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Abstract

The objective of this thesis is to show how advanced methods based on mixture

models can be used to predict the productivity of hockey players, measured

by the rate at which they produce goals and assists. The performance of the

methods is evaluated on existing data from one full National Hockey League

(NHL) season. Over a large time frame, such predictions come fairly easily,

regardless of the method we choose. However, our focus is on predictions ob-

tained from relatively – sometimes even significantly – short sampling periods.

If we look solely at the first 3-5 weeks of the season, the näıve estimator, based

on maximum likelihood, is essentially useless at predicting how someone will

perform for the remainder of the year. Simple methods such as “one-fits-all”

estimators and näıve shrinkage estimators represent an improvement, but it

turns out we can do better. We look at both parametric and nonparametric

empirical Bayes approaches to fitting mixture models, with the objective of

showing that these methods provide good predictions in a small time frame.

In particular, we will cover two competitive approaches, the Poisson-Gamma

parametric model and the Kiefer-Wolfowitz nonparametric method. Both of

them construct certain mixtures of Poisson distributions, but contrary to the

setting prevailing in the literature, we have to deal with the fact that our

Poisson outcomes are for di↵erent players observed over di↵erent time peri-

ods, depending on the number of games played, or the total amount of time

spent on ice.
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Chapter 1

Predicting Hockey Productivity

The aim of this chapter is to familiarize ourselves with a variety of statistical

methods for predicting scoring rates in hockey. Sections 1.1 and 1.2 start us

along this path by outlining the problem at hand and introducing Poisson

processes. Then, in Section 1.3, we look at simple methods for making scoring

rate predictions. Section 1.4 covers more complex methods based on mixture

models.

1.1 The Outline of the Problem

With the rise of analytics in hockey, many new metrics have revolutionized the

way players are evaluated. Despite these recent developments, simple counting

statistics like goals, assists, and points (goals plus assists) are still some of the

first things that hockey fans gravitate towards when assessing the talent level

of individual players.

A goal is scored when the puck completely crosses the goal line and goes

into the net. The last player to touch the puck before it goes in is awarded the

goal, and assists are attributed to a maximum of two teammates of the goal

scorer who were the last ones to touch the puck in between the opposing teams

most recent possession and the goal. A primary assist is given to the player

that passed the puck directly to the goal-scorer, while a secondary assist is

given to the player who passed the puck to the primary assistant.

The objective of this thesis is to show how advanced methods based on

mixture models can be used to predict the productivity of hockey players,
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measured by the rate at which they produce goals and assists. The perfor-

mance of these methods is evaluated on existing data from one full National

Hockey League (NHL) season; in particular, we will look at the data from

2018-19, which was the most recent non-shortened NHL season at the time of

this writing.

Over a large time frame, desired predictions come fairly easily, regardless

of the method we choose. However, our specific objective is to obtain good

predictions from relatively – sometimes even significantly – short sampling pe-

riods. There are various ways to make these predictions, some of them based

on expert knowledge, but in this thesis we concentrate on prediction strategies

that depend solely on the observed data, assuming minimal knowledge of cer-

tain other covariates (injury history, rookie status, team quality, production

in previous years, etc.).

A first obvious thing to do is to try the näıve estimator, based on maximum

likelihood; this is as simple as taking a player’s scoring totals from the first

batch of games, and dividing by their number of games played or their total

time on ice. It turns out this is generally the worst option, especially when

the number of weeks used to make predictions is small.

It may be a surprise to many that one can actually make better predictions

by simply applying the average leaguewide scoring rate to each player. This

“one-fits-all” estimator may improve results for the majority of players, but

not everyone is average. For example, the best players in the league can be

expected to surpass league average by a wide margin, while a bottom of the

roster player is unlikely to score many points at all. This inability to capture

the outer edges of our dataset make predicting from the overall average sub-

optimal.

We can combat this issue by using a shrinkage estimator. As the name

suggests, these estimators “shrink” predictions towards certain “common val-

ues”, and often provide more accurate predictions than the aforementioned

methods. The celebrated example of a shrinkage estimator is the James-Stein

estimator.

When moving to more complex methods we find that we are able to pro-
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duce more desirable results. This thesis looks at parametric and nonparametric

empirical Bayes approaches to fitting mixture models, and evaluates their per-

formance on the real data from 2018-19 NHL season. In particular, we will

cover two competitive approaches, the Poisson-Gamma parametric model and

the Kiefer-Wolfowitz nonparametric method. Both of them construct certain

mixtures of Poisson distributions, but contrary to the setting prevailing in the

literature, we have to deal with the fact that our Poisson outcomes are for

di↵erent players observed over di↵erent time periods, depending on the num-

ber of games played, or the total amount of time spent on ice. To account for

di↵erences in games played, we introduce a new variable, g, which we refer to

as a time epoch; this can be either the number of games played, or the total

time spent on ice. The setting incorporating g di↵ers from that in previous

literature: for instance, Robbins (1956) and Maritz and Lwin (1970), consider

always the Poisson model exclusively with g = 1. In our case, each player, j, is

given an individual time epoch, gj, that corresponds to the number of games

they played, or time they spent on ice, in the chosen time span.

An important distinction to note is the di↵erence in usage between forwards

and defencemen. In hockey, forwards are typically expected to be the ones

scoring most of the goals, while defencemen are primarily tasked with keeping

the puck out of their own net. While defencemen are less likely to score, they

still often pick up assists due to their role of moving the puck up ice. This leads

to a disparity between goal and assist totals for defencemen that does not exist

for forwards. Furthermore, while there are obviously some outliers, the vast

majority of the leading point-getters will be forwards. Therefore, combining

both positions when making predictions will likely lead to noisy results. Due

to this di↵erence in behaviour, we postulate that predictions can be further

improved if we make separate datasets for forwards and defencemen. Figure

1.1 shows the relationship between goal and assist totals when forwards and

defencemen are separated. The two panels indeed illustrate di↵erent behaviour

for each of the groups.

3



Figure 1.1: Top. Scatterplot of assist vs. goal totals for forwards. Bottom.

Scatterplot of assist vs. goal totals for defencemen (2018-19 NHL regular
season, min. 60 games played).

While the separate panels of Figure 1.1 indicate a positive correlation be-

tween goals and assists, the combined plot (forwards and defencemen together)

in Figure 1.2 exhibits rather low correlation – in fact, a simple linear regression

yielded an adjusted R-squared value of just 0.3521. Therefore, while it may be

of interest to consider prediction of goals and assists simultaneously (perhaps

in future work), in this thesis we opted for a simpler approach, which was to

make predictions for players’ goal and assist rates independently.
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Figure 1.2: Scatterplot of assist vs. goal totals for all NHL players during the
2018-19 regular season (min. 60 games played).

Predictions will be evaluated using the mean squared error loss function

MSE(�) =
1

n

nX

j

(�̂j � �j)
2, (1.1)

where n represents the number of players in the sample, �̂j represents the

estimate derived from player j’s first z weeks of the season, and �j represents

the validation set, which, for now, will be player j’s full season rate minus the

rate from their first eight weeks. Obviously, the smaller this quantity is, the

better the prediction. It should be stressed, however, that the predictions are

formed exclusively from the data available in the first z weeks; knowledge of

the remainder of the season is used exclusively for their evaluation.

A variety of other loss functions could have been used here. For instance,

the following loss function, proposed by Clevenson and Zidek (1975), “penal-
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izes heavily for bad estimates when the �j’s are small”:

`(�̂,�) =
1

n

nX

j

��1
j (�̂j � �j)

2

Alternatively, one could formulate a loss function that penalizes heavily for

bad estimates when the �j’s are large:

`(�̂,�) =
1

n

nX

j

�j(�̂j � �j)
2. (1.2)

In professional hockey, where teams put significant care into saving money by

not overpaying players, the loss function given in (1.2) might be of more use

because it prevents bad overestimates of scoring rates from being made. Also,

this loss function stresses the importance of accurately predicting the perfor-

mance of the best players more than the performance of the worst players.

In the end, we chose MSE because it is standard in literature, and gives us

the posterior mean (a concept introduced in Section 1.4.1) when minimized,

making it analytically convenient. When separating forwards and defencemen

we calculate the overall MSE by

MSE(�) =
1

nF + nD

"
X

j2F

(�̂j � �j)
2 +

X

j2D

(�̂j � �j)
2

#
,

where nF represents the number of forwards in the sample, and nD represents

the number of defencemen in the sample.

1.2 Poisson Processes

A typical example of a Poisson process is the arrival of cars to a toll booth. We

think of the arrival of each car as a discrete event occurring at a random time,

but at a known average rate. It turns out that scoring events in hockey can

be modelled the same way, where the occurrence of goals and assists is akin to

the arrival of a car. We elect to model two separate Poisson processes due to

the di↵ering parameters associated with goals and assists. We also recognize
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that each individual player in our dataset scores at di↵ering rates, so we are

in essence observing a large number of Poisson processes simultaneously. The

somewhat informal axioms of the Poisson process from Lawler (2006) stipulate

(1) The number of events during one time interval does not a↵ect the number

of events in a di↵erent (non-overlapping) time interval.

(2) The “average” rate at which events occur remains constant.

(3) Events happen one at a time.

It is clear to see that axiom (1) is satisfied. In more exact terms, it is expressed

as

(10) The number of events occurring in intervals [t, s] and [u, v], t < s 6
u < v, are independent random variables.

Due to the random nature of scoring events, it is hard to imagine that axiom

(2) will be wholly satisfied, but for our purposes we choose to accept that the

productivity of an individual player remains at least approximately constant.

Axiom (2) can be written more formally as follows:

(20) The distribution (probability law) of the random variable recording the

number of events happening in an interval [t, s], t < s, depends only on

the length, s� t, of this interval.

Axiom (3) is also acceptable, and is more formally phrased as

(30) The probability of two events happening in an interval [t, s], t < s, is

o(s� t) – that is, lim�t!0
o(�t)
�t = 0, where �t = s� t.

Axioms (1’)-(3’) imply that the random variable, X, recording the number

of events (goals or assists) happening in an interval [t, s], t < s, follows a

Poisson distribution:

P [X = x] =
(�(s� t))xe��(s�t)

x!
, x = 0, 1, 2, ...,
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where � represents the rate at which events occur. Seeing as hockey players

are not on the ice at all times, the interval [t, s] will be measured using the

discrete time process of games played (g), rather than the continuous time

process described above. Therefore, we can rewrite the Poisson distribution

as

P [X = x] =
(�g)xe��g

x!
, x = 0, 1, 2, ...

The expected value of X is:

E[X] = �g.

Of interest to us is the expected number of events, X, per game. In the Poisson

model this is expressed by

E


X

g

�
= �.

However, the non-integer values ofX/g necessitates us to work withX instead.

Other important properties of the distribution of X are

V ar[X] = �g = E[X].

and

E[X2] = V ar[X] + E[X]2 = �g + (�g)2

Looking through a Bayesian lens, we now think of the distribution of the

productivity of an individual player in g games as a conditional distribution

of X given ⇤ = �:

P [X = x|⇤ = �] =
(�g)xe��g

x!
, x = 0, 1, 2, ..., (1.3)

If ⇤ has the distribution Q, the joint distribution of X and ⇤ can be

written, with some abuse of notation, as

8



P [X = x,⇤ = �] = P [X = x|⇤ = �] dQ(�) =
(�g)xe��g

x!
dQ(�)

and the mixing distribution is

P [X = x] =

Z
(�g)xe��g

x!
dQ(�).

1.3 Simple Methods of Prediction

In this section we introduce several simple methods which constitute the first

take on the prediction task in our situation. Specifically, these methods are

the näıve estimator (Subsection 1.3.1), “one-fits-all” estimators based on max-

imum likelihood estimation (MLE) and the method of moments (MM) (Sub-

section 1.3.2), and the “poor man’s shrinkage” estimator (Subsection 1.3.3).

1.3.1 The Näıve Estimator

Let X1, ..., Xn be independent identically distributed (iid) random variables

with probability density functions f(xi;�) for all i = 1, ..., n. The likelihood

function refers to the joint probability of these X 0
is and can be written as:

L(�1, ...,�n;X1, ..., Xn) =
nY

i=1

f(xi;�i). (1.4)

As is obvious from the name, the objective of maximum likelihood estima-

tion is to find � that maximizes (1.4). Hence, this method is a good starting

point in our e↵ort to find the best possible estimate for NHL players’ scoring

rates. We can use maximum likelihood estimation to predict each individuals

scoring rate (the näıve estimator), as well as the leaguewide scoring rate in

the following way:

Let Xj ⇠ Poisson(�jgj), where Xj represents the scoring metric of interest,

�j represents an individual’s scoring rate, and gj represents their number of

9



games played. Then, using (1.3) given in Section 1.2, we obtain the likelihood

function

L(�i, ...,�n;X1, ..., Xn) =
Y

j

(�jgj)xje��jgj

xj!
. (1.5)

To find the näıve estimate, we maximize the likelihood of each player individ-

ually

L(�j;Xj) =
(�jgj)xje��jgj

xj!
. (1.6)

For simplicity, we take the negative of the natural logarithm of (1.6) to obtain

the log-likelihood function

`(�j;Xj) = �jgj � xj log(�j)� xj log(gj) + log(xj!).

Next, we take the partial derivative with respect to �j and set the result equal

to zero

@

@�j
`(�j;Xj) = gj �

xj

�j
= 0.

A quick manipulation gives us the MLE

�̂j =
xj

gj
.

As we can see, the näıve estimate for a player’s end of season scoring rate is

simply their scoring rate from the first z weeks of the season divided by the

number of games (or time on ice) they played in those z weeks.

1.3.2 One-fits-all Estimators

We can find an estimate for the rest of season leaguewide scoring rate by

setting �j = �. This is considered a “one-fits-all” estimate, and is designed to

10



obtain relatively conservative results. There are two ways to get a “one-fits-

all” estimate, the first being the method of moments, which simply sets � as

the mean of the näıve estimator:

ˆ̂� =
1

n

nX

j

xj

gj
.

The other option is to once again use maximum likelihood estimation.

Recalling (1.5), and again taking the log-likelihood, we get

`(�;Xj) =
X

j

h
�gj � xj log(�)� xj log(gj) + log(xj!)

i
.

Taking the same steps as before, we soon find the MLE

ˆ̂̂
� =

P
j xjP
j gj

.

No more complicated than the preceding MLE, the estimate for the overall

mean is just the overall amount of goals or assists accumulated leaguewide

divided by the total number of games that have been played collectively.

1.3.3 A “Poor Man’s Shrinkage” Estimator

For fitting mixtures of normal distributions, the celebrated James-Stein esti-

mator shrinks näıve predictions towards the common mean, utilizing sophis-

ticated theory to estimate the amount of shrinkage. While, we do not pursue

such an elaborate development in the Poisson case, we include as the last sim-

ple prediction, the “poor man’s shrinkage” estimator, which takes one of the

“one-fits-all” estimators (in this case, the maximum likelihood estimator) and

shrinks the näıve ones towards them. We select the shrinkage amount in an

ad hoc manner to be 0.5, and obtain the following estimator:

ˆ̂̂
�̂j = (1� 0.5)�̂j + 0.5

ˆ̂̂
�,

where �̂j and
ˆ̂̂
� refer to estimates found in Subsections 1.3.1 and 1.3.2.
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1.4 Mixture Models

Better methods than those mentioned above can be developed through the use

of mixture models. These models can be best described within the framework

of the empirical Bayes methodology. In other words we borrow the Bayesian

paradigm to describe the setting of mixture models, while still remaining on

the ground of frequentist models. To this end we recall some notions from

Bayesian statistics.

1.4.1 Bayesian Paradigm

A study is created with the aim to find the proportion of green-eyed people in

each Albertan city and town. We postulate that a random sample of 1000 peo-

ple from each location will be large enough to draw conclusions from. Suppose

that after compiling the data, we find the sample proportion of green-eyed

people in Edmonton to be 0.40, while everywhere else had sample proportions

ranging from 0.10 to 0.15. This disparity calls into question the reliability of

our Edmonton sample, and suggests that a di↵erent strategy might be more

appropriate here.

One option would be to indirectly estimate Edmonton’s proportion by bor-

rowing information from our samples of the surrounding areas. This has the

benefit of achieving results more congruent with what we expected, but we may

not want to entirely discount the information gathered in our original sample.

Therefore, taking a weighted average of the direct and indirect estimates is

preferable here. Given that Edmonton’s current proportion is not in line with

the rest of the province, it is fair to say that the indirect estimate should be

weighted more heavily. As the size of our Edmonton sample increases, our

direct estimate becomes more reliable, so its weight should increase in turn.

This emphasis on the importance of indirect prior information in estimation

provides the basis for Bayesian statistics.

Bayesian analysis applies the logical assumption that an experimenter can

use past experience to influence future decisions. By specifying a prior (or,

also, a mixing distribution), the experimenter is able to let “data from a single

12



trial report add to available evidence rather than form the basis for decision-

making in themselves” [28].

In the Bayesian paradigm we posit that rather than being thought of as a

fixed constant, the unknown parameter, �, can be more accurately described

as a random variable with its own probability distribution, Q(�). Otherwise

known as the prior distribution, Q(�) “summarizes any information we have

about � not related to that provided by the data” [5].

We condition on � to obtain the likelihood function of the data, f(x|�). The
joint distribution of � and the data is obtained by multiplying the likelihood

function by the density of the prior, ⇡(�). Finally, we obtain the posterior

distribution of �, given the data, the distribution representative of our updated

belief about �, via Bayes’ theorem:

⇡(�|x) = f(x|�)⇡(�)
f(x)

, (1.7)

where f(x) is the density of the marginal distribution of the data,

f(x) =

Z
f(x|�) dQ(�),

and

Z
dQ(�) ⌘

Z
⇡(�) d�.

Dividing by f(x), the marginal probability density function of the data,

ensures that ⇡(�|x) integrates to 1. The resulting posterior density is used to

find an estimator for �, depending on a given loss function [21]. The mean

squared error loss function leads to the mean of the posterior distribution. Our

next steps are aptly described in a paragraph from Maritz and Lwin (1970, p.

2):

Generally, and more formally, we shall be concerned with prob-

lems arising in the following manner: an observation x is made on

a random variable X whose distribution depends on the parameter

13



�. Our task is to make a decision �(x) about the value of �. Typ-

ically the decision may be the calculation of a point estimate of �,

or it may be a choice between two hypothetical values of �. The

dependence of the decision on x is indicated by using the symbol

�Q(x), which is said to represent the decision function.

The optimal decision function is thus the one that minimizes our expected

loss, or the average risk, with respect to the prior, Q(�) [20]. Also known as

Bayes risk, it has the form

W (�) =

ZZ
`(�(x),�)f(x|�) dx dQ(�). (1.8)

Minimizing Bayes risk will give us the desired �(x), which is denoted as �Q(x)

because of its dependence on the prior distribution [20]. For the squared-error

loss, we obtain

�Q(x) = E(�|x) =

Z
�f(x|�) dQ(�)

Z
f(x|�) dQ(�)

.

The optimal estimate for � is thus shown to be the mean of the posterior

distribution [21].

The following theorem, from Lehmann and Casella (1998, p. 228), states

that given a selected loss function, Bayes rule will exist.

Theorem 1.4.1 Suppose the following assumptions hold for the problem of

estimating g(⇤) with non-negative loss function `(�(x),�).

(a) There exists an estimator �0 with finite risk.

(b) For almost all x, there exists a value �Q(x) minimizing

E{`[⇤, �(x)]|X = x}

.

Then �Q(X) is a Bayes estimator.

14



Proof. See Lehmann and Casella (1998, p. 228).

1.4.2 Empirical Bayes Methodology

The success of Bayesian methods depends heavily on the availability of a prior

that conforms to the data. These methods would be very useful if we could

combine our objective observations on scoring rates with hockey experts opin-

ions quantified in the form of priors. In practice, however, a valid prior is not

that easy to find. Therefore, some criticism of Bayesian procedures include

“their inability to deal with all but the most basic examples, [their] overre-

liance on computationally convenient priors, and [fragility] in their dependence

on a specific prior” [5]. For these reasons, we shift our attention to empirical

Bayesian methods.

Classical Bayesian approaches require eliciting a prior distribution before

viewing the data [5]. In cases where this is not feasible, statisticians such as

Herbert Robbins chose to use the data to estimate the prior (via method of

moments or maximum likelihood) instead [5]. The various statistical strategies

resulting from this have come to be referred to as empirical Bayes methods.

As stated by Efron (2014), “the essential empirical Bayes task [is] learning

an appropriate prior distribution from ongoing statistical experience, rather

than knowing it by assumption”. Interestingly, by utilizing the data in prior

estimation, we are returning to a methodology that is inherently non-Bayesian

[4]. However, since the data is used again to compute the posterior, the

Bayesian philosophy is still critical to our predictions [4].

So far, we have only considered one parameter, �, with prior distribution,

Q(�), and density function, ⇡(�). In actuality, the prior may also be dependent

on some (hyper)parameter, ⌘, so our density function for � can be rewritten

as ⇡(�|⌘) [5]. When ⌘ is known, Bayes’ Theorem (1.7) receives the minor

revision:

⇡(�|x, ⌘) = f(x|�)⇡(�|⌘)Z
f(x|�) ⇡(�|⌘)d�

. (1.9)
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A hierarchical model can be formed based on the intuition that each succes-

sive hyperprior also depends on some parameters. This hierarchy theoretically

extends indefinitely until we reach a stage where the final prior’s parameters

are assumed known. To avoid having to “make this assumption, the empirical

Bayes (EB) approach uses the observed data to estimate these final stage pa-

rameters (or to directly estimate the Bayes decision rule) and then proceeds

as though the prior were known” [5]. To simplify computation, we may wish

to limit our model to two stages. To do this, we can replace ⌘ in (1.9) with it’s

estimate, ⌘̂, e↵ectively making the hyperprior our final stage. This estimate

is obtained by finding the value which maximizes the marginal distribution,

f(x). Replacing ⌘ with ⌘̂ is beneficial because it allows us to pull the estimated

hyperprior h(⌘̂) outside of the integral, thus increasing ease in computation.

We can now write (1.9) as follows

⇡(�|x, ⌘) = f(x|�)⇡(�|⌘̂)Z
f(x|�) ⇡(�|⌘̂)d�

.

Further distinction comes when comparing parametric and nonparametric

empirical Bayes methods. Parametric methods refer to those used when we are

able to select a prior, ⇡(�|⌘), that fits a well known probability distribution.

Assuming a parametric distribution, the only requirement for estimating the

posterior is to replace ⌘ with ⌘̂. Now, given a set of coordinates, �1, ...,�n,

inferences about �i can be made by pulling information from the remaining

�1, ...,�i�1,�i+1, ...,�n. Estimates obtained in this way typically “outperform

the MLE [and] even [do so] when [Q] is misspecified, or even when the �s are

not sampled from a prior” [5]. Unfortunately, experiments usually do not

follow a common parametric distribution, so nonparametric methods must be

explored.

Nonparametric empirical Bayesian methods were introduced as a way to

approximate the unknown prior Q(�) when its form did not follow any stan-

dard probability distribution [29]. In these cases, we would like to estimate

Q using the observed data, x1, ..., xn. There are several ways to do it, but
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the following will be particularly useful when we reach Section 1.4.4 on the

Kiefer-Wolfowitz method.

Let X be a random variable having probability density function or probability

mass function depending on a parameter ✓,

L(✓) = f(x|✓)

and the parameter ✓ be a random variable with a prior distribution function

Q. The marginal distribution of X is then the mixture

L(Q) = f(x|Q) =

Z

⌦

L(✓) dQ(✓), (1.10)

where ⌦ is the parameter space.

To get an idea of the di↵erences between empirical and classical Bayes,

as well as how we deal with known versus unknown priors, we now look at

some examples from Maritz and Lwin (1970) showing calculations of decision

functions. The first two examples follow a classical Bayes approach, while

the third example employs a nonparametric method called Robbins marginal

maximum likelihood estimate.

Example 1.4.1 Let p(x|✓) be the Poisson probability distribution

p(x|✓) = e�✓✓x

x!
, x = 0, 1, 2, ...

and Q(✓) a Gamma cumulative distribution function with probability density

function

⇡(✓) =
1

�(↵)
�↵✓↵�1e��✓, ↵, � > 0.

Then
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�Q(x) =

Z
✓
e�✓✓x

x!

1

�(↵)
�↵✓↵�1e��✓ d✓

Z
e�✓✓x

x!

1

�(↵)
�↵✓↵�1e��✓ d✓

.

Now, cancelling out everything constant with respect to ✓ and combining like

terms we obtain

�Q(x) =

Z
✓↵+xe�✓(�+1) d✓

Z
✓↵+x�1e�✓(�+1) d✓

.

We can see that the numerator and denominator both closely resemble Gamma

distributions. Denoting the denominator as pQ(x) and the numerator as

pQ(x+ 1), and recalling that we have prior density ⇡(✓) ⇠ �(↵, �) gives

pQ(x) ⇠ �(↵ + x, � + 1)

and

pQ(x+ 1) ⇠ �(↵ + x+ 1, � + 1),

where pQ(x) represents the marginal density of X, and pQ(x + 1) represents

the marginal density of X + 1.

The convenience of this is that with the inclusion of the previously removed

constant terms the numerator and denominator will both integrate to 1, as

shown below

�Q(x) =

�(↵ + x+ 1)

(� + 1)↵+x+1

Z
1

�(↵ + x+ 1)
(� + 1)↵+x+1✓↵+xe�✓(�+1) d✓

�(↵ + x)

(� + 1)↵+x

Z
1

�(↵ + x)
(� + 1)↵+x✓↵+x�1e�✓(�+1) d✓

.

Recalling that �(x) = (x� 1)!, it can be seen that
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�Q(x) =
(↵ + x)!(� + 1)↵+x

(↵ + x� 1)!(� + 1)↵+x+1
.

Simplifying further, we get the final result

�Q(x) =
↵ + x

� + 1
.

In example 1.4.1 we were given a prior distribution with known cumulative

distribution and density functions. As was noted earlier, it is uncommon in

practice to have a known prior at our disposal, and “even when [Q] may be

assumed to exist it is generally unknown to the experimenter” [27]. This leads

us to our next example, where Q is not given:

Example 1.4.2 Let p(x|✓) be the Poisson probability distribution

p(x|✓) = e�✓✓x

x!
, x = 0, 1, 2, ...

�Q(x) =

1

x!

Z
✓x+1e�✓ dQ(✓)

1

x!

Z
✓xe�✓ dQ(✓)

=
(x+ 1)

Z
✓x+1e�✓

(x+ 1)!
dQ(✓)

Z
✓xe�✓

x!
dQ(✓)

= (x+ 1)
pQ(x+ 1)

pQ(x)
,

where pQ(x) is a mixed Poisson probability distribution.

Without an explicit prior, estimation will prove quite di�cult. If we instead

use a nonparametric empirical Bayes method, we gain the ability to estimate

pQ(x).
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An initial attempt at a nonparametric empirical Bayes method was made

by Robbins (1955). He postulated that given a random variable y, one could

compute a “completely nonparametric estimate ... by estimating the marginal

probabilities [of y] by their empirical frequencies, [yi], namely” [5]

�n(y1, ..., yn; y) = (yi + 1)
#(ys equal to yi + 1)

#(ys equal to yi).

This method is utilized in the following example:

Example 1.4.3 As in the last two examples, let p(x|✓) be the Poisson prob-

ability distribution

p(x|✓) = e�✓✓x

x!
, x = 0, 1, 2, ...

Suppose that among the past observations there are fn(x) having the value

x, x = 1, 2, .... Since x1, x2, ..., xn are independent realizations of XQ, with

probability distribution pQ(x), we can estimate pQ(x) by
fn(x)
n . Including the

current x we have [1 + fn(x)] observations with the value x, out of a total of

n + 1 observations, and fn(x + 1) with value x + 1. Therefore we have an

estimate of the Bayes estimate given by

�n(x1, ..., xn; x) = (x+ 1)
fn(x+ 1)

[1 + fn(x)]

with f0(x), f1(x), ... representing our observations.

While Robbins marginal maximum likelihood method represents an improve-

ment in estimation techniques, it might not perform that well in practice.

Particularly, in the case of predicting scoring rates in hockey, Robbins method

does not seem to have an adequate way of dealing with the time epoch vari-

able, g (which may be di↵erent for di↵erent players). We could not see how

this method could be adapted to di↵erent time epochs, so it will not be used

in our analysis. Nonetheless, Robbins method represents an important first

step in the realm of nonparametric empirical Bayes estimation.
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The next two subsections focus on two empirical Bayes methods that work

particularly well when dealing with hockey statistics. Subsection 1.4.3 covers a

parametric approach, the Poisson-Gamma model, while Subsection 1.4.4 looks

at the nonparametric Kiefer-Wolfowitz method.

1.4.3 Poisson-Gamma Parametric Model

The Poisson-Gamma model arises when the Gamma distribution is assigned

as the prior for �. This is referred to as a conjugate prior because the posterior

will be a Gamma distribution as well [5]. Conjugate priors are computationally

convenient because they “reduce Bayesian updating to modifying the param-

eters of the prior distribution ... rather than computing integrals” [23]. The

following is the derivation of the Poisson-Gamma model, and the ensuing pre-

dictions are made for Poisson outcomes that are observed for di↵erent players

over di↵erent time epochs.

Suppose X|� ⇠ Poisson(�g), � ⇠ �(↵, �), where the unknown parameters

↵, � > 0 are the shape and rate parameters, respectively [5].

Let �(x) represent a Gamma function where

�(x) =

Z 1

0

zx�1e�z dz, x > 0, (1.11)

and

P [⇤ = �] =
�↵

�(↵)
�↵�1e���. (1.12)

To find the marginal distribution of X we first integrate the product of (1.12)

and (1.3) to get

P [X = x] = P [X|⇤ = �]P [⇤ = �] =

Z 1

0

(�g)xe��g

x!

�↵

�(↵)
�↵�1e��� d�.

Combining like terms gives
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P [X = x] =
gx�↵

x!�(↵)

Z 1

0

�x+↵+1e�(g+�)� d�

This integral resembles (1.11) with z = (g + �)�, so we can rewrite P [X = x]

as follows

P [X = x] =
gx�↵

�(↵)�(x+ 1)

Z 1

0

✓
z

g + �

◆x+↵�1

e�z dz

g + �
.

By using the same trick as in example 1.4.1, this becomes

P [X = x] =

✓
�

g + �

◆↵✓ g

g + �

◆x �(x+ ↵)

�(↵)�(x+ 1)

Z 1

0

1

�(x+ ↵)
zx+↵�1e�z dz.

=

✓
�

g + �

◆↵✓ g

g + �

◆x �(x+ ↵)

�(↵)�(x+ 1)
,

which is a negative binomial distribution with parameters ↵ and �/(g + �).

Now, we minimize the marginal distribution of X in an e↵ort to obtain the

best possible estimate of �. Possible methods to do this are:

(1) Maximum Likelihood Estimation

Just as with previous MLE problems, we look at minimizing the likeli-

hood function, and manipulating to obtain estimates for ↵̂ and �̂.

L(�j;Xj) =
Y

j

✓
�

gj + �

◆↵✓ gj
gj + �

◆xj �(xj + ↵)

�(↵)�(xj + 1)
.

`(�j;Xj) = �
X

j

⇥
↵ log(�)� ↵ log(gj + �) + xj log(gj)� xj log(gj + �)

+ log(�(xj + ↵))� log(�(↵))� log(�(xj + 1))
⇤

From here, solving by hand becomes fairly di�cult. Therefore we uti-

lize the non-linear minimization (nlm()) function in R, which uses a

Newton-type algorithm to minimize the desired function. The nlm()
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function has arguments f and p, where f represents “the function to be

minimized, returning a single numeric value ... [and p represents the]

starting parameter values for the minimization” [25]. The result is the

Poisson-Gamma maximum likelihood estimator, �̃j.

(2) Method of Moments

Recall some basic properties for method of moments:

E(X|�) = g�

V (X|�) = g�

E(�) =
↵

�

V (�) =
↵

�2

1st moment:

E(X) = E(E(X|�)) = E(g�) = gE(�) =
g↵

�
.

2nd moment:

E


X(X � 1)

g2

�
=

1

g2
[E(X2)� E(X)].

To solve this, we first need to solve for E(X2):

E(X2) = E(E(X2|�)) = E[g�+ (g�)2] = gE(�) + g2E(�2)

= g
↵

�
+ g2

↵

�2
+ g2

↵2

�2
.

23



Therefore,

E


X(X � 1)

g2

�
=

1

g2


g
↵

�
+ g2

↵

�2
+ g2

↵2

�2
� g

↵

�

�

=
1

g2


g2
⇣ ↵

�2
+

↵2

�2

⌘�

=
↵

�2
(↵ + 1).

Replacing E
h
X(X�1)

g2

i
with its empirical moment we get

↵

�2
(↵ + 1) =

1

n

nX

j

xj(xj � 1)

gj

Then to solve for � we manipulate the following:

E


Xj(Xj � 1)

g2j

�

E


Xj

gj

� � E


Xj

gj

�
=

↵(↵ + 1)

�2

↵

�

� ↵

�
=

↵ + 1

�
� ↵

�
=

1

�

Using the empirical moment, we find the estimate for � is

�̂ =

8
>>>>>>><

>>>>>>>:

2

66664

1

n

nX

j

xj(xj � 1)

g2j

1

n

nX

j

xj

gj

� 1

n

nX

j

xj

gj

3

77775

�1

, 1
� > 0

1, otherwise

For the estimate of ↵, we set

↵̂ = �̂E


Xj

gj

�
. (1.13)
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If � = 1, we replace it in 1.13 by some large value (� = 5000, say).

Implementing the same strategy as example 1.4.1, we calculate the pos-

terior mean:

E[⇤|X = x] =
x+ ↵̂

�̂ + g
,

The Poisson-Gamma method of moments estimate for the jth player is

then

˜̃�j =
xj + ↵̂

�̂ + gj
.

1.4.4 The Kiefer-Wolfowitz Nonparametric Method

The method proposed by Kiefer and Wolfowitz (1956) attempts to use maxi-

mum likelihood estimation to estimate the prior distribution, Q, in a nonpara-

metric way. Recalling (1.10), we write this as

max
Q2P

L(Q) = max
Q2P

Z

⌦

L(�) dQ(�),

where P is the class of all probability measures on ⌦. Once again we would

like to compute the posterior mean. Using the estimate for Q, it can be found

by

Z

⌦

�L(�) dQ̂(�)
Z

⌦

L(�) dQ̂(�)
.

The following example is taken directly from Tao (2014):

Example 1.4.4 Let Xi ⇠ Poisson(✓i), where i = 1, ..., n and ✓i’s are taken

from a distribution function Q. The Kiefer-Wolfowitz MLE solves
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max
Q2P

 nX

i=1

ln(Li(Q))

�
= max

Q2P

 nX

i=1

ln

✓Z

⌦

e�✓✓xi

xi!
dQ(✓)

◆�
.

Suppose there are K distinct data points. The Kiefer-Wolfowitz estimator can

be rewritten as

max
Q2P

⇢
ln

 KY

i=1

(Li(Q))ni

��
= max

Q2P

 KX

i=1

ni ln(Li(Q))

�

which is equivalent to

min
L(Q)2M


�

KX

i=1

ni ln(Li(Q))

�
,

where M is a convex hull (see def. 2.1.5) representing the set of mixture

density vectors M = {L(Q)|Q 2 P} and L(Q) = {L1(Q), ..., LK(Q)}.

The Kiefer-Wolfowitz method has two formulations; primal and dual. In

our analysis we exclusively work with the primal problem, but the dual problem

has many advantages in practice, so both formulations are presented here.

Given an unspecified prior, the form of the infinite-dimensional Kiefer-

Wolfowitz primal problem is

min
Q2P

�
nX

i=1

log

Z

⌦

f(yi|✓) dQ(✓). (1.14)

In high-dimensional problems computing (1.14) can become exceedingly dif-

ficult. Therefore, we may wish to solve the dual problem instead, as it is

conveniently finite-dimensional [30]. The following theorem, from Koenker

and Mizera (2014), gives the dual formulation:

Theorem 1.4.2 The solution, Q̂, of (1.14) exists, and is an atomic probability

measure with no more than n atoms. The locations, ✓̂j, and the masses, f̂j,

at these locations can be found via the following dual characterization: the

solution, v̂ of
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maximize
nX

i=1

log vi

subject to
nX

i=1

vif(yi|✓) 6 n, 8✓
(1.15)

satisfies the extremal equations (n equations in less than n variables)

X

j

f(yi|✓̂j)f̂j =
1

v̂i
,

and ✓̂j are exactly those ✓ where the dual constraint is active – that is, the

constraint function in (1.15) is equal to n.

The Kiefer-Wolfowitz estimate for scoring rates in hockey is given by

˜̃̃
�j =

X

j

�jgjf(xj|�jgj)⇡̂i

X

j

f(xj|�jgj)⇡̂i

.
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Chapter 2

Implementation and Results

The main goal of this chapter is to implement empirical Bayes methods in

the prediction of hockey players’ scoring rates. This basically amounts to

implementing the Kiefer-Wolfowitz method, as other methods discussed above

are rather straightforward computationally.

In the past, statisticians such as Jiang and Zhang (2009) and Laird (1978)

have used the EM-algorithm to obtain the Kiefer-Wolfowitz MLE. Koenker

and Mizera (2014) found that better predictive performance could be achieved

if a convex optimization approach was taken instead. Thus, Section 2.1 will in-

troduce some important concepts relating to convex optimization. Afterwards,

we apply what we have learned to hockey data in Section 2.2.

2.1 Convex Optimization

The following paragraph, from Koenker and Mizera (2014), list some of the

benefits of using convex optimization in estimation:

In contrast to prior methods for these problems, our new ap-

proaches are cast as convex optimization problems that can be

e�ciently solved by modern interior point methods. In particular,

we show that the reformulation of the Kiefer–Wolfowitz estimator

as a convex optimization problem reduces the computational e↵ort

by several orders of magnitude for typical problems, by comparison

to prior EM-algorithm based methods, and thus greatly expands

the practical applicability of the resulting methods.
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This section begins with the basic ideas of optima and convexity in Sec-

tions 2.1.1 and 2.1.2, before introducing linear optimization in Section 2.1.3.1.

This serves as a precursor to Section 2.1.3.2, which covers the type of convex

optimization of particular interest to us: conic optimization.

2.1.1 Local and Global Optimization

A general optimization problem involves functions that contain both local and

global minima. A local minimum refers to any point on a function or set

that is less than its neighbouring points. The global minimum is the absolute

minimum value of said function or set. Lili Mou’s Introduction to Machine

Learning course [22] formally defined local and global optima as follows:

Definition 2.1.1 x⇤ 2 X is a global optimum if

8y 2 domf, f(y) > f(x⇤)

Definition 2.1.2 x⇤ 2 X is a local optimum if

9 ✏ > 0 8y 2 domf

such that if

|y � x⇤| < ✏

then

f(y) > f(x⇤)

for

y 2 N✏(x
⇤)

where N2(x⇤) are the set of points neighbouring x⇤.
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Shown in figure 2.1 is a visualization of the global and local optima of a

function:

Figure 2.1: Local and global minima/maxima of a given function [10].

In theory, when optimizing, we would always like to find the global min-

imum of a function. However, obtaining the global minimum is not always

possible, and even when it is, it can take an unreasonable amount of time to

solve for [3]. Therefore, it is common to focus on local optimization instead,

especially when faced with non-linear constraints. While we are no longer guar-

anteed to reach the true optimal point, these methods are desirable because

they “can be fast, can handle large-scale problems, and are widely applicable,

since they only require di↵erentiability of the objective and constraint func-

tions” [3]. Unfortunately, local optimization methods typically are not refined

enough to meet our standards, so we aspire for something better. This leads

us to Subsection 2.1.2.

2.1.2 Convexity

By nature, a convex function can have no more than one minimum, meaning

any local minimum is guaranteed to be the global minimum as well [3]. Be-

cause of the resulting ease in computation this creates, convex functions are
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highly desirable in optimization problems. Thus, it will be helpful to famil-

iarize ourselves with some basic terminology relating to convexity. Boyd and

Vandenberghe (2004) gave the following definitions of convex functions and

sets:

Definition 2.1.3 (Convex Set). A set S ✓ Rd is convex if and only if

8x, y 2 S, 8✓ 2 (0, 1)

✓x+ (1� ✓)y 2 S

Figure 2.2: Convex vs. non-convex sets [11].

Definition 2.1.4 (Convex Function). A function f : Rn ! R is convex if and

only if

(i) domf is a convex set

(ii) (Jensen’s inequality).

8x, y 2 domf, 8✓ 2 (0, 1)
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f(✓x+ (1� ✓)y) 6 ✓f(x) + (1� ✓)f(y).

Assuming that f is a twice di↵erentiable function, the following two

conditions also arise

(iii) (First-order condition).

8x, y 2 domf

f(y) > f(x) + [rf(x)]T (y � x).

(iv) (Second-order condition).

8x, y 2 domf

r2f(x) ⌫ 0.

In other words, the Hessian of f must be positive semidefinite.

Figure 2.3: Convex vs. non-convex functions [12].
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The definition of a convex hull (a topic briefly mentioned in Section 1.4.4) is

provided by Tao (2018):

Definition 2.1.5 (Convex hull). The convex hull of a set C, denoted conv(C),

is the set of all convex combinations of points x1, ..., xn in C:

conv(C) =

(
nX

i=1

↵ixi : xi 2 C, ↵i > 0,
nX

i=1

↵i = 1, i = 1, ..., n

)
.

Figure 2.4: Left. A set of points enclosed by a pentagonal convex hull. Right.
A nonconvex kidney shaped set enclosed by a convex hull (both sets are in
R2) [3].

The examples below, from the homework assignments of Lili Mou’s Intro-

duction to Machine Learning course explain how to show whether a function

or set is convex.

Example 2.1.1 Show that S = {(x1, x2) 2 R2 : |x1| + |x2| 6 1} is a convex

set.

Solution: Let x1, x2, y1, y2 2 S. Then

|✓x1 + (1� ✓)y1|+ |✓x2 + (1� ✓)y2| 6 |✓x1|+ |(1� ✓)y1|+ |✓x2|+ |(1� ✓)y2|
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= ✓|x1|+ (1� ✓)|y1|+ ✓|x2|+ (1� ✓)|y2|

= ✓(|x1|+ |x2|) + (1� ✓)(|y1|+ |y2|) 6 ✓ + (1� ✓) 6 1

Therefore, S is a convex set.

Example 2.1.2 Prove f : R2 ! R, f(x) = |x1|+ x2| is a convex function

Solution: f(✓x+ (1� ✓)y) = |✓x1 + (1� ✓)y1|+ |✓x2 + (1� ✓)y2|

6 ✓(|x1|+ |x2|) + (1� ✓)(|y1|+ |y2|)

= ✓f(x) + (1� ✓)f(y)

Therefore, f(x) is a convex function.

2.1.3 Optimization Techniques

Convex optimization problems take the general form

minimize f0(x)

subject to fi(x) 6 0, i = 1, ...,m,

hi(x) = 0, i = 1, ..., p

(2.1)

where f0 : Rn ! R is the objective function, fi : Rn ! R are the inequal-

ity constraint functions, and hi : Rn ! R are the equality constraint func-

tions [30]. For this to be a proper convex optimization problem functions

f0, f1, ..., fm must be convex, and functions h1, ..., hp must be a�ne. In Boyd

and Vandenberghe (2004, p. 36) an a�ne function is defined as

Definition 2.1.6 (A�ne function) h : Rn ! R is an a�ne function if it is

the sum of a linear function and a constant.

In the next two subsections we will focus on more specific types of convex

optimization, with the form of (2.1) supplying the basis for them.
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2.1.3.1 Linear Optimization

In all forms of optimization our goal is to minimize some objective function

f0(x). Linear optimization is the simplest of all types because of the linearity

of both objective function and constraints, thus making it a good starting

point for our discussion. These problems (also known as the primal problem)

take the form [1]

minimize cTx

subject to Ax = b,

x > 0.

(2.2)

In certain cases the linear optimization problem (2.2) may be infeasible.

To determine whether or not a problem is feasible we can look at the feasible

set, which is defined as

Fp = {x 2 Rn|Ax = b, x > 0}.

As long as Fp is not empty (at least one point x lies within Fp), a problem is

considered feasible. What follows is a simple example of a linear optimization

problem given in the Mosek Modeling Cookbook (MMC) (2022):

Example 2.1.3
minimize x1 + 2x2 � x3

subject to x1 + x2 + x3 = 1,

x1, x2, x3 > 0.

We can clearly see that the optimal solution occurs when

(x⇤
1, x

⇤
2, x

⇤
3) = (0, 0, 1),

with optimal value

p⇤ = x⇤
1 + 2x⇤

2 � x⇤
3 = �1.
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In general, the optimal objective value, p⇤, is found by calculating

p⇤ = inf
x
{cTx|Ax = b, x > 0}.

If p⇤ is finite (as is the case in example 2.1.3) we have an optimal solution,

but this does not hold true when p⇤ = ±1. In the event that p⇤ = �1, the

solution is feasible, but its unbounded nature means no true minimum is ever

obtained. On the other hand, when p⇤ = 1, there are no feasible solutions.

The linear optimization problem (2.2) has an associated Lagrangian func-

tion L : Rn⇥Rm⇥Rn
+ ! R that is a weighted combination of both the equality

and inequality constraints added to the objective function. It is written as

L(x, y, s) = cTx+ yT (b� Ax)� sTx

where the weights y 2 Rm and s 2 Rn
+ are referred to as Lagrange multiplier

variables [1]. Taking the minimum of L(x, y, s) over x produces the dual

function [1]

g(y, s) = min
x

L(x, y, s) = min
x

xT (c�ATy�s)+bTy =

(
bTy, c� ATy � s = 0

�1, otherwise

The resulting value of g(y, s) is the lower bound of p⇤ for all possible pairs

(y, s) [1]. Because this is an optimization problem, we would like to find the

best possible lower bound. This results in the dual problem [1]

maximize bTy

subject to c� ATy = s,

s > 0.

(2.3)

Given these new calculations, we now refer to the optimal objective value as

d⇤ [1]. The possible values of d⇤ are the same as was seen for p⇤ (finite or ±1),

but because we are now maximizing instead of minimizing their significance
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has reversed. That is, d⇤ = �1 is now an infeasible solution, while d⇤ = 1 is

feasible but unbounded [1].

Interestingly, if the primal problem is feasible and bounded we achieve what

is called strong duality [1]. Strong duality occurs when d⇤ = p⇤, thus allowing

us to verify that both the primal and dual solutions are optimal [1]. The

explanation of why this works, given in a paragraph from the MMC (2022),

stems from the notion of weak duality:

Suppose x⇤ and (y⇤, s⇤) are feasible points for the primal and dual

problems (2.2) and (2.3), respectively. Then we have

bTy⇤ = (Ax⇤)Ty⇤ = (x⇤)T (ATy⇤) = (x⇤)T (c�s⇤) = cTx⇤�(s⇤)Tx⇤ 6 cTx⇤

so the dual objective value is a lower bound on the objective value

of the primal. In particular, any dual feasible point (y⇤, s⇤) gives a

lower bound:

bTy⇤ 6 p⇤.

From this, we obtain the lemma for weak duality:

Lemma 2.1.1 (Weak Duality). d⇤ 6 p⇤.

With weak duality, we can only guarantee both the primal and dual objective

functions are optimal if bTy⇤ = cTx⇤, or d⇤ = p⇤, hence confirming what was

stated above [1].

2.1.3.2 Conic Optimization

Linear optimization methods are useful when our problems have simple linear

constraints. However, once nonlinear constraints are introduced these methods

become ine↵ective, forcing us to consider alternative strategies. The approach

we will employ is a reformulation to conic form.

Cones and convex cones are defined in Boyd and Vandenberghe (2004, p.

25) as follows:
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Definition 2.1.7 (Cones). A set K is called a cone if for every x 2 K and

✓ > 0 we have

✓x 2 K.

Definition 2.1.8 (Convex Cones). A set K is called a convex cone if for any

x1, x2 2 K and ✓1, ✓2 > 0, we have

✓1x1 + ✓2x2 2 K.

Conic optimization problems take the general form

minimize cTx

subject to Ax = b,

x 2 K,

where K ✓ Rn is a convex cone [1]. Similarly to linear optimization ,we may

encounter cases where a conic problem is infeasible. This occurs when the

feasible set, Fp, is empty. In conic optimization, the feasible set is defined as

Fp = {x 2 Rn|Ax = b} \K,

where Fp is a section of K. Brief descriptions of quadratic cones and duality

in conic optimization are given below.

Quadratic Cones Conic quadratic optimization is a good starting point

in this discussion because it is quite similar to linear optimization. That is,

we are still using linear functions and constraints to optimize, but choose to

represent the variables in a quadratic conic form [1]. We define n-dimensional

quadratic cone as

Qn =

(
x 2 Rn

�����x1 >
q
x2
2 + x2

3 + ...+ x2
n

)
.
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Some basic convex sets that can be reformulated as quadratic cones are

absolute values and Euclidean norms. For example, in a linear setting, the

convex set |x| 6 t would simply be modeled as the double inequality

�t 6 x 6 t,

but its quadratic conic form is

(t, x) 2 Q2

where Q2 represents a two-dimensional quadratic cone [1]. We can also see

that the Euclidean norm of x 2 Rn

||x||2 =
q

x2
1 + x2

2 + ...+ x2
n

with inequality

||x||2 6 t

has the quadratic conic form

(t, x) 2 Qn+1

where Qn+1 represents an (n+ 1)-dimensional quadratic cone [1].

Slightly more complex is the notion of a rotated quadratic cone. Such a

cone, in n-dimensions, is defined as

Qn
r = {x 2 Rn|2x1x2 > x2

3 + ...+ x2
n, x1, x2 > 0}

Figure 2.5 gives a clear visualization of what this cone, as well as the regular

quadratic cone, looks like in 3-dimensional form:
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Figure 2.5: Left. Boundary of the quadratic cone, x1 >
p

x2
2 + x2

3. Right.

Boundary of the rotated quadratic cone, 2x1x2 > x2
3, x1, x2 > 0 [1].

When writing out representations of three-dimensional rotated quadratic

cones, we use the basic form

2ab > c2 () (a, b, c) 2 Q3
r.

The following two examples, from the MMC (2022), show how we would rep-

resent some basic inequalities as rotated quadratic cones:

Example 2.1.4 Suppose we have the inequality |t| 6 p
x. A quadratic for-

mulation becomes clear through the manipulation

|t| 6
p
x ) x > t2 ) 2x

✓
1

2

◆
> t2.

Therefore, the inequality can be represented quadratically as

✓
x,

1

2
, t

◆
2 Q3

r.

Example 2.1.5 Suppose we have the inequality t > (1/x). A quadratic for-

mulation becomes clear through the manipulation
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t > 1

x
) xt > 1 ) 2xt >

⇣p
2
⌘2

.

Therefore, the inequality can be represented quadratically as

⇣
x, t,

p
2
⌘
2 Q3

r.

Duality in Conic Optimization We have discussed the merits of duality

theory at various points throughout this thesis, so it is worth mentioning again

in the context of conic optimization. As shown in the MMC (2022), if K ✓ Rn

is a closed convex cone we define the dual cone K⇤ as

K⇤ = {y 2 Rn : yTx > 0 8x 2 K}.

The conic dual problem has the form

maximize bTy

subject to c� ATy = s,

s 2 K⇤,

where K ✓ Rn is the dual cone [1]. Some important properties of the dual

cone (given in Boyd and Vandenberghe (2004) and the MMC (2022)) include

(1) K⇤ is convex, regardless of whether or not K is.

(2) Every vector of K⇤ runs perpendicular to every vector of K.

(3) The dual of the dual returns the original cone – that is, (K⇤)⇤ = K.

2.2 Application to Hockey Statistics

In this section, the subjects we have covered thus far will be applied to the

world of hockey. Subsection 2.2.1 briefly explains how the data was obtained,

Subsection 2.2.2 gives a description of some of the R functions used, and the

results are analyzed in Subsection 2.2.3.
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2.2.1 Data Collection

The data we will be working with was collected from QuantHockey’s 2018-19

NHL scoring leaders webpage [24]. A filter for choosing custom start and end

dates was applied to obtain end of week point totals for weeks two through

eight. Eight separate datasets were formed in Microsoft Excel using players’

cumulative point totals at the end of each of these weeks, as well as their full

season totals. To avoid any sample size issues, players that played under 60

games over the course of the 2018-19 season were excluded. Any player that

did not appear in all five datasets were filtered out entirely, leaving us with a

total sample size of 350. The datasets were then made into comma-separated

values (csv) text files, so we could do further work with them. The R script

to do this is provided in Appendix A. The table below shows a portion of the

dataset corresponding to the first four weeks of the 2018-19 season:

Note: Pos refers to the position of a player i.e. forward (F) or defence (D);

G, A, and P, stand for goals, assists, and points, respectively; games played is

denoted by GP; and TOI (time on ice) denotes the average number of minutes

a players spends on the ice per game played.

Rank Name Team Age Pos GP G A P TOI
1 Mikko Rantanen COL 22 F 12 5 16 21 20.58
2 Patrice Bergeron BOS 33 F 12 7 12 19 18.82
3 Evgeni Malkin PIT 32 F 10 6 13 19 18.07
4 Patrick Kane CHI 30 F 12 11 7 18 21.25
5 Connor McDavid EDM 21 F 11 9 9 18 23.58
6 Nathan MacKinnon COL 23 F 12 9 9 18 22.07
7 Sebastian Aho CAR 21 F 12 4 13 17 19.63
8 David Pastrnak BOS 22 F 12 11 5 16 18.68
9 Auston Matthews TOR 21 F 11 10 6 16 17.35
10 Gabriel Landeskog COL 26 F 12 10 6 16 20.48
... ... ... ... ... ... ... ... ... ...

Table 2.1: 2018-19 NHL season scoring leaders after four weeks.
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2.2.2 Implementation: Description of R functions used

The function fp.R is a straightforward function used to compute the näıve

scoring estimate, as well as the leaguewide estimate, via the method of mo-

ments or MLE, where we set �j = �. This function also includes a shrinkage

element that allows us to take one of the “one-fits-all” estimates and shrink the

näıve ones towards them to a specified extent. The tables in Subsection 2.2.3

include an estimator called js2, which is found simply by shrinking the näıve

estimate to an extent of 0.5, or halfway towards the “one-fits-all” estimate.

The fpg.R function is used to fit the Poisson-Gamma mixture. The func-

tion essentially just does what we already discussed in Subsection 1.4.3 – that

is, it calculates the MLE via nlm(), and solves the method of moments using

the values we found for ↵̂ and �̂.

The kwg.R function evaluates both the primal and dual formulations of

the Kiefer-Wolfowitz estimator. Because of the complexity of this method, we

employ the help of Mosek, an optimization software capable of solving di�cult

problems through the use of its interior-point optimizer. It should be noted

that Mosek version 9 or later must be worked with because earlier versions use

a di↵erent technique for minimization.

The function fprkw.R feeds kwg.R an n ⇥m matrix, E – where each row

of E corresponds to a player – in order to obtain an estimate for the prior

distribution in a Poisson setting. This function also returns the posterior

mean predictions, with the help of pstmea.R, a simple function designed to

calculate the posterior mean when required.

2.2.3 Results and Analysis

Tables 2.2–2.5 list the mean squared errors of the estimators discussed in Chap-

ter 2, to show how they performed at predicting scoring rates. For readability,

the mean squared errors are multiplied by 106 in Tables 2.2 and 2.3, and by

108 in Tables 2.4 and 2.5, and subsequently rounded. Estimators included

in these tables are the näıve estimator, the “one-fits-all” method of moments

(1mm) and maximum likelihood (1ml) estimators, the “poor man’s shrinkage”
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estimator (js2), both Poisson-Gamma estimators – method of moments (pgm)

and maximum likelihood (pgl) – and the Kiefer-Wolfowitz estimator (rkw).

The estimators in the last four columns are also the “poor man’s shrinkage”

estimator, the Poisson-Gamma estimators, and the Kiefer-Wolfowitz estima-

tor, but applied separately to forwards and defencemen.

G naı̈ve 1mm 1ml js2 pgm pgl rkw js2s pgms pgls rkws

2 weeks 58463 19623 19325 20303 15790 15560 17036 20086 13351 13154 14520

3 weeks 33315 18822 18696 13854 12595 12556 13033 13190 11029 10919 11383

4 weeks 26793 18686 18523 12246 11640 11596 11634 11408 10088 10020 10101

5 weeks 22998 18481 18373 11748 11482 11514 11543 10971 10136 10083 10069
6 weeks 19598 18430 18351 11143 11043 11071 11116 10316 9891 9875 9933

7 weeks 17905 18430 18350 10648 10694 10716 11048 9924 9795 9796 10166

8 weeks 17405 18324 18256 10620 10740 10638 11017 9790 9972 9858 10124

Table 2.2: 106(MSE) for all estimators by week (Goals) – full season minus
first 8 weeks validation set. The best values for each week are in bold font.
Time epochs are games played (GP).

Table 2.2 shows the mean squared error of predictions of goal rates, where

the validation set for each week is the full season minus the first eight weeks,

and the time epoch is games played. For the most part, the Poisson-Gamma

(PG) and Kiefer-Wolfowitz (KW) methods produce the best estimates. The

MLE variants tend to be a bit better than the MM variants, but the di↵erence

is negligible. While this does not hold true for all weeks, it seems as though

the PG estimators actually fare slightly better than KW’s. Shockingly, given

its simplicity, the “poor man’s shrinkage” estimator performs remarkably well

here; even outperforming other top estimates in some of the later weeks. We

also notice that the näıve estimator is basically useless in the early weeks, and

is still not great in the later weeks. In fact, the PG and KW methods provide

significantly better results after only two weeks than the näıve method does

after eight. The performance of the “one-fits-all” methods are adequate, but

fail to improve as the weeks go on. Looking at the last four columns, we can

easily see that separating forwards and defencemen uniformly improved our

predictions. Once again, the PG methods are somewhat superior to the KW

method.
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A naı̈ve 1mm 1ml js2 pgm pgl rkw js2s pgms pgls rkws

2 weeks 80009 36556 36566 32735 28367 28291 28308 32996 29503 28985 29673

3 weeks 51146 35478 35247 24323 23381 23213 22768 24380 24466 23939 23433
4 weeks 42616 35052 34916 22307 21875 21947 21630 22317 22256 22365 22467

5 weeks 36016 34816 34859 21576 21263 21274 20219 21560 21250 21354 21622

6 weeks 29874 34736 34779 19935 19652 19658 19108 19914 19637 19724 20048

7 weeks 25211 34668 34755 18236 17717 17726 17449 18213 17682 17748 18707

8 weeks 23366 34549 34605 17575 16877 16857 17009 17562 16809 16802 18120

Table 2.3: 106(MSE) for all estimators by week (Assists) – full season minus
first 8 weeks validation set. The best values for each week are in bold font.
Time epochs are games played (GP).

Table 2.3 shows the mean squared error of predictions of assist rates, where

the validation set and time epoch are the same as they were in Table 2.2. Right

away, we notice that all of the mean squared errors in Table 2.3 are substan-

tially higher than the mean squared errors in Table 2.2. Overall, it appears

that the KW method actually does a better job at predicting assist rates than

the PG model, albeit not by much. The “one-fits-all” prediction methods

still fail to improve from week to week; so much so that the näıve estimator

surpasses them in e�cacy by week six. The “poor man’s shrinkage” estima-

tor does not perform better than PG and KW in this case, but interestingly,

after separating forwards and defencemen, it only takes three weeks for its

estimates to become better than the separated KW ones. Separating forwards

and defencemen does not lead to improved estimates, and even seems to have

a negative e↵ect on the KW estimates.

One interesting development is that while the mean squared errors leveled

o↵ fairly quickly when predicting goal rates, for assist rates they continually

improved as the weeks went on. A possible reason for this is that while there

is a certain amount of randomness to all events in hockey, there is inherently

more so in assists because of the inclusion of secondary assists, and because

passers do not have any control over the shooting ability of their teammates.

Therefore, it is easy to imagine that we may need a larger sample size before

these values will begin to normalize. While purely speculatory, one may as-

sume this is also the likely cause of the higher mean squared errors compared
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to Table 2.2.

The similarity in performance of the Poisson-Gamma parametric model

and the Kiefer-Wolfowitz nonparametric method are illustrated in Figures 2.6

and 2.7. Figure 2.6 shows the relationship between predictions of PG and

KW when forwards and defencemen are combined, while Figure 2.7 shows the

relationship between them when forwards and defencemen are separated.

Figure 2.6: Top. Comparison of each player’s mean squared error for KW vs
PG via MLE (Goals). Bottom. Comparison of each player’s mean squared
error for KW vs PG via MLE (Assists).
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Figure 2.7: Top. Comparison of each player’s mean squared error for KW vs
PG via MLE with F and D separated (Goals).Bottom. Comparison of each
player’s mean squared error for KW vs PG via MLE with F and D separated
(Assists).

Tables 2.4 and 2.5 mirror Tables 2.2 and 2.3, except the time epoch equal

to games played has been changed to the total time on ice (TOI*GP). Looking

at this is a worthwhile venture because it has the added nuance of accounting

for the number of minutes a player plays in a game, which theoretically should

lead to better predictions. The results line up to those seen in previous tables,

with the PG and KW estimators continuing to lead the pack.
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G naı̈ve 1mm 1ml js2 pgm pgl rkw js2s pgms pgls rkws

2 weeks 20643 5836 5563 7019 4716 4866 5320 7117 3661 3792 4389

3 weeks 12059 5449 5345 4800 3872 3890 3827 4647 3093 3216 3268

4 weeks 9666 5373 5281 4235 3620 3668 3594 3971 2854 2935 2987

5 weeks 8347 5310 5225 3945 3545 3638 3508 3678 2844 2876 2890

6 weeks 7162 5300 5218 3720 3449 3546 3519 3434 2817 2856 2879

7 weeks 6662 5302 5213 3574 3409 3517 3445 3321 2852 2863 2958

8 weeks 6552 5266 5189 3554 3463 3496 3378 3246 2924 2853 2960

Table 2.4: 108(MSE) for all estimators by week (Goals) – full season minus
first 8 weeks validation set. The best values for each week are in bold font.
Time epoch are total time on ice.

A naı̈ve 1mm 1ml js2 pgm pgl rkw js2s pgms pgls rkws

2 weeks 26274 8289 8550 9984 7266 7325 7249 9841 6907 7232 7204

3 weeks 16606 7832 79645 7215 6180 6130 6039 7074 5949 8416 6513

4 weeks 13890 7657 7791 6561 5705 5763 5780 6431 5586 5695 5981

5 weeks 11294 7560 7730 6100 5555 5607 5423 5989 5402 5494 5638

6 weeks 9305 7543 7691 5517 5245 5286 5167 5474 5167 5272 5289

7 weeks 7995 7500 7663 5024 4815 4864 4930 4974 4760 4865 4913

8 weeks 7343 7468 7604 4796 4639 4673 4681 4755 4587 4666 4781

Table 2.5: 108(MSE) for all estimators by week (Assists) – full season minus
first 8 weeks validation set. The best values for each week are in bold font.
Time epochs are total time on ice.

These predictions can also be done where the validation set di↵ers for

each dataset. In particular, we made predictions where the validation set for z

weeks was the full season totals minus first z weeks totals. The results were not

exactly equal, but akin to the tables shown above – the structure of winning

methods were mostly the same as we have already shown, except in a few cases

where the outcomes di↵ered very little. Therefore, for the sake of brevity and

clarity we chose not to present any tables with the updated validation set here.

As a bonus topic of interest, we look briefly at scoring rate predictions

for players playing in their first NHL season; otherwise known as rookies. It

would be easier to make predictions about a player’s scoring rates with data

on how they performed in past years, but when a player is a rookie we do not

have access to such information. Therefore, we would like to know if empirical

Bayes approaches like the Poisson-Gamma model and the Kiefer-Wolfowitz

48



method represent an improvement when estimating without knowledge of past

scoring rates. Given in Table 2.6 is a comparison of the mean squared error

in predictions for all players vs. predictions for rookies. We use all players –

including rookies – to estimate the prior. A sample of 21 rookies was used to

obtain these predictions.

G naı̈ve 1mm 1ml js2 pgm pgl rkw js2s pgms pgls rkws

All Players 25170 17569 17418 10882 10348 10307 10262 9940 8569 8633 8657

Rookies 43413 10764 10318 10994 6685 6657 5789 12158 7243 7366 6793
A
All Players 41181 33672 33549 20906 20482 20557 20436 20918 20976 20867 20986

Rookies 28335 24088 23617 13776 11783 11690 11328 13734 10993 11002 10900

Table 2.6: 106(MSE) of all players vs. rookies for all estimators using data
from week 4 (Goals and assists). The best values are in bold font. Time epochs
are games played (GP).

Overall, the predictions for rookies seems to fare better than those for all

players. In fact, in some cases the predictions for rookies do almost twice as

well. This could be because of the small sample we chose, but the results are

interesting nonetheless. Further exploration of this is left to future work.
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Conclusion

Future work might wish to consider goals and assists as dependent variables,

as well as isolating for the e↵ect of primary and secondary assists. Secondary

assists often do not have as much to do with the goal being scored as primary

ones do, and are therefore less repeatable. Because of this, secondary assists

are likely to blame for some of the noise present in our results. Going forward

we might prefer to focus exclusively on primary points (goals and first assists)

to get a more accurate prediction of a player’s scoring rates.

Goals and assists hardly provide the full picture of a player’s overall talent

level, but they are good baseline statistics to use. In future work, we would

like to focus on other, more robust statistics, like expected goals (xG). This

statistic eliminate some of the noise caused by shooting luck, so we theorize

that predictions would improve even further if we used it for our estimates

instead.

In this thesis, we set out to show that empirical Bayes methods demon-

strate a superior alternative with regards to estimation of scoring rates in

hockey; specifically given data obtained over a relatively short time period.

We were able to find that the Poisson-Gamma parametric model and the

Kiefer-Wolfowitz nonparametric method displayed better predictive perfor-

mance than a variety of other prediction methods. Surprisingly, we found that

the “poor man’s shrinkage” estimator provided good predictions as well.

There was no clear winner between the Poisson-Gamma and Kiefer-Wolfo-

witz methods, so in practice a linear combination of the two might be the best

estimate to use. This linear combination could be suboptimal occasionally,

but it would prevent egregiously bad estimates from occurring. Alternatively,

one might decide to exclusively use the Poisson-Gamma model because it is
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relatively easy to compute (especially the method of moments), and does not

require Mosek. Of course this is just a recommendation based on one season

of data; data from more seasons could be included in the future to see if our

results are repeatable.
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Appendix A

R Code

The following R script is what was explained in Subsection 2.2.1:

# import excel files

library(readxl)

library(tidyverse)

NHL_SL_2_Weeks <- read_excel("NHL_SL_2_Weeks.xlsx")

NHL_SL_3_Weeks <- read_excel("NHL_SL_3_Weeks.xlsx")

NHL_SL_4_Weeks <- read_excel("NHL_SL_4_Weeks.xlsx")

NHL_SL_5_Weeks <- read_excel("NHL_SL_5_Weeks.xlsx")

NHL_SL_6_Weeks <- read_excel("NHL_SL_6_Weeks.xlsx")

NHL_SL_7_Weeks <- read_excel("NHL_SL_7_Weeks.xlsx")

NHL_SL_8_Weeks <- read_excel("NHL_SL_8_Weeks.xlsx")

NHL_SL_fs <- read_excel("NHL_SL_fs.xlsx")

NHL_SL_2_Weeks$TOI <-

sapply(strsplit(NHL_SL_2_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60 })

NHL_SL_3_Weeks$TOI <-

sapply(strsplit(NHL_SL_3_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60})
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NHL_SL_4_Weeks$TOI <-

sapply(strsplit(NHL_SL_4_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60 })

NHL_SL_5_Weeks$TOI <-

sapply(strsplit(NHL_SL_5_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60})

NHL_SL_6_Weeks$TOI <-

sapply(strsplit(NHL_SL_6_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60 })

NHL_SL_7_Weeks$TOI <-

sapply(strsplit(NHL_SL_7_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60})

NHL_SL_8_Weeks$TOI <-

sapply(strsplit(NHL_SL_8_Weeks$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60 })

NHL_SL_fs$TOI <-

sapply(strsplit(NHL_SL_fs$TOI,":"), function(x) {

x <- as.numeric(x)

x[1]+x[2]/60})
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# filter out all players that played less than 60 games

NHL_SL_fs <- NHL_SL_fs %>% filter(GP >=60)

#filter out all players that aren’t in all 5 tables

NHL_SL_fs <- NHL_SL_fs %>% filter(Name %in% NHL_SL_2_Weeks$Name)

NHL_SL_8_Weeks <- NHL_SL_8_Weeks %>% filter(Name %in% NHL_SL_fs$Name)

NHL_SL_7_Weeks <- NHL_SL_7_Weeks %>% filter(Name %in% NHL_SL_8_Weeks$Name)

NHL_SL_6_Weeks <- NHL_SL_6_Weeks %>% filter(Name %in% NHL_SL_7_Weeks$Name)

NHL_SL_5_Weeks <- NHL_SL_5_Weeks %>% filter(Name %in% NHL_SL_6_Weeks$Name)

NHL_SL_4_Weeks <- NHL_SL_4_Weeks %>% filter(Name %in% NHL_SL_5_Weeks$Name)

NHL_SL_3_Weeks <- NHL_SL_3_Weeks %>% filter(Name %in% NHL_SL_4_Weeks$Name)

NHL_SL_2_Weeks <- NHL_SL_2_Weeks %>% filter(Name %in% NHL_SL_3_Weeks$Name)

NHL_SL_fs <- NHL_SL_fs %>% filter(Name %in% NHL_SL_4_Weeks$Name)

NHL_SL_8_Weeks <- NHL_SL_8_Weeks %>% filter(Name %in% NHL_SL_fs$Name)

NHL_SL_7_Weeks <- NHL_SL_7_Weeks %>% filter(Name %in% NHL_SL_8_Weeks$Name)

NHL_SL_6_Weeks <- NHL_SL_6_Weeks %>% filter(Name %in% NHL_SL_7_Weeks$Name)

# filter out any irrelevant statistics

two_week_NHL_data <- NHL_SL_2_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

three_week_NHL_data <- NHL_SL_3_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

four_week_NHL_data <- NHL_SL_4_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

five_week_NHL_data <- NHL_SL_5_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

six_week_NHL_data <- NHL_SL_6_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

seven_week_NHL_data <- NHL_SL_7_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

eight_week_NHL_data <- NHL_SL_8_Weeks %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

fs_NHL_data <- NHL_SL_fs %>% select(Name,Team,Age,Pos,GP,G,A,P,TOI)

# write as csv text files

write.csv(two_week_NHL_data,file = "two_week_NHL_data")

write.csv(three_week_NHL_data,file = "three_week_NHL_data")

write.csv(four_week_NHL_data,file = "four_week_NHL_data")
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write.csv(five_week_NHL_data,file = "five_week_NHL_data")

write.csv(six_week_NHL_data,file = "six_week_NHL_data")

write.csv(seven_week_NHL_data,file = "seven_week_NHL_data")

write.csv(eight_week_NHL_data,file = "eight_week_NHL_data")

write.csv(fs_NHL_data,file = "fs_NHL_data")

The following R Scripts contain the functions used to obtain the results:

kwg.R

kwg <- function(E, ny = rep(1,dim(E)[1]),

method="primal", opts=list(verbose = 5))

## ---------------------------ConeMosek-------------------------------

## Kiefer-Wolfowitz estimator of mixture distribution/prediction

## likelihood is evaluated at the "rows of E"

## hence the number of rows of E must be y., the length of y

## vector n.y records multiple occurrences of components of y

## - multiplicity 0 should be taken special care of

## the output is mixing distribution p, a vector with length p.

## equal to the number of columns of E

##

## (a) general primal formulation: vars z f p ons (=1)

## y. y. p. y.

##

## sum -z -> min -z >= -log f f = Ep sum p_i = 1 p >= 0

## z <= log f (and also f >= 0)

##

## (b) general dual formulation: vars z w ons (=1)

## nz. nz. nz.

##

## sum z -> max z <= log w E’w <= n w >= 0

## -------------------------------------------------------------------

58



{

require(Matrix)

require(Rmosek)

y. <- dim(E)[1]

p. <- dim(E)[2]

nn <- sum(ny)

nz <- ny > 0 # where ny is not zero; only those enter the dual

nz. <- sum(nz) # how many of those; lengths of vars in the dual

nzy <- ny[nz] # ny[ny > 0]; only essential ny then

#### Dual objective in the old-style Mosek

## cns <- matrix(list(), nrow=3, ncol=sum(nzi))

## opro[1,] <- "LOG"

## opro[2,] <- (1:y.)[nz]

## opro[3,] <- -nzy

## opro[4,] <- 1/nzy

## opro[5,] <- 0

if (method == "dual") {

prn <- list(sense="max")

prn$c <- c(nzy,rep(0,2*nz.))

prn$A <- cbind(spMatrix(p.,nz.), # [O Eo’ O]

t(E[nz,]) %*% diag(nzy), # more precise than t(E[nz,])

spMatrix(p.,nz.))

prn$bc <- rbind(rep(-Inf,p.), # lower

rep(nn,p.)) # upper

prn$bx <- rbind(c(rep(-Inf,nz.),rep(0,nz.),

rep(1,nz.)), # lower

c(rep(Inf,2*nz.),

rep(1,nz.))) # upper

prn$cones <- matrix(list(), nrow=2, ncol=nz.)
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rownames(prn$cones) <- c("type","sub")

for (k in 1:nz.) # (w,ons,z)

prn$cones[,k] <- list("MSK_CT_PEXP",c(nz.+k,2*nz.+k,k))

} else {

prn <- list(sense="min")

prn$c <- c(-ny,rep(0,y.+p.+y.))

prn$A <- rbind(cbind(spMatrix(y.,y.), # [O -I E O]

-Diagonal(y.), E,

spMatrix(y.,y.)),

c(rep(0,2*y.),rep(1,p.),rep(0,y.))) # [00 00 11 00]

prn$bc <- rbind(c(rep(0,y.),1), # = [00 1]

c(rep(0,y.),1))

prn$bx <- rbind(c(rep(-Inf,y.),rep(0,y.+p.), # -ooo 00 00 11

rep(1,y.)),

c(rep(Inf,2*y.+p.),rep(1,y.))) # +ooo +ooo +ooo 11

prn$cones <- matrix(list(), nrow=2, ncol=y.)

rownames(prn$cones) <- c("type","sub")

for (k in 1:y.) # (f,ons,z)

prn$cones[,k] <- list("MSK_CT_PEXP",c(y.+k,2*y.+p.+k,k))

}

#### Need to find equivalent of this in new Mosek

## prn$dparam$intpnt_nl_tol_rel_gap <- 1e-12

MOB = mosek(prn, opts=opts)

if (method == "dual") {

w <- MOB$sol$itr$xx[(nz.+1):(2*nz.)]

wc <- MOB$sol$itr$skc

xc <- MOB$sol$itr$xc

p <- -MOB$sol$itr$suc

f <- E %*% p

kwg <- list(p=p, f=f, w=w, wc=wc, xc=xc, E=E, ny=ny, method="dual")
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} else {

f <- MOB$sol$itr$xx[(y.+1):(2*y.)]

p <- MOB$sol$itr$xx[(2*y.+1):(2*y.+p.)]

kwg <- list(p=p, f=f, E=E, ny=ny, method=method)

}

}

postmea.R

pstmea <- function(x,mus)

{

(x$E %*% (mus*x$p))/(x$E %*% x$p)

}

fprkw.R

fprkw <- function(cnts, epchs, lmbs=seq(0,max(cnts/epchs)+1,len=3000),

method="primal", opts=list(verbose=5))

### feeds the kwg.R with the appropriate A matrix, to estimate

### the mixing distribution in the setting of Poisson mixture, and

### then returns the posterior mean predictions (and other things)

{

cnts. <- length(cnts)

A <- matrix(0, nrow=cnts., ncol=length(lmbs))

for (k in 1:nrow(A))

A[k,] <- dpois(cnts[k], lmbs*epchs[k])

hp <- kwg(A, method=method, opts=opts)

prd <- pstmea(hp, lmbs)

fprkw <- list(A=hp$E, prds=prd, pros=hp$p, lmbs=lmbs)

}

fp.R

fp <- function(cnts, epchs, shrink=1, method="mle")
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### computes naive estimates (cnts/epchs) and

### estimates of compound lambda via method of moments or mle

### and shrinks them toward those depending on shrink parameter

{

naiv <- cnts/epchs

if (method == "mle")

lam <- sum(cnts)/sum(epchs)

else

lam <- mean(naiv)

fp <- list(lam=lam, shrink=shrink,

prds=(1-shrink)*naiv+shrink*rep(lam,length(cnts)))

}

fpg.R

fpg <- function(cnts, epchs, method="mle")

### fitting Poisson-Gamma mixture via method of moments or mle

{

## this is method of moments

ratpg <- mean(cnts/epchs)

scndm <- mean(cnts*(cnts-1)/epchs^2)

bercp <- scndm/ratpg - ratpg

bet <- if (bercp <=0) Inf else 1/bercp

alp <- bet*ratpg

## which for the mle via nlm() provides starting values...

if (method == "mle") {

## negbinomial -loglikelihood

ff <- function(x)

sum(-log(dnbinom(cnts,size=x[1],prob=x[2]/(x[2]+epchs))))
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if (bercp <= 0)

pest <- nlm(ff,p=c(ratpg,1))$estimate # ...if beta is Inf

else

pest <- nlm(ff,p=c(alp,bet))$estimate # ...if both are finite

alp <- pest[1]

bet <- pest[2]

}

fpg <- list(alpha=alp, beta=bet, method=method,

prds=(as.vector(alp)+cnts)/(as.vector(bet)+epchs))

}
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