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Séﬁe problems of propagation of linear and nonlinear hyperbolic
waves 1nls€fid;vare i%vestigafed,'ﬁamely the pfopaéakion‘of plane waves
in a~11néa;‘vincoelultiévsolid &%ﬁh more than ono'rclnxntibn time, wave
propagation‘in a linear pon-dis;;pative di ;i ;e system governed by
the Klein-G;rdon equation and nonlinegr‘wave pfopagation in )

hyperelastic strings. A new formulation of a hyperbolic system of

.

first order governing equéc@ons for the viscoelast%gggroblem is

pioposed. Numerical results obtained for thk linear problems are based
L
>
on purely mechanical theory, however some aspects of the thermodynamics

i

of rubberlike materials are investigated in connection with the string
problem. Numerical solutions are presented for the linear problems and

exact similarity solutions are presented for the nonlinear problems of

.

transverse impact of a stretched string and response of a plucked

Py

sﬁring. Some of the theoretical results obtained for the string

¢

v .

papblems are compared with experimental results and the agreement -is

*

satisfactory.
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Rivlin string with a.= 0.6, and A < Aoy~ The solutien is

valid for t < t*. .
X . 174
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7.19

Plucking String Problem - Experimental results for Ao = 1, § =
45°, at time t = 3.9 ms. The longitudinal shock has reflected
from the ends resulting in instability since the string cannot

sustain compression,

e e e e e e e S ¥
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Introduction

The purpose of this thesis is to investigate some problems of
solid mechanics which involve the propagation of hyperbolic waves.

Hyperbolic waves are described mathematicalf} by hyperbolic partial

differential equations (Whiéahm, 1974). Solutions are obtained for

pFoblems involving a linear‘dispersive system, a linear dissipatf;e

medium and nonlinear finite defortation of a hyperelastic string.
In Chapter II a method of solution, of proﬁlemsxﬁf linear

hyperbolic dispérsigg equations, by using Fourief transforms is

proposed as an alternative to the method of characteristics or Laplace

4

transform techniques. Solutions are obtained for the Klein-Gordon

equation which governs the propagation of transverse waves in an °

elastically supported string. The applicatio e Fourier transform

technique to the Klein-Gordon equation was considered by~Havelock

(1914) who obtained solutions in terms of Bessel Functions, for a pure

\{)\\M

initial value problem, by the analytical inversion of the Fourjer .

transform. In Chapter II solutions are obtained for boundary-initial -

=

value problems by the numerical inversioh of Fourier transforms,
: "
-

Havelock used Fourier transforms with respect to the spatial variable.
This procedure is also given in detail by Whitham (1974) for initial
value wave propagation problemé which are not necessarily hyperbolic.
However in Chapter II Fourier transforms with respect té timeé are used

to obtain solutions for initial boundary value problens.

e

Chapter I . “ S ;'

/



investigaﬁad. Solutions are obtained by the application of a
modification of HacE;rmack”s scheme (Lorimer, 1986) and also by the .
method of characteristics. A vast amount of work has been done in ;hisw
area (Christensen, | 1982), however the approach proungud in this study - *
‘to obtain solutions .for plane wave propagation in linear visconlasé&é
materials with more than one relaxation time appear; to be neQ.‘ This
invéStigation is a preliminary for the poséible application of ‘
_MacCormack’s scheme to problems of finite amplitude wave prophg;tion in
nonlindgr ;iscoelastic materiais wiﬁh suit;b}e constitutive equations.
ﬁacCormack's scheme is a shock capturing technique and would be a S
useful alternative to the method of characteristiqshsince for nonlinear 14
problems the position of the shock front is n;t known a priori. For'
many nonlinear problems, %he method of characteristics.is almost
intractable, because, in general, the characteristic curves are not
straight lines and a shock front does not coincide with a
characteristic.

The remaiﬁing chapters investigate finite amplitude wave
propagation in a stretched.hyperelastic\stfing. The dynamic ?1nite
deformatiqn of flexible strings has been sfudied extensively. Karman
and Duwez £1950) and &aylor (1942) considered elastic-plastic
lopgitudinal waves, in Lagrangian and Eulerian forms respectively.
Provided no unloading occurs, the éi;stic-plastic problem is similar to
thé finite deformation, nonlinear eiasticity pgoblem. Cristescu (1964)
considered the.interaction of longitudinal and transverse waves during
both proﬁagation and refléction from the ends of a string fixed at one

S

end while the other end is subjected to a vélocity boundary condition,



[

-

ot bocf{ propagation and reflection from the ends of ‘a string fixed at one
‘cnd while'the other end is subjected to a velocity boundary condicioq.
h;wover he considered a ;lnoa; constitutive relation. Nowiqlki (1965)
considered the propagation of finite amplitude longitudinal waves in
bars. Recently, Beatty and Haddow (1985) considered the transverse
impact problem of a stretched string, and this paper contains numerous
references. &he work presented-in this thesis is an extension of the
above paper, however the Lagrangian system of governing equations {is
obtained in conservation form. Also, the discontinuity relations are
treated in greater detail than previously given. 1In this study,.the
dynamic simple tension problem 1§ considered as a preliminary to
problems of transverse impact and plucking of a stretched string.

In Chapters II and IIT the solutions are based on purely
mechanical theory, however, thermodynamical considerations are
introduced in Chapters IV and V. The elastic string is assumed to
possess rubberlike elasticity, and some aspects of the thefmodynamics -
associated with the deformation are investigated for the simple tension
problem. In formulating the problem, the deformatiog 1s assumed to be
adiabatic, that is we neglect the heat conduction or assume a
nonconducting material. This is intuitively a good approximation since
rubberlike materials are relatively poor conductors of heat. Also, it
is shown, in Chapter V, that the temperature variations are very small
for the deforhations considered in the string problem. The validity of -
the isentrépic hpproximation, which is the neglect of the effect of the
jump iF\entéopy across a shock on the constitutive equation, is also

|

\%
y
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investigated in Chapter V., The adiabatic and isonttdpic approximations
ﬁhve been discussed in some detail by B;and (i96é).

In Chapter IV, 'adiab;cic stress-stretch relations-are obtained for
strictly eqtréplc and plezotropic materials which are the two limiting
cases of modified entropic elasticity proposed by Chadwick and Creasy |
(1984). &n obtainlng solukions, isothermal stress-stretch relations
are used. There is no diéfigylty in prinéiple in using an adiabatic
cohstitutiQe equation rather than an isothermal one, however, it .is
shown in Chapter ¥ for the simple tension problem, that for the range
of deformation considered in this thesis, the errors resulting from
using isothermal rather’ than adiabatic stress-stretch relations are
negligible.

The form of the system of Lagrangian governing equations for
simple tension is similar to ghe systém of equations which governs
finite amplitude plane wave propagation in gases.. Riemann (1860)
considered this problem in Eulerian coordinates and although he did not
succeed in integrating the gene;al nonlinear wave equation in closed
form, his methods of solution have since been used by other
researchers. tarnshaw k1858) worked with the Lagrangian form of the

.
equations and obtafnhed complete solutions for progressive waves
trévelling in one direction.: Rayleigh (1910) also considered finfte
amplitude wave propQFat{on in\a gas in Eulerian coordinates.

Since then, finite ahplitude wave propagation in gas dynamics has y
been considered by many others including (Courant, Friedrichs,.léh8)

and (Waitham, 1974). The methods developed to obtain solutions for the

problem of finite amplitude wave propagation in a gas can be adapted to

i

/



the probleam of finite amplitude wave propagation {n iuoc'roptc
hyperelastic solids ..

In Chap';:or VI, similarity solutions are obtained for the wave
pgoﬁa;acion resulting vhen a prestretched -yﬂn; fixed at both ends is
suddenly subjected to a trunu\)aru {mpact, ;nd vhen a symmetrically
plucked string fixed at both ends 1n‘suddcnly released. The similarity
solutions obtained are val{d for times before reflections occur at the
fixed ends of the strings.

Experimental results are presented {n Chapter VII for the
transverse impact and plucking problems, and compared to results

obtained from similarity solutions outlined in Chapter VI. J



Chapter 11 ) .
ummgmmwm .

2.1 lngreductien .
According to Whitham (1974). a one spatisl dimension linear

‘dlgpcégiva systad admits solutions of the form

d(x.t) = Aﬁl(ut~kx)

where A is the amplitude, k (s the wave number, o Is the circular
frequency. and the quantity # = kx - wt is the phase To satisfy the
governing partial differentfal equation or equations, the frequency w
J a function of the wave number k and is given by dispersion relations
of the form w = W(k), which are determined by substitution of equation

(2.1) into the governing partial differential equation or equations A

»
one dimensional system i{s dispersive {f W(k) i% not a linear function
of k, that {s if W"(k) = 0.
[N )l
The phase speed,
Wik) , n
cp " (2.2

is the speed of propa&ation of a constant value of § and for a-

dispersive §§stem is not constant but is a function of the wave number
’ 4

k,* consequently harmonic waves with different wave numbers propagate at

different speeds/ resulting in dispersion since the various Fgurier
P i . 3 '

S
«Oomponents of an initial disturbance propagate at different speeds.

The group veloclity is given by, - //}
. 6 <:::::? S
v



L also be shown that the total energy between points xl(t) and x2(t)

”.'and cg(ko) is the speed at which the wave number ko propagates. “it can

it ,’
) u'*
moving with group velocities cg(kl) and cg(kz), remains constan a4

-‘(Whltham, 1974y .

o -

‘It is possible for\a‘hyperbolic‘system»also-to be'dispersive, and
"an example is the Klein Gordon equation which governs the propagation‘

*of transverse waves in'an elastically supported strlng The Klein-

. 2
e

Gordoh equatlon, suitably normallzed is

2, .2

L ’%';’: i

3% %%, e , |
Tt | | IR

'hnd the disper51on relation W(k) is,

£ 4 1) 172 “,»:j ‘ R T @)

Since we consxder only waves travelling in the p051t1ve X d1rect1on we

-take the positive root:

Iheypurpose'of this chapter is'to:inveStigate'solutionS'of
initial-boundaryivalue problemsAot,linear hyperbolic~dispersive
‘equations byinumerical inversions of Fourier~tranSforms, with respect

't0'timé; as an;alternative to the method_of charaCteristics,'finite
.'difference techniquesland:laplaCe tranSform\tecHnidues The solution
of pure initial value problems us1ng.Fourier ‘transform techniques is

glven in detail (Whitham 1974), however in this study solutions of the

fiKlein Gordon equation are obtained for initial- boundary value problems

.~
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The methodbof soiution'of~the Klein-Gordon equation is outlined "

“for initial-boundary value‘problems,‘for.the intervels.xefb,w)}”and

x€[0,4], where the latter includeezthe effects of‘reflections
Numerical solutions are obtalned for the interval *e{0, w) with

v

qulescent inltlal condltlons and three dlfferent boundary condltions.

~

L)

2.2 Method of Solution for Semi-Infinite Interval
Solutions of ‘the klein;Cordon equation are obtained for the

P

interval xe[0,o) and initial conditions,
$(x,00 = 0, 92 (5, -0, o e
and three different boundary conditions,1

$(0,t) = g(t) = sin xt H(t) H(1l-t),
$(0,6) = g(t) = H(t) H(L-t), e

4(0,t) = g(t) = H(E)

where H(t) is the unit step function.

A formal solution for the initial-boundary value problem.is,

00 = g J Gayetr@IOg, t B

since waves propagate only in thekpositive xfdirection. Herein,a(w) is
a rertain functlon to be determlned by the boundary condltlons

Tt follows from the dispersion relation (2 5) that

"The boundary conditions (2. 7)2 3 are not physically admissible if

@ represents the deflection of an elastically supported string, however

the Klelin- Gordon equation is a model for-other physical systems for’
whlch (2.7)2,3 are phy51ca11y reasonable boundary conditlons




‘i‘(w'z_l)l/z’ o els1,c 9 |
IR e L o ‘ (2.9)
k —’ii(l-wz)légT“*_f“—Td] <1,

‘where only the positive sign¢iﬁ equation (2.9)1 is ¢onsideped since for

“;hiS'problem'wavepVéan prépagéte in the positive x direction, and

the negative sign in equation. (2.9)9 is taken for the solution to be
bdunded:‘_For |w] <1, k is imaginary and thgsharmonic-waves cannot

propagate but exist as standing waves.

The boundary condition ¢(0,t) = g(t) may be expressed as a Fourier

S .
integral o : R SR
1 ,°°_ K o ‘A | | \\ ' ‘3} ‘
g(t) = 5= | Gwefaw , SN (2100
w , . , ' . .
where )
. . «© . i L
G(w) = Jg(t)e'indc , 4 : . - (2.10b)
‘-w N .
- \' ;
- and
‘ G(w) = { sin((w-ﬂ/Z) " sin((wtn)/2) } e-iw/2 ' (2.11)
w - w + ) @
for boundary condition (2.7)1, and -
e i) -iw , : : o
G(w) = > { e -1 } ) ’ - (2.12)

. for boundéry condition (2.7)2.



S_A‘sufficient, but not necessary, condition for existence of a

Epu#iet,transform of tﬁe function g(t) is,

lg(t)| At <e .~
-0
Boundary condition eqiation (2.7)3 does not satisfy the above condition
“i?d determination of its Fourier transform involves theory of
(]

distributions. Therefore, for the purpose of the numerical

:

.-computation, boundary condition (2.7)3 is written as

$(0,t) = H(t) H(tx - t), o . .

and the corresponding Fourier integral is,

o) - = [e'i“t*-1]"} S ' 2.1

‘ . ) / o .
Equation (2.13) reduces to eqn. (2.12) when d* - 1. The solution for
}the boundary condition (2.7)3 is then obtained for t < t*.
A formal solu&ion is, . .
#(x,8) = 5= | Glwe

-0

L2 1720 _ '
o D7 x ot 4 | (2.14)
where G(w) is given by equations (2.11),. (2.12), (2.13) for_boﬁndary_'v

co_ndi\ionS'(Z.'?)1 2.3 respectively.
. : 1€ . e 1}
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In order to evaluate equation (2. 14) numdrically using a discrete

Fourier transform, equation (2.14) is expressed as

o

\

e L (e ieint % (2 1-02)1/2 |
) - 5;{ J Gayat @D ety [ e (D) oty

v

-co‘ i _'f,w. -l

T g 172 |
+ | Groye it x fwt, } . S (2.15)
1

Consider equation (2.8)1in the form

. )
B i
i

$(x,t) = %; G(w) exp [ iQ,[t -c—%;j] ] w . . (2%16)
_ , > e

L) -0

- Boundary conditions g(t) dre causal funcslons that is g(t) is zero for
t <0, consequently it follows from . (2 10a) and Jordan’s Lemma that

‘ »s‘ngularltles of G(w) are located‘on-or above the real axls in the
complex w plane (Morse, 1968)2. Also,

¢ (0) = —5—75
P (w 21y1/2

and the singularities of cp(w;’;}e *1 and’ere lecated on the real_axis
in the complex w plane. Tnerefore; if the contour of integration in-

the complex Q plane for (2.16) is taken with the line integral jhst

" below the real axis and closed by a semi-circular arc of radius R +

in the lower half of the‘plane it follows that $(x,t) is zerg if tcp(w)

i g ’ © v,
2Morse defines the Fourier transform as f g(t)e dt so. that the -«
"51ngular1ties of G(w) are then on or below the real- axis
' .

<
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he ’ ’ : : 12

. . \5 & o o

= x <0 or x>t cp(wo). This means that the wave front propagates with

- N ¥

vspeed

cp(Q)_f zfz‘c;(w) -1 o o (2+17)

Copsider the initial-bopndary iéluevproblem shown in Figure 2.1,
with quiescent conditions, |
40 =0, 4.(x,0) =0, o | O (2.18)
and boundary cp#ditions, |
$(0,t) = g(t), ¢(2,t) = 0. | (2.19)
To avoid coiéidering ;eflectéd waves at x = £ we propose the foilowing'

procedure.

First, consider steady state solution for bohndary condition

g(t) = QOe;wt, where ¢, .is a’constant_and we seek a solution of the
form ‘ © -
$(x,t) = a(x)e . : , (2.20)
. b o
Substituting (2.20) into the governing partial differential,equation
(2.4) gives, _ | - ' o
'+ (w - 1)® =0 . S v : (2.21)

Equation (2.21) is an ordinary differential equation which has

solutions,



\

"¢(0.t)=g(t)I — L

Figure 2.1 Problem geometry of finite interval ihitial-boundary value
problem. -

B 4

13
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"

i _:b(x)‘- A cos (wz-l)l/z,x + B, sin (wz-,l)l/*l‘2 X, = Jw] >,1 ,
d(x) = A cosh (1-(»2)1/2 x+ B smhv(l-wz)l/2 X, ‘Iw| <1, .-
B(x) = Ax + B , . 2 lo] =1 .  (2.22)

The constants A,B’are determined from the boundary conditions ®(0) = %

_and &(£) = 0, so that the solutions (2.22) are, {

. ) ' . ;
8(x) = 8o (cos(w?-1) % - cot(w2-1) % sin(w?-1)M%), ol > 1,
8(x) = doicosh(l-02) 2k - coth(1-w2)/%s stnh(1-02) 2y,

lw] < 1,
. EK\ . (2.23)
}, Jo| =1 .

' Then the solution for the interval x €[0,2] is,

ol

B(x) = o { 1 -

¢(x,c) - %; J G(w) f(w,x)eiwtdw ‘ (2.24)

-0
where G(w) is given by equation (2.10b) and,

* #
£(w,%) = cos(@2-1)" %% - cor(w?-1)Y2p sinw?-1)Y 2%, o > 1,
£(w,x) = cosh(1-w2) 2% - coth(l-02) /24 sinh(1-02)Y%x, (0] < 1,

£(0,x) = (1-x/4), o] =1 . ' (2.25)
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2.4 Numerical Regults

Equation (2.15) is written as an inverse discfete Fourier
\ . . ’

transform for a fixed value of x,

S
p N1 {nK/N
(X ,KT) = T Z [R(x,n &w + {I(x,n Av]e =7, K = 0,1, ... N-1,
o n=0 : o : (2.26)

where T is the period, R(x,n Aw) and I(x,n Aw) are the réal and
imaginary parts respectively of the complex frequency function to be
inverted as given by equationS (2.15),‘Aw = 27/T is the‘sample interval

-

in the frequency domain and N is the number of sampled intervals. The.

’
-

inverse diScrete Fodrier transform is computed numerically through the
use of a fFT algorithm (Bfigham, 1974) .

Figures 2.2 to 2.6 show the results obtained with boqndary
condition (2.7)1.-{4i Figure 2.2, the sine pulse boundary condition is
recovered when x = 0 as expected. In Figure 2.5, for X = 15, 25 and
T = 100, aliasing is apparent which is eliminated by an increase in‘the
length of theléeriod as shown in Figure 2.6 (T -V600)! h

In all of thesg exémples, with the exception of Figure 2.5, there
is a sharp wavefront that éropagates with velocity'cp(é) =1 as
predigtedfbyieqﬁagion (2.175.

F" Fig#rés 2.7 to 2.11 show rksults obtained with boundary condition
(2.7)2, and again the boundary condition is recovered with x = 0 as

expected (Figure 2.7). For greater values of x, (x = 15,25) a larger
period (T = 600) is required tofeltminate aliasing as’is aemonstrated

¢

-in Figures 2.10 and 2.11. A sharp wavefront propagating with velocity
. . ]

o b}
qp(w) = 1 is observed.



v o ]

\ )
The results for boundary condition (2.7)3 are shown in Figures

(2.12) to (2.13), and again, a sharp wavefront travelliﬁg with velocity

‘

cp(=) =1 is obSeqx;d.
*
With boundary conditions (2.7)2 3 Figures 2.7 to 2.13, Gibbs’

phenomenon is observed, and the amount of overshoot is approximately 9%
: . ‘
of the discontinuity as predicted by Bracewell (1986).

-

*
f




T=70, N=2048

x=0.0 -

bd
I}

w

o

b - -
e e oo
-

. ——
@ m—— .
= - .
,x
H
()}
‘O

Figure 2.2

(\! )
_ A\
o A AN
9 ' /' hEN \ r"‘./ N T
LS i ] ! l / =~ ‘.—-_/
. 1 Y] .
N 1 ’ \ N w
oA 1 /
' 1 ! /
. - ' l
* Vo \ L
o R T | .
. VI /
J -yt
© :/ . 1!
O - ) .
. | \/
q .
°—1
i
o- L
3 h )
| T Y T T | T T
0.0 4.0 6.0 8.0 10.0 12.0
s t
]
ution of Klein-Gordon equation by FFT alg& ithm with

escent initfal conditions and boundary condition
¢$(0,t) = sin at H(t) H(l-t), T = 70, and N = 2048.

17




18

0.6

' T=200, N=2048

Yy y e v v v
00 20 40 60 8.0 10.0 1?.0 11.0 15.0 15.0 20.0

Figure 2.3

t

Solution of Klein-Gordon equation by FFT algorithm Wwith
quiescent initial conditions and boundary condition
#(0,t) = sin xt H(t) H(l-t), T = 200, N = 2048.
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Figﬁre 2.6 :Solut'iqn of Klein-Go_fdbn eqt’.‘xationAb_y FFT algorithm with
quiescent initial conditions and boundary condition’
$(0,t) = sin mt H(t) H(1-t), T = 600, N = 4096.
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Solution of Klein-Gordon equation by FFT algorithm with
quiescent initial conditions and boundary conditfon

$(0,t) = H(t) H(l-t), T = 200 and N = 16384.
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Figure 2.10 Solution of Klein- Gordon equatlon by FFT algorithm with
quiescent initial conditions and boundary condltlon
$(0,t) = H(t) H(l t), T = 100, and N = 116384, Aliasing is

apparent.
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- Figure 2.12 Solution of Klein-Gordon equation by FFT algorlthm w1th
quiescent initial conditions and boundaryrpondition
$(0,t) = H(t), T - 600 and N - 16384.

-
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Figure 2.13 Solution of Klein-Gordon equation by FFT algorithm with
- quiescent initial conditions and boundary condition
.$(0,t) = H(t), T = 600.and N = 16384."



/e , '~ Chapter III

3.1 Introduction
In this chapter, a mbdifiéation‘of MacCormack’s scheme (Lorimer,
1986) is applied to the one spatialldiﬁension problem of plane wave
propaggtion resultiné from_thé‘sudden application to the surface of a
linear viscoelastic solid haif-spéce, of a spatially uﬁiform stress,
“iﬁhich may be a constant direction shearing stress §r a normal sfress. »
This problem has previously been considerea in detail (Lorimer, 1986)
 but-in this present study, the governing system of equations of the
problem is reformulaﬁéd so that solutions éan be obtained from a
‘§imﬁlér application of MacCormack’s scheme than péevieusly given, and
the method of characteristics is also facilitated.

w

Viscoelastic solids with relaxation moduli of the form,

oy,
s

N : :
" G(t) = E { a + z\ang't/'n } : (3.1)

are considered, where E is the appropriate impact modulus, T are the !

relaxation times, and a, are positive'constants such that .
. » P
N . .
= @ - 1. , _ 2
n=0 N '

; ’ o

When N = 1, the standard model is obtained which is the simplest
' ' .

viscoelastic solid which exhibits an impact response.

i

MacCormack’s scheme is applied to the governing equations with
- ‘ . ,
initiaf and boundary conditions specified. The reformulated system of

29
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, o -
equfitions also facilitates the application of the method of

4

characteristics for N = 2, and the numerical solutions obtained from

-

MacCormack’s schémg are compared. to solutions obtained from the method
of characteristicsj ' |

One purpose of thiS‘éhapter is %o demonstrate that the method of
characteristicsvand‘Ma?Cormack’s;scheme, suitably modified, are usefui
methods for obtaining%solutions of linear viscqelastic plane wave
propagation problems’;hen N = 2. Most of these problems are almost
intractable bybé;éﬁﬁform methods.

2/ N -
A C N
This investigation is a preliminary to the application of
. 5 A” Al -
MacCormack'’s scheme to problems of finite deformation in viscoelastic
solids with suitable constitutive equations. MacCormack’'s scheme is a

shock gaptufing‘technique and would be a useful technique for nonlinear

i . .
problems where the position of the wavefront is not known a priori.

‘The method of characteristics for nonlinear problems is|often almost

intra@table as, in general, the characteristic curves afé not straight
linqg and a shock front does not céincide with a characteristic.

The governing system of equations is derived, ahd the methods of
golution are outlined. Numerical results are presented for N = 1 and

!
N - 2. :

3.2 - Governing Equations
\
The governing system of partial differential equations for one
dimensional plane wave propagation in the x directioﬁ in a linear

viscoelastic material is well known and consists of the equation of

motion,



\// ‘ K | - | o

80 pdv _- ' ~ ‘
ax at 0, © (3'2);!

the equation of compatibility,

TR - ‘

and the differential form of the constitutive equation (3.1),

s N n N n ot
z Pn é_% - I 9, Q_ﬁ ! . (3.4)
n=0 at n=0 at

where p is the density, ¢ is the strain, v is the particle velocity and
Py~ 1. The equivalénce of- equations (3.1) and (3.4) is subject to
certain initial conditions (Ch;istensen, 1982) which are satisfied in
the éresent.problem.

Solutions are obtained for N = 1, 2 and the corresponding

differential forms of the constitutive equation are,

a € )

80 + o de o

7 = == : (3.95)
at 8] 2[ at T ]

and '

P v
‘.h“\ u 2 ' 2
A do G de :
v(‘\‘v.”--—-—-}-p——4»pa—q——-+q_———+q€, (3.6)
o atZ 1 4t o 2 at2 1l 4t o

respectively, where
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-1 ,
Po = (mral s 1T (Lt T Ny S T ER/Tyry)
q = E[(ao’+ al)r1 + (ao + a2)r2]/rlr2, q, = E .
~

We consider N ; 1 and N = 2, however extenséyn of the th;ory to N > f
is straightforward. .

Equations (3.2), (3.3) and

——~

do gdv,e E -0 \ (3.7)

at ax T Ty © ' '
for N = 1, and

g% - q g% -q, %% + plé +Po - q¢E - 6, (3.8)

where ¢ = do/3t and v = dv/3t, for N = 2, are a system of first order
partial differential equations. -

The téghsient response of a viscoelastic fluid with two relaxation
times has been previous%y considered Glguz and Lee (1953) and the

constitutive equation for this material can be written in the form of
Il .

”

equation (3.6) with qd0 = Q. However the material is instead
represented by a four parameter spring-dashpot model consisting of a
Kelvin element in series with a Maxwell element as shown in Figure
~——:£E/i). Anpthéf four parameter spring-dashpot model, shown in Figure
(3.2), is also governed by equation (3.6) with qo = 0. Solutions
obtained by Glauz and Lee (1953) by the method of characteristics apply
only to the particular model shown in Figure (3.1) and not to the
general form for a four parameter fluid as given by equation (3.6) w}th

qn = 0.
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Figure 3.1 A second order viscoelastic fluid represen

y-a Kelvin
element in series with a Maxwell element.

o

—AAA-

Y
~/

%

~ ’

L
Figure;3.2 A second order viscoelastic fluid represented by a
standard model in series with a dashpot.
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o
x =X 8W 1/2
T E "
_ [ ] 172
V » Vv % . i
L ’
N Y
B "%E * M1°Y
p = p T2, 5. =p,T o (3.9)
Py = P,T. Py =P T, :
v 1‘“
; Y :
whered ¢
2 2 . ' - p
T - 0171 + 021'2
a,r. + a.r ¥ R
11 22 o
-

' Henceforth, nondimensional

k.3

L

is chef‘f‘n relaxation time,(Piptkin‘, 4
S}
quant:itie'@are used but :the’' superposed bars are omitted.

The system of nondimensional governing equations can be written in

matrix form and is, i j;"

du 65

FrAm @20 ; JRERY
when N = 1 and

du du t

T rAFtDh (u fog (n) dn) (3.10b)

when» N = 2.

1)
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A \
(A).='4°-1 .0 0 - A | : YWy
C LEg -1 0 ) e - AT
ferwell N, and'g‘apd b are givep'by o
o d :- . '_a-'aboé': | X . . . o .
oow=qver, b=y 0 b o - | (3.12)
oo le) T o L : ‘ .
whenN=land . '\\Q\w;//}
a o "pc'r+pé-v'c‘1;-'qe L S |
u=49vt, p=d b e el L (3.13)
€. ¥ S 0 i) . . _ . e
. S ‘ 1 “ ; . ‘ o " . %)
+ when N ='2,-and () = dor. D ;o :

»Matrieesjufand lnvolVe part1a1 tlme derlvatlves of o, Vv, ¢ of

P

Numer1ca1 results are presented for

.a11 Nv5

-

ﬂ+l for all N Nondlmen51ona1 waveb
. » - . C ‘3}.
'-jvvspeeds are “1 and the’ c@rresponding charac%@rlstlcsflﬁ the (x t) plane

(

: w1th slopes 0, +1 -1 are referred to%as the § § - Vcharacterlstlcsl

(3.14)
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&A= N

.”Thé.léf£=eigenvéctors.6f A are Obtaineqvf;om éduation (3.15), so’

that - -

v du

(1, 0, -1) == + (1, 0, -1)b = 0

(1, -1, 0) ==+ (1, -1, 0)b = O

(1, 1, 0y 5%

Equations (3.16) give .

. Go o de +0 -ae=0
dt dt. o
do 4. a
dt  dt- o
do dv

ac tac
N —:l, and

do - de

G Tac T PP ¥R - gpE

SEAY

i ﬂ'_§
FERT:

+0 -ae=0
. o )

4o & s
dc T.dc T P1? TP

K] i " 1- 20 »

" are obtained from equations (3.}

on

on

on

#
3.

+ (1,1, 0)b=0

dx

dt

dx

dt

dx
- de

S 4 - g =
N .

Y

on

on

dx
dt

dx

dt -

gx
dt

4) for all N.

L

+ plé +l§;q - qlé'{3q66u¥~0 on’.
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Relations along the characteristics (g §+, ¢-) can be similarrf
obtained for N > 2 o |

Boundary- initial value problems for the interval 0 s x < «, and
quiescept initial conditions are considered Solntions are ob;ainedb‘

for the boundary conditions;
2(0,t) = o_H(t) | g | | C(3.19)

and

5(0,t) = o_sin xt H(1-EIH(t) T Gl

where H( ) denotes the Heaviside unit function, and 0o is constant,

3.3 Numerical Techniguesa
3.3. 1 Applicat'

yeCormack’s Scheme -

n+i n At n' : d' P nb : ) L
- Au” . - au™) - oAt BT _ 3.21

2y o= Yy By - 2y By S S

ntl 1) n  nel At i el B Al |

u, == +ou, . - A - At b T

4T3 { Yty [~~j _~~J‘1] Be b } ‘

‘dwhere E? and E? are the’finice difference approximations to u and b
’respectively,'atbmesh point jAx, nAtt |

\ VWhen‘N > 1, che metrix {Eg),consistszof the.(N‘-.l)th partial time
derivative of‘q?, Q?, e?, cqnseouentiy‘additional reletionships arev

]

Y
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Goeo A - R <7JL;.;f 38
.»,J}‘_ 'n . ,n’ 8 Ce i .."
required to"detérmine 02;/y?, and ¢j at each time step. L

Along the ¢° chara teristics,

do . dv o de’

('J-EEfO, V‘-E-O,*YE-E-E-O.’ ) (3.22)
it order £inite difforerds coheme of oo e
A first' order finite difference scheme of equations (3.22) is, .

o mat 6P 4 o, VT mae VR e R, e w3023

J j "3 ] v , 3 J ,

™

. ' S ’ : o 5
When N = 2, equations (3.23) are used in addition to equations (3.21)

to determine ajn, VJn, ejn at each time step. When N > 2, equations
. . ) g ' .
{3.21) are used along with (N - 1) successive numerical integrations .

and it may be necessary to implement a ‘more elaborate numerical e

intégration scheme than (3.23) to impfove the accuragyf}m
In ordqr to apply equatioﬁs (3.21), o(0,v), V(Oéﬁ),
. a ‘ o ' . V . . "if X

required for N = 1, and 6(0,t), ¥(0,t), ¢(0,t) are r¥qhired for N = 2.

" €(0,t) are

5.

HBoundary cdnditions; equations (3.19) or (3.20), give o(0,t) and'

e . N
., . ' . . : . L Nh) S
0(0,t). The remaining dependent variables at x = 0 are obtained from a ¥

forward difference prediétor and corrector finite differe*if~5cheme"

(Gottleib, 1978),

. ntl .nb At n n
T oom e — (- 4
Vo , Vo Ax ( ?l ao)’

vn+1 1 g0 vn+1 At _on+1 + an+1 ,
o 2 o - o . Ax 1 o
e n+l n At , n n, :
o 9 "% T (it Vo) _
A ‘
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M

n ;;I - At - ;Ii‘. ;:I '
- — |- e (o]
{ € + 50 Ax [ Vl st Yo ]}, . | (3.24)

o
n+l LAt . |
. n .n L
vov. -V, - ™ (-01,+ ao) , |
.n+l 1 |.n .n+l At .n+l .n+l
v =4V + Vv 7 - — |-0 + o ,
o 20 o ax | 1 o
— »
énﬁl -0 ac (-vn + v“) '
o o Ax 1 o’’

.n+l 1 .n .E¢1 At .n+l n+lf !
€0 =3 {eo + e? " AR [-v1 4 v, ]} , (3.25)

when N = 2.

A ;tability anglysis (Aﬁderson, 1984) indicates v = l is a
necuessary coﬁdition for numerical stability of the finite differepce
scheme wgen b = O;LWhere v = pAt/Ax is the Courant nuﬁbéf and g is the
nuﬁerically greafest;éiggnyalue of A. Sq<fér-theré is no stability.
éﬁalysis for the finite difference schéme when b » 0, hywever és‘it was
found previously (Lérimer,;1986) the scheme is unstable when v = 1,
although with the system of equatiens considered, the instability is

much weaker than that observed by Lorimer (1986). sSatisfactory results

were obtained with ag = 0.9, v = 1.0 and ag = 0.1, v = 0.99.
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3.3.2. Metbodlgf Charactefistics' ‘ ‘ " B
'The method of chaf&ct;ristiés £§r’11neér problems where Eh; ;

position of the wavefront iS»kndwn é priori and the shock front

coincides with a characteristic is well knowﬁ a;d can be fouﬁd in any

sténdard text onvaﬁplied“numerical anéiysis (Burden; 1978, Gerald,

1984) . | . T : o

| The equations along the charactéristics, équations (3.17),and

(3.18), can be written in finite difference terms to a first order

approximation as,

J j J

1 r +1 ]
n+ n SN

- - |v. -V + At (b.). =0 ,
%] 731 g i-1 ®pjya
r 3

n+l n el ntl  n . n _ :
aJ - aJ+1 + ij_ 41 + At (bl)j+1, o, . | (3.26)

where (b )? -ol - a e?, when N - 1, and
1] A o j’ -

. .n . e - ) | y
crj - aj+1 + [{j vj+1] + At(bl)j+1 - 0, _ :3.27)
. g .
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n _ .n n '
where b - +po, - &, - €, , vhen N = 2,
‘1’3 "11 Po) 0 - ]
An expression for the decay of a discontinuity at the wavefront
can be obtained (Christensen, 1982) For boundary condition (3.19),

.the nondimensional form of the stress -at the wavefront is,
o(x,t) | = o_exp [(G'(0))/6(0))x] . (3.28)
x = tt ‘ , : '

where tt ifdicates the value behind the wavefront and G(0), G'(0) are

-

: i \ .
obtained from.equation (3.1). This gives the magnitude‘of a
propagating disoontinuity for any mechanical model. Also, from the
discontinuity relations at the wavefront,

o ~-v, o=¢c, at x =t¥ . o (3.29)

tquations'(3.28) and”(3.29) can be incorporated into method of
characteristics giving o, y, ¢ at the wavefxont and 4, v, f can «also be
- .obtained at the wavefront from a wavefront expansiou .’,..'ﬂus would
require ; uinor modification of the mesh used which is shown in Fiéhre'
3.3. When N = 1,2 it was,found that it was not necessary to implement
this technique, however, when N > 2, the wavefront eXpansion technique
may be required to improve the accuracy at the wavefront.

' Equations (3.23) are used in addition to equations (3.27) when.
N =2, This'procedure for N 2 segms to be new and is superior to
that proposed by Glauz and Lee (1953) which involves ; system of six

equations for the four parameter fluid. The system of equatians, given

in matrix forﬂ}hy'(3.10b) is treated es a system of first order 1inearf



x=t

(r_j+1)At
t
‘nAt

(-1)Ax jAX  (j+1)Ax
X

-

Figure 3.3 . The solid lines represent the mesh used for the method of

chafacteristicsﬂ,_lf a wavefront expansion technique is
incorporated at the wavefront x = t, the mesh would be
modified at x = t as indicated by the dashed lines.
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hyperbolic partial differential equations with dependent variables &,
¥, & although the vector b is a func%}gn of ¢ and ¢ as well as & and
2 o+

€.

3.4 Numerical Results

Numerical results are presented gfaphically_in Figures 3.4 to
3.18, for ag = 0.1, 0.9, 1.0, Ax = 0.01 and v - 0.99, 1.0.

Figures 3.4Ato 3.11 ére reéults‘obtqined forvboundary condition
given‘gy equation (3.19) for N = 1 and N}; 2. When N = i and a5, = 1,
the material is perfectly elastic and tHé Qave:?ropagates without .
change in shape.- The results shown in.figure’SLQ and 3.5 indicate no
numerical dispersion when v = 1.0”;nd ﬁﬁﬁerical dispersion when v < 1.
This is similar to the results for ap = 0.9, N = 1 and N €2,  shown in
Figurés 3.6 to 3.9. There is numerical dispersion when v < 1, however,
there is no indication of numerical instability for N = 2 at x = 0

(Figures 3.8 and 3.9) as was found in the previdﬁh study (Lorimer,

1986). It was found that when a = 0.1, v = 1.0 the solution is

unstable for N = 1, N = 2, while for v < 1 there is no evidence of

numerical instability or numerical dispersion as indicéted in Figures
3.10 and 3.11. |

| Using equation (3.28), the decay of the discontinuity can be
computed and compared to values obtained by the finite difference
sche;é and method of characteristics. Table 3.1 compares o at x = t+
obtained from the numerical methods to the éxact value given by

equation (3.28) for aoi- 0.9, v= 1.0, and N = 2. 1In the results

presented, there-is a very close agreement between exact values of

43
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’

stress at the wavefront and the numerical values, consequently it was
not necegséry to implement a wavefront expansion technique to obtain

6, &, veat x = t¥. However, when N > 2, it may be necessary to employ

a

this technique to improve the accuracy.

Table 3.1 Calculation of néndimensional stress at x = tt¥ for
' N = 2, with ¢(0,t) = ggH(t), 05 = 1, and quiescent
initial conditions, for v = 1.0 (Refer to Figure 3.8)

Nondimensional Time Exact Value Numerical Value

. MacCormack Characteristics

Txmtt Tymt” Txmtt
1.50 .9104 .9116 .9106
3.00 .  .8288 .8268 .8287
‘4.51 . 75454 .7543 7544
6.01 - .6868 .6881 .6864
7.51 . .6253 .6276 .6251
9.01 .5692 .5669 .5694

Figures (3.12) to (3.18) are results obtained for boundary
conditions given by equétion (3.20) for N =1 and N = 2. When o5 = 1,
0.9, v = 1.0 there is no evidencegof numerical dispersion for N = 1,
N = 2 as indicated in Figures 3.12 to 3.14. For ag = 0.1, N = 1 and
N = 2\ there is evidence of weak numerical instability for v - 1.0, and
no nu;;rical instability for v = 0.99 as indjcated by Figures 3.15 to
3.18.

In all of the examples which did not exhiﬁit numerical dispersion

or numerical instability, there is very close agreement between/ﬁﬂe

finite difference scheme and method of cha:acteristics.
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Chapter IV

4.1 Constitutive Assumptions

The preceding chapters dealt with lLinear problems, in the
remaining chapters we consider ptoblémsmég finite deformations of an
isotropic hyperelastic solid. A hyperelastic solid is an elastic solid

for which a stored energy function exists, that is, the solid is

-
capable of storing elastic energy.

We consider particular cases of a class of isothermal strainp
energy functions for isotropic hyperelastic soltds, which can be
expressed in the form, :

WO 2y, Ay = pEQL Ay, Ag) + K g(d) (4.1)

‘where Ay, Ay, A3 are the principal stretchgs, J = A1A2)3 and 4 and k
are the isothermal shear and bulk moduli respectively, for
infinitesimal deformation from the natural reference state at
temperature T,. The function f is symmetric in Xj, A, A3 and is zero
when All- A2 = A3 and the functio% g satisfies the conditions,

.8(l) = g'(1) =0 and g"(1) =1 . (4.2)
%gq.ification for the form (4.1) for rubber-like materials is given by
%ﬁadwick and Creasy (1984).

It has been shown by Ogden (1982) that results of hydrostatic

¢ompression tests for rubber-l%&e materials are in close agreement with

the relation
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‘ where q 1s the hydrostatic pressure. Since
; i # i
d
b8 © (4.4)
 for hydrostatic compression, equation (4.3) implies that,
w————
: -9
g ';% [ % + dnJ - éﬁ =S (4.5)
#Equation (4.5) may not be valid for finite positive volume strain,
however 1f positive volume strains are such that (J-1) <<1, equation
(4.5) is a realistic expression fo;gg(j3§since a Taylor series
expansion gives e N * f»'[ﬁlfle
. ‘(:.' . , , vu'a?'
1 2 e R T
8= 3 J-1 +z$vk(J:1) Yoo e (4.6)
. Y » . 4 P .
| PR :
Equacion (4. 1) is fqr a compressible solid and we later consider
o t-» . F

*o

the limitin case of an- incom rﬁssible solid, since the asgumption of
4 P i p

1ncompressib111ty is realiscic fo;'the pro&}ebs which we consider in

61

%h
the following chapters Thgse pf%blems involve finite deformation of a )

solid rubber like %ateriaf wiqp p/k~<< 1 and thé hydrqstacic part of

the Cauchy stress censor,is ne;iigib}e compared with k
R TR w0
A compressible. ggneralization of a thre‘-term strain energy
SN \-"

function due to Ogden is;~ jf;L ‘,: Lo R

‘+,ijv .3 + kg(J) , C(4.7)
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When a = 1, the Neo-Hookean strain energy function is recovered from

(6.10). K

A fundamental equation of state for an i{sotropic hyperelastic
Pl . .

@olid is given by the Helmholtz free energy function as a function of

deformation and temperature, : _
A S

. [
. ' . ' T
. o
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) ‘
where I peay = 2p, and W {s the strain energy per unit volume
{=1 ‘
in the reference state.
' o
. The {ncompressible limit of (4.7) 1%,
- .
3 4 a, - a a ‘
W=z ;}« A11+A21+A31‘—3 , , (4.8)
{=1 i ,
¢
which was'proposed by Ogden (1972). The compressible generalization
(4.7) was proposed by Chadwick and Creasy (1984). . ;
A special case of equation (4.7) with #3 = 0, is a compressible
. generalization,
b 2,2, .2 . 2/3 RUTEY RN SN SRR VA W
W 2 { a(x1 + A2 + A3 3 ) + (1 a)(A1 + A2 + A3 3J )
-+ kg(d) a9y ¥
{
wﬁere 0 s a=x1, of the Mooney-Rivlin strain energy function. The
incompressible li@it of (4.9) is, -
_ B 2 2 2 _ -2 -2 -2
W 7 {a(xl + Az + AB 3) + (l-a Al + Az + A3 3yy . (4.10)
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o

An alternative fundamental equation of state for an isotropic :
1‘ !
‘hyperelastlc solid is given by the internal energy as a functlon of

T deformation and entropy,

o

[

Aps Agp A3 ) o L e (b2

a S L T . : i SR S

E ‘The'stra‘in‘energy‘, funetion at refene"nnce temperatnre To ‘i,s related to A

,"by “-}"v e R ' . . . | " .‘A‘ﬂ . - » ..\' . ‘- A‘b .'*
, ‘7"ﬁz*"., Wi 1-._ SR e N o

~where Po is the denslty in the reference cqnflguration The stra’in S

9

'energy W is per unlt volume of 'thje reference state, and A is per unlt
% ) J‘ . }1 ) .

- ’

In the follow1ng chapters, probwlems inv01v1ng snnplﬁ tensgon of an- ’

" lncomp]r‘esslble hyperelastic strirn; are Q@Wred &hﬁa&ch in, the .’;

i dlrection of the tensile force 1s A, and tr’ansverse str‘etches are Az - "
"1/‘/,\ A3 - 1/JA The simple tensmn forms of ‘the: st:raln energy
. functions (4.8) and (qblo) ‘are, s o
éi ' .feai/z : ° v :.
AT+ 20T -3, (4.14) ,

. T e L ST T " B - NI . A
TR S S R SR
. - D : & R

T -
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. " respectively. Ogden (1977) has shown that. the relation,. !
v T R IR .; , s _ i
,4a1/2-l N
‘ xoT ] T (4.16)
W ‘
e
. ‘o‘ g 4 ,‘
2 PR . . . . . o :
e “and (4. 14) gives a close fit w1th experimental data for 1sothermal el
"e ; - . o i
’simple tension of certain rubbers Up to stretches of about 7 when' ﬁh
pl/p and aj take the values .v* 23 ‘,‘” ‘ R - -
L ' e i ‘ ' : ' ' o T - * o ‘ o .
pi/p = 1.49), 0 pp/p = 0.003,-  p3/p = -0.0237, '
a] = 1.3, ~ag = 5.0, " Tag =-2.0. . (4.18) =
- } R . o . - ‘ ~. S
v oo The corresponding relgk n for (4 15) 1s . A‘ - ’
S S R ;
S P~ u(a.+ (1- a)x : (A - 1/x2> SRR T (4 19)
bwhich w1th a -00 6, gives a close fit w1th simple ten51on experimental
o b
o data for A up to. about 3-5 Relation (4 16) and (4 18) and relation
’ ~(4 19) w1th Q - 0 6 are Shown graphically in Figure 4. l '
Pl “\ | | \ . : ‘. . | . '
y ‘ Y : v T > ' - ' : . i -
4 2 Mechanical Incomgressibillty e ;' .

"vﬁﬁ.‘ o The problemszcoﬁ$1dere§ in’ the follow1ng chapters 1nvolve rapld

deformatlon which is assumed tp b* adiabatic 51nce rubber 11ke :
o ,s . (O
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taken to be for isothermal deformdtion:

It is desirable to investigate

the error involved in considering an isothermal stress-stretch

‘ relationship‘rather than an adiabatic relation.

The problems considered in the followxng chapters are fon a

» ! e

mechanically incompressible solid It

.t

can be shown’ that_if’the solid

is mechanically incompressible then any defornation must be isochoric,

that is the coefficient of thermal expan51on is zero (Ogden, Priwate

“1' Communlcatlon)

.
]

The internal energy related

L M ‘ﬁ .

U=A+TS

-

For our present purpose it is convenient to4ekpres§ U ﬂ%}a function gé&.
e
RN

deforn%tion and temperature, ')
. N . ‘, / R AL . *
U=0U (3,2 ‘A3, T)

)

2 ’

5ﬁhich ig,not a fundamental equation of gpate

NI . +

g

%}

ﬁo\the Hp hoitz free energy by
, ) gc

-

(4.20)

-

. .‘",

] re

(4.21)

-

Sy

thermodynamic effects we consider a material whose interna} energy is

Y -

,/’”\\ !
. ‘9xpressib1e as the sum of)a function of J and a function of T so ﬁhat

\
J) . -~

U=U,J) + U (T)

e

’. . Th1P decomposition has ‘been discussed

' suchva material is described as strict
R

deformation.

dhanges in internal ‘ener

depen&fonly on’the temyerature changes

L \a

el ‘
./{\Lc

o “o _
§4.22)_~

»

A U O
in detall by Chadw1ck (1974) and

1y entropic for.isochoric

)

gy during 1sochor1c deformation

ﬂ

and ndfgon thé distortion CIf

In order toiconsider the

.
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constant deformation is a function of the temperature only, and if
|T T‘:,I/To << 1, the temperature dependence can-be neglected For: the

sma.ll temperature changes which occur in the problems considered G is

. . . . }
" assumed to be constant. n : , ‘
’ It follows from theory in Chadwick (1974) that, 3
a kh(J)(T-T ) T
A= T | °+C(TT)-CT2n-T-'—,, o (4.23)
. p T p ) T - .
—~ o [o] [o] [o] Ow ¢
\43&.? : *

where h is a response function such that h(l) = 0 and h'(l) =1, whlch
Ve i .
for | J- l| <« 1 is approxunated by J% The entropy is given by,
. W . r .

. . " ) . e ‘
1 . qu isentropicl,"defo.-on fsgom the reference state, it f%s from
.‘ equation (4 24) that ‘ : : 7’ - . - .
Fal vé | o L | -
v akh(J) L, T ‘ e * L
. R AR N S PR
. . Do o . T : SR 8
:& \ : ’ . . o X i o N . - * .
wﬁ -‘ ot : - . a Toh(J) - . __ . \ )
. : T - ’I‘0 - '1‘0 exp [ﬂ : --——r'—ﬂ-—] -1y » _ (4.25)
Cow \ . B o r ?b . m b ’ . * it h .
L& . where B'= p/(pyCT,) and = u/k. A tyglcal value of  the non- |
diyme\’kional 'Suantityi"‘ or rubber 11ke solids 1is B - lO (Ch»adw1ck f.-
S 1974). B P
' e~ . o , coin
L % : ’»’3-'. ! 1’I'he term isentropic i,s taken to mean reversible ﬁ.dlabatlc An"
R ; adiabatic deformation of an elastic SOlld s isentropic except where
e _“" shocks occur , \ R R o o
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As the limit of incompreagibrl‘ity 1s approached that irs as n/k -+

0 with u held constant, h + 0 and. aTo/n {s bounded that ‘is aTo - O(r;)."

: 80 that for an incompressible soli,d L ! o L
) ‘1 » ¥ . 4 . : . v"l 34
LW T T » . - R
Am— g7 +C(T-T) -CT n 7—¢, (4,269 -
p_ T el T T . v !
Y [+ M o . . .- [e] " .
. % ; ' ;
o . ‘ . e '
- } : ' , L]
s-MvomI . | S GRNTRT
p T, - e T o ‘
o' o ‘ ,
Y 3 o - ) 0. B ot
For 'is*t‘ tropic deformation from the yreference state,
- Ty =Ty yexe | B . ._
< "
4 * ) T . " N
It _follows f,fbm equations (4.20), (4.27) and (4.28) that a fundamental R
equ‘ation’ of sitia’te for an incompressible strictly entropic elastfc sglid .
is. A ' o B ; T
. s, WY 4, [ L : oy
U CTo {‘fexp, [ c + ﬂp ] 1 } o K .Cf.29?
* ’ . ’ ) - ‘ . ~ ; ’@ ‘ . ' . - "' .“‘ 5
o '?or the prob].em of simple tension of an’ incompressible )
. - ]
hyperelastic string, which is considered in the iollowing chapters the
st:ra_ln energy function is given as a funct:ion of 1, so that
- ’ .. . ‘ /
N . ‘A ) ) . .. ' “." @"?’ .
- CWOY = WX, 1A, N, = S
where X is the stretch in the direction of the tensior. - The nominal )
‘ : N ‘ oo
‘_stres’;s is given by = .
! e
- ° [
- e e ! - ’
. &7_» 3 ’ * . ._




. ch. from the geference state, also
:‘.l‘.w ~1 . d % "i . e . ”, . ‘ ‘1}‘ »
E ( aU .'lb . v-‘ ti ) P . ) o . ‘ L}
P(A,8) = p 2= (X,8) , ‘ S (4.31.&; L
g e O aA | ‘ ' . ,:J'f:'
> . DO ] P , : ) . N!
: " L . RN

°’l> >

ﬁT)

P(Aﬁ

i . ;
‘w-u uhr'. . &,
iy ; o .
. . - . .

) ) " ’ ‘ ' 'b‘ " ’ T " ,},if"u‘”%‘;
T W . . . . v
P(A,T) = T—— TR s ; . Cawe - .(4'33) ,
or equivalently by,
dw. S W
- — 2 +8°2 °
P(A S) qx eXP ( c +.8 #] | | (4.34)

v

The entropy is taken as zero in the reference state so that for

isentropic deformation from the reference state, : N *
* m‘\ , o “(4.35
" cu"'P ﬂ‘ e o (4.35)
|3 ‘ .

'I'he esror resulting from adopting the isothermal relation (4. 17)

- ms ofﬂthe adiabatie relation (4. 35) for a strictl entro ic
y P

il . material .is investigated in Cnaptpg/V Also when a jump in X occurs
acrﬁav shock the deformatiof ¢ cewise isentropic with a jump in
";"'en’tropy across the shoc\l\.cﬁ if, the adiabatic rglation is adoptdd.
- According to equation((l; 34) this results in a change in th‘e isentropic'

CPLA relation as’ the shock passes. The error resultlng from neglect of

. ) L N " . - .

N

Pe

f
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t:h"‘e""beffect of the entropy jump on the P, A relation-{s also investigated
in dﬁhpter VQ |

igh

4 _ ‘ 1 v 4 .

.Ch"adwit:k and -Cfeasy‘ (1”9‘8'4) proposed a modified entropic elastic

i,

r.A h]

!
model where the internal ehergy fuw is divisible into two parts
u,z'a .
so that for simple tension .n g )

N

-

e ’ R
! . . >

g - Ul(A) " uzmgf (4.36)

wﬁ *fé‘» .
aa@

; 1?vgmﬂghe strf@%&y entropic mode1 prbp L8 y Chadwick (1974). ‘which was

deformation 1s through J. .- ;

& .
The swcific hea;’ht & co'nst o

..‘

(4.37)

uva{}so ‘ . e at, FOZRRL)
' . . ) IR e - ) :
. o as . Y ey “ '.;.;‘_‘ - , . ‘, .
c(T) =T |=]| . P ooy (4.38) ~=
‘ 3T} el B¢ .
. . 6’;“ [T ¢ . . " | - .
‘Equations (4.37) and (4.38) imply that the spegific ehttopy is .
_divisible into't“o parts, .
SOWT) = S10) + 82Ty L L | (4.39),
A smpllfied form of the free energy function for . a modifie*
entropic elastic material given by Chadw1ck and Creasy (1984) is,
N B . : q
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AT =& roy XL ey [ L1
P T T
o : [o] (o]
k T h(d) . |
v o8 s a k2 (TAT ) 4 AT (4.40)
o o o ,
’ &.n‘ : - J“'
i *i, o »*
fhere 0 < v < 1, f()) is“lp.respﬂhﬁe fuhctiba appearing in (4.1), and,
v : .
T ' ‘
Ag$T) = C(T - T) - CT 4n T ) (4.41)
2 : i .
K ]

~ The limit of (4.40) for imcompfessible materials can be obtained

bﬂﬁbﬁgﬁprocedufé outlined in the previous section, and is

3

internal eg;;gy.and entropy are,

e .
P .
. 4
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° B
§ '.’ _L T_ . 2 '_r__ - - .
- A(A,T) = p { f(A? T v £()) [T 1]} + AZ(T) . (4.42)
. o o o . '
) [ ]
The internal energy and entropy are, <
. ﬂ ) N .
U(x,I) = + C(T - To) , , (4.43)
. N ' po .
v g .
., and * ° ¢ ’
¥ T . !
S(A,T) = (1 - 7) + Cin = , S A (4.44)
o p T T .
. oo o) - ‘ '
.o _ ' N
respectively. : . ‘
) v .
.When v = 0, the strictly entYopic material is recovered and the
- [



.‘7,2
U(A,T) = C(T - To) , S(A,T) = '"T + C In %— , (A.’ﬁ,\“w
: } Po’o ° :

. g“ respectively, and U = U(T). Equations (4.43) are identical to results

qu;aiqéd in the previous section which were derived based on the

)
14

strictly entropic model proposed by Chadwick (f§74).

1 -*n
When v = 1, a piezotropic material is recovered and the internal

)

energy and &ntropy are, : .,
' A g . '
o uoaT) - ‘;’—,+ CT=TH ., " (4.46)
* ot 0 R ',{?“ - ’
L o ' S AR & .
L e . g; "
$(A,T) = Cin 1- | IR (6.47)
. - o~# & o
, o

» . ™
o

) ) ’ L .
’ '<§gﬁ; and, S = S(T). ‘A fundamental equation of state for a piezotropic

) : ‘e o PP
material“can be obtained from {4.46) and (Q.47);and is,

‘ ; Vo H i . v i . ‘
/ , * eV -’v}l-'.‘.»l . - " | ’ é)%
R \175 : | .
[ A ' S
T T sy = sl [ep Sl ' (4.48)
, o 35 Pc . .
. N
' For a piezotropic material, § = S(T), consequently an isentropic
’ : deformation ig idéhtical to an'isothermal deformation. From (4.31) and
4 48)" | ' ’ -
\
[ N ) i
o * )
. " M -
. PRI T v ,
v _a_I_J @ ’ - ® )
LR T e VA SO

P v
’ .

s “‘ﬁuutphe adiabatic stress-stretch relation is identical to/Jhé .

o
-

: . - o, L . -
isothermal stress-stretch relation. exefore, by'USlngfgg isothermal®

» ' L) - “a . C :

sol ing;the probZam for a piezotropic

.

. stress-stretch relation we are
- -



) ' e 73
material. Mechanical and thermal effects are completely uncoupled for
a plezotropic materfal. v ’
The Gaussian statistical theory of rubber elasticity predicts
gtrictly entropic elasticity (Treloar, 1975). However experimgg;al
data presented by Chadwick an& Creasy (1984) indicate that a mo;ified
entropic model with a value of vy in equation (4.40) apﬁroximately’0.85

is more realistic for most rubbers.



TR ';’Chnpter v

Slﬁszmninajnnmgna
; We consider plane motion of a hyperelastic string and obtain the
conservation form of the system of Lagrangian governing equations and
the correeponding form with dependent variables u,v,A, and #, where u
and v are the‘xl and X2 components, respectively, of the perticle
velocity and § is the angle the'tangentato the string makes‘with the x;
‘axis of the rectangular Carteeian coo;einate system Oxp.  The dependent
variables for the system of equations derived by ﬂeatty an& Haddow
(1985) are r\u A and ¢ where T and v are the tangential and normal
components‘ respectively, of the p‘.‘ﬁcle velocity, however, these

)

dependent var&ables or combinationg of them, are not convenient for
%

“*determination of a system in conservation form. To apply numerical

P ”'\"‘3_, 7 . -1

E)

: techniques it is desirable\ﬁ: hpve the equations in conservation forzu
We consider a perfecti9 flexféke uniform hyperelastic string whose
ref%rence configuration is takenuas\the unstressed natural
configuration at temperature To and occupies an interval of the X1
axis. The x] coordinate of a ﬁarticle in the reference configuration
is denoted by X and at time t the perticle is at place X = E(X.t).
The problem geometry is illustrated in Figure 5.1. ‘If,s(x,t)
denotes the ayc length, measured from a fixed‘point X = x(Xo,t), in

-

the deformed coqjiguration the'stretch is given by - R A




Figure 5.1

.Problem géome try

)
4

(2



and {t follows that
. ;’1,. . !

.

, wi}coan au agx-tnog - 5 2
. ot,, "X ‘ax' 3.2)

g
where § -'0(X.CSA

The string is assumed to-be perfectly flexible consequently the

~

direction of the tensile force P per unit cross sectional area of;thaw

. 4
-

string in the refergnce configuration, is tangeneial to the strings We
are adopting the isentropic approximation and P is expressed as a

fdhcﬁion of A oﬁly. The non-zero components 511,512 of the nominal

v

stress tensorl are given by ‘f r
W '
S11 = P()A) cos #, and 512 = P()) sin q

[N

Consequently the Lagrangiap equations of motfon, with body forces

neglected are, o

a (P()) cos 0/po) su a(P(x) sinuﬂ/po)_;

aX ac '’ ‘ dX ’

3

o

QD
r

|

(5.3)
The systggfof equations (5.2)7gnd (5.3) 15'1n conégfvation'form and méy

o

be expressed in matrix notation as " o . T
: . : \\ : ¥ -

3G 3H (G) o _ )

- 9 , . . ‘ v

Fo . (5.4)

kd . iy »

lHere the nominal stress 1s the transpose of ' the first Plola-
Klrchhoff Stress. . & .

s
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,"ﬁvf-where G L (Xcos 0 X‘sih‘alu V)T' H -_- (u v, P cos’ B/po,;P sin o/po)T ‘;;;
. PN
‘and a Superposed T denotes thel transpose A convenient non- v
B A }A\“ ) .. 1, ) -
1”cqnservation_foqE‘obtained from equation'(S.&)%is: b
66 - .9G R T ) o
.5E5+ E”Ei -0 . T T B ' ' (5.5)
‘,where.thetmatrix B i“BH(CS/éG_is;
e . - T T & :
[0 0 -1 01 A
ool 00 0 | -
By =4 R | f T ’ (5.6)
e e 00 O | L
L -C c ;0 0 J N
» 21 ?2 R .
- _ 14 . .2, P .2 ,. [ A
c - [ — oy cos’f + — sin 0-] ) B S A
11.. Py dA:_ ‘ po} | _**~i> = /,
1 dP ’ ) . . /’/‘,
Cop = [ > dr sin™f + —y cos 8 ] , ‘ J
(o] . O / 2
v ';\ . 'P,O pO - ; ,,'/ ‘
o 7 -
The eigenvalues of B are +cL and CT where e E i/i

e o

e - AN Coy ™ — . et : } ) / 7 \ “.‘7)

If the adiabatic approximation is adopted P varies with A/only, in

‘regions of the (X t) plane which are shqck free v Yﬂ

System (5 5) is strictly hyperbollc if c2 > 0 c% > 0, and CL v

cf.- If the system is strictly hyperbolic there are/four distinct"

RN

familles of characteristiCS with slopes +cL and +¢T in the (X t) plane

i
/

. : C/
B ’
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IR ;f.ﬁ' - ] - , sf’,‘ v" ; ) I . : o o v-'w‘s \

‘so that A and 9 aﬁe propagated with Lagrangiaﬂanqve speeds °L and cT,

- respectively, along these characteristics.‘ The terms longitudinal and

;;;’fh"i\‘ﬁ\gansverse wave speeds are used to descxibe cL and cT, respectively

NG

VR ' :
For the«strain‘energy fun:\iqns considered in this study, c% > 0 and c%
\ .

> 0 for a11 P > 1 however, CL =.eT for isolated values of A > 1,

\\

, Relations along thewchntgcteristics are o tained from
°-chnatac ‘ : om

' / CT de B > ST -
' where a =%+ ¢y, * cr and 2 {s the qorrespondiné left’eigenveetor of ‘B,

this gives , .

o } ‘7 - ) (C . az) ‘ : . o (C”; d2)>
e 4 eoss) L 11 T %) a Jlaw M1 %) gy
o ; e (Xcos#d) o dt‘(Asiné)ﬁ a at + P ac 0
i 21 R , 712
\\ ) . : N
TN on X _ o R
e g T e :
or o - .i}
I o du | dv
o R T cos ¢ ac " sin, § ac 9
dx Cdu PN | :
3 EE + cos-?‘ag +.sin 6§ dc = 0 on (5.8)
dé du o dv /
cTA 55 + sin a.aE - cos §° FT 0 on. ,
. _ AR ‘
- '
' _ dg © o du S dv dX . E
cTA ac - sin ? ac + cos ¥4 ac 0 on g?~- - cT.
',‘, ‘ Sy The use of these relations when there 1s 1nteraction between the

CL and °T characteristics is almost intractable Collins (1967) does



present some solutions for the analogous problem of“propaéation of.
transverse waves in. an incompressible € astic material when there isu,'
interaction however he makes considerable approximations which .are ‘not l":
applicable for the string problem !

A further conservation equatlon- the equation of conservation of
energy, can be obtained from (5.2) and’(5.3) and the relatlon (4.38)

' ' ‘ . °

N O o a
aU ' ¢ © e o :

where U(A S) 1s the 1nterna1 energy per unit mass and S is the specific

entropy. Wlth the. adiabatic approximation this equation becomes

~

‘ ,mg_g { po(—“——‘z“—"—i +pU } - g—x {‘p(gcoso + vsing). } -0 (5.9

If we-adopt the isentropic approximation,‘(5.9) is nqt‘required.

5.2 Discontinu’t Relations

-

~ Jump relations for discontinuitles are given by Beatty and. Haddow
(1985) In this section these jump relations,are considered in a. xy,

di‘ffer’ew

discontinuity of either A or 4. PR

N

and in more detail. We use the term shock to denote a, .

: ‘ : , : 4
. Since system (5.4) is in conservation form the jump relations-

across a shodk are giveﬁ bY" N K

v[é] - S B (5.10) !



g exPresstonj/ffy v2 » _g o oo f. e EEER
: . . , : - ' . i S o

.

prre the square brackets indicate the jump across the shock of the '

losed quantity, and V is- the Lagrangian shock velocity TwO .

L

V2 - [c% Acos&]/[Acos&], V2 - [c% Asinﬂ]/[Asiné].,“ T o -

‘. o S

~ can be obtained from (S.lb). ‘These are compatible if and only if, ., o

[N

‘either

2 ' : 0
(Asing)* " (Asing)" 2 A , e
()\cos&)+ (Acose)-‘ or {c %’ 05 . ‘ - (1D

4

where the superscripts + and - indicate values ahead of, and behind the
: *

shock respectively It may be deduced from (5.11) that, across a .

v .’shock there are three possibilities 0+ - 8" and [cz] “ 0, 0% = b t =

-

. - v

and [c2] » 0 6t = §- and [c ] . 0. For the present problem the = i
pOSSlbility €+ -ﬂo"t x is not physically admissible so.that a
dlscontinuity with both c% and 8 discontinuous is not po sible.' In
general [cz]ﬂ- 0 1mp11es that [A] = O, however, if cL(Ac) =~T(Ae) for ’

A - Ac, there is a set, Q, of pairs of values of 1, where

+

. .4 . . . .
8= (A1 22X <A <A, ep(A) = er(A'1)). o ‘

If there is .a jump in A and (A+ A Yefl, a Jump in 4 is possible across

the jump_in A. Otherwise a Jump in 6 cannot occur across a jump in A

: and vice-versac If [c2] o O there are two p0551b1e shock velocities

Vi, and. VT, the veloc1ties of propagation of discontinuities of A and 4,

respectively. " It then follows from (5.10) that there are two sets of

‘discontinuity relatioﬁships,' ' . o ,
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A ’ ) ‘ L.
\ . o .- . . .. , ‘ ) - ) : . X .
VplAlgosd = - {u] , - Vp(Al@nd = -[v] , . . (5.12)
WVElu] =\- [Pleosf/pg , VLIV] = - [Plsind/ps .+ ~ (5.13)
( R o o
, NpA[sing] = - [v] , C(5.14)
. Vrlul = /Plcost)/po, VT[v] = - P[sind]/py . O (5.15)
Iﬁ follows fromieﬁuations (5.125 and (5.13) that f" . B o
‘. Ly
' T N12 _ cor A
vo-+4 LB L | .
L { AR } . D 318
o SO ‘ , 5
and from equations (5.14) and (5.15) that
‘ R ; ' ]?/2 . ] - )
voesd 2L D
T ) o : - V ERCEETN
. . o i . . )

Comparison of (5.7)9 and (5.17) shows that VT'- 1 'ct consequently a /

discontinuity, of § %s propagated along a characteristiec.

. ;i - -
- A further jump relation, . '

(u2 + v2)  ‘ . o . -
-V [ pQ————E———— + poU ] - - [ P(ucosd + vsind) ] : o (5.18)

N

is obtained from (5.9). Since a discontinuity with both A and §

“discontinuous is not possible whenA[c%J » 0, and U does not depend

‘ ekplicitly;on 0,'(5.18)_g1vés

Ve [ .oigffg_xal ]‘_ - [ P(Pcosa + vsing) ] ., o (5_19),



" ..

u

across a jump in 0 and with V replaced by VL holds across a jump in A,

. \

' If the. isentropic approximation is edopted and an isothermal stress-v \
stretch relation used (5.18) with peU replaced by W is not satisiied
across a jump in . ) ‘ ’ T _ B

When [cz]’- O and [A] » O, [#] » O, then Vy = Vp = V and there is

oply one set of discontinuity relations

V[Acosf] -_-[u] V[xsino/ v] | - ~(5.20)
Viu) - - [Pcoso]/po TVv] - - [Psinﬂ]/pc N (5.21)
T pt 1172 pm 112 4 o
where V = t,[ +] =t { _] . ; ;‘
o S j L ' :
5.3 xceptional Co d t and Ge in neari t

0 o -

For the string problem considered in this. chapter there are in

-

general four: families of characteristics with slopes +cL and tcm. Ve

: + +
will describe these families of :;:racteristics as the cL and cT v
characteristic fields, respectively - -
B According to Jeffrey (1976) a characteristic field is genuinely

nonlinear if Vge .- r =0, where, for the string problem, VGc‘ls the row
4 , . =
vector : . K

]\ ac 3c dc. acl .
d(Agosd) ' 3(xsind) ' du * av| °

_characteristic field. If Vge * r = 0, the characteristic field is said

[3

to be exceptional, that is not genuinely nonlinear.

82
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‘It*can be shown for the string prob-l&m that

. ‘ - -« s . , ’ - i SR ' ," , . . P ‘
- - N - . . :'!iﬁ. ” : ) ‘
Veer * Ep = Voo * Ip = O §ot e
4 - : ‘ K¢
VT:’ T4
and ‘ .

\‘ 3 + t
- VGCL "rL “ 0, f-VG

fad

SL‘.'rL » 0,

H &

. + + . ’ . -
where r7 and r, are the right eigenvectors corresponding to tcr and *cy

. . ' ) -+ *

respectively. It follows the ci are genuinely nonlinear and the cT
characteristic fields are not genuinely nonlinear. :This means é_

xﬂiscoﬁcinuity of # can propagate along a characteristic and a smooth

solution for # cannot evolve into a discontinuous solution. Also an / {

-

initial discontinuity of o’propagateé as a discontinuity.

5.4 Similarity Solugﬂons

v

Similarity,solutions, valid until the first refiection, can be

*

obtained where the dependent variables are functions of Z = X/t.

Introducing the independent variable Z into the governing systeﬁ of
¢ * ' ’

: L . ~ .
partial differéntial-equatiqns in non-conservation form (5.5), a system

of‘g;ainaxy\gifferential equa;ions, \

~ .
- .

oy

oo 4 ‘ ’ | |
(B'- 2I) g; =0 - (5.22)

[3

»

where’g is given below (5.4) and B is given by (5.6), and Iis the

’

*

identity matrix, is théﬁ obtained. A non trivial solution to system

(5;22) exists, if and only if 7 - % cT or Z = *cr.

L3
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" B
Solutionl lntilfying (5 22) and tha jump rclationa connist of
/

centerod .simple waves and/or nhocks ' Since |Vp| = cT and a

,digcancinuity of s propagatsl Along a8 churacccriltic, it followt from

- the discussion in section 5.4 that the initial dﬂscontinuity of 0 at

-X=0 cannot result in'a centered simple wave but propagates as a
. i *a
g disconcinu ty. T - !

A

sss_q;mm

First we cpnsider the special case with § = 0 and v = 0,

’V(X,t)e{(X,t):O <X <L, t> 0}, that is siéple tension of a string
'which occuples the iqtervéli[O}L] of the xj axis, in the undeformed
natural reféfence.state ét teﬁperature To. It is fixed at X = L and is
subjeéte@ toQan initial tensile‘fprce, at X = 0 as shown in Figure 5.2

(O

so that the xj coordinate of a particle is given by,

Xy f;L - AO(L -X),

‘where 1, 2 1.vIniti#1 conditions are
u(X,0) = 0, A(X,0) = A, , o (5.23)

and boundary conditions are

. P(0,t) = PfH(t) + fOH(-t), u(L,t) =0 , (5.24)\

where P, = f()o)qand Pg(Af) = 0, which means the tensile force at X = 0, -
is suddenly changed froméPo.to Pg.

Similérity solutions which are valid until the first reflection
occqpé at X = L, are readily obtained. | .

It folloﬁs that the governing'system of-partial\differential

equations (5;4) is reduced to a sysﬁem of two equations,
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"Figure 5.2 Prob{£> geometry-of simple tension problem.
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. ' ,~
A, . .
ac " ax - (5.25)

o SN/,

8t 33 -0.

If the systcﬁJ(S.ZS) is hyperbolic the problem involves the propagation
of longitudinal waves only, and there are two distinct families of
cﬁaracteristics with slopes *op, in the (X,t) plane. It tdgn follows

from equations (5.8) the relations along the characteristics are

A
I3 dX\

u - J cL(q)dq = const on dc - CL’

Ao :

‘ _ ‘ (5.26)
A
dx .

u + [ cL(")d”‘- const on ak = oL ‘

A

o

Similarity solutions, valid until the first reflection can be
obtained as outlﬁﬂéﬁ'in section 5.4, however for this problem the
system of four ordinary differential equations (5.22) has been reduced

to a system of two equations, where

6 = uwT | T
and
)
0 -1
B = -1 3P()\) 0
T P aA
Po .
The jump relations across a longitudinal shock follow from (5.12),

(5.13) and (5.18), .

RN T \\ , " | —



[3 ' 0
. . \ ‘
VAl = - [u] , V(u] = - [P)/p, : (5.27)
u2 o
: VL[ Py 5 * pOU] - - [Pu] , (5.28)

since § = 0 and v = 0.
\
It is convenient to introduce the following non-dimensionalization
scheme, which is adopted in what follows in this chapter,

(o] T [¢]

q _ c t p U _ _ S )
P R Tl vl B il c (5.29)

>
[
i<

where q = (u,cL,VL)T, Co = c(l) = (3;4/;)(,)1/2 is the“wave speéd for
infinitesimal amplitude 1ongitudingl waves propagating into an
undeformed region. Henceforth we use non:dimensional variables given
by (5.29) 'but omit the bars. We now present two solutions for loading
of a string and later consider an unloading problem in connection with
thermodynamic considerations and also in connection with a reflection
problem,i Isothermal stress-stretch relatiahq are used for the first

two problems and the erroﬂ involved in using these relations is

investigated for the unloading problem.

5.5.1 Moomney-Rivlin String

The non-dimensional longitudinal wave speed obtained from (5.7)y

-

and the isothermal stress-stretch relation (4.19) is,

”
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) . 1/2 } . )
‘G, = 1 ‘/Z— + 3('1'-0)4\-1‘], ', 7 : C (5:30?" .
! L 3 & x3 s R - - - A

- . . ' Yy
Also from equation ( (29) it can be shown that d2P/dA2 <0 for0sasx< ,

lﬂ consequently no sh@ck involving a discontinuity of A {s initfated at

X=0,t=01f P> P, vhich is the cage we now consider.

The solution ob;Lined con;istu of the solutions inshree regions
of the (x,t).plﬁzfﬁgnd are bounded}b& characéeristics as shbyn in
Figure 5.3. The ;ziution is valid until the first reflection. Region
1 is the undisturbed region of uniférm state ahead of the wave front
which propagates with speed cy(A,); region 2,repge;:nts a centered
simple wave, and region 3 i{s a region of uniform §tate’. The solution
satisfying (5.25), the diséontinuity relations (5.27) and the initial
and boundary data (5.23) and (5.24) is as follows:

X :
Région 1. T2 cL(AO).

A=A, u=0.
[+]

Regipn 2: cL(Ao) P c b cL(Af), . :

_ ) ‘ (5.31)
A .

-}tg- cL(A), )- - J CL(n)de- ¢

2o -

Region 3: cL(Af) >



Figure 5.3

5
S/

Similarity solution for simple tension loading problem

when Pg > By, valid for Mooney-Rivlin strain energy
function, and 3 term strain energy function when Ay > Af >
Ao 2 1. The solution is valid for tep(Ag) s 1.

<~
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&l:and the constitutive rélatiOn (4 19) Equations (5}31) may be obtained
from equations (f 5) - (5 9) in Beatty and Haddow (A985) when § =
¢ - 0 ; The above solution is valid for tcL(Ao) f .

5 5.2 Three Term Strarn Energy Function } DT
— . |

B The nondlmenslonal.1ongitud1na1 wave speed obtained from (5 7)1

:rrand the isothermal stress stretch reéation (4 16) is,

.
=

' : 3w, : a,-2 . a, ' --a./2§2 | o
e, =4 2 Slla- T[] - (5.32)
R e G ) ER N P e

-

.‘~where the aj and pi'are givennby (4.18). e
3 SoluETbns for Ai > Af > A 1 where Aj 'is the stretch at the

1nf1ect10n pornt as shown in Flgure 5. 4 are of the same form as those
presented for the MOOney Rivlln string !
v
The solution 1n the (X t) plane is shown in Figure 5.5, for A >

. RN .

Al and AT > A 1 where AT is the point of tangency of the tangent

| whlch passes through Af as shown in Figure 5.4.  This solution consists.i"

’

of three regions

o 5"f' L S o
Regron lf. t 2 oL(Ao), AR R

©

A=Ay, u=0.

(5.33)

’;:Regfon 2:_ c (A ) z.

'rle

L(" i
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- . 'Fig}ire 5.4 '-Isc;thefmal_-stress-s_,tretéh relation vfor Ogd’én's 3 térm” }
o .’/ - strain energy function with parameters (4.18). — ot
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guré 5.5 Similarity solution for simple tension loading problem
& “. when Pg > P,, valid for 3 term Strain‘energy function when
Af > Ay 'and Ar > Ag = 1. Solution is valid for '
‘ter(Ag) = 1. S . o

b

- [ PO—P()|%
. »t»: 2 o E TR |
i ? o 1
X/C, i
\.\’; ‘ - R

Figure 5.6 Similarity solution for simple tension loading problem
C ~ when Pg > P, valid 3 term strain energy function when Af
> Af and A\g = A7 = 1.  Solution is valid for. tVy, <1.

LI



Reg;?n 3: cL(AT) < T > 0;

A= Af ;‘ u = uf .
‘In Figure‘S.S; Z =V -'?L(AT) i§ both a«éharacteristic and a

longitudinal shock, wheré

v

e 12
[ (POp) = P(AD) ]
VL - :

1(5.34)
(g - AT? :

_ Themfiﬁal stretch Af is obtained from boﬁndary condition (5.24)i énd
thé cbnstitutivé relaﬁion (4.16). The abové solutioq'iﬁ valid fér
Ctep(Ag) = 1.
‘A ibngitudinal shbck invo1ving‘a discontinuity ih Ais initiatea
at. X = 0, t.- 0, ﬁheﬂ‘kf > X; and Ao‘Z_XT =2 1. The soiuéion ih the
:(X,t) plape’is éhowﬁ in‘Figure 5.6, and COﬁsists of two regions of

- .

'ébhstant state separated by the shock Z = Vi, where

—_— -

L

T

[/ (BOp) - PO ]1/?

Gp 30 (5.35)

The final stretch Af is obtained from boundary condition (5.24); and
the constitutive relation (4.16), and uf is qbtaihed from (5.35) and

S

(5.27)1.



The similarity solution is valid for t VL s 1 however the
3? o solution after the first reflection can easily be found and is ‘
L;x"‘izﬁ} : " . ’ s
T - indicated in Figure 5.7. After reflection, there is a reflected shock K

- and the stretch after reflection is A3 and Ay > A2 - Af The incident
)

AL : ,
and reflected shock;velocities at’X = L are denoted by.Vfi) and V{r)

respectiyely. It follows from the jump relations (5.27) that,

.
s T 7 o 0 o
\ PO - PO M2 (200 - a2 :
» L A Ay L. ,\3 YR A
"Ef )
"‘??f_‘ei u, = -vﬁ”-(xz - A - vér)(x3 - A (5.37)
o j‘“ ‘ Y \’? - o v | .
eh since u; = uz = 0. Equations (5.36),%and (5.27)2 give
- JCYORRE 16990 LA - |
Y 71 Ay - %, (A 32,1 . S ~ (5.38)

If Al and 1 are known, up is obtained from (5. 36)1 and (5.37)y and A3
is obtained numerically from (5.38). 7 The solution obtained is va11d
for t < 1/V(1) /V(r)

An unloading wave occurs when the reflected shock reaches X = 0 at

t = l/Vﬁi? - 1/V(r), resulting in a centered fan of(cheracteristics.

' 5.6 Estimate of Validity of the Thermodynamic Approximations
In section 5.5, similarity solutions are obtained using isothermal:

stress-stretch relatibns rather than those for adiabatic'defcrmations,

also the effect of the jump in entropy across a shock on the . B
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Solution with refiection for simple tension loading .
problem when Pg > Py, valid for 3 term strain energy
function when Af > Aj and Ay, =2 A 2 1. Solution is valid

for 0.5 t s 1/v{1) - 1 v{0),



constitutive relationships is neglected The errors resulting from

these approximations are. evaluated for unlo&ding of a Mooney- Rivlin

o

| string with a ; 0.6.  The boundary conditions are given by (5.24) with
Py > Pg so that Af < Ao, and results are obtained for Ao = 1, X = 3.5,
that {s the tension force at X = 0 is suddenly removed . Thé'similarity"
solution valid-until the first reflection, is considered and it is | \

convenient in this discussion to denote the initial and firal stretchesp

by Al and Ay, respectively, rather than A, and Af, and for other

variables the subscripts 1 and z/deﬁofe the initial and final’ valuei//{a__f—

respectively Since d2P/dA2 < 0, an unloading shock is initiated at X .
=0, t = d The entropy Jump and c rresponding temperature decrease

across the shock are calculated for strictly entropic and piezotr?pic

'vmaterials which are the two, limiting cases of modified entropic
% elasticity, as described in Chapter Iv.

5.6.1 Strictly Entropic Material

4

‘The constitutive relgtion,

P -% e+ (1 - aa by - 273 exp (S + 3;(1) , (5.39)
N . ’ : a !
for a strictly entropic material is obtained from (4.34) and (4.15),

and the internal- energy (4.29) is, \

. B ) . “‘ /
U(A S) = ——5 (exp(S + 3W) - L, (5.40)
‘.

and U(l To)'- 0 where. T, is the temperature in the undeformed

: configuration ’ . ' : a8
B - &

The jumpnrelations across the shock’are.from (5.27), (5.28),
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VLIAL = - [ul, V[ul = -[F], (5.6

’vL [ ‘2*-3;+ U] - -[Puj \. | ' o (5.42)
.

We will first assume that the string is stretched isothermally .
fromlits undeformed configuration to the 1nitia1 stretch Al = 3.5 and
then released. Since, for an entropic material, the internal,enérgy
can be expressed as a function of temperature alone, it follows that Uj

= 0. Also, for an isothermal deformétion to an initial stretch Ap,

' y
1 o =1 <2 .
P1 - 3,{_a + (1l-a) Al.(A} ',Al )} . (5.43)
. + é*‘ﬁ . o :
‘ " T i
Fifm Jump relati??s (5.41)7§nd (5.62)3 ‘%-ﬂﬁvwi _
) ) ,
. -u,
VL@ D=y, Uy
since A2 = 1 (Pg - 0), and uj. = 0, so that
] . 5 o
-Vi' I )
Uy =5 1 - 12 | | (5.44)
where
Pl 1/2 A | -

The ingernal energy Uz is obtained from (5.43), (5 44) and (5.45),

Also, from (S 40),



U, = 55 (exp (Sp +3800S - 1),

~ - and thérefore s.olvi’ng for Sy,

Sy = 2n(3ﬁU2 + 1). Y (5.46)

Al

Also since U; = O,

S] = -38W(A1). : ' Y (5.47)

# . : ) : . . ,

The entropy jump across the shock obtained from (5.46) and (5.47) with

g =103

The temperatufe Ty, obtained from the relation T = 6U/8$(A}S) )
(5.40) is = R : /Rﬂ&\\\\\_

T2 - To'exPi(SZ) ’

, is Sp - Sy = 7.0597 x 10°%

- and therefore the corresponding temperature decrease across the shock

s,

“‘?2 - To - To{exP(SZ) - 1) = -0.894 °K ,

if we take T, = 293°K.
Next, we will assume that the string is stretched adiabatically
© from its undeformed configuration to the 1nitia1 stretch A1 = 3.5, and

then released The stress corresponding to the stretch A1 is,

-

P, - % {a@ + (1-a) Ail)gxl - Aiz) exp(38 W(A). - (5.48)

The internal energy at the initial stretch A1 is non-zero, and is,



9

Gy el amop . (5.49)

~ The jump relations.(S.AI) and (5:423-are then

K3
NN

VLA s D =y,

+ U2 - Ul' (5.50)‘

',“e velocity ug is obtainedﬁﬁrom (5.48), (5.45) and'(S.SO)l, aliowing
H";4;f o be obtained from (5.49) and (5.50)7. The entropy So. &t the final
stretch A9 is then obtained from (5.46), and the entropy jump across

3 '

the shock again obtained for 8 = 10 °, is

Sy = fn (38 Uy + 1) = 7.0597 x 10°% |
since S7 = 0.

1 5.6.2 Piezotropic Material

The internal energy of an incompressible piezotropic material is

(4.48)),

ULS) = W) + 35 (exp S - 1) .

(5%.51)
where U(l,To) = 0.

For a plezotropic material, the regults are the same regardless if
the string is stretched isothermally or adiabatically to the initial

stretch A7 and then released. At the gnitial 5tretéﬁ’k1, U = W(xp)

and froa ;he Jump relation (5.50)9,
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where u?z is obtdined from (5.48), (5.45) and (5. 50)1. The internal

energy evaiuated at the stretch Aj is,
a —

1

Up = 35 (exp s, - Lo

3

‘since W(Xp) - 0. It follows that the entropy jumﬁ across the shock is,

S, &.n(38 U, + 1) = 0.00071 ,

-

for g = 10-3, since S; = 0. The corresponding temperature increase is,
T - To - 0.208218 °K ,

if we take T, = 293°K.

It is intereeting to note that for the strictly entropic meterial
the temperature decreasee upon unloading, while for the piezotropic
material the temperature increases upon unloading.

It is evidont from the analysis in this section that the.
thermodynamic eifects are small, however it is interesting to consider
some further numerical results for the unloading problem just
considered. In Table 5.1 the valﬁhs of cL(Al)Land cL(l) are given for
the various cases a¥ong with the vaines of cL*(l) where cL*Ql) denotes

‘the wave speed when the’ entropy jump across the shock is neglected

that is for the isentropic approximation
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Table 5.1 Comparison of wave speeds for strictly entropic
and piazotropic'canel.

Strictly entropic - isothermal stretch to 1y

-

~ - * *
cL(Al) = 0.4626, cL(l) - 0.9985, cL(1)<- 0.94981

Strictly entropic - adiabatic stretch to A1

3 ) « *
Piezotropic
.
cL(Al) - 0.4604 cL(l) -1, CL(I) -1

In Table (5.2) a comparison of some results for the‘sfrictly

entropic case with adiabatic stretch to A1 and for piezotropic case is

given. *

Table 5.2 Comparison of results for strictly entropic and
piezotropic cases. Adiabatic stretch to ij.

Strictly Entropic Piezotropic
Py - 0.8170 : 0.8139
Vi = 0.5717 ' 0.5706
up = 1.4291 1.4264

Use of the piezotropic model is equivalant to considering a purely
mechanical theory and using the isothermal stress stretch relation.
There is no difficulty in principle in using the adiabatic stress N

stretch relation along with the isentropic approximation or even with
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the adiabatic approximation with the effoct}on the stress-stretch
relation of the cnt:!‘apy Jump across the ql;\ock taken inco account.,
HoweQer_the above -results indicate the additional complicgtion is not
Justified for the range of stretch in the problems considered in this
thesis. Consequently the results presented henceforth make use of the
isothermal stress-stretch relation. Justification for the neglect of
heat conduction, that is for the use ofbthe adiabatic approximation, is
striétly intuitive, namely that rubberlike materials are relatively
poor conductors of heat and the example Just considered indicates that
temperature gradients are likely to be very small for the problems
considgred. —

5.7 Reflection Problem for Unloaded String

The unloading pr;Llem considered in fhe previéus section is
extended to consider reflection at X = L, however‘for the refiection
problem we take A; > Xz > 1, that 15 the unloading at X = 0 is not
compiete. The solution of this problem is used in the next chapter to -
interpret certﬁin experimental results and is of thé‘g{me form as was
discussed for the loading problemkyhich is indicafé&v{n Figure 5.7,
After reflection there is a reflected»sho;k~and tge stretch after
reflection is ‘A3 and A3 < 3. The incident and reflected shock
velocities at X = L are denoted by Vﬁi) and Vﬁr) respectively. A

purely mechanical theory is now adopted and it follows from the Jump

relations (5.39) that,



: - . 172 ) -
v - {"‘*x’ ”“z?} i {’“‘3’ iy

L Al - A2 L A3 - Az

sl

uy = ‘Vx(,i)“z - A - v{‘)% = A)

since u) = uy = 0. Equations (5.50)7 and (5.51); give

. | 1/2
o {P(A3) . P(Az)}. [‘\ _ A]
2 Ay - A, 3 2

}1/2
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7(3.32)

(5.53)

(5.54)

If X1 and Ay are knowﬂkwuz is obtained from (5.49); and (5.50)7 and A3

is obtained numerically from (5.51). 1If the value of i3 obtained is

less than 1, no longitudinal reflected wave is possible since the

string is assumed to be perfectly flexible.

5.8 Application of Godunov's Method

The similarity solutions presented for the simple tension problems

are valid until the first reflection occurs at a fixed

end.

Only for

‘'special cases such as the loading and unlqeding problems discussed in

By

previous sections is it possible to determine exact solutions after the

first reflection. In general, the method of characteristics seems to

be unattractive after the first reflection consequently it is desirable

to investigate other numerical methods. Numerical techniques would "

also be a useful alternative for problems with boundary. conditions that

" do not give rise to similarity or simple wave solutions.

Godunov's meqpod (Sod, 1985) Qas developed for problems in gas

dynamics. In Godunov’'s method, the exact solutions to a sequence of

A



local'Riemann problems is used to obtain a first order accurate upwind
finite diffe%ence method that is monotonicity preserving

“he cqnservation form (S 25) of the governing partial

if'differential equations, for the simple tension problem in terms of .the

‘ g"non dimen51ona1 quantities defined by Qﬁ 29y, T

el = T O . , v o .
69 - GH(G) o " o ' . c . .
Bt + .‘ax_“j’o , N . . . I A (5.55)
N . ) # ‘ N - .
&

,-mhere Gv- (X‘u)T,;and.H‘i -(u P(A))T' In Godunov s method the 1n1tia1

{conditlons are. considered to be piecewise constant functions of - X

fyygn(X);ﬁ’g?,ﬁ ’Xe'i;/z', e T i.: L (5.56)

R whep ;172 - o - 1/2)Ax 1<} +‘1/2)AX] | On each‘interyal 15 -

. [jAX (J+1)AX], equations (5 55),»(5 56) define a sequence ‘of local

,R1em§§? problems and the 51milaxity solution for the Riemann problem

[ -2

- on the interval Ij, is denoted by

K o :9?+1/2.f E(O'S?' g?+i)c, Xeljj
If the CFL condition, u <1 where Vo= B At/AX is the Courant
4‘number and In the numerically greatest elgenvalue of B is satisfied
5then the waves generated by the individual Riemann problems w111 not 4
1nteract Because of the nonlinearity, b changes aq each time step,
consequently,‘it is necessary to adjust At at each time step

o Solutions are presented for the ‘neo- Hookean strain energy

function, and individual Riemann problems are. somewhat analogous to. the

‘w,
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'shock tube prdblem described/by Whitham (1974) . For the problem . '
‘Lconsidered there are four possible similarity solutions on each

-

ﬂinterval Ij, as shown in Figure (5 8)

" The solution shown in Figure (5. 8)a occurs when A > Aj , and

j+l

;consists_of a centered fan and shock The solution G +1/2 is obtained

‘from the following system of non- linear equations,

- ooon . o S : - '§y4}%
Sy | e M) dkuf-0, \ | (5.57)
' A , : ; o . .
v [hm n } n ‘n ‘
VL“[AJ'«*1/2 ) *:Jﬂ]— . ‘[“j+1/2 ) “J+1] "0 (5.58)
n n ' n ’ n . K .
' VL[ujfl/z i “j+1] ) [Pj_+1/2' ) Pj+1] =0 ' | (5.59)

vwhere (5.57) applies in the centered fan, and (5.58) and (5.59) are the -
jump relations across the longitudinal shock, Vi,. For the above
solution to be admissible, the entropy condition must be -satisfied,

S

“which requires that

CL-[’\j+.1/2] 3VL>° [j+1] R

. -

When A?+1 <1Ajn,tthe'mirror image of the above solution occurs, as.
shownvin/Figure (5.8)b. When the entropy condition (5.60)ffai1s.for
solutions shown in Figures (5.8)a-or (5.8)b, then one of.the remaining
two solutions shown in Figures (5. 8)c and (5.8)d are possible and
‘~j+1/2 is obtained in a similar manner as outlined above.

The solution is advanced to the,next time step by,



n+l g n At [.n n o ' ‘ ; | o ‘
: Ej = EJ [ j+1/2 i 53-1/2] I ©¢-en .
where cj+1/2 - R(O cJ J+1) and- u§+1/2; H(Gj+1/2)

i

"Results are présented for a neo-Hookean materikf?ﬁith initial"

conditions, o
u (X,0) = 0, : ' A -
CA(X,0) =1, -2=X=<-0.5 and 0.5<X=2, | (’?3.62)

= (1 + cos 27X), -0.5 <X =<0.5

"and the string is fixed at X = 2. 1Initial conditions (5;62) are not\
‘physiéally'realistic and are used as a nuﬁériCal'example,only, Until

the first reflection occurs at the fixed ends, .the numéricalisglution

can be compared to D'’Alembert’'s sélution of the classical wave y
equation.
ééduﬁov's'meghbd was déveloped fpfvinitialvvalﬁe problems, an? to
.apply the boundary_c&nditions at X = *2, the.methoq of images is used.
Numerical results are sbown in Figures 5.9 to 5.11. 1In Fiéure
5.9, resul;s,are’shéwn before the first réfleccioh occurs.. vThe waQe'
separates acéﬁrding‘fo the claséical wave;equation, howevér ﬁue ﬁo-;ﬁe
nonligeariﬁg,the wave changes shapévas iﬁ propagacés. The wave
steepens behind the direction of ﬁfopagatiop;. ngurés 5,16n 5.11 are
reéults for ciﬁes after the.first'reflection‘occurs, Iﬁe tepsile wave
feflecté‘as a tensile wave from tha'fixed'ends and propagates'quapds
the centré of the string;~ Again, the wave is obsefved to éteepen
behind the direction of propagatioﬁ. ‘For the results presented, the

-~

scheme was found to be numeriéélly stable when v = 1.
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Figure 5.9 Godunov’s method applied to the simple_tension problem of
° ' ¥ a neo-Hookean string, with initial conditions u(X,0) = 0,

“*A(X,O).- 1 + cos2xX, and boundary conditions
cu(-2,t) = u(2,t) = 0.

YAy

108



. \a o N o 109° -
.
]
| o
21 —
20 / :
AX=0.10 »=1.00

Figure 5.10 Godunov’'s method applied to simple tension problems of a
: ' neo-Hookean string, with initial conditions u(X, 0)-0
A(X,0) = 1 + cos2xX, and boundary conditions
,u(2t)-u(2t)-0 .
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Godunov'’s method applied to simple tension problems of a
neo-Hookean string, with initial conditions u(X,0) = 0,

A(X,0) = 1 + cos2xX, and boundary conditions
u(-2,t) = u(2,t) = 0. : .
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In this chapter,.thé governing equations for the finite;
deformation plgne motion of a strétched hyperelastic string :h\ch'were~
4 derivédvia Chaptef V, are used to'inﬁestigate the waQe propagation
 whichfresu}ts when'é p£éstretched string is suddeniy subjected to a
transverse impact and when a QQmmetrically plucked string is suddenly
'rple&sed. Similarity solutions, which are valid until.the first

reflection occurs at a fixed end, are preéen@gd. ’

Thé analogies‘of wave propagation in a sﬁretched hyperelastic
string to propagation of‘transverse wavéé‘in aﬁ incompressible elastic
half-space,(Coiliﬁs,.1966); a#d to propagation of a line polarizea

transverse wave in a compressible'hyperelastic half space (Davison;

1966), are also discussed.

6.1 Transverse Impact Problem

‘ B _ ' .‘i}‘r .

The problem geometry is shown in Figure 6.1. ifhe'stting is
subjected to an initial stretch A\, = £,/L = 1, where L is the
unstre: ~ad natural leﬁgth; and the ends of the string are fixed at
X1 - initial conditions are X = Ao, aﬁd u=v =0, and at

ticle X = 0 is given a constant normal velocity in




{
\
f Xo.
1 lo=Mol

'Fi_gure 6.1 Problem geometry of ti‘ansverse impact problem.

112



. + 113
u(0,8) = 0,  v(0,t) = -QH(t) , | 6.1)

. : v
where Q is constant and H(t)' is the'unit‘step function.

¢
Similarity.nblutions are presented for isothermal str;;s-stretchz ‘
.rerations obtained from the Moonéy-Rivlin (a = 0.6) and Ogden’s 3 term
fwiih parameters giyen by (4.18)) strain energy functions which were
discussed in detail in Chabter IV. The similarity solutions are valid

until the first reflection occurs at X = L. In this chapter -

dimensional variables are uséd.

6.1.1 Moorey-Rivlin String
The isothermal stress-stretch relation obtained from the Mooﬁeyv

Rivlin strain energy function is,

P - %% -pu (a + (1-a)x“1)(x-1/xz) , _— (6.2)

"

and the wave speeds cy, and cT are,

1/2 12
1 dp -1 B 2 RS '
°L = {po dA} ‘ { o, [‘,’[1 * A3] + 3tl-a)) ] } o (6.3)

2 1/2 12 L
ep = Ll - { ; z } - { b [a ¥ ﬁligl][l - ia]} , (6.4)

‘f—‘

o

respectively. For the similarity solutions we note that Vp is positive
for propagation in %j direction.
Since |Vp| = cr and a discontinuity of § propagates along a

characteristic it may be deduced that an initial discontinuity of # at

s

e,
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X = 0 cannot result.in a centered simple wave butégfopngates as a

discontinuity.

The relation between the non-dimensional nominal stress, P = P/3u,
and A with a -‘0.6‘1s shown in Figure 6.2. It foll&@s from (6.3) and
(6.4) that cp, > c7 1f A < Acj and e, <cr if A > Acl,‘cgére Acy =
2.4733 for a = 0.6. When A = Act, cL - cT.

First we present a solution which is valid if Af <.Acy, where Ag
is the maximum stretch after impact. This solution is also valid for

the neo-Hookean strain energy function, wheg-a = 1.0. Referring to the

(X,t) plane shown in Figure 6.3a, qhe-similarity\solution is:
T :

Region 1: X/t 2 cp(Ag);

A=2p, 0 =u=v=0. : | (6.5)
Region é: cpL(Ag) 2 X/t z (cL(rAp);

X/t =cp (X)), 8§ =ve=0, u-= -I1(A).
Region 3: cp(Ag) 2 X/t > cp(Ag);

A=Af, 6=ve=0, u= -I(Ag).

Region 4: cp(Af) > X/t

v

0;
A=2Af, 8 =4, u=-0, v=-Q,

where

— \
A
1) - J EXOLT . (6.6)
A

° oY

The’corresponding deformed shape of the string at an arbitrary time t
‘is shown in Figure 6.3b,, Equations (6.5) also follow, from eqdacions

(5.5) - (5.8) in Beatty and Haddow (1985) when ¢ = 90°,



Figure 6.2

‘Isothermal stress-stretch relation for Mooney-Rivlin '
material with a = 0.6.
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Figure 6.3 Transverse Impact Problem - Solution valid for Mooney-
Rivlin string if Af < Ay |



. ‘ | ‘ ’ | 117

This solution satisfies the ';y-tem of ordihary differential
equations (5.18), the .;]ump relations (5.12), (5.13) and the onl:mp;r
condition across the shocks. The entropy 'condltion is u‘cuﬂed 1f the
;hock speed’::hi;ss than or equal to the wave speed behind and greater
than or equal to the wavevspeed{;head of the shock. It should be noted
that the jump in ;ntropy across a transverse ihock isygpro and the
transverse wave sp;éds behind and ahead of the shock are equal to the

shock speed. It may be deduced from the jump relations (5.12) and

(5.13) that,

Q2 - I(Af)IZAch(Af) - I(Af)), sin Bf - Q/(AfVT(Af)) . (6.7)

and it follows that Af < Acy if

2 -
Q < I(Acl)(ZAclcT(Xcl) - I(Acl)) . ‘ (6.5)

Equation (6.7) is equivalent t;vequation (5.12) in Beatty and Haddow
(1985) when ¢ = n/2. 1If A, and Q are given, Af and f¢ can be obtained
from (6.7) and the solution completed. The fegion of validity obtained
from (6.8) in the (Q,),) plane is shown in Figure 6.4,

The solution valid if X, < Acy and Af > Acy, is indicated in

Figure 6.5, and consists of the following regions:
o i

T e g 4

Regioﬂ 1: X/t 2 cp(Ay); ’

A=dg, 0 =u=va=0 7
Region 2: cp(Ay) 2 X/t > cL(Acl) - VT(Acl)
X/t = cp(A), 8§ = v =0, u=-I()).

Region 3 V(A ) = eL(Xr y) > X/t 2 cL(Ag); (6.9)



RS St

’

. plane for so
";JGL CAf ¥ A,

Figure 6.4. Transverse Tmpact Problem - Regibnfoftvalidityvin (Q, Ag)
SRR lution of a Mooney-Rivlin string valid if '
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Figure 5.5 ~ Transverse Impact Problem - - Solutlon valid for Mooney
~Rivlin string if X5 < A el and Af > A el i :
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A v
Vo~ v;v- J c(n) dn sin ¢

Aél

Region 4: cp(Ag) = X/t = 0; |

A=Xf, 8 =08f, u=0, v=-q

.

where the superscn%pt - indicates values just behlnd X = VT(A 1)t the

“‘subscrlpt 3 refers to the correspondlng region indicated-in Flgure 6. 5,

‘and,
- Af ) . 3 ) ‘o s
uy = cL(n) dn ¢os Ff,‘J . (6.10)
A1 : : ‘ C e
e | o
V3‘f 'Q,+ cL(n) dn 51n0%. S ; (6_1;)
Acl ‘ , L .

. o Ny
Equations (6.9) are equﬂgﬁ:ent to equation& (5.20) - (S 23) in Beatty

and Haddow (1985) when ¢ =~ n/2. It may be deduced from the jump -

relations §cross the shock that, § ’ \
uy - -VT(ACI)ACI(COS 0f ~ }) - I l) (6;12{
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If Aolénd;Q.are’given, thé’ﬁnkhoﬁns can be obtéiﬁgd from equations
(6.10) - (6.13). o '
-‘Theiﬁqlutions fdr'Xg >'A;1 is indicated iﬁ‘Figure 6.6, ;nd

consists of the following regions:

Region 1: X/t > Vr(dg):
X‘- Ag, 10 =u = v =0,
:‘Region 2: VT(AO) > X/t Zrct(ko);
| A=2dp ,u=up, v=yy | . (6.14)
Region 3:7 eL(Ao) = X/t = e (A f); - |
‘,x/t - cL(A), 6 = f8g, u = u;;I(X) cosf g,

Q

-
v =, v2-I(X) sinfs.
Region 4: cL(Af) b-3 X/t > 0; !
A - /\f, § = 0f! u = O, v - ’.Q'

where

| 0
up = I(X¢) cosfg, , _ ' _A6.15)
va = -Q + I(Af) sinds. R ( » © o (6.16)

It may be deduced from the jump relations across’ the shock that

up = -dp Vr(Ao)(coss - 1), - - . (6.17)
vy = 1o Vr(Ao)sin fg. | o (6.18).
L If Aomand:Q are giveh, the unknowns can be obtained from equations,

(6.15) - (6.18)v
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6.1.2 Three Term S.E.F. String
' Isothermal stfess-stretch relation obtained from Ogden's 3 term

strain energy function is

-

aw -3 ,a-i-l ai/z-l o pa
P = - z pi A - A ,
i=1

and the wave speeds cp, and cr are,

',

1/2 3, a.-2 a. -a /2-211/2
1 dp i i i
{p TV {151—; [(ai-l)A + [5- + 1]x * ]} . (6.19)

| | P /2 (3 B2 -a /22 t/z - e
Cp = |VT] -1, -4 — [A - AT ] . (6.20)
- o im]l po‘ : .
_and the aj and By ato given by (4;18), for the discussion which
follows.
' The relation between the non-dimensional nominéi stfess P - P/3p
with X is shown in Figure 6.7. It follows from (6 19) and (6.20) that
c > c7 if A < Acl”or A D> Aéz and CL < cT if A <A< where

cl c2
Aoy = 2-1674 and 2, - 3.1674. When A = A o1 or~\\- A é, cL = cT.

We outline the poosible solutions when the fnitial stretch Ao is
in each reg;on (a) - (d), whicn)ate indicated 1n'Figuro 6.8.

First~we present in detail thé solution when Aoy is in r‘on (d);
tnat isrr,\o ZVACZ' Solutions for the other cases are then indicated in
the (X,t) plane. Referring to thei(X,t) plane shown in Figure 6.9, the
~similarity solution is:

\
o
2

co
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Region 1: X/t > Vy;
A= Aoy F=u=v=20.
Region 2: Vg > x/tp>;VT(Af); (6.21)
A = af, 6 -0, u=vpy, v=0.
Region 3: Vp(Xig) iﬁX/t z 0; |
o A= Af;wo -0f, u’- 0, v‘- -Q,

it 4
i

where the subsc;ipt32 refers to the correspondingtregion indicated in

Figure 6.9, ang /°

7
7
]

PG - 20 |2
\ R (e v

¢

(6.22)

P

- :
dtion (6.22) is the same as equation (5.25) in Beatty %nd Haddow
'5) Qhen ¢ = n/2. It may be deduced from the jump relations across

Vi —

the shiocks that

“up = VO - Ao) : (6.23)
b up = apvr(Ag) (cosfg - 1) | ~ - (6.26)
sinfg = Q/(ifvf(xf)) . o . (6.25)

If A; and Q are given, the unknowns can bé obtained from (6.22) -
(6.25).

When'A; is in region (c¢), that is'Ai < Ao < Ath where Aj is the
stretch at the'inflection point as indicated in Figﬁre 6.7,,the;e are
two possible,soiutions. If Af,> )%, where Vr(Ax) = Vy()ry) as indicated

in Figure 6.8, then Vi, > Vr and the solution is the same as that for
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oz A, If xg < A*; then Vp > V1 and the solution. is indicated in
Figure 6.10, | \

Next consider the solutions when Ao 1s in region (b), that is A el
< Ap < A{. When Af < Ay the solution is of the same form as the

-
Mooney-Rivlin s.e.f string when ), > A When Af > Ay, where Vp(Ay) =

cl’
Vf(Ao) as shown in Figure 6.11, the solution is as indicated in Figure
6.9. When Xj < Af < Ax, there are two possible solutions. The first

solution occurs when Acl < Ao < Ar where At is the point of tangency of

the tangent which passes through Af as shown in Figure 6.12, and

) 1/2 1/2
Oy - PO - PGP N 6.26)
e M PR oo o - (6.26)

A -‘AT

The solution is indicated in Figure 6.13. The second solution occurs
when A5 > At and is indicated in Figure 6.10.

When 1 < A, < Acl’ shown as Region (a) in Figure 6.14, and AfA<
Ai, the solutioqi are of the same form as those presented for the.
Mooney-Rivlin s.e.f. string. When A\{ < Af < A**: where
VT(A,,) = Vr(a 1) as yhown in Figure 6. 14 the solution is as 1nd1cated
in Figure 6.15, ‘wh('a *X\I ds the point of tangency of the tangent which

passes thrqugh Af a ,hoyn in Figure 6.14. When if > A there are

*%k
two possible solutions. The solution when A\, > Ar, where A is the
point of tangency of the tangent which passes through Af as shown in
Figure 6.16, is indicated in Figure 6.9. The solution when A, < AT

consists of constant state regions 1, 3 and 4 and a centered simple :

wave region 2 as indicated in Figure 6.17. A longitudindl shock
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P(Ag)—P(A) | Y2

po()‘o.—"}‘f)

Z=V1(A)

Figure 6.10 Transverse Impact Problem - Solution valid for 3 term
Ogden string when Aj < Ay < Acz and Af < Ax.
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C>Cq

"—\"f""""

P=P/3u

(d)

(c)

por - - o w- —— . a-

>
@)

jsv
~ >

.Figure 6. 11 TIsothermal stress-stretch relation (schematic) for 3 term
strain energy function. shéwing A, in region (b), that is
A1 < Ao <A1, and Vp(dy) = Vp(is). ‘

N
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Figure 6,12 Isothermal stress-stretch relation (schematic) for 3 term

strain energy function showing A, in region (b), that is

'\cll < Ap < A, and Af < Ag. |



g
- Flgure 6.13 Transverse jlupact Problem - Solution valid for 3 term'
e oga%-n_striﬂg» whegi)' . < Ag < AT and Af < dx.. .
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¥ PO —PA) %
REXE=Y]

o

¥

Figure '6.15 Transverse Impact Problem - .Solution valid for 3’tqim‘-:'
: : o Ogden sFring when 1 < A, <’Ac1 and Ai,i&Af < Ap- S

BN
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Figure 6.16 Isothermal stress st;etch relatlon (schematlc) for 3 term
strain energy function showing Ao ig region (a), that. 1s 1
T Ao < Adl, and- Af > A
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. Figure 6.17 Transverse Impact Problém - Solution valid for 3 term
Ogden string when 1 < ), '< Ar < Acl and Ag-> A .
s S

' Z=N1 ()\,f>.
| [(PAD—PO) |%
'po()‘T"'_)\f) ‘

2=C (Ap)=Vy -

<9

‘FigUre 6.18 Transverse Impact Problem - Solution valid for 3 term
' Ogden string when 1 < Ay = A < Acl and Af > Apgr
r i N . . 1 . . ) .
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_ coincides with a charécteristic.'iWheh Af’> Apy @and: dg = Ap <-Ac1 the .

centered simple wave region 2’6€nishe§; as in&i¢géed in Figure 6.18.

Consider the case when Ag = A = Acl' Region 3 in Figure 6.18 vanishes

i

and VT = Vi,.  The solution is then fdund.from-jump'conditions (5.20)

and (5.21) and is a limiting case of the solution indicated in Figure
' 6.18. '

> .

6.2 §1mmetricéllv Plucked SFrinz

| We consider a gtring fi*id at points, x = 2, of the x; axis. .The'
natural reference»configuration occupi;s the interval. [-L,L]. of the xi
axis and ﬁhe'xl coordinate qf a particle in the reference configuration
is Xe[-L,L]. At time t = 0 the strihé is~re1éased from the

_ symmetfically deformed cdnfiguration giveh’by‘

e
y

“o - g LX)
xl(X,O) - X, xz(X,O) - ’20 , tan &

T (6.27)

l’
for Xe[0,L], where 6y is the angle the stringAmakes with the x; axis as
shown in Figure 6.19. The stretch Ay at t = 0 is given by

Ay = Ao/cosﬁ

1 1 > ; ' ' ‘ (6.28)

‘ ' ' &

where Ag = £o/L. If 0 < f,/L < 1, the string is slack before the

deformatiqéi(6.27) is applied and 61 > cqs-l(lo/L).‘ After the string

is sgddénly released from thé‘deformed configuration (6.27), it is .

asSumed‘that thé subsequent deformed sﬁgpe of the string is symmetrical
: o ) : Sy

abbgt the x9o éx;s, conséquehtly ohly the'part Xe[O,L) isbconsidered.' '

Similarity solutions are presented for MobneyfRivlin and three

term s.e.f. strings, and these solutions are valid until the first
. : . s

.
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)
Figure $s19 Deformed configuration of the strlng before it is released
at time t = 0.

A

Caoe .
4 v g
o

\

- Figure 6.20 Deformed éonfiguration of the stfing forytime t > 0.

]
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reflection occurs -at. x = L. For certain values of '\o and 01, no

#

longitudinal reflected wave is possible since the'string cannot’ sustainl'

compression and this is discussed.later.‘ t was shown in Chapter V,

__that cp = Vg, consequently a discontinuity of # is propagated along “

. characteristics with slopes ¢t in the (X t). plane ‘lhere 1is-no
charathfzstig\parallel to-the t axis of the (X, t) plane for A = 1,

consequently after the string is suddenly released,lthe subsequent

deformed shape of the string is as indicated in Fignre 6.20.

6.3.1 Moongijlvlin String
We first present similarity solutionswfot a Meoney-Rivlin S.E.F.

string with a = 0.6 where the wave speeds eiﬁ cT are given by enuations

«(6;3a, (6.4). The similaritylsolutionskcbnSist of three constant state

. ‘ -

regions in the (X,t) plane, separated by shocks Z = Vy and Z = VL,

where Vg and Vp, are determined by Ao and §17. The initial values 67 andi

Ao determine whether VL >Vt or Vp > VL i First we consider the case

with Vi, > Vp, as 1ndicated in the (X,t)“plane in Figure 6.21.’ The

following solution is valid if XA < X

or if X1 > A and Af < A2

cl cl
where VT(X%) = V(A1) and A is the unloaded stretch.

Tr

[}

Region 1: X/t > Vi,
N u=v = 0, A =21, 0 = 4q.
Region 2: ‘Vi > X/t >.VT(Xf);
. | u f'uz, v = vy, ’A - Ag, 8 = 071,
:RegianB: /VT(Xf) > X/t 2 0;
| ‘ u - 0;( vV=v3, A=2Af, =0,

where
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AoVt <

Y

Figure 6.21 - Plucked'String Problem - Solution valid for Mooney-Rivlin

string if Xy < Aol OF }f A1 > A q and Af < Ag
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PO - POy 12 » o,
VLo - : . (6.29)

pO(Af - Al)

It may: be deduced from the jump relations across the shocks,

up = Vg, cosdy (A1 - Ag) | ~ | (6.30)
vy = VL sin 81 (A - Af) , | - ' (6.31)
“ug = AgVT(AE) (L - cosdp) , B (6.32)
vy = -AgVT(Ag)sin 81 + vy . ” (6.33)

1f Aé-and §1 are given the unknowns can be obtained from (6.29) -
(6.33), and (6.28). )

Next we consider the case, Vr > Vi, as indicated in Figure 6.22.

The solution given is valid if Af > X . or if X} > XA . and A > AJ.
o ‘ cl : cl T
Regionrl: X/t > Vp(r1);
U=v =0, =2, § =07.
Region 2: Vr(Ay) > X/t=> Vp; ' - (6.34)
' L

u=u), v=1vy, A=121, 6§ =0.
Region 3: Vi > X/t = 0;
u=0, v=vy, X =g, 6 =0,

where Vi is given by (6.29). "From the jump relations across the

shocks, e
up = =A1Vp(A1)(1 - cosdy), - (6.35)
vy = AVp(Ap)sindy, . . (6.36)
up = VL(Af - Ap). : | ' | (6.37)

If A\, and #; are given, the unknowns can be obtained from‘(§;29),
(6.35)-(6.37) and (6.28).

-
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AVt

AoVTt o - >

Figure 6.22 Plucked String Problem - Solution valid if A > A

. cl
A1>,\1andlf>,\T '

or if
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w9 .
: & !

T reéions of validity in the (81,),) plane for the above
; v

soiugions

' Fﬁ&WQQm“l

.~ Vr and region 2 in Figure 6.21 and 6.22 ﬁecomes vanishingly small, a.

hown in Figure 6.23.

imiting cases of.these solutions as ig -+ A%‘so that vy -

solution is readily obtained from jump relations: (5.20) and‘(S.Zl)n

This solution is particularly simple since \f =~ A% = Ao

[

6.3.2 Three Term Ogden String

>

We present solutions for a three term S.E.F. string where the wave
)
speeds cj, and cT are given by equations (6.19) and'(6.20)f So}utiéﬁs ‘
for X < are of the same form as those for the Mooney;Rivlin string.
We pres”h o solutions, one which is valid if A{’> A > Ac2 and one
which is valid™Lf 2y > Ago > Af > Ay. The first solution consists of
constant state regions 1,3,4 and a centered simple wave region 2 as
indicated in Figure 6.24 and is as follows: |
Region 1: X/t = cp()1);
u=ve=0, X=21, §= ﬂi . | ' (6.38)
_Region 2: cp(A]) 2 X/t = cL(Af); ‘ h |
X/t = c.(A),u = - ;(A)cosﬁl, v o= - E(X)sinol, 8 -Qﬁl.

Region 3: cL(Af) 2 X/t > Vp(Ag) .

A= Af, Uu=u3 = -I(Af)c0501; v = v3=I(Af)sindq, §=61.
Region 4: Vr(Af) < X/t = 0O; . -
u=0, vevy, A=2xf, 6 =0,

where
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ﬁfgur¢§6.23 IPLGékééiSffing Problems - Regions of validity for Mooney-
S ‘Riwlin s.e.f.. string with @ = 0.6. Note that Ao is the

MY

RESSI “'pré@tretch{wheﬁ-)ofz 1, when A\j < 1 the string is slack
Cob rand'Ag = £o/L is not the stretch. ,
\‘ » "‘.;‘ ‘ o i 3 »
: A
» v‘ B ‘ ’ ‘., 5
o : . 5 v
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[N CL()\f)cos 0 +us]t
. ﬁ; |

Figure 6.24 Plucked String Problem - Solution valid for 3 term Ogden
string if A1 > Af > Acz.
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e
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‘VA-- V3 + A V (Af)51n 01 | '»‘e, v v“f)" : e(§739)

~

‘is obtained from the Jump relatlon across the transverse shock CIf A
b ™
. ia X8

.and 01 are glven the unknowns can be obtalned from (6 38) (6{39)_and{7ﬁ

‘ As Af approaches A ¢2 reglon 3 shrlnks and for Af - A o2 the

- characterlstlcs boundlng reglon 3 c01ncidekv A small modificgtion to‘
1_the above solutlon is. requlred o.giy‘ v; . _‘;v . ,}e:w  ~  *

When_A1.> A 2 > Af > Ai the solutlon conslsts of constant state.

Vireglons 1 and 4 and centered simple wave reglons 73 and 3 as shown Ain

R

‘"Flgure 6. 25 and is as follows
Reglon 1 x/t i CL(Al) » o  v‘ :  _‘.  >} . | - “‘”j’).

B i T T VS
4:t'Regionk? g CL(Al) 2 X/t > VT<A 2)" | j. ‘.; |
s X/t = cL(h), u s I\ cosh, v -1 Sm”l"" -0
Region 3 VO > %/8 = eL0lp); LT i

i
ki }f/t - CL(A)’ u-',uj = j ‘ CL(fl)dﬂ, : V‘ = Vas g -_o,_“' '\‘T

LRegion 4:" c (Af) = X/t 2 0;

where
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: Figure 6. 25 Plucked String Problem - Solutlnn valld for 3 term Ogden

G st:rmg 1f A1b> ,\ 2 > ,\f S Al

TV

-



PeAg T

(6. 28) and, y

in Flgure 6. 7 3

)

) —

,are obtalned from the jump relatlons across the transverse shock If

o‘and 01 are given the unknowns can be obtalned frdm (6 40) - (6, 42)

3 . LN

.,u3,¢,J e (Nadx , R ()

.3"

" The reglon of valrﬁlty in the (Xo,01) plane is shown in Flgure 6. 26
N

i |- PR

Solutlons can be- obtalned in a 51m11ar manner when- Al and Af are

2

., in otheg’reglons of the 1sothermal nomlnal stress- stretch curve shown :

JRSIRS

6.3 Analogx with Progagatlon of Waves in Elastlc Half Space

Colllns (1966) has conSLdered the problem of propagatlon of waves

R
&

in an 1ncompre551ble elastlc half spaoe 'when the surface lS glven a

] - -

unlform motlon by the sudden appllcation of shearlng stress. When an

1sotrop1c solid is considered this problem is- analogous to the strlng
¥ . : .

problem. SR ' :
. 1
The deformatlon field for the shear problem for propagatlon of :

transverse waves in the X3 d1rect10n ls

g,

5X1,'~Xl§*£€1(X§,t)»v?Z\; X2,+152(X3/£%r X3 -'X3i . r~ ‘(6.44),
‘ . : T : .J' ! . '-,’_._‘v ) .

M3 IO ceshy = AV (L - cosby), T (6.6D)

vy -‘-~I(Aq2)51n&l f‘ACZVT(ACZ)sin o, E (6.42)

o
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?-y.gﬁ.v Ogden string w1th parameters (4.18) .
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, ﬁF;gure 6 26~ Plucked Strlng Problem - Regions of valldlty for 3 term'
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and the physical domﬁbnents of the deformation gradient tensor are,
‘ - ' R ’ su., ‘
1‘:“
10"
0 1 a , _ o " (6.45)
0 0 1
where a1 -‘861/8X3, ay = aez/ax3Q The resultant simple shear is
a = (a1 + a22)1/2 and a] = acosf, ap = asinb, where ¢ is the angle
! the resultant s1mp1e{ shear makes with the X1 axis.
: ,,“-:ﬁ.-" I
It follows that, N
8(x cosf)_ _Ezl d(x sing) - av2 : » (6.46)
at.. ax, ' at: X, ' S ’
. 3 . 3
5;e'v'-- Egl and v, = =2 |
W 175 AV TEe
The strain energy function for an isotropic solid can be expressed as
W= W(al az) = W(a), a&? the resultant shearing stress on a plane
‘_ X3 = constant is given by | ) S 9
15%.‘ o o N (D)

o T
The co_inpone'nts_s31 andlS32‘of the nominal stress tensor are{given?

by, S S R v L :

L B '\‘

e )

' 5319 r,eosﬁ, ‘S32 = r sin .4 ’J
: \

i

consequently the Lagrangian equatidns of motion are,

-L!
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The system of equatfons (6 4,'&) and (B ))f'is in conservation‘form and

i

is analogous to (5.4) with ¢
G = (acosh 108, vi.v)T, Ho= -(v., v.. reoss, rsingfl
G acosd, , as- ne, vi,pvoe) s B 1’ Vo s‘rcos , 7sinf))

It is evident that a,r,f,vy,vy in _the shear probl'em are anafogous to

A, P,0,u,v, respectively, in the strlng problem
Collins has shown that in the* shear problem a pa1r of transverse o ?

simple waves or shocks and a pair of c1rcu1ar waves can propagate. The
: 6 . . : .
transverse simple waves and circular waves are analogous to. the

longitudinal and transverse waves, respectively, of the string problem.
However the -analogy is not complete, since. unlike P,X curves an 7,a

. curve passes'through the origin and 7 is an .odd function of a. Colli.ns

(1966,1967) considered strain: energy functions for which

.

dr
E& >‘0
-«
. "y
2 . 2- R |
and $25 0foral 0, or &L 20 forsm 2 0. (6.49)
da ' de” . P < :

The shear.problem’ then results in a strlctly hyperbollc syst@m with

y L t .
- ©oA . '!,7» .
mnct elgenvalues +cL and fct where - ‘ _

7 B

. [1 d‘r] 7z . [1 1'] 172
C, = === and ¢, = |— =-| .
L , T Py @
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If inequality (6.49)1 is satisfied, cy > e, for all a » 0, and if

(6 4952 is satisfied °L > CT for all aw0. Collins did not consider -

. an- "S" shaped ra eurve, which ﬁould result in cT = ¢, at an isolated
point as indicated in Figure 6. 27 Similarity solutionsoé;r the shear T
problem are of similar foqm to those of the string problem In his ‘(‘
second _paper (Collins 1967), Coilins gives some non similarity - RS
solutions which'invdlve interadtion of the cj, and cT characteristics‘

: These solutions are approximate and are valid only for moderate finite K

% B R

deformation ‘ _ = . e

A further partial analogy is the problem of propagation of a'line
polarized transverse wave in a compre551b1e hyperelastic half space
,fx\L .. This problem has been. con51dered by Davison (1966) and involves the -
| coupling of 1ongitudina1 waves. with transverse waves, due to the
Poynting effect The governing system of first order partial
differential equations is of the samé form as (5.5) with matrix (5.6)

; however all four chargcteristic fields.are genuinely nonlinear unlike

those for the shear problem con31dered by Collins and th% string

S

problem
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Figure 6.27. Relation between resultant shear st:ress and shear strain
- due to Treloar (1975) o
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7.1 Experimental Frocedure U -
‘. . . \

d Chapter VIIligic

b

Previous experimental work has been done by Riegal and Nowinski
(1976;)for the impact problem. We -are noc‘aware of -published work on
the plucking'problem For completeness experimental work : on the:
impact problem is included in this thesis and ' the results are in broad
agreement with those of Riegal and Nowinski (1976). In the above
mentioned paper, the experimental results are compared with some

theoretical considerations and this is also done in greater detail in

this thesis. ‘ S SR ' %

5 ”

7.1.1 Transverse Impact P‘gslem . '
N ,
The apparatus is sho n Figure 7.1 and 7. 2 An elastlc string is

stretched with the desired initial stretch between two adjustable

-clamps. A 5.56 mm calibre pneumatic gun with a rifled barrel is then

loaded with an air gun pellet of mass- 0. 99 g and an air reservoir is.
W

chargedéggethe Rressure required to produce the desired muzzle
.Y

velocity, This pressure is in the range of 700 to 7, OOO kPa and

: produces a muzzle velocity of 30 to 100 m/s The gun is discharged by

‘ opening a solenoid valve, and the pellet passes through three photo

detectors which can be seen in Figure 7.2. The first two photo
detectors are 30.5 mm apart and are used for timing the projectile for
velocity determination. ' This is accomplished by an electronic

frequency counter used in period mode, the first sensor starts the

W 1
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Figure 7.1 Experiméqtal setup for transverse impact problem.

w0

e 0

Figure 7.2 Another view of the experimental setup for‘tranéverse
: impact problem. '



156
codnt and the second sensor stops the count. The counting frequency
isl0 MHzﬁ!iving a 0 1 us resolution which translapes to approximately *

.31 m/s resolution The third photo detector is used to trigger a |
delay generating device which controls the stroboscopic light- source.
If the velocity of the pellet is known, the delay can be calculated to
place the projectile in the desired location -for the photograph. After
the delay, a pulse is sent:ﬁrom the delgy generator to the stroboscopic
iight source, and an exposur® is taken. The camera used is a Nikon FM,
. with a 55 mm lens and is used at f 1:4 and the film is Kodak T-max 400-
400 A.S.A. When a photograph is taken, the room is darkened and the
shutter of the camera is opened. The solenoid valve is then opened and
the gun dischaéged.\ After the exposure is tak;n the shuttgr of the
camera closes. Thevelapsed‘pime is less than one second,bcongequently
the exposure is from the strobe light only, and the ambient light has
little or noreffect on the exposure. The duration ofAflésh of the

~

stroboscopic light is approximately 1.2 us.

7.1.2 Plucked String »»

Thé ééﬁipment setup is shown in Figure 7.3. An elastic stxzng is-
held between two adjustable élamps with the desired initial stretch.
The string is then stretqhed and clamped in a modified telephone relay.
The relay 4is operated and the ;tring is held in place at the midpoint
as shown in Figure 7.4. When the string.ds released from the defoormed

conflguratlon shown in Figure 7.4, it passes through a photo detector

which is used to trigger the same delay generator as was used for the



Figure 7.4

Deformed configuration of the strin
at time t = 0,

&

e

g before it is released -



Figure 7.5

An example of a photograph with double exposure which is

used to calculate the veloc1ty of the central flat portion
of the string.

dt
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impack experiments. The photographic procedure is the same as outlined

for the impact expen;ments. The room is darkened, and the relay is

ﬂ;eleased. The elastic cord passes through the photo detecfor and the

Z

stroboscopic light source flashes after the delay. The camera shutter

-

is held open until the flash has ogccurred.
Double exposures are used to calculate the velocity of the céncral

flat portion of the deformed configuration of the string after it has

- been released. An example of a photegraph is shown in figure 7.5. To

obtain a double exposure, a second delay generator and a strobe light
are required. As the string passes through the photo detector, the

signal triggers both of the delay generators which are set to two

~different delays. The time between the flashes is simply the longer

delay minus the shorferldelay; The velocity can be calculated by
measuring from tige photographs the distance the central flat poftion of

the string Has travelled in the time between the two exposures. n

7.2 Results for Transverse Impact Problém

Experimental results aée presented‘and compared to theoretical
resﬁlts obtgined from:similarity solqtions'which were outlined in

. B £ ’ :

Chapter VI. The similaf&ty solutions are valid only until the first
reflectiOnP.andothe experimental results-presented are for times before
p:hé first reflection é&n‘s at the fixXed ends of the 'string.’ -Special
cases of reflection in the pl%cked string problem are c§n§idéredvand
arg\discussed in thedggxt‘section. | J

The strings used in the experiments are carefully selected

commercial rubber bands of cross section 1169_X‘1.15 mm. The

et i
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Isochermal nomlnal stress stretch relation obtained from 3

Lo term strain -energy - function with' parameters (4 185 -
ﬁcompared;to experimental values.’ Young's" ‘mod@lus for L
< ¢ infinitesimal deformations was’ experimentéily detérmin‘d
V,l_ito be equal to 1570 kPa L . e R




A

-

x.‘energy function with parameters' 4;18) ; as indi:cated in Figune 7. 6

d

. - Pe '
: 'Thls curve is’ also in acceptable agreement wlth that obtained from the
e Fr » N ’!W

Mooney RlVlln strain energyafunction w1th a =0, 6 for stretches up to -

o L -
: ?3 "iﬁ Value of 15470 kPa was obtalned ﬁor Young S, modulus for

aﬁnﬁmt%s:.mal difogrmation from the natural reference state Since .
1ncompre551b111ty is- assume@, we take 3;4 - 1220 kPa It 1s reasonable

to neglect any v1scoe1astlc effects, slnce an 1ncrease Ln stretch of IR
: ' . Y © .

e only 3% was observed when a band was stretched initially to X - 7$ and

hel'd under cons‘tant load for°20 hours The density o‘f the bands s,

1020 kg/m

.
,'-.’

Results are presented for impact veloclties of approx,imately 85

| __%s and*49 m/s w1th an inltlal stretch A - 3 2 Examples of
: k k ‘ ) ¥ . o X 2

photographs taken for a time before the firstﬁglectlon occurs ‘are T
] shown in Flgures 7 7 and‘7 8 for the impact velocitie$ of 85 1 m/s and’

l+8 6 m/s respectrvely ' The fmal argler is measured from the".

i

photographs and compared to theoretical values obtained from Slmllarlty
L

o

'-‘bos'olutlons Outlined Et . Chapter 6. The experimental End theoreti

v r . B “" .
o r/esults obtélned are tabulated in Table 7. 1

T 2
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' mldpoint of?fthe cord for times t > 0. This is evidé‘nt in Figure 7 ? by .

ale2

‘Table' 7.1 ‘Transverse Impact Prpblem Measured final angle
AR . 8¢ for impact velocities Q 85 and 49 m/s,
N and '\o 32, v :
S ’

_ D ”.‘ifp'; .!. ) :?f_‘ | <
Impact Velocity . Final Stretch o FinalAngle |
(m/s) S : ' Xgo o . N (degrees\)\’ :
. Measured Theoretical
84.0 . 500 56.0 . s39
v 85.1 « 5.03. 53,0 54,5
 48.6 S 4,027 00T 0.7 38.7: 7., .
- 48.6 4.02 - .0 40,5 03807 o,
. 48.6 1 4.02 e 410 38.7 e L
498 4.06 : 42.0 39.4 0 0 cale
49.8 4.06 415 39.4  gopeni< o)

v

'glven an 1n1t1a1 stretch Ao, » and then held at the midpoint w1th an

¥

1n1t1al angle 01 before it is. released Figure 7 9 is a photograph o

w1th two exposures showing the initial deformed shape of the stﬂlg . s

-vbefbre it is released at t1me t = O, and’ the subsequent deformed' shape .

.ah-
>

'of the stripg after it is re~leased " The experimental results verlfy

.,‘

. the mathematical model‘ which predicts that the an/gle Qis /zero at the ,

Iy

rr

< the centg:al flat portion of the strrng after it is released Results

‘E %cv S
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Figure-7}7

Figure 7 8
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Traﬁsverée Impact_ Pfoblems- Example of a photograph taken
for ‘a time before ‘the fgrst reflection occurs W1th impact . -
velocity Q= 85 1 m/s.a-,mf ‘ NS

K . s PR - . i

. .
Transversefi gt Problem - Example of a~photograpﬁ ‘taken
" for a timé the first reflection occurs with" 1maact'
velocity Q#8856 m/s. ;




s

| ‘are presented when Ao -2, 0 and 01 - 45" so that the stretcgﬂ,\l - 2 83

consequently it 1s reasonable to compare these results with those ) ’

i predicted by the. so‘lutions based\on the Mooney Rivlin strain energy

EJ

.values of vE obtalned from. different

Ly

7.2,

oy

and" c&ipared to the theoretical value! e o t S

“Tble 7.2 .

va}ué of Vf, with A,

Experimental values of velocxty of “the- central flat

. function with a = 0 6.

veloc1ty of the flat ;

- An exampl\e of the photographs taken is shown in r )

\

Figure 7.10, where the double expOsure is used _to obtain vg. the

_"'u"‘rtlon of the elastic cord.

[

The experimental

=

portion of. the strlng, VE, c0mpared to the theoretical

*

-26,\01-45 andA1-283.

v

'I‘heoretical vieloci.tyQ

. N 5 — ;
L l;n%al velocity\*y\ .

'..‘ Vf h‘/S) ve (m/s) P \
» X . s
| © 36,40
_ BN : 36.00 S
e e &L 38.22 ¢
7 ¢ . ) 39.50 ) A
I ‘.’ R SR v 39}0
A - s E L ] .

The g.milarity solutt
until the firsﬂ: reflecti

exact solution can be obt*ned for a spec'

‘ plucked strlng )p,robllem

A and '\1 satlsfy conditlon VT(Af) - VT(Al) that is the solutlon

rconsists» of twb constant state reglons l ane 2 1nd1cated in Flgure o .

711

and the’ dis’t;ontinuities of A and 8 coincide

L

2
<

® e

31'

W

.

’ First we cons’

.

s pfesented in Cha.

M% ‘ﬁ_

on occurs at the fj.xe end of the stﬁ:ing

x
- case of reflection 1n the

»

. ¥
. plucklng of a ﬁooney-Rivlin string w1th a —nO 6; when pthe finé*tretc'h

Tl

'{'his so'l?ution is

photographs are tabulated gn Tablem

L 4

er the simllarl‘ty solution fori@l"}%s

-

R



Figute 7.9

Plucked String Problem - A photograph w;l,th double exposure
showing the initial. deformed shape” of the string before: it

.. is released at time t = 0, and the subsequegt defonmed

'shape of the: strlng after it is release%'\




Flgure 7 10 Plucked String Problem -.An example of a p otograph t:aken
co at” a tim'é before the first reflection occufs. The doublé‘
S ~ exposure is used to’ ‘determine the velocity of t:he central.
: © " flat portion o the strlng - - _ FRIS

. ' 0




 Figure 7.

Figure 7.12

Q ) g _} ; ,  ." ,::[67"".

11 Plucking String Problem - the final stfetchuimglag Ay
satisfy conditign VpAg) = Vi( yei

of X and 4 coinc1de
tVT(Xl) < 1.

A ) g
. This solg&”'is valiQ'Efq TR

' - Yyt b . . N .
‘ ',. ‘ . ;""’A‘ T e .“. . .
) - ' ) R P PR .. . »
.. Lo § Tl o e ‘

\ N ) el o
Ve ) -T g s o L ¥
SUONG R, |

: 1 "X

N 2

-

-

Plucklng‘trlng Problem - The solution with reflection for:
0 =t =< L/cp(Xg) + L/Vp(A1), when Vp(Ag) = Vp(A7) and ty

~ dist:ontinuities of. A and § coincide for .tVr(A1) =< 1.

3

. . . e e .
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. Figure 7.13" Plucking écring'Probiem - Deformed configuration of the

1), shown before and after -the. -

s’



Figure 7.14
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"
ken for a’

Plucking String Problem - experimental results
time after the first reflection occurs, With Ao = nd .

§1 = 45°. The form after the reflection is similar to
that before the reflection. -
L]

- L4

. .
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readily obtained from the jump relations (5.20) and (5.21) and since Af

= Ao, the angle ¢; reqtiired for a given A\, < A 1 is.obtained from *

-

Vr(Ag) : VT(Al) and Ay = A} cos 01 At time t = L/VT(Al), which is the
limit of validity of the similarity solution, the uniform stretch is i,

" and 31e unifor-m velocity has components,

upg =0, vy = AIVT(Al) §inft for 00 X< L.

e o~ s
K

If a velocity in the negative X3 direction and of magnitude v2 is

o

superimposed the problem becomes identical to the transverse impact
problem with the. dtring initially at rest at time ty = 0, where ty = t
- L/VT(Al) and with boundary cendition,

L) '

-
tang .

v(L @;) =4 A1VT sin 4.

wi, - Dy B Ay i E;; |
This™ means that we can u$#.the solution given by (6. 10) - (6.13) .to

(/nbtain the response for L/VT(Al) < t'< L/cL(Ao) + L/VT(Als as indicated

/ in Figure 7.12. - i - '- Ce

" Results for a specific case ®¥re as follows:

A, =3 A=A, = A -2.1&26, 6 44 . 84°
< 1 f 2 o. 1 O

’ _ !
v, = 1.02s3 Sor Vp(A)) = 0.48517 ¢, . N
’ gm0 ] 0263 0 = 44.838
270370 vymvy = 10263 e, 8, =g - i
¢ . e, » T . : PN |
Ag =.3.00024 R ~ | | x
e ‘ ' T ' §§~1” :

where the subscripts 1,2,3,4 refer to the corresponding regions shown

in Figuré 7. 1z » It is interesting to note that 05 =4, Al = A5, and

the form after the first reflection is similar to that before “the

S~ ¢
N t“ 2y .

9 . * [ - .~“ 4§
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L

Plucking;Stniqg’Problem - r1menta1 ‘rasults taken for a

time after thefflrst reflectfon occurs,
double kink. . N

with eVidence of ‘a

ta o
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Figure 7.16. Plucking String Problem - Expekimental réé;ults taken for a
time aflt:er thk first reflection occurs, with evidence of a
double kink. ' ' .
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reflection as indicft;d in Figure 7. 13 Experimental results f;Z

2 and 61 = 43e shown in Figure 7.14, indicaCe that 01 = 05 However
experimental results shown in'Figures 7. 15 7 16 indicate that a double
kink develops after the first,goflection.. This is because of the
interaction of the ooflected ioogitudina‘:shock and the incident g
transverse shock. L _ .

Since the soring ;;'assumed-tobo_penfectly fiexible so that it
cannot withstand compressive stress, no refiected longitudinal wave is .
possible, for certain values of'Ao'and 1, when ghe wave front-reaches
X = L. An example is as follows, based on the similarity solution for, -
a Mooney -Rivlin - string with a =0.,6,-and A1 < ) el’ The similarity
solution for Xo = 1 and 6 = 45° is of the form indicated in ?igure

i

7.17 and equations (6.29), (6 30) and (6. 28) give the following

results, , .
Al - J2 Az - Ag -1.1792 , - L : .
VL - 9;7291 cys JVT = (0.3498 cy - .,

The longitudihal shock reaches X = i‘éﬁvt = L/V,. ) If we consider the

refleation from the fixed end X = L a: solution. valNd until the - - © .

3

,reflected shock meets the 4 discontlnulty can be 'btainéd from the
.. h
solution g}ven in (5 7) for the simple*tension problem of a reflected

;unloading shock at a fixed end. This solution is indic;oed in Figure
(7.18) and is valid if tbo value ofbxa is ‘greater -.than 1 so thét the‘
string is étill'in tonsioo. For the example considered the solubion
glves bYA -'0 623 with a,corresponding nominal compressive strgss

< A

P/3u = -0.81, no reflecteo 1ongitudina1.wave is possiblé. An



Figure 7.18  Plucking String Problem - Solution with reflection for '/

Mooney-Rivlin string with a = 0.6,

. solutlon is valid for t < t*

S

and A1 <X

.. L It
L ZN(N)
- ! N i “y
~ 5% )}
IV R A G
' 5 a2y
\ 1L P A
. s~ )
Figure 7. 17 Plucklng String Pkoblem - Solutlon for Mooney Rivlin
- string with'a = 0.6, and A} = A el The solution is valid .
’for tVp < 1. ' o IR 4
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“Figure 7.19:

", reflected from-the ends resulting in instability since the

. string cannot sustain compression.

Pluckihg'Strihg Problem - Experimental tesu1t§“f0r~xd = 1
§ = 45°, at time t = 3.9 ms. The longitudinal shock has

[ e NP

-, - \\ .
o ' ) s
; N ‘ v - 175
- | [ B
. N .
a Ad ~‘
« :
.’,i{ Il ‘/ ! .
: . »
‘e . .
. . . " . A
... . Al LN
iy hS \ ,
y-
.
- e
LR >
S
)
4
’ - :
[, ,
'\ / \\_. R
/ : 3\\ ..
// -
: - 7 Y,
'
v B



\ ) ’ . -~

oexperimental verification of this isksho‘\\in Figure 7. 19 which is for n
a’ Pldcked string with Ao - l and released with 01 - 45° Using the

S experfmentally determined properties of the string and noting that L -
" 64%mm the time of arrival of the 1ongitudinal shock of X - L is found

T te be 2. 237 ms. The picture shown in Figure' 719 was. taken at t = 3.9

h‘ms; that 1s‘after the arrival of the longitudinal shock and indicates
that the string does not withstand compressive stress resulting from

s

the reflection.

. N ’ " ¢

7.4 Concluding Remarks

(

The'experimental esults confirm the validity of the theoretical
analysis for both the transverse inpact and plucking problems The
numerical results obtained are based on the use of an isothermal
stress-stretch relation, hqwever, there is' no difficulty in principle
in using an adiabatic stress stretch relation and taking’ the effect of .

vthe jump in entropy across a longitudinal shock into account. This has
_been done in Chapter V for the particular case of the simple tension
unloading problem.and the indications‘are.that the additional
complicationsvinvolved are not justified. The errors resulting from
the thermodynanic apprOXimations used;are likely to’be small conpared

to'the.experimental errors in determining material\properties.
S . '

L]
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