaluate

the accuracy of generated work zone safety messages by comparing them with field-

collected ground truth data. Furthermore, we validate our vision-based approach at

the system level in the real-world road environment field test.

The remainder of the chapter is organized as follows. We begin by discussing

the real-time vision-based work zone safety message-generating method, which is not

dependent on work zone localization devices. The evaluation of the vision-based

work zone safety message generation is then presented. Then, we discuss the system-

level validation utilizing the vision-based system’s generated work zone safety alerts.

Finally, we go over the study’s findings and potential directions for further research.
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3.2 Work Zone Safety Alerts Systems

We created a system that used a real-time camera feed to produce work zone safety

messages by YOLOv5 and provided a safety warning in the event of a probable vehicle-

work zone collision. The primary data elements of the work zone safety messages were

the work zone geometry, including the work zone starting point, ending point, and

lane closures as given in Figure 2.1. Furthermore, positional accuracy was determined

by the precision of work zone positioning information (i.e., longitude and latitude).

Thus, after correctly identifying a work zone, the localization of the work zone must

also be correct in order to create work zone safety messages. To locate a work zone,

we created a mathematical technique for converting an image’s pixel coordinates to

global coordinates. After determining a work zone’s position, we built the work zone

safety messages in accordance with the SAE J2945 standard and WZAD outlined in

the preceding section.

In our system, the monocular traffic camera served as our primary data source.

The ethernet, which is a wired communication method, transmitted real-time video

data to the central server. The video data was then processed by the central server

using YOLOv5 to identify traffic cones, which are commonly used to define work zone

boundaries, and to convert pixel coordinates to global coordinates. The RSU then

received the work zone position information by ethernet and transmitted it to the

CV’s OBU by DSRC. The HMI developed in this system was a work zone warning

app that could be used on a driver’s cellphone or tablet. This app, connected to

OBU’s WIFI, was meant to show the driver real-time work zone safety messages.

The communication topology in this system and the experiment setup are shown in

Figure 3.1 and Figure 3.2 respectively.

Localization for work zone boundaries (traffic cones) is vital to generate work

zone safety alerts. But normally, monocular traffic cameras have poor localization

ability compared to LiDAR sensors. Inspired by other research including Islam et
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Figure 3.1: Communication Topology in the Vision Based Work Zone Alert System.

Figure 3.2: Experiment Setup for the Vision-Based Work Zone Alert System in CV
Environment.

al. and Wen et al. on object localization from monocular traffic cameras [40, 63],

we developed a low-cost monocular traffic camera calibration method for work zone

boundaries localization without knowing the camera’s intrinsic parameters. First,

the traffic camera image plane was converted into a top-down view by perspective

transformation (PT) in Equation 3.1. PT is a technique to obtain a different view

from an image. We developed Equation 3.2 to convert from pixel coordinates into

GPS coordinates by linear transformation (LT). The methodology to locate a work

zone from monocular traffic cameras is shown in Figure 3.3.

Perspective transformation (PT): convert from pixel coordinates (px,py) in a traf-

fic camera image plane into pixel coordinates (p’
x,p

’
y) in the top-down view image
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Figure 3.3: Method Used to Transform Pixel Coordinates to GPS Coordinates.

(a) The traffic camera image plane before
PT.

(b) The traffic camera image plane after
PT.

Figure 3.4: Perspective Transformation (PT).

plane by transformation matrix M shown in Equation 3.1. Where M is calculated

from four pairs of matching points (shown in Figure 3.4) by python using the func-

tion cv2.getPerspectiveTransform. Shown in Figure 3.4a, the four red dots are the

intersection points of the road margin and vision margin and they are chosen to

be matching points. First, the pixel coordinates of the four matching points were

recorded in the traffic camera plane and then we changed the pixel coordinates in

the x-axis (horizontal direction) of the lower two matching points so that the four

matching points formed a rectangle. This method assumes that the road is straight

and the camera is horizontally placed. The new pixel coordinates of the four match-

ing points were recorded. Then M was calculated from the original and the new pixel

coordinates of the four matching points.

[p
′

x, p
′

y, 1]
T = M · [px, py, 1]T (3.1)

Linear transformation (LT): convert from pixel coordinates (p’
x,p

’
y) in top-down

view image plane into GPS coordinates (longitude,latitude) by transformation matrix

L shown in Equation 3.2. Where L is calculated from calibration points with measured
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(p’
x,p

’
y) in the top-down view image plane and GPS coordinate (longitude,latitude)

by python using the function np.linalg.lstsq. The detailed steps to calculate L will be

covered in Section 3.3.3.

[longitude, latitude] = [p
′

x, p
′

y, 1] · L (3.2)

The road touching point of a traffic cone can be approximated by the bottom center

of the detected bounding box from YOLOv5 illustrated by the black point in Figure

3.5.

Figure 3.5: Road Touching Point of a Traffic Cone.

To locate a traffic cone, we took the road touching point (px,py) from YOLOv5

to obtain the pixel coordinate in top-down view (p’
x,p

’
y) by PT shown in Equation

3.1, and then used (p’
x,p

’
y) to get the GPS coordinate (longitude,latitude) by LT

shown in Equation 3.2. Then work zone safety alerts were generated from the GPS

coordinates of traffic cones used to form work zone boundaries.

3.3 Data Collection

Field data is collected for: 1) training and testing of YOLOv5 to ensure a high level of

traffic cone detection accuracy; 2) calibrating the distortion in the top-down view from

PT to valid the transformation M; 3) calibrating the linear transformation matrix L

in Equation 3.2 to transform pixel coordinates to GPS coordinates; 4) localization

error analysis on vision-based work zone boundary localization method to measure

the localization accuracy.
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3.3.1 Training and Testing YOLOv5

Phase One

In phase one of the experiments, we focused on training and testing YOLO to detect

small traffic cones shown in Figure 3.5.

According to the official documentation of YOLOv5 [31], the recommended num-

ber of training images to detect an object is 1200 images. We placed traffic cones

randomly in the vision range of traffic cameras at 118 Street NW, Edmonton under

different weather conditions. The traffic cameras captured images to form a dataset to

train and test YOLOv5. We annotated each traffic cone in every image of the dataset

with a bounding box to generate ground truth data. Then, some dataset prepro-

cessing techniques were applied to decrease training time and increase performance

by applying image transformations to all images in this dataset. The preprocessing

techniques [31] used in this dataset were: 1) auto-orientation, to correct a mismatch

between the annotation and the image; 2) reducing the size of the image to train

faster throughout the training phase.

Dataset augmentation techniques were then used to create new training examples

for YOLOv5 to learn from, by generating augmented versions of each image in the

training dataset. Figure 3.6 shows the dataset augmentations used in this dataset.

The dataset augmentation techniques [31] used in this dataset were: 1) horizontal

flip: to help YOLOv5 be insensitive to subject orientation; 2) crop: to add variability

to positioning and size to help YOLOv5 be more resilient to subject translations and

camera position; 3) brightness: to add variability to image brightness to help YOLOv5

be more resilient to lighting and camera setting changes; 4) blur: to add random

Gaussian blur to help YOLOv5 be more resilient to camera focus; 5) noise: add

noise to help YOLOv5 be more resilient to camera artifacts; 6) cutout: add cutout to

help YOLOv5 be more resilient to object occlusion; 7) bounding box brightness: add

variability to bounding box brightness to help YOLOv5 be more resilient to lighting
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on work zone boundary object (traffic cone). The dataset after augmentations had

1,200 images for training, 150 images for validation and 150 images for testing.

Figure 3.6: Dataset Augmentations Used in This Dataset.

The work zone boundary detection accuracy was measured using the following

parameters and metrics: 1) True Positive (TP): YOLOv5 successfully recognized the

presence of a traffic cone; 2) False Positive (FP): YOLOv5 incorrectly recognized the

presence of a traffic cone; and 3) False Negative (FN): YOLOv5 failed to recognize the

presence of a traffic cone. Using the above definitions, two key parameter values were

calculated, and the following definitions were used to determine the parameter values:

1) precision given by Equation 3.3 is the fraction of correct recognition instances out

of total recognitions; and 2) recall given by Equation 3.4 is the fraction of correct

recognition instances retrieved over total expected recognitions. The training result

regarding precision and recall is shown in Figure 3.7.

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)
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Figure 3.7: Training Result on YOLOv5 to Detect Traffic Cones.

The YOLOv5 used the 416×416 input images and reached 98% precision and 99%

recall on our validation dataset. We trained the network from a checkpoint that is pre-

trained in the MS-COCO dataset [64] using our training dataset. All the detection

results indicated the overall result is above 90%, which is an adequate detection

accuracy for any safety-critical work zone detection applications.

Phase Two

In phase two of the experiments, we repeated the training and testing procedure in

phase one, but this time YOLO is trained on our improved dataset with labelling

(Figure 3.8a) on not only small traffic cones, but also all common work zone objects

like traffic barrels, traffic barricades, construction workers, as well as vehicles. We

used drones to capture images of real-world work zone setup by ATS traffic shown

in Figure 3.8b. The drones were controlled to fly over from the starting point to the

ending point of the work zone so that the camera on the drones could see everything

within the work zone. We only labelled objects that were not too small on the images

since YOLO has difficulty detecting and distinguishing extremely small objects in

images according to YOLO official release documents [31]. For example, we did not

label some traffic cones that were too far away from the camera where its bounding

box length or width is less than 3 pixels on a 640-pixel by 640-pixel image. The

whole dataset was split into three parts including a training set, validation set, and

test set. Then all images in the dataset were resized to 640 pixels by 640 pixels

before some data augmentation techniques including horizontal flip and brightness
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variation introduced in phase one were applied. The dataset after augmentations

had 1,600 images for training, 200 images for validation and 200 images for testing.

Yolo was later trained on these data using 16 batches and 300 epochs with Stochastic

Gradient Descent (SGD) optimizer of 0.01 learning rate, and took 2 hours to complete

training. Yolo reached 98% precision and 95% recall on our validation dataset. Google

Colab was used to train the model since we had driver issues on our lab computer

with NVIDIA RTX3090. We utilized a Roboflow.ai [65] notebook that is based on

YOLOv5 and employed pre-trained weights trained by the COCO dataset.

(a) Example of data labelling. (b) Example of work zone image.

Figure 3.8: Dataset Images.

Figure 3.9 shows various performance measures for both the training and validation

sets in each epoch during the whole training process and depicts three forms of loss:

box loss, objectness loss, and classification loss. The box loss quantifies how effectively

the algorithm can detect an item’s center and how well the anticipated bounding box

covers an object. Objectness loss is simply a measure of the likelihood of finding an

item in a particular zone of interest. Classification loss indicates how successfully the

algorithm predicts the proper class of an item. Around epoch 100, accuracy, recall,

and mean average precision stop improving rapidly and the box, objectness, and

classification losses evaluated in the validation set stop declining dramatically. We

chose the best weights by the evaluation in the validation set. The confusion matrix

in Figure 3.10 is also an important metric to measure performance, where the values

in the diagonal show that the model predicted correctly while other values indicate
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that model made wrong predictions. We can see that the model made more wrong

predictions in detecting traffic cones than other objects, which is expected since small

object detection is one of the difficulties that YOLO has.

Figure 3.9: YOLO Training Results.

Figure 3.10: Confusion Matrix.
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(a) The top-down view image obtained
by PT.

(b) The ground truth top-down view im-
age.

Figure 3.11: Global Distortion of PT.

(a) The top-down view image with grid
lines.

(b) The image after performing inverse
PT.

Figure 3.12: Local Distortion of PT.

3.3.2 Calibration of the Distortion in the Top-Down Image

This subsection is to check if the correct perspective transformation matrix was ob-

tained. First, we compared our top-down view image obtained from PT with the

satellite image at the same road as ground truth, to check the distortion globally in

our top-down view image obtained from PT, illustrated in Figure 3.11. Then, we

added grid lines to our top-down view image obtained from PT and performed an

inverse PT to check the distortion locally, shown in Figure 3.12. The results reveal

that the global and local distortion in the vertical road of the top-down view from

PT is acceptable as there is no visible distortion in Figure 3.11 and Figure 3.12. If

the perspective transformation matrix was incorrect, the road margin would not be

vertical.
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3.3.3 Calibration of the Linear Transformation Matrix

The accuracy of GPS sensors is important to establish high-precision localization

from the image plane. However, a normal commercial GPS sensor is unsuitable for

our use, as it has a position error of about 20m. In our experiment, we used the

GNSS [66] sensor that has a position error within 1m from the OBU as GPS ground

truth. The calibration procedure for calibration of the linear transformation (LT)

matrix L in Equation 3.2 is as follows. We measured each point’s GPS coordinates

(longitude,latitude) with the GNSS sensor on the road, and this point’s pixel coordi-

nate (px,py). Then we performed PT to get the transformed pixel coordinate (p’
x,p

’
y)

from (px,py). We recorded each point’s (p’
x,p

’
y) and (longitude,latitude) to calculate

LT matrix L by python using the function np.linalg.lstsq. Figure 3.18 shows example

data. The calibration results are shown in Figure 3.13 where the blue points are

GPS ground truth data and the orange points are GPS coordinates calculated from

Equation 3.2 using LT matrix L.

Figure 3.13: Calibration Results of LT.

3.3.4 Localization Error Analysis

The performance of a vision-based work zone alert system depends on the accurate

localization of a work zone boundary from the traffic camera. The experiment setup
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is shown in Figure 3.14.

Figure 3.14: Experiment Setup to Measure Localization Error.

We used the OBU’s GNSS data as GPS ground truth data in this experiment to

calculate the localization error of our vision-based system. We also compared our

localization performance with a GPS app on a cellphone that the work zone site

manager would use to provide the work zone location.

On each section of the road, we placed a traffic cone and moved the OBU’s GNSS

sensor next to the traffic cone to obtain GPS ground truth data for 15 minutes under

good reception conditions. From the vision-based work zone boundary localization

method, we can obtain the GPS data estimated by the proposed localization. Our

team member stood next to the traffic cone recording the data from the GPS app

on a cell phone. We then calculated the root mean square error (RMSE) based on

Equation 3.5. Here Gi is the GPS ground truth data, Li is the location estimated by

the proposed localization, and N is the number of data points.

RMSE =

⌜⃓⃓⎷ N∑︂
i=1

(Gi − Li)2/N (3.5)

Testing points used in this experiment are green points shown in Figure 3.15. We

calculated RMSE on each testing point and obtained localization error analysis results

shown in Figure 3.16. RMSE is the localization performance evaluation metric in this

experiment.

From Figure 3.16, we can see our proposed localization method outperformed the

GPS app on the cellphone. Our proposed method had an average RMSE of 0.40m and
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Figure 3.15: Localization Error Analysis Testing Points.

(a) The RMSE comparison between our
method and iPhone 13pro on each testing
point.

(b) The average RMSE comparison cal-
culated from all testing points.

Figure 3.16: RMSE Comparison.

a maximum RMSE of 1.1m, which means a work zone boundary can be accurately

located within half of a lane width (1.75m).

3.4 Alternative Localization Method

In this section, an alternative localization method was proposed and followed by a

detailed localization error analysis with visualization on Google Maps.

3.4.1 Perspective Transformation and Linear Transformation
Matrix Calculations

Google Maps was used to calculate the PT and LT matrices. First, the pixel coordi-

nates of four pairs of matching points on the traffic camera image plane (Figure 3.17a)
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and the Google Maps satellite image plane (Figure 3.17b) were recorded. Then python

was used to calculate the PT matrix. To solve the equation of the PT matrix, at least

four pairs of matching points were required. More pairs of matching points would

help us to reduce the distortions. The image plane after applying the PT matrix was

shown in Figure 3.17c. Visually compared with Figure 3.4, where no ground truth

top-down view image was used, calculating the PT matrix with the Google Maps

satellite image as ground truth (Figure 3.17) did reduce some distortions, although

distortions were more obvious at a far distance from the traffic camera.

The LT matrix was calculated by collecting the pixel coordinates on the Google

Maps satellite image plane and the GPS coordinates from Google Maps of those

matching points we chose when we solved the PT matrix. Again, at least four pairs

of matching points were required to solve the LT matrix. The matching points used

to calculate the LT matrix did not have to be the same matching points used to solve

the PT matrix. To show an example, Figure 3.19 shows the pixel coordinate in the

traffic camera image plane after PT and the GPS coordinates from Google Maps of

a matching point (shown by a green circle point) used to calculate the LT matrix.

The GPS coordinate was collected by placing the pointer on the matching point and

right clicked the mouse. This localization method was based on the assumption that

there were at least four distinguishable points that were not on the same line from

the Google Maps satellite image. Otherwise, we would have to collect GPS data on

site as we did in Chapter 3.3.3.

This alternative localization method had a few advantages. First, onsite GPS data

collection was not necessary to calculate the LT matrix since we could collect GPS

data directly from Google Maps. Second, this method was very low-cost and fast.

It required no GPS or GNSS sensor, and the process of collecting data from Google

Maps was much faster than collecting data using the GNSS sensor from OBU. It

usually took half an hour to collect all the data needed to calculate the LT matrix,

whereas we could normally finish data collection within ten minutes, including five

40



(a) The traffic camera im-
age plane.

(b) The Google Maps satel-
lite image plane.

(c) The traffic camera im-
age plane after PT.

Figure 3.17: Process of Satellite Image Based PT

minutes of finding matching points plus five minutes of collecting GPS coordinates for

these matching points, with the help of Google Maps. Third, since we used the Google

Maps satellite image as a ground truth to calculate the PT matrix, the distortions were

smaller, which would benefit the localization accuracy. This localization method is

recommended to use on highways where onsite data collection is difficult or dangerous,

and the roads have many lane markings.

(a) The pixel coordinate of a matching
point in the top-down view.

(b) The GPS coordinate of the same
matching point from the GNSS sensor.

Figure 3.18: Example Data to Calculate LT (method 1).

(a) The pixel coordinate of a matching
point in the top-down view.

(b) The GPS coordinate of the same
matching point from Google Maps.

Figure 3.19: Example Data to Calculate LT (method 2).

3.4.2 Localization Error Analysis with Visualizations

As we did the localization error analysis in Section 3.3.4, we chose eight points on

the traffic camera image plane to be the testing points ranging from 30 meters to
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80 meters from the traffic camera shown in Figure 3.20a. At the beginning of this

experiment, we opened the live video stream from the traffic camera and clicked the

record button so that localization error analysis could be conducted offline. Then

we placed a traffic barrel on each testing point (Figure 3.20b) and our localization

method would output the GPS coordinate of the traffic barrel. We also used the

GNSS sensor on OBU to collect GPS coordinates of those testing points, in addition,

to collecting GPS data from Google Maps, since we wanted to explore the difference

between these data sources at the same point. By Equation 3.5, RMSE can be

calculated. We calculated the RMSE between our method and GPS data from the

GNSS sensor and also obtained the RMSE between our method and GPS data shown

in Figure 3.21a. We found out that RMSE had a trend of increasing as the testing

points were further away from the traffic camera, which indicated our localization

method generally worked well at a relatively near distance and did not perform as

well at a far distance. To be more specific, we can see that testing points that

were within 40 meters of the traffic camera had a RMSE of less than 0.5 meters

when comparing our method and GPS data from Google Maps. RMSE certainly

increased on testing points that were 70 meters further away from the traffic camera.

The average RMSE of all testing points is 0.9 meters using Google Maps as a ground

truth and 1.8 meters using the GNSS sensor as a ground truth. We also calculated the

localization noise produced from our localization method. The localization noise was

defined by finding the area of distribution of all points generated by our localization

method at each testing point. We defined the area of distribution as the area of the

smallest circle that could cover all points from our method. The localization noise plot

is shown in Figure 3.21b, showing all points had less than 0.5 square meters area of

distribution, except for the furthest point that had 0.7 square meters. This experiment

showed that longer distances from the traffic camera had some negative impacts on

our localization method in terms of both RMSE and localization noise. Figure 3.22

shows a few visualizations by plotting all GPS data on Google Maps, where red dots
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(a) Eight testing points for localization
error analysis are shown in green circle
points.

(b) This is one example of a traffic bar-
rel placed on a testing point with YOLO
detection.

Figure 3.20: Testing Points for Localization Error Analysis

were from our localization method, blue dots were from Google Maps, and purple

dots were from the GNSS sensor. We can clearly see the area of distribution from

our method is larger at the furthest testing point than at other testing points. The

area of distributions from the GNSS sensor was basically the same at different testing

points. We also plotted all GPS data from all testing points in a scatter plot shown

in Figure 3.23 and found out that the GPS data from the GNSS sensor generally had

about 0.5 meters offset in the west direction compared with GPS data from Google

Maps. Since the lane information, including which lane was closed by the work zone,

was generated by a map matching algorithm with GPS data of the work zone and

GPS data of the traffic lanes as an input, this localization method is recommended

to use when the GPS data of the traffic lanes is collected from Google Maps instead

of GNSS sensor. The lane information may not be very accurate when using the

GPS data of the traffic lanes collected from the GNSS sensor. For example, the work

zone warning app may display two traffic lanes closed by the work zone when there

is actually one traffic lane closed by the work zone.

3.5 Field Testing

We conducted a case study on 118 street, NW, located in Edmonton, Alberta, Canada,

to evaluate the performance of our vision-based work zone safety alert system in a

CV environment.
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(a) The RMSE plot. (b) Localization noise.

Figure 3.21: Results of Localization Analysis

(a) Visualization on the nearest testing
point.

(b) Visualization on the furthest testing
point.

(c) Visualization on the testing point that
both RMSE values were less than 1 me-
ter.

(d) Visualization on the testing point
that both RMSE values were greater than
2 meters.

Figure 3.22: Visualization on Testing Points.

3.5.1 Experiment Setup

In this experiment, we used a video camera that connected to the central server with

NVIDIA RTX3090 and 24GB video memory. The central server ran the work zone

boundary detection algorithm and sent work zone starting point GPS coordinates,

to the DSRC-enabled RSU. After receiving work zone static information from the
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Figure 3.23: The Scatter Plot of All GPS Data.

central server, the DSRC-enabled RSU broadcast this information to the nearby CV

equipped with a DSRC-enabled On-Board Unit (OBU). Then each CV within the

range of DSRC-enabled RSU (400 meters) received work zone safety alerts.

3.5.2 Experiment Design

In this experiment, we used a normal vehicle to block the CV, so that the driver in

the CV could not see the work zone in front of the normal vehicle. The two vehicles

are approaching the work zone. Figure 3.24 shows the experiment design. Since the

driver in the CV cannot see the work zone, the work zone warning app plays a vital

role to inform the driver of the position of the work zone.

3.5.3 Experiment Results

The work zone boundary localization results in this experiment are shown in Figure

3.25. From these results, we generated work zone safety alert messages to the CV

driven through the work zone.

In the first experiment, we recorded the CV trajectory by OBU without the work

zone warning app enabled. The CV trajectory, speed and work zone boundary loca-
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(a) Experiment Design and Planning (b) The actual picture at the experiment
site.

Figure 3.24: Experiment Design for Real World Testing.

(a) The work zone in the traffic cam-
era view with virtual lane marking added
from Google Maps

(b) The localization results show the pre-
cise location of the work zone.

Figure 3.25: Work Zone Localization

(a) How CV is driven through the work
zone (from the positive x-axis to the neg-
ative x-axis) without the work zone warn-
ing app enabled.

(b) CV’s speed before and after work
zone as well as where CV slowed down.

Figure 3.26: CV’s Behavior Without the Work Zone Warning app

tion estimated by the proposed localization are shown in Figure 3.26.

From Figure 3.26, we can see that the CV performed a lane change 25 meters in

front of the work zone starting point. Changing lanes at such a close distance can
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cause potential danger to both the driver and the worker in the work zone. The

lane-changing action of the CV depended on the front vehicle since the driver of the

CV can only see the work zone when there is no vehicle in front of the CV.

In the second experiment, we repeated the same experiment but with the work

zone warning app enabled. Since the traffic camera can see the work zone, the central

server ran the work zone detection and localization algorithm, and then sent the

work zone static information to the RSU. The RSU then broadcast the work zone

static information through the DSRC channel to the OBU on the CV. The OBU then

calculated the real-time distance between the CV and the work zone and displayed

the distance on the work zone warning app through OBU’s Wi-Fi.

Figure 3.27: The Work Zone Warning app.

Figure 3.27 shows the moment when the driver performed a lane change based on

the work zone warning app’s safety alert. At this moment, the driver could not see

the work zone, but still knew the precise location of the work zone with the help of the

work zone warning app. In the work zone warning app, we set the work zone warning

sound to trigger when the distance between the CV and the work zone starting point

is less than 100m since the speed limit on this testing road is 40km/h. The driver can

change the setting in the work zone warning app to trigger the warning sound at a

farther distance (for example, 1000m for a highway application). The CV trajectory,

speed and work zone boundary location estimated by the proposed localization are

shown in Figure 3.28.

From Figure 3.28, we can see that the CV performed a lane change at 80 meters in
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(a) How CV is driven through the work
zone (from the positive x-axis to the neg-
ative x-axis) with the work zone warning
app enabled.

(b) CV’s speed before and after work
zone as well as where CV slowed down.

Figure 3.28: CV’s Behavior With the Work Zone Warning app

front of the work zone starting point. With the help of the work zone warning app,

the driver in the CV changed lanes and slow down much earlier, which ensured the

safety of both the driver and the workers in the work zone.

3.6 Effect of Different Weather Conditions and Low

Resolution

To explore the effect of different weather conditions and low camera resolution, we

used a 1280-pixel by 720-pixel test video (Figure 3.29a) where a construction worker

was walking inside the work zone, placed at 50 meters from the traffic camera, as

an input to YOLO and our localization method. Shown in Figure 3.29b, Figure

3.29d, Figure 3.29e and Figure 3.29f, negative 100% exposure and negative 100%

brightness were applied to the test video before some weather effects were added by

a video editing software and the underlying pixel integrity data was still there. This

step was to test how well YOLO can detect work zone items under nighttime fog,

rain, snow, and thunderstorm. There were several reasons we did not conduct this

experiment under real-world conditions. For example, it is unsafe for both drivers

and our team members to collect work zone data during a thunderstorm at night.

We also tested YOLO’s performance on an extremely low camera resolution setting
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(254-pixel by 144-pixel) shown in Figure 3.29c. The localization results for different

test videos are shown in Figure 3.30 by using the framework developed by Mike et

al. [67]. It is obvious to see that localization noise increased compared with the

original test video. The version to simulate nighttime rain had the largest impact on

YOLO’s detection, where YOLO missed 3 traffic cones and 1 vehicle completely, and

missed the detection of the walking construction worker many times (Figure 3.30d).

Looking into the annotation videos on nighttime fog, rain, snow, and thunderstorm,

where each object was annotated on the videos when detected by YOLO, we found

out that YOLO generally can not obtain a stable detection on small objects such

as a traffic cone. Lowering the resolution of the test video did not seem to largely

affect YOLO’s performance. YOLO still could detect and locate all objects within

lane level accuracy although noise certainly increased for small objects. This indicated

our method can be applied to most low-resolution traffic cameras in Edmonton, where

the live traffic camera only supports 600 pixels by 400 pixels video stream. Lowering

the resolution of traffic cameras generally would increase the stability of live video

streams, for instance, more stable video frames, and decrease the latency since most

traffic networks in Edmonton do not support high-resolution video transmission.

(a) original (b) fog (c) low resolution

(d) rain (e) snow (f) thunderstorm

Figure 3.29: Test Videos from Different Weather Conditions and Camera Resolution.
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(a) original (b) fog (c) low resolution

(d) rain (e) snow (f) thunderstorm

Figure 3.30: Tracking Results from Different Weather Conditions and Camera Reso-
lution.

3.7 Lane Closure Information Broadcasting

We used standard map data message (MAP) and Traveler Information Message (TIM)

defined by the SAE J2735 standard to represent the work zone lane geometry and a

map-matching algorithm was used to determine the lane closure information based

on the coordinate of each traffic cone, which will be explained in this section.

3.7.1 MAP and TIM Definitions

As described in SAE J2735, the necessary fields shown in Figure 3.31a are required

to serve as the basic reference to other messages such as Signal Phase and Timing

Message (SPAT) and TIM which will reference back to Intersection/lane IDs in the

MAP message. By sending a MAP message, it is possible to broadcast the static

work zone lane geometry to a CV nearby. The CV would be able to know which lane

it is driving, but not know if the lane is open or closed.

SAE J2735 also defines traveller information message (TIM) which contains infor-

mation related to road conditions. Figure 3.31b shows the essential fields for TIM.

It can be used to broadcast work zone location with respect to the lanes defined in

the MAP message. The work zone definition in TIM is similar to Work Zone Data
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(a) MAP Data Frame. (b) TIM Data Frame.

Figure 3.31: MAP and TIM.

Exchange (WZDx) format. WZDx Specification [68] allows infrastructure owners

and operators (IOOs) to make standardized work zone data available to third par-

ties. The goal is to make public road traffic safer and more efficient by providing

ubiquitous access to data on work zone activities. It is possible to choose a path

manually/automatically in GPS coordinates and indicate road closure and generate

the corresponding TIM to be broadcast by RSU. TIM messages can be broadcast

simultaneously with the MAP message.

Shown in Figure 3.32, lane geometry can be defined by center line segments and

road width based on SAE J2735 MAP message. To be more specific, the center

line can be collected by: 1) a road survey; 2) GNSS sensor waypoints; 3) manually

selecting points from Google Maps; 4) our localization method. Lane-level localization

can be achieved using a map-matching algorithm by determining if the ego vehicle is

located within any bounding box that belongs to a particular lane. The displacement

between the bounding boxes affects the accuracy of lane geometry representation as

depicted in Figure 3.32b.
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(a) Lane geometry defined by center line
segments and road width.

(b) Displacement between bounding
boxes affects lane geometry accuracy.

Figure 3.32: Lane Geometry Represented by MAP.

3.7.2 Map Matching and Projecting

It is important to determine which lane is affected by road construction, and what

is the exact starting and ending points. Using a map-matching algorithm to find

the lane ID, and project the cone to the center line allows us to know the exact

start/ending point of a work zone as shown in Figure 3.33. This is a naive approach

assuming lane-level localization accuracy of traffic cone shown in Equation 3.6 to

Equation 3.9, where pstart, and pend, as well as lane width (l), are known information

about lane geometry. So the purpose of these equations is to find if traffic cones are

in any specific traffic lanes.

Shown in Figure 3.34, in TIM message the work zone geometry is represented as

a series of points on the center lines projected by the cone’s GPS coordinates (red).

The starting point (green) of each work zone is an anchor point, and the remaining

points (purple) are the offsets to the anchor point. For each segment, the minimum

projection length (d0,1) is used for computing the starting point, and the maximum

projection length (d1,2) is used for computing the ending point. By rendering the

MAP and TIM message data, Figure 3.35 could be obtained showing corresponding

legends.

θ = arctan(
pstarty − pendy
pendx − pstartx

) (3.6)
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Figure 3.33: Map Matching.

⎡⎣p′startx p′endx c′x

p′starty p′endx c′y

⎤⎦ =

⎡⎣cos(θ) −sin(θ)

sin(θ) cos(θ)

⎤⎦⎡⎣pstartx pendx cx

pstarty pendy cy

⎤⎦ (3.7)

Match iff. p′startx < c′x < p′endx (3.8)

AND − l

2
< c′y <

l

2
(3.9)

3.7.3 Field Testing

We conducted field tests in a CV environment using C-V2X communication technol-

ogy. We used an OBU to function as a RSU to broadcast MAP and TIM regarding

work zone and lane information because the RSU could not be installed at that time.

Figure A.1 and Figure A.2 in Appendix A show the communication topology and

devices used in this field test respectively. Currently, the map shown in Figure A.3

in Appendix A is created using manually chosen points from OpenStreetMap [69] for

simplicity. This method cannot be used for generating long-distance work accurately.

The resulting GPS coordinates of each node in Extensible Markup Language (XML)

format are used to generate MAP messages. MAP and TIM were broadcast at 10

hertz to nearby CVs. We developed a prototype of a work zone warning app with

lane information running on a laptop placed in a CV to serve as an HMI for the
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Figure 3.34: TIM Work Zone.

driver. This work zone warning app could show speed limit information, traffic lanes

information and the work zone location as well as which lane was closed by the work

zone. We set the speed limit from 40km/h to 10km/h when the work zone was less

than 100 meters from the driver. We recorded the data, and the results are shown in

Figure A.4, Figure A.5 and Figure A.6 in Appendix A, where we can see YOLO de-

tection from the traffic camera, MAP and TIM visualization, the work zone warning

app, as well as the driver’s vision. Since one of the strong features in our system is

real-time detection, localization, and warning, we also recorded results when remov-

ing traffic cones from the road. The results are shown in Figure A.7 and Figure A.8

in Appendix A. We can clearly see that the work zone region shown in MAP and TIM

were decreasing and the work zone warning app would not give any warning when all

traffic cones were removed. We repeated the experiments a few times to test stability.

The mobile version of the work zone warning app is being developed now.
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Figure 3.35: Render MAP and TIM.

3.7.4 System Level End-to-End Latency Tests

The data flow in this work zone warning system is shown in Table 3.1. The latency

includes computational delay and communication delay. The computation delay de-

pends on the hardware specification of the central server used to run the work zone

detection and localization algorithm. For our experimental setup, we used a work-

station with NVIDIA RTX3090 having 24GB GPU memory to run the work zone

detection and localization algorithm. The communication network delay is the time

difference between sending a message from one device and receiving the same message

on another device. The communication latency (except for C-V2X) was measured by

Packet Internet or Inter-Network Groper (PING) function to determine the Round-

Trip Time (RTT) of a message. Each latency test was repeated 9 times and 100

packages were used to calculate RTT in each latency test to reduce error and improve

accuracy. The tests used Cellular Vehicle to Everything (C-V2X) RSU and OBU to

broadcast work zone information. The communication latency on C-V2X was mea-

sured by the time difference between the same message (sent and received) recorded

by system log files on 2 OBUs close to each other (about 50m), and the test was
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repeated 9 times and 300 packages were used in each test. This assumes that V2I has

approximately the same latency as V2V. The computation latency was measured by

processing time on each image frame and 943 image frames were used. The actual

communication latency between the traffic camera and the server would be higher

than 2.1 microseconds since the PING function used a package size of only 64 bytes.

A more suitable method will be designed to measure the actual latency between the

traffic camera and the server in future research.

Table 3.1 shows the end-to-end latency results in every part of the work zone

alert system and the total latency combines both computational and communication

latency. The overall latency is below 100ms, which satisfies the latency requirement

for safety-critical applications.

End To End Latency Latency Type Average
Latency

Standard
Deviation

Traffic camera sending live
video data to central server

Communication
latency on wired
network

2.1ms 0.3ms

Work zone detection and lo-
calization algorithm results
generation

Computation la-
tency on central
server

5.4ms 1.2ms

Central server sending work
zone information to RSU

Communication
latency on wired
network

1.5ms 0.2ms

RSU broadcasting work zone
information to OBU

Communication
latency on C-
V2X

14.0ms 4.3ms

OBU sending vehicle’s speed
and work zone information to
Samsung pad running work
zone warning app

Communication
latency on OBU’s
Wi-Fi

17.7ms 6.6ms

Overall latency Overall latency 40.7ms 12.6ms

Table 3.1: End-to-End Latency Test Results.
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3.8 Conclusions

The goal of this chapter is to create a real-time vision-based work zone recognition

and localization approach, that will increase both the driver and worker’s safety in

work zones. By broadcasting the safety alert (MAP and TIM) in real-time (every

100ms) from RSUs to CVs within its communication range, our work zone safety

messages were used to alert the driver. When compared to commercially available

smartphones that the work zone site manager utilized to give work zone location, our

localization error study demonstrates that the vision-based work zone localization

approach can estimate the position more precisely in terms of RMSE. The results

from localization analysis revealed that we can accurately locate the work zone (placed

within 80 meters of the traffic camera) within a lane. Furthermore, we tested the work

zone alert system in a scenario where the driver cannot see the work zone. The work

zone warning app generates safety alerts based on the potential forward collision risks

between the work zone and the CVs. The results from the CV trajectory and work

zone location demonstrate that the work zone warning app can inform the driver of

the work zone location even if the driver cannot see the work zone and let the driver

slow down much earlier. This cooperative perception ensures the safety of both the

worker and the driver. The overall work zone alert system latency is below 100ms,

which satisfies the latency requirement in a CV environment. The effect of different

weather conditions and camera resolutions was also studied. The results indicated

our localization method can be applied to most low-resolution traffic cameras in

Edmonton.
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Chapter 4

Vision-Based Road Surface
Conditions Classifications with
Applications in a
Connected-Vehicle Environment

4.1 Introduction

Drivers frequently face risks due to poor road conditions. Driving is difficult and

dangerous when there is snow or ice on the roadways. Winter weather is known to be

one of the main contributors to an increased likelihood of crashes [70, 71] because of

things like reduced friction on the road surface [10]. Additionally, if the road surface

has not been cleaned promptly and adequately after a period of snowfall, the chance

of death also rises. Every winter, Canada engages with road repair operations on

thousands of kilometres of urban and rural highways. Despite the fact that Canada

is a country with expertise in keeping its roads operational throughout the winter,

there is still space for development in terms of road safety. According to Alberta

Transportation [2–6], slush, snow, or ice was involved in 214 fatal collisions and

14,505 non-fatal injury collisions, causing 14,719 (27% of total) casualty collisions in

total from 2015 to 2019. The number of collisions caused by slush, snow, or ice on

the road each year is shown in Figure 4.1, and we can see a trend of more collisions

occurring over the years.
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For those who maintain winter roads as well as the public, monitoring the state of

roads is crucial. Multiple efforts must be arranged and coordinated by transporta-

tion offices to maintain roads as free of snow and ice as possible, so that cars may

utilize the road network safely. Road Surface Condition (RSC) is a metric often used

by transportation agencies to determine the present status of the road in terms of

snow or ice covering, as well as a communication mechanism. Winter maintenance

staff can deliver the appropriate types of maintenance treatments and quantities of

deicing products at the appropriate times thanks to real-time, trustworthy road sur-

face condition (RSC) data, which results in considerable cost and salt savings. RSC

monitoring has generally been carried out either manually by highway agencies and

maintenance providers, or by employing RWIS stations [72]. Very high geographical

resolution and extra qualitative information are provided by manual patrolling, but it

has the shortcomings of being arbitrary, labour-intensive, and time-consuming. RWIS

stations, on the other hand, offer continuous information on a variety of weather and

road conditions, but they are expensive and can only be put in a small number of

places, limiting their spatial coverage.

Emerging research has been focusing on using machine learning algorithms to au-

tomatically classify and monitor RSC. A subset of Machine Learning (ML) methods

called Deep Learning (DL) approaches was created by combining sophisticated al-

gorithms with mathematics [73]. Computer vision is one of the areas where DL

approaches have shown impressive results, demonstrating cutting-edge accuracy in

tasks like picture classification, object identification, and semantic segmentation. A

few studies have recently assessed the application of DL to automatically classify

photos with the goal of estimating RSC during the winter, with astounding results

over RSC images from traffic cameras and dash cameras [15–18]. Less research has,

however, examined DL techniques for calculating RSC from pictures captured by in-

vehicle cameras in Alberta. The RSC monitoring process has recently been automated

thanks to the development of new technologies including CCTV cameras, in-car video
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recorders, smartphone-based systems, and high-end imaging systems with DL. How-

ever, it has been discovered that the operating conditions and classification precision

of these systems are still constrained.

The remainder of this chapter is organized as follows. We begin by discussing

the structures and details of ML algorithms selected for RSC classification. Then

the data collection, as well as the data labelling process, are detailed, where we

collected and labelled over 15,000 images collected in Alberta. The assessment based

on classification accuracy and processing time was performed after. The best DL

model was then selected to be used in applications of automated RSC classification

in a CV environment, with validation of the current RSC methods.

Figure 4.1: Number of Collisions Caused by Slush, Snow, or Ice [15–18]

4.2 Model Selection

A subset of Machine Learning (ML) methods called Deep Learning (DL) approaches

was created by combining sophisticated algorithms with mathematics [73]. The recent

availability of powerful Graphic Processing Units (GPUs) to train DL models, is also
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credited with the spectacular successes of DL methods across a variety of applications.

Computer vision is one of the areas where DL approaches have shown impressive

results, demonstrating cutting-edge accuracy in tasks like picture classification, object

detection, and semantic segmentation.

One of the deep learning models that have proven particularly effective for picture

categorization is CNN. As the input image progresses through the model’s layers, a

vector of probabilities is produced, with the highest probability corresponding to the

RSC category that the image most possibly belongs to.

The numerous layers that make up DL models each take the output of the layer

before them as input. In our scenario, we anticipate the DL models to receive photos

from cameras installed on vehicles as input and output the corresponding RSC cat-

egory. The objective of DL models is to make the model generate a mapping from

input observations into the desired output.

We took three DL models into consideration, which Xception [74] and VGG [75]

demonstrated state-of-the-art performance over the ImageNet [45] image classifica-

tion benchmark, and Juan’s CNN model [15] achieved over 90% accuracy on the RSC

classification problems on their dataset captured by traffic cameras in Ontario. Then

we compared their performance for RSC classification over the dash camera photos

dataset. The ImageNet dataset, which contains pictures of common items, was pre-

viously used to train Xception and VGG models. Incorporating Xception and VGG

models into the RSC image classification problem is the objective. The assumption

is that Xception and VGG models that were initially trained on massive datasets

have learned to recognize fundamental patterns that are helpful for classifying things

across many domains. The various architectures employed in this research are briefly

described in this section.

An alternative strategy called transfer learning would be to employ a CNN model

that has previously been trained with demonstrated performance rather than devel-

oping a brand-new CNN model, which frequently involves a substantial quantity of
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data and computational time [76, 77]. The usage of such characteristics would enable

us to achieve higher accuracy than any method that would solely rely on the available

data. Such a model would have already learned features that are relevant to most

computer vision challenges. We applied transfer learning on Xception and VGG since

their authors posted the pre-trained weights, while Juan’s CNN model was trained

from scratch because the pre-trained weight was not released.

Francois Chollet [74] introduced the Xception network, which replaced Inception

modules with depth-wise separable convolutions and residual connections. The data

flows through an entering flow, a middle flow, and ultimately an exit flow in the

Xception architecture. There are eight iterations of this technique. The top layers

were removed and replaced with a dropout layer, and the fully connected layer was

replaced with a softmax layer for the three different classes of road conditions in order

to modify this network for our goal.

VGG, which was created by Simonyan and Zisserman [75], came in second in the

2014 ILSVRC (ImageNet Large Scale Visual Recognition Competition). It was one

of the first networks to demonstrate the effectiveness of combining a highly layered

architecture with small convolutional filters. Deep feed-forward architecture with no

residual connections characterizes VGG. This is made up of two completely connected

layers at the conclusion of two linearly connected convolutional layers with max-

pooling after the second or third layer. For the RSC problems, the top layers were

removed and swapped out for a dropout layer, and the fully connected layer was

switched out for a softmax layer.

A simple CNN model created by Juan Carrillo [15] was influenced by important

DL research like AlexNet [78] and VGG [75]. When compared to the features of the

other model Xception, this model has fewer layers and fewer parameters, including

layers for data reduction (max-pooling), model regularization (dropout), and vector

concatenation.
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4.3 Data Collections

Data was collected using video cameras at the front of the leading and following

trucks. The route of the trials was between Edmonton and Calgary, and 21 trials

were conducted in total as shown in Figure 4.2. The trials started on September

12, 2021, and ended on January 30, 2022. The trucks travelled around 23,115 km. 9

drivers participated in these trials. More than 585 videos were taken for the lead truck,

and over 570 videos were taken for the follower truck. Each video is approximately

20 minutes long.

The three-class descriptions shown in Figure 4.3 are used to manually label each

image as ground truth, and automatic image processing is made to classify each image

in accordance with those descriptions. The Transportation Association of Canada’s

route reporting nomenclature, which is commonly used to notify the public about RSC

information about maintenance routes, is used to group RSCs into three categories

in the three-class description. All collected images (15,855 in total) were manually

labelled into three categories; bare pavement (5,391 or 34%), partially snow-covered

(5,011 or 31%) and fully snow-covered (5,453 or 34%). Examples of each category are

shown in Figure 4.3.

4.4 Training and Testing Deep Learning Models

90% of the total number of images are used to train and evaluate each of the three

models. The remaining 10% is kept as a test set, and we only utilized it at the very

end to report accuracy. 20% of the training data are taken for validation and the

charting of the accuracy and loss functions. so we had 11,415 images for training,

2,854 images for validation, and 1,586 images for testing. Dataset split was done

randomly to avoid bias. To reduce the classification error, we employ the Backprop-

agation Algorithm with Stochastic Gradient Descent (SGD) as an optimizer. The

learning rate is maintained at 0.001. Other settings for the SGD optimizer, including
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Figure 4.2: Locations of Data Collection.

(a) Bare pavement. (b) Part snow coverage. (c) Full snow coverage.

Figure 4.3: Definitions of Different Types of RSC

momentum = 0.9 and Nesterov momentum enabled, are made in accordance with

suggested values in the literature [15, 74, 75].

The training set is processed through each DL model 10 times (epochs) in order to

minimize the classification error. Additionally, the images are fed in batches of 16 to

save memory. With the exception of the model created by Juan [15], which needs to

be trained entirely from scratch, Xception and VGG need to be trained by applying

transfer learning. Transfer learning entails applying features learned on one problem

to a new, similar problem. Transfer learning is typically used for tasks where the
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training dataset contains insufficient data to train a full-scale model from scratch.

In our case, we have enough RSC data (about 15,000 images) to train Juan’s CNN

since it is a relatively small model with much fewer parameters, but we may not have

enough RSC data to train Xception and VGG since they are much more complex and

large model with ten times more parameters than Juan’s CNN. We decided to use pre-

trained weights to train Xception and VGG by transfer learning since we assumed if

we trained Xception and VGG from scratch, the classification accuracy would not be

higher than 50%. The following workflow is the most common incarnation of transfer

learning in the context of deep learning: 1) Take layers from an earlier trained model;

2) Freeze them to prevent any of the information they contain from being destroyed

during future training rounds; 3) On top of the frozen layers, add some new, trainable

layers. They’ll figure out how to turn old features into predictions on a new dataset;

4) Run the new layers through their paces on our dataset.

Data collection, labelling, and experimentation were all important parts of this

project. One of the most difficult aspects of this work was labelling millions of raw

images of road and weather conditions in a variety of scenery (urban, rural), sky

conditions (clear, overcast), illumination (day, night, twilight), and quality to produce

a reliable set of training images were to have about the same numbers of samples for

each type of road condition, including bare pavement, part snow coverage and full

snow coverage to ensure there is no bias in the dataset. Another challenge was to

account for model complexity and memory usage, as well as classification accuracy,

at each stage of the dataset labelling and classification process.

In this work, the following metrics were used in Equation 4.1 and Equation 4.2. In

Equation 4.1, TP stands for True Positives, FP stands for False Positives, TN stands

for True Negatives and FN stands for False Negatives. For example, the false positive

rate is defined as the proportion of cases where road surfaces are covered in snow/ice

but are classified as bare pavement. We used categorical cross entropy [79–81] as the

loss function for our RSC classification problem shown in Equation 4.2, where M is
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the number of classes, the log is the natural log, and y is the binary indicator (0 or

1) if class label c is the correct classification for observation o, and p is the predicted

probability observation o is of class c. We desired to have a higher accuracy value

and a lower loss function value for a better training result. Over the course of model

training, we expected an increasing accuracy value and a decreasing loss function

value.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Loss = −
M∑︂
c=1

yo,c log(po,c) (4.2)

Juan’s CNN model, Xception and VGG are all trained and validated on 14,269

images (80% for training and 20% for validation) where 33% are bare pavement, 31%

are part snow coverage and 34% are full snow coverage, and then tested on 1,586

images where 34% are bare pavement, 31% are part snow coverage and 34% are full

snow coverage. All three categories had about the same proportions in training, vali-

dation and testing datasets. Figure 4.4 shows the summary of training results for the

models when transfer learning was applied on Xception and VGG, except for Juan’s

CNN model was trained from scratch. We expected training accuracy to be higher

than validation accuracy and testing accuracy. But our results showed validation

accuracy was higher than training accuracy, which was unusual. Testing accuracy

was about the same as validation accuracy, which was reasonable. To be sure there

was no overlap between the training dataset and the testing dataset, another training

was done using only 30% of total images for training, another 30% of total images

for validation and another 30% of total images for testing on Juan’s CNN. Training

accuracy was 86.23% and validation accuracy was 93.63% and testing accuracy was

92.89% after 20 epochs. Still, validation accuracy was higher than training accuracy.

This unusual behaviour can be caused by dropout layers in the CNN. Dropout layers
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are used to avoid overfitting. Some neural nodes were randomly turned off during the

training process but all neural nodes were turned on during the validation and testing

process. So CNN can have better validation accuracy. Another possible explanation

is the CNN was underfitting after the training. To investigate this unusual behaviour,

dropout layers were removed before all CNNs went through the same training process

again. The results are shown in Figure 4.5. Training accuracy is higher than vali-

dation accuracy, which is reasonable and usual. Also, we achieved better accuracy

without dropout layers. Based on our experiments, the classifiers were able to distin-

guish between images of bare pavement, part snow coverage, and full snow coverage.

The main significance of these findings is that they demonstrated that we can use

modern CNN frameworks to achieve results of over 90% accuracy. Another interesting

fact is that these results were obtained with no pre-processing on the images other

than re-scaling (all images in this dataset were re-scaled to 224-pixel by 224-pixel size

to save memory and maintain features).

We also recorded the time to train each DL model and the processing time for each

DL model to classify one 224-pixel by 224-pixel size RSC image on a commercially

available CPU (11th Gen Intel i7-11700K) as shown in Figure 4.6. It is very obvious

that Juan’s CNN model took significantly less time to train while achieving compet-

itive accuracy. We chose Juan’s CNN model for our automated RSC classification

application in the CV environment because Juan’s CNN model took only 16 microsec-

onds to process one image while others took over 50 microseconds. The reason we

recorded processing time on CPU is that all laptops have CPUs, but not all of them

have GPUs that can process DL models much faster than CPUs. We would like to

use any laptop that can be placed on CVs to run the RSC classification algorithm

and send RSC reports through V2V and V2I communication technologies by DSRC

in real-time. We could also stream RSC videos recorded by dash cameras to our lab

computers with GPUs to generate RSC reports with the RSC classification algorithm

in real-time.
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(a) Models accuracy summary. (b) Models loss summary.

Figure 4.4: Training Results Summary with Dropout Layers

(a) Models accuracy summary. (b) Models loss summary.

Figure 4.5: Training Summary without Dropout Layers

(a) Models training time. (b) Models processing time.

Figure 4.6: Training and Processing Time Summary

4.5 Applications in a CV Environment

In a CV environment, any CV with a camera and laptop or smartphone to run the

RSC classification algorithm can use V2V and V2I communication technology to send

other CVs information about RSC data (Figure 4.7) in real-time. If the CV with a

camera is not in a CV environment, or the CV with a camera does not have a device

such as a laptop or a smartphone to run the RSC classification algorithm, we can
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upload the images taken by a dash camera on the vehicle as well as the GPS data to

the workstation or cloud server with a GPU and CPU to run the RSC classification

algorithm and submit the RSC report to any road condition monitoring website, for

instance, 511 Alberta, to generate an RSC map (Figure 4.9). The whole pipeline of

this application is shown in Figure 4.8.

We used the images and GPS data recorded on November 25th, 2021 to generate an

RSC map shown in Figure 4.9 and compared it with the RSC map from 511 Alberta

website [82] (Figure 4.10) around the same time. Both RSC maps used the same

colours to represent the three RSC, where black stands for bare wet or dry, yellow

stands for partly covered by snow or ice, and pink stands for fully covered by snow

or ice. We can see that our RSC results on Highway 16 mostly coincide with the

RSC results from 511 Alberta, which indicates the RSC on Highway 16 was bare

wet or dry. One of the advantages of our RSC map is that we had very detailed

RSC on narrow roads, which tend to be accident-prone areas, for example, Liberty

Road and Sherwood Drive, where the RSC map from the 511 Alberta website gave

no RSC report. We discovered part of Liberty Road was partly covered by snow or

ice, which was dangerous for driving. According to CTV News Edmonton [83], 129

crashes were reported to Edmonton police between 5 a.m. and noon on November

25th, 2021. Some crashes could have been avoided with our automated RSC systems

by sending RSC data through V2V and V2I in real-time.

Figure 4.7: Examples of RSC Data
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Figure 4.8: Automated RSC Monitoring Pipeline

Figure 4.9: Generated RSC Map

4.6 RSC Classifications from Traffic Cameras

We trained and tested Juan’s CNN on a dataset that had traffic camera images in

Ontario labelled by researchers in iTSS lab [84] at the University of Waterloo, and

labelled traffic camera images in Alberta. I mainly collected traffic images from

the 511 Alberta website. The images were categorized into three groups based on

different RSC conditions. Images with no visible snow on roads were labelled as ‘bare

pavement’ or ‘dry/wet’, images with part snow-covered road (20% to 60% of the road

area were covered by snow) were labelled as ‘part snow coverage’, and images with full
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Figure 4.10: RSC Map from 511 Alberta

snow-covered roads (80% to 100% of the road area were covered by snow) were labelled

as ‘full snow coverage’. Figure 4.11 shows a few sample images from the dataset. The

dataset had over 20,000 images in total and 70% were used in training, 20% for

validation, and 10% for testing. There were 2,1142 images in total, where 44% were

‘bare pavement’, 43% were ‘part snow coverage’, and 11% were ‘full snow coverage’.

We resized images to 224 pixels by 224 pixels before training. The batch size was

chosen to be 4 to save memory and the epoch was set to 50. Training and testing

results were shown in Figure 4.12, where the final accuracy was 92.79%, 90.07%, and

90.70% on training, validation, and testing datasets respectively. Since Xception also

achieved decent accuracy on the dataset that was full of images collected by onboard

cameras, we also trained and tested Xception with the same parameters. Figure 4.13

shows the training and testing results for Xception, where the final accuracy was

80.49%, 82.43% and 81.51% on training, validation, and testing dataset respectively.

The processing time was approximately the same as before, where Juan’s CNN took

about 20 ms and Xception took about 60 ms per image classification. A prototype

of an automated RSC monitoring app from live traffic cameras on the 511 Alberta

website was created. This app could fetch multiple live images from different traffic

cameras and output RSC classification results as well as when the image was taken
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and its location information. The location information was extracted by reading the

text at the bottom of the image from the 511 Alberta website. Figure 4.14 shows a

few demonstrations of this prototype. We also compared our RSC map with the RSC

map from the 511 Alberta website at the same time on October 24, at noon. The

results are shown in Figure 4.15, where black, yellow and pink represent dry/wet,

part snow coverage, and full snow coverage respectively. We can clearly see that

our method provided a more detailed RSC map in the downtown area where 511

Alberta gave no RSC report. This is because 511 Alberta mainly relies on RWIS

stations to provide RSC reports, and RWIS stations are usually located in rural areas.

Figure 4.16 gives a comparison of locations of traffic cameras versus RWIS stations in

Edmonton. According to statics from 511 Alberta and Alberta transportation [19],

there are more than 300 traffic cameras in Alberta while less than 150 RWIS stations

and mobile RWIS stations are available. RSC reports generated from traffic cameras

located in urban areas by our method were mostly the same as 511 Alberta. In terms

of limitations, there were a few cases where our method misclassified RSCs. For

example, the RSC report should have been ‘dry/wet’ but our method gave ‘part snow

coverage’ shown in Figure 4.17a. One possible explanation is that CNN was confused

by white trucks on the road and classified white trucks as snow. Another example is

shown in Figure 4.17b, where our method gave ‘part snow coverage’ but the result

should have been ‘dry/wet’. The reasonable explanation for this can be that CNN

thought the roads shown in the figure are one road instead of many and classified

the snow on dams as snow on the road. Incorrect reports like these can be solved by

adding more data collected from the cameras that our method made mistakes and

re-train the CNN. The location of roads that are covered by snow can be broadcast

from RSU to nearby CVs in a CV environment.

74



(a) Bare pavement. (b) Part snow coverage. (c) Full snow coverage.

Figure 4.11: Sample Images

(a) The plot of training accuracy. (b) The plot of training loss.

Figure 4.12: Training Juan’s CNN with Dropout Layers

(a) The plot of training accuracy. (b) The plot of training loss.

Figure 4.13: Training Xception with Dropout Layers

4.7 Conclusions

The purpose of this chapter is to use vehicles or CVs as RSC sensors, to give RSC

safety alert warnings to other vehicles or RSC monitoring websites such as 511 Alberta

in order to avoid crashes. We used images from dash cameras to classify RSC. Three

state-of-the-art deep learning models were selected for training on our dataset with

over 15,000 labelled images and then compared with each other in terms of accuracy
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(a) RSC on 24 Ave. (b) RSC on 34 Ave.

Figure 4.14: RSC Reports app.

(a) RSC map by our method. (b) RSC map by 511 Alberta.

Figure 4.15: RSC Map Comparison.

and processing time. From the training results, Juan’s CNN was chosen to automat-

ically classify RSC on November 25th, 2021 because of its fast processing time and

superior accuracy. The pipeline to generate RSC data and map in a CV environment

or non-CV environment was developed. In our RSC map generated on November

25th, 2021, most of the RSC on Highway 16 agreed with the results from 511 Alberta,

which validated the reliability of our automated RSC classification systems. By com-

paring our RSC map with the RSC map from 511 Alberta, a few advantages were

found in our method, including detailed RSC on narrow, accident-prone roads where

511 Alberta gave no RSC report. RSC classifications from traffic cameras were also
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(a) Locations of traffic cameras are la-
belled by ’camera’ icons.

(b) Locations of RWIS stations are la-
belled by red points.

Figure 4.16: Traffic Cameras vs. RWIS Stations.

(a) The CNN thought white trucks were
snow.

(b) The CNN thought dams were part of
roads.

Figure 4.17: Incorrect RSC Reports.

achieved by training CNNs using datasets that had traffic camera images in Ontario

and Alberta. Compared with 511 Alberta, our method provided more detailed RSC

reports in the downtown area. For future work and research, we will develop an HMI

such as an RSC warning app to give drivers RSC safety alerts in real-time. We will

also try to augment our dataset and train deep learning models again to analyze

performance differences. Other state-of-the-art deep learning models, which were not

considered in this chapter, will also be trained and compared.
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Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Conclusions

This research was focused on using vision-based machine learning algorithms in a CV

environment to monitor road conditions, including work zone detection and localiza-

tion, as well as snow detection and classification.

YOLO was used to recognize a variety of work zone items including traffic cones,

traffic barrels, traffic barricades, construction workers, etc. Localization was achieved

by applying perspective transformation and linear transformation. Two localization

methods were proposed and tested. Recommendations and cautions to use each

method were also discussed. In our localization error analysis, our method can effec-

tively locate work zone items that are placed within 80 meters of the traffic camera.

We used MAP and TIM messages to broadcast work zone information such as work

zone location and which lane was closed by the work zone, to nearby CVs using

C-V2X. The development of the work zone warning app was detailed. We first devel-

oped a work zone warning app without traffic lane information, then with the help of

MAP and TIM, a prototype of the work zone warning app with detailed traffic lane

information was tested in different scenarios. We also studied the effects of different

weather conditions and camera resolutions on our detection and localization method.

We found out that our method could work fine using an extremely low-resolution
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traffic camera. A study case was performed on 118 Street to validate the system’s

stability as well as latency. Results revealed that our system can ensure the safety of

both drivers and construction workers. I believe a lot of lives can be saved with our

system in the future since the driver will receive work zone safety alerts before the

driver can even see the work zone.

Three state-of-the-art CNNs were trained and tested on our own RSC dataset

collected from cameras mounted on vehicles. The dataset was collected in Edmonton

and Calgary and labelled into three categories, including bare pavement, part snow-

covered, and full snow-covered. We selected the CNN with superior performance

and fast processing time to be used in our automated RSC application in a CV

environment. We compared our RSC method with the method that is currently in

use by the Alberta government and found that our method had the advantage of a

more detailed RSC report on narrow, accident-prone roads. A pipeline of automated

RSC classification in a CV environment was proposed. With the help of DSRC, C-

V2X, and 5G communication technology, RSC reports with GPS information can be

shared in real-time with nearby CVs, further ensuring driver safety under slippery

roads. Images from traffic cameras were also used to train CNNs and an automated

RSC classifications prototype was developed and tested. The prototype used traffic

camera images from the 511 Alberta website as input and output RSC reports and

RSC maps. Compared with the RSC map from 511 Alberta, our method had a more

detailed RSC map in the downtown area. Our methods including automated RSC

classifications from CVs and traffic cameras had proved to be reliable complements to

current RSC monitoring methods, which mainly rely on stationary and mobile RWIS

stations.

This study mostly relied on cameras as input sources so it had limitations of poor

performance at night. It is recommended to use Lidar sensors to complement this

drawback. In addition, our work zone localization method was effective if the work

zone items were placed within 80 meters of traffic cameras. But in real-world sce-
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narios, work zones can be kilometres long on highways where our method cannot

cover the full work zone range. Feasible solutions to solve this problem can be using

a drone to detect and locate work zones, and we can use multiple traffic cameras

to enlarge the range of detection and localization. For RSC classification problems

from CVs and traffic cameras, it also had poor performance at night. Our automated

RSC monitoring systems can be perfected by fusing the data with RWIS station and

On-Board Diagnostic systems (OBD) from vehicles.

5.2 Future Work

For future works and plans, we will first complete the development of mobile versions

of the work zone warning apps. The work zone boundary detection accuracy was mea-

sured by recognizing traffic cones instead of boundary detection. It would make more

sense to evaluate the boundary identification accuracy where the missing detection of

a traffic cone does not affect the boundary detection results in many cases, but some-

times it does. The false positive case could have a high impact on boundary detection

in certain cases and many have little impact in some other cases. We will follow the

pipeline developed by Shi et al. [26] where they evaluated the overlap area between

the polygons that enclose the entire work zone area measured by ground truth and

vision-based methods. Although they did not specify which sensors were used to mea-

sure the ground truth of the polygon, we can use GNSS sensors in our laboratory to

reproduce the experiment. We will develop systematic ways to quantify and minimize

the distortions generated by perspective transformation. For the case study on 118

street, we will repeat the experiments as many times as possible to ensure effective-

ness and stability. We used DSRC and C-V2X communication technologies in the CV

environment, and 5G will be considered and utilized in the future to further reduce

the latency. In our work zone warning applications, we used server-based structures

to transmit data from the traffic camera to the central server and then to the RSU.

This structure can be simplified by a Multi-Edge Computing (MEC) device such as
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Islam et al. [40] used in their paper. They placed the computing device right next to

the traffic camera and the RSU. As a result, this MEC device dramatically reduced

the latency. We will also explore the possibilities of using cooperative perspective

messages (CPM) to detect and locate moving objects, such as construction workers

from onboard cameras mounted on CVs. A few types of research are being studied

and will be reproduced in the future including Rauch et al. [85–87], Gunther et al.

[88] and Shan et al. [89].

In terms of classifications of winter road surface conditions, we will fuse the data

with CVs and traffic cameras with RWIS stations as Juan et al. [15] and Diaby et al.

[90] did in their papers. These fusion methods will perfect our methods and fix the

issues of poor performance at night. We will continue to collect data from CVs and

traffic cameras this winter in Alberta to enlarge the datasets. We will also complete

the development of automated RSC monitoring apps using input data from CVs and

traffic cameras. More testing will be conducted this winter to verify the effectiveness

and stability of our methods. CNN will be trained on mixed datasets to see if we can

achieve better results. 5G and MEC devices will be used in the future to reduce the

latency of transmitting RSC reports from one CV to another.
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Appendix A: First Appendix

This appendix contains figures in Section 3.7.3

Figure A.1: System Diagram.
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Figure A.2: Hardware.

Figure A.3: MAP Data Collection.
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(a) YOLO detection. (b) MAP and TIM.

(c) Warning app. (d) Driver’s vision.

Figure A.4: Approaching the Work Zone.
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(a) YOLO detection. (b) MAP and TIM.

(c) Warning app. (d) Driver’s vision.

Figure A.5: Entering the Work Zone.
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(a) YOLO detection. (b) MAP and TIM.

(c) Warning app. (d) Driver’s vision.

Figure A.6: Leaving the Work Zone.
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(a) YOLO detection. (b) MAP and TIM.

(c) Warning app. (d) Driver’s vision.

Figure A.7: Half of Traffic Cones were Removed.
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(a) YOLO detection. (b) MAP and TIM.

(c) Warning app. (d) Driver’s vision.

Figure A.8: All Traffic Cones were Removed.
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