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ABSTRACT 

This thesis develops a methodical, evidence-based mobile photo enforcement (MPE) resource 

deployment program. The goal is to provide a framework for enforcement agencies to adopt, which 

is transparent in its goals and efficient in attainment of these goals. Specifically, we provide a 

method that assists agencies map their traffic safety goals directly to the allocation of enforcement 

resources. Currently operating MPE programs tend to be “black boxes,” leading to questions 

regarding their efficacy and aims. 

The MPE deployment problem was identified to consist of three phases: 1) quantifying MPE 

deployment goals, 2) increasing MPE coverage of deployment goals, and 3) efficient scheduling 

of MPE resources. In the first phase, we identify a set of deployment objectives that are often set 

out by many governments managing MPE programs. Quantitative measures corresponding to the 

objectives are proposed in order to facilitate deployment decisions that lead to goal attainment. In 

phase two, a neighborhood-level resource allocation model is developed to assign monthly 

operator shifts to city neighborhoods. The model employs multi-objective optimization so that 

multiple, possibly conflicting, deployment objectives can be considered simultaneously. To further 

interpret the model solutions (known as the Pareto front), we use clustering techniques and 

response surface methods to represent the Pareto front and analyze front tradeoffs, respectively. 

The third and final deployment phase, assigns operator shifts to neighborhoods to visit groups of 

roadway locations within each, to continually attain the goals set in the previous stage. In addition, 

a binary integer programming model is applied to schedule shifts (two per day) for an entire month. 

The scheduling model is developed to minimize violations of the time halo effects of enforcement, 
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by minimizing visits to an operator task over consecutive shifts (i.e., over which the time halo of 

enforcement is still in effect).  

The proposed three-phase approach is applied to an MPE program in the City of Edmonton, in the 

province of Alberta, Canada. First, we explored the deployment results of six priorities identified 

in the Alberta provincial enforcement guidelines, using five years (2010-14) of historical data from 

Edmonton’s MPE program. Second, three priorities that received the most enforcement attention 

were used in the resource allocation model. The model provided various Pareto optimal solutions 

for one month (September 2014), using metrics that quantified each of the three priorities, 

calculated from three years (2012-14) of historical data. To reduce decision fatigue for agencies, 

solutions were further partitioned into several clusters, where each cluster’s representative solution 

is considered a candidate plan for resource allocations to neighborhoods. The tradeoffs between 

cluster solutions were also examined using a polynomial model, from which the quantitative 

relationship between three objectives implied in any candidate plans is revealed. Finally, our 

scheduling model creates a plan for operator shifts to their location visit tasks for an entire month 

of two shifts per day, using the neighborhood allocations from the second stage. Resulting 

schedules were found to increase the resource utilization efficiency by 14% compared to a 

randomly generated plan. 

This thesis contributes to the literature and practice by 1) developing a systematic and optimized 

resource allocation and scheduling method for MPE programs for the first time in the literature, 2) 

increasing the transparency of the decision-making process of enforcement agencies in designing 

an MPE program. The proposed method uses optimization techniques in both MPE resource 

allocation and resource scheduling, to assign limited resources in an efficient manner. The method 
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directs enforcement coverage by optimizing metrics quantified for high-level program goals, 

resulting in a more transparent and evidence-based MPE program operation. 

Keywords mobile photo enforcement, resource allocation, scheduling, geographic information 

system (GIS), multi-objective optimization, tradeoff analysis, Dantzig-Wolfe, column generation. 
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1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 The Controversy over MPE Deployment 

Despite the demonstrated effectiveness of mobile photo enforcement (MPE) for improving road 

safety, enforcing speed limits through MPE programs is highly controversial. Enforcement 

agencies and academics in safety research typically support the use of MPE programs, which 

dispatch operators driving vehicles equipped with photo radar equipment to roadway locations in 

order to detect and photograph vehicles violating speed limits, for reducing speeds and improving 

road safety. In fact, according to a review of studies around the world conducted from the late 

1990s to early 2000s by Rodier et al. (2007), an MPE program is proven to reduce speeding 

vehicles and collisions by up to 82% and 51%, respectively. And, because speeding is one main 

cause of traffic collisions—30% of global traffic fatalities are attributed to speeding problems 

(OECD/ECMT, 2006)—an MPE program is an effective means of reducing accidents. Even 

simply increasing the perceived risk of detection, can create general deterrence to speed violations. 

However, due to a lack of understanding among the community, fostered by limitations with 

deployment strategies, those in opposition (mostly members of the public) tend to associate the 

program with issuing tickets to raise revenue. A series of US opinion polls show that one in three 

people oppose the use of photo radar for managing speed (Rodier et al., 2007). And, yet, in the 

face of this concern, few enforcement agencies have provided deployment strategies that 

transparently link placement decisions back to program goals (typically aligned with road safety). 

To solve this issue, some studies have begun to focus on how to establish such a deployment 

strategy, as described in the next section. 

1.1.2 Deployment Strategies for MPE 

Contrary to potential misconception, the road safety goals of the MPE program are to reduce 

collisions, reduce speed violations, and improve the safety of vulnerable road users. To meet these 

goals, many government guidelines that manage automated speed enforcement techniques (MPE 
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is within the scope of this technology) have directed agencies to deploy their programs following 

a number of priorities. The most common goals in the automated speed enforcement guidelines 

(NHTSA, 2008; Alberta Justice and Solicitor General, 2014; Victoria Police Traffic Camera Office, 

2006; Queensland Police, 2016; Humberside Police, 2008) are as follows: 

 High collision sites to reduce accidents; 

 High speed violation sites to reduced speeding vehicles; 

 School zones, construction zones, high pedestrian volume sites, and sites with community 

speeding complaints to improve pedestrian’s safety. 

When developing MPE deployment strategies, agencies should allocate enforcement resources 

(operators and vehicles) to the above priority locations (Delaney, Diamantopoulou, & Cameron, 

2003). Moreover, enforcement resources should cover more such locations, resulting in greater 

program safety (Delaney et al., 2003; R. Li, El-Basyouny, Kim, & Gargoum, 2016; Newstead & 

Cameron, 2003). 

In addition to location, MPE resources also need to be allocated based on time. This is because the 

equipment (cameras) of the MPE program is not fixed at a certain location, instead, the operator 

drives a vehicle that carries the camera to different locations at different times. The time halo effect 

is where drivers’ speeding behaviors are reduced after the end of enforcement operations, due to 

the “memory” of having observed prior enforcement at that particular site. The time halo effect 

can last several hours to days (Hauer, Ahlin, & Bowser, 1982; Armour, 1986; Cairney, 1988; Vaa, 

1997; Gouda & El-Basyouny, 2016). But, it is known that enforcement tends to lose its effect once 

drivers adapt to the schedule of enforcement operations (OECD, 1990). By generating a highly 

varied operation schedule, the enforcement effect may last longer (R. Q. Brackett & Beecher, 1980; 

Robert Quinn Brackett & Edwards, 1977; Bjørnskau & Elvik, 1992; Newstead & Cameron, 2003). 

All of the above suggestions for MPE deployment strategies are qualitative, and thus quantitative 

methods are required to assist enforcement agencies implement these systems. 
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1.1.3 Current Resource Allocation and Scheduling Approach 

Regardless of the considerations for deployment, there is inadequate guidance for agencies, as 

little research has been done on quantitative methods for assigning MPE resources to designated 

locations and times. A random scheduling model, which was conceived by Edwards and Brackett 

(1978), further developed and implemented by Leggett (1988), and improved by Kim et al. (2016), 

has been thus far the main method for deploying MPE programs discussed in the literature. The 

random resource scheduling model generates a pairing between the operator’s work time and the 

enforcement location through indiscriminate matching. The model emphasizes increasing the 

variability of enforcement activities over time—namely, unpredictability to motorists. However, 

the use of the random scheduling method makes it difficult for MPE agencies to address other 

targets, such as increasing enforcement spatial coverage and considering resource availability 

limits. 

Although research into MPE deployment is very limited, resource allocation and scheduling issues 

have been extensively studied in other research areas, but they are usually solved separately. For 

example, optimization techniques have been widely applied to help decision makers determine 

how to allocate limited resources in location and time in order to best achieve some predefined 

objective(s). Maximum covering location model (Church & Velle, 1974) and set covering location 

model (Toregas, Swain, ReVelle, & Bergman, 1971) are both widely used to determine the optimal 

location and number of police stations, fire stations and emergency centers, to meet pre-set 

program objectives (Toregas et al., 1971; Church & Velle, 1974; Larson, 1974; Church, Sorensen, 

& Corrigan, 2001; Curtin, Qiu, Hayslett-McCall, & Bray, 2005; Daskin, 1982). Additionally, the 

integer programming model, based on set covering theory, is the fundamental formulation of most 

resource scheduling models in the fields of aviation, public transit, and vehicle routing 

(Desaulniers, Desrosiers, Dumas, Solomon, & Soumis, 1997; Desaulniers, Desrosiers, & Solomon, 

2002; Desrochers & Soumis, 1989; Desrosiers, Soumis, & Desrochers, 1984; Gamache, Soumis, 

Marquis, & Desrosiers, 1999). Similarly, the optimization model establishes an optimal scheduling 

plan between personnel tasks and time by satisfying specified target and resource constraints. In 

view of the successful use of optimization techniques for resource allocation and scheduling issues, 

these approaches can also be used for MPE, specifically, to improve the allocation efficiency of 

MPE program resources. 
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1.2 PROBLEM STATEMENT AND MOTIVATION 

The decision-making process of most enforcement agencies when deploying MPE programs is a 

“black box” that lacks a transparent and defensible structure. As noted, this has led to controversy 

surrounding the use of MPE, regardless of its positive impact on managing speeds and collisions. 

Therefore, a method is necessary that assists MPE agencies to assign enforcement resources over 

locations and times based on road safety goals. Additionally, considering the limited nature of 

enforcement resources, the method should utilize assets efficiently in the achievement of these 

goals. But, the literature has been systematically studied, revealing there is no such method. 

Establishing a goal-oriented and efficient MPE resource allocation method requires solving the 

following problems: 

 Although a set of MPE deployment priorities associated with road safety goals have been 

proposed, they are qualitative. Few studies have discussed how to identify these MPE 

deployment priorities, and to what extent they achieve the goals. 

 To accomplish a greater MPE program effect, a deployment strategy is to cover more 

target locations. However, how to assign resources to increase MPEs coverage of target 

roadway locations has not been discussed in the literature. Additionally, enforcement 

locations are associated with multiple and different deployment priorities, so the question 

remains, how to consider them at the same time? 

 When scheduling MPE resources, the existing random scheduling method can be used to 

increase the program’s unpredictability over time, but it may waste program resources, 

which are usually limited. Therefore, the problem arises of to how to change enforcement 

presence between roadway locations in order to sustain a dynamic enforcement operation, 

while ensuring efficient resource utilization? 

The motivation of this thesis is to solve the above problems, and thus establish a deployment 

method for the MPE program that can map multiple goals into decisions and use resources 

efficiently. With this method, MPE agencies’ decision-making processes will follow a quantitative 

process from defining goals through resource allocation to resource scheduling. 
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Although the MPE program is the focus of this thesis, the larger vision of this work is that it is a 

first step in designing a broader range of traffic enforcement programs that utilize a variety of 

technologies. The technologies used for the MPE program designed in this thesis are one of several 

different types available to carry out such a program. In addition, other technologies such as 

electronic driver speed feedback signs are used to deter speeding and indirectly, the consequences 

of speeding. This work provides a foundation for designing programs that incorporate multiple 

technologies and deterrence mechanisms, to ultimately improve urban traffic safety.  

1.3 THESIS OBJECTIVES 

Given the motivation of this thesis, we will explore the three main research questions raised in the 

preceding section: 1) quantification of MPE deployment goals, 2) MPE resource coverage of 

deployment goals, and 3) efficient scheduling of MPE resources. For solving each question, the 

specific research objectives are as follows. 

 Quantification of MPE deployment goals: Establish deployment criteria to enable MPE 

agencies to prioritize enforcement resource allocation to roadway locations where the goals 

(i.e., reducing collisions, reducing speed violations, and increasing pedestrian safety) can 

be met. Quantitative measures for each deployment criterion will be developed to assess 

and compare the level of enforcement needs related to each safety goal. These criteria and 

measures will bring transparency into the process of allocating resources to locations and 

are expected to help reach city-wide safety targets.  

 MPE resource coverage of deployment goals: Develop a method to allocate MPE resources 

to enforcement priority locations identified by the deployment criteria and metrics 

mentioned above. Because the MPE program may have different deployment priorities at 

different points in time (such as prioritizing high collision sites to reduce collisions in 

winter, and prioritizing school zones during the return to school in September), the 

proposed method considers multiple deployment goals simultaneously. The method uses 

optimization techniques to achieve efficient use of resources. 

 Efficient scheduling of MPE resources: Design a method to schedule resources to chosen 

enforcement locations. Based on the principle of increasing the unpredictability of MPE 
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resource’s time allocation so as to yield longer enforcement effects, the resource time 

allocation method presented in this thesis aims to produce an optimal but varied 

enforcement pattern. 

Each of the above objectives is addressed in a section of this thesis. Figure 1-1 shows the 

connections (and workflow) between these objectives.  

 

Figure 1-1 Thesis work flow. 

The first stage of the research (blue boxes) converts user input qualitative MPE program goals to 

quantitative deployment criteria and measures. These are then input to the second stage (orange 

box), which produces a set of resource allocation solutions. After the MPE agency chooses a 

solution, it is input into the resource scheduling model (Stage 3, green box). The scheduling model 

further allocates enforcement resources to individual enforcement locations over time, resulting in 

an optimal resource deployment plan. 

Overall, this thesis aims to deliver an evidence-based decision structure for conducting an MPE 

program. This thesis contributes to the literature and practice by 1) developing both a systematic 

and optimized resource allocation and scheduling method for MPE programs for the first time in 
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the literature, 2) increasing the transparency of the decision-making process of enforcement 

agencies when designing an MPE program. The proposed method uses optimization techniques in 

both MPE resource allocation and resource scheduling, to assign limited resources in an efficient 

manner. The method directs enforcement coverage by optimizing metrics quantified for high-level 

program goals, resulting in a more transparent and evidence-based MPE program operation. 

1.4 THESIS STRUCTURE 

The remainder of this thesis is organized into the following six chapters. 

Chapter 2 presents a literature review of the work done on MPE resource allocation. Section 2.1 

outlines the six prevalent criteria published in various countries for guiding the deployment of 

automated speed enforcement programs. Existing methods for allocating and scheduling MPE 

resources are studied in Sections 2.2 and 2.3, respectively. Section 2.4 concludes the chapter. 

Chapter 3 describes the sources of data used for the development of MPE both resource allocation 

and scheduling models proposed in this thesis. To validate the model outcomes, two case studies 

were examined. Section 3.1 describes how to use and process data to quantitatively interpret the 

deployment principles of MPE programs. Section 3.2 introduces the data collected for model 

development and application. 

Chapters 4, 5, and 6 provide a detailed introduction of the MPE deployment methods and 

procedure steps designed in this thesis, corresponding to the implementation of the three specific 

objectives illustrated in Section 1.3.  

Chapter 4 elaborates on how we identify MPE deployment priorities that are aligned with guiding 

principles through the following sections: Section 4.1—an introduction to this chapter; Section 

4.2—an exploration of operations of the Edmonton’s MPE program, in relation to six major criteria 

identified in the provincial enforcement guidelines; Section 4.3—a further discussion of 

enforcement coverage while considering enforcement’s distance halo effect; Section 4.4—

summary of this chapter. 
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 A version of this chapter has been published as Li, Y., Kim, A. M., El-Basyouny, K., & Li, R, 

“Using GIS to interpret automated speed enforcement guidelines and guide deployment 

decisions in mobile photo enforcement programs”, Transportation Research Part A: Policy 

and Practice, 86, 141–158. 

Chapter 5 introduces the MPE resource allocation (MRA) model through the following sections: 

Section 5.1—an introduction to this chapter, Section 5.2—mathematical formulation of the MRA 

model proposed in this chapter, Section 5.3—two methods to generate the optimal resource 

allocation solutions (i.e., a Pareto front) for the MRA model, Section 5.4—MRA Pareto front 

generation results, Section 5.5—Pareto front result analysis, Section 5.6—summary of this 

chapter. 

 A version of this chapter related to MRA model has been published as Li, Y., Kim, A. M., & 

El-Basyouny, K., “Linking Program Goals to Deployment Decisions: Creating A Transparent 

and Efficient Mobile Photo Enforcement Program”, in 98th Transportation Research Board 

Annual Meeting. Accepted November 2018. 

 Another version of this chapter related to MRA model is being reviewed for a potential journal 

publication as Li, Y., Kim, A. M., & El-Basyouny, K., “Interactive Allocation of Mobile Photo 

Enforcement Resources with Multiple Program Objectives”. Under review. 

 A version of this chapter related to MPA Pareto front analysis has been published as Li, Y., 

Xie, J, Kim, A. M., & El-Basyouny, K., “Investigating Tradeoffs between Optimal Mobile 

Photo Enforcement Program Plans”, Journal of Multi‐Criteria Decision Analysis. Accepted 

December 2018. 

Chapter 6 presents the MPE resource scheduling (MRS) model. This chapter contains the 

following sections: Section 6.1—an introduction of this chapter, Section 6.2—mathematical 

formulation of the MRS model developed in this chapter, Section 6.3—an introduction of the 

Dantzig-Wolfe decomposition and column generation approaches to solve the MRS model, 

Section 6.4—a model application to the MPE program in Edmonton, Section 6.5— a sensitivity 

analysis of model parameters, Section 6.6—summary of this chapter. 

 A version of this chapter related to a preliminary model design has been published as Li, Y., 

Kim, A. M., & El-Basyouny, K., “Scheduling resources in a mobile photo enforcement 

program”, in Transportation Information and Safety (ICTIS), 2017 4th International 

Conference on (pp. 645–652). IEEE. 
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 Another version of this chapter focusing on the scheduling problem is being prepared for a 

potential journal publication as Li, Y., & Kim, A. M., “Allocating and scheduling resources 

for a mobile photo enforcement program”. In preparation. 

Finally, Chapter 7 concludes this thesis and includes a brief discussion of future research. Sections 

7.1-7.4 describes in turn the overview, findings, contributions, and limitations of the research 

presented in this thesis.
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2 LITERATURE REVIEW 

The MPE deployment goals were first collected from a review of the implementation guidelines 

of the automated speed enforcement (ASE) program running in multiple countries.  

2.1 ASE GUIDING PRINCIPLES  

Local, provincial, or national governments in the U.S., Canada, Australia, and the U.K. published 

a number of Automated speed enforcement (ASE) guidelines during the early 2000s. All of these 

guidelines have similar principles that primarily focus on outlining where to deploy enforcement 

cameras. They recognize that making good decisions regarding ASE deployment during program 

design and operation is essential to a program’s effectiveness (NHTSA, 2008; Victoria Police 

Traffic Camera Office, 2006). Specifically, six considerations for enforcement attention are most 

commonly addressed in deployment guidelines; these include 1) high collision sites, 2) high speed 

violation sites, 3) school zones, 4) construction zones, 5) high pedestrian volume sites, and 6) sites 

with community speeding complaints. Local enforcement agencies should identify and prioritize 

these sites accordingly, in order to efficiently manage their resources and safety outcomes. 

2.1.1 High Collision Site 

As the most prevalent transportation concern, traffic collisions are responsible for over 1.2 million 

fatalities and 20 million injuries every year worldwide (Mohan, 2006). Roughly 90 people are 

killed on U.S. roads and five on Canadian roads nearly every day; however, these figures are 

decreasing gradually with government intervention (NHTSA, 2015; Transport Canada, 2015). 

ASE programs are one intervention shown to significantly reduce the frequency and severity of 

collisions. Previous studies indicate that ASE reduce collisions by 8.9% to 51%, and collision-

related injuries and fatalities by 12% to 50% (Coleman et al., 1996; Elvik, 1997; Berkuti & Osburn, 

1998; Chen, Wilson, Meckle, & Cooper, 2000; Christie, Lyons, Dunstan, & Jones, 2003; Hess, 

2004; Goldenbeld & van Schagen, 2005; OECD/ECMT, 2006). And, in Canada, ASE programs 

have been successfully operating in the cities of Edmonton, Calgary, and Winnipeg. Empirical 

data from Edmonton shows that ASE is effective in reducing collisions by 14% to 20% (R. Li, El-

Basyouny, & Kim, 2015). Given that the primary objective of ASE programs is to reduce traffic 
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accidents, and in turn improve traffic safety, prioritizing high collision and collision risk sites in 

the guidelines is critical. 

Although all ASE guidelines indicate the need to deploy enforcement cameras to high collision 

sites, the elements that identify these sites vary among jurisdictions. Guidelines in both the 

Province of Alberta (Canada) and the State of Victoria (Australia) identify high collision sites as 

an MPE deployment focus (Alberta Justice and Solicitor General, 2014; Victoria Police Traffic 

Camera Office, 2006), but present little detail, otherwise. In contrast, the U.S. Department of 

Transportation, the State of Queensland in Australia, and the County of Humberside in the U.K. 

all propose criteria for evaluating high collision sites in their guidelines. Four key elements – 

collision frequency, collision severity, exposure measure of collision risks, and data analysis 

period – are most commonly included in the evaluation procedures (NHTSA, 2008; Humberside 

Police, 2008). One criteria for identifying collision sites is the equivalent-property-damage-only 

(EPDO) frequency per kilometer (km) over three years (Humberside Police, 2008). The EPDO 

method converts all collisions into property damage only collisions by assigning weighting factors 

to different collision severities, including fatalities, injuries, and property damage only(AASHTO, 

2010). Therefore, it can effectively combine both the collision frequency and collision severity 

into one factor that assigns higher weights to crashes with higher severity. In addition, the County 

of Humberside uses road length as an exposure measure against EPDO collision frequency 

(Humberside Police, 2008), to measure and compare risk to the exposed population experiencing 

collisions over a certain distance traveled (Jørgensen, Koornstra, Broughton, Glansdorp, & Evans, 

1999). Road length data can be collected relatively easily since a large number of cities have well-

maintained databases of this information. 

2.1.2 High Speed Violation Sites 

Given the ASE program’s ultimate goal is to reduce traffic accidents, speeding contributes to more 

than 20% of total fatalities on Canadian roads (Transport Canada, 2010, 2011), making it evident 

that speed is the leading cause of collisions, by increasing both the likelihood and severity of 

crashes (OECD/ECMT, 2006). As such, reducing vehicle speed is the mechanism through which 

this goal is achieved, and ASE programs are seen to deter speeding by 15% to 88% (Lamm & 
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Kloeckner, 1984; Coleman et al., 1996; Davis, 2001; Retting & Farmer, 2003; Cities of Beaverton 

and Portland, 1997).  

As the allocation of ASE to high speed violation sites plays a key role in addressing traffic safety 

concerns, nearly all guidelines stipulate that higher priority be placed on these locations. Most 

guidelines’ treatment of high-speed violation sites is similar to that of high collision sites; although 

the importance of deploying cameras to these sites is identified, as demonstrated by both the 

Province of Alberta and the State of Queensland, each discussing the criticality of enforcing these 

sites, further information is not given on how to identify and assign enforcement resources (Alberta 

Justice and Solicitor General, 2014; Queensland Police, 2016). The State of Victoria uses reports 

of speeding problems from governments, authorities, and police officers to identify high speed 

violation sites (Victoria Police Traffic Camera Office, 2006). However, these reports are subjective 

and difficult to verify or quantify, and the guidelines do not demonstrate how to go from a report 

to a clearly identified problem location. 

In contrast, the U.S. Department of Transportation and the County of Humberside propose using 

data on travel speeds or the percentage of vehicles violating the speed limit to screen high speed 

violation sites. The U.S. guidelines highlight several data sources to be used for identifying high 

speed violation sites, including average speed, 85th percentile of speed, speed range and dispersion, 

percentage of speeding vehicles and number of citations (NHTSA, 2008). The County of 

Humberside guidelines use the 85th percentile of free flow speed to identify high speed violation 

sites (Humberside Police, 2008). 

2.1.3 School Zones 

Children are the most vulnerable road users and require the greatest protection. About one third of 

child deaths worldwide are caused by traffic collisions (Peden, 2008), and children of school age 

(from 5 to 19 years of age) are the main victims of road collisions (Joel Warsh, Rothman, Slater, 

Steverango, & Howard, 2009). Furthermore, they are more likely to be struck by a vehicle when 

walking to school, especially within 300 meters of the school (Joel Warsh et al., 2009). 

Hence, ASE initiatives for school zones have been included in many jurisdictions’ ASE program 

guidelines. For instance, the Province of Alberta, the U.S. Department of Transportation, and the 
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State of Victoria all address school zones as a priority for deployment. In addition, conducting 

ASE in school zones acts for the public as a demonstration of law enforcement attention, which 

promotes overall public buy-in for a program (NHTSA, 2008). Again, however, no guidelines 

provide details on identifying school zones for enforcement. Because the number of collisions 

involving school children decreases as the distance from the school increases (Joel Warsh et al., 

2009), there is a need to identify specific regions around schools where children are at significant 

vehicle collision risk. 

2.1.4 Construction Zones 

In addition to the high risk of school zones, workers in construction zones are exposed to the risk 

of both injury and fatality from passing vehicles. According to the Federal Highway 

Administration (FHWA), 1.6% of total road collisions in the U.S. in 2010 occurred in construction 

zones. More than 2,000 U.S. workers were hit in construction zones every year from 2003 to 2008 

(FHWA, 2015). In these collisions, speeding is the primary risk to the safety of construction 

workers on the road, accounting for 31% of work zone fatalities in 2008 in the U.S. (FHWA, 2015). 

Therefore, speed enforcement cameras are needed to protect workers in these zones. In addition, 

enforcement at construction zones is an effective method of promoting ASE programs to the public 

(NHTSA, 2008). Despite the fact that ASE attention at construction zones is addressed in the 

guidelines of the U.S. Department of Transportation, the Province of Alberta, the State of Victoria, 

and the State of Queensland these guidelines also only mention this enforcement priority, and lack 

detailed instructions on how to deploy enforcement resources. The State of Victoria provides one 

identification instruction, calling for an assessment of construction locations, construction time 

periods and the traffic at construction zones to inform deployment decisions (Victoria Police 

Traffic Camera Office, 2006). However, the guidelines are still difficult to implement based on the 

rather general information provided.  

2.1.5 High Pedestrian Volume Sites 

In addition to school children and construction workers, other pedestrians also need protection 

from speeding vehicles. Urban areas often have high pedestrian volumes, and subsequently, a high 

number of pedestrian collisions. For instance, in Edmonton, districts with shopping, restaurants, 

and nightlife historically have experienced high numbers of pedestrian collisions (The Office of 



14 

Traffic Safety, 2013). According to the National Highway Traffic Safety Administration (NHTSA), 

in 2003 about 12 pedestrians died and 180 pedestrians were injured each day on roads in the U.S. 

(NHTSA, 2013). Moreover, in a collision, the vehicle’s speed determines the pedestrian’s 

likelihood of survival. A pedestrian has a 20% chance of surviving when hit by a vehicle traveling 

at 50km/h; however, the likelihood of survival increases to 90% if the vehicle speed decreases to 

30km/h (Walz, Niederer, & Kaeser, 1986; Waiz, Hoefliger, & Fehlmann, 1983; OECD/ECMT, 

2006).  The Province of Alberta guidelines require local enforcement agencies to identify high 

pedestrian volume sites and prioritize enforcement efforts for those sites (Alberta Justice and 

Solicitor General, 2014). However, the guidelines do not provide quantitative measurements for 

identifying high pedestrian volume sites. In addition, pedestrian volume is expensive and almost 

impossible to collect citywide. 

2.1.6 Sites with Community Speeding Complaints 

Complaints about speeding in residential areas are one of the most common citizen grievances to 

police (Scott & Maddox, 2001; Weisel, 2004). Although fewer crashes occur on local roads than 

on arterial and collector roads, assigning ASE priority to a residential area can mitigate community 

concerns, and is yet another way by which an ASE program’s profile can be raised to gain citizen 

support for enforcement programs. The guidelines from the Province of Alberta, the State of 

Victoria, the State of Queensland, and the U.S. dictate that enforcement efforts should address 

community complaints. But, similarly, these guidelines only mention dedicating enforcement 

attention to sites with community complaints about speeding, without further describing how to 

evaluate these sites. 

2.2 RESOURCE ALLOCATION APPROACHES 

Randomized resource allocation is a foremost method discussed in the literature for MPE 

deployment. The method was conceived by Edwards and Brackett (1978) and further developed 

by Leggett (1988), with the single focus of high collision sites. Specifically, Leggett (1988) 

randomly matched a set of identified high collision sites with a set of two-hour segments in a day. 

Then the matched sets are assigned within the coverage area of each police division accordingly. 

This random scheduling approach was later extensively tested in MPE programs operated in 
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Australia (L. M. W. Leggett, 1997) and New Zealand (Graham, Bean, & Matthews, 1992), where 

an average of one-third of road casualties were reduced during each test deployment. 

To further consider multiple types of deployment goals, Kim et al. (2016) introduce a priority 

index into the randomized resource allocation method. The priority index computes the severity 

level of each site by converting the gravity of high collision sites, high speed violation sites, and 

sites with other concerns into one factor using weights. Ranking all enforcement sites by highest 

to lowest index values, a monthly candidate enforcement site list is created, and sites are then 

randomly allocated to enforcement resources over that month. It is concluded that the added site 

selection method may increase enforcement coverage by 24% (Kim et al., 2016).  However, the 

priority index values depend on the weights assigned to deployment goals, which are difficult to 

obtain and are therefore based on program managers’ judgment and experience.  

Research on how to allocate MPE resources appear to have been given to improving the perception 

of randomness of MPE deployment, rather than how to more efficiently and effectively utilize 

resources. In contrast, many studies have been conducted since the early 1970s on how to optimally 

allocate emergency facilities, such as fire stations, police stations, or emergency medical service 

(EMS) stations (Toregas et al., 1971; Church & Velle, 1974; Larson, 1974; Church et al., 2001; 

Curtin et al., 2005; Daskin, 1982). The purpose of emergency facilities is to successfully respond 

to demand over time, such that their resource allocation problem is a demand-covering problem 

with constraints on service time or distance (Berman, Drezner, & Krass, 2010; ReVelle & Eiselt, 

2005; Huntley, 1970). One typical approach to solving this problem is the set covering location 

(SCL) model. It aims to identify the minimum number of emergency facilities needed and their 

optimal locations, by ensuring that the facilities cover all the demand for emergency services in a 

city within a maximal service distance (Toregas et al., 1971). However, the SCL model requires a 

total coverage for demand, which is difficult to achieve when resources are limited. The maximal 

covering location (MCL) model is then proposed to determine the optimal locations of a fixed 

number of emergency facilities, attempting to cover as much demand as possible with limited 

resources, by focusing on areas with high demands (Church & Velle, 1974). 

Considering most emergency facilities are stationary (Curtin et al., 2005; Larson, 1974; Ma, 2003), 

Yin (2006) investigates how to optimally allocate a fixed number of mobile police patrol vehicles 
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to freeway segments. A min-max optimization model is proposed, which aims to minimize the 

maximal total patrol travel time spent handling worst-case freeway incidents. As the model is 

developed based on the worst-case scenario, the optimal resource allocation plan obtained is 

independent of time and therefore independent of demand (that changes over time). Adler et al. 

(2014) develops a maximal covering model, which attempts to allocate a fixed number of freeway 

traffic police patrol (FTPP) vehicles based on demands that change over time. The model is a 

multi-criteria optimization that accounts for several deployment goals simultaneously. Adopting 

multi-criteria optimization in allocating resources produces a set of optimal solutions (known as 

Pareto front, or PF) rather than a single solution. This allows decision makers’ flexibility in 

imposing their priorities and mandates on the resource allocation. Despite the goals of FTPP 

programs differing from those of MPE programs (the former, focusing on timely response to calls 

for service and general road policy duties, while the latter on identifying speed violators and 

reducing speeds at various roadway locations), the general benefits are similar. 

When presented with a PF in the multi-objective solution space, however, enforcement agencies 

can face difficulties. First, in many real-life multi-objective optimization problems, the PF can be 

very large or can even contain an infinite number of solutions; the greater the number of considered 

objectives, the larger the expected size is of the PF. It is, therefore, difficult to make a choice from 

a large PF. Second, although each solution on the PF informs the value given to each objective, 

the exchange of the objective values between solutions is not directly revealed. This creates 

inconvenience for MPE agencies when they compare a large number of solutions and choose the 

desired tradeoff. 

There are two main approaches to reducing the number of solutions to represent a PF: 1) define 

objective preferences and establish utility functions (Branke, Deb, Dierolf, Osswald, & others, 

2004; Mattson, Mullur, & Messac, 2004; Taboada, Baheranwala, Coit, & Wattanapongsakorn, 

2007), and 2) cluster analysis (Morse, 1980; Rosenman & Gero, 1985; Taboada et al., 2007; 

Taboada & Coit, 2007; Zitzler & Thiele, 1999). The first-category approach requires multiple 

iterative calculation and most also require a-priori determinations and estimates of preferences 

between objectives. Conversely, clustering techniques (the second approach to generating a PF 

representation) do not require significant computational efforts and prior preference information.  
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Approaches to analyze tradeoffs among conflicting objectives are mainly focused on plotting 

results of two axes (with two objectives) in a discrete PF or a hypersurface (three or more 

objectives). The tradeoff between any two objective functions when moving from one solution to 

another along a PF is the slope of the line connecting the two solutions in the two-objective space 

(Miettinen, 1999). Hence, by connecting the solutions on the PF with smooth curves or surfaces, 

the objective tradeoff implied can be analyzed in an efficient manner in a PF with a large number 

of data points. For instance, Bai et al. (2011) used polynomial regression to generate pairwise 

tradeoff curves for five performance objectives considered in a highway asset management 

program. Goel et al. (2007) applied the response surface method to simultaneously analyze the 

tradeoffs of three goals related to a rocket injector design program. The authors constructed a 

polynomial model to build a (optimized) tradeoff surface for the three goals considered. However, 

tradeoffs were analyzed on a 2D contour map of the surface for simplicity. Note that the higher 

the objective dimension is, the more complex and difficult it is to interpret tradeoffs on a 

hypersurface. Therefore, when there are more than two objectives to consider, the easiest method 

is to perform a pairwise comparison of objective tradeoffs in 2D while keeping other dimensions 

constant (Bai et al., 2011). 

2.3 RESOURCE SCHEDULING APPROACHES  

As discussed in the preceding section, resource allocation methods aiming to increase the 

unpredictable appearance of enforcement activities have been thus far the primary method studied 

for deploying and scheduling MPE programs in the literature. By randomly matching operator 

shifts and enforcement locations, a better road safety outcome is expected over a fixed scheduling 

scheme: 30% greater reduction in collisions (L. M. W. Leggett, 1997), and 33% greater reduction 

of speeding vehicles (Kim et al., 2016). However, randomly matching shifts and locations makes 

it difficult for MPE agencies to consider program goals (other than perception of randomness) and 

resource utilization efficiency. 

Adler et al. developed a two-stage location and schedule assignment (LSAP) model to sequentially 

achieve the goals of 1) expanding enforcement coverage and 2) varying enforcement schedules, 

with constrained resources (2014). The LSAP model is designed for freeway traffic police patrol 

(FTPP) programs, which conduct general traffic law enforcement and handle incidents/calls for 
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services on interurban roads. The review of how the LSAP model achieves the former goal in Stage 

1 has been specifically discussed in Section 2.2.  

In Stage 2 of the LSAP model, Adler et al. (2014) proposed utilizing the potential of distance and 

time halo effects of enforcement in order to produce a dynamic work schedule. Distance halo effect 

is the distance over which the enforcement affects driver behavior upstream and downstream of 

the enforcement location (Christie et al., 2003; Hess, 2004). Time halo effect is the length of time 

during which the enforcement effect continues, even if enforcement vehicles have left the area 

(Vaa, 1997). These two effects are considered in two steps. The concept of distance halo is used 

in the first step to find a representative subset of the Pareto optimal resource allocation solutions 

identified in Stage 1 of the LSAP model. A MAXMIN integer programming sub-model is used to 

determine the subset, which covers the highest number of locations and achieves the most balanced 

shift distributions between locations. The second step uses the shift distributions determined in the 

previous step as an input, and sequences the shifts within the planning horizon by considering the 

time halo effect. A binary integer programming sub-model is used to minimize instances where 

shifts are continuously allocated to the same location while the time halo effect remains. This 

second-stage model yields a highly-varied schedule, which is expected to increase enforcement 

unpredictability. In addition, this model provides a significant improvement over a fixed 

deployment plan actually implemented; it avoided three-quarters of unnecessary sequential visits 

during a two-shift time halo. 

Following Adler et al. (2014), Li et al. (2017) established a binary integer programing model for 

scheduling MPE resources. The enforcement locations of Edmonton’s MPE program are 

predetermined, and account for distance halo effects between locations. Therefore, Li et al.’s 

scheduling model focuses on accounting for the time halo of enforcement. The results of utilizing 

a two-shift time halo show that 90% of enforcement visits were non-sequential (not violating time 

halo effects). 

However, the time halo duration assumed in the scheduling models of Adler et al. (2014) and Li 

et al. (2017) is up to three shifts. For example, in Adler et al. (2014), the maximum time halo is 

three shifts for a problem instance of 250 shifts and 19 location covering sets. Similarly, Li et al.’s 

model can only manage a two-shift time halo in an instance of 449 shifts and 145 site combinations. 
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When solving the problem instances described above, the memory of most commercial integer 

programming solvers will be exhausted once the specified maximum acceptable time halo is 

exceeded. This is because the model formulations represent schedule elements as decision 

variables, leading to an exponential increase in the number of possible solutions with the size of 

the schedule. Most commercial solvers typically use the standard branch and bound algorithm to 

solve integer programming (IP) problems. This algorithm is an enumeration method. It branches 

each decision variable of the model into two possibilities (0 and 1), and then solves a linear 

programming (LP) relaxation of the original IP problem under each branch in order to obtain the 

IP’s bound (objective value of the LP relaxation problem) applied to the next branch. Thus, the 

number of possible solutions enumerated in the models of Adler et al. and Li et al. equal two to 

the power of the number of schedule elements, which must exceed the available memory on a 

workstation when the number of elements is large. 

Most resource scheduling problems, when formulated as integer programs, define decision 

variables using the column or row of a schedule. When the branch and bound is applied, branching 

on this type of variable is more efficient than branching on a single scheduled element, and tighter 

bounds can be obtained (Ernst, Jiang, Krishnamoorthy, & Sier, 2004). This formulation strategy 

can be found in many scheduling problems in transportation, such as air crew pairing (Desaulniers 

et al., 1997) and rostering (Gamache et al., 1999), urban transit crew scheduling (Desrochers & 

Soumis, 1989), and vehicle routing scheduling (Desrosiers et al., 1984). Specifically, a column or 

row is often defined as a path connecting arcs and nodes in vehicle routing problems, or an itinerary 

connecting flights in airline crew scheduling problems. 

Airline crew scheduling and rostering is the largest application of staff scheduling problems across 

all industries (Ernst et al., 2004). The hardest part of solving these problems is that they are very 

large-scale, complex integer programming problems (Desaulniers et al., 2002). A combined 

approach has primarily been used to solve these problems: this approach starts by decomposing a 

scheduling table using the Dantzig-Wolfe algorithm, and then solves the decomposition using a 

column generation algorithm (Desaulniers et al., 2002; Ernst et al., 2004). 

The Dantzig-Wolfe algorithm, named after Dantzig and Wolfe (1960), reformulates a schedule by 

treating one column of the schedule as a variable, instead of an element in the schedule. The 
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problem after reformulation is a set covering/partitioning integer programming problem, which is 

a common representation of most resource scheduling problems (Ernst et al., 2004). In 

transportation resource scheduling problems, a column of the schedule is defined as a feasible 

schedule for resources to perform a certain task. When branching occurs on these columns (i.e., 

set covering problem variables), the bounds derived by a branch-and-bound method are tight on 

the problem objective.  

The number of feasible resource schedules (columns) can be exponential to the problem size. 

Therefore, the number of variables of the set covering problem that is reformulated by the Dantzig-

Wolfe algorithm is enormous. To handle this issue, the column generation approach (Ford Jr & 

Fulkerson, 1958) is usually used in combination with the Dantzig-Wolfe algorithm. Similar to the 

simplex method, column generation only identifies new columns that can be entered into the 

problem’s variable basis, rather than enumerating all columns. 

2.4 SUMMARY  

We find that ASE guidelines typically focus on six key priorities for their programs. They direct 

enforcement resources to roadways exhibiting high numbers of collisions and speed violations, in 

school zones, construction zones, and high-pedestrian areas, and those with community speeding 

complaints. However, most guidelines provide only qualitative guidance for identifying critical 

locations. This leads to difficulties when collecting data to measure and compare sites for 

enforcement attention. Also, when local enforcement agencies make decisions on deploying 

cameras, precise instructions on how enforcement resources should be allocated to different sites 

is unclear. To help agencies identify specific deployment priorities and improve deployment 

decisions, we translate these qualitative descriptions to precise quantitative measures in Chapter 4. 

There has been limited research to improve resource allocation and scheduling in MPE programs. 

This thesis aims to address this gap, and therefore, assist agencies to directly impose program 

priorities to MPE resource deployment decisions. Despite that the MPE resource allocation and 

scheduling problem differs somewhat from the freeway traffic police patrol (FTPP) problem, the 

concepts used to solve FTPP problems (two-stage decomposition and optimization) can be applied 

to the MPE problem. We decompose MPE resource allocation and scheduling problem into two 
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optimization sub-problems (see Chapters 5 and 6, respectively). A maximum covering location 

model combined with multi-objective optimization is used to find the best MPE resource allocation 

when there are multiple and competing priorities. Then, we use the time halo of enforcement to 

determine MPE enforcement schedules. The use of time halo has demonstrated to not only produce 

diverse enforcement schedules, but also make efficient use of resources. 

We will also address the following issues when solving the above two optimization sub-problems. 

Due to many Pareto-optimal allocation solutions obtained from multi-objective optimization, we 

conduct post-Pareto analyses to further help agencies better understand and apply the solutions. 

We used a clustering process to identify representative solutions, given that clustering can be easily 

implemented without user-specified preferences. The response surface method is used to fit an 

optimal tradeoff surface that (typically) involves more than two enforcement objectives. Finally, 

resource scheduling problems are typically large and difficult to solve with conventional integer 

programming. Given the success of Dantzig-Wolfe and column generation methods in solving 

large resource scheduling problems, we also use these two methods to solve our scheduling 

problem. 



22 

3 DATA DESCRIPTION 

Citywide geocoded data was gathered from the Traffic Safety Section at the City of Edmonton 

(COE), who manages the MPE program in Edmonton, Alberta, Canada. We obtained data on 

traffic collisions, travel speed surveys, schools, construction projects, neighborhoods, and road 

networks. We also obtained operational data from the Edmonton MPE program, including 

deployment sites and when sites were enforced (i.e. operator visit data). The data is used for two 

case studies described in the following two sections. 

3.1 EVALUATING ASE GUIDELINES 

Five years of citywide geocoded data, from January 2010 to December 2014, were used to identify 

six types of high-priority sites on Edmonton roads. In Edmonton, the total number of speed-related 

midblock collisions over the five-year study period is 29,573, consisting of 40 fatal collisions, 

2,881 injury collisions, and 26,652 property-damage-only collisions. Because a much higher 

number of collisions occur on arterial roads and collector roads than on local roads, and collisions 

are the primary motivation for enforcement, this thesis focuses on identifying arterial and collector 

roads exhibiting need for enforcement attention according to the priorities discussed. Local roads 

are considered only in regard to community complaints on residential roads.  

The arterial and collector road network in Edmonton is segmented into 2,691 sites, with each site 

representing a segment for enforcement. Specifically, an arterial site refers to an arterial road 

segment between two adjacent signalized intersections. Whereas, a collector site is determined to 

be a collector road segment that intersects any arterial or collector roads.  

Speed surveys conducted in Edmonton within five years (2010-14) only occur at 720 of the 2,691 

segmented sites, so we identify high speed violation sites from these 720 sites. The data used to 

identify other deployment priorities at the 2,691 sites also included a total of 3,996 construction 

projects executed during the five-year study period, and 296 schools (including elementary, middle, 

and high schools). 
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When considering local sites with community complaints, the potential local sites are aggregated 

on the neighborhood level. As a result, 388 neighborhoods were identified after aggregation. 

Grouping the data from local sites by neighborhood allows this thesis to investigate the 

implications of enforcement on each community. 

To compare the deployment priorities found based on the above data with the actual program 

deployment, the operational data of the Edmonton MPE program from 2010 to 2014 was also 

collected. During the five-year study period, Edmonton’s MPE program operators visited a total 

of 1,317 sites, including 1,087 arterial and collector sites and 230 local sites. At the time of this 

study, the MPE program employed 20 operators, who were deployed in 10-hour shifts that occur 

twice daily, from 6 am to 4 pm, and 4 pm to 2 am. A shift consists of one operator in one vehicle. 

The average deployment time spent at each arterial and collector site was 166 hours in five years, 

whereas this time dropped to 11 hours at each local site. 

3.2 DESIGNING A DEPLOYMENT PLAN 

To study the results of our proposed two-stage MPE resource allocation and scheduling model, we 

applied the model to a case. The case assumes a deployment plan for the Edmonton MPE program 

operated in September 2014. September was chosen because it is known that the Edmonton MPE 

program aims to dedicate greater enforcement efforts to school zones at this time of year. 

Three years of geocoded data (2012-2014) consisting of 18,198 speed-related midblock collisions, 

893 speed survey reports, and 296 schools’ information from the COE were used to calculate the 

model metrics representing the three most important enforcement needs (reducing collisions and 

speed violations, and increasing the safety of school children). A three-year span was chosen since 

a constantly updated data is needed to support the rotating monthly plan. Three years are usually 

the minimum time period for the study of collision data; it is able to provide sufficient sample size 

that ensures statistical correctness (Abdulhafedh, 2017). 

The first stage model allocates resources to city neighborhoods. The collision reports, speed 

surveys, and school information collected from 2012 to 2014 were assigned to their corresponding 

neighborhoods in GIS, to calculate the three neighborhood-level metrics. To handle the issue of 

some geocoded data being positioned along the boundaries of neighborhoods (composed mainly 
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of arterial roads), all geocoded neighborhood data was shifted 50 meters south and 50 meters east. 

A 50-meter shift is considered a small movement, such that the collision, speed, and school data 

originally within a neighborhood is highly unlikely to not remain in the same neighborhood as 

before; however, boundary data is “moved” northwest into a neighborhood. With this shift, only 

0.1% of all collision data are without a neighborhood. Given that such a small amount of the 

collision data is “homeless” (i.e., not belonging to any neighborhood), it is ignored in the analysis.  

The total number of enforcement shifts made in September 2014 was used to fix the total number 

of shifts available for the model over one month. In September 2014, a total of 458 shifts were 

deployed to 231 enforcement sites located in 135 neighborhoods across the city. An operator will 

visit anywhere from one to four sites during one shift, with an average of 6.7 hours spent on the 

enforcement task itself per 10-hour shift.  

Also, the actual monthly shifts made during 2013-2014 in each Edmonton neighborhood were used 

to determine the restrictions on the number of shifts to be allocated during one month. According 

to the Edmonton MPE deployment data from 2013-2014, neighborhoods were classified as 

receiving 1) high attention, 2) medium attention, and 3) no attention. The first group consisted of 

about 30 neighborhoods that were visited each month over the two years of 2013 and 2014, and 

assigned a minimum of 240 shifts each month (which is about half the total shifts available per 

month). This group of neighborhoods had a minimum of eight shifts, and maximum of 49, 

allocated per month. The medium attention group consisted of 186 neighborhoods that were visited 

more occasionally, with a minimum of zero and maximum of seven shifts per month. The 

remaining 172 neighborhoods were not visited at all over the two years. To correspond more 

closely to the actual resources available to Edmonton’s MPE program, we set the constraints for 

our application using the above information. However, this may change depending on the 

particular requirements, needs, and governing regulations of the MPE program. 

The second stage model scheduled daily site visits within neighborhoods based on the 

neighborhood-level resource allocations determined by the Stage 1 model. A neighborhood-level 

deployment result is analyzed, which allocates one-month shifts to 44 neighborhoods containing 

130 enforcement sites. Three years (2012-2014) of data on collision statistics, speed surveys, and 

school location information, which were used to construct the neighborhood-level metrics in Stage 



25 

1, are also used to compute site-level metrics consistent with the (three) deployment criteria. Two 

years (2013-2014) of operational data were gathered and utilized from the COE’s MPE program 

to identify the bounds on the number of visits in each daily shift of the study month. 

A study was conducted in 2015 in Edmonton to measure the time halo effects of MPE on arterial 

and collector roads (Gouda & El-Basyouny, 2016). Nine locations were monitored within a five-

week period, during which the time halo effects of enforcement were observed to reach an average 

of five days after every 20 hours of enforcement. The level of enforcement intensity affected the 

duration of the time halo; however, a relationship between the enforcement intensity and time halo 

was not determined. Therefore, we will consider the enforcement time halo duration to be fixed at 

five days, regardless of the intensity of the applied enforcement. Future work may include 

developing a modified cost function that accounts for the effect of enforcement intensity on time 

halo durations. 
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4 QUANTIFICATION OF MPE DEPLOYMENT 

GOALS 

Automated speed enforcement (ASE) guidelines are designed to guide enforcement agencies in 

operating ASE programs that are effective in improving traffic safety. A better understanding of 

the governing ASE guidelines and how to implement them can help enforcement agencies to 

improve decision-making and resource allocation, thereby increasing program effectiveness and 

efficiency. 

4.1 INTRODUCTION 

In many jurisdictions, the design and operation of automated speed enforcement (ASE) programs 

are governed by official guidelines. Automated speed camera systems are used to assist police in 

enforcing speed limits. Specifically, the speed camera is mounted on the roadside or in an 

enforcement patrol vehicle to detect vehicle speeds, and photograph vehicles violating speed limits. 

Mobile photo enforcement (MPE) is a subset of ASE technology, with a speed camera mounted 

on the car. Therefore, the operation of MPE should adhere to ASE program guidelines.  

The guidelines outline basic principles for how ASE programs should operate, providing a tool to 

assist local enforcement agencies in developing a successful ASE program with positive safety 

outcomes. In particular, ASE guidelines emphasize controlling the deployment of enforcement 

cameras, to ensure deployment at the right locations, thus increasing the program’s effectiveness 

in improving safety.  

However, when implementing guidelines, most descriptions of deployment goals are too 

qualitative to interpret, impacting the successful identification of specific deployment 

considerations. Guidelines provide general descriptions of where ASE should be deployed to 

achieve objectives of reducing speed and collisions, but they do not specifically define how site 

identification and ASE deployment should be conducted. Local enforcement agencies must rely 

only on their own interpretations during the design and implementation phase. Consequently, the 

potential benefits of using the guidelines are not entirely realized. 
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Research tackling the limitations of existing ASE guidelines is limited. Therefore, this chapter 

proposes quantitative measures based on the main guiding principles of ASE to facilitate 

interpretation of the guidelines and deployment decisions that well reflect these principles. A case 

study is presented to explore the relationship between ASE principles and the interpretation and 

application of guidelines by a local enforcement agency. The results are visualized using 

Geographic Information System (GIS) plots, through which this thesis provides insight into the 

geographic distribution of enforcement throughout the city, in terms of where enforcement should 

take place and where it is actually conducted. Two MPE program indicators – spatial coverage and 

intensity – are used to investigate the interpretation and application of the provincial ASE 

guidelines. Given that MPE activities have distance halo effects, which are safety effects that 

extend upstream and downstream of the camera site (Vaa, 1997), this thesis also considers these. 

Coverage of the MPE program is also considered using a measure of the distance halo effect. The 

results of this chapter can help enforcement agencies gain greater clarity on how to improve 

program performance with the help of ASE guidelines, in order to achieve increased efficiency 

and effectiveness. 

4.2 QUANTITATIVE INTERPRETATION OF ASE GUIDELINES AND GIS 

VISUALIZATION  

In this section, quantitative measures are proposed and used to identify each of the six deployment 

priorities described in Section 2.1, for the road network of Edmonton. Then, each criterion is 

visualized on a GIS map of the city. The COE has a mobile photo enforcement (MPE) program 

that involves dispatching mounted photo radar cameras in unmarked/marked patrol vehicles to 

sites to photograph the license plates of those that violate speed limits by a predetermined threshold. 

The operation of MPE in Edmonton must adhere to the ASE guidelines released by the Province 

of Alberta, which dictate the deployment goals for the six deployment priorities. To illustrate the 

interpretation and application of the Alberta ASE guidelines by the COE enforcement agency, the 

deployment information of the MPE program, including spatial coverage and intensity, is visually 

presented for each deployment priority. 



28 

4.2.1 High Collision Sites 

Although the Alberta guidelines for ASE address enforcement goals for high collision sites, they 

provide limited instructions on how to identify these sites. Based on the review of ASE guidelines 

in identifying high collision sites in other jurisdictions, this thesis attempts to do so by assessing 

four characteristics: collision frequency, severity, exposure measure of collision risks, and the data 

analysis period. In particular, this thesis employs the EPDO frequency of collisions to account for 

both frequency and severity, using COE data on collisions resulting in fatality, injury, and property 

damage over 2000 Canadian Dollars. Moreover, the length of the road segment is used to evaluate 

the exposure to the risk of collisions, given that this information is available in the COE database. 

The final measure for evaluating high collision sites is EPDO per kilometer (km) traveled on a 

road segment over five years. 

All the studied collisions (29,573 collisions in total as described in Section 3.1) are converted into 

corresponding EPDO frequencies, based on a report released by the Capital Region of Alberta in 

2010 (de Leur, Thue, & Ladd, 2010). The report specifies that the direct cost of one fatal collision 

is equivalent to that of 16.6 PDO collisions and the direct cost of one injury collision is equivalent 

to that of 3.6 PDO collisions (de Leur et al., 2010). Collision severity classification and cost 

estimates for these different severity levels vary across jurisdictions. Enforcement agencies may 

amend the computation of EPDO frequencies based on their own classification and cost estimation. 

However, it is noted that some jurisdictions have very high cost estimations for fatal collisions. 

For instance, the American Association of State Highway and Transportation Officials (AASHTO) 

proposed the social cost of one fatal collision to be more than four million US dollars (AASHTO, 

2010). Consequently, this high value gives fatal collisions a significant relative weighting when 

computing EPDO frequencies – in fact, more than 30 times the weight assigned to fatal collisions 

in Edmonton. This tends to become an issue in that fatal collisions dominate the identification of 

high collision sites, whereas sites experiencing frequent injury collisions that are also dangerous 

locations get far less attention. An alternative is to adopt a collision cost measure that combines 

fatal and injury collisions. According to AASHTO, a social collision cost that includes fatal, 

incapacitating injury, and moderate injury collisions is estimated to be 158,200 US dollars, which 

is significantly smaller than the four million USD assigned to fatal collisions alone (AASHTO, 

2010). 
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Figure 4-1 identifies the ranking of high collision sites within the top 10% of EPDO collisions per 

kilometer (𝐸𝑃𝐾) over the five-year study period, and shows them marked in red. The average 𝐸𝑃𝐾 

of all road segments is 13.8, but surges to 53.1 in this figure due to the narrowing of the scope to 

high collision sites only. The density map of high collision sites highlights areas in greatest need 

of enforcement. As shown in Figure 4-1, high collision sites are clustered in the central 

neighborhoods of Edmonton, on two major freeways (Yellowhead Trail and Whitemud Drive), as 

well as some northern, western, and southeastern neighborhoods. 

When the geographic allocation of MPE is plotted for the five-year study period, it is observed 

that 1,087 MPE sites are widely dispersed throughout Edmonton’s major urban road network. The 

MPE sites are represented as circles in Figure 4-1, and the intensity of MPE at each site is 

represented by the size of the circles. The larger the circle, the longer the enforcement time spent 

at that site during the five-year period. As seen from Figure 4-1, 85 MPE sites (marked in green) 

cover high collision sites, and the other 1,002 MPE sites (marked in black) do not precisely overlap 

with high collision sites. 
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Figure 4-1 2010-2014 MPE program coverage on high collision sites. 
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According to Figure 4-1, 47 of 269 high collision sites were covered by the MPE program, which 

indicates about 17.5% citywide spatial coverage. The five-year MPE program invested about 305 

hours at each high collision site, which indicates that each site was enforced for more than five 

hours every month. This indicates that the COE enforcement agency took into account high 

collision sites when making deployment decisions. However, it was observed that the MPE 

program spent an average of 314.3 hours at sites not identified as high collision sites over the five-

year period – about nine hours more than the average time spent at high collision sites. This 

demonstrates that there were other considerations (such as the other five priorities discussed) for 

MPE deployment in Edmonton that resulted in greater enforcement intensity at these sites. 

4.2.2 High Speed Violation Sites 

According to the Alberta guidelines, enforcement should be conducted at locations with high speed 

violation rates. This thesis identifies high speed violation sites by the percentage of vehicles that 

exceed the speed limit. More specifically, the top 10% of sites with the highest average percentage 

of vehicles violating speed limits during the five-year study period is employed as the threshold 

for screening high speed violation sites. 

As shown in Figure 4-2, 72 high speed violation sites have been identified and marked in red. As 

with high collision sites, a density map is also used to illustrate how the high speed violation sites 

are clustered throughout the city. Figure 4-2 shows that the sites in question are located mainly on 

the city’s ring road (Anthony Henday Drive), as well as the central, northeastern, and southern 

portions of the city. According to the five-year speed surveys, approximately 45.6% of surveyed 

vehicles on the total 720 sites exceeded the speed limit. This high value could be due to a selection 

bias – speed detectors tend to be placed on roadways that are known to have a high number of 

speed violations. The average percentage of speeding vehicles surges to 81.9% on the 72 identified 

high speed violation sites, which is almost double that of all 720 sites. 
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Figure 4-2 2010-2014 MPE program coverage on high speed violation sites. 
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After overlapping the MPE deployment information with the high speed violation sites, only 720 

of 1,087 MPE sites are selected for investigation because the other MPE sites do not have speed 

survey data. Figure 4-2 shows that about half of the high speed violation sites are covered by 97 

of the 720 selected MPE sites during the five-year study period. The average deployment time at 

each high speed violation site is 832.7 hours, which is more than 2.5 times that of other sites. 

Furthermore, the average number of deployment hours spent on such sites is 2.7 times higher than 

that spent on high collision sites. 

Despite the limited scope of the data, it can be seen that the resources of the five-year MPE program, 

in terms of the spatial and time coverage, were more invested in locations with speeding problems 

than those with collision problems. The green circles of Figure 4-2 show how the amount of time 

spent on high speed violation sites is evenly spread geographically. However, the green circles of 

Figure 4-1 indicate that MPE deployment is concentrated along specific corridors and areas with 

high collision rates – along Yellowhead Trail and central areas. 

4.2.3 School Zones 

The locations of primary schools, middle schools, and high schools, and the size of each school 

zone in Edmonton are the basis for assessing their enforcement priority. Given that data on the 

individual size of each school zone was not available for this case study, we demarcate a circular 

area around each school as an enforcement measure. The risk of collisions involving school 

children is significantly higher within 150 m of the school building, but then decreases 

substantially beyond distances of 300 m (Joel Warsh et al., 2009). We choose a 250 m school zone 

radius for enforcement, which accounts for the school property size as well as the traffic areas 

beyond school boundaries with different road designs and speed limits (Alberta Ministry of 

Transportation, 2007). Figure 4-3 presents the spatial distribution of 296 schools in Edmonton, 

which includes primary schools, middle schools, and high schools. As seen from Figure 4-3, school 

zones received much enforcement attention during the five-years assessed, with 84% of school 

zones covered by MPE. Of the 1,087 MPE sites, 508 overlap with school zones. The average 

number of deployment hours spent on school zones is about 300 h per zone over the five-year 

study period, which is of similar average intensity to that of high collision sites. This result 

indicates that deployment at school zones has been a focus of the COE MPE program. 
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Figure 4-3 2010-2014 MPE program coverage on school zones. 
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4.2.4 Construction Zones 

The lengths of these construction projects ranged from a few hours to several years. Therefore, 

deployment priorities should be based on the length of construction projects, as longer projects are 

expected to experience more collisions. As a result, this thesis has categorized construction 

projects into long-term projects (duration of one year or longer) and short-term projects (less than 

a year), and overlapped MPE information with that of construction zones to see what zones were 

enforced during the five-year study period.  

Figure 4-4 illustrates 2,267 short-term projects, highlighted in yellow, and 1,729 long-term 

projects, marked in brown. Of these, 121 short-term projects and 70 long-term projects were 

covered by the five-year MPE program. The percentage of construction projects covered is only 

about 5%. Accordingly, 138 MPE sites and 69 MPE sites precisely cover short-term projects and 

long-term projects, respectively. When calculating the MPE coverage, apart from spatial coverage, 

only the MPE conducted within the time period construction projects were ongoing were 

considered as coverage. 
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Figure 4-4 2010-2014 MPE program coverage on construction zones. 
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Although spatial MPE coverage on construction zones is relatively low, the coverage time intensity 

is high in that the average deployment hours per zone is 368.7 hours for the five-year period. The 

duration of the enforcement at short-term construction zones is somewhat higher than for long-

term construction zones, 446.8 and 365.7 hours, respectively. It is noted that the MPE program did 

not distinguish between projects of different lengths for the amount of enforcement allocated. 

However, Figure 4-4 shows that short-term construction projects were mainly distributed within 

inner city areas, whereas long-term projects were primarily located along the city boundary or on 

highways. Long-term construction projects may have had lower enforcement intensity because 

traffic was diverted from these facilities during the project. However, owing to the fact that further 

information on construction zones was not available for this analysis, further investigation is 

needed to reach a concise conclusion. 

4.2.5 High Pedestrian Volume Sites 

Shopping districts, transit stations, colleges, universities, and other such places often have a large 

number of pedestrians. However, enforcement sites in and around these areas cannot be identified 

if pedestrian volumes are not available, which is typically the case as pedestrian volumes in these 

areas are not typically collected as part of on-going regular traffic data collection programs. Speed-

related collision data involving pedestrians can be used as an alternative to evaluate MPE 

deployment priority, as the motivation of enforcement at high pedestrian volume sites is to protect 

the safety of pedestrians. 

Similar to high collision site identification, the most commonly used methods to identify high 

pedestrian collision sites compute collision indices for sites, then rank all sites in descending order. 

Four types of collision indices are most commonly used: pedestrian collision frequency, collision 

density, collision rate per volume, or a combination of these three indicators (Pulugurtha, 

Krishnakumar, & Nambisan, 2007; Vasudevan, Pulugurtha, & Nambisan, 2007). Given data 

availability in Edmonton, this thesis computed a pedestrian collision index accounting for collision 

frequency, density, and severity. The pedestrian collision index is the product of the number of 

pedestrian collisions per kilometer (km) on a road segment over five years, and the pedestrian 

EPDO per kilometer (km) on that segment over five years, divided by 100 (Pulugurtha et al., 2007; 

Vasudevan et al., 2007). The direct costs used to compute EPDO frequencies are the same as those 
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used to identify high collision sites – one fatal collision is equivalent to that of 16.6 PDO (property 

damage only) collisions, and one injury collision is equivalent to that of 3.6 PDO collisions (de 

Leur et al., 2010). 

As a result, roadway segments in Edmonton experiencing pedestrian-involved speed-related 

collisions are assessed. A high pedestrian collision site is identified as having a pedestrian crash 

index above or equal to the median value for all sites assessed, and the results are shown in Figure 

4-5. 
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Figure 4-5 2010-2014 MPE program coverage on high pedestrian collision sites. 
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A total of 151 MPE sites were found to be located at high pedestrian collision sites. A significant 

proportion of the high pedestrian collision sites are clustered in central areas of Edmonton 

(including downtown, Whyte Avenue shopping and entertainment district, and University of 

Alberta), with others scattered at various locations around the city. Of the 1,087 MPE sites, 39 

cover 20 high pedestrian collision sites. This resulted in about 13% MPE coverage of high 

pedestrian collision sites, about 25% lower than the spatial coverage of high collision sites. This 

lower coverage of pedestrian sites is likely due to the greater difficulty of operating MPE in central 

areas of Edmonton, in turn because of the limited number of places at which enforcement vehicles 

can locate. However, the average deployment intensity at high pedestrian collision sites is 330.4 

hours per site during the five-year analysis period, which is 25 hours higher than that of high 

collision sites. Because there is a high likelihood of severe injury when pedestrians are struck by 

a speeding vehicle (OECD/ECMT, 2006), these high pedestrian collision sites merit ongoing 

attention by the COE enforcement agency. 

4.2.6 Sites with Community Speeding Complaints 

The frequency of collisions, severity level of collisions, and percentage of speeding vehicles on 

local roads in residential areas are much lower than for arterial and collector roads. Specifically, 

the five-year average EPDO frequency of local sites is 5.5 𝐸𝑃𝐾, which is only about 40% of the 

average EPDO frequency for arterial and collector sites. In addition, the percentage of vehicles 

violating the speed limit is 21.1% at local sites, which is less than half of the average figure for 

arterial and collector sites. For optimal resource allocation, more enforcement efforts should be 

exerted to other critical sites experiencing a higher risk of collisions. However, given that 

enforcement at local sites can mitigate community concerns and improve the enforcement 

program’s profile, this type of site could still be a consideration when evaluating deployment 

decisions, with a low number of visits and enforcement times being appropriate. 
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Figure 4-6 2010-2014 MPE program coverage on local roads in neighborhoods. 
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Since speeding complaint records were not available for this case study, this thesis only reviewed 

the MPE program resources devoted to these neighborhood sites. As shown in Figure 4-6, 

Edmonton is divided into 388 clearly defined neighborhoods. Apart from 1,087 MPE sites 

enforced on arterial and collector sites, MPE was deployed to another 230 local sites (marked in 

green), which were in neighborhoods adjacent to central areas of the city. This number indicates 

that enforcement in residential areas was a priority of the COE enforcement agency. The 230 local 

MPE sites cover 83 neighborhoods (colored in purple). The average deployment time spent on 

each neighborhood is 31.3 hours over the five-year period, which is more than 10 times less the 

intensity spent on other deployment priorities. This thesis presents only an idea of how to review 

this type of site. Further work on measuring the risk of neighborhoods using data on community 

complaints can be carried out, so that deployment decisions for these sites can be made based on 

a more thorough evaluation. 

4.2.7 MPE Program Coverage Overview 

Based on the analysis of MPE program coverage for the six deployment priorities, Figure 4-7 

illustrates an overview of MPE program deployment from 2010 to 2014. A total of 1,317 MPE 

sites are divided into three groups: 732 sites covering one priority only, 190 sites covering two or 

more priorities simultaneously, and 395 sites with none of the high-priority deployment 

considerations identified by the Alberta ASE guidelines. 
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Figure 4-7 2010-2014 MPE program coverage overview. 
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The greatest benefit gained from visualizing MPE program coverage is that enforcement agencies 

can observe which sites are identified as priority sites during the study period and allocate 

resources to these locations. Figure 4-7 shows that a total of 922 MPE sites were allocated to 

locations within the scope of the six addressed enforcement priorities in this thesis. Of these 922 

sites, one-fifth were covered by two or more priorities (marked as blue points); and four-fifths of 

the locations were covered by only one priority (marked as green points). Based on this information, 

enforcement agencies can further improve their management of (often very limited) resources. 

Agencies can invest more resources at locations identified to have two or more deployment 

priorities, to increase program efficiency. Alternately, enforcement agencies can also identify and 

dedicate more resources to locations with particular priorities, if there should be mandates to target 

specific priorities at certain times of the year. Chapter 5 introduced the determination of optimal 

resource allocation strategies when there are multiple deployment priorities and aims. 

As seen from Figure 4-7, there were 395 sites marked in red that did not cover any of the proposed 

six priorities. There are three major reasons why this would occur. First, we only accounted for six 

of the most commonly identified deployment priorities and did not consider other priorities that 

are also included in the Province of Alberta’s ASE guidelines or by the COE, such as multi-lane 

roadways, playground zones, etc. These sites might have been enforced with the purpose of 

achieving other goals or considerations. Second, we attempted to provide a quantitative 

interpretation for each of the six criteria. However, it is worth mentioning that while there are other 

ways to define each criterion, we only presented one definition. Third, certain locations that were 

identified as priority sites in this study might not have been operationally enforceable. Because of 

all the above reasons, some sites did not meet any of the criteria identified in this study. 

4.3 COVERAGE ACCOUNTING FOR DISTANCE HALO EFFECT 

Achieving maximum citywide coverage may be very difficult for local enforcement agencies, 

owing to the fact that there are a number of deployment goals but limited resources. However, 

sites that have been enforced by ASE may experience distance halo effects, which are safety effects 

that extend upstream and downstream of the camera site (Vaa, 1997). In the review of MPE spatial 

coverage, this section investigates the geospatial relationship between high-priority deployment 

considerations and historical deployment priorities, taking distance halo effects into consideration. 
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The distance range of this effect varies across studies. Nilsson (1992) states that the distance halo 

effect for MPE in urban areas can reach up to 500 meters upstream and 500 meters downstream. 

In contrast, Champness et al. (2005) conclude that the distance halo effect of a mobile overt speed 

camera program extends 1000 meters downstream, but is insignificant for upstream traffic. Elvik 

(2011) concludes that the level of enforcement intensity significantly affects the scope of the 

enforcement safety effects. Therefore, this thesis has established a function to estimate the range 

of the distance halo effect based on deployment intensity. 

The function of the estimated radius of the MPE distance halo effect is shown in Equation (4-1): 

 𝑅𝑚 = 𝑅0 ∗ [0.5 + 0.124 ∗ 𝑙𝑛(𝑦𝑚 𝑌⁄ )] (4-1) 

where: 

 𝑚 = enforcement site index 

 𝑅𝑚 = expected radius of enforcement distance halo effect at site 𝑚 in meters 

 𝑅0 = baseline radius of distance halo effect in meters 

 𝑦𝑚 = total enforcement level at site 𝑚 in hours 

 𝑌 = average citywide level of enforcement in hours 

Equation (4-1) is based on the logarithmic formulation constructed by Elvik (2011). The relative 

level of enforcement is calculated by dividing the total enforcement hours of each deployment site 

by the average total deployment hours of all the sites. In this thesis, the average deployment hours 

of the 1,317 MPE sites operating during the five-year study period is 139.1 hours. Considering that 

the maximum distance halo effect of the MPE program in urban areas is 500 meters (Nilsson, 

1992), the radius constraints are such that the minimum distance halo should not be less than zero 

meters and the maximum should not be greater than 500 meters. Furthermore, a 250 m baseline 

radius is adopted; when the deployment hours at a site are less than the average citywide 

deployment intensity, the distance halo is estimated less than the baseline. Therefore, the fewer 

deployment resources allocated, the smaller the distance halo effect predicted, and vice versa.  

As in the review of spatial coverage, the GIS layer of MPE sites accounting for distance halo 

effects is overlapped with the locations of high-priority deployment considerations. Because 

reducing collisions and speed is the ultimate objective of enforcement, this section investigates 
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only high collision and high-speed violation sites to illustrate the distance halo effect. The MPE 

coverage accounting for the distance halo effects is visually compared with these two priorities, 

respectively, and the findings are discussed below. 

4.3.1 High Collision Sites 

The distance halo effects of the five-year MPE program are mapped for high collision sites in 

Figure 4-8. The sizes of the blue circles on the maps are calculated based on Equation (4-1), which 

considers the degree of enforcement of each site, and reflects the estimated distance halo effect of 

surrounding areas. In summary, 19% of 1,087 enforcement sites generated distance halo effects 

within a radius of 250 to 500 meters; whereas, the other 81% of enforcement sites generated effects 

covering less than a 250-meter radius. 
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Figure 4-8 2010-2014 MPE program coverage on high collision sites accounting 

for distance halo effect. 
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Without considering the distance halo effect, the spatial coverage of the MPE program for high 

collision sites does not account for high collision sites adjacent to MPE deployment locations. For 

instance, 18 high collision sites are identified along the Yellowhead Trail and Whitemud Drive 

freeways. The number of MPE deployment sites on these two freeways is also very high, with a 

total of 38 MPE sites. However, only one third of these high collision sites is precisely covered by 

MPE. It is observed that 66% of these enforcement sites are located on an overpass or underpass 

of interchanges, which may be due to ease of camera placement. In contrast, most high collision 

sites are located between freeway interchanges, with only three located at interchanges. Although 

these 38 MPE sites may have deterrence effects on high collision sites nearby, these effects cannot 

be determined without the distance halo effect. 

When evaluating MPE program coverage with the distance halo effect, the coverage of high 

collision sites increases from 47 to 104, doubling the citywide coverage to 38.7% (Figure 4-8). In 

addition, the number of enforcement sites influencing high collision sites expands from 85 to 171 

when the spatial deterrent effect of each MPE operation is considered. Furthermore, the average 

deployment time at each high collision site doubles, adding to 713.5 hours per site for the five-

year study period. 

4.3.2 High Speed Violation Sites 

As with high collision sites, the five-year MPE program performance for high speed violation sites 

is improved when the distance halo effect is accounted for. As shown in Figure 4-9, the coverage 

increases by 13.9%, reaching 63.9%. In addition, the number of MPE sites influencing high speed 

violation sites expands to 146, with the average deployment hours rising to 1,373 per site. 
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Figure 4-9 2010-2014 MPE program coverage on high speed violation sites 

accounting for distance halo effect. 
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As a result, the performance of the MPE program in terms of spatial coverage and the level of 

enforcement intensity are improved when accounting for the distance halo effect. This effect is a 

more reasonable indicator of MPE deployment performance when assessing spatial coverage and 

intensity. This method can help enforcement agencies form a better understanding of the extended 

spatial impact of MPE deployment to high priority sites. However, it may be difficult to 

incorporate the effects of distance halos as a basis for MPE deployment decisions at this time, 

given that there has been very limited research on the quantification of distance halo effects with 

respect to enforcement intensity. This thesis presents a method to estimate the distance halo effect 

of an MPE program; further research should be conducted in the future to test this estimation 

method. At this time, it is recommended that enforcement agencies allocate MPE to exact high 

priority sites rather than within estimated distance halo effect areas. 

4.4 SUMMARY 

This chapter proposed quantitative measures to help agencies conducting ASE programs to 

identify and evaluate deployment priorities. These priorities are based on six considerations 

typically identified in ASE guidelines: high collision sites, high speed violation sites, school zones, 

construction zones, high pedestrian volume sites, and sites with community speeding complaints. 

A case study from Edmonton, Alberta, Canada, was presented, and five years of data (2010–2014) 

was used to identify and plot these six priorities using GIS. Maps were also overlaid with 

deployment data from the COE’s MPE program, showing enforcement presence at high priority 

locations. 

Sites at high risk of experiencing collisions and speeding – warranting greater enforcement 

attention – were identified using quantitative criteria. High collision sites were identified as those 

with an average of 53.1 𝐸𝑃𝐾, while high speed violation sites were identified as those where 81.9% 

of vehicles violated the speed limit. 

Spatial coverage and enforcement intensity were assessed to investigate the interpretation and 

application of the six Alberta ASE deployment priorities by the COE’s MPE program. It was 

observed that each priority was addressed by the COE program, but at different levels of attention. 

High speed violation sites and school zones were shown to have received the greatest attention 
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among the six priorities, with comparatively high spatial coverage and intensity. High speed 

violation sites received the most enforcement time, with more than 800 deployment hours on 

average for each site during the five-year study period. In contrast, school zones received more 

enforcement coverage, at 84%. Additionally, it was found that 30% of MPE resources were not 

allocated to sites meeting the criteria of any of the six deployment priorities. If the MPE program 

were to reallocate these resources to sites meeting any of the six priorities, the program may be 

able to achieve greater safety outcomes. 

Furthermore, this chapter introduced a function to assess MPE distance halo effects. After mapping 

MPE distance halo effects with the locations of high collision sites and high speed violation sites, 

both spatial coverage and intensity increased. The spatial coverage and average deployment hours 

on high collision sites doubled and increased by 30% and 60% on high speed violation sites, 

respectively. These increases indicate that enforcement cameras were located very close to some 

high priority sites. 
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5 MPE RESOURCE ALLOCATION MODEL 

Agencies that manage and operate mobile photo enforcement (MPE) programs must consider 

program goals when making decisions about how to deploy operators. Usually, there are priorities 

to target locations with high collisions, speed violations, and pedestrian volumes, and within 

school zones and construction zones. However, there is no documented MPE design structure that 

systematically connects these priorities to the deployment decisions made. This chapter proposes 

a method to aid MPE agencies in applying program goals directly in the efficient allocation of 

limited program resources. A neighborhood-level MPE resource allocation (MRA) model is 

developed (Sections 5.2 and 5.3), which uses multi-objective optimization to determine how 

enforcement is allocated to city neighborhoods. The model is applied to an MPE program in 

Edmonton, Alberta, Canada, and the solutions are explored using several approaches (Sections 5.4 

and 5.5). 

Our work 1) allows for enforcement agencies to explicitly map performance outcomes to program 

goals, thus engendering a more transparent and efficient MPE program, which in turn may help to 

improve road safety; 2) provides managers with a pool of candidate deployment options that 

address different program considerations and preferences, and 3) provides managers with insights 

into the tradeoffs between different deployment solutions available to them. 

5.1 INTRODUCTION 

To make decisions on how to deploy operators within a mobile photo enforcement (MPE) 

program—a multiple-objective problem—program managers must take several, often conflicting, 

goals into account. These program-level goals—typical of most MPE programs around the 

world—include reducing collisions, reducing speed violations, and increasing safety particularly 

for the most vulnerable pedestrians. When these high-level program goals are considered in 

deployment decisions, operators are typically directed to roadway locations experiencing high 

collision rates, high speed limit violations rates, and dense pedestrian traffic particularly 

comprising school-age children. MPE program presence at these sites can be of varying or equal 

importance to MPE agencies, depending on any number of factors. Since enforcement resources 
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are usually limited due to the high costs of manpower and equipment, allocating finite resources 

to meet multiple goals is a common dilemma for MPE agencies. There is little support available 

on this topic in the published literature. 

This chapter presents an MPE resource allocation (MRA) model that uses multi-objective 

optimization to consider multiple criteria simultaneously. The three deployment objectives used 

here prioritize the reduction of collisions at high collision sites, reduction of speed violations at 

high speed violation sites, and increased safety in school zones. These are part of a larger set of 

six that are commonly identified in MPE program guidelines (see Chapter 2). These three 

objectives are used in this research for two reasons. First, addressing the former two (reducing 

collisions and speed violations) addresses the ultimate safety goals of MPE programs around the 

world. Second, placing priority on school zones is necessary for protecting children (J. Warsh, 

Rothman, Slater, Steverango, & Howard, 2009), who are the most vulnerable road users (Peden et 

al., 2004).  

Multi-objective linear programming is used to assign a limited number of enforcement shifts to 

neighborhoods in a city, directing enforcement coverage according to the three priorities. Three 

neighborhood-level metrics—equivalent property-damage-only collision frequency per kilometer 

(𝐸𝑃𝐾), speed violation indicator (𝑆𝑉𝐼), and school zone density (𝑆𝑍𝐷)—are used to quantify each 

neighborhood’s enforcement demand. Determining the enforcement resource allocation on a 

neighborhood basis is intended to provide planning-level insight on how resources might be 

allocated to satisfy the three priorities. A neighborhood is the considered unit of study because it 

is commonly understood, and descriptive data is often available at this level of urban aggregation.  

Scalar optimization and evolutionary algorithms, two common types of multi-objective 

optimization algorithms, are demonstrated to solve the MRA model. Resource allocation solutions 

from the MRA model make up a Pareto front (PF). In a PF, no solution is absolutely superior over 

any other; instead, in comparing two solutions, we observe tradeoffs between the (two or more) 

objectives. To further understand the PF of the MRA solutions, we conduct two PF analysis steps: 

PF representation and tradeoff analysis. First, the 𝐾-medoids clustering algorithm is adopted to 

partition the PF of the MRA model into similar-sized clusters, in order to help agencies managing 

MPE programs choose from a reduced set of solutions on the PF. 𝐾-medoids is chosen because of 
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its ease of implementation. In addition, it is well known for its efficiency in processing large 

amounts of data, so it was used to handle a large number of PF solutions quickly. Second, we use 

the response surface method to determine tradeoff patterns on the PF. A quadratic polynomial 

model is estimated on a PF to construct a continuous surface. From this, we can examine the 

tradeoffs between MPE resource allocation solutions. For instance, how much coverage at high 

collision and speed violation sites would be sacrificed to achieve more enforcement presence in 

school zones. A case study of an MPE program in Edmonton, Alberta, Canada, is studied and PF 

results are found and analyzed for one month using three years (2012-2014) of historical data from 

Edmonton.  

This chapter provides a systematic mapping of MPE program goals to deployment decisions. This 

process has existed as a “black box” insofar as it has not been explicitly mapped or defined; 

therefore, the major contribution of this chapter lies here. Application of the model yields a pool 

of candidate deployment options from which program managers can choose, based on their 

preferences and needs at a given time. Neighborhood-level deployment plans offer city- or region-

wide information regarding where enforcement needs are and how to address them, such that 

program managers can then schedule individual resources to individual enforcement sites within 

each neighborhood. 

5.2 MODEL FORMULATION 

The MRA model uses multi-objective optimization to map high-level program goals to 

deployment decisions. Specifically, the deployment process can be described in three parts (Figure 

5-1): defining high-level program goals, the MRA model, and choosing the deployment plan for 

implementation.  
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Figure 5-1 Flow chart of the MPE resource allocation model. 

The input to the MPE resource allocation, as shown in Figure 5-1, includes the three high-level 

MPE program goals: reduction of collisions, reduction of speed limit violations, and presence in 

school zones (to increase pedestrian safety). The three deployment objectives used here are part of 

a larger set of six, which are commonly identified in MPE program guidelines and they have been 

concluded in Chapter 2. These three objectives are used in this research for two reasons. Firstly, 

addressing the former two (reducing collisions and speed violations) addresses the ultimate high-

level goals of most MPE programs around the world. Secondly, placing priority on school zones 

is necessary for protecting children (Peden, 2008; Joel Warsh et al., 2009). However, any number 

of, and types of, goals can be considered in the MRA model.  
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As discussed in Section 3.2, limited research has been conducted on how to allocate and utilize 

MPE program resources with direct consideration for multiple program goals. We propose multi-

objective linear programming (MOLP) to connect deployment decisions back to high-level 

program goals in Part II of Figure 5-1, which requires two major tasks. The first is to convert high-

level, traffic safety-focused program goals into operational deployment objectives. In this research, 

the operational deployment objectives consist of the prioritization of sites with high rates of 

collisions, high rates of speed limit violations, and those within school zones. The second task is 

to identify program-specific characteristics for use in the MRA model. In this research, we have 

identified three: geographic units for enforcement allocation, program resources (i.e., operators, 

shift scheduling rules, equipment, etc.), and metrics to quantify the operational deployment 

objectives in the first task. The details of Part II are discussed in Sections 5.2.1 and 5.2.2. The 

model outputs a set of candidate deployment plan options from which decision makers can choose, 

based on their specific preferences and needs at a given time. 

5.2.1 Model Inputs 

Here we discuss the three inputs of the MRA model as identified in Part II of Figure 5-1, as defined 

for the MPE program in Edmonton, Alberta, Canada. Data was provided by the City of Edmonton 

Traffic Safety Section, which oversees Edmonton’s MPE program. Decision makers of other MPE 

programs with different operational and geographic considerations may need to adjust these inputs.  

5.2.1.1 Geographic Units for Enforcement Allocation 

In Edmonton, MPE sites are urban mid-block sections, their locations and lengths having been 

assessed and approved by MPE agencies. Approval is given if there is an identified need for 

enforcement, and the site has a safe place to park an enforcement vehicle with a clear line of sight 

to license plates. Operators may only conduct photo radar enforcement activities at these 

predetermined sites. The MPE program has a site pool consisting of more than 1000 sites that are 

candidates for enforcement; with a limited set of operators, vehicles, and equipment, deciding 

where to send these resources can be difficult. To make the planning stage of this deployment 

problem tractable, we allocate enforcement resources at a neighborhood level. A neighborhood is 

the considered unit of study in our application because it is commonly understood, and descriptive 

data (that can support MPE program decision-making) is often available at this level of urban 
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aggregation. In the literature, neighborhoods have often been used in road safety evaluation 

research to support high-level management (Ho & Guarnaschelli, 1998; Poppe, 1995; Kmet, 

Brasher, & Macarthur, 2003; G. R. Lovegrove & Sayed, 2006; G. Lovegrove & Sayed, 2007). 

Neighborhood-level MPE resource allocation can provide planning-level insight into how to 

allocate resources to address the three priorities. 

5.2.1.2 Program Resources 

The COE’s MPE program is conducted through operator shifts that cover 20 hours of a day, seven 

days a week. During a shift, an operator is assigned to police speed at a set of enforcement sites. 

The 20-hour daily enforcement is divided into two shifts, including a daytime shift from 6AM-

4PM and an evening shift from 4PM-2AM. Therefore, we quantify available program resources in 

terms of the total monthly number of shifts. The MRA model assigns operator shifts on a monthly 

basis, determining the assignment that best addresses the deployment goals in a given month. 

Providing a deployment plan that rotates monthly is more feasible than a weekly or yearly plan. A 

weekly rotation is too frequent to assess historical data, such as collision and speed survey data, 

because enforcement demands would not change appreciably from week to week. In contrast, a 

yearly rotation is too long a period; opportunities to make improvements and increase the 

unpredictability of enforcement may be missed (Kim et al., 2016). 

5.2.1.3 Metrics to Quantify Operational Deployment Objectives  

We define the three neighborhood-level deployment criteria based on those proposed in Chapter 

4. Equivalent property-damage-only (EPDO) collision frequency per km, the percentage of 

speeding vehicles, and the number of school zones are used to assess enforcement need in 

neighborhoods. Given that these measures are developed on a road segment basis, we reform them 

into neighborhood metrics in order to assess and compare enforcement need on a neighborhood 

level. Firstly, the total EPDO collision frequency divided by the total road length (in km) for each 

neighborhood is used to quantify a neighborhood’s need for enforcement regarding collision rates. 

Secondly, a speed violation indicator (𝑆𝑉𝐼 ) is used to aggregate the proportion of vehicles 

exceeding the speed limit per neighborhood. 𝑆𝑉𝐼 is the average percentage of speed violating 

vehicles across all segments in each neighborhood, weighted by the traffic volume over the length 

of time measured for each segment (Hakkert, Gitelman, & Vis, 2007). Thirdly, neighborhood 
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school zone density, computed by dividing the total number of school zones by the total 

neighborhood area (in sq.km), is used to assess the level of enforcement needed in a neighborhood 

due to the presence of schools. Neighborhoods exhibiting high metrics warrant a high level of 

enforcement, and the model is designed to allocate as many shifts as possible to these 

neighborhoods. 

5.2.2 Multi-Objective Linear Program 

The MRA model uses multi-objective linear programming (MOLP) (Equations (5-1)-(5-3)) to 

allocate one month of enforcement shifts to city neighborhoods, to optimize the three deployment 

criteria simultaneously. The three deployment objectives are quantified using the metrics 

introduced in Section 5.2.1.3; the higher the total of the three metrics is for a neighborhood, the 

more enforcement shifts one would expect to be allocated to that neighborhood. 

Decision Variables: 

 
𝑥𝑛 = 

number of operator shifts assigned to neighborhood 𝑛 in a given month, 𝑛 ∈
[1, … , 𝑁] 

 

Objective Functions: 

 𝑚𝑎𝑥

{
 
 
 
 

 
 
 
 (𝐼) ∑𝐸𝑃𝐾𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

(𝐼𝐼) ∑𝑆𝑉𝐼𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

(𝐼𝐼𝐼) ∑𝑆𝑍𝐷𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

 (5-1) 

Subject to: 

 ∑𝑥𝑛

𝑁

𝑛=1

= 𝑃 (5-2) 

 𝐿𝑛 ≤ 𝑥𝑛 ≤ 𝑈𝑛, ∀𝑛 ∈ [1,… ,𝑁] (5-3) 
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Where: 

 𝑛 = neighborhood index, 𝑛 = 1, … , 𝑁 

 𝐸𝑃𝐾𝑛 = EPDO collision frequency per kilometer (km) for neighborhood 𝑛 

 𝑆𝑉𝐼𝑛 = speed violation indicator for neighborhood 𝑛 

 𝑆𝑍𝐷𝑛 = number of school zones per square kilometer (sq.km) for neighborhood 𝑛 

 𝑃 = number of total shifts in one month 

 
𝐿𝑛 = 

minimum allowable shifts that may be allocated to neighborhood 𝑛 in one 

month 

 
𝑈𝑛 = 

maximum allowable shifts that may be allocated to neighborhood 𝑛 in one 

month 

Equation (5-1) consists of three objective functions, each of which sums the product (over all 

neighborhoods) of a neighborhood’s metric in question and number of shifts assigned to that 

neighborhood in the one given month. Equation (5-1) maximizes the three objective functions 

simultaneously, with respect to the constraints on the total number of shifts available in one month, 

𝑃 (Equation (5-2)), and the minimum and maximum shifts allowed for each neighborhood over 

that month, 𝐿𝑛 and 𝑈𝑛 (Equation (5-3)).  

The determination of 𝐿𝑛  and 𝑈𝑛 in Equation (5-3)) can explicitly account for operational-level 

deployment considerations. For example, there may have been a decision to enforce neighborhood 

𝑛 with a desired intensity in the actual program, despite that the neighborhood scores low in the 

three enforcement metrics. In this case, the constraint 𝐿𝑛 is set to account for this decision; without 

𝐿𝑛, the model might assign few shifts (possibly none) to 𝑛. The maximum allowable number of 

shifts to 𝑛 (𝑈𝑛) may be pre-set in a similar fashion.  

The model searches for the optimal shift distributions to neighborhoods [1…𝑁], allocating as 

many shifts as allowed by Equation (5-3) to neighborhoods experiencing high 𝐸𝑃𝐾𝑛,𝑆𝑉𝐼𝑛, and 

𝑆𝑍𝐷𝑛. 
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5.3 MULTIOBJECTIVE OPTIMIZATION APPROACHES 

Say we were to maximize only one of the three objective functions in Equation (5-1). The result 

would be equivalent to having performed the following steps: assign to each neighborhood the 

minimum number of shifts required (𝐿𝑛); order all neighborhoods from highest to lowest values 

of the metric quantifying the objective function in question; assign the difference of the maximum 

and minimum number of shifts (𝑈𝑛 − 𝐿𝑛) allowable to the first neighborhood on the list (i.e. the 

one with the highest calculated metric value), then do the same for the second, and third, and etc. 

until all available shifts have been assigned. 

However, trade-offs between the three objective functions will be required when they are 

considered simultaneously. Usually there is not a single optimal solution but a set of optimal 

solutions; at each of these optimal solutions, one objective cannot be increased without reducing 

at least one of the others. These solutions are called Pareto optimal solutions (Steuer, 1986), or PF.  

There are many ways to identify a PF. In this Section, we only suggest and demonstrate two multi-

objective optimization methods used to generate a PF of the MRA. Section 5.3.1 presents an 

algorithm that combines two well-known conventional scalar optimization methods. Section 5.3.2 

introduces a classic multi-objective evolutionary algorithm, the generalized differential evolution 

3 algorithm. 

5.3.1 A Weighted Sum and Epsilon Constraint Approach 

The weighted sum method (Miettinen, 1999) is one of the most well-known and simplest scalar 

optimization techniques for multi-objective optimization problems. Scalar optimization techniques 

require the determination of weights for objectives before solving the problem. A true Pareto 

optimal solution can be obtained by using a set of objective weights. We first employed the 

weighted sum method to solve the MRA model (Equations (5-1)-(5-3)). The formulation of the 

weighted sum method is shown in the following WSP problem.  

5.3.1.1 Weighted Sum Problem (WSP) 

As shown in Equation (5-4), the weighted sum method formulates the three-objective model in 

Equations (5-1)-(5-3) as a single objective consisting of the weighted sum of the three individual 
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objectives. Equation (5-5) normalizes the weights 𝛼𝑔, 𝛽𝑔 , and 𝛾𝑔  assigned to each of the three 

metrics such that they sum to 1. The subscript 𝑔 represents the algorithm iteration number (to a 

maximum of 𝐺). Equations (5-6) and (5-7) are the constraints from the original model on resources 

𝑥𝑛 (introduced in Equations (5-2) and (5-3)). Equations (5-4)-(5-7) are repeatedly evaluated for 

each 𝑔; each evaluation yields a Pareto-optimal solution. 

 𝑚𝑎𝑥𝛼𝑔 ∙ ∑𝐸𝑃𝐾𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

+ 𝛽𝑔 ∙ ∑ 𝑆𝑉𝐼𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

+ 𝛾𝑔 ∙ ∑ 𝑆𝑍𝐷𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

 (5-4) 

Subject to: 

 𝛼𝑔 + 𝛽𝑔 + 𝛾𝑔 = 1, ∀𝑔 ∈ [1,… , 𝐺] (5-5) 

 ∑𝑥𝑛

𝑁

𝑛=1

= 𝑃 (5-6) 

 𝐿𝑛 ≤ 𝑥𝑛 ≤ 𝑈𝑛, ∀𝑛 ∈ [1,… ,𝑁] (5-7) 

where: 

 𝑛 = neighborhood index, 𝑛 = 1, … , 𝑁 

 𝐸𝑃𝐾𝑛 = EPDO collision frequency per kilometer (km) for neighborhood 𝑛 

 𝑆𝑉𝐼𝑛 = speed violation indicator for neighborhood 𝑛 

 𝑆𝑍𝐷𝑛 = number of school zones per square kilometer (sq.km) for neighborhood 𝑛 

 𝑃 = number of total shifts in one month 

 
𝐿𝑛 = 

minimum allowable shifts that may be allocated to neighborhood 𝑛 in 

one month 

 
𝑈𝑛 = 

maximum allowable shifts that may be allocated to neighborhood 𝑛 in 

one month 

 𝛼𝑔 = weight given to deployment metric 𝐸𝑃𝐾 in the 𝑔th iteration 
 𝛽𝑔 = weight given to deployment metric 𝑆𝑉𝐼 in the 𝑔th iteration 

 𝛾𝑔 = weight given to deployment metric 𝑆𝑍𝐷 in the 𝑔th iteration 

 𝑔 = iteration index, 𝑔 = 1,… , 𝐺 

Note that the weighted sum method has a well-known drawback: it only searches for corner 

solutions in the feasible region of the weighted sum problem. Therefore, using various weight 

combinations is likely to also produce corner solutions (Branke, Deb, & Miettinen, 2008; Mavrotas, 

2009). To identify intermediate (non-corner) solutions, we adopted another well-known scalar 
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optimization approach, the ɛ-constraint method (Haimes, 1971). The ɛ-constraint method 

formulation for the MRA example is described in the following ECP problem. 

5.3.1.2 ɛ-Constraint Problem (ECP) 

The ɛ-constraint method described in Equations (5-8)-(5-11) optimizes 𝐸𝑃𝐾 (equivalent property-

damage-only collision frequency per kilometer) and transforms the remaining two measures (𝑆𝑉𝐼, 

speed violation indicator, and 𝑆𝑍𝐷, school zone density) into inequality constraints that are greater 

than or equal to the pre-set values of 𝜀𝑔
1 and 𝜀𝑔

2. The choice to optimize one particular measure and 

set the others as constraints is arbitrary; we would expect any configuration to yield the same 

results because this three-objective problem is convex. By changing the ɛ values of Equations (5-9) 

and (5-10), the ɛ-constraint method is able to generate a different Pareto-optimal solution at every 

iteration (𝑔). 

 𝑚𝑎𝑥
𝑥∈𝛺

∑𝐸𝑃𝐾𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

 (5-8) 

Subject to: 

 ∑𝑆𝑉𝐼𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

≥ 𝜀𝑔
1 (5-9) 

 ∑𝑆𝑍𝐷𝑛 ∙ 𝑥𝑛

𝑁

𝑛=1

≥ 𝜀𝑔
2 (5-10) 

 𝛺 = {𝑥𝑛│∑𝑥𝑛

𝑁

𝑛=1

= 𝑃𝑎𝑛𝑑𝐿𝑛 ≤ 𝑥𝑛 ≤ 𝑈𝑛, ∀𝑛 ∈ [1,… ,𝑁]} (5-11) 

where: 

 𝑛 = neighborhood index, 𝑛 = 1, … , 𝑁 

 𝐸𝑃𝐾𝑛 = EPDO collision frequency per kilometer (km) for neighborhood 𝑛 

 𝑆𝑉𝐼𝑛 = speed violation indicator for neighborhood 𝑛 

 𝑆𝑍𝐷𝑛 = number of school zones per square kilometer (sq.km) for neighborhood 𝑛 

 𝑃 = number of total shifts in one month 

 
𝐿𝑛 = 

minimum allowable shifts that may be allocated to neighborhood 𝑛 in 

one month 

 
𝑈𝑛 = 

maximum allowable shifts that may be allocated to neighborhood 𝑛 in 

one month 

 𝜀𝑔
1 = lower bound value given to deployment objective 𝑆𝑉𝐼 in the 𝑔th iteration 
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 𝜀𝑔
2 = lower bound value given to deployment objective 𝑆𝑍𝐷 in the 𝑔th iteration 

 𝑔 = iteration index, 𝑔 = 1,… , 𝐺 

The major disadvantage of the ɛ-constraint method is that it can be difficult to specify the values 

of 𝜀𝑔
1 and 𝜀𝑔

2 without knowing the bounds of objectives 𝑆𝑉𝐼 and 𝑆𝑍𝐷 for the PF (Miettinen, 1999). 

However, the results from the weighted sum method in the previous step can be used to address 

this issue – we can define 𝜀𝑔
1 and 𝜀𝑔

2 values using the range of corresponding objective function 

values of the weighted sum solutions found in the previous step. 

5.3.2 A Generalized Differential Evolution 3 (GDE3) Algorithm 

Multi-objective evolutionary algorithms (MOEAs) are becoming increasingly popular in solving 

multi-objective optimization problems since 1990s. The major advantages of MOEAs include the 

ability to 1) handle difficult objective functions, 2) provide posteriori preference information to 

decision makers (i.e., no need to set the weight parameter values for each objective in advance), 

and 3) find an entire set of solutions after a single run. 

Therefore, we use the generalized differential evolution 3 algorithm (GDE3), which is a widely 

used MOEA to solve the MRA (Equations (5-1)-(5-3)). The GDE3 algorithm, developed by 

Kukkonen and Lampinen (2005), has been shown to outperform other MOEAs (such as the non-

dominated sorting genetic algorithm) in finding solutions with fewer iterations (Kukkonen & 

Lampinen, 2005; Antonio & Coello Coello, 2013). 

The GDE3 uses floating-point encoded variable vectors as the population of evolutionary 

algorithms. In the process of evolution, GDE3 first creates a set of trial vectors that is a copy of 

the decision vectors of the population in one generation. Then GDE3 goes through each element 

of each trial vector and mutates the element, as long as a random number from [0, 1] assigned to 

the element is less than a predetermined crossover rate. The element’s mutation is done by 

changing its value to be equal to a linear combination of three elements that are randomly chosen 

from three decision vectors. After evolution, GDE3 compares each pair of the decision vector and 

its corresponding trial vector. The vector that weakly dominates (has equal or better objective 

values) the other in the objective function space is selected as the population of the next generation. 

However, if the two vectors do not dominate each other, both are selected for the next generation. 
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Note that after the selection, the population size of the next generation may be larger than the size 

of the initial population, up to twice the initial population. The GDE3 uses the vector sorting 

method as described in Deb, Pratap, Agarwal, & Meyarivan (2002) to prune the population size to 

the initial number of population. This pruning process is done by using two measures: non-

dominance level and crowdedness. First, vectors are partitioned into different non-domination 

levels (best level, next best level, and etc.) by comparing the number of vectors that dominate each 

vector and the set of vectors dominated by each vector. Vectors ranked at the best non-domination 

level are first added to the next generation of population. The next best-level vectors are then added 

to the population. Adding vectors is done one level at a time until the next level of vectors cannot 

be fully added to the population. At this point, to identify which vectors in the next level can be 

input to the population, the crowding distance of each vector of the level is computed. Based on 

the distance, vectors are ranked in descending order, and they are added to the population in the 

ranking order until the population is full.  

The GDE3 approach uses the non-dominance level and crowding distance to screen the current 

generation of populations into the next generation. Therefore, it is an elitist algorithm. That is, 

each new generation of populations contains solutions that are closer to optimal frontier and more 

dispersed than the previous generation. Appropriate stopping criteria for the iterative process of 

GDE3 usually include a pre-set upper limit of the number of generations or a limit on the objective 

function value. 

5.4 PARETO FRONT GENERATION RESULTS 

The MRA model described in Section 5.2.2 was applied to produce candidate deployment plans 

for the City of Edmonton’s MPE program in September 2014. We used GIS mapping to present 

one deployment plan produced by the MRA model, which assigned higher priority to school zones 

and lower to high collision and speed violation sites. Furthermore, these deployment results were 

visually compared against the results of the actual September 2014 MPE program deployment. 

5.4.1 Neighborhood Metrics 

Table 5-1 presents the metrics calculated for the three deployment criteria, for the 388 Edmonton 

neighborhoods, from the 2012-2014 historical data. In computing EPDO collision frequency, the 
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direct cost of collisions of different severity levels (de Leur et al., 2010) were used as the weights 

for different collision severities. Specifically, according to this 2010 report, one fatal collision is 

equivalent to 16.6 PDO collisions and one injury collision is equivalent to 3.6 PDO collisions. 

Most neighborhoods have 𝐸𝑃𝐾 values between 0 and 7.7 EPDO/km, speed violation indicator 

(𝑆𝑉𝐼) values between 0 and 0.6, and school zone densities (school zones/sq.km) between 0 and 

1.6.  

 

Table 5-1 Summary of Calculated Metrics for 388 Edmonton Neighborhoods 

(2012-2014) 

Metrics Average 
Standard 
Deviation 

Minimum Maximum 

EPDO/km 4.3 3.4 0.0 19.6 

Speed violation indicator 0.3 0.3 0.0 0.9 

School zone density 
(/sq.km) 

0.7 0.9 0.0 4.3 

Figure 5-2 identifies neighborhoods that have calculated metrics within the top 10% of each 

criterion (three in total). These neighborhoods are those that we have defined as warranting high 

enforcement attention. As seen in Figure 5-2, there are no neighborhoods that fall in the top 10% 

of neighborhoods for all three metrics simultaneously. In addition, there are only nine 

neighborhoods in the top 10% of neighborhoods for any two of the three metrics (marked in red). 

This suggests that resources to these nine neighborhoods may address two of the three goals at 

once. However, overall it can be concluded that the goals of prioritizing neighborhoods with high 

collision rates, speed violation rates, and school zone densities for enforcement are not necessarily 

complementary to one another, and indeed, conflict. 
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Figure 5-2 Edmonton neighborhoods ranked by criteria, 2012-2014. 
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Neighborhoods within the top 10% for only one metric include 32 neighborhoods for 𝐸𝑃𝐾 

(identified in blue), 31 neighborhoods for 𝑆𝑉𝐼 (identified in green), and 36 neighborhoods for 𝑆𝑍𝐷 

(identified in yellow). All three top 10% criteria groups have an average calculated metric that is 

more than double the average for all 388 neighborhoods, but they have values in the other two 

metric categories close to or even below the average of all neighborhoods. For instance, the 2012-

2014 average 𝐸𝑃𝐾 of the neighborhoods exclusively in the top 10% of collision sites is 11.9 

EPDO/km, which is almost three times the average 𝐸𝑃𝐾 for all 388 neighborhoods (4.3EPDO/km). 

However, the average 𝑆𝑉𝐼 of those neighborhoods exclusively in the top 10% of collision sites is 

30% violating vehicles, mirroring the average for all neighborhoods. In addition, those 

neighborhoods’ average school zone density is only 0.4 school zones per square kilometer (sq.km), 

which is about half of the average for all neighborhoods (0.7 school zones/sq.km). Similar 

observations can be made for the other two groups of neighborhoods that fall exclusively in the 

top 10% of the speed violation metric or school zone density metric. These observations imply that 

allocating resources to the blue, green, and yellow neighborhoods shown in Figure 5-2 will address 

high enforcement demand for only one of three deployment goals. Thus, these goals are in conflict. 

If agencies want to address conflicting program goals at the same time, they must trade off and 

compromise when allocating resources to meet these goals, which is difficult without support from 

a mathematical tool. 

5.4.2 Results 

After inputting the data introduced in Section 3.2 above to the MRA model, a model instance is 

created. Specifically, in the instance, the COE MPE program in September 2014 included 458 

operator shifts distributed over 388 neighborhoods, based on each neighborhood’s calculated 

𝐸𝑃𝐾, 𝑆𝑉𝐼, and 𝑆𝑍𝐷, as well as the bounds on the number of shifts that may be allocated to each 

neighborhood. Sections 5.4.2.1 and 5.4.2.2 show the generated PF results for the MRA instance 

by using the two solution methods described in Sections 5.3.1 and 5.3.2, respectively. 

5.4.2.1 Pareto Front Generated by Weighted Sum and Epsilon Constraint Combined Method 

To construct the weight combinations required for the weighted sum method (Equations (5-4)-

(5-7)), we first set each of 𝛼𝑔, 𝛽𝑔 and 𝛾𝑔 to values at 0.05 increments between 0 and 1, to generate 

a total of 9,260 weight value combinations. Then, we normalized these weight values (i.e., such 
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that they summed to one) by dividing by the total weight of each combination. By removing the 

duplicated weight combinations and a zero-valued combination, a total of 7,758 different 

remaining weight combinations were input to Equation (5-4). The 7,758 optimizations of 

Equations (5-4)-(5-7) were implemented by CPLEX in the MATLAB environment on a PC with 

Intel® Core i7-3770 CPU (3.4GHz) and 16GB RAM. A total of 244 unique solutions were found 

in 23 seconds. 

Of the 244 weighted sum solutions, the objective function values for 𝑆𝑉𝐼 and 𝑆𝑍𝐷 are observed 

within the ranges of [208, 294] and [377, 1007], respectively. Therefore, these two ranges are used 

to limit the values of 𝜀𝑔
1 and 𝜀𝑔

2 used in Equations (5-9) and (5-10) of the ɛ-constraint method. We 

created 20,000 random numbers for 𝜀𝑔
1 and 𝜀𝑔

2 in a uniform sequence within the specified range. 

Equations (5-8)-(5-11) were implemented by the MATLAB CPLEX toolbox repeatedly at each of 

the 20,000 sets of 𝜀𝑔
1 and 𝜀𝑔

2 values. To build a dense PF, we limited the solution space of 𝑆𝑉𝐼 and 

𝑆𝑍𝐷 examined per iteration to the neighborhood of (𝜀𝑔
1, 𝜀𝑔

2). Specifically, each implementation is 

constrained in a search area where the 𝑆𝑉𝐼-axis step size was set to two and 𝑆𝑍𝐷-axis step size 

ten. The step size (of 2×10) accounts for 2% of the corresponding objective function interval; other 

sizes can be determined as needed. A total of 16,544 unique solutions were obtained in 27 seconds 

on the same PC described above. 

The solutions found by the weighted sum and ɛ-constraint methods are then put together and 

compared with each other. Although various weights were used in both methods, 97% of weighted 

sum solutions and 22% of ɛ-constraint solutions have the same objective values as the solutions in 

the combined set. Therefore, we eliminated these repeated solutions, and a total of 243 weighted 

sum solutions (black circles in Figure 5-3) as well as 12,967 ɛ-constraint solutions (grey points in 

Figure 5-3) are finally considered in the PF. 

Each point shown in Figure 5-3 is the result of optimizing all metrics (represented on each of the 

three axes shown) simultaneously. The three red asterisks shown in Figure 5-3 represent the 

extreme (corner) points of the PF; each corner point represents the maximization of one of the 

three objectives. They are generated from the weighted sum method using weight combinations 

(1, 0, 0), (0, 1, 0), and (0, 0, 1) for the measures (𝐸𝑃𝐾, 𝑆𝑉𝐼, 𝑆𝑍𝐷).  
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Figure 5-3 Pareto front identified for the MRA example. 

As seen in Figure 5-3, the 243 weighted sum solutions are not evenly distributed on the Pareto 

front despite the evenly spaced weights. This is because, in the weighted sum method, the 

relationship between the objective function weights and the objective function values of the Pareto 

solution (based on those weights) is nonlinear. Using geometry, Das & Dennis (1997) 

demonstrated that the weight used in a bi-objective weighted sum method to find a Pareto solution 

is the reciprocal of one minus the slope (i.e., the ratio of change between the two objective 

functions) of the PF at a given solution point. Thus, considering a uniform distribution of weights 

in Equation (5-4) is unlikely to result in uniformly distributed Pareto solutions. 

In addition, the identified weighted sum solutions comprise only 3% of the utilized weight 

combinations. This demonstrates the drawback of the weighted sum method discussed earlier: the 

method ignores non-corner solutions, rendering the usage of a large portion of the weight 

combinations redundant (Branke et al., 2008; Mavrotas, 2009). However, the solutions generated 

by the ɛ-constraint method fill the empty spaces left by the weighted sum solutions on the PF, as 

illustrated in Figure 5-3. Applying both solution methods results in a nearly complete PF with a 

relatively uniform and dense spread of solutions. 
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5.4.2.2 Pareto Front Generated by Generalized Differential Evolution 3 (GDE3) Algorithm 

An open-source MOEA Java Framework (Hadka, 2015), run on a Dell Precision T1700 

workstation running Windows 7 with 3.6 GHz processor and 8 GB RAM, was used to execute the 

GDE3 algorithm in searching for Pareto solutions. The parameter settings used in this algorithm 

included a population size of 200, crossover rate of 0.1, and step size of 0.5. A population size of 

200 was used because we felt that this would be large enough to provide good coverage of the 

Pareto “surface”, but not so large as to completely overwhelm MPE decision makers who would 

be responsible for choosing one solution among the Pareto set. The crossover rate and step size 

values chosen (0.1 and 0.5, respectively) are both within the recommended range for the GDE3 

algorithm (Kukkonen & Lampinen, 2005). The algorithm’s iterative process is stopped when the 

number of iterations reaches a predefined limit. 

200 solutions were obtained through more than ten hours of computation, and they are plotted 

using the Visual Co-Plot software (Talby & Raveh, 2015) (Figure 5-4). All 200 points in Figure 

5-4 represent MPE resource allocation solutions that are optimal when considering the three 

objective functions of Equation (5-1). MPE decision makers are expected to choose a solution 

from this set based on their specific needs for the month, and what trade-offs among the objectives 

are considered acceptable. 

 

Figure 5-4 Pareto solutions from the MRA model. 
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Each axis in Figure 5-4 represents a metric associated with one of the Equation (5-1) objective 

functions. There are three circles labeled A, B, and C located beyond the ends of the axes; solutions 

contained in these circles are identified to have metric values within the top 5% of the metric 

represented by the axis on which they lie (10 points per group).  

In addition, there is one point marked in blue in each circle (labeled 1 in circle A, 2 in circle B, 3 

in circle C). These points are located at the extreme ends of each axis and represent the highest 

value of the corresponding axis metric. Each point represents the result obtained by maximizing 

one of the three objective functions of Equation (5-1). The values of these three extreme solutions 

maximizing 𝐸𝑃𝐾, 𝑆𝑉𝐼, and 𝑆𝑍𝐷 are (4599, 239, 470), (3059, 294, 377), and (2449, 237, 1007), 

respectively. They are the same as the three extreme points (three red asterisks shown in Figure 

5-3) found by the weighted sum and epsilon constraint methods. Choice of one of these solutions 

represents the scenario where agencies have decided to allocate all enforcement resources to 

maximizing the one corresponding metric alone, without regard for the two others.  

The solutions in, say, Group A have high values of the 𝐸𝑃𝐾 metric (first objective function in 

Equation (5-1)), but exhibit a range of values of the other two metrics. Selecting a solution 

contained within one of these groups represents a high-level decision to give greater priority to 

one deployment criteria over the others. 

The points in circle D represent solutions that are the most balanced among the three objectives in 

Equation (5-1). Specifically, they represent the 10 points (5% of solutions) with the shortest 

Euclidean distance to the intercept, with the black point labeled “4” being the closest of them all. 

The solutions in this group were found to have relatively average values for each of the three 

metrics represented. Therefore, if MPE agencies are aiming to find deployment resource allocation 

plans that best balance all three deployment objectives, they would consider these solutions. 

Solutions (represented by grey points) positioned between any two of the three axes exhibit 

relatively high values for two of the three metrics. If agencies are looking to fulfill program goals 

that are more nuanced (i.e., somewhere between the extremes of focusing on one goal versus 

balancing all of them), they might focus on one of these solutions. 
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5.4.2.3 Summary 

Using the weighted sum and ɛ-constraint combined methods together allows a much lower 

computation time compared to the GDE3 algorithm. The combined scalar optimization method is 

able to find almost all solutions on a PF in a time efficient manner. Conversely, the advantage of 

using an evolutionary algorithm (e.g., GDE3) is its ability to generate a representative subset of 

Pareto optimal solutions. From the representative solutions, decision makers can interactively 

choose answers based on their specific needs and preferences. A clustering method is presented in 

Section 5.5.1 to help further reduce decision fatigue.  

Overall, the model delivers deployment solutions that simultaneously consider the three 

deployment goals at varying relative degrees of importance. The MPE agencies are provided a 

diverse set of solutions that yield optimal deployment allocations for any configuration of program 

priorities called for in a given month. In addition, the variety of options available, even when 

narrowed down to meet a focused program objective that is in place for longer than a single month, 

allows agencies to change the deployment plan from month to month within that same objective. 

This will help to maintain the perception of unpredictability (in time and location) of enforcement 

activities. 

5.4.3 Illustrative MRA Model Solution 

Here we present one candidate deployment plan for a typical September in Edmonton. As 

previously mentioned, September is the beginning of the school year for kindergarten through 

grade 12 (as well as post-secondary), and the Edmonton MPE program will typically commit a 

significant portion of enforcement resources to school zones at this time. Therefore, we illustrate 

the deployment results of one potential deployment plan—solution 5, shown as a black point in 

circle D, in Figure 5-4. This solution gives the highest priority to the school zone criterion among 

the solutions in D (recall that D identified the 10 solutions that provide the most balance among 

the three objectives in Equation (5-1)).  

Figure 5-5 shows the neighborhoods identified in the plan, which are colored according to the level 

of proposed enforcement intensity. In addition, these results are shown against the actual MPE 

deployment made in Edmonton in September 2014. Specifically, Figure 5-5 uses circles to 
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represent the MPE sites actually visited by program operators during the month. These circles are 

differentiated by color and size. Firstly, blue represents a road segment enforcement site located 

in at least one of the neighborhoods proposed by the plan; grey represents sites actually visited in 

neighborhoods not included in the candidate plan. Secondly, the size of the circle indicates the 

amount of enforcement time spent at each site over the month; the larger the circle is, the more 

time spent at the site. During a typical 10-hour shift in September 2014, operators spent an average 

of 6.7 hours on enforcement activities (with the balance spent in travel and other non-enforcement 

activities). However, sites that had less than 6.7 hours of enforcement over the month are 

represented by a lighter blue or grey colored dot that is not to scale (as they otherwise would be 

too small to be seen on the map). 
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Figure 5-5 Candidate and actual MPE deployment plans for Edmonton, September 

2014. 
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As shown in Figure 5-5, 44 neighborhoods were identified in the candidate deployment plan, and 

were further split into three categories based on the number of shifts assigned to each neighborhood: 

high, medium, and low enforcement intensity. Firstly, five neighborhoods (shown in red) are high 

enforcement intensity neighborhoods, which are assigned 227 shifts with each neighborhood 

allocated an average of 45 shifts in September. The average school zone density of this 

neighborhood group (based on the 2012-2014 data) is 2.1 school zones/sq.km, which is three times 

the average of all 388 neighborhoods. The high intensity neighborhoods of this group also have 

relatively higher values in the other two metrics, showing an average of 8.8 𝐸𝑃𝐾 and 0.6 𝑆𝑉𝐼 per 

neighborhood, which are each about twice the average figures for all 388 neighborhoods. This 

indicates the three program goals are all addressed with a high level of enforcement, but school 

zones receive the most enforcement, given that the 𝑆𝑍𝐷 metric for these neighborhoods (equal to 

triple the average school zone density for all neighborhoods) is optimized in the model. 

Secondly, 17 neighborhoods fall within the medium enforcement intensity group and are marked 

in yellow in Figure 5-5; these were assigned a total of 188 shifts, with each allocated an average 

of 11 shifts in September. These neighborhoods have mean 𝑆𝑍𝐷, 𝐸𝑃𝐾, and 𝑆𝑉𝐼 values of 1.1 

school zones/sq.km, 5.6 EPDO/km, and 0.5 𝑆𝑉𝐼. Marked in green are 22 low enforcement intensity 

neighborhoods. They received the lowest enforcement intensity, with an average of two shifts 

allocated to each neighborhood during the month. This neighborhood group has 33% higher mean 

values of school zone density and 20% higher average 𝐸𝑃𝐾 metric than the medium intensity 

group, and similar mean 𝑆𝑉𝐼  value as the medium intensity group. The reason that these 

neighborhoods are assigned lower enforcement intensity than those in the medium intensity group 

is due to the values of the constraints in Equation (5-3). The minimum and maximum enforcement 

shifts allowed to a neighborhood in the MRA model were set using the actual numbers of shifts in 

2013 and 2014 (this was discussed in Section 3.2). Most neighborhoods in the medium intensity 

group are those that had received significant enforcement attention—10 to 51 shifts per 

neighborhood per month. Therefore, the minimum shifts (𝐿𝑛, Equation (5-3)) for neighborhoods 

in this group were quite high and they received significant enforcement attention, despite that they 

also exhibited the lowest average 𝑆𝑍𝐷 and 𝐸𝑃𝐾 among the three intensity groups. 

In addition to the above discussion of the candidate deployment plan and the results, we provide a 

comparison to the actual COE MPE deployment made in September 2014. Figure 5-5 shows that 
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93 (40%) of 231 MPE sites enforced in September 2014 are located in neighborhoods included in 

the candidate plan; these are represented in blue. The remaining 138 MPE sites (represented as 

grey circles) in the actual deployment were in neighborhoods not covered by the candidate 

deployment plan. To compare how well the three goals were addressed simultaneously, we 

compared the values of the three objective functions in Equation (5-1) for the proposed resource 

allocation plan and the actual program deployment. To do the comparison, we used hours rather 

than shifts as the unit for the decision variable 𝑥𝑛. In the actual September 2014 deployment, some 

operators visited enforcement sites belonging to different neighborhoods during one shift; however, 

the candidate plan assigns an operator to visit sites only within one neighborhood during a shift. 

Therefore, it is not possible to compare the proposed candidate plan intensity with the actual 

deployment intensity in terms of shifts per neighborhood. Thus, we multiplied the proposed 

number of shifts per neighborhood in the candidate plan by 6.7 hours (recall this is the average 

time actually spent doing enforcement during a shift) and calculated the three metrics (also the 

objective function values of Equation (5-1)) when 𝑥𝑛 is in hours rather than shifts. Then, the actual 

hours spent enforcing sites in each neighborhood in September 2014 were used to calculate the 

three resulting metric values for the actual MPE deployment.  

The results indicate that the 𝐸𝑃𝐾, 𝑆𝑉𝐼, and 𝑆𝑍𝐷 metrics obtained in the candidate plan are 18%, 

11%, and 34% higher than those of the actual September 2014 deployment, respectively. The 

actual program spent a total of 1968 hours in September 2014 doing mobile photo enforcement in 

neighborhoods also identified for enforcement in the candidate plan; this accounts for about two-

thirds of the total September 2014 enforcement hours (3068 hours). However, the actual program 

spent significant time in neighborhoods that were identified as warranting medium enforcement 

intensity in the candidate plan. Neighborhoods that were identified as part of the medium intensity 

group in the candidate plan were covered a total of 1147 hours in the actual program (which is 58% 

of the total MPE hours assigned in the candidate plan). In contrast, the actual September 2014 

program spent only 19% (365 hours) and 23% (456 hours) of the total hours proposed for 

neighborhoods in the candidate plan on neighborhoods in the high intensity and low intensity 

groups, respectively. Conversely, the proposed proportion of total deployment time for high, 

medium, and low intensity neighborhoods over one month in the candidate plan is 50% (1521 

hours), 41% (1259 hours), and 9% (288 hours), with the differences among the neighborhood 
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groups based on the metrics and model constraints. This comparison indicates that the actual 

September 2014 deployment did not invest a greater proportion of enforcement resources to 

neighborhoods that exhibit high levels of enforcement demand, as identified by the metrics of the 

three program goals considered in this study. 

Overall, this application has demonstrated how the proposed model can allocate resources to 

balance multiple and conflicting program priorities. Visualizing the candidate plan provides 

agencies with insight into how the deployment goals can be quantitatively mapped to the 

deployment decisions, which may make the decision process simpler and evidence-based. 

5.5 PARETO FRONT ANALYSES 

This section focuses on how to explore the relationships (tradeoffs) after MRA model solutions 

are found. Considering that the PF constructed by the weighted sum and ɛ-constraint methods is 

more complete than that by the GDE3, we use the solutions generated by the former (as shown in 

Figure 5-3) as the basis for post-Pareto analyses. Section 5.5.1 explains how to cluster solutions 

on a PF, and Section 5.5.2 presents tradeoff analysis for the PF results.  

5.5.1 Pareto Front Clustering 

To be able to analyze the most important and salient features of the PF generated as per Figure 5-3, 

we adopt the K-medoids algorithm (Kaufman & Rousseeuw, 1987) to group similar solutions into 

clusters and identify a representative solution for each cluster. K-medoids is a modification of the 

well-known K-means clustering algorithm (MacQueen & others, 1967), where existing data points 

are recognized as cluster centers (medoids) rather than creating new cluster centers. To use the 

existing Pareto-optimal solutions as candidates, we select K-medoids to conduct the clustering 

analysis. 

Use of K-medoids requires a prior determination of how many data clusters should be created. A 

common tool for determining the optimal number of clusters is the silhouette index (Rousseeuw, 

1987). The silhouette index evaluates the average distance, 𝑎(𝑖), between any data point 𝑖  in 

cluster 𝑎 and all other points in the same cluster. It also compares 𝑎(𝑖) with the average distance 

of the point 𝑖 to all the points of a neighboring cluster 𝑏, 𝑏(𝑖). The silhouette index for point 𝑖 is 
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close to one if 𝑏(𝑖) is much larger than 𝑎(𝑖) (Rousseeuw, 1987) – meaning, cluster 𝑎 points are 

closer to one another than points in cluster 𝑏 . The optimal number of clusters is found by 

maximizing the average silhouette index for all data points. 

We implement the R Package ‘NbClust’ (Charrad, Ghazzali, Boiteau, Niknafs, & Charrad, 2014) 

to compute the silhouette index for a pre-set range of clusters between 10 and 20 in the data set as 

illustrated in Figure 5-3. The maximum silhouette index is observed when the number of clusters 

is set to 12; thus, we took 12 as the best cluster count for our data set. Then clustering is done by 

a K-medoids algorithm in MATLAB with these 12 clusters. The K-medoids algorithm identifies 

12 medoids and partitions all other solutions around the 12 identified cluster medoids.  

Note that the scales of the three metrics (axes) shown in Figure 5-3 are not the same. This is likely 

to cause the Euclidean distance measure used in the computation of the silhouette index and K-

medoids clustering to be dominated by metrics with large values. Therefore, to avoid biases in 

results due to metric domination, we normalized metric values prior to the computation of the 

silhouette index and K-medoids. The performance of a normalization method that takes the 

variable range (i.e. the difference between the minimum and maximum values of the variable) as 

the divisor has been proven to be superior over other normalization methods in cluster analysis 

(Milligan & Cooper, 1988); therefore, we selected this min-max normalization method to 

transform the objective vectors of the solutions in Figure 5-3 into the range 0 to 1. 

Figure 5-6 shows the rescaled data with the clustering result. The crosses in Figure 5-6 represent 

each of the 12 cluster medoids. Figure 5-6 also differentiates solution clusters by colors. Table 5-

2 summarizes the descriptive statistics for the 12 clusters. The size of each cluster is given. The 

range of objective vectors for the solutions in each cluster and the objective vectors of the 12 

medoids are also indicated in Table 5-2. 
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Figure 5-6 Clustering analysis of the Pareto front of the MRA example. 
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Table 5-2 Statistical Summary of the Objective Vectors in the Twelve Partitioned 

Clusters 

Clusters 
No. of 

Solutions 

  EPK     SVI     SZD   

Medoid Min Max Medoid Min Max Medoid Min Max 

1 1175 3865 3555 4172 219 208 233 774 683 859 

2 1381 4416 4128 4572 270 255 284 477 402 557 

3 1028 2850 2432 3249 248 228 269 957 882 1007 

4 762 3813 3228 4184 286 278 294 491 378 623 

5 1008 3131 2440 3467 264 246 279 857 740 922 

6 1268 4209 3943 4438 233 215 248 663 581 742 

7 1186 3371 2928 3651 227 210 246 893 820 960 

8 1001 3665 3225 3902 270 257 283 736 624 803 

9 1502 4503 4282 4599 243 228 258 530 440 618 

10 1201 3727 3351 4016 245 231 258 779 693 857 

11 1313 4128 3877 4360 263 248 279 626 546 706 

12 385 2944 2433 3463 286 279 294 601 377 785 

From Table 5-2, one can observe an average of about 1,100 solutions per cluster. In each cluster, 

the objective function values of the solutions with respect to 𝐸𝑃𝐾, 𝑆𝑉𝐼, and𝑆𝑍𝐷 vary within 

ranges of 688, 28, and 190, respectively. It is observed that the average differences in the three 

objective function values of 𝐸𝑃𝐾, 𝑆𝑉𝐼, and 𝑆𝑍𝐷 between the medoid and the farthest solution in 

the same cluster is 344, 14, and 95, respectively. These ranges are about half that of the ranges of 

the objective vectors within each cluster. Thus, we can conclude that the 12 medoids are located 

in the relative center of each cluster, and are a reasonable representation of their respective cluster. 

An agency managing an MPE program could take these medoids as the initial deployment 

candidate options. 

Table 5-2 shows that candidate options (or medoids) #1, #6, #7, and #9 have relatively low 

objective function values on the 𝑆𝑉𝐼  axis but high values on the 𝐸𝑃𝐾  axis. Therefore, these 

solutions lie on the left-hand side of the PF as illustrated in Figure 5-6. The average objective 
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function values of these solutions in 𝑆𝑉𝐼 and 𝐸𝑃𝐾 are 231 and 3,987, which fall in the first third 

of the 𝑆𝑉𝐼-axis scale (208 to 294) and in the last third of the 𝐸𝑃𝐾-axis scale (2,432 to 4,599), 

respectively. By choosing these solutions, one gives priority to the 𝐸𝑃𝐾 objective (enforcing high 

collision sites) while largely ignoring 𝑆𝑉𝐼 (enforcing high speed violation sites).  

Conversely, candidate solutions occupying the PF’s right-hand side on Figure 5-6, such as 

solutions #4, #5, and #12, show low objective function values for 𝐸𝑃𝐾 but high values for 𝑆𝑉𝐼, 

with average values of 3,296 (two-fifths of the 𝐸𝑃𝐾 scale) and 279 (four-fifths of the 𝑆𝑉𝐼 scale), 

respectively. Therefore, the solutions on the right-hand side of Figure 5-6 give enforcement 

attention to high speed violation sites, regardless of the locations with high collision frequencies.  

Other solutions in the middle of the PF have relatively average values in both 𝐸𝑃𝐾  and 𝑆𝑉𝐼 

objectives (3757 and 259), indicating a balance of the two deployment goals. Specifically, solution 

#3 (in the middle top of the PF in Figure 5-6) shows the highest 𝑆𝑍𝐷 objective value (957) among 

the 12 medoids. This solution assigns school zone enforcement the greatest priority, while 

maintaining relatively average enforcement intensity at high collision sites and high speed 

violation sites. In contrast, solution #2 (which lies in the middle bottom of the PF) presents the 

lowest 𝑆𝑍𝐷 value (477) among all the medoids; therefore, it gives school zone enforcement the 

lowest priority of the three objectives. Solutions #8, #10, and #11 are in the relative center of the 

PF. Their average values in 𝐸𝑃𝐾, 𝑆𝑉𝐼, and 𝑆𝑍𝐷 are 3,840, 259, and 714, which lie at the midpoints 

of the corresponding axis’ intervals. These types of solutions represent a balance of the three 

conflicting enforcement deployment goals; they almost reach the optimal value for each. When 

MPE managing agencies have no preference among the three enforcement priorities, these 

solutions may be of most interest. 

5.5.2 Pareto Front Tradeoff Analysis 

After making an initial selection from the clustering result, if MPE agencies want to move from 

the initial selection to another solution on the PF that better suits their requirements, it would be 

helpful to understand what the tradeoffs are (with respect to the three objectives) in moving to 

another solution on the PF. In other words, if one wanted to increase attainment of one objective, 

how much would one need to sacrifice in the other two objectives to achieve this? In this section 
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we present a function fit to the Pareto data points found in Figure 5-3. Note that the data points 

used in this section are not normalized. The (continuous) PF fitting function can be used to 

quantitatively evaluate the tradeoffs between the deployment objectives as one moves between 

(discrete) solutions on the PF. 

5.5.2.1 Pareto Front Fitting Function 

A (continuous) polynomial function is estimated on the discrete multi-objective optimization 

solutions comprising the PF of Figure 5-3. A polynomial functional form is chosen because of its 

simple implementation and its ability to approximate the true PF (Fang, Rais-Rohani, Liu, & 

Horstemeyer, 2005; Goel et al., 2007). However, other fitting techniques, such as exponential and 

translog functions, may also be suitable given different distributions of optimized solutions. 

In a multi-objective problem, such as the MRA example (with three objectives 𝐸𝑃𝐾, 𝑆𝑉𝐼, and 

𝑆𝑍𝐷), one objective should be chosen as the dependent variable of the PF fitting function while 

the remaining objectives are independent variables (Goel et al., 2007). To facilitate this decision, 

we created three quadratic polynomial functions for the three possible variable configurations 

using the response surface method. The quadratic polynomial is one of the most commonly used 

models for the response surface method, to describe the relationship between dependent and 

independent variables (Myers, Montgomery, & Anderson-Cook, 2016). The model is useful for 

generating a response surface that is reasonably close to the fitted data points (Box & Wilson, 

1992), and such a model is easy to estimate and apply. Table 5-3 shows the 𝑅2 values for each of 

these three functions, indicating the goodness of fit of each function to the Pareto data points shown 

in Figure 5-3. Because polynomial regression is a special case of linear regression, in that it is 

linear in the regression coefficients on the dependent variables, it is appropriate to use 𝑅2  to 

determine model goodness-of-fit (Ostertagová, 2012).  

Table 5-3 R-squared Values of the Quadratic Pareto Front Fitting Function, by 

Variable Configurations 

 𝑬𝑷𝑲 = 𝒇(𝑺𝒁𝑫, 𝑺𝑽𝑰) 𝑺𝑽𝑰 = 𝒇(𝑬𝑷𝑲, 𝑺𝒁𝑫) 𝑺𝒁𝑫 = 𝒇(𝑬𝑷𝑲, 𝑺𝑽𝑰) 

𝑹𝟐 0.939 0.899 0.968 
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In Table 5-3, the 𝑅2 value of 𝑆𝑍𝐷 = 𝑓(𝐸𝑃𝐾, 𝑆𝑉𝐼) is the highest (at 0.968) among all the three 

fitted functions. This suggests that the function taking the 𝑆𝑍𝐷 metric as dependent variable is the 

best-fitting function for the MRA Pareto points generated, compared to the functions generated by 

the other two variable configurations. Furthermore, the 𝑅2 value of this best-fitting function is 

close to one, suggesting that a quadratic polynomial function is an appropriate fit for the identified 

Pareto data points. Therefore, the function 𝑆𝑍𝐷 = 𝑓(𝐸𝑃𝐾, 𝑆𝑉𝐼) is selected to represent the PF of 

the MRA example, and its estimated form is shown in Equation (5-12). All estimated parameters 

are statistically significant at the 95% confidence level. 

 
𝑆𝑍𝐷 = −9.63𝑒−5 ⋅ 𝐸𝑃𝐾2 + 0.001 ⋅ 𝐸𝑃𝐾 ∙ 𝑆𝑉𝐼 + 0.149 ⋅ 𝐸𝑃𝐾 − 0.093

⋅ 𝑆𝑉𝐼2 + 38.408 ⋅ 𝑆𝑉𝐼 − 3360.688 
(5-12) 

Figure 5-7 shows a plot of the PF fitting function of Equation (5-12) as a grey surface, and 

compares it against the set of Pareto-optimal solutions (first shown in Figure 5-3) used to fit the 

function. It is observed that the function fits the plotted Pareto data points closely (as the 𝑅2 value 

would indicate). 

 
 

  

  

(a) View 1 (b) View 2 

Figure 5-7 Pareto-optimal solutions and the fitted Pareto surface, for the MRA 

example. 

We observe a downward bend at the top of the fitted Pareto surface in Figure 5-7(b). This bending 

is attributed to the fact that the graph of a quadratic polynomial is a parabola. Since the coefficients 
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of the function terms with highest degree in Equation (5-12) are negative, the function graph will 

always decrease exponentially at its edges. Therefore, it is important to note that the PF fitting 

function should only be used within the range of Pareto data point values taken to fit the function. 

5.5.2.2 Illustrative Example of the Objective Tradeoff Analysis 

Suppose Edmonton’s MPE program manager (i.e. the managing agency) had chosen solution 3 

from the 12 medoids identified in Figure 5-6, for the month of September 2014. According to 

Table 5-2, among the 12 medoids, this solution reflects an elevated priority to have enforcement 

presence in school zones during the start of the school year, while also maintaining some coverage 

of high collision and high speed violation sites. This solution has the highest 𝑆𝑍𝐷 value (at 957) 

of the 12 medoids, with relatively average values of 𝐸𝑃𝐾 and 𝑆𝑉𝐼 at 2,850 and 248, respectively. 

The three metric values of solution 3 represent an initial decision, which assigns 957, 2850, and 

248 enforcement coverage units in school zones, high collision sites, and high speed violation sites, 

respectively. 

We assess the tradeoffs between each pair of the three metrics in solution 3, where the pairwise 

tradeoff results are benchmarked against set values of the 3rd metric. Figure 5-8 illustrates the three 

cross sections of the PF fitting function along each of the three axes, viewed in solution 3. Curves 

in Figure 5-8(a), (b), (c) are function contour lines at the solution 3’s objective values (𝑆𝑉𝐼 = 248, 

𝐸𝑃𝐾 = 2,850 , and 𝑆𝑍𝐷 = 957). Hence, these curves depict how a change in one objective 

function value of solution 3 impacts the other function values. 
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(a) Contour Line at the Fixed SVI (b) Contour Line at the Fixed EPK 

 

 

(c) Contour Line at the Fixed SZD  

Figure 5-8 Contours of the Pareto fitting function at MRA example Solution 3. 

Note that as discussed in Section 5.5.2.1, the polynomial function is only valid over the range of 

Pareto data points used to fit it. Therefore, based on the range of the found Pareto data points in 

the three axes (2,432-4,599 𝐸𝑃𝐾, 208-294 𝑆𝑉𝐼, 377-1,007 𝑆𝑍𝐷), we found two endpoints on each 

curve, between which the curve is considered a valid description of objective tradeoff. The two 

endpoints of each curve are marked as crosses and labeled A and B, D and E, H and I, in Figure 

5-8(a), (b), and (c) respectively. The three components of the objective vectors for these endpoints 

are shown in Table 5-4. 
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Table 5-4 Objective Vectors of the Endpoints, the Unit-Elastic Points, and the 

Illustrative Candidate Point on the Tradeoff Curves 

Point 
Labels 

Endpoint, unit-elastic point, or 
illustrative point 

EPK SVI SZD 

A Endpoint 2432 248 978 

B Endpoint 4599 248 489 

C Unit-Elastic Point 3561 248 836 

D Endpoint 2850 241 979 

E Endpoint 2850 294 564 

F Unit-Elastic Point 2850 246 961 

H Endpoint 2432 252 957 

I Endpoint 2956 244 957 

G Unit-Elastic Point 3081 238 957 

Solution 3 Illustrative Point 2850 248 954 

 

The three plots in Figure 5-8 show that as one objective decreases, the other two objectives increase. 

The average tradeoff rate (i.e., the slope of the curves) between 𝑆𝑍𝐷 and 𝐸𝑃𝐾, 𝑆𝑍𝐷 and 𝑆𝑉𝐼, and 

𝑆𝑉𝐼 and 𝐸𝑃𝐾 is -0.2, -7.8, and -0.02, respectively. This means that for everyone unit decrease in 

𝑆𝑍𝐷 (i.e., one less enforcement coverage level in school zones), 𝐸𝑃𝐾 increases by 0.2 (or, 0.2 

more enforcement coverage levels at high collision sites) when 𝑆𝑉𝐼 is fixed at 248 (enforcement 

coverage units at high speed violation sites). However, if 𝐸𝑃𝐾 remains at 2850, 𝑆𝑉𝐼 increases by 

7.8 for each reduced unit in 𝑆𝑍𝐷. Additionally, a one unit decrease in 𝑆𝑉𝐼 leads to a 0.02 increase 

in 𝐸𝑃𝐾 when 𝑆𝑍𝐷 = 957. It is difficult for MPE program decision makers to intuitively interpret 

the trade-off between more than two objectives. Therefore, these obtained pairwise tradeoff values 

provide useful information and support for multi-objective decision-making about MPE resource 

allocation. Specifically, decision makers can learn the result of changing a decision (choose a new 

PF solution), that is, when the expectations for the 3rd objective are met, how they adjust the 

resource allocation between the remaining two objectives. 
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As the ranges of the three objective values are different, the concept of curve elasticity is 

introduced to further understand how responsive (in a proportional manner) one objective is to a 

change in another objective. Elasticity is a measure that evaluates the proportional change of the 

abscissa divided by the proportional change of the ordinate. The metric on the abscissa is classified 

as being ordinate metric elastic if elasticity is greater than one, unit ordinate metric elastic if 

elasticity is equal to one, or ordinate metric inelastic if elasticity is less than one. The ordinate 

metric elasticity of the abscissa metric at a specific point (𝑥∗, 𝑦∗) on the curve is expressed by 

Equation (5-13), which computes the reciprocal of the curve’s derivative at that point multiplied 

by the ratio of 𝑦∗ to 𝑥∗. 

 𝑒 =
𝑑𝑥∗

𝑑𝑦∗
∙
𝑦∗

𝑥∗
 (5-13) 

As can be seen from Figure 5-8, as abscissa values increase, the slopes of each of the three curves 

become steeper, indicating a continuously decreasing elasticity of each curve in the abscissa 

direction. Thus, by manipulating Equation (5-13) and the curve function (i.e., the PF fitting 

function holding one variable fixed), we found the location of the unit elastic point on each curve. 

Specifically, the unit-elastic points in Figure 5-8(a), (b), (c) are marked as asterisks and labeled as 

C, F, G, respectively. Table 5-4 shows their objective function values. These unit-elastic points 

help divide the curve between two endpoints into two parts. The curve that lies to the left of the 

unit-elastic point is elastic, whereas the curve to the right side of the unit-elastic point is inelastic. 

In Figure 5-8(a), it is observed that 𝐸𝑃𝐾 is elastic to the changes in 𝑆𝑍𝐷 along the part AC of the 

curve where 𝐸𝑃𝐾 is in the range of 2,432-3,561, and 𝑆𝑍𝐷 is in the range of 836-978 as shown in 

Table 5-4. Conversely, on the curve between points C and B, where 𝐸𝑃𝐾 lies between 3,561 and 

4,599 and 𝑆𝑍𝐷 is between 489 and 836, 𝐸𝑃𝐾 is inelastic regardless of whether 𝑆𝑍𝐷 changes. The 

average elasticities of curve segments AC and CB are -3.2 and -0.7, respectively. This indicates 

that 𝐸𝑃𝐾 changes at 3.2 times the rate of 𝑆𝑍𝐷 change on the AC curve segment, but the rate of 

change of 𝐸𝑃𝐾 is reduced to 0.7 times the rate of change of 𝑆𝑍𝐷 on the CB curve segment. Since 

solution 3 is positioned on the AC curve segment, reducing solution 3’s 𝑆𝑍𝐷 value by a small 

quantity, say 10%, may yield an approximately 32% increase in 𝐸𝑃𝐾. This tradeoff could be 

highly attractive to MPE agencies that are looking to reduce traffic collisions. 
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In Figure 5-8(b), the unit-elastic point F also specifies the elastic and inelastic regions for the 

tradeoff of the 𝑆𝑉𝐼 and 𝑆𝑍𝐷. It is worth noting that the endpoint D and unit-elastic point F are very 

close together. As seen in Table 5-4, they have a difference of 5 and 18 respectively on the 𝑆𝑉𝐼 

and 𝑆𝑍𝐷 axes, accounting for only 6% and 3% of the corresponding axis interval. Therefore, the 

curve portion DF may be negligible, leading to the fact that 𝑆𝑉𝐼 is almost always inelastic in 𝑆𝑍𝐷. 

The reason that 𝑆𝑉𝐼 almost always responds weakly to changes in 𝑆𝑍𝐷 may be due to the fact that 

neighborhoods with relatively high school zone densities also experience more speed violations 

(in turn, due to lowered area speed limits). According to data from 2012 to 2014, Edmonton 

neighborhoods with the top 10% of school densities (the average 𝑆𝑍𝐷 for these neighborhoods is 

2.74) exhibited an average of 43% of speeding violations, 30% higher than the average of all city 

neighborhoods. Reducing MPE resource allocations to neighborhoods with more school zones 

may also have the secondary effect of reducing MPE resources to neighborhoods with high speed 

violations (because these neighborhoods are the same). It can be seen that solution 3 is on the FE 

curve segment with an average elasticity of -0.47. This suggests that a 10% decrease in 𝑆𝑍𝐷 results 

in only about a 5% rise in 𝑆𝑉𝐼. Consequently, at solution 3, it may not be productive to reduce 

𝑆𝑍𝐷 value to gain the expected increase in 𝑆𝑉𝐼. 

Contrary to the inelasticity of 𝑆𝑉𝐼 and 𝑆𝑍𝐷, in Figure 5-8(c) it is observed from the position of the 

unit-elastic point G (located to the right of the curve segment HI) that 𝐸𝑃𝐾 is always 𝑆𝑉𝐼 elastic. 

The average elasticity between points H and I on the curve is -6.8, indicating that a 10% drop in 

𝑆𝑉𝐼 will result in a 68% increase in 𝐸𝑃𝐾. This high elasticity implies the strong responsiveness of 

𝐸𝑃𝐾 to decreases in 𝑆𝑉𝐼. However, between solution 3 and endpoint I, the 𝑆𝑉𝐼 value that can be 

traded-off for 𝐸𝑃𝐾 is very limited, only 4 in 𝑆𝑉𝐼 (as shown in Table 5-4). 

Based on the tradeoff and elasticity results observed above, MPE agencies may want to locate a 

more suitable solution (other than solution 3) with the desired level for all objectives on the fitted 

Pareto surface. Suppose the manager decides to relax 𝑆𝑍𝐷 by 100 (an approximately 10% decrease) 

and 𝑆𝑉𝐼 by 4 (approximately 2% decrease) to improve 𝐸𝑃𝐾. By entering the (relaxed) values of 

𝑆𝑍𝐷 (854) and𝑆𝑉𝐼 (244) to the PF fitting function, we can obtain an 𝐸𝑃𝐾 value of 3,522, which 

is an approximately 25% increase in 𝐸𝑃𝐾 compared to that of solution 3 (we will refer this point 

on the fitted Pareto surface as solution 𝑋). This procedure can be continued until the program 
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manager obtains a solution that best satisfies their needs. Then, one of the Pareto-optimal solutions 

(Figure 5-3) closest to their preferred solution determined on the Pareto surface can be selected. A 

search of the nearest Pareto-optimal solution to solution 𝑋 is conducted and the objective values 

of that Pareto-optimal solution for 𝐸𝑃𝐾, 𝑆𝑉𝐼, 𝑆𝑍𝐷 are obtained (3477, 243, 839, respectively). 

The Pareto-optimal solution found nearest to 𝑋 deviates from 𝑋 by values of 45 (𝐸𝑃𝐾), 1 (𝑆𝑉𝐼), 

and 15 (𝑆𝑍𝐷). Choosing this Pareto-optimal solution will generate a tradeoff that is slightly 

different from the tradeoff result estimated by the PF fitting function; however, the new tradeoff 

may not satisfy the desired tradeoff level. Therefore, it is recommended that in future research, we 

should further investigate how to identify the actual Pareto-optimal solution that best matches the 

solution found on the tradeoff surface. 

5.5.2.3 GDE3 Solution Assessment 

In Section 5.4.2.2, the GDE3 algorithm produced a set of 200 Pareto non-dominated solutions (see 

Figure 5-4), when the termination criterion (i.e., the predefined bound for the number of iterations) 

was met. These 200 solutions are approximations of the true Pareto optimal solutions. This section 

evaluates the optimality of the 200 GDE3 solutions, by comparing the GDE3 solutions with the 

Pareto optimal surface fitted by Equation (5-12).  

The most common and simplest measure used in the literature for quantifying the quality of Pareto 

approximate solutions is the generational distance. General distance (Van Veldhuizen & Lamont, 

1998) measures the shortest distance from each approximate solution to the Pareto optimal surface, 

and then computes the average of these shortest distances. The smaller the generational distance 

is, the better the quality of approximate solutions. 

We measure the shortest distance between the 200 GDE3 solutions and the fitted surface through 

MATLAB’s fmincon function. We set the variables of the fmincon function to any point on the 

surface. The function objective is to find the surface points closest to the GDE3 points, subject to 

the surface Equation (5-12). The shortest distance measured between the two sets of points varies 

between 0.3 and 147. Their average value (i.e., generational distance) is 55, accounting for 1.2%, 

5.7%, and 18.7% of the maximum of the three metrics 𝐸𝑃𝐾 (4599), 𝑆𝑍𝐷 (957), and 𝑆𝑉𝐼 (294), 

respectively. 
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Figure 5-9 200 GDE3 solutions and the fitted Pareto surface, for the MRA 

example. 

In addition, Figure 5-9 depicts the relative distance between the 200 GDE3 solutions and the 

surface. As seen in Figure 5-9, the GDE3 solutions approach closely to the surface, suggesting that 

the GDE3 solutions are close approximations to the exact solutions.  

5.6 SUMMARY 

This chapter presents a neighborhood-level resource allocation model for MPE. The model uses 

multi-objective linear programming to determine how enforcement resources may be allocated to 

city neighborhoods, when multiple deployment criteria must be considered. The model was 

applied to a case study of an MPE program operating in Edmonton. The model generated a set of 

resource allocation solutions for the program’s deployment in September 2014, while 

simultaneously optimizing three metrics: equivalent property-damage-only collision frequency per 

kilometer (𝐸𝑃𝐾), speed violation indicator (𝑆𝑉𝐼), and school zone density (𝑆𝑍𝐷).  

Combining two scalar optimization methods (weighted sum and ɛ-constraint) were applicable to 

generate a nearly complete PF (13,210 exact solutions) over multi-dimensions in a time-efficient 
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manner. In contrast, an evolutionary algorithm can be used to determine a specified number of 

approximate solutions (we found 200 GDE3 solutions in this chapter), which can greatly reduce 

decision fatigue. Also, 𝐾 -medoids clustering was used to choose 12 existing Pareto-optimal 

solutions as representative solutions from which the MPE agency can initially choose a solution 

that suits their preference.  

We created a quadratic polynomial function to model the relationship between the dependent 

variable ( 𝑆𝑍𝐷 ) and the independent variables ( 𝐸𝑃𝐾  and 𝑆𝑉𝐼 ). We studied the objective 

relationship at a representative solution. In this study, tradeoff rate results showed that one less 

enforcement coverage unit in school zones will lead to 0.2 or 7.8 more enforcement coverage units 

at high collision sites and high speed violation sites, respectively. Additionally, every reduction in 

one enforcement unit coverage at high speed violation sites increases enforcement coverage at 

high collision sites by 0.02 units. The ability to quantitatively assess tradeoffs among objectives, 

allows MPE agencies to understand the amount of exchange between objective values and how 

responsive a change in one objective is in relation to others, when moving along the PF.  

Finally, one candidate deployment plan designed for September 2014 was plotted in GIS and 

assessed, alongside the actual program deployment results for the same month. This candidate plan 

allocates one month of shifts to 44 Edmonton neighborhoods, which exhibit high enforcement 

demand according to the aims set out for the month. The aim, in this case, was to dedicate more 

enforcement resources to neighborhoods with higher school zone densities, while still giving 

significant consideration to sites with higher collision and speed violation metrics. Because the 

proposed model does not directly account for the purpose of increasing the program’s perception 

of randomness, the resources were utilized to focus on a limited number of neighborhoods that 

warranted high enforcement demand according to the three program goals. The average metric 

values of these 44 neighborhoods are at least about 60% higher than the average metric values for 

all 388 neighborhoods across the city. The candidate deployment plan is shown to efficiently 

utilize one month’s worth of shifts by varying the enforcement intensity (i.e., number of shifts 

allocated) for different levels of enforcement demand (as identified by the metrics) associated with 

the program goals: after taking special deployment considerations into account, the higher the 

neighborhood metrics, the higher the number of shifts assigned to the neighborhoods.
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6 MPE RESOURCE SCHEDULING MODEL 

This chapter presents a model for scheduling MPE resources. The MPE resource scheduling (MRS) 

model described in this chapter schedules operators over the course of a month to groups of 

enforcement sites, based on the neighborhood allocation determined in the previous stage (Chapter 

5). The key feature of the MRS model is that it considers the time halo effects of enforcement; our 

model uses binary integer programming to minimize visits to an enforcement task (to visit a site 

group in a shift) over consecutive shifts.  

The model was applied to data obtained from the MPE program in Edmonton, Canada. Because 

this is a large-scale integer programming problem, we solve it with the Dantzig-Wolfe 

decomposition and column generation approaches, which have been applied successfully to 

scheduling problems. This scheduling model is the final step in an MPE program that can provide 

enforcement agencies with a tool to systematically assign limited resources, with greater efficacy 

towards achieving program-level objectives such as reducing speeding, reducing collisions, and 

providing enforcement presence in areas with many vulnerable pedestrians (i.e. school zones). 

6.1 INTRODUCTION 

An MPE program must schedule enforcement operators and equipment to sites located throughout 

a city or region. Typically, there are far fewer operators and equipment than sites requiring 

enforcement attention. Operators work in shifts, during which they must visit a set of sites (referred 

to as location visit task). This chapter presents an MPE resource scheduling (MRS) model that 

allocates operator shifts among location visit tasks over a set period (one month). 

The proposed MRS model comprises the next stage after the Chapter 5 MRA model. The MRA 

model employed multi-objective optimization to allocate MPE resources to city neighborhoods, 

using multiple enforcement coverage goals simultaneously. We developed the MRS model to 

schedule neighborhood-level resources to location visit tasks, in three steps: 1) determine location 

visit tasks in neighborhoods, 2) distribute operators to location visit tasks, and 3) create a schedule. 

In Step 1 we combine all predetermined enforcement sites in each neighborhood into sets. Each 

set is a candidate location visit task for an operator’s shift. In Step 2 we distribute the shifts 
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allocated to each neighborhood for a given month (resulting from the MRA model of Chapter 5) 

to those candidate location visit tasks. Shifts are proportionally distributed to tasks based on 

weights assigned to each task. These weights are a direct reflection of the enforcement need at the 

locations within the task, quantified by the same metrics used to assign resources to neighborhoods 

in Chapter 5.  

In Step 3, we schedule operator shifts considering enforcement time halo effects. The time halo 

effect can last several hours to days (Hauer, Ahlin, & Bowser, 1982; Armour, 1986; Cairney, 1988; 

Vaa, 1997; Gouda & El-Basyouny, 2016). As a result, it is inefficient to send operators to a location 

where the time halo effect remains. The scheduling model’s objective is to minimize instances of 

resources being allocated to tasks including locations where a time halo effect remains. To solve, 

this binary integer programming model is first reformulated using the Dantzig-Wolfe 

decomposition algorithm as a set partitioning problem—a formulation used for many real-life 

resource scheduling problems. The reformulated problem is then solved using a column generation 

approach, which has been combined with the Dantzig-Wolfe decomposition to efficiently solve 

integer programming problems with a large number of variables. 

The MRS model was implemented to one neighborhood-level deployment plan (Figure 5-5) output 

from the MRA model. The result is a schedule of operators assigned to perform a location visit 

task during each shift, for morning and afternoon shifts throughout a month of enforcement.  

6.2 MODEL FORMULATION 

Our MRS model is the second stage of an MPE deployment model. The 1st stage model (Chapter 

5) allocates enforcement resources to city neighborhoods, by maximizing enforcement coverage 

of neighborhoods based on three chosen metrics: 1) equivalent property-damage-only (EPDO) 

collision frequency per km, 2) speed violation indicators, and 3) school zone density. This model 

identifies neighborhoods to send enforcement resources over a one-month period. The MRS model 

takes these allocation results and further schedules resources.  The MRS model assigns resources 

over both space and time; it assigns resources to enforcement location visit tasks within each 

neighborhood over a month-long period, while accounting for enforcement time-halo effects. The 

model minimizes the number of sequential visits to a given task (to, more generally, minimize 
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“wasting” the possible effects of an enforcement time halo). The steps of our scheduling model 

are shown in Figure 6-1. 

 

Figure 6-1 MPE resource scheduling model. 

As seen from Figure 6-1, the neighborhood-level deployment plan of the 1st stage MRA model is 

input to the MRS model. This neighborhood-level plan contains three elements for input to the 

scheduling model: 1) the neighborhoods to receive enforcement resources, 2) the number of 

resources allocated to these neighborhoods, and 3) the optimization results (i.e. values of the three 

metrics considered). 

The MRS model requires two preprocessing steps to further distribute neighborhood-level resource 

to enforcement location visit tasks and one binary integer programming (BIP) step to schedule 

resources to tasks, as illustrated in the green box of Figure 6-1. The first preprocessing step is to 

identify enforcement location visit tasks for each chosen neighborhood. A task is defined to be a 

group of predetermined enforcement sites (road segments) that can be visited by an enforcement 
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operator in a single shift. The second preprocessing step involves distributing the resources 

allocated to each neighborhood to different tasks within the neighborhood. This resource 

distribution is commensurate to each task’s enforcement demand, measured by the three 

deployment metrics used in Stage 1. These two preprocessing steps above address the spatial 

allocation problem—allocating neighborhood-level resources to location visit tasks. The next step 

of the model focuses on scheduling operator work times to the tasks on the planning horizon. This 

is performed using a binary integer program (BIP) that minimizes time halo effect violations. The 

details of the preprocessing steps and BIP, are described in Sections 6.2.1 and 6.2.2. The final 

output is an enforcement activity timetable determining when, where, and how many enforcement 

operators are assigned to specific tasks over the course of a month. 

6.2.1 Preprocessing Steps 

We developed the MRS model of Figure 6-1 based on the COEs MPE program parameters and 

requirements. This section describes the two preprocessing steps. 

6.2.1.1 Enforcement Location Visit Tasks in Neighborhoods 

The COE’s MPE program schedules operators into two work shifts per day: a morning shift from 

06:00-16:00 and an afternoon shift from 16:00-02:00. An MPE program operator typically visits 

several enforcement sites during a single work shift. Hence, to assign operators to enforcement 

sites within each neighborhood, we first combined individual sites from a neighborhood into 

visiting groups. 

Two assumptions are made before combining the sites. First, all operators visit the same number 

of sites in a shift. Second, operators cannot visit a site twice in one shift. With these two 

requirements, all possible combinations of (pre-approved) enforcement sites in each neighborhood 

were enumerated. Consequently, these site combinations (hereafter called location visit tasks) in 

each neighborhood serve as allocation units for receiving neighborhood resources (again, assigned 

in Chapter 5). This allocation unit can be changed to accommodate different MPE program 

operations needs and requirements. Equation (6-1) represents the possible tasks in each 

neighborhood in a matrix format, for input into the BIP optimization model. 
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𝐶𝑛 = {𝑐𝑚𝑗 = {
1  if the 𝑚𝑡ℎ site is used in 

     the 𝑗𝑡ℎ task
0 otherwise

,  ∀𝑚 ∈ 𝑀𝑛, ∀𝑗 ∈ 𝐽𝑛} ,∀𝑛 ∈ 𝑁
(1) (6-1) 

Where: 

 𝑑 = number of sites to be visited per operator per shift 

 𝑚 = enforcement site index 

 𝑛 = neighborhood index 

 𝑁(1) = subset of neighborhoods identified in Stage 1 

 𝑀𝑛 = number of predetermined enforcement sites included in neighborhood 𝑛 

 𝑗 = task index 

 𝐽𝑛 = number of tasks included in neighborhood 𝑛 

 𝑐𝑚𝑗 = 1 if the 𝑚𝑡ℎ site is used in the 𝑗𝑡ℎ candidate task, and 0 otherwise 

 𝐶𝑛 = a 𝑀𝑛 × 𝐽𝑛 binary matrix containing all the possible tasks for neighborhood 𝑛 

As defined in Equation (6-1), each neighborhood 𝑛 in set 𝑁(1) has a matrix 𝐶𝑛. The rows of 𝐶𝑛 

(𝑀𝑛) represent the number of predetermined enforcement sites in neighborhood 𝑛 , while the 

number of columns (𝐽𝑛) is the number of location visit tasks identified for neighborhood𝑛. 𝐽𝑛 is 

equal to the number of combinations (
𝑀𝑛

𝑑
)  where the total of predetermined sites (𝑀𝑛)  of 

neighborhood 𝑛  is not less than 𝑑  (the number of sites to be visited per operator per shift). 

Otherwise, 𝐽𝑛 = 1. Matrix 𝐶𝑛 is composed of binary elements 𝑐𝑚𝑗 that denote whether a site in 

the 𝑚𝑡ℎ row (𝑚 ∈ 𝑀𝑛) is included in the location visit task arranged in the 𝑗𝑡ℎ column (𝑗 ∈ 𝐽𝑛). 

Each column of 𝐶𝑛  represents a possible candidate deployment plan for neighborhood 𝑛 , 

providing agencies the locations of tasks to which an operator may be assigned over a shift. 

6.2.1.2 Resource Distribution to Enforcement Location Visit Tasks 

After identifying all possible tasks, we use three metrics to assess the need to perform each task in 

a neighborhood. These metrics are those used for the neighborhood-level deployment plan: EPDO 

collision frequency per km (𝐸𝑃𝐾),  speed violation indicator (𝑆𝑉𝐼) , and school zone density 

(𝑆𝑍𝐷). The number of resources allocated to each neighborhood is then assigned to tasks based 

on their metric values. 
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Because each site will have a value for each of the three metrics, Equation (6-2) evaluates the 

relative enforcement need of a site 𝑚 included in neighborhood 𝑛, 𝑊𝑚
𝑛, with respect to the three 

metrics. The weighted sum of these three metrics is shown in Equation (6-2). 

𝑊𝑚
𝑛 = 𝑤𝐸𝑃𝐾 ∙ 𝐸𝑃𝐾𝑚 + 𝑤𝑆𝑉𝐼 ∙ 𝑆𝑉𝐼𝑚 + 𝑤𝑆𝑍𝐷 ∙ 𝑆𝑍𝐷𝑚,∀𝑚 ∈ 𝑀𝑛, ∀𝑛 ∈ 𝑁

(1) (6-2) 

Where: 

 𝑊𝑚
𝑛 = weight of enforcement site 𝑚 in neighborhood 𝑛 

 𝐸𝑃𝐾𝑚 = EPDO collision frequency per kilometer (km) for site 𝑚 

 𝑆𝑉𝐼𝑚 = speed violation indicator for site 𝑚 

 𝑆𝑍𝐷𝑚 = number of school zones for site 𝑚 

 𝑤𝐸𝑃𝐾 = weight of 𝐸𝑃𝐾 

 𝑤𝑆𝑉𝐼 = weight of 𝑆𝑉𝐼 

 𝑤𝑆𝑍𝐷 = weight of SZD 

The relative importance (or weight) of each criterion—𝑤𝐸𝑃𝐾, 𝑤𝑆𝑉𝐼, and 𝑤𝑆𝑍𝐷—are taken from the 

objective function value of the neighborhood-level deployment plan (Stage 1 results). Decision 

makers chose a neighborhood-level deployment plan from a set of options resulting from the MRA 

model, which includes the weights placed on each of the three objectives. These weights are then 

used in this MRS model (Stage 2), in Equation (6-2). However, the individual metric values (𝐸𝑃𝐾𝑚, 

𝑆𝑉𝐼𝑚, and 𝑆𝑍𝐷𝑚) are different units. Therefore, if they are to be used in Equation (6-2), each 

variable requires normalization. 

After completing the calculation of enforcement need for each site 𝑚, 𝑊𝑚
𝑛, the relative weight of 

a task in a neighborhood is calculated using Equation (6-3). 

 𝑊𝑗
𝑛 = ∑ 𝑊𝑚 × 𝑐𝑚𝑗

𝑚∈𝑀𝑛

,∀𝑗 ∈ 𝐽𝑛, ∀𝑛 ∈ 𝑁
(1) (6-3) 

where: 

 𝑊𝑗
𝑛 = weight of task 𝑗 in neighborhood 𝑛 
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Equation (6-3) computes a weight 𝑊𝑗
𝑛 for the 𝑗𝑡ℎ task in 𝑛 by taking the sum of the product of 𝑊𝑚

𝑛 

and 𝑐𝑚𝑗. If site 𝑚 is used in task 𝑗, then 𝑐𝑚𝑗 = 1; otherwise it is 0). 

Finally, the number of shifts allocated to neighborhood 𝑛 , 𝑥𝑛 , is apportioned between all 

enforcement tasks identified in the neighborhood (Equation (6-4)). The allocation to tasks is 

computed based on the relative weight of task 𝑗 (𝑊𝑗
𝑛 as defined in Equation (6-3)) compared to 

the sum of the weights of all tasks in the neighborhood. The higher the weight of task 𝑗, the more 

shifts 𝑥𝑗
𝑛 will be allocated to it. 

 𝑥𝑗
𝑛 =

𝑊𝑗
𝑛

∑ 𝑊𝑗
𝑛

𝑗∈𝐽𝑛

⋅ 𝑥𝑛, ∀𝑗 ∈ 𝐽𝑛, ∀𝑛 ∈ 𝑁
(1) (6-4) 

where: 

 𝑥𝑗
𝑛 = number of monthly shifts allocated to candidate task 𝑗 in neighborhood 𝑛  

 
𝑥𝑛 = 

number of monthly shifts allocated to neighborhood 𝑛 as determined in 

Stage 1 

6.2.2 Binary Integer Program 

After 𝑥𝑗 (the number of shifts allocated to candidate task 𝑗) is calculated using Equation (6-4), it is 

then input into the scheduling model as a fixed parameter. According to the neighborhood-level 

deployment plan results, we observed that some neighborhoods were assigned only a few shifts 

over the course of one month (and possibly only one). For these low intensity neighborhoods, a 

shift from the 𝑥𝑗
𝑛  set may be assigned to almost any day. Without knowing the program 

requirements for which day the shift is assigned, we create a 'unified' schedule for all city 

neighborhoods. 

We used a binary integer program (BIP) to determine the sequence of daily shifts that minimize 

consecutive shift visits to the same location visit task (in consideration of the enforcement time 

halo). 

The BIP formulation is presented in Equations (6-5)-(6-8). 
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Decision Variables: 

 𝑥𝑖𝑗 = {
1 𝑖𝑓𝑣𝑖𝑠𝑖𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑎𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑣𝑖𝑠𝑖𝑡𝑡𝑎𝑠𝑘𝑗𝑖𝑛𝑠ℎ𝑖𝑓𝑡𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Objective Function: 

 𝑚𝑖𝑛∑∑𝑐𝑖𝑗𝑥𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 (6-5) 

Subject to: 

 𝑑𝑙𝑖 ≤  ∑𝑥𝑖𝑗

𝐽

𝑗=1

≤ 𝑑𝑢𝑖 ,∀𝑖 = 1… 𝐼 (6-6) 

 ∑𝑥𝑖𝑗

𝐼

𝑖=1

= 𝑥𝑗,      ∀𝑗 = 1… 𝐽 (6-7) 

 𝑥𝑖𝑗 ∈ {0,1},𝑖 = 1… 𝐼, 𝑗 = 1… 𝐽 (6-8) 

Where: 

 𝑖 = shift index, 𝑖 = 1, … , 𝐼 

 𝑗 = task index, 𝑗 = 1,… , 𝐽 

 𝐼 = total number of shifts of the given month 

 𝐽 = total tasks identified across all neighborhoods, 𝐽 = ∑ 𝐽𝑛𝑛∈𝑁(1)  

 𝑥𝑖𝑗 = 1 if visit occurs at location visit task 𝑗 in shift 𝑖, and 0 otherwise 

 𝑐𝑖𝑗 = cost of allocating an operator visit at task 𝑗 in shift 𝑖 

 𝑑𝑙𝑖 = minimum number of visits required for shift 𝑖 

 𝑑𝑢𝑖 = maximum number of visits allowed for shift 𝑖 

 
𝑥𝑗
𝑛 = 

number of monthly shifts allocated to candidate task 𝑗 in neighborhood 𝑛, 

defined in Equation (6-4) 

We use Equations (6-5)-(6-8) to construct a table where the rows represent shifts over a month, 

and columns represent the tasks determined in the preprocessing step (Section 6.2.1.1). Binary 

variables 𝑥𝑖𝑗 take value one if task 𝑗 is visited by an operator in shift 𝑖, and 0 otherwise. Each 
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column of the table, 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝐼𝑗)
𝑇, shows in which shifts a task will be visited in the 

month. 

Equation (6-5) is used to find the minimum cost of allocating operator visits to tasks and shifts. 

Cost 𝑐𝑖𝑗  (used in (6-5)) is calculated using Equation (6-9) to penalize repeated visits (in 

consecutive shifts) to the same task, considering the enforcement time halo effect. Cost functions 

on goals other than time halo violations can be specified as well, if there are other program goals 

to be considered. 

 𝑐𝑖𝑗 = ∑ 𝑥[1+(𝑖−1)𝑚𝑜𝑑𝐼]𝑗

𝑖+𝑡−1

𝑖

∀𝑖, 𝑗 (6-9) 

Where: 

 𝑡 = number of consecutive shifts over which time halo effects are observed 

 𝑚𝑜𝑑 = remainder of 1 + (𝑖 − 1) divided by 𝐼 

 𝐼 = total number of shifts in month 

Let 𝑡 denote the duration of the time halo after enforcement, represented by number of consecutive 

shifts. In this 𝑡-shift time halo, more than two visits are considered a violation of the time halo 

(and therefore, inefficient). For a feasible schedule of shifts to tasks, we count the frequency of 

visits in 𝑡 shifts as the cost of time halo violation, as illustrated in Equation (6-9). For example, if 

𝑡 is 3, when the task’s visiting sequences occurred in three patterns described as “XOX” or “XXX” 

or “XXO”, they are considered a violation, and their cost are 2, 3, 2, respectively. The more 

frequently the same task (i.e., set of sites) is visited during 𝑡 shifts, the greater the penalty cost will 

be. In addition, since Equation (6-9) sums the number of visits allocated within a window of length 

𝑡 over each shift 𝑖, higher costs are assigned to successive visits. 

When calculating 𝑐𝑖𝑗, we connect the first and last rows of the schedule to form a closed loop, 

calculating the cost of the last 𝑡 − 1 shifts using a sliding window of length 𝑡. Equation (6-9) 

implements this by expressing the row index as a function of 𝑖. Specifically, the row index is 

represented as 1 plus the remainder of 𝑖 − 1 divided by 𝐼, where 𝑖 iterates from 𝑖 to 𝑖 + 𝑡 − 1. For 
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example, suppose 𝑡 = 2 and 𝐼 = 3, the cost of the element in the last row (𝑖 = 3) and the 𝑗th 

column on the schedule, 𝑐3𝑗, equals to 𝑥3𝑗 + 𝑥1𝑗 from Equation (6-9).  

Equation (6-6) limits the total visits that occur in shift 𝑖 to the range [𝑑𝑙𝑖, 𝑑𝑢𝑖], because there are a 

limited number of operators working in each shift per day. Equation (6-7) ensures that the total 

visits assigned to task 𝑗  is equal to the fixed value 𝑥𝑗  previously obtained in Equation (6-4). 

Equation (6-8) is the binary constraint on the variable 𝑥𝑖𝑗.  

Equations (6-5)-(6-8) schedule operator shifts to their corresponding tasks (sets of sites). Hence, 

Equation (6-9) computes penalty costs based on evaluating time-halo violations at task level, rather 

than by individual sites. Depending how the site set is determined, the model will not account for 

site-level violations. However, Edmonton neighborhoods are quite small in geographic coverage, 

and MPE operator presence will be felt throughout a neighborhood through a distance halo effect; 

in other words, enforcement halos go beyond individual sites.  

6.3 A DANTZIG-WOLFE DECOMPOSITION AND COLUMN GENERATION 

APPROACH 

The BIP problem of Equations (6-5)-(6-8) is a variant of the generalized assignment problem. The 

generalized assignment problem (Gottlieb & Rao, 1990) is a classic optimization problem that 

minimizes the cost involved in assigning a set of agents to perform a set of tasks. As it is NP-hard, 

the computation time for solving BIP grows exponentially as the size of the solution space (𝐼, 𝐽) 

increases. This section describes a method for solving Equations (6-5)-(6-8) using the Dantzig-

Wolfe decomposition and column generation algorithms.  

6.3.1 Dantzig-Wolfe Decomposition 

To solve the BIP, we first use the Dantzig-Wolfe approach to reformulate it as a master problem. 

To do this, Dantzig-Wolfe treats Equation (6-7) and Equation (6-8) as 𝐽 sub-problems. Equation 

(6-7) gives the number of monthly visits assigned to individual enforcement location visit tasks, 

whereas Equation (6-8) specifies binary variables.  𝐽 is the number of all tasks. They are handled 

separately because enforcement tasks are mutually exclusive, as such scheduling visits to each task 

individually is more efficient than scheduling them together. For any task 𝑗 ∈ 𝐽 , assume all 
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possible schedules (that distribute 𝑥𝑗 visits within 𝐼 shifts) determined by Equations (6-7) and (6-8) 

are known, and there are 𝐾𝑗 schedules. Let S𝑗 = {𝑥𝑗
1, 𝑥𝑗

2, … , 𝑥
𝑗

𝐾𝑗} denote a complete enumeration 

of the feasible shift schedules for task 𝑗. Each element of S𝑗  is a feasible solution (column) to 

Equations (6-7) and (6-8).  

Then, we use Equations (6-10)-(6-12) to rewrite 𝑥𝑖𝑗 from Equations (6-5)-(6-8), by introducing a 

new binary variable 𝜆𝑗
𝑘. 𝜆𝑗

𝑘 = 1 when the 𝑘-th column in S𝑗 is selected, otherwise 𝜆𝑗
𝑘 = 0. 

 𝑥𝑖𝑗 =∑𝜆𝑗
𝑘

𝐾𝑗

𝑘=1

𝑥𝑖𝑗
𝑘  (6-10) 

 

 ∑𝜆𝑗
𝑘

𝐾𝑗

𝑘=1

= 1,∀𝑗 = 1… 𝐽 (6-11) 

 𝜆𝑗
𝑘 ∈ {0,1},𝑘 = 1…𝐾𝑗 , 𝑗 = 1… 𝐽 (6-12) 

Equation (6-10) represents variable 𝑥𝑖𝑗 as a convex combination of the elements that are positioned 

in the 𝑖-th row of the feasible columns in 𝑆𝑗. Equation (6-11) is the convexity constraint that forces 

the sum of 𝜆𝑗
𝑘 over 𝑘 to be equal to one, and Equation (6-12) states 𝜆𝑗

𝑘 is binary.  

Substituting Equations (6-10)-(6-12) into Equations (6-5)-(6-8) results in Equations (6-13)-(6-16).  

Master Problem (MP) 

Decision Variables: 

 
𝜆𝑗
𝑘 = {

1 𝑖𝑓𝑠ℎ𝑖𝑓𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑥𝑗
𝑘 𝑖𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑓𝑜𝑟𝑡𝑎𝑠𝑘𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Objective Function: 

 𝑚𝑖𝑛∑∑(∑𝑐𝑖𝑗

𝐼

𝑖=1

𝑥𝑖𝑗
𝑘) 𝜆𝑗

𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

 (6-13) 
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Subject to: 

 𝑑𝑙𝑖 ≤  ∑∑𝑥𝑖𝑗
𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

𝜆𝑗
𝑘 ≤ 𝑑𝑢𝑖 ,∀𝑖 = 1… 𝐼 (6-14) 

 

 ∑𝜆𝑗
𝑘

𝐾𝑗

𝑘=1

= 1,∀𝑗 = 1… 𝐽 (6-15) 

 

 𝜆𝑗
𝑘 ∈ {0,1},𝑘 = 1…𝐾𝑗 , 𝑗 = 1… 𝐽 (6-16) 

In the master problem (MP), the original BIP objective function (Equation (6-5)) and row 

constraints (Equation (6-6)) are rewritten as Equations (6-13) and (6-14), respectively. The two 

constraints of the original BIP problem (Equations (6-7) and (6-8)) are now included in 𝜆𝑗
𝑘. Note 

that 𝑥𝑖𝑗
𝑘  is no longer a decision variable in Equation (6-13), but is selected from the feasible set (𝑆𝑗) 

determined in the sub-problem corresponding to 𝑗.  

The Dantzig-Wolfe decomposition method reformulates the original problem (Equations (6-5)-

(6-8)) to the master problem using new variable 𝜆𝑗
𝑘. This reformulation is an equivalence operation 

between the original problem and the master problem. The master problem is a set partitioning 

problem (or equality-constraint set covering problem), which is the most widely used formulation 

in integer programming (Balas & Padberg, 1976). Equation (6-15) is the partitioning constraint 

enforcing that only one column in 𝑆𝑗 is selected for task 𝑗. When using a classical branch-and-

bound integer program algorithm to solve the master problem, branching on 𝜆𝑗
𝑘 is equivalent to 

branching on the convex combination of feasible columns for 𝑗. Therefore, tighter bounds can be 

obtained from solving the master problem rather than the original problem (branching on a single 

element of column 𝑗), speeding up the solution process. 

Solving the master problem requires the enumeration of 𝑆𝑗 (the set of all feasible schedules for 

task 𝑗). However, it is unrealistic to enumerate each column in 𝑆𝑗  in many real applications, 
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because the number of shift schedules satisfying Equations (6-7) and (6-8) can be enormous. Thus, 

a column generation approach is applied instead, as described in Section 6.3.2. 

6.3.2 Column Generation 

To help better understand how column generation is applied to Dantzig-Wolfe, Figure 6-2 shows 

the process of using the two algorithms.  

 

Figure 6-2 Process of implementing Dantzig-Wolfe and column generation 

algorithms. 

As mentioned previously, the Dantzig-Wolfe algorithm is used to reformulate the BIP as an MP 

(Figure 6-2, blue box on the left). This is done by defining feasible schedules (columns in the right 

blue box, Figure 6-2) that have been enumerated for individual tasks as variables. However, due 

to the heavy computational effort for enumeration, we use the column generation method (green 

boxes, Figure 6-2) to solve an LP-relaxed master problem in a column pool whose size is restricted. 
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The pool is first generated by an initial set of columns satisfying the constraints from the BIP. 

Then, the pool is expanded by adding a single column identified for each task (the column 

identification is referred to a sub-problem). Column generation moves back and forth between the 

sub-problems and the relaxed master problem until an optimal solution to the relaxed master 

problem is found. The details of this solution process are described below. 

First, instead of solving the master problem (MP) of Equations (6-13)-(6-16) directly, column 

generation handles a restricted linear programming master problem (RLPM), where the MP’s 

decision variable 𝜆𝑗
𝑘 is relaxed to be continuous and the total number of variables for each 𝑗, 𝐾𝑗, is 

restricted to a given number �̂�𝑗. Let 𝜆′𝑗
𝑘
∈ [0,1] denote the relaxed variable, where 𝑘 = 1… �̂�𝑗 <

𝐾𝑗, and𝑗 = 1… 𝐽. Equations (6-17)-(6-21) present the formulation of RLPM using a restricted 

number of continuous variables.  

6.3.2.1 Restricted Linear Programming Master Problem (RLPM) 

Decision variables: 

Objective Function: 

 𝑚𝑖𝑛∑∑(∑𝑐𝑖𝑗

𝐼

𝑖=1

𝑥𝑖𝑗
𝑘) 𝜆′𝑗

𝑘

�̂�𝑗

𝑘=1

𝐽

𝑗=1

 (6-17) 

Subject to 

 ∑∑𝑥𝑖𝑗
𝑘

�̂�𝑗

𝑘=1

𝐽

𝑗=1

𝜆′𝑗
𝑘
≥ 𝑑𝑙𝑖,∀𝑖 = 1… 𝐼 (6-18) 

 −∑∑𝑥𝑖𝑗
𝑘

�̂�𝑗

𝑘=1

𝐽

𝑗=1

𝜆′𝑗
𝑘
≥ −𝑑𝑢𝑖 ,∀𝑖 = 1… 𝐼 (6-19) 

 ∑𝜆′𝑗
𝑘

�̂�𝑗

𝑘=1

≥ 1,∀𝑗 = 1… 𝐽 (6-20) 

 𝜆′𝑗
𝑘
≥ 0,𝑘 = 1… �̂�𝑗 < 𝐾𝑗 , 𝑗 = 1… 𝐽 (6-21) 
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To allow the simplex algorithm to efficiently find feasible solutions, we rewrite the constraint 

matrix of RLPM to single-sided inequality constraints. Equations (6-18) and (6-19) are two single-

sided inequality constraints restated from the two-sided inequality constraint of Equation (6-14). 

Equation (6-20) relaxes the partitioning constraint in Equation (6-15) to covering constraint: from 

selecting exactly one column to at least one column for 𝑗. This relaxation is often done because 

solving the LP relaxation of set covering constraints requires less computational efforts than 

solving the LP relaxation of set partitioning constraints (Albers, 2009). Also, use of Equation (6-20) 

will not produce a different optimal solution than Equation (6-15), as the objective function in 

Equation (6-17) is to minimize, which adds as few schedules as possible to each task. 

6.3.2.2 Initialization of a Feasible Schedule 

To solve RLPM, we begin with an initial schedule (a starting subset of columns) in the column 

generation process (see Figure 6-2). There are different ways to construct the initial schedule. 

Since randomized enforcement activities are shown to produce better safety outcomes than fixed 

schedules ( L. M. W. Leggett, 1997), we initialize our optimization using a randomized schedule.  

Figure 6-3 shows the process of creating the initial schedule. 
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Figure 6-3 Generating an initial subset of columns in RLPM. 

For each task 𝑗 = 1…𝑛, a binary column vector is randomly created whose sum is equal to 𝑥𝑗 

(derived from Equation (6-4)). This column vector contains feasible solutions to Equations (6-7) 

and (6-8). Combining the columns of each task produces a matrix 𝑋𝑖𝑗, which can be a schedule 

(when the initial RLMP solution 𝜆0 selects all columns of the matrix 𝑋𝑖𝑗) if it is feasible to RLPM 

(i.e., row constraints in Equations (6-18) and (6-19) are satisfied). To check the feasibility of 𝑋𝑖𝑗, 

we sum each row of 𝑋𝑖𝑗. Rows that do not satisfy Equation (6-18) or (6-19) are identified, indexed.  

To ensure all the identified rows are feasible, we start with two rows: minimum and maximum 
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row sums, because they have the largest difference from 𝑑𝑙𝑖  and 𝑑𝑢𝑖 , which are the bounds 

specified in Equations (6-18) and (6-19). We swap leftmost zero in the minimum row with the 

leftmost non-zero in the maximum row. In this iterative process, a matrix 𝑋𝑖𝑗 (schedule) feasible 

to RLMP is created. 

After a feasible initial schedule is found, the simplex method (a classic algorithm for solving linear 

programming problems) is used to solve RLPM with the starting schedule. To get the final optimal 

solution and schedule, we search the columns that can replace the current pool, so that the objective 

value of RLPM decreases until no such column exists. This search process, shown in the green 

boxes in Figure 6-2, is elaborated in detail by the following sub-problems (Equations (6-22)-

(6-24)).  

6.3.2.3 Sub-Problems (SPs) 

Decision Variables: 

 𝑥𝑖𝑗 = {
1 𝑖𝑓𝑣𝑖𝑠𝑖𝑡𝑜𝑐𝑐𝑢𝑟𝑠𝑎𝑡𝑡𝑎𝑠𝑘𝑗𝑖𝑛𝑠ℎ𝑖𝑓𝑡𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Objective Function: 

 𝑚𝑖𝑛∑(𝑐𝑖𝑗 − 𝜇𝑖 + 𝑣𝑖)

𝑖=𝐼

𝑖=1

𝑥𝑖𝑗 − 𝜔𝑗 ,∀𝑗 = 1… 𝐽 (6-22) 

Subject to 

 ∑𝑥𝑖𝑗

𝐼

𝑖=1

= 𝑥𝑗 ,∀𝑗 = 1… 𝐽 (6-23) 

 𝑥𝑖𝑗 ∈ {0,1},𝑖 = 1… 𝐼, 𝑗 = 1… 𝐽 (6-24) 

Equation (6-22) minimizes the reduced cost of a feasible column (𝑥1𝑗, … , 𝑥𝐼𝑗)
𝑇 for task 𝑗. The 

reduced cost of an additional column is the marginal unit deduction in the objective function value 

of RLPM. When replacing current columns with new ones found with negative reduced costs, the 

objective value of RLMP is further reduced. The reduced cost is computed using the optimal dual 
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solutions obtained each time RLPM is solved with the current matrix. The optimal dual solution 

is the optimal solution to the RLPM dual problem, which represents each constraint of RLPM as 

a variable. Equation (6-22) expresses the dual solutions corresponding to constraints of RLMP 

Equations (6-18), (6-19), and (6-20) using 𝜇𝑖, 𝑣𝑖, and 𝜔𝑗, respectively. Equations (6-23) and (6-24) 

ensure that (𝑥1𝑗, … , 𝑥𝑚𝑗)
𝑇 satisfies the conditions for a feasible shift schedule. Note that because 

𝑐𝑖𝑗 is a function of 𝑥𝑖𝑗 as per Equation (6-9), the objective function in Equation (6-22) contains 

quadratic terms. With linear constraints in Equation (6-23), the sub-problems (Equations (6-22)-

(6-24)) can be solved by quadratic programming. 

In each iteration, column generation compares the optimal value 𝑍(𝑆𝑃𝑗) obtained between the sub-

problems and identifies the column with the lowest 𝑍(𝑆𝑃𝑗)  value. If 𝑍(𝑆𝑃𝑗) < 0, this column is 

added to the current column pool of RLMP for re-optimization until all 𝑍(𝑆𝑃𝑗) ≥ 0.  

The optimal solution of RLMP is usually fractional but does provide a tight bound to the master 

problem (equivalent to BIP). We re-optimize RLPM containing the final column pool using integer 

variables to quickly find an approximate solution for BIP. 

6.4 APPLICATION AND RESULTS 

The BIP model (Sections 6.2-6.2) is applied to generate a schedule for a September 2014 candidate 

neighborhood-level deployment plan. We first input a neighborhood-level allocation from the 

MRA model; solution #5 was chosen from the results in Figure 5-4. The enforcement location visit 

tasks in the 44 neighborhoods identified in the September 2014 Edmonton MPE deployment are 

created. The shifts allocated to these 44 neighborhoods are then distributed to tasks within each 

neighborhood. Finally, since each day has two shifts, the shifts paired with specific tasks are 

scheduled to either morning or afternoon shifts in the 30 days of September 2014. 

6.4.1 General Results 

The scheduling model is implemented using MATLAB and CPLEX, on an OS X with a 1.6 GHz 

Intel® Core i5 processor. MATLAB R2015b is first used to solve Equations (6-1)-(6-4), in order 

to complete the two resource assignment steps described in Sections 6.2.1. The data used for model 

parameter estimation was introduced in Section 3.2. In addition, we set parameter 𝑑 in Equation 
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(6-1) – the average of number of sites per shift in September 2014 – to 3. Consequently, using 

Equation (6-1) we identified 203 possible tasks from the 44 neighborhoods chosen for enforcement 

in Stage 1. Weights 𝑤𝐸𝑃𝐾, 𝑤𝑆𝑉𝐼, and 𝑤𝑆𝑍𝐷 in Equation (6-2) are taken from Solution #5 on Figure 

5-4, which returned objective function values of 𝐸𝑃𝐾 = 3441, 𝑆𝑉𝐼 = 248, and 𝑆𝑍𝐷 = 797. The 

metrics were normalized to be within [0,1] using these weights. These normalized values are 

entered into Equation (6-2) to calculate the weights for each enforcement site, and then these 

weights are used in Equation (6-3) to calculate weights for tasks. Then, we use Equation (6-4) to 

split a monthly total of 458 shifts between tasks. Only 145 of the 203 identified tasks have been 

assigned shifts; thus, these 𝐽 = 145 tasks and their received shift allocations 𝑥𝑗∈𝐽 are input into the 

BIP model.  

Task #77 (three sites in the Strathcona neighborhood, shown in blue in Figure 6-5), was allocated 

69 shifts (𝑥77 = 69) in the above step. This frequency exceeds the maximum 𝐼 = 60 shifts during 

a month (2 shifts per day for 30 days). Given the BIP model assumes that the same task cannot be 

assigned to a shift more than once, we force the number of shifts assigned to this task to 60. Thus, 

we have decreased the total number of shifts in September 2014 from 458 to 449. The constraint 

of the BIP on the maximum number of shifts (i.e., 60 over one-month period) should be added to 

the 1st stage neighborhood-level resource allocation (MRA model). Hence, the 2nd stage resource 

scheduling (MRS model) will be abided by the constraint directly as part of the pervious stage 

optimization. 

Then, to solve the scheduling problem (BIP, Equations (6-5)-(6-9)), we programmed an instance 

of a restricted linear programming master problem (RLPM, Equations (6-17)-(6-21)) and its 

associated sub-problems (SPs, Equations (6-22)-(6-24)) in MATLAB and CPLEX. The instance 

determines the sequence of the 449 shifts assigned to 145 tasks within 30 days, while a 5-day time 

halo is considered (𝑡 = 10 consecutive morning and afternoon shifts in Equation (6-9)). The 

reason for considering the 5-day time halo has been stated in Section 3.2. The instance was solved 

in 2.4 hours and an optimal solution for RLPM was found. The solution contains fractional values 

so the RLPM is re-optimized by solving integer variables in the column pool lastly generated. An 

optimal integer solution to the re-optimization problem was found in 0.1 seconds, which is taken 

as the approximate solution to BIP. Although reducing computational time should be a future 
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priority, we feel it is reasonable given that our model solves the MPE scheduling problem for an 

entire month. Shorter time halos would allow for faster solution generation.  

A sample of the schedule from the approximate solution is given in Figure 6-4. The schedule has 

been transposed into the sample of resulting schedule in Figure 6-4, with tasks on the rows and 

daily shifts (M = morning, A = afternoon) on the columns. “X” indicates a shift during which visits 

were made to a neighborhood task (with included sites identified). For example, task # 53 was 

visited twice in a month, in the morning shift of Day 4 and the morning shift of Day 27. This task 

is composed of three enforcement sites #10073, #10091, and #10866, which are located in the 

neighborhood of Queen Mary Park.  

Task No. Neighborhoods 

Days and Shifts 

Enforcement            
Site No. 

D1 D2 D3 D4 D5 … D26 D27 D28 D29 D30 

M A M A M A M A M A … M A M A M A M A M A 

… … … … … … … … … … … … … … … … … … … … … … … … … … 

53 
Queen Mary 

Park 
10073 10091 10866       X    …   X        

… … … … … … … … … … … … … … … … … … … … … … … … … … 

134 
Terrace Heights 

5185 10214 10534     X      …           

135 5185 10218 10534    X       …           

… … … … … … … … … … … … … … … … … … … … … … … … … … 

Figure 6-4 Sample of the resulting schedule. 

The final output schedule assigns visits at different frequencies. The most frequently visited task 

is visited each day of the month, whereas the least frequent is only visited once. We do not specify 

that sites must be visited for the same durations or in the same order during a shift, such that 

variations of both can contribute to the perception of enforcement randomness. 

6.4.2 Time Halo Violation Analysis 

The optimal objective value of Equation (6-17) is 1263, indicating that the schedule shown in 

Figure 6-4 produced a total of 1263 cost units due to violations of the 5-day time halo. This value 

is 14% lower than the objective value obtained using the initial solution (i.e., a randomly generated 

schedule). This objective value gap shows that by using the time halo of enforcement, the schedule 

obtained after optimization is more efficient than a randomly-generated schedule. 
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Visits assigned to 80 out of 130 sites (included in the 145 tasks) have violated the 5-day time halo. 

Figure 6-5 shows the locations of these 80 sites and their neighborhoods. Most violations occur in 

the neighborhoods that received medium and high enforcement intensities (marked as yellow and 

red polygons) as determined by the first stage allocation (MRA model). Only three low intensity 

neighborhoods (green polygons) had sites with time halo violations. Because neighborhoods 

warranting high enforcement attention are allocated a large number of visits in Stage 1, these 

neighborhoods are also more likely to have time halo violations. 

Among all the violating visits, the most common case is when a site is visited twice within 10 

shifts (5 days). This case occurred a total of 610 times (501 non-successive visits and 109 

successive visits), and they mainly occurred at 48 sites represented by grey lines in Figure 6-5. 

Each site was visited seven times on average over a month. In scheduling seven visits in 60 shifts, 

with a 10-shift time halo, it is highly likely that violations will occur.  
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Figure 6-5 Task locations with shift schedule violating the time halo effect, 

Edmonton. 
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A high number of time halo violations (three or four consecutive visits) occurred at 24 sites (green 

lines in in Figure 6-5), at an average of two such visits per site. Each of these 24 sites was assigned 

an average of 16 visits, which is twice the average of the 48 locations shown above. These locations 

were allocated high intensity enforcement attention because they are in neighborhoods with 

average 𝑆𝑉𝐼(percentage of vehicles violating speed limits) and 𝑆𝑍𝐷 (number of schools per sq.km) 

62% and 1.7, respectively – 30% higher than neighborhoods of the 48 sites above. 

There are eight sites (blue lines in Figure 6-5) where frequent five to ten consecutive visits are 

observed. Sites #5291, #5292, #10299 and Sites #10040, #10257, #10527 are the only enforcement 

sites in Strathcona and Yellowhead Corridor East, respectively. Strathcona is a central Edmonton 

neighborhood, with an average of 12.2 EPDO/km (𝐸𝑃𝐾) and 1.9 𝑆𝑍𝐷. The Yellowhead Corridor 

East neighborhood, containing a section of the Yellowhead Expressway on which frequent 

speeding occurs, experienced an average of 16.6 𝐸𝑃𝐾 and 75% 𝑆𝑉𝐼. The two neighborhoods were 

assigned 60 and 40 visits, which are further allocated to their only enforcement sites that were 

formed into a single location visit task. Consequently, visits assigned to these two neighborhoods 

repeated 10 and six times on average during each 10 shifts. Another two sites (Sites #21121 and 

#21336) in Kilkenny and Lendrum Place were assigned high intensity enforcement, with 56 and 

40 shifts in one month, respectively. Kilkenny’s average 𝑆𝑍𝐷 and 𝑆𝑉𝐼 values were 2.9 and 56%, 

while Lendrum Place’s were 3.5 and 64%. Sites #21121 and #21336 are visited 31 and 27 times 

over the month, respectively. The highest repetitions are found to be six consecutive visits during 

10 shifts. 

Repeat visits at sites are assigned because they are deemed necessary by the metrics and models 

used. As mentioned in the formulation of BIP, Section 6.2.2, our model schedules visits for tasks 

and calculates time halo violations at a task rather than individual site level. Hence, it does not 

consider cases when two tasks that contain several of the same enforcement sites are scheduled for 

visits in successive shifts. For instance, the Terrace Heights neighborhood in Figure 6-4 contains 

sets #134 and #135, both of which contain enforcement sites #5185 and #10534. They are visited 

sequentially in the Day 2 afternoon shift and Day 3 morning shift. This sequential visit violates 

the 5-day enforcement time halo from a site-level perspective. This type of violation occurred at 

35 sites (9 neighborhoods), and they constitute about half of the 109 two-shift consecutive visits 
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discussed above. Future work is needed to improve the way in which the tasks in a neighborhood 

are selected, thereby reducing duplication between sites in the same task. 

6.5 SENSITIVITY ANALYSIS 

In our scheduling model, the enforcement time halo duration (𝑡) is critical to model outcomes and 

computational time. Therefore, we explored the results of five values of 𝑡. The last row of Table 

6-1 (where 𝑡 = 10  shifts) corresponds to the results we have presented and explored in the 

previous section. 

Table 6-1 Results for Varying Enforcement Time Halo Duration 𝒕 

Time Halo 
Duration 𝒕 

(shifts) 

Days 
represented 

by 𝒕 

Objective Value of RLMP 𝒁  
Total 

Computation 
Time (min) Initial 

Solution 𝝀𝟎 
Optimal 

Solution   𝝀 
Gap 

2 1 556 529 5% 5.3 

4 2 782 696 11% 9.7 

6 3 990 878 11% 23.1 

8 4 1203 1069 11% 67.8 

10 5 1477 1263 14% 141.6 

 

Columns 3 and 4 of Table 6-1 show objective value 𝑍  for the initial solution 𝜆0  and the 

approximate optimal solution 𝜆, while Column 5 shows the gap between 𝜆0  and 𝜆. The final 

column shows the total computation time (in minutes) to reach solutions.  

As seen from Table 6-1, when 𝑡 increases from 2 to 10, the difference between 𝑍(𝜆0) and 𝑍(𝜆) 

increases from 5% to 14%. This suggests that the solution 𝜆 is better than a randomly generated 

schedule (i.e., the initial generated solution 𝜆0) for all values of the time halo seen.  

The computational time is highly sensitive to 𝑡 , growing exponentially with 𝑡  as expected. 

Specifically, when 𝑡 = 2 shifts, an approximate integer solution can be found in about 5 minutes. 

If 𝑡 ≤ 6 shifts, solution times are below 25 minutes. However, when 𝑡 = 8, solution time exceeds 

one hour. Increasing 𝑡 from 8 to 10 resulted in doubled computational time. The exponential 

relationship between 𝑡 and the solution time is because the model enumerates the possible visits 
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to be made in the next 𝑡 − 1 shifts after each visit assignment to a shift. The larger 𝑡 is, the greater 

the number of possible visit schedules will be in 𝑡 shifts. 

6.6 SUMMARY 

This chapter describes the MRS model that determines where and when enforcement resources 

should be assigned, using the results of the neighborhood-level resource allocation model (MRA 

model, Chapter 5). Both models use optimization techniques for the purpose of generating MPE 

deployment plans that account for program goals and resource constraints. The MRS model 

introduced in this chapter, in conjunction with the MRA model of Chapter 5, provides a tool for 

MPE agencies to systematically and efficiently allocate and schedule limited resources, and 

ultimately meet their goals of improving road safety.  

The MRS model was implemented using a case study of the Edmonton MPE program. Model 

inputs include the neighborhood-level enforcement resource allocation determined in the previous 

MRA model for September 2014. This model produces a varied schedule of 449 operator shifts 

throughout the morning and afternoon shifts in the month. Compared to a randomly generated 

schedule, the model is 14% more efficient based on the three metrics used, while minimizing 

resource scheduling conflicts considering a 5-day time halo effect.  

Enforcement visits to 60% (80 sites) of the 130 studied sites violated the 5-day time halo. The 

intensity of violations (i.e., number of consecutive visits) increases as the number of visits assigned 

to an enforcement location increase. 24 locations that are assigned an average of 16 monthly visits 

end up with 3-4 consecutive visits. Another eight locations have been assigned a much higher 

number of monthly visits (40-60 visits). Consequently, in these locations, 5 to 10 visits occur every 

10 shifts, heavily violating time halos. However, some enforcement sites do require frequent visits 

given safety considerations and specific program needs as determined by model metrics.  

The calculation time of the model increases exponentially with time halo 𝑡, measured in shifts. For 

the Edmonton case study presented, when 𝑡 is less than six shifts, the model can be solved in about 

20 minutes. Above this value, the solution time is increased to hours. It is recommended that more 

empirical studies of time and distance halos in Edmonton be conducted.  
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7 CONCLUSIONS 

This chapter concludes the thesis by summarizing the research work, key findings and 

contributions, as well as research limitations and future work. 

7.1 RESEARCH OVERVIEW 

The decision-making process for deploying an MPE program has been a black box; the process of 

how deployment objectives are mapped to deployment decisions has lacked evidence-based 

decision support, leading to extensively-documented suspicion and misunderstanding of MPE 

programs by the public. Despite this, little attention has been paid in the literature to how to allocate 

MPE resources according to program goals. Therefore, we have constructed a quantitative and 

systematic resource allocation model for MPE programs, in order to assist enforcement agencies 

in identifying efficient resource allocation plans while considering a set of program goals and 

resource constraints.  

Because deploying MPE programs involves both spatial and temporal resource allocations, our 

model uses a decomposition-based optimization procedure to solve the resource allocation and 

scheduling problems in two stages. This decomposition makes the two problems tractable 

(solvable in polynomial time) for realistic instances. Prior to these two optimization stages, we 

also presented a set of quantitative measures to assess the degree of attaining problem-level 

objectives required by operational MPE program guidelines. 

Our resource allocation model uses multi-objective optimization to maximize coverage of city 

neighborhoods that have shown high enforcement demands in relation to a set of considered 

deployment objectives, by one month’s worth of operator work shifts. Since the Pareto solution 

set generated by a multi-objective optimization algorithm may be relatively large, the decision to 

select a solution in the set becomes difficult. To facilitate this decision, 𝐾-mediods is applied to 

reduce the solution size and a polynomial function is formed to quantify the tradeoffs between 

solutions in the set.  
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The scheduling model builds on the results of the neighborhood-level allocation model. It matches 

operators’ work shifts to enforcement location visit tasks (sets of a given number of enforcement 

sites) in each neighborhood, and then determines monthly work shift schedules for operators to 

visit the locations included. Integer programming is employed to determine daily shift sequences 

of operator visits—specifically, we minimize the number of visits scheduled in a shift sequence 

that violate the enforcement’s time halo. To solve large MPE scheduling instances, we 

reformulated the model using the Dantzig-Wolfe decomposition and solved it by column 

generation. 

We apply the model to an MPE program in Edmonton, Alberta, Canada. The deployment results 

determined by the two-stage model are visualized using Geographic Information Systems (GIS). 

The results are also compared to the actual MPE program operations.  

7.2 RESEARCH FINDINGS 

The use of MPE technology is typically governed by automated speed enforcement guidelines that 

specify deployment priorities related to road safety outcomes. Six priorities are often highlighted 

in the guidelines, and they are high collision sites, high speed violation sites, school zones, 

construction zones, high pedestrian volume sites, and sites with community speeding complaints. 

Increasing enforcement at these priority sites is one concrete means of implementing the multi-

national Vision Zero road safety strategy, which aims to completely eliminate serious traffic 

injuries and deaths through transportation system design and government interventions. 

A spatial analysis of Edmonton’s five-year (2010-14) historical data using GIS show that the city’s 

MPE program addressed all the six priorities with varying degrees of attention. Because reducing 

speeding vehicles is a direct goal of implementing the MPE program, high speed violation sites 

were assigned the longest enforcement time (a total of 800 hours per site) during the five-year 

study period, compared to other priorities. In addition, school zones gained the largest program 

coverage (84%) over five years, considering that school children are the most vulnerable road users. 

The resource allocation model developed in this thesis found optimal allocation solutions for a 

demonstrated 3-objective MPE deployment problem in Edmonton. The problem balanced 

enforcement presence in September 2014 at high collision sites, high speed violation sites, and 
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school zones. Each optimal solution corresponds to a set of values for enforcement coverage units 

at three types of sites. Choosing a solution represents a decision that gives a quantitative trade-off 

between the three goals. A candidate solution was further visualized on a GIS map, which assigned 

248, 797, and 3441 enforcement coverage units to high speed violation sites, school zones, and 

high collision sites, respectively. This candidate solution allocates one month's shifts to 44 

neighborhoods, achieving higher enforcement coverage than the actual deployment in September 

2014, with 11%, 34%, and 18% more coverage units at high speed violation sites, school zones, 

and high collision sites, respectively. This suggests that using our optimization model produces 

greater efficacy in achieving program objectives than the expert defined approach. 

The tradeoff rate between any pair of objectives calculated at an example solution indicates that 

reducing one unit of enforcement coverage in school zones can increase the coverage of 7.8 units 

at high speed violation sites or increase the coverage of 0.2 units at high collision sites. 

Alternatively, sacrificing one unit of coverage at high speed violation sites will compensate 0.02 

units of coverage at high collision sites. These pairwise tradeoff values (contingent on the 3rd 

objective’s set value) can provide useful information and insights to MPE program decision 

makers when making a tradeoff decision between more than one program objective.  

The scheduling optimization model created a timetable for a candidate neighborhood-level 

resource allocation solution. One month’s shifts were allocated to 145 neighborhood tasks and 30 

days of the month. The created timetable is 14% more resource-efficient than a randomly 

established enforcement schedule. 60% of the sites were assigned visits violating the 5-day time 

halo. Violations at these sites are necessary to maintain enforcement coverage of high collision 

sites and high speed violation sites at certain units, which are determined in the neighborhood-

level resource allocation stage. 

7.3 RESEARCH CONTRIBUTION 

This thesis contributes to both academic research and practice in speed enforcement. The details 

of these two aspects are discussed in the following sections. 
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7.3.1 Academic Contributions 

This thesis presents a systematic and quantitative deployment model for MPE programs. The 

model employs decomposed-optimization techniques to solve MPE resource allocation and 

scheduling problems sequentially. This is the first time in the literature that such a model is 

proposed to allocate enforcement operators and equipment in speed enforcement programs.  

Metrics are designed and used in our model to quantify the interpretation of official guidelines on 

where enforcement operators should be deployed to reach high-level, safety-oriented MPE goals. 

Through this work, the deployment results from the model can be strictly consistent with the 

guidelines and MPE program goals.  

The first stage MRA model builds on a maximum covering location model to maximize 

enforcement coverage of demands associated with program goals. In addition, multi-objective 

linear program is employed to simultaneously consider multiple goals without predefined weights 

assigned to each goal. The model produces a set of solutions with posteriori weights, allowing 

MPE agencies to choose based on their considerations and preferences toward the tradeoff between 

goals. Additionally, it produces a city-wide neighborhood-level deployment plan, which can then 

be used for detailed resource scheduling (assigning shifts to enforcement locations). 

Clustering and response surface methods are demonstrated to analyze the resource allocation 

solutions (Pareto-optimal solutions) obtained from the multi-objective MRA model. A large set of 

resource allocation solutions is reduced to a limited number of clusters whose center solutions are 

used as representative decision options. A polynomial model is established to produce the tradeoff 

values at any solution between conflicting objectives. The above two post-optimization steps 

greatly reduce agencies’ decision fatigue and improve their judgement by providing quantitative 

objective tradeoffs.  

The second stage MRS model considers the time halo effect of enforcement in the establishment 

of MPE resource schedules. This is the first time in the literature that time halo is utilized to 

improve MPE resource use. The results of our study indicate that considering time halo can 

generate an efficient and dynamic shift schedule. We employed the Dantzig-Wolfe decomposition 

and column generation algorithms to successively solve a large-scale scheduling instance 
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implemented by the MRS model. Before our model, such a large MPE scheduling case has not 

been successfully solved in the literature. 

7.3.2 Practical Contributions 

Since the MRS model considers the high-level program goals set in the allocation model and uses 

the same metrics as the MRA model for quantifying goals, these two models form a systematic 

decision-making framework assisting MPE agencies in addressing high-level program goals by 

efficient usage of limited resources. 

The two-stage model facilitates decisions of the MPE agency in two ways. First, it allows agencies 

to explicitly make resource deployment decisions that directly reflect their high-level program 

priorities. Thus, the model supports a more transparent and defensible MPE resource allocation 

decision-making, in sharp contrast to existing MPE programs that rely on black box (i.e. qualitative, 

expert run) decisions. Second, the model allows agencies to consider multiple enforcement 

objectives simultaneously, and it delivers deployment solutions with quantitative tradeoff 

information among objectives. Traceable and informed decisions about how MPE deployment 

strategies respond to goals can be achieved. 

Then, GIS is used to visualize the spatial resource allocation of an MPE program’s deployment 

strategy and its relation to the achievement of program goals. The mapping of traffic safety data 

and enforcement activities was demonstrated to be an impactful method of organizing the spatial 

information of an MPE program. It can help agencies better interpret the requirements articulated 

in the ASE program guidelines and review their allocation of deployment resources so as to 

increase program efficiency and effectiveness in terms of safety outcomes.  

The MPE deployment is based on multiple urban safety considerations, and sites are not stationary. 

Thus, MPE deployment decisions can be the most difficult resource allocation problem not only 

among automated speed enforcement programs but other automated enforcement activities as well, 

including red light enforcement, impaired driving checkpoints, etc. The approach proposed in this 

thesis is transferrable to other automated enforcement programs across jurisdictions, simply by 

tailoring the high-level program goals and corresponding metrics to local program specifications.  
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7.4 RESEARCH LIMITATIONS AND FUTURE WORK 

Details on our modeling limitations and potential methods of improvement are described as 

follows. 

7.4.1 Limitations of the Research 

The MRA model only considers the three most critical MPE program goals: reducing collisions, 

reducing speed violations, and increasing safety for school children. Although other metrics can 

easily replace these, we have not considered others in this study. 

The key limitation of the MRS model is the application of enforcement time halo effects on groups 

of predetermined sites (referred to shift tasks) rather than individual enforcement sites. The model 

calculates the penalty cost incurred due to time halo violations based on shift tasks in 

neighborhoods. Therefore, the model ignores the cost of some violations that happened at same 

sites included in different site groups. 

7.4.2 Future Research 

To address the above mentioned model limitations, we will first perform a data collection effort to 

identify MRA model metrics associated with program goals that are not considered in this thesis 

but may also be important, such as prioritizing enforcement in construction zones, high pedestrian 

volume sites, and sites with community speeding complaints. Then, we will adjust the MRS 

model’s method of generating enforcement tasks within each neighborhood, to reduce tasks 

containing unnecessary duplications of sites warranting low enforcement needs. 

We also envision some additional future work to complement the use of the two-stage model. First, 

we used clustering techniques to prune the Pareto optimal solutions generated from the MRA 

model to a set of representative solutions. This pruned solution set serves as initial options for 

decision makers to choose from. Future research will explore methods to help decision makers 

choose the final solution by applying clustering techniques to the tradeoff analysis. Second, we 

only solved approximate optimal scheduling solutions. The next step may apply branching 

strategies to determine the integer optimal solution of the MRS model—specifically, by integrating 

the approximate solutions and developing a search tree. In addition, strategies may be investigated 
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to further reduce the solution time of the model. Third, when scheduling resources, we used a fixed 

duration (five days) of enforcement time halo. However, the time halo duration is affected by the 

execution time and frequency of enforcement. To more accurately utilize time halo in schedule, a 

function should be developed to model the relationship between time halo duration and 

enforcement intensity, so that this function can be incorporated into the MRS model. Fourth, there 

is a trade-off between making the most advantage of time halo and implementing enforcement 

goals, because some sites requiring high enforcement attention will receive shift schedules that 

violate enforcement’s time halo. In the future, we will study how to reallocate those violated visits 

that are considered "wasted" during the time halo to non-violation sites. This work will further 

improve the resource utilization in the schedule delivered by the MRS model, while maintaining 

the pre-set model objective values in both optimization stages at a certain level. Finally, because 

enforcement operators must spend part of their shift hours in traveling between enforcement sites, 

current work may also be expanded to develop a resource routing model based on the scheduling 

model results. 

Future model improvement efforts will also include the consideration of more specific project 

operational requirements. For example, resource allocation to some neighborhoods that contain 

the Edmonton’s major expressways may be managed separately due to specific program needs and 

considerations. In addition, school hours should be considered when scheduling enforcement 

resources to school zones. Also, resources will be scheduled to tasks within individual 

neighborhoods given specific operational needs, in contrast to the current MRS model which joins 

all identified location visit tasks of each neighborhood and schedules them at the same time. The 

results provided by the two-stage model should be compared with the existing deployment 

schemes and the random allocation methods.  
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