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R0 Analysis of a Benthic-Drift Model for a Stream Population∗
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Abstract. One key issue for theory in stream ecology is how much stream flow can be changed while still
maintaining an intact stream ecology, instream flow needs (IFNs); the study of determining IFNs is
challenging due to the complex and dynamic nature of the interaction between the stream environ-
ment and the biological community. We develop a process-oriented benthic-drift model that links
changes in the flow regime and habitat availability with population dynamics. In the model, the
stream is divided into two zones, drift zone and benthic zone, and the population is divided into
two interacting compartments, individuals residing in the benthic zone and individuals dispersing
in the drift zone. We study the population persistence criteria, based on the net reproductive rate
R0 and on related measures. We develop new theory to calculate these quantities and use them to
investigate how the various flow regimes, population birth rate, individual transfer rates between
zones, and river heterogeneity affect population persistence. The theory developed here provides
the basis for effective decision-making tools for water managers.

Key words. benthic-drift model, next generation operator, persistence, net reproductive rate, river heterogene-
ity
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1. Introduction. A large number of organisms live in environments that are characterized
by a predominately unidirectional flow such as streams and rivers. One key issue for theory in
stream ecology, which has been termed the “drift paradox,” is how a population can persist
in rivers despite the flow-induced washout. The analogous issue in coastal marine systems
is population persistence and distribution in the presence of long-shore currents. Although
the problem has been recognized for almost half a century, and despite considerable efforts in
documenting drift in the field, it has not received theoretical attention until the last decade. In
recent years, in the study of the drift paradox, mathematical models such as partial differential
equations, integro-difference equations, and integro-differential equations, have been used to
understand the effect of population demography, individual movement, and flow dynamics on
the spread and persistence of a population in streams and rivers.
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Another key issue for stream ecology is what kind of flows are needed to maintain an
intact stream ecology. This is referred to as instream flow needs (INFs). Fresh water is a
limited and precious resource. Increasing and conflicting demands for freshwater resources
make it necessary to evaluate IFNs in streams and rivers. If natural flow regimes change (e.g.,
due to anthropogenic influence), this can directly impact the ecology of organisms inhabiting
the stream and river habitats. Assessing population and community persistence for varying
stream flows therefore is a key issue for biodiversity maintenance in advective environments.

Determining IFNs is challenging due to the complex and dynamic nature of the interaction
between the stream environment and the biological community. Resource managers have
traditionally relied on simple hydrological and habitat-association methods to predict how
changes in river flow regimes will affect the viability of instream populations and communities.
These methods often account only for the dynamics nature of hydrology and physical habitat:
biological components of ecosystems are treated as a static response variable to this dynamics
physical environment. Ecologists have advocated an alternative method: process-oriented
ecological models that link changes in the flow regime and habitat availability with population
dynamics [2]. Such models allow consideration of external forcing by the physical environment,
as well as feedbacks between biotic and abiotic components.

In recent work, stemming from interests in the “drift paradox” and IFNs, Mckenzie et
al. [22] developed a process-oriented ecological model that couples population dynamics of
river communities to the hydraulic dynamics of a river. The model is an advection-diffusion-
reaction equation that describes the dynamics of a single population undergoing continuous
growth and dispersal in a stream:

(1.1)
∂N

∂t
= g(x,N)N − Q

A(x)

∂N

∂x
+

1

A(x)

∂

∂x

(
D(x)A(x)

∂N

∂x

)
,

whereN(x, t) is the density of the population per unit volume at location x and time t, g(x,N)
is the per capita growth rate function, A is the cross-sectional area of the stream, D is the
spatially variable diffusion coefficient, and Q is the constant stream discharge. By adapting
three measures of population persistence, proposed by [19], Mckenzie et al. studied related
population persistence measures in rivers under various flow regimes. The three measures
are connected through the next generation operator, which maps the population from one
generation to its offspring in the next generation. As spatial reaction-advection-diffusion
equations fall under the broader category of infinite-dimensional dynamical systems, Mckenzie
et al. applied the theory of Thieme [29] for R0 in infinite-dimensional dynamical systems to
present their mathematical framework. The mathematical methods were then applied to
analyze IFNs for populations in rivers.

In this work, we extend the model (1.1) to a benthic-drift model by partitioning the river
into two zones, drift zone and benthic zone and dividing the population into two interacting
compartments, individuals residing in the benthic zone and individuals dispersing in the drift
zone. Our extension is motivated by the following facts: (1) Hydrologically, stream hydraulic
characteristics are important in the ecology of streams. Of particular importance is the pres-
ence of free-flowing water zones on the top and transient storage zones along the bottom. In
the storage zones, water movement can be approximated as zero flow [4, 7, 23, 30]. The bot-
tom friction, especially from irregularities such as rocks, create these areas of near zero-flowD
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water. In addition, interstitial waters in sediments or within algal mats, backwater areas, and
pools can also act as transient storage zones [4, 23, 30]. Storage zones are also places where
the nutrient cycling regime in the biological community is likely to be quite different from
that in the free-flowing part of the stream [7]. (2) Ecologically, many aquatic organisms reside
mainly in the storage zone but move by jumping into the free-flowing zone and drifting down-
stream [1]. Moreover, the switching rates of individuals between the benthos and the drifting
water may be determined by organism behavior rather than by stream hydrodynamics. For
example, there is evidence that the switching rates can depend on the organisms response to
environmental factors such as food abundance and density dependence [1, 11, 25].

We are concerned with the persistence criteria for a population living in a benthos-drifting
water environment. To this end, we extend the three measures of population persistence,
initially presented for the single compartment model (1.1) in [22], to a benthic-drift model.
The mathematical theory and methods are then applied to our scientific goal: to provide a
new way of analyzing IFN for populations in rivers.

The first measure of persistence describes the fundamental niche of the population and
we denote it Rloc(x). It is the product of reproduction and survival at the location x and
represents local population persistence. That is, in the absence of dispersal, a population will
persist at the location if Rloc(x) > 1 but will not persist if Rloc(x) < 1. In this work, we use
Rloc(x) to answer the following question: if an individual is placed at location x of the benthic
zone and it does not move, what will its lifetime reproductive output at that location be?

The second measure of persistence describes the source-sink distribution and is denoted
by Rδ(x). It represents lifetime reproductive output of an individual initially introduced at
x, undergoing survival, reproduction, and dispersal. Locations where Rδ(x) > 1 function
as sources because individuals at location x on average produce more than one offspring in
the whole spatial domain. Locations where Rδ(x) < 1 function as sinks because on average
the lifetime reproductive output of an individual introduced at location x is less than one
offspring. In this work, we use Rδ(x) to answer the following question: if an individual is
introduced at location x in the benthic zone and undergoes continuous dispersal in the drift
zone and reproduction in the benthic zone, what will its lifetime reproductive output be?

Although Rloc can describe local dynamics such as fundamental niche, and Rδ(x) describes
source and sink distributions in the spatial habitat, they do not inform us about the global
persistence or extinction of a population. To investigate this we turn to the final measure
of persistence, the net reproductive rate, R0, which is defined mathematically as the spectral
radius of the next generation operator. Biologically, it can be interpreted as the average num-
ber of offspring produced by a single individual over its lifetime, assuming that the individual
is subject to a particular spatial configuration in the river. This spatial configuration is an
asymptotically stable next generation distribution associated with R0. As a threshold param-
eter, R0 is a powerful tool for studying population persistence in demography and ecology.
The population will grow if R0 > 1, but the population will become extinct if R0 < 1.

In our benthic-drift model, we assume that individuals do not disperse on the benthos.
This results in a system consisting of a reaction-diffusion-advection equation coupled to an
ordinary differential equation at every point in space, and hence the solution maps of the
system are not compact. Traditional theories of R0 in infinite-dimensional dynamical systems
based on the celebrated Krein–Rutman theorem [9], which was used to analyze model (1.1),D
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are therefore not applicable to our model. A recent work by Wang and Zhao [31] has developed
a theory of R0 for compartmental epidemic models of reaction-diffusion equations, where some
of the diffusion coefficients could be zeros. We adapt this theory to our benthic-drift model and
show that it admits a net reproductive rate R0 that serves as a threshold value for extinction
and uniform persistence of the population under investigation.

The paper is organized as follows. In the next section, we introduce a benthic-drift model
for a population in a stream. In section 3, we derive three measures of persistence, Rloc(x),
Rδ(x), and R0 for our model. We show that R0 can be used to determine the stability of the
homogeneous trivial steady state of the model and can therefore be used as a measure of global
population persistence. We present numerical methods to calculate R0 and Rδ. In section 4,
we investigate how the water flow, birth rate, transfer rates, and river heterogeneity affect
the population persistence by numerically studying the dependence of R0 and Rδ on these
variables. In section 5, we apply R0 theory to find the critical domain size for the population
described by the benthic-drift model. In section 6, we compare the single compartment model
(1.1) with the benthic-drift model from the perspectives of theoretical analysis, numerical
methods, and biological applications. A discussion section completes the paper.

2. Model. We partition a river into the free-flowing water (or drift zone) and storage
zones (or benthic zone) [4, 7]. Assume that the water movement in the storage zone can be
neglected. We denote Ad and Ab as the cross-sectional areas of the drift zone and benthic
zone, respectively. We consider a population in which individuals live and reproduce in the
storage zone, and occasionally enter the water column to drift until they settle in the benthic
zone again. Thus, individuals’ movement in drifting water can be expressed as a combination
of advection (corresponding to the uniform stream flow as experienced by the organisms) and
diffusion (corresponding to the heterogeneous stream flow and individual swimming). The
mathematical model that describes the spatial dynamics of the population in a stream of
longitudinal length L is given by

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd

∂t
=
Ab(x)

Ad(x)
μ(x)Nb︸ ︷︷ ︸

transfer from Nb

− σ(x)Nd︸ ︷︷ ︸
transfer to Nb

−md(x)Nd︸ ︷︷ ︸
mortality

− Q

Ad(x)

∂Nd

∂x︸ ︷︷ ︸
advection

+
1

Ad(x)

∂

∂x

(
D(x)Ad(x)

∂Nd

∂x

)
︸ ︷︷ ︸

diffusion

, x ∈ (0, L), t > 0,

∂Nb

∂t
= f(x,Nb)Nb︸ ︷︷ ︸

reproduction

−mb(x)Nb︸ ︷︷ ︸
mortality

− μ(x)Nb︸ ︷︷ ︸
transfer to Nd

+
Ad(x)

Ab(x)
σ(x)Nd︸ ︷︷ ︸

transfer from Nd

, x ∈ (0, L), t > 0,

α1Nd(0, t) − β1
∂Nd

∂x
(0, t) = 0, t > 0,

α2Nd(L, t) + β2
∂Nd

∂x
(L, t) = 0, t > 0,

Nd(x, 0) = N0
d (x), Nb(x, 0) = N0

b (x), x ∈ (0, L),

where Nd(x, t) is the density of individuals at location x in the drift zone at time t, Nb(x, t)D
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is the density of individuals at location x in the benthic zone at time t, μ is the per capital
rate at which individuals in the benthic zone enter the drift zone, σ is the per capital rate
at which the organisms return to the benthic zone from drifting, f(x,Nb) is the per capita
birth rate function, mb and md are mortality rates of benthic individuals and drifting indi-
viduals, respectively, Q > 0 is the constant stream discharge, D(x) is the spatially variable
diffusion coefficient, αi and βi are nonnegative constants (i = 1, 2), and N0

d and N0
b are initial

distributions of the population in the drifting flow and in the benthos, respectively.
The boundary conditions we could consider are either Dirichlet (αi = 1, βi = 0), Neumann

(αi = 0, βi = 1), or Robin (αi ≥ 0, βi ≥ 0, αi + βi �= 0) conditions. In particular, we allow
for two types of boundary conditions relevant to streams, which we refer to as hostile and
Danckwert’s boundary conditions (see, e.g., [22]). Hostile conditions represent zero flux at the
stream source (individuals cannot enter or leave the domain at the source) and zero density
at the stream outflow (e.g., the stream discharges all individuals into a region such as a salt
water, from which they cannot return) [27]:

(2.2) QNd(0, t) −D(0)Ad(0)
∂Nd

∂x
(0, t) = 0 and Nd(L, t) = 0.

Danckwert’s conditions also assume zero flux at the stream source, but use a free-flow condition
at the stream outflow (individuals leave the domain at the same rate as the advection takes
them):

(2.3) QNd(0, t) −D(0)Ad(0)
∂Nd

∂x
(0, t) = 0 and

∂Nd

∂x
(L, t) = 0.

For a derivation and discussion of these boundary conditions from a random-walk perspective,
see [20].

In this paper, we make the following assumptions for the functions and parameters in the
model (2.1):

(i) μ(x), σ(x), mb(x), and md(x) are nonnegative continuous functions.
(ii) D, Ab, Ad ∈ C2([0, L], (0,∞)), and there exist positive constants c1 and c2 such that

c1 < Ad(x), Ab(x) < c2 for any x ∈ [0, L].
(iii) f : [0, L]×(0,∞) → R is continuous, f(x, 0)−mb(x) = limNb→0+ f(x,Nb)−mb(x) <∞,

f(x,Nb) is monotonically decreasing in Nb, and for each x there exists a unique value
Nb(x) := K(x) > 0 such that f(x,K(x))−mb(x) = 0.

We define the strongly elliptic linear operator

(2.4) L := − Q

Ad(x)

∂

∂x
+

1

Ad(x)

∂

∂x

(
D(x)Ad(x)

∂

∂x

)
,

which represents both the directed dispersal due to downstream flow and the random dispersal
due to turbulence and intrinsic movement of individuals, respectively. Although the operator
L is specific to dispersal in streams, all the results in this paper hold if L is replaced by a
strongly elliptic operator in a general form:

(2.5) L̃ := −ã(x) ∂
∂x

+ D̃(x)
∂2

∂x2
.D

ow
nl

oa
de

d 
10

/1
6/

20
 to

 1
29

.1
28

.2
16

.3
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

292 QIHUA HUANG, YU JIN, AND MARK A. LEWIS

The model (2.1) was derived in [20] from a three-dimensional conservation law for move-
ment of individuals in streams. When the parameters Ad, Ab, σ, μ, mb are constants and
Ad = Ab, md = 0, the system (2.1) reduces to the model of [24], which is well understood in
the context of critical domain size and propagation speed analysis (further discussion is given
in section 5).

3. Theoretical analysis. Our theoretical analysis of population persistence and extinction
is based on the following mathematical setting.

In the case where both upstream and downstream boundary value conditions are Neumann
or Robin boundary conditions (e.g., Danckwert’s boundary conditions), let X = C([0, L],R)
denote the Banach space of continuous functions on the interval [0, L] with the supremum
norm ‖u‖∞ = maxx∈[0,L] |u(x)| for u ∈ X. The set of nonnegative functions forms a solid cone
X+ in the Banach space X with interior Int(X+) = {u ∈ X : u > 0,∀x ∈ [0, L]}. The partial
order 	 on X is defined by u1 	 u2 provided u2 − u1 ∈ Int(X+).

In the case where one or two boundary conditions are Dirichlet boundary conditions (e.g.,
hostile boundary conditions), let U = C0([0, L],R) denote the Banach space of continuous
functions on [0, L] vanishing on the boundary with the cone U+ of nonnegative functions
in U . Let U1 = C1([0, L],R) be the Banach space of continuously differentiable functions
on [0,L] with the norm ||u||1 = maxx∈[0,L] |u(x)| + maxx∈[0,L] |u′(x)|. Let X be the closed
subspace of U1 consisting of continuously differentiable functions vanishing on the boundary.
The set X+ = X ∩ U+ is a solid cone in X with nonempty interior in X given by Int(X+) =
{u ∈ X+ : u(x) > 0 for all x ∈ (0, L), ux(0) > 0, ux(L) < 0}. We write u1 	 u2 if u1, u2 ∈ X
and u2 − u1 ∈ Int(X+), but in this case “	” does not define a partial order.

By similar arguments to those in [21, Theorem 1 and Remark 1.1] and [12, Lemma 3.1],
we have the following result on the well-posedness of the initial boundary value problem (2.1).

Lemma 1. The system (2.1) has a unique solution on [0,∞) × [0, L] for any initial value
in X ×X and the solutions to (2.1) remain nonnegative if they are nonnegative initially.

Moreover, we can obtain that (2.1) defines a semiflow {Φt}t≥0 that is continuous from X
to X and is strongly order preserving for each t > 0 (see also [22, 26]).

3.1. The next generation operator. Note that (0, 0) is the trivial homogeneous steady
state of (2.1) and that the associated linearized system of model (2.1) at (0, 0) is

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd

∂t
=
Ab(x)

Ad(x)
μ(x)Nb − σ(x)Nd −md(x)Nd +LNd, x ∈ (0, L), t > 0,

∂Nb

∂t
= f(x, 0)Nb −mb(x)Nb − μ(x)Nb +

Ad(x)

Ab(x)
σ(x)Nd, x ∈ (0, L), t > 0,

α1Nd(0, t) − β1
∂Nd

∂x
(0, t) = 0, t > 0,

α2Nd(L, t) + β2
∂Nd

∂x
(L, t) = 0, t > 0,

Nd(x, 0) = N0
d (x), Nb(x, 0) = N0

b (x), x ∈ (0, L).

Now we define the next generation operator associated with the linearized system (3.1). The
operator should map an initial population distribution to its “next generation” distributionD
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(or its offspring distribution). By studying the properties of the next generation operator, we
expect to see whether the population can persist in a stream or not.

Suppose that a population of species is introduced into the stream environment [0, L]
with density distribution (n0d, n

0
b) ∈ X × X, and then the individuals of this population

experience dispersal in the drift zone and reproduction in the benthic zone until they die.
If (nd(x, t), nb(x, t)) denotes the density of these initial individuals at x at time t, then the
population density over time is governed by the model

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nd
∂t

=
Ab(x)

Ad(x)
μ(x)nb − σ(x)nd −md(x)nd + Lnd, x ∈ (0, L), t > 0,

∂nb
∂t

= −mb(x)nb − μ(x)nb +
Ad(x)

Ab(x)
σ(x)nd, x ∈ (0, L), t > 0,

α1nd(0, t) − β1
∂nd
∂x

(0, t) = 0, t > 0,

α2nd(L, t) + β2
∂nd
∂x

(L, t) = 0, t > 0,

nd(x, 0) = n0d(x), nb(x, 0) = n0b(x), x ∈ (0, L).

The difference between (3.2) and (3.1) is the lack of reproduction (f(x, 0)Nb)) in the ben-
thic category. The function f(x, 0)nb(x, t) is the rate of population reproduction by the
initial individuals at location x at time t. Therefore, at location x, the total reproduction
by initially introduced individuals during their lifetime is given by

∫∞
0 f(x, 0)nb(x, t)dt (or

f(x, 0)
∫∞
0 nb(x, t)dt), which we call the next generation distribution of the initial distribution

(n0d, n
0
b). Note that we are able to show the existence of

∫∞
0 n(x, t)dt and its continuity with

respect to x by explicitly calculating the integral, as shown in (A.20) (see Appendix A.5), and
by our model assumptions. This leads us to the following definition.

Definition 2. The next generation operator Γ : X × X → X × X associated with (3.1) is
defined as

(3.3) Γ

(
n0d
n0b

)
(x) :=

∫ ∞

0

(
0 0
0 f(x, 0)

)(
nd(x, t)
nb(x, t)

)
dt =

⎛
⎝ 0

f(x, 0)

∫ ∞

0
nb(x, t)dt

⎞
⎠ ,

where (nd(x, t), nb(x, t)), the distribution of the initially introduced individuals at time t, is
the solution of (3.2).

3.2. Three measures of population persistence. Recently, [19] proposed three relevant
measures of population persistence that relate to lifetime reproductive output, survival, and
dispersal in a spatially variable environment. These measures, described in the introduc-
tion, were applied in [22] to analyze an advection-diffusion-reaction model for populations in
streams, where the whole river channel was regarded as a drift zone. Here we adapt these
measures to provide a new way of analyzing the benthic-drift model (2.1).

In this paper, we say that a population described by (2.1) will persist if there exists ε > 0
such that

(3.4) lim sup
t→∞

||(Nd, Nb)− (0, 0)||∞ = lim sup
t→∞

max
x∈[0,L]

{Nd(t, x), Nb(t, x)} ≥ ε.D
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Otherwise, we say that the population will be washed out. In particular, the population will
be washed out if the trivial steady state (N∗

d , N
∗
b ) = (0, 0) of (2.1) is stable in the sense that

it attracts all solutions with small initial values.
Now we define three measures of population persistence for model (2.1).
Measure 1: Fundamental niche, Rloc(x). The first measure of local persistence,

denoted by Rloc(x), determines the fundamental niche of the species. Recall that the fun-
damental niche of an organism in its ecosystem is the full range of environmental conditions
and resources (biological and physical) that the organism can possibly occupy and use, espe-
cially when limiting factors are absent. We assume that the individual only experiences birth
and death after being introduced into the stream but excludes dispersal processes during its
lifetime. In this case, (3.1) reduces to

(3.5)

⎧⎪⎨
⎪⎩

dNb

dt
= f(x, 0)Nb −mb(x)Nb, x ∈ (0, L), t > 0,

Nb(x, 0) = N0
b (x), x ∈ (0, L).

We define Rloc(x) as the the number of offspring produced by an individual introduced at
x ∈ [0, L] in the benthic zone over its lifetime. That is,

(3.6) Rloc(x) = f(x, 0)

∫ ∞

0
nb(x, t)dt,

where nb(x, t) is the solution to the initial-value problem

(3.7)

⎧⎨
⎩

dnb
dt

= −mb(x)nb, x ∈ (0, L), t > 0,

nb(x, 0) = 1, x ∈ (0, L).

Solving (3.7) yields nb(x, t) = e−mb(x)tdt and therefore

(3.8) Rloc(x) = f(x, 0)

∫ ∞

0
e−mb(x)tdt =

f(x, 0)

mb(x)
,

which is the per capital reproduction rate times the average life span of an individual at x.
Thus, Rloc(x) > 1 is equivalent to f(x, 0) > mb(x), i.e., the per capital reproduction rate is
greater than mortality rate; Rloc(x) < 1 is equivalent to f(x, 0) < mb(x). It follows from the
definition of Rloc(x) that if Rloc(x) > 1, an individual introduced at x will produce more than
one offspring at x in the next generation and the population size at x will increase over the
generations. Therefore, locations with Rloc(x) > 1 correspond to the fundamental niche of
the species.

Measure 2: Source-sink distribution, Rδ(x). The second measure of local persis-
tence, denoted Rδ(x), describes the number of offspring produced by an individual introduced
at x in the benthic zone and undergoing birth, death, and dispersal dynamics. It determines
the source-sink distribution in the stream. To define Rδ(x), we return to the full spatial model
(3.1). The distribution of offspring, produced by a single individual introduced at x in the
benthic zone, is given by

(3.9) f(z, 0)

∫ ∞

0
nb(z, t)dt,D
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where nb(z, t) is the second compartment of the solution of (3.2) (replacing spatial variable
x by z) with initial distribution (nd(z, 0), nb(z, 0)) = (0, δ(z − x)) and δ(·) is the Dirac delta
function.

We then define Rδ(x) as

(3.10) Rδ(x) =

∫ L

0
f(z, 0)

∫ ∞

0
nb(z, t)dtdz.

Locations where Rδ(x) > 1 act as sources, because an individual introduced at location x
will produce more than one offspring in the whole stream domain [0, L]. Locations where
Rδ(x) < 1 serve as sinks, because the lifetime reproductive output of an individual introduced
at location x will results in less than one offspring in the whole stream. Thus, Rδ(x) is a
measure of the source-sink dynamics in the stream.

Measure 3: Net reproductive rate, R0. This measure is defined for the population’s
global persistence. For any initial distribution (N0

d (x), N
0
b (x)) of the spatial model (3.1), the

associated next generation distribution is

(3.11) Γ

(
N0

d

N0
b

)
(x) =

⎛
⎝ 0

f(x, 0)

∫ ∞

0
nb(x, t)dt

⎞
⎠ ,

where nb(x, t) solves (3.2) with initial condition (N0
d , N

0
b ). Define

(3.12) R0 := r(Γ),

where r(Γ) is the spectral radius (see, e.g., [8]) of the linear operator Γ on X ×X. We call R0

the net reproductive rate. R0 represents the average number of offspring an individual may
produce during its lifetime.

3.3. Persistence theory. In this subsesction, we will show that R0 can predict global
persistence or extinction of the focal population.

First, we consider an eigenvalue problem. Substituting Nd(x, t) = eλtφ1(x) and Nb(x, t) =
eλtφ2(x) into (3.1), we obtain the associated elliptic eigenvalue problem

(3.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ab(x)

Ad(x)
μ(x)φ2 − σ(x)φ1 −md(x)φ1 + Lφ1 = λφ1, x ∈ (0, L),

f(x, 0)φ2 −mb(x)φ2 − μ(x)φ2 +
Ad(x)

Ab(x)
σ(x)φ1 = λφ2, x ∈ (0, L),

α1φ2(0)− β1
dφ2
dx

|x=0= 0,

α2φ2(L) + β2
dφ2
dx

|x=L= 0.

The following result follows from similar arguments as in Lemma 4.1 in [31]. The proof is
given in Appendix A.1.

Theorem 3. Problem (3.13) has a simple principal eigenvalue λ∗ with a positive eigenfunc-
tion.D
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By the results in Theorem 3.1(i) and Remark 3.1 in [31], we have the following result that
relates R0 to the principal eigenvalue λ∗ of (3.13).

Lemma 4. R0 − 1 has the same sign as λ∗, where λ∗ is the principal eigenvalue of (3.13).
The following result implies that R0 is a threshold value for the stability of the trivial

homogeneous steady state solution (N∗
d , N

∗
b ) ≡ (0, 0) of the nonlinear population model (2.1).

Hence, the threshold R0 = 1 separates population extinction from population persistence for
the nonlinear model (2.1). The proof of Theorem 5 is provided in Appendix A.2.

Theorem 5.
(i) If R0 < 1, then (0, 0) is asymptotically stable for model (2.1).
(ii) If R0 > 1, then (0, 0) is unstable for model (2.1) and the population persists according

to definition (3.4).

3.4. Computation of R0 and Rδ. The next generation operator Γ is defined in (3.3) in
terms of an auxiliary time-dependent problem (3.2). Here we will find another spatial operator
Γ̂, which is not related to a time-dependent problem but shares the same spectral radius with
Γ. We also obtain an alternative formula for Rδ(x) by investigating the dynamics of (3.2).
We then provide numerical methods for calculating R0 and Rδ(x).

3.4.1. Operator Γ̂ and R0. We define Γ̂ : X → X as
(3.14)

Γ̂(ϕ)(x) :=
f(x, 0)ϕ(x)

mb(x) + μ(x)
+

σ(x)Ad(x)

(mb(x) + μ(x))Ab(x)

∫ L

0
k(x, y)

f(y, 0)μ(y)Ab(y)ϕ(y)

(mb(y) + μ(y))Ad(y)
dy ∀ϕ ∈ X,

where k(x, y) is the solution of the ordinary boundary value problem

(3.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
L− σ(x)−md(x) +

σ(x)μ(x)

mb(x) + μ(x)

)
k(x, y) = −δ(x− y), x ∈ (0, L),

α1k(0, y) − β1k
′(0, y) = 0,

α2k(L, y) + β2k
′(L, y) = 0

for a fixed value of y ∈ (0, L) (here ′ denotes differentiation with respect to x). Note that the
solution to (3.15) is a Green’s function (see (2-11) in Chapter 7 in [10], (2.9) in Chapter 3
in [28], or Appendix B in [22]). It is worthwhile to point out that Γ̂(ϕ)(x) represents the
offspring distribution of the initial population ϕ(x) only distributed on the benthos. Then we
can obtain the following result with the proof given in Appendix A.3.

Theorem 6. The spectral radius of Γ is the same as the spectral radius of Γ̂, i.e., r(Γ) =
r(Γ̂).

Thus, R0 = r(Γ̂) and it suffices to calculate the spectral radius of Γ̂ to determine population
persistence or extinction for model (2.1).

When the coefficients describing birth (f(x, 0)), mortality (mb(x) and md(x)), transfer
(σ(x) and μ(x)), and cross-sectional areas (Ab(x) and Ad(x)) are spatially homogeneous, we
show in the following corollary that R0 is the principal eigenvalue of Γ̂. See Appendix A.4 for
the proof.

Corollary 7. Assume that f(x, 0) ≡ f , mb(x) ≡ mb, md(x) ≡ md, σ(x) ≡ σ, μ(x) ≡ μ,
Ab(x) ≡ Ab, and Ad(x) ≡ Ad. Then R0 is the principal eigenvalue of Γ̂ with a positiveD
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eigenfunction and

(3.16) R0 =
f

mb + μ
+

fσμ

(mb + μ)2
ς∗,

where ς∗ is the principal eigenvalue of Φ, defined as

(3.17) Φ(ϕ)(x) :=

∫ L

0
k(x, y)ϕ(y)dy, ∀ϕ ∈ X,

where k(x, y) satisfies (3.15).

3.4.2. An alternative formula for Rδ(x). The following proposition gives an alternative
formula to calculate the source-sink distribution Rδ(x). The proof can be found in Ap-
pendix A.5.

Proposition 8. The source-sink distribution, Rδ(x), defined in (3.10), can be calculated by
the following formula:
(3.18)

Rδ(x) =
f(x, 0)

mb(x) + μ(x)
+

μ(x)Ab(x)

(mb(x) + μ(x))Ad(x)

∫ L

0
f(z, 0)k(z, x)

σ(z)Ad(z)

(mb(z) + μ(z))Ab(z)
dz

for any x ∈ (0, L), where k is defined by (3.15).

3.4.3. Numerical methods. In what follows, we present numerical methods to calculate
R0 and Rδ.

From the definition of R0 in (3.12) and Theorem 6, we have

(3.19) R0 = r(Γ) = r(Γ̂) = sup{|λ|, λ ∈ σ(Γ̂)},

where Γ̂ is defined in (3.14), σ(Γ̂) = {λ ∈ C, λI − Γ̂ is not invertible}, and I is an identity
operator. For most cases it is not possible to find an analytic expression of the spectral radius
of an operator. One of the principal projection methods, the collocation method, reviewed
in ([6], section 3.1.1) and restated in [22], provides a practical approach for approximating
an operator. Here we apply such a method to numerically approximate Γ̂ on X and then
approximate the spectral radius of Γ̂.

We divide the interval [0, L] into n − 1 equal subintervals [xj, xj+1], j = 1, 2, . . . , n − 1,
where 0 = x1 < x2 < · · · < xn = L. Denote the size of subintervals by Δx. For any ϕ ∈ X,
we consider its piecewise linear approximation by

(3.20) ϕ(x) ≈
n∑

j=1

ϕ(xj)ej(x),

where ej(x), j = 1, 2, . . . , n, piecewise linear basis “hat” functions, depicted in Figure 1, are
defined by

(3.21) ej(x) = max

{
0, 1− |x− xj |

Δx

}
, x ∈ [0, L], j = 1, 2, . . . , n.D
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Figure 1. Hat functions.

Let Xn = span{e1, e2, . . . , en}, then the Banach space X (see section 3 for definition) can be
approximated by {Xn}∞n=1, a sequence of finite-dimensional subspaces of X.

Plugging (3.20), the basis function representation of ϕ(x), into (3.14), we have

(3.22)

(Γ̂ϕ)(x) ≈ f(x, 0)

mb(x) + μ(x)

n∑
j=1

ϕ(xj)ej(x)

+
σ(x)Ad(x)

(mb(x) + μ(x))Ab(x)

∫ L

0
k(x, y)

f(y, 0)μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)

n∑
j=1

ϕ(xj)ej(y)dy.

By exploiting the specific basis functions, we find

(3.23)

∫ L

0
k(x, y)

μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)

n∑
j=1

ϕ(xj)ej(y)dy

= ϕ(x1)

∫ x2

x1

k(x, y)
μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
e1(y)dy

+

n−1∑
j=2

ϕ(xj)

∫ xj+1

xj−1

k(x, y)
μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
ej(y)dy

+ ϕ(xn)

∫ xn

xn−1

k(x, y)
μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
en(y)dy.

Applying collocation points xi, i = 1, 2, . . . , n, to (3.22) and (3.23), we approximate theD
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operation (3.14) by the operation of a large matrix, that is,

(3.24) Γ̂(ϕ)

⎛
⎜⎜⎝

x1
x2
· · ·
xn

⎞
⎟⎟⎠ ≈ Γ̂n

⎛
⎜⎜⎝

ϕ(x1)
ϕ(x2)
· · ·

ϕ(xn)

⎞
⎟⎟⎠ ∀ϕ ∈ X,

where Γ̂n = Γ̂(1)
n + Γ̂(2)

n , with

(3.25) Γ̂(1)
n = diag

(
f(x1, 0)

mb(x1) + μ(x1)
, . . . ,

f(xn, 0)

mb(xn) + μ(xn)

)
,

and Γ̂(2)
n , an n by n matrix with entries

(3.26)

(Γ̂n)i,1 =
σ(xi)Ad(xi)

(mb(xi) + μ(xi))Ab(xi)

∫ x2

x1

k(xi, y)
f(y, 0)μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
e1(y)dy, i = 1, . . . , n,

(Γ̂n)i,j =
σ(xi)Ad(xi)

(mb(xi) + μ(xi))Ab(xi)

∫ xj+1

xj−1

k(xi, y)
f(y, 0)μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
ej(y)dy,

i = 1, . . . , n, j = 2, . . . , n − 1,

(Γ̂n)i,n =
σ(xi)Ad(xi)

(mb(xi) + μ(xi))Ab(xi)

∫ xn

xn−1

k(xi, y)
f(y, 0)μ(y)Ab(y)

(mb(y) + μ(y))Ad(y)
en(y)dy, i = 1, . . . , n.

Now we use the matrix operator Γ̂n to approximate Γ̂. Thus, R0, the spectral radius of the
operator Γ̂, can be approximated by the spectral radius of the matrix Γ̂n, for very large n.

We observe that all elements of the matrix Γ̂n, determined by population vital rates and
transfer rates, are nonnegative. Thus, the Perron–Frobenius theorem implies the following
results: (1) Γ̂n has a positive real eigenvalue λ1,n, called the Perron–Frobenius eigenvalue or
the principal eigenvalue, such that any other eigenvalue (possibly, complex) is strictly smaller
than λ1,n in absolute value. That is, the spectral radius of matrix Γ̂n is equal to λ1,n. (2)
There exists an eigenvector [ϕ(x1), . . . , ϕ(xn)]

T of Γ̂n associated with eigenvalue λ1,n such that
all components of this eigenvector are positive.

Based on the above results, we approximate R0 by the principal eigenvalue λ1,n of Γ̂n.
Applying the hat functions (3.21) to the eigenvector [ϕ(x1), . . . , ϕ(xn)]

T yields a function

(3.27)
n∑

j=1

ϕ(xj)ej(x) := φ(x).

We notice that φ is an approximation of the stable next generation distribution; that is,
if the current population distribution is given by φ(x), then its offspring distribution can
be approximated by R0φ(x), provided that we use Γ̂n to approximate Γ̂. For brevity we
henceforth refer to φ as the next generation function.

When the coefficients describing birth (f(x, 0)), mortality (mb(x) and md(x)), transfer
(σ(x) and μ(x)), and cross-sectional areas (Ab(x) and Ad(x)) are spatially homogeneous, the
matrix Γ̂n can be simplified and we can use the same method to approximate R0.D
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Moreover, by the meaning of Rδ, we can approximate Rδ(x) by

(3.28) Rδ(x) =

n∑
j=1

Rδ(xj)ej(x),

where Rδ(xj) is defined by (3.18).

4. Numerical results. In this section, we study how the net reproductive rate, stream flow,
transfer rates, and river heterogeneity affect the population persistence through numerical
simulations. Consider model (3.1) with hostile boundary conditions (2.2). We assume Ad,
md, mb, D, μ, and σ in (3.1) are constants but allow the birth rate f and the size of the
benthic zone Ab to vary in space. Following [22], we choose f to be a linearly increasing
function with distance downstream,

(4.1) f(x) = fmin +
x

L
(fmax − fmin), x ∈ [0, L],

where fmin and fmax are the birth rates at the upstream and downstream boundaries of the
stream, respectively, with 0 ≤ fmin ≤ fmax. Set v = Q/Ad. Then (3.1) reduces to the following
benthic-drift model:

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd

∂t
=
μAb(x)

Ad
Nb − (σ +md)Nd − v

∂Nd

∂x
+D

∂2Nd

∂x2
, x ∈ (0, L), t > 0,

∂Nb

∂t
= (f(x, 0)−mb − μ)Nb +

σAd

Ab(x)
Nd, x ∈ (0, L), t > 0,

vNd(0, t)−D
∂Nd

∂x
(0, t) = 0, Nd(L, t) = 0, t > 0,

Nd(x, 0) = N0
d (x), Nb(x, 0) = N0

b (x), x ∈ (0, L).

4.1. The action of the next generation operator. We begin by studying the relationship
between the long-term behavior of the population model (4.2) and the next generation oper-
ator. To this end, we numerically solve the population model (top row of Figure 2). To show
the action of the next generation operator, we also numerically approximate R0 and its associ-
ated next generation function φ(x) (see (3.27)) (bottom row of Figure 2) using the collocation
method presented in section 3.4. As we see from Figure 2, the value of the net reproductive rate
R0 determines the eventual fate of the population, persistence (R0 > 1) or washout (R0 < 1).

4.2. The effect of the flow velocity, birth rate, and settling rate on Rδ and R0. We
then consider the source-sink regions in the stream by computing Rδ(x). We compare Rδ(x)
in the case where the birth rate varies spatially to the case where the birth rate is the constant
average f = (fmin + fmax)/2. The results are presented in Figure 3 for three different settling
rates and two different stream flows. The dispersal, described by Green’s functions k(x, y),
is also shown for low and high flows (middle column of Figure 3). An analytic expression for
the Green’s function k(x, y) can be obtained based on (3.15) when the involved parameters
are constants (see Appendix B in [22]). Comparing the solid, dashed, and dotted lines for
each case in Figure 3, we see that different settling rates lead to different source-sink regionsD
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Figure 2. The long-term population persistence is determined by the action of the next generation operator
on the next generation function φ. R0, φ(x), and Γ̂φ(x) are computed using the numerical method developed in
section 3.4.3. The birth rate function f(x) is given by (4.1) with fmin = 0.4 and fmax = 1.2. Other parameters:
L = 1, md = mb = 0.4, D = 0.01, v = 0.03, Ad = Ab, μ = 2. Depending on the settling rate σ, the population
either persists (left column: σ = 2.2) or is washed out (right column: σ = 1.4) over time.

and different dispersal kernels. More precisely, Rδ(x) increases with increasing settling rate,
which results in increased source regions (where Rδ(x) > 1) and decreased sink regions (where
Rδ(x) < 1). Also, an increased settling rate leads to decreased dispersal.

When the birth rate is constant in space (left column of Figure 3), the flow can result in
the appearance of a sink region associated with the downstream boundary conditions. As the
flow increases, the size of the sink region increases. This is because individuals are washed out
more quickly with increasing flow and hence are unable to contribute enough offspring to the
next generation. In the case where the birth rate is variable in space (right column of Figure 3),
new upstream sink regions appear even when the flow is low (right top panel of Figure 3).
As the flow increases, the middle parts of the stream are source regions and the upstream
and the downstream become sink regions (right bottom panel of Figure 3). Increasing flow
causes the size of source regions to become smaller and the size of sink regions to become
larger. This is because when downstream birth rates are higher than upstream birth rates,
increased flow plays a trade-off role. The flow will transport individuals from upstream to
downstream locations where the population has a higher birth rate. Therefore, individuals
that are transported into a better habitat in the downstream are able to contribute more
offspring to the next generation during their lifetime. However, increased flow also causes lossD
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Figure 3. Rδ(x) for several flow speeds and settlement rates. Left column: birth rate f is constant (f = 0.8).
Right column: birth rate f(x) increases linearly with distance downstream, given by (4.1) with fmin = 0.4 and
fmax = 1.2. In each case, Green’s functions are shown in the middle column. D = 0.005, other parameters are
the same as those in Figure 2.

and possible washout as individuals exit through the downstream boundary. These contrasting
effects yield the trade-off for increased flow.

To understand how flow and settling rates interact to influence the source-sink regions and
R0, again we consider a stream where population has a constant birth rate in space (left panel
of Figure 4) and a stream where population has a variable birth rate in space (right panel of
Figure 4). We plot the proportion of habitat where Rδ(x) > 1 as a function of flow speed and
settling rate for each stream (contour lines in Figure 4). For the same range of flow speeds
and settling rates, we also calculate R0 and shade the regions in which R0 > 1 in the σv-plane.

When the birth rate is constant, the effect of the interaction between flow and settling rate
on the size of the source region is evident over a range of values (left panel of Figure 4). The
maximum size of the source region appears when the flow is low and the settling rate is high.
However, when the birth rate is spatially variable, as shown by the right panel of Figure 4,
the source region reaches a maximum size when the flow is medium and the settling rate is
high. The medium flow is able to carry sufficient individuals to downstream where they have
higher birth rate.

As shown in Figure 4, the maximum flow speed permitting persistence (R0 > 1) increases
from the left panel (spatially constant birth rate) to the right panel (linearly increasing birth
rate). This indicates that high birth rate near the downstream boundary permits persistence
under increased stream flow as compared to the constant environment case.

Comparing the results for Rδ with those for R0 shown by Figure 4, we see that it is possible
to have R0 < 1 even when the proportion of the domain where Rδ(x) > 1 is large (say greaterD
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Figure 4. The proportion of habitat where Rδ(x) > 1 for a range of flow speeds and settling rates. Left
column: the birth rate f is constant (f = 0.8). Right column: the birth rate function f(x) is given by (4.1)
with fmin = 0.4 and fmax = 1.2. The curves represent the proportions 0.4, 0.6, and 0.8, respectively. The
corresponding regions in which R0 > 1 are shown by shading. The parameters other than v and σ are the same
as those in Figure 2.

Figure 5. Dependence of R0 on transfer rates. The birth rate f = 0.8 is constant (f = 0.8), md = 0.2, mb =
0.2, D = 0.005, Ad = Ab.

than 0.5), and it is possible to have R0 > 1 even when the proportion of the domain where
Rδ(x) > 1 is small (say less that 0.5). In other words, population might be washed out even
if the majority of the domain are sources, and population might be able to persist even if the
majority of the domain are sinks. Therefore, the size of the source region cannot be used to
determine the global persistence or extinction for populations in streams.

4.3. The dependence of R0 on transfer rates. To see how transfer rates affect the
population persistence, we obtain R0 as a function of σ ∈ [0, 100] for a fixed ratio σ/μ = 10 in
Figure 5. We expect σ/μ to be large because little time is spent in flow relative to benthos.
The numerical results show that R0 decreases as the transfer rate increases and R0 reaches aD
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Figure 6. The net reproductive rate R0 and corresponding normalized next generation function for several
different rivers. Ab = 0.5 represents shallows and Ab = 1.5 denotes deep pools. L = 1, f = 0.8, σ = 2.2. Other
parameters are the same as those in Figure 2.

stable minimum value as the transfer rate increases further. Note that, when the transfer rates
are very large, the individuals move very frequently between the drift zone and the benthic
zone. In this case, the whole stream becomes more like just one zone and the benefit of the
benthic zone becomes less significant. In this sense, Figure 5 also indicates that the benthic
component positively affects the ability of the population to resist being washed out.

4.4. The effect of river heterogeneity on R0. Deep pools and shallows in a river are ex-
amples of heterogeneities that typically occur on shorter spatial scales than the entire stretch of
a river. To investigate how the heterogeneous landscapes affect the persistence of a population
in a river, we consider a spatially periodic pool-shallow river. Assume that the cross-sectional
area of the drift zone Ad is a constant, and that the cross-sectional area of the benthic zone
varies periodically. We choose Ad = 1 and Ab(x) to be a periodic piecewise constant function
in which Ab = 0.5 represents shallows and Ab = 1.5 represents deep pools (Figure 6). We
compare the net reproductive rate R0 and corresponding normalized next generation function
φ(x) (with

∫ 1
0 φ(x)dx = 1) for populations living in different rivers. The first row of Figure 6

shows that the population has a lower R0 when there is a shallow in the upstream and a pool
in the downstream (left panel of the top row), and the population has a higher R0 when there
is a pool in the upstream and a shallow in the downstream (right panel of the top row).

Individuals grow and reproduce in benthic zones. The deeper the benthic zone is, the
easier it is for them to grow. Note that the next generation function φ(x) associated with R0
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describes the stable next generation population distribution in a river. Figure 6 indicates that
when deep pools are close to the upstream, more offspring are produced and live upstream.
However, when deep pools are located downstream, more offspring are produced and live
downstream where they might easily be washed out.

5. An application of R0 theory: Finding the critical domain size. In this section, we
show that the critical domain size Lcrit (i.e., the minimal length for a population to persist in
a river) can be found by using the net reproductive rate R0.

Consider the special case of (3.1), where md,mb, f, μ, σ,D, and Ad = Ab are constants.
Let v = Q/Ad, then model (3.1) reduces to the following system:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd

∂t
= −mdNd + μNb − σNd − v

∂Nd

∂x
+D

∂2Nd

∂x2
, x ∈ (0, L), t > 0,

∂Nb

∂t
= fNb −mbNb − μNb + σNd, x ∈ (0, L), t > 0,

α1Nd(0, t)− β1
∂Nd

∂x
(0, t) = 0, t > 0,

α2Nd(L, t) + β2
∂Nd

∂x
(L, t) = 0, t > 0,

Nd(x, 0) = N0
d (x), Nb(x, 0) = N0

b (x), x ∈ (0, L).

In the case where md = 0 (i.e., the mortality rate of the population in the drifting flow was
ignored), the critical domain size for (5.1) under hostile boundary conditions (2.2) was shown
in [24]. If f > mb + μ, persistence is guaranteed, irrespective of the domain length and the
advection speed. If f ≤ mb + μ and v < 2

√
D[σμ/(mb + μ− f)− σ] := c∗, then the critical

domain size is given by

(5.2) Lcrit =
2D√

4D
(

σμ
mb+μ−f − σ

)
− v2

(
π − arctan

(√
4D

v2

(
σμ

mb + μ− f
− σ

)
− 1

))
.

Note that the original expression for the critical domain size Lcrit in [24] should be adjusted
to (5.2) in terms of the sign of the involved arctan function.

Now we consider the case where md �= 0. By Theorem 5, the threshold for persistence of
a population in a domain of length L occurs when R0 = 1. Recall that by Corollary 7, R0 is
the principal eigenvalue of the next generation operator associated with (5.1). Alternatively,
one can find R0 by solving the eigenvalue problem

(5.3)
f

mb + μ
ϕ(x) +

fσμ

(mb + μ)2

∫ L

0
k(x, y)ϕ(y) dy = λϕ(x).

Applying the linear operator L to (5.3), we obtain a Sturm–Liouville problem. Then by
choosing λ = R0 = 1 and finding the minimum positive solution of the Sturm–Liouville
problem, we see that f ≤ mb+μ and v < 2

√
D[σμ/(mb + μ− f)− σ −md] := c∗ are necessaryD
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conditions for the population to persist, and when v < c∗, the critical domain size under hostile
boundary conditions (2.2) is given by

Lcrit =
2D√

4D
(

σμ
mb+μ−f − σ −md

)
− v2

(
π − arctan

(√
4D

v2

(
σμ

mb + μ− f
− σ −md

)
− 1

))
,

(5.4)

which is equivalent to Lcrit in (5.2) whenmd = 0. A full calculation in provided in Appendix B.
Similar calculations show when v < c∗/

√
2, the critical domain size for (5.1) under Danck-

wert’s boundary conditions (2.3) is given by

(5.5) LDan
crit =

2D√
4D
(

σμ
mb+μ−f − σ −md

)
− v2

arctan

⎛
⎜⎜⎝
√

4D
v2

(
σμ

mb+μ−f − σ −md

)
− 1

2D
v2

(
σμ

mb+μ−f − σ −md

)
− 1

⎞
⎟⎟⎠ .

When c∗/
√
2 < v < c∗, the critical domain size is

(5.6)

LDan
crit =

2D√
4D
(

σμ
mb+μ−f − σ −md

)
− v2

⎛
⎜⎜⎝π − arctan

⎛
⎜⎜⎝
√

4D
v2

(
σμ

mb+μ−f − σ −md

)
− 1

1− 2D
v2

(
σμ

mb+μ−f − σ −md

)
⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

6. Comparison between the benthic-drift model and the single compartment model.
In this section, we compare the benthic-drift model (2.1) the single compartment model (1.1)
in [22] from the perspectives of model formulations, theoretical analysis, numerical methods,
and biological applications.

6.1. Difference between the model formulations. The single compartment model (1.1)
assumes a single population, dispersing and reproducing in the flow. The benthic-drift model
(2.1) assumes separate flow and benthic compartments with reproduction in the benthic com-
partment and transfer back and forth between compartments.

6.2. Theory difference between two models. In both [22] and the current work, we
define three measures of persistence, Rloc, Rδ, and R0, in the context of a next generation
operator Γ; our goal is to derive a useful persisence threshold and to use it to determine how
population persistence/extinction depends on biotic and abiotic factors in the system.

Model (1.1) is a standard parabolic equation. The existence of the principal eigenvalue of
the eigenvalue problem associated with the linearized system of (1.1) has been well established
and it has been proved that this principal eigenvalue can be used to predict the stability of the
trivial steady state (see e.g., [5, 26]). The solution map of the model and the resultant next
generator operator are both compact. Hence, a theory of an infinite-dimensional dynamics
system in [29] can be applied to establish the net reproductive rate.

Model (2.1) is a system consisting of a parabolic equation and an ordinary differential
equation and there is clearly no diffusion term in the ordinary differential equation. TheD
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solution maps are hence not compact. There is no standard theory for the principal eigenvalue
of the associated eigenvalue problem in the case where parameters are spatial or time varying;
see, e.g., [3, 15, 16] for similar systems with constant coefficients. Therefore we have to address
the existence of the principal eigenvalue of the associated eigenvalue problem (see a recent
theory in [31]) and establish the result that it can be used to determine the stability of the
trivial steady state. In the most general case where all parameters vary, the next generation
operator is not compact. Even though we can still use the theory in [29] to define the spectral
radius of the next generation operator as the net reproductive rate for prediction of population
persistence, we cannot show that the net reproductive rate is the principal eigenvalue of the
next generation operator.

6.3. Difference in numerically computing R0. For the single compartment model (1.1)
studied in [22], the compactness of Γ1 guarantees that R0 is the dominant eigenvalue of Γ1,
hence R0 can be found by solving the eigenvalue problem

(6.1) Γ1φ = R0φ,

where φ(x) is the positive function associated with the dominant eigenvalue R0 of the operator
Γ1. In most cases, it is not possible to find an analytic expression for R0. A projection
method was used in [22] for numerically approximating R0. By using the projection method,
the eigenvalue problem (6.1) was approximated by a matrix eigenvalue problem

(6.2) Γ1,nφn = R0,nφn,

where Γ1,n is an n×nmatrix and φn is an n-dimensional vector. Thus, R0 can be approximated
by the dominant eigenvalue of Γ1,n for very large n.

In this work, to calculate R0, we introduced a new operator Γ̂ : X → X, which has the
same spectral radius as Γ : X × X → X × X, to simplify the calculation of R0. However,
the operator Γ̂ is still not compact due to the first term of the right side of (3.14), the
Krein–Rutman theorem does not apply, the spectral radius of Γ̂ may not be an eigenvalue
of Γ̂. Therefore, we approximated R0 (the spectral radius of Γ̂) by the spectral radius of a
sufficiently large matrix (see section 3.4.3).

6.4. Effect of benthic zone on population persistence. We now examine the effect of
the benthic compartment on population persistence. To do this, we compare the critical
domain size for the benthic-drift model (5.1) to the critical domain sizes for two related single
compartment population models under hostile boundary conditions. The critical domain size
for the benthic-drift model (5.1) with hostile boundary conditions Lcrit is given by (5.4).

First, we assume that the population has the same birth rate and death rate as in (5.1), is
subjected to the same flow condition as in (5.1), but only lives in the flowing water and does
not settle down to the benthos. The population dynamics can be described by the following
model

(6.3)
∂N

∂t
= gN − v

∂N

∂x
+D

∂2N

∂x2
,D
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where g = f −m. We denote the critical domain size for (6.3) by Lsingle
crit . By using (3.10) in

[22], we obtain

(6.4) Lsingle
crit =

1√
f−m
D − ( v

2D )2

⎛
⎝arctan

⎛
⎝−2D

√
f−m
D − ( v

2D )2

v

⎞
⎠+ π

⎞
⎠ .

Second we consider a limiting transfer case of system (5.1). When the transfer between
the benthic and drift components of the population occurs on a fast timescale (σ, μ → ∞
with σ = cμ, c is a constant). Since μ → ∞, the second equation of (5.1) yields Nb = cNd.
Summing the first and second equations of (5.1) we obtain the following single-compartment
model:

(6.5)
∂Nd

∂t
= g̃Nd − ṽ

∂Nd

∂x
+ D̃

∂2Nd

∂x2

with

(6.6) g̃ =
c

1 + c
f − cmb +md

1 + c
, ṽ =

v

1 + c
, and D̃ =

D

1 + c
.

We denote the critical domain size for (6.5) by Llimit
crit . By using (3.10) in [22] again, we can

obtain

(6.7) Llimit
crit =

1√
c(f−mb)−md

D − ( v
2D )2

⎛
⎝arctan

⎛
⎝−2D

√
c(f−mb)−md

D − ( v
2D )2

v

⎞
⎠+ π

⎞
⎠ .

By using (5.4), (6.4), and (6.7), we can compare the critical domain sizes for (5.1), (6.3),
and (6.5). Let σ = cμ in (5.4). Then

Lcrit =
2D√

4D
(
−cμmb+cμf
mb+μ−f −md

)
− v2

(
π − arctan

√
4D

v2

(−cμmb + cμf

mb + μ− f
−md

)
− 1

)

=
2D√

4D

(
−cmb+cf
mb
μ

+1− f
μ

−md

)
− v2

⎛
⎝π − arctan

√√√√4D

v2

(
−cmb + cf
mb
μ + 1− f

μ

−md

)
− 1

⎞
⎠

→ 2D√
4D (−cmb + cf −md)− v2

(
π − arctan

√
4D

v2
(−cmb + cf −md)− 1

)
,

as μ → ∞. We note that this limiting value of Lcrit is identical to Llimit
crit . This impliesD
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Figure 7. Comparison of critical domain size for the single compartment model (Lsingle
crit ), critical domain

size for the limiting case of the benthic-drift model (Llimit
crit ), and critical domain size for the benthic-drift model

(Lcrit). The model parameters are D = 0.35 m2/s, g = f −m = 0.39 day−1, σ = 2 day−1, and μ = 1 day−1.

that when the transfer rates are very large, the single compartmental model (6.5) can be
used to predict the long-term dynamics of the benthic-drift model (5.1). Moreover, in the

case where the mortality rates mb = md = m, we observe that Lcrit = Lsingle
crit if and only if

σ(f−m)/(m+μ−f) = f , which indicates that if the mortality rate is the same on the benthos
or in the drifting water, then population persistence/extinction of (5.1) can be predicted by
(6.3) only if the transfer rates satisfy certain conditions.

We then compare the dependence of Lsingle
crit , Llimit

crit , and Lcrit on the flow velocity v (Fig-

ure 7). For simplicity, we assume that md = mb = m. The dependence of Lsingle
crit on flow

velocity was shown in [22] by choosing D = 0.35 m2/s, g = f − m = 0.39 day−1 (see Fig-
ure 3.1 in [22]). Here we choose the same values of D and g. We choose σ = 2 day−1 and
μ = 1 day−1 (hence c = 2) to calculate Lcrit and L

limit
crit .

Figure 7 shows that the critical domain sizes are increasing functions of v, and at critical
values of v, the critical domain sizes become infinite. If we denote the critical values of flow
velocity at which Lsingle

crit , Llimit
crit , and Lcrit are infinity by vsingle∗ , vlimit

∗ , and v∗, respectively,
then vsingle∗ < vlimit

∗ < v∗. Moreover, when v < vsingle∗ , Lsingle
crit (v) > Llimit

crit (v) > Lcrit(v). These
indicate that both single compartmental models overestimate the critical domain size for the
benthic-drift model, or underestimate the persistence situation of a population in a benthic-
drift environment. This also implies that the benthic component has a positive effect on the
ability of the population to persist in a river with a finite length.

7. Discussion. In this paper, we considered persistence of a population in a stream de-
scribed by the benthic-drift model (2.1) where the stream was divided into two zones (drifting
zone and storage zone) and the population was divided into two interacting groups. The
model (2.1) is a natural extension of the reaction-diffusion-reaction model (1.1) studied inD
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[22] for a single population. It can better describe the dynamics of species, such as some
invertebrates, which spend most of the time living on the benthos but occasionally jump into
the drifting water and disperse. Theoretically, we extended the three measures of population
persistence, Rloc(x), Rδ(x), and R0, which were initially proposed in [19] and then studied
for model (1.1) in [22], to our benthic-drift model. These measures were introduced in the
context of a next generation operator based on the linearization of (2.1). Using the results of
[31] we proved that R0 determines the stability of the trivial homogeneous steady state of the
nonlinear model (2.1). Thus, R0 determined whether a population is able to persist in the
stream or not.

To numerically calculate R0, we defined a new operator Γ̂ that is not related to a time-
dependent problem and is only defined in the continuous function space but not the function
vector space. We proved that Γ̂ and the next generation operator Γ have the same spectral
radius R0. In fact, Γ̂ can be thought of as playing the following role: if a population is initially
distributed on the benthos, undergoes continuous transfer between the benthic zone and the
drifting zone, disperses in the drift, and reproduces on the benthos, then the operator Γ̂ maps
the initial population distribution on the benthos to the distribution of the offspring produced
by that population on the benthos over its lifetime. Based on the operator Γ̂, we developed a
numerical scheme using a collocation method for computing R0 and Rδ.

We investigated how the interaction between flow speed and settling rate affects the pop-
ulation persistence by numerically calculating Rδ and R0. In particular, we studied a model
where the birth rate increases linearly downstream. When the environment was variable we
found by using Rδ(x) that both the upstream boundary and the downstream boundary af-
fected the size and the distribution of source-sink regions. In the upstream, the birth rate
is smaller than the mortality rate, the upstream of the stream acts as a sink. This up-
stream effect is mitigated by increasing flow speed, as it carried individuals downstream to
better habitat. The downstream effects include loss of individuals especially when allowing
for hostile boundary conditions, and the positive growth rate associated with good primary
productivity in the downstream reaches of the stream. Thus, increasing flow negatively af-
fects the population persistence by increasing the loss of individuals, but positively affects
the population persistence by carrying more individuals downstream where they can achieve
a higher growth rate. Both such negative and positive effects can be mitigated by increasing
the settling rate. It would be interesting to consider a spatially variable settling rate driven
by the flow or somehow by the individuals’ intention of escaping from washout.

Equation (3.16) shows that, once the area of the drift zone Ad is fixed, then for any
constant area of the benthic zone Ab, we obtain the same net reproductive rate R0. In this
situation, the long term persistence dynamics of the population does not depend on how large
the benthic zone is. However, if the benthic zone is heterogenous, as discussed in section 4.4,
the population persistence significantly depends on the distribution of shallows and deep
pools in a river. In this situation, deep pools in the upstream provide shelters which prevent
individuals from being carried to the downstream and being washed out.

We applied R0 theory to find the critical domain size for the benthic-drift model. We
then compared the critical domain size for the benthic-drift model and two related single
compartmental models and showed that in a limited case when the transfer rates approach
infinity, a single compartment can be used to predict the long-term persistence behavior of aD
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population living in a benthic-drift habitat. Numerical simulations also verified that a benthic
zone helps population persist in a river.

The results for the critical domain size were based on the assumption that the river
is homogenous. It would be interesting to further investigate how the critical domain size
depends on the river heterogeneity. This would extend the theory of critical domain size
in [20]. Therein, by dividing a river into alternating good and bad patches, the minimum
length that supports a population was analyzed based on a one compartment model of the
form (1.1). In addition, the living environment for aquatic species in streams or rivers can
vary seasonally. The theory developed here could be extended to more general models by
including the seasonal variations in population growth [14, 17] and the temporal variation of
flow velocity [13].

As for the persistence condition for model (2.1), we have the following observation. If
f(x, 0) − mb(x) − μ(x) > 0 for some x ∈ (0, L), then there exists some δx > 0 such that
for Nb ∈ (0, δx) we have f(x,Nb) − mb(x) − μ(x) > 0. This, together with the differential
inequality

∂Nb

∂t
≥ (f(x,Nb)−mb(x)− μ(x))Nb,

implies that lim inft→∞Nb(x, t) ≥ εx > 0 with some εx > 0, regardless of the initial data,
which, by our definition of persistence (3.4) means that the population persists in a long
term. This indicates that if the birth rate is greater than the sum of the mortality rate and
the transfer rate from the benthos to the water, then the population is guaranteed to persist.
On the other hand, if we are only interested in persistence conditions for the model (2.1), we
may assume without loss of generality that f(x, 0)−mb(x)− μ(x) ≤ 0 for all x ∈ (0, L).

Our model (2.1) is a system consisting of a parabolic equation and an ordinary differential
equation. It is not the first time this type of system has been studied. Similar models have
been proposed to describe microbial growth (see, e.g., [3, 15, 16]) and disease transmission (see,
e.g., [31]), to name a few areas. Due to the lack of the diffusion in some of the equations, the
solution maps are not compact, and hence, the study of such models are, in some sense, more
difficult than that of standard parabolic systems. Smith and his collaborators in [3, 15, 16]
considered microbial growth for limiting nutrient in a plug flow reactor with wall attachment
in the one-dimensional space [3] and in the three-dimensional space [15, 16]. In such models,
the bacteria suspended in the fluid and the wall-attached bacteria are similar to the drifting
population and the benthic population, respectively, in our benthic-drift model (2.1). Based
on some disease transmission models, Wang and Zhao [31] developed some nice general theory
for the principal eigenvalue of the eigenvalue problem associated with a reaction-diffusion
system where some of the diffusion terms are zeros. In this paper we adapt their theory to
our benthic-drift river population model and develop persistence theories for our interest.

Our future plans include extending the theory and method of persistence measures in
this paper to a two-dimensional benthic-drift model, which also allows spatial heterogeneity.
Since we have the ability to incorporate a population model with a hydrological model in a
numerical environment in River 2D [13], we plan to develop a numerical program in River 2D
to calculate persistence measures for the two-dimensional population model. We expect that
such a program can be directly used by ecologists or environmental managers.D
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Appendix A. Proofs.

A.1. Proof of Theorem 3. Let φ = (φ1, φ2) ∈ X̄, θ1 = minx∈[0,L]{f(x, 0)−μ(x)−mb(x)},
and θ2 = maxx∈[0,L]{f(x, 0)− μ(x)−mb(x)}. From the second equation of (3.13), we have

(A.1) φ2 =
Ad(x)σ(x)

Ab(x)(λ− f(x, 0) + μ(x) +mb(x))
φ1.

Following Lemma 4.1 in [31], we define the linear operator Lλ as

(A.2) Lλφ = Lφ− (σ(x) +md(x))φ +
μ(x)σ(x)φ

λ− f(x, 0) + μ(x) +mb(x)
, λ > θ1.

Since μ(x)σ(x) ≥ 0 and μ(x)σ(x) �≡ 0, there exists an interval [x1, x2] ∈ (0, L) such that
μ(x)σ(x) > 0 for all x ∈ [x1, x2]. Let θ0 = minx∈[x1,x2] μ(x)σ(x) and let λ1 be the principal
eigenvalue of

(A.3)

{
Lφ− (σ(x) +md(x))φ = λφ, x ∈ (x1, x2),
φ(x1) = φ(x2) = 0,

with a positive eigenfunction φ∗(x). Then λ1 < 0 (see Appendix A.6 in [22]). Set

(A.4) λ0 =
kλ1 + θ2 +

√
(kλ1 − θ2)2 + 4θ0
2

for some k > 0 such that

λ1 +
θ0

λ0 − θ1
≥ kλ1 +

θ0
λ0 − θ2

.

The choice of k is possible since λ1 < 0. Then λ0 ≥ θ2 and

Lλ0φ
∗(x) = Lφ∗(x)− (σ(x) +md(x))φ

∗(x) +
μ(x)σ(x)φ∗(x)

λ0 − f(x, 0) + μ(x) +mb(x)

≥ λ1φ
∗(x) +

θ0φ
∗(x)

λ0 − θ1

≥ kλ1φ
∗(x) +

θ0φ
∗(x)

λ0 − θ2
= λ0φ

∗(x) ∀ x ∈ (x1, x2).

(A.5)

Now we define a continuous function φ0(x) on [0, L] by

(A.6) φ0(x) =

{
φ∗(x) if x ∈ [x1, x2],
0 if x ∈ [0, L] \ [x1, x2].

Then we have Lλ0φ0(x) ≥ λ0φ0(x) ∀x ∈ (0, L) \ {x1, x2}. Consequently, eλ0tφ0(x, y) is a sub-
solution of the integral form of the linear system ut = Lλ0u. By Theorem 2.3 and Remarks
2.1 and 2.2 in [31], problem (3.13) has an eigenvalue with geometric multiplicity one and a
nonnegative eigenfunction. In terms of (3.13) and its associated parabolic system, we can
easily see that this eigenfunction is positive.D
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A.2. Proof of Theorem 5. The proof of (i) is similar to that of Theorem 3.1(ii) in [31],
hence it is omitted. To prove statement (ii), we first note that by Lemma 4, if R0 > 1,
then λ∗ > 0. Similarly as in Theorem 3, we can prove that for sufficiently small ε > 0, the
eigenvalue problem

(A.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ab(x)

Ad(x)
μ(x)Nb − σ(x)Nd −md(x)Nd + LNd = λNd, x ∈ (0, L), t > 0,

(f(x, 0) − ε)Nb −mb(x)Nb − μ(x)Nb +
Ad(x)

Ab(x)
σ(x)Nd = λNb, x ∈ (0, L), t > 0,

α1Nd(0, t) − β1
∂Nd

∂x
(0, t) = 0, t > 0,

α2Nd(L, t) + β2
∂Nd

∂x
(L, t) = 0, t > 0,

admits a principal eigenvalue λ∗ε with a positive eigenfunction φ∗ε (x).
Claim. λ∗ε → λ∗ as ε→ 0.

We can follow the proof of [31, Theorem 2.3] to prove this claim. LetM11(x) = −σ(x)−md(x),
M12(x) = μ(x)Ab(x)/Ad(x), M21(x) = σ(x)Ad(x)/Ab(x), M22(x) = f(x, 0)− ε−mb(x)−μ(x),
θε = maxx∈[0,L]{M22(x)}. It follows from [29, Theorem 3.12] that

(λ−M22)
−1Nb =

∫ ∞

0
e−λteM22tNbdt

for all λ > θε. Let

Lλ,ε = L+M11 +M12(λ−M22(x))
−1M21 ∀λ > θε.

For any λ > θε, let Tλ,ε(t) be the semigroup generated by Lλ,ε and define ζ(λ, ε) = s(Lλ,ε),
the spectral bound of Lλ,ε. Then Tλ,ε is a compact and strongly positive operator for each
t > 0 (see, e.g., the proof of [26, Theorem 7.5.1]). By [31, Theorem 2.2], ζ(λ, ε) is the
principal eigenvalue of Lλ,ε. By the continuity of a finite system of eigenvalues (see [18,
section IV.3.5]), it follows that ζ(λ, ε) is a continuous function in λ and ε for λ > θε and small
ε. Let G(λ, ε) = ζ(λ, ε) − λ. Similarly as in the proof of Theorem 3, we can show that there
exists λ0 > θε and φ0 > 0 such that Lλ0,εφ0 ≥ λ0φ0. Then by similar arguments as in the
proof of [31, Theorem 2.3], we can obtain that ζ(λ0, ε) ≥ λ0 for any given small ε > 0, and
furthermore, there is a unique λ∗ε > θε such that G(λ∗ε , ε) = 0, i.e., ζ(λ∗ε , ε) = λ∗ε . Moreover,
λ∗ε is the principal eigenvalue of (A.7) with a positive eigenvector. It then follows from the
continuity of ζ in λ and ε that the principal eigenvalue λ∗ε of (A.7) is a continuous function of
ε, and hence, λ∗ε → λ∗ as ε→ 0. The claim is proved.

Since λ∗ε → λ∗ as ε → 0 and λ∗ > 0, there exists a small ε̄ > 0 such that λ∗ε > 0
for all ε ∈ (0, ε̄). Take ε0 ∈ (0, ε̄). By the continuity of f , there exists a δ > 0 such that
|f(x,Nb)− f(x, 0)| < ε0 when Nb < δ for all x ∈ [0, L]. Assume, for the sake of contradiction,
that there exists a positive solution (Nd(x, t), Nb(x, t)) of (2.1) such that

(A.8) lim sup
t→∞

||(Nd(x, t), Nb(x, t)− (0, 0)||∞ < δ.D
ow

nl
oa

de
d 

10
/1

6/
20

 to
 1

29
.1

28
.2

16
.3

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 QIHUA HUANG, YU JIN, AND MARK A. LEWIS

Then there exists a large t0 > 0, such that Nb(x, t) < δ and f(x,Nb(x, t)) > f(x, 0) − ε0 for
all x ∈ [0, L] and t ≥ t0. Therefore,

(A.9)

⎧⎪⎪⎨
⎪⎪⎩

∂Nd

∂t
=
Ab(x)

Ad(x)
μ(x)Nb − σ(x)Nd −md(x)Nd + LNd, x ∈ (0, L),

∂Nb

∂t
≥ (f(x, 0) − ε0)Nb −mb(x)Nb − μ(x)Nb +

Ad(x)

Ab(x)
σ(x)Nd, x ∈ (0, L),

for all t ≥ t0. Since Nd(t0, x) � 0, Nb(t0, x) � 0 in the interior of [0, L], we can choose a
sufficiently small number η > 0, such that (Nd(t0, ·), Nb(t0, ·)) ≥ ηφ∗ε0(·), where φ∗ε0(·) is the

positive eigenfunction of (A.7) (with ε = ε0) corresponding to λ∗ε0 . Note that ηeλ
∗
ε0
(t−t0)φ∗ε0(x)

is a solution of

(A.10)

⎧⎪⎪⎨
⎪⎪⎩

∂Nd

∂t
=
Ab(x)

Ad(x)
μ(x)Nb − σ(x)Nd −md(x)Nd + LNd, x ∈ (0, L),

∂Nb

∂t
= (f(x, 0)− ε0)Nb −mb(x)Nb − μ(x)Nb +

Ad(x)

Ab(x)
σ(x)Nd, x ∈ (0, L),

for t ≥ t0. Then the comparison principle implies (Nd(x, t), Nb(x, t)) ≥ ηeλ
∗
ε0
(t−t0)φ∗ε0(x) ∀x ∈

[0, L], t ≥ t0, and hence, maxx∈[0,L]Nd(x, t) → ∞ and maxx∈[0,L]Nb(x, t) → ∞ as t → ∞,
which contradicts (A.8). This proves statement (ii).

A.3. Proof of Theorem 6. Let

B =

⎛
⎜⎜⎝ −σ(x)−md(x) + L

Ab(x)

Ad(x)
μ(x)

Ad(x)

Ab(x)
σ(x) −μ(x)−mb(x)

⎞
⎟⎟⎠ , F(x) =

(
0 0
0 f(x, 0)

)
, V =

(
L 0
0 0

)
−B.

Let T (t) be the solution semigroup on X × X associated with system (3.2). Then B is the
generator of T (t) onX×X and T (t) is a positive semigroup in the sense that T (t)(X+×X+) ⊆
(X+ ×X+) for all t ≥ 0. It then follows from [29, Theorem 3.12] that B is resolvent positive
and

(λI −B)−1φ =

∫ ∞

0
e−λtT (t)φ dt for all λ > s(B) and φ ∈ X ×X,

where s(B) = sup{Re λ : λ ∈ σ(B)} is the spectral bound of B. Note that [31, Theorem 2.3]
implies that s(B) < 0. Then for λ = 0 we have

−B−1φ =

∫ ∞

0
T (t)φdt ∀φ ∈ X ×X.

This implies that Γ = −FB−1 (see also, e.g., the proof of [31, Theorem 3.1]). It follows from
the spectral radius formula that

r(−FB−1) = lim
n→∞ ||(−FB−1)n|| 1n = lim

n→∞ ||(−B−1F)n|| 1n = r(−B−1F).

Then we have
R0 = r(Γ) = r(−FB−1) = r(−B−1F).D
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Let Λ = −B−1F. For any φ = (φ1, φ2) ∈ X ×X, let ψ = (ψ1, ψ2) = Λφ. Then −Bψ =
−B(−B−1F)φ = Fφ. That is,

−Lψ1 + v11ψ1 + v12ψ2 = 0,

v21ψ1 + v22ψ2 = F22φ2,

where F22 = f(x, 0), v11 = σ(x)+md(x), v12 = −Ab(x)μ(x)/Ad(x), v21 = −Ad(x)σ(x)/Ab(x),
v22 = mb(x) + μ(x). Then ψ2 = v−1

22 (F22φ2 − v21ψ1), and hence,

−Lψ1 + v11ψ1 − v12v
−1
22 v21ψ1 = −v12v−1

22 F22φ2.

Let

B1 := L− v11 + v12v
−1
22 v21, B2 := B−1

1 v12v
−1
22 F22, B3 := v−1

22 F22 − v−1
22 v21B

−1
1 v12v

−1
22 F22.

Then

ψ1 = B−1
1 v12v

−1
22 F22φ2 = B2φ2, ψ2 = v−1

22 (F22 − v21B
−1
1 v12v

−1
22 F22)φ2 = B3φ2.

Therefore,
Λφ = (B2φ2,B3φ2) ∀φ = (φ1, φ2) ∈ X ×X.

By induction, we obtain
Λnφ = (B2B

n−1
3 φ2,B

n
3φ2) ∀n ≥ 2.

Thus,
||Bn

3 || ≤ ||Λn|| ≤ (||B2||2 · ||Bn−1
3 ||2 + ||Bn

3 ||2)1/2 ∀n ≥ 2,

and hence by the formula of the spectral radius, we obtain

R0 = r(Λ) = lim
n→∞ ||Λn|| 1n = lim

n→∞ ||Bn
3 ||

1
n = r(B3).

It follows from [22, Propositions 2.5 and 2.10] that for any ϕ ∈ X,

−B−1
1 ϕ(x) =

∫ L

0
k(x, y)ϕ(y) dy,(A.11)

where k(x, y) is the solution of the ordinary boundary value problem

(A.12)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
L− σ(x)−md(x) +

σ(x)μ(x)

mb(x) + μ(x)

)
k(x, y) = −δ(x− y), x ∈ (0, L),

α1k(0, y) − β1
∂k

∂x
(0, y) = 0,

α2k(L, y) + β2
∂k

∂x
(L, y) = 0

for a fixed value of y. Then for any ϕ ∈ X,

[B3ϕ](x) =
f(x, 0)ϕ(x)

mb(x) + μ(x)
+

σ(x)Ad(x)

(mb(x) + μ(x))Ab(x)

∫ L

0
k(x, y)

f(y, 0)μ(y)Ab(y)ϕ(y)

(mb(y) + μ(y))Ad(y)
dy dy.

Let Γ̂ = B3. Then R0 = r(Γ) = r(Γ̂). The proof of Theorem 6 is completed.D
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A.4. Proof of Corollary 7. Note that Γ̂ = a+ bΦ, where a := f
mb+μ and b := σμf

(mb+μ)2
for

simplicity. This indicates that ς ∈ σ(Φ) if and only if λ = a + bς ∈ σ(Γ̂). Moreover, ς is an
eigenvalue of Φ with associated eigenfunction ϕ ∈ X, i.e., Φϕ = ςϕ, if and only if λ = a+ bς is
an eigenvalue of Γ̂ with the same associated eigenfunction ϕ, i.e., Γ̂ϕ = λϕ = (a+ bς)ϕ. Since
the operator Φ is a continuous, strongly positive, compact, linear operator on X, its spectral
radius, given by sup{|ς| : ς ∈ σ(Φ)}, is equal to its principal eigenvalue ς∗, which is the only
eigenvalue of Φ with a positive eigenfunction ϕ∗ ∈ X. Thus,

R0 = r(Γ̂) = sup{|λ| : λ ∈ σ(Γ̂)} = sup{|a+ bς| : ς ∈ σ(Φ)}
≤ a+ b sup{|ς| : ς ∈ σ(Φ)} = a+ bς∗.

Note that a + bς∗ is an eigenvalue of Γ̂ with associated eigenfunction ϕ∗, which implies that
a+ bς∗ ≤ R0. Therefore,

R0 = r(Γ̂) = a+ bς∗ =
f

mb + μ
+

fσμ

(mb + μ)2
ς∗.

Clearly, R0 is the principal eigenvalue of Γ̂ with a positive eigenfunction ϕ∗.

A.5. Proof of Proposition 8. Consider system (3.2) with initial condition

(nd(x, 0), nb(x, 0)) = (0, N0
b (x)).

Integrating equations for nd and nb in (3.2) with respect to t from 0 to ∞ yields

(A.13)

⎧⎪⎪⎨
⎪⎪⎩
∫ ∞

0

∂nd(x, t)

∂t
dt =

μ(x)

η(x)

∫ ∞

0
nb(x, t)dt + (L− σ(x)−md(x))

∫ ∞

0
nd(x, t)dt,∫ ∞

0

∂nb(x, t)

∂t
dt = −(mb(x) + μ(x))

∫ ∞

0
nb(x, t)dt+ η(x)σ(x)

∫ ∞

0
nd(x, t)dt,

where η(x) = Ad(x)/Ab(x). Then

(A.14)

⎧⎪⎪⎨
⎪⎪⎩

0 =
μ(x)

η(x)

∫ ∞

0
nb(x, t)dt+ (L− σ(x)−md(x))

∫ ∞

0
nd(x, t)dt,

−N0
b (x) = −(mb(x) + μ(x))

∫ ∞

0
nb(x, t)dt+ η(x)σ(x)

∫ ∞

0
nd(x, t)dt.

Therefore,
(A.15)∫ ∞

0
nd(x, t)dt =

(mb(x) + μ(x))
∫∞
0 nb(x, t)dt− n0b(x)

σ(x)η(x)
=

(mb(x) + μ(x))G(x) − n0b(x)

σ(x)η(x)
,

where G(x) :=
∫∞
0 nb(x, t)dt. Hence,

(A.16) 0 =
μ(x)

η(x)
G(x) + (L− σ(x)−md(x))

(mb(x) + μ(x))G(x) −N0
b (x)

σ(x)η(x)
,D
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which is equivalent to
(A.17)(
L− σ(x)−md(x) +

σ(x)μ(x)

mb(x) + μ(x)

)
(mb(x) + μ(x))G(x) −N0

b (x)

σ(x)η(x)
= − μ(x)N0

b (x)

(mb(x) + μ(x))η(x)
.

Let k(x, y) be the solution of the following boundary value problem

(A.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
L− σ(x)−md(x) +

σ(x)μ(x)

mb(x) + μ(x)

)
k(x, y) = −δ(x− y), x ∈ (0, L),

α1k(0, y) − β1
∂k

∂x
(0, y) = 0,

α2k(L, y) + β2
∂k

∂x
(L, y) = 0

for a fixed value of y. Thus,

(A.19)
(mb(x) + μ(x))G(x) −N0

b (x)

σ(x)η(x)
=

∫ L

0
k(x, y)

μ(y)N0
b (y)

(mb(y) + μ(y))η(y)
dy,

which implies that
(A.20)

G(x) =

∫ ∞

0
nb(x, t)dt =

N0
b (x)

mb(x) + μ(x)
+

σ(x)η(x)

mb(x) + μ(x)

∫ L

0
k(x, y)

μ(y)N0
b (y)

(mb(y) + μ(y))η(y)
dy.

Let N0
b (·) = δ(· − x0) for a given point x0 ∈ (0, L). By (A.20) and the definition of Rδ in

(3.10), we obtain

Rδ(x0)

=

∫ L

0
f(z, 0)

∫ ∞

0
nb(z, t)dtdz

=

∫ L

0
f(z, 0)

(
δ(z − x0)

mb(z) + μ(z)
+

σ(z)Ad(z)

(mb(z) + μ(z))Ab(z)

∫ L

0
k(z, y)

μ(y)δ(y − x0)Ab(y)

(mb(y) + μ(y))Ad(y)
dy

)
dz

=
f(x0, 0)

mb(x0) + μ(x0)
+

μ(x0)Ab(x0)

(mb(x0) + μ(x0))Ad(x0)

∫ L

0
f(z, 0)k(z, x0)

σ(z)Ad(z)

(mb(z) + μ(z))Ab(z)
dz.

Appendix B. Calculation of critical domain size.
Setting

(B.1) C1 =
f

mb + μ
, C2 =

fσμ

(mb + μ)2
, C3 = σ +md − σμ

mb + μ
,

and applying the linear operator L− C3 to (5.3), we have

(B.2) C2

∫ L

0
ϕ(y)(L − C3)k(x, y)dy = (λ− C1)(L− C3)ϕ(x).D
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Using the first equation of (3.15) we obtain

(B.3) ϕ′′(x)− v

D
ϕ′(x) +

1

D

(
C2

λ− C1
− C3

)
ϕ(x) = 0.

When x = 0, by (5.3) and the second equation of (3.15), we find

(B.4) α1ϕ(0) − β1ϕ
′(0) =

C2

λ− C1

∫ L

0
[α1k(0, y) − β1k

′(0, y)]dy = 0.

Similarly, by using (5.3) and the third equation of (3.15) we obtain

(B.5) α2ϕ(L) + β2ϕ
′(L) = 0.

Thus, we consider the following Sturm–Liouville problem under the hostile boundary condi-
tions

(B.6)

⎧⎨
⎩ ϕ′′(x)− v

D
ϕ′(x) +

1

D

(
C2

λ− C1
− C3

)
ϕ(x) = 0, x ∈ (0, L),

vϕ(0) −Dϕ′(0) = 0, ϕ(L) = 0.

The characteristic equation for (B.6) is

(B.7) r2 − v

D
r +

1

D

(
C2

λ− C1
− C3

)
= 0

with discriminant

(B.8) Δ(λ) =
( v
D

)2 − 4

D

(
C2

λ− C1
−C3

)
.

It is straightforward to show that (B.6) only has a zero solution when Δ ≥ 0. Thus, positive
solutions of (B.6) exist only when Δ < 0 or, equivalently, when

(B.9) v < 2

√
D

(
C2

λ− C1
− C3

)
.
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Notice that the population persistence in a domain of length L occurs when λ = R0 ≥ 1. If
λ ≥ 1, then (B.9) implies

(B.10) v < 2

√
D

(
C2

λ− C1
− C3

)
≤ 2

√
D

(
C2

1− C1
− C3

)
:= c∗.

If v > c∗, then either (B.6) has no positive solution or a positive solution exists but λ < 1,
which in either case implies that the zero solution is stable and the critical domain size does
not exist. Thus v < c∗ is a necessary condition for the population to persist. If v < c∗, we
choose λ = R0 = 1, then (B.9) holds, hence (B.6) has positive solutions taking the form

(B.11) ϕ(x) = exp
( v

2D
x
)[

c1 cos

(√−Δ(1)

2
x

)
+ c2 sin

(√−Δ(1)

2
x

)]
,

where the constants c1 and c2 are determined by the boundary conditions.
To match the left-hand boundary condition, we now require

(B.12)
c1
c2

=
D

v

√
−Δ(1),

while matching the right-hand condition requires

(B.13)
c1
c2

= − tan

(
L

2

√
−Δ(1)

)
.

A solution matching both boundary conditions thus requires

(B.14) tan

(
L

2

√
−Δ(1)

)
= −D

v

√
−Δ(1).

Therefore, if v < c∗, then the critical domain size Lcrit is the minimum positive solution L of
(B.14) given by

Lcrit =
2√−Δ(1)

(
π − arctan

(
D

v

√
−Δ(1)

))

=
2D√

4D
(

σμ
mb+μ−f − σ −md

)
− v2

(
π − arctan

(√
4D

v2

(
σμ

mb + μ− f
− σ −md

)
− 1

))
.

(B.15)
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