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Abstract

Discrete choice models are often used to estimate non-market values. In standard

models, individuals make choices considering all possible alternatives. However, in

reality, the set of alternatives individuals consider may differ. Moreover, these choice

sets may be influenced by the individual’s social networks. For instance, Romeo was

going to go to the beach; however after talking to Juliet he is also considering the

mountains. Recent research has demonstrated that ignoring the choice set formation

(CSF) process leads to biased estimates of non-market values. This paper develops a

discrete choice model in which the choice set faced by a decision-maker is influenced by

her social network. In the model, a network parameter denominated by social propensity

determines the weight a decision-maker places on her network when determining what

alternatives to consider. We use Monte-Carlo experiments to investigate the effects of

ignoring social networks when modeling CSF. We find that when social propensity is

relatively low, CSF models that ignore social networks do not lead to significant bias

in welfare estimates. However, as social propensity increases and reaches a certain

threshold, welfare estimates that ignore networks are significantly biased and estimates

of welfare change are significantly higher than the true welfare change.
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Chapter 1

Introduction

Non-market valuation of public goods has been an integral component of environmental

and resource economics for decades. Research methods applied to this area are dom-

inated by discrete choice models, especially with foundations in random utility maxi-

mization (RUM) theories. RUM-consistent discrete choice models capture individual

taste heterogeneities that are usually ignored in traditional consumer theories, but also

provide a way to identify the marginal value of properties change in public goods and

services, such as an increase of travel cost or improvement in environmental quality.

Although these properties often are not explicitly priced in markets, they may signif-

icantly effect individuals’ willingness to pay (WTP) or willingness to accept (WTA).

Therefore, revealing non-market values of goods and services properties becomes an im-

portant task of public agencies making policies, especially those concerning the public

provision or regulation of environment goods and natural resources. There are several

empirical challenges in estimating non-market values. This chapter outlines the broad

context that our current research lies in. We start by introducing the problem. After

that, we show the novelty and importance of our contribution to the literature, which

is followed with a brief discussion about how we approach the problem. A summary of

the major findings and how we organize the study are put at the end of this chapter.

1



1.1 Unordered multiple choice problems

The discrete multiple choice problem primarily concerns a decision maker1 choosing

one alternative from a choice set containing multiple alternatives. A broad class of

problems, which is more frequently encountered by individuals in daily lives, involves

choosing from a set of unordered alternatives2. For example, an urban commuter decides

a travel mode to work; an angler chooses a lake or river site for fishing; a job applicant

selects an offer from multiple companies; and a family discusses a summer vacation

destination. These unordered alternatives are assumed well-defined with mutual ex-

clusivity, exhaustiveness and finite in numbers (See discussions in Train, 2003, p.15).

Environmental and resource economic analysis often focuses on non-market choices like

recreational travel, angling, etc., while other literature examines choice in market en-

vironments including product choice. In either case the behavior of individuals in the

multi-attribute choice environment is being examined, where attributes are properties

of goods and services that differ from one alternative to another. For instance, a set of

lakes may be characterized by multi-attribute vector including lake size, travel distance,

biomass, etc., and attributes of urban travel modes may include fares, travel time and

comfort.

1.2 Choice set formation (CSF) process

Early studies of modeling unordered multiple choice problems often start with a multi-

nomial logit model (MNL), which is formalized by McFadden (1974). As the archetype

of a series of RUM-consistent models, the MNL model assumes decision makers face

a feasible choice set3 containing the same group of alternatives from which they make

1It can be an individual or a group of members, such as a family or a firm. These terms are
interchangeable throughout this thesis. See discussions in Ben-Akiva and Lerman (1991, p.33).

2Refer to Greene (2008, p.842) for a discussion. Readers interested in ordered choice problems and
their modeling methods are directed to p.831 of the same book.

3McFadden (1974) assumes this feasible choice set is a nonempty subset of a universal choice set.

2



choice decisions by considering all alternatives through a RUM process. The MNL

model provides an appealing way to model unordered discrete choices due to its consis-

tency with RUM, tractability in econometric estimation, and simplicity in computation.

However, describing individual choice behaviors within a context of predetermined fea-

sible choice sets is questionable. It is often hard for researchers to exogenously pre-

determine a choice set containing alternatives that are feasible to every individual.

Attempting to do so in non-market valuation often results in a misspecified choice set.

That is, this predetermined choice set will probably contain alternatives infeasible to

some individuals while miss alternatives feasible to others.

In reality, the set of alternatives a specific individual truly considers is often different

from that of others. This is a challenge because choice sets misspecification can lead to

significant bias in model estimation and welfare measures (see discussions in Chapter 2).

In fact, feasible choice sets are usually endogenously formed by individuals themselves

rather than predetermined by researchers. These endogenous behaviors are called CSF

processes (Manski, 1977), and are observable to individuals but not to researchers. This

unobservability to the researcher indicates that choice sets derived from such processes

should be considered probabilistic. Assuming choice set certainty may misdirect further

analyses. Therefore, in solving non-market valuation problems of unordered choices,

a reasonable task for researchers is not to try to predetermine a feasible choice set

universally applicable to all individuals, but is to understand the mechanism of CSF

process and appropriately infer the probability of a detected choice set being true.

1.3 Social interactions

Statistical inference about choice sets probabilities is a complex task. Part of the chal-

lenge comes from the fact that individuals’ CSF processes may be connected with each

other through a social network. Previous research (Manski, 1977; Swait and Ben-Akiva,
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1987a,b; Li, Adamowicz and Swait, 2012, etc.) however consider decision makers as

socially isolated, ignoring the important fact that human beings are often socially con-

nected. Social traits of individuals have long been demonstrated important to shape

choice behaviors in studies of psychology, sociology, behavioral and experimental eco-

nomics, and many other areas. Specific to the CSF discrete choice models where the

choice set is inherently unobservable to researchers, assuming that choice sets are formed

in social isolation probably does not reflect actual social behavior. It is therefore rea-

sonable for us to think that the CSF process should incorporate social motivations such

that choice set probabilities reflect social effects.

In this thesis, we explore the role of social influences in the CSF processes. This so-

cial influence may generally be grouped into two broad types. One is objective while the

other is subjective. Objective reasons often include individual income and information

asymmetry, etc. Personal income reflecting market price acceptability obviously con-

strains the availability of alternatives to be considered by individuals (Li, Adamowicz

and Swait, 2012). Information asymmetry causes limitations on individual judgments

under imperfect information and uncertainties. People identifying these limitations

tend to seek for help from others each of whom possesses a piece of fragmented infor-

mation. For example, an angler may not know fish species and policy regulations on a

specific lake. Communication with others, however, improves information quality and

thus improves choice quality. The existence of large numbers of substitutes also leads

them to intentionally compress the feasible choice set based on their own characteristics

in market and non-market behaviors. These objective facts have been frequently tab-

ulated within a social isolation setup. For example, the socioeconomic status in Swait

and Ben-Akiva (1987b); price constraint in Li, Adamowicz and Swait (2012); awareness,

information and/or familiarity in Parsons and Hauber (1998), Peters, Adamowicz and

Boxall (1995) and Haab and Hicks (1997), etc.

However, “economists tend to be deeply skeptical of subjective statements” (Man-
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ski, 2000, p.131). These subjective statements usually include peer pressure (passive),

altruism, egoism and envy (active), all of which have been extensively studied in the

literature of psychology and behavioral economics, and are demonstrated having sig-

nificant effect on shaping individual choice behaviors (see Merton, 1957; Becker, 1974;

Akerlof, 1980; Case, 1991; Manski, 1993a,b and 2000; Brock and Durlauf, 2001; Neilson

and Wichmann, 2014). For example, peer pressure from neighbors may result in an in-

dividual considering a car that originally was expensive to him. Altruism may cause an

individual to vote for a public policy improving recreational amenities irrelevant to him,

and the only reason he may vote “yes” is because of a friend that likes the amenities.

This study considers the role of social networks in shaping social interactions among

individuals, which we believe are potentially able to aggregate the above-mentioned

objective and subjective reasons, and may implicitly capture the efforts individuals

make to reduce transaction costs. Specifically, we propose a CSF process incorporating

social interactions (SCSF) to reveal how individuals deal with different objective and

subjective reasons simultaneously in forming their individual-specific choice sets.

1.4 Purpose and contribution

Recent research has demonstrated that ignoring individual’s CSF process leads to biased

estimates of non-market values (see Swait, 1984; Swait and Ben-Akiva, 1987a,b; Peters,

Adamowicz and Boxall, 1995; Parsons and Hauber, 1998; Haab and Hicks, 1997; Li,

Adamowicz and Swait, 2012; Truong, 2013). Each approach applied previously has

its own limitations. More flexibility can be added to standard CSF processes since

different specific constraints imposed on those models result in very different estimates

and welfare measures. The central purpose of this study is to examine social constraints4

on individual’s CSF process through an explicit modeling approach.

The contribution to the literature is twofold. First, to the best of our knowledge,

4Note the difference from socio-economic constraints discussed in Swait and Ben-Akiva (1987a).
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all previous studies on unordered choice problems with explicit two-stage models (see

Manski, 1977) typically considered individuals as socially isolated in the formation of

their individual-specific choice sets. Some studies, either applying one-stage or two-

stage models (e.g. Brock and Durlauf, 2001; Soetevent and Kooreman, 2007; Barucci

and Tolotti, 2012; Neilson and Wichmann, 2014; Wichmann, 2014) investigate the in-

fluence of social effects on discrete choice analysis, but they all focused on the study of

models’ RUM-bases (utility/preference). Modeling unordered choice behavior without

addressing the CSF process a priori seems to be inappropriate as the literature has sug-

gested that choice set formation is indeed important. This study adds to the literature

by considering the effects of social networks into individual’s CSF process. Second, the

literature tends to separate the studies built upon traditional one-stage models (such as

MNL model in McFadden (1974)) from those based on explicit two-stage models. Our

study, a two-stage model with SCSF process, finds a connection between the two and

provides a possibility to integrate them. Specifically, we show that for the specifica-

tion we employ, if social interactions among individuals are strong enough, traditional

explicit two-stage models with CSF processes that do not capture social interactions

in forming choice sets actually collapse into one-stage models without considering CSF

processes.

1.5 Summary of the approach and results

This study develops a two-stage unordered discrete choice model in which the CSF

process is assumed to be influenced by social interactions. Based on that model, we

investigate the bias of standard CSF models due to the misspecification of network

effects. Specifically, we use Monte-Carlo simulations to study the bias of parameters

estimation, distribution of probabilistic choice sets and welfare measures in standard

CSF models, when the data is actually generated by a SCSF process. We extend
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the traditional two-stage independent availability logit (IAL) model5 to incorporate

social interactions in the CSF process. These social interactions are described by a

social network matrix. Individual’s CSF process depends on own perceptions of goods

attributes and on perceptions of one’s social network. The strength of the network effect

is captured by the level of social propensity (see subsection 3.1.2). Given parametric

assumptions imposed on random components of the model, a series of Monte-Carlo

experiments are conducted. The experiments are as follows. First, we use the SCSF

model to generate “true” data. Second, we test and compare parameter estimates and

probabilistic choice set distributions under two situations, one in which the SCSF model

is estimated and another in which a standard CSF process is estimated. In order to test

the bias of welfare measures, we hypothetically assume a policy change concerning an

exogenous quality improvement on one of the alternatives. Monte-Carlo experiments

enable us to observe the draw of random components, therefore, we are able to compute

and compare welfare measures (WTP or compensating variations) from models under

the above two situations to the true welfare measure.

The main results are as follows. First, parameter estimates from the correctly spec-

ified model (with SCSF process) in general outperform those of the incorrectly specified

model (with standard CSF process), but not always. Specifically, when social propen-

sities are weak, both models estimates can well approximate the true parameters with

proportional root mean square errors under 5%. In these cases, although the correctly

specified model has better approximation in general, the incorrectly specified model

does not lead to very significant bias. However, if social propensities are strong, the

incorrectly specified model delivers very biased estimates while the correctly specified

model continues showing consistency with the true parameters. The bias of the incor-

rectly specified model reaches 1,952% under certain conditions.

Second, estimated distributions of probabilistic choice sets are quite different be-

5This model was first developed by Manski (1977), Swait (1984), and Swait and Ben-Akiva (1987a,b)
and further explored by Li, Adamowicz and Swait (2012)
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tween the two models. The correctly specified models can well approximate the dis-

tributions of probabilistic choice sets from the data generation process. This is not

true, however, for the incorrectly specified model. This phenomenon is directly con-

nected with our model estimation since computation of these distributions is largely

based upon estimated parameters. Interestingly, we find that if social interactions are

strong enough, the traditional two-stage model where social interactions are ignored

from individual’s CSF process ultimately collapse into the standard MNL model.

Third, given the hypothetical quality improvement we applied to one of the alter-

natives, we find that the welfare measures estimated from the correctly specified model

provide good approximations to the true welfare change. However, welfare estimates

from the incorrectly specified model have bias ranging from 17% to 30% when social

interactions are strong. We also find that in general all the above-mentioned findings

do not vary significantly across social networks with different densities (i.e. number of

links). Hence, we argue that the sizes of social networks are not a major component of

the standard CSF model bias. Rather, what really matters is to what extent individuals

care about these networks.

1.6 Research organization

Following this introduction, the thesis is organized as follows. Chapter 2 provides a

literature review on how previous studies address the problem of modeling unordered

choices, the CSF process and what they have attempted to consider social interactions

in discrete choice analysis. Chapter 3 sets up the empirical model for our study. We

explain in detail how we model social interactions, and how we incorporate them into

our study. Chapter 4 performs a series of Monte-Carlo experiments to test the empirical

models. Chapter 5 presents the experimental results. In Chapter 6 we conclude our

study and briefly lay out potential problems for future research.

8



Chapter 2

Literature Review

This chapter provides the context and theoretical background of applying choice theories

to model the unordered individual choice behaviors for non-market valuation purposes.

The literature addressing this type of choice problem discusses both the mechanism

of making unordered choices and the relevant estimation techniques. We organize this

chapter as follows. In section 2.1, we make a brief introduction to the framework of

unordered discrete choice theories. Section 2.2 and 2.3 review the dominant theoretical

and empirical models, their evolution path, and present some highlighted evidence from

previous empirical studies. In section 2.4 we address the social aspects of discrete choice

analysis. This structure of organization intends to make it clear the fundamentals we

need to postulate the central concerns of this study, which will be theoretically expanded

in Chapter 3 and empirically tested in Chapter 4.

2.1 Introduction

As we previously noted in Chapter 1, an unordered discrete choice problem primarily

concerns the decision maker choosing a single utility-maximizing alternative from a

choice set consisting of multiple unordered alternatives. The alternatives comprising

these choice sets are assumed well-defined, and decision makers are always able to com-

9



pare them and choose the one that maximizes their random utilities. To the central

concerns of this research, we are especially interested in how decision makers generate

their feasible choice sets in such a choice problem. Two types of choice sets will be en-

countered in the following discussions. They are either global if they contain all possible

alternatives (McFadden, 1974, 1981; Train, 2003), or local (individual specific) if they

are some generated nonempty subsets of the global choice set through a CSF process.

We call the former type as the global choice set, and alternatives in it are global alterna-

tives6. The latter type are the feasible choice sets to individuals. The structure, such as

the number of alternatives contained or their categorizability7, is demonstrated able to

influence the probability of an alternative being selected. Under certain circumstances,

this shift in choice probability is large enough to change individual welfare measures.

Since the non-market valuation of policy changes ultimately considers an aggregation

of individual welfare measures, exploration into individual choice behaviors is essential

to the successful modeling of social welfare.

Models inferring discrete choice behaviors are RUM-consistent if their intuitions are

exclusively established upon random utility maximization theories. Literature applying

these models dates back to Thurstone (1927) and Luce (1959), with primary focus on

psychological choice problems. Random utilities are slightly different from the tradi-

tional consumer utilities, where the latter usually assumes representative utilities and

the former assumes that utilities are decomposable with a representative utility V plus

an additive random component ε capturing some unobservable idiosyncratic utilities.

On one hand this decomposition results in randomness in utilities and the choice of

alternatives being probabilistic, on the other hand it provides a powerful way to mimic

individual choice behaviors if their choice sets are known with certainty.

6Global alternatives are those that exist for all individuals in a community regardless of whether
they are available for a particular individual. For example, in a local community the residents only
have three models of cars to choose from. These cars may not be affordable for every individual, or
individuals not necessarily like all types of cars.

7This means that the alternatives included in a choice set can or cannot be grouped into subgroups.
An usual treatment of this may use a nested logit model. See Greene (2008, p.848).

10



Mathematically, the random utility for an individual n to choose alternative j from

a known feasible choice set Bn containing J alternatives can be represented as Unj =

Vnj + εnj, where j ∈ Bn and j = 1, 2, ..., J . Vnj is the representative or systematic term

observable to researchers, and εnj is a stochastic component reflecting unobservable

individual and alternative specific heterogeneities. Vnj is usually assumed to be a linear

function of measured attributes of alternative j, and Vnj = Vn(xj) = x
′
njβ. xnj is a

vector of measured attributes of alternative j for individual n. β is defined as the

corresponding vector of unknown parameters. Random utility theory tells us that

alternative j will be chosen if and only if Unj ≥ max(Unk)∀k 6= j and k, j ∈ Bn. The

unconditional probability of choosing j is then Pn(j) = Prob[Unj ≥ max(Unk)]. Insert

the random utility equation, and an expansion then leads to

(2.1)
Pn(j) = Prob(Vnj + εnj ≥ Vnk + εnk)

= Prob(εnk − εnj ≤ Vnj − Vnk),∀k 6= j and k, j ∈ Bn

Different unordered discrete choice models are able to be derived from equation (2.1)

given a specific parametric assumption on the joint distribution function f(εn1, εn2, , εnJ)

of the random components εnj.

2.2 Multinomial logit model and its extension

2.2.1 Multinomial logit model

The MNL model is perhaps the most prevalent RUM-consistent model studied in the

literature of unordered choice analysis. It is formalized in McFadden (1974), where

the author assumes an additive disturbance εnj that is independent and identically

distributed (i.i.d.) with a Gumbel (Type I Extreme Value) distribution8. Specifically,

if ε ∼ G(0, 1), where 0 is the location parameter and 1 is the positive scale parameter,

8See Ben-Akiva and Lerman (1991, p.104) for basic properties of the Gumbel Distribution.
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the unconditional choice probability Pn(j) in equation (2.1) can be further derived for

the MNL model as

(2.2) Pn(j) =
exp(Vnj)∑

k∈Bn

exp(Vnk)

This simple MNL model provides an appealing way to approximate empirical models

of individual’s discrete choice behavior and non-market valuation problems. But we

also need to notice that, the success of this RUM-consistent MNL model inevitably

depends on the correct specification of the choice set Bn since its dimension affects

choice probabilities. In the MNL model, each individual is assumed to face the same set

of alternatives, and this choice set is known with certainty to researchers. Empirically,

“the sample is obtained by a sequence of independent trials, with or without replications

in which a sequence of choices are observed for individuals with the same measured

attributes and alternatives sets” (McFadden, 1974, p.107). In this process of random

trials, the MNL model ignores the fact that in reality the choice set B might be available

to a specific individual but not necessarily to another. In other words, when individuals

are presented with an arbitrary choice set B by the researcher, some alternatives may

never even be considered by individuals (B would have too many alternatives in this

case) or some relevant alternatives may not be included in B (too few alternatives

in this case). This choice set formulation may significantly affect utility maximizing

choices.

From the above discussions we can see that, the fundamental assumption on fea-

sible choice sets in the MNL model is quite implausible. In fact, there always exists

some endogenous CSF process that is observable only to the individual but not to the

researcher. This hidden process has at least two direct effects on the empirical study

of unordered discrete choice problems. First, if a strictly preferred alternative is forced

to be excluded in the CSF process due to certain reasons for a specific individual, then
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the observed sequence of choices by researchers tends to violate the basic assumption of

rationality in random utility theory. Secondly, from equation (2.2) we can see that, ex-

tra inclusion of alternatives leads to underestimated unconditional choice probabilities

for the researcher since the denominator
∑

k∈Bn
exp(Vnk) is a summation of exponen-

tial systematic utilities on all alternatives where k ∈ Bn. Incorrectly computed choice

probabilities Pn(j) may lead to very biased inferences about the marginal utility and

welfare measures valued upon external policy changes.

2.2.2 Two-stage model

Though including a CSF process in the modeling of unordered discrete choices looks

so important, extensive studies concentrating on it start only very recently. A great

number of early work (Debreu, 1960; Luce and Suppes, 1965; Tversky, 1972; McFadden,

1974, 1981 and 2001; and recently Hensher and Greene, 2002, 2003, etc.) tends to put

more weight on relaxing the assumption of independence from irrelevant alternatives

(IIA) introduced by Luce (1959). The major breakthrough focusing on the CSF process

is attributed to Manski’s (1977) seminal study, where the author alternatively extended

the MNL model into a separable two-stage consider-then-choose model, and attempted

to “reformulate the random utility model at a position logically prior to that hitherto

adopted” (Manski, 1977, p.230).

Let us assume there is a finite populationN faces a primitive finite set9 B containing

J alternatives, and each of the population chooses one alternative to maximize random

utility. The CSF problem of individual n at the first stage in Manski’s two-stage model

concerns drawing a nonempty subset C ⊆ B according to a probability measure Qn(C)

that describes the CSF process. In the second stage, a random utility function defined

on choice set C rather than on the primitive finite set B itself is postulated to derive

a RUM-consistent model. The outcome probability of this two-stage choice process is

9Here the primitive finite set shares similarity with the universal choice set defined in McFadden
(1974) or the global choice set we defined in this thesis.
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mathematically described as

(2.3) Pn(i) =
∑

i∈C,C⊆B

Qn(C)Pn(i | C)

where i is an alternative belonging to C; Pn(i) is unconditional probability of observing

i being chosen from the perspective of a researcher unknowing of the specific alter-

natives forming individual n’s choice set; and Pn(i | C) is the conditional probability

of choosing alternative i given C is individual n’s feasible choice set. This two-stage

structure has extensive implications on modeling unordered discrete choice problems

and estimating welfare measures. Treatments of Pn(i | C) are unanimously coherent

throughout the literature studying CSF process since it is consistent with McFadden’s

(1974) MNL model. Differences (progresses) mainly lie in using some different econo-

metric approaches. In general, very similar to equation (2.2), Pn(i | C) can be defined

as

(2.4) Pn(i | C) =


exp(Vni)∑

h∈C
exp(Vnh)

, if i ∈ C

0, if i /∈ C

where Vni is the systematic indirectly utility of Uni. Specifically, as defined in section

2.1, Uni takes the additive random utility form with

(2.5) Uni = Vni + εni = x
′

niβ + εni

where εni is i.i.d. Gumbel distributed with the scale parameter fixed at unity. Equation

(2.4) differs from equation (2.2) by including a zero probability if alternative i is even-

tually not included in n’s consideration set. This is possible since the two-stage model

incorporates a CSF process where a situation exists that alternatives do not belong to

a specific true choice set.
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2.3 Empirical approaches of two-stage model

How to specify of Pn(i | C) in equation (2.3) and (2.4) has few disputes throughout

the literature, while discussions about Qn(C) are still arguable due to endogeneity

and probabilistic properties. The empirical approaches applied to generate individual

specific choice sets are often very different in the literature of valuing non-market goods,

especially in studies of recreational site choice and transportation mode choice. But we

must note that, no matter how broad or narrow these arguments and approaches are,

they all aim to find a way to account for the true choice sets for each decision maker.

Among of them two approaches are frequently discussed: survey questions and explicit

CSF models.

2.3.1 Survey approach

In a few empirical studies of recreation site choice, researchers apply survey question-

naires to collect information that helps narrow down the number of alternatives poten-

tially faced by individuals. Peters, Adamowicz and Boxall (1995) use direct elicitation

of choice set by means of a survey question asking recreational anglers to identify the

set of sites they consider or are aware of when making fishing trip decisions. This set

of sites identified by the respondent himself is considered as their actual choice set. As

an analogy to the explicit modeling of CSF process in equation (2.3), we may think

that, in this survey approach Qn(C) is actually implicitly embedded in the survey ques-

tion. With the survey responses at hand, researchers would know C with certainty, and

Qn(C) = 1 in the second-stage computation of unconditional probability Pn(i). Using

data from the Southern Alberta Sportfishing survey collected in 1991, the authors com-

pare per-trip welfare measures arising from water quality changes (such as to close a

popular site10, plant trees and increase fish stock) in three different CSF models. They

10Results from using site closures to estimate choice probabilities and ultimately the welfare changes
indicate that the IIA assumption in RUM-consistent models can be frequently violated in empirical
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find that welfare measures with individual specific choice sets are quite different in scale

from those two models with research-predefined choice sets, respectively a choice set

containing all fishing sites and a choice set consisting of four randomly drawn sites and

one that is actually visited by the angler. Their arguments indicate that the former

provides a more consistent behavioral choice model and therefore may infer a more

reliable welfare measure.

Parsons and Hauber (1998) use travel time data to set up spatial boundaries for in-

dividual fresh-water fishing trips to the lakes and rivers located within Maine, USA. The

boundary constraint in their study serves as the first step to rule out fishing sites out-

side individuals’ travel time boundaries. After that, 11 randomly drawn sites11 within

the spatial boundary plus one site that is actually visited are selected to construct a

individual specific choice set. The authors eventually find that, using spatial bound-

aries to define feasible choice sets is less important than one would expect. Paramter

estimates based on this CSF process and welfare measures with three scenarios of water

quality change are not very significantly different from that without spatial boundaries,

especially when the boundaries are expanded to more than 4 hours, but inflated wel-

fare estimates are found when the the spatial boundary is confined within 1.6 hours.

Another survey approach applied by Hicks and Strand (2000) alternatively12 ask re-

spondents about their familiarities to 12 public Chesapeake Bay beaches in Maryland.

Unfamiliar alternatives are excluded from respondents’ individual specific choice sets.

They compare this familiarity-based CSF model to a full choice set model (similar to

the MNL model) and a distant-based CSF model (similar to the spatial boundary model

we just reviewed), and find that parameter estimates and welfare measures are indeed

sensitive to choice set definition.

These representative survey approaches we discussed above imply the importance of

studies
11Because a very large number of fishing sites still exists even with the application of preliminary

spatial constraints
12See dicussions in this paper about the difference from that of Peters, Adamowicz and Boxall (1995).
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an appropriate choice set definition in non-market valuation of public goods. However,

they all share a common problem of simultaneously modeling the choice sets and choices,

which may lead to further problems especially in welfare measures of quality change.

As Peters, Adamowicz and Boxall (1995) point out later in their study, their approach,

by determining an individual specific choice set first and then conduct welfare analysis,

does not consider the dynamics of choice set formation. That is, the individual specific

choice set elicited by surveys is assumed constant with exogenous policy changes. But

the policy change itself in fact may change both the structure of an individual specific

choice set and the site selected. Therefore, a more complete approach may be one that

incorporates both changes simultaneously. This problem usually can be addressed with

explicit models of the CSF process.

2.3.2 Explicit model approach

A few empirical studies that explicitly model the CSF process have been conducted on

transportation choice problems. They13 provide a possibility to deal with the simul-

taneity problem encountered in many survey approaches. Among of those studies, the

independent availability logit (IAL) model — derived from Manski’s (1977) two-stage

choice paradigm by Swait (1984) and Swait and Ben-Akiva (1987a) — is of our special

interest. It defines Qn(C), again as in equation (2.3), as the probability of the true

feasible choice set being C, and is explicitly modeled as

(2.6) Qn(C) =

∏
h∈C

An(h)
∏

k∈B−C
[1− An(k)]

1−
∏
j∈B

[1− An(j)]

where h, k and j are alternatives belonging to different choice sets as denoted in equa-

tion (2.6). This IAL model in general assumes IIA and therefore the choice probability

ratio between two alternatives in C is independent of the inclusion/exclusion of an

13Also include the theoretical model suggested by Manski (1977). See subsection 2.2.1.
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irrelevant alternative h
′

to/from C. For a specific individual n, An(j) captures the

availability of alternative j, or the probability of alternative j being included in his

own feasible choice set. As suggested by Swait and Ben-Akiva (1987a), An(j) describes

the aggregate impact of constraints on alternative attributes (for example, an external

price constraint or a quality constraint imposed on public goods and services). These

constraints are also affected by individual specific tastes, which are often assumed i.i.d.

and follow a certain type of distribution, such as a family of normal distributions or

exponential distributions. The simultaneity problem arising in Peters, Adamowicz and

Boxall (1995) and many other survey approaches is addressed in equation (2.6) by as-

suming a dynamic Qn(C) that varies with An(j), which is certainly further connected to

the varying alternative attributes and individual tastes under exogenous policy changes

(see equation(3.7) in Chapter 3 for discussion).

Equation (2.3) - (2.6) fully define the IAL model that gains popularity in several

empirical studies in transportation and marketing research. In a consecutive study,

Swait and Ben-Akiva (1987b) assumes An(j) (they call it the probability of captivity) as

an exponential function of individual characteristics and alternative attributes. Based

on that, they derive a parameterized logit captivity (PLC) model to analyze the work

mode choice data collected from São Paulo, Brazil. They find that the PLC model

is statistically superior to the MNL model in parameter estimation. With simulated

policy changes in travel time, travel cost and income, the PLC model also demonstrates

a great potential that parameterization of the choice set probabilities holds for better

explaining observed choice behaviors, which, however, are unstable such that, under

certain situations it “predicts less sensitivity to changes than does the MNL model,

but in other situations the opposite is seen to occur” (Swait and Ben-Akiva, 1987b,

p.115). Another test of Swait and Ben-Akiva (1987a)’s IAL model is conducted by Li,

Adamowicz and Swait (2012) with a series of Monte-Carlo experiments. They study the

choice set misspecification effect on welfare measures through postulating an exogenous
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price constraint on environmental public goods. By alternatively parameterizing the

availability function with a logistic distribution, An(j) is defined as

(2.7) An(j) = Prob(pnj < τ0 + ξnj) = 1− Prob(ξnj < pnj − τ0) =
1

1 + exp[µ(pnj − τ0)]

where pnj is the price attribute of alternative j for individual n; τ0 is a threshold cutoff

condition such as a representative price level; random component ξnj is assumed to be

i.i.d. and follows a logistic distribution with location of zero and scale of µ. It is inde-

pendent of εnj in equation (2.5). With equation (2.3) - (2.7) and a suggested exogenous

price increase, the authors find that the IAL model outperforms other models thought

to be misspecified in the CSF process. Specifically, the welfare measures from the tra-

ditional MNL model, random parameter logit (RPL) model and choice set generation

logit model (see Swait, 2001) are underestimated by about 50%, while the IAL model

does not bias welfare measures.

Haab and Hicks (1997) develop an endogenous choice set model to incorporate CSF

process. Their approach applies a variation of Manski’s (1977) two-stage model and

shares similarities to the IAL model. It is also capable of addressing the simultaneity

issue of dynamic choice set formation. Specifically, the endogenously generated choice

set has a probability (slightly change their notations to be consistent with our thesis)

(2.8) Qn(C) =
∏
i∈C

Pn(i ∈ C)
∏
i/∈C

[1− Pn(i ∈ C)]

where Pn(i ∈ C) is the probability of alternative i is included in subset C ⊆ B. This

Pn(i ∈ C) is analogous to the availability function An(j) and is defined on a vector of

individual and/or alternative specific information. Empirical applications of this model

are first implemented by the authors later in that paper with two simple examples of

recreational beach visits, and they find that parameter estimates and welfare measures

differ greatly between the endogenous choice set model and the traditional MNL model.
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A recent application of this model is found in Hicks and Schnier (2010) where the au-

thors study the spatial choice problems encountered by commercial fisheries around

Alaska, Bering Sea and Aleutian Islands. Spatial choice problem in commercial fish-

eries is a quite special example and different from many previous problems encountered

in the modeling of recreational site and transportation mode choices. Specifically, the

unconditional probability of choosing an alternative (commercial fishing location) indi-

cated by Manski (1977) is now defined as

(2.9) Pn(i) =
∑

i∈m,m⊆M

Pn(m ∈M)Pn(i | i ∈ m)

where m is specifically defined as some macro-region, and si is some micro-region in-

cluded in m. M is a set space comprising m macro-regions. For example, a large geo-

graphic fishing area containing I micro-regions may be divided into M macro-regions

based on certain spatial information such as fish stock, marine reserve and other bio-

physic information. One can imagine that M is substantially smaller than J . Each

of the M macro-regions may contain different number of micro-regions. Since an area

concerning spatial choices is preliminary regulated to M macro-regions, formation of

individual specific choice sets is no longer arbitrary to include all nonempty subsets

of the full choice sets consisting of all si. In our example, the number of possible true

choice sets to be analyzed is therefore only 2M−1, rather than 2I−1. This specification

substantially reduces the large number computation problem that is frequently met in

other researches. However, application of this nesting structure to other topics may

be limited since spatial choice itself is an special topic, and moreover, as Adamowicz,

Glenk and Meyerhoff (2013) state, it usually requires very large data sets that are also

longitudinal or at least include some temporal dimensions.
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2.4 Social interactions

As we have noticed, none of the CSF models we discussed so far has explicitly addressed

the problem of social effect, especially those explicit models discussed in section 2.3.2.

They certainly take the individual CSF process as socially isolated. For us, social iso-

lation means that individuals generate their choice set through several self-motivated

constraints like their own prices or quality perceptions. They are taken as selfish with-

out considering perspectives from their social networks. Swait and Ben-Akiva (1987a)

point out that the consideration of availability constraints should not only include in-

come and infrastructure in transportation mode research, but must also account for

informational, psychological, cultural and social restrictions. However, their social con-

sideration stands more on individuals’ own socio-economic characteristics such as gender

and education rather than social interactions among individuals (Swait and Ben-Akiva,

1987b).

Social interactions have long been shown important to shape individual behaviors

(see Merton, 1957; Becker, 1974; Akerlof, 1980; Case, 1991; Manski, 1993a,b, etc.

an extensive literature review can be found in Manski, 2000). But its application to

RUM-based discrete choice analysis and non-market valuation problems is scarce. One

group of papers, including Brock and Durlauf (2001), Soetevent and Kooreman (2007),

Barucci and Tolotti (2012) and others, uses socially interacted RUM models to address

the problem of multiple equilibria in discrete choices. Another group, including Neilson

and Wichmann (2014) and Wichmann (2014), alternatively focus on the welfare measure

problem in non-market valuation. The difference is that, random utility in the former

group is individual-based without explicitly considering alternative attributes, while the

latter is more intuitively alternative attributes-based. Obviously, the purpose of our

research indicates more interest will be put on the second group, where the author(s)

explicitly applied a social network approach to model social interactions. This approach

can be traced back to DeGroot (1974) and DeMarzo, Vayanos and Zwiebel (2003),

21



and shares similarities to the spatial econometric models indicated by Anselin (1988).

Specifically, Neilson and Wichmann (2014) suggest a social utility model as follows

(2.10) vi(g) = (1− λi)ui(g) + λi
∑
j

aijvj(g)

where i and j are individuals; g is a public good; λi is the social propensity of individual

i, indicating the weight this individual puts on his social network. vi(g) is the social

utility of individual i over g; ui(g) is the self utility of i. aij is an element of A, a row

stochastic matrix representing the social network. aij is positive if j is a friend of i,

and zero otherwise14.

In general, equation (2.10) indicates that an individual’s social utility can be de-

scribed with a weighted utility model capturing both self utility and social utility of

other individuals. A follow-up Monte-Carlo simulation study of welfare measures with

this specification by Wichmann (2014) finds that, when utilities are influenced by social

networks, traditional RUM-consistent WTP models are misspecified. This misspecifi-

cation results in a bias of 123% in WTP measures at high social network effect (denoted

by λ). However, we should note that a common ground all these papers shares is that

both groups disentangle their modeling problems by introducing additive social utilities

into the random utility specified in section 2.1. None has addressed the problem of how

to explicitly model a CSF process with social interactions. This thinking leads us to

the modeling and estimation of such a question in the following chapters.

14The authors eliminate the possibility of existing enemies in the social network. See more discussions
about this and other properties in that paper.
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Chapter 3

Empirical Model

In this chapter, we attempt to address the modeling problem given the considerations

raised in Chapter 2. An explicit empirical model is developed to capture individual

social interactions in the CSF process. The procedure is realized by two steps: First,

we define the sociomatrix and social propensity to describe the social context of a

community in section 3.1. Second, the standard IAL model presented in sections 2.2

to subsection 2.3.2, is extended within the social context. We call this extended IAL

model as the social IAL model. Model specification with these two procedures enables

us to conduct a welfare analysis involving non-market valuation of public goods, and

procedures are presented in the last section of this chapter.

3.1 Measuring a social context

The social context is measured with two components. One is the sociomatrix, and

another is the social propensity. The social IAL model we are going to derive in next

section is always build in a social context, rather than solely with a sociomatrix or a

social propensity.
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3.1.1 Sociomatrix

As early as 1946, Forsyth and Katz measured social interactions using matrices to de-

scribe social networks. We call these matrices the sociomatrices (Beum and Brundage,

1950). The social network within a group of decision makers, as defined by Wasser-

man and Faust (1994, p.20), “consists of a finite set or sets of actors and the relation

or relations defined on them”. In this thesis, the actors are decision makers in the

group that make unordered discrete choices, and relations are social links among them.

Sociomatrices provide a clear way to visualize these internal social links and at the

same time enbale researchers to derive tractable results. Following techniques applied

by Neilson and Wichmann (2014), the sociomatrix for a community with N decision

makers is formally defined as

Definition 1. (Sociomatrix) The sociomatrix W of a community with population size

N is represented as a N × N row stochastic matrix. Matrix entry wij describes the

social relation between decision maker i and j, which has the following properties:

1. (Nonnegativity) wij ≥ 0,∀wij ∈ R and i, j ∈ 1, 2, ..., N , is the weight that decision

maker i places on the social connection with decision maker j,

2.
N∑
j=1

wij = 1,∀i ∈ 1, 2, ..., N , and

3. wii = 0,∀i ∈ 1, 2, ..., N .

Properties (1) and (2) are standard definitions of a row stochastic matrix. Specifically

in a sociomatrix, nonnegativity (Property (1)) indicates that any two decision makers

in the community either have no relation if wij = 0 ∀i 6= j, or have a positive relation

(friendship) if wij > 0∀i 6= j. The value of wij is larger if this positive relation is

stronger. Property (1) rules out the possibility that two decision makers being enemies

(envious relation), under which situation one would expect wij < 0. We suppress this

for analytic simplicity (refer to Becker (1974) and Bramoullé (2001) for discussion).
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Property (2) indicates that the row entries of a sociomatrix are weights assigned to other

network members by individual i. Since these weights sum to 1, a newcomer entering

the network tends to trigger a weights reassignment among the existing individuals.

Property (3) means that a decision maker is assumed to have no social relation with

himself. That is, an individual i is not considered to be a friend of himself in a social

context.

3.1.2 Social propensity

The sociomatrix defined above objectively describes the social network status existing

in the community. But it indicates nothing about how important the social network is

to the individual. For now, let us denote a social propensity as the weight a decision

maker places on the social network. We use a real number τ1 ∈ [0, 1] to represent it. The

spread [0, 1] in fact implies that we allow the social network to be as important as one’s

own weight (pure altruism) or not important at all (pure selfishness). In other words,

the two extremes are: i) τ1 = 0 indicating a decision maker that does not consider his

social network in making choices, or he is socially isolated, and; ii) τ1 = 1 meaning that

the network influence is as important as own influence. The parameter τ1 we defined

here is analogous to the parameter λ defined in Neilson and Wichmann (2014). This

construction is in line with the idea that a non-market good may have smaller or larger

effect on individual’s personal taste depending on to what extent the individual values

himself relative to others in his social network.

We must note that in this thesis the social propensity is actually defined for the en-

tire community. That is, we assume each individual has the same level of social propen-

sity to a specific social network in which they are connected. However, in reality, the

social propensity should vary both with individuals and the choice set of alternatives.

Different individual personalities may lead to very different social propensities placed

upon each element of the social network. We could imagine that an altruistic individ-
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ual usually has a stronger social propensity (greater τ1) than those selfish individuals.

Moreover, the set of alternatives individuals face may also shift the social propensity.

For example, if the individual thinks that the good is very important to his own welfare,

then he tends to value less his social network. But this is not necessarily to say that

individuals have a stronger social propensity on pure public goods (such as air) than

pure private goods. It also depends on the dimension of the social network, such as

the size, boundary and links. One would expect a stronger social propensity if the net-

work is used to measure interactions within a household or a rural village in developing

countries, and weaker if the network is constructed within an urban community.

3.2 A social IAL model

In this section, we set forward to build an explicit choice model within the social context

to capture the influence of social interactions on individual CSF process. Throughout

the discussions of section 2.2 in Chapter 2, we have demonstrated step by step how an

explicit CSF model is established (see equation (2.3)-(2.5), a work of Manski (1977)).

The major argument left in previous studies is how one explicitly constructs Qn(C) in

equation (2.3) such that it can incorporate as much information as possible to appropri-

ately reflect choice behaviors. Explicit CSF models developed by Swait and Ben-Akiva

(1987a, equation (2.6)) and Haab and Hicks (1997, equation (2.8)) have no significant

differences. Similar modeling procedures are conducted. In this thesis, we will extend

the one, equation (2.6), that is extensively studied by Swait (1984), Swait and Ben-

Akiva (1987a,b) and Li, Adamowicz and Swait (2012). We call the model based upon

equation system (2.3)-(2.6) plus a socially isolated choice constraint (such as equation

(2.7) or those originally applied in Swait and Ben-Akiva (1987b) the standard IAL

model. Therefore, to socially solve the standard IAL model only requires us to pin-

point the availability function An(j) for individual n on alternative j within a social
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context.

Let us consider an unordered multiple choice problem where a group of individuals

face a global choice set B consisting of some global alternatives j = 1, 2, ..., J . Each of

these global alternatives are defined on two attributes, price p and quality q. The CSF

process, in particular the availability function An(j) is now assumed to be constrained

by a social context characterized with a sociomatrix W and a social propensity τ1.

Specifically, this indicates that the setup of a price or quality cutoff threshold is no

longer solely determined by the individual’s own perceptions on the price or quality

as is shown in equation (2.7). It is also influenced by the price or quality perceptions

given by his friends in the social network. By using the goods price as an alternative

selection criterion in a social context, equation (2.7) demonstrated by Li, Adamowicz

and Swait (2012) can be extended as

(3.1)

An(j) = Prob(pnj < τ0 + τ1
∑
nm

wnmpmj + ξnj)

= 1− Prob(ξnj < pnj − τ0 − τ1
∑
nm

wnmpmj)

=
1

1 + exp[µ(pnj − τ0 − τ1
∑

nmwnmpmj)]

where τ1
∑

nmwnmpmj is the socially perceived price levels from individual n’s neighbors.

Other terms are as denoted in equation (2.7). One needs to note that, nonnegativity

of the additive social price τ1
∑

nmwnmpmj indicates that even if every other individual

has a higher price perception than individual n, the price cutoff condition still gets

more restrained. This seems odd since, for example, if all others perceive that the

good deserves a high price, the individual n should also value that good at a higher

price rather than a lower price. Simply changing the addition sign to a minus sign

before that term certainly would again encounter other problems to explain rational

choice behaviors. Therefore, in this study, we are particularly interested in solving the

model by using quality as the selection criterion given its popularity and importance
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in non-market valuation of environmental and resource public goods. Also, it seems

more intuitive that the quality perceptions of friends may influence the availability of

alternatives while it is not so clear how prices faced by friends would influence own

availability. In a social context, quality of non-market goods is usually not the real

quality perceived by individuals solely based on their own experiences, knowledge and

cognitive abilities. But rather, it is a perceived quality that also summarizes information

obtained from others, including considerations of peer pressures, altruistic propensities,

etc. Specifically, the social constraint imposed upon quality selection criterion leads to

an availability function An(j) where

(3.2)

An(j) = Prob(qnj > τ0 − τ1
∑
nm

wnmqmj + ξnj)

= Prob(ξnj < qnj + τ1 ˜qnj − τ0)

=
1

1 + exp[−µ(qnj + τ1 ˜qnj − τ0)]

where ξnj is parametrized by a logistic distribution with location 0 and scale µ. τ0

now is the perceived average quality of alternative j. It is considered as a threshold of

alternatives selection. τ1 ∈ [0, 1] represents the level of social propensity. The greater

value τ1 takes, the individual is considered more socially interacted with the rest of

the community. ˜qnj =
∑

nmwnmqmj is the adjusted or perceived quality for individual

n from all of his neighbors m = 1, 2, ..., N . Given the property (2) in Definition 1,

for individual n, ˜qnj is therefore a weighted average of quality attributes from all n’s

neighbors, with weights determined by the nth row of the sociomatrix W. One can easily

see that the term τ1 ˜qnj is nonnegative given definitions concerning τ1, quality attribute

qnj and the sociomatrix W. Notice that, in this formulation network quality makes it

easier for a certain alternative to cross the minimum quality threshold for availability.

One also can imagine that, if the network effect is large enough, then the availability

of each alternative or probability of each alternative to be included in the individual
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specific choice set may be collapsed into 1. Under this condition, the entire two-stage

model would eventually fall back to a standard MNL model (see more discussions in

Chapter 5).

Inserting equation (3.2) back into equation (2.6) enables us to derive the probabil-

ity of a choice set being true (Qn(C)), and the unconditional probability of a global

alternative being choosing (Pn(j)) can be subsequently computed with equation (2.4).

Therefore, equation (2.3), (2.4), (2.6) and (3.2) describe the calibration procedures we

need to derive an IAL model incorporating social interactions in its CSF process. Com-

bining these with the RUM theory indicated in equation (2.5), we are able to establish

an explicit social IAL model and conduct welfare analysis via some exogenous quality

change policies.

Although the inclusion of social interactions in the CSF process shifts availabilities

of alternatives An(j), it does not change the model structure of equation (2.3) - (2.6).

The intuition here is that, individuals form their feasible choice set by considering their

social constraints at the first stage. But after that, making the final choice from the

feasible set becomes a personal or private problem and the social network effect does

not pass forward to the second stage. The social interaction structure added to the

availability function (see equation (3.1) and (3.2)) adds flexibility to the IAL model by

allowing for the possibility of social network effects. Notice that in equation (3.1) when

τ1 is equal to zero, the social IAL model collapses to the standard IAL model applied

by Li, Adamowicz and Swait (2012).

3.3 Welfare

We assume an exogenous quality change in order to test the bias of the standard IAL

welfare measures. Following the traditional welfare measure procedures, we implicitly

define the compensating variation (CV ) for changes that happen only in goods quality
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as,

(3.3) V (p0, q1, y0 − CV ) = V (p0, q0, y0)

where V is the indirect utility function; p is the price; q is the quality level; and y is

individuals income level. Superscripts 0 and 1 denote the status-quo and subsequent

level of attributes after policy change, respectively. Since the price and income levels

are assumed fixed before and after policy changes, equation (3.3) implies that CV > 0

if q1 > q0 and vice versa. We further assume an explicit functional form for V , which

consists of a linear indirect utility and an additive error, then equation (3.3) can be

explicitly represented by,

(3.4) βy(y
0 − p0 − CV ) + βqq

1 + ε = βy(y
0 − p0) + βqq

0 + ε

where βy and βq are parameters of the utility function. There is no income effect here

since it will be canceled out. Note that βy is the marginal utility of income, or the

marginal disutility of price change. Therefore, we have βy = −βprice. Continue to

assume εn is a stochastic error term following a Gumbel distribution G(0, 1). Then

given the properties of Gumbel distribution (see Ben-Akiva and Lerman, 1991, p.104-

106), Vn + εn ∼ G(Vn, 1), max(V1 + ε1, V2 + ε2, ..., Vn + εn) ∼ G(ln
∑

j∈B exp(Vj), 1),

and V ∗ = max(V ) = ln
∑

j∈B exp(Vj). Manipulation to equation (3.4) leads to,

(3.5)

CV =
1

βy
[V ∗(q1)− V ∗(q0)]

=
1

βy
[ln

∑
j∈B

exp(V 1
j )− ln

∑
j∈B

exp(V 0
j )]

=
1

βy
[ln

∑
j∈B

exp(x1j β̂)− ln
∑
j∈B

exp(x0j β̂)]
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where x1j and x0j are attribute levels after and before the policy change; β̂ is the cor-

responding estimated attribute parameters. However, we should note that equation

(3.5) is just the CV function for a standard MNL model, where choice set B is fixed

with certainty and contains the same bundle of available alternatives across individuals.

The IAL model (socially involved or not) is a two-stage model where the choice sets for

individuals are formed probabilistically. Since the variation is choice-set-specific, the

CV should be weighted by corresponding choice set probabilities. Specifically,

(3.6) CV =
1

βy
{
∑
C⊆B

[Q(C)1 ln
∑
i∈C

exp(x1i β̂)]−
∑
C⊆B

[Q(C)0 ln
∑
i∈C

exp(x0i β̂)]}

where Q(C)1 and Q(C)0 are respectively the probability of choice set C being true after

and before the policy change (see equation (2.6)). The CV based on the IAL model is

a function not only of the alternatives’ utilities but also of the choice set probabilities.
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Chapter 4

Monte Carlo Experiments

In this chapter, we test the bias of the standard IAL model when social interactions

are ignored in individual’s CSF process. A series of Monte Carlo experiments are

carried out under different social contexts, each of which is uniquely defined by two

parameters: the density of the social network and its corresponding level of social

propensity15. In general, these experiments are conducted by assuming a true model

(the social IAL model) as defined in Chapter 3. The sociomatrix is measured with

Erdos-Renyi networks (Erdos and Renyi, 1959) in which links are i.i.d. and each

pair of individuals is connected with a fixed probability (Wichmann, 2014). Using

data generated by the true model, a correctly specified model that incorporates social

interactions in the CSF process is estimated, and then compared to an estimated model

that ignores these interactions. The purpose of doing this is threefold. First, we test

the bias of parameter estimates when social interactions are or are not ignored in the

CSF process of the IAL model. Second, distributional variations of probabilistic choice

sets are calculated. We will discuss intuitions explaining these variations. Lastly, we

impose an exogenous quality improvement on one of the alternatives. This enables us

to compute and compare welfare measures from these three sets of data, i.e. the true

data and the data predicted by the correctly and incorrectly specified models. Details

15See section 4.1 for a detailed discussion
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are unfolded in the following sections.

4.1 Real data generation process

Assume a hypothetical community of size N=2000 where the community members are

connected with each other through an Erdos-Renyi social network. These networks

assume that each link between any two nodes (individuals) is independently formed

with given probability. In practice, each network is a N ×N square matrix with rows

i.i.d. drawn from a binomial distribution B(n, p), where n = 1 is the number of trials,

and p ∈ [0, 1] is the probability of success on each trial and equals the expected social

network density16. In our Monte Carlo experiments, the network density is assumed

to be a value in the set {0.05, 0.10, 0.25, 0.50}. The level of social propensity τ1 is

represented by a number belonging to the set {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60,

0.70, 0.80}. To simplify the discussion of our results, we divide τ1 into two groups. We

say the community has a low level of social propensity if 0.05 ≤ τ1 ≤ 0.40 and a high

level if 0.50 ≤ τ1 ≤ 0.80. Since a social context is uniquely defined by a sociomatrix with

certain network density and its corresponding level of social propensity, we therefore

have a total number of 4 × 9 social contexts, which means we will conduct 36 Monte

Carlo experiments.

For each Monte Carlo experiment, 400 replications are performed with draws of

random components ξ (equation (3.2)) and ε (equation (2.5)), respectively from a lo-

gistic distribution and a Gumbel distribution. In all experiments, each individual is

assumed to face a global choice set consisting of three global alternatives {1, 2, 3}.

Each alternative for each individual is uniquely defined by two exogenous attributes,

price p and quality q. Both p and q are independently drawn from a standard uniform

distribution U(0, 1), and are assumed to be constant across different social contexts

16To see why, note that the density of a network is defined as the number of existing links divided
by the number of possible links.
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and replications. The basic setup for the real data generation process (DGP) of our

Monte Carlo experiments is summarized in the following table.

Table 4.1 Basic setup of the real data generation process

Social Structure:
Number of Individuals (N) 2000
Social Network Density (d) 0.05, 0.10, 0.25, 0.50
Level of Social Propensity (τ1) 0.05, 0.10, 0.20, 0.30, 0.40 (low level)

0.50, 0.60, 0.70, 0.80 (high level)

Discrete Choice Structure:
Number of global alternatives in each set 3
Attributes for each alternative price, quality

Monte Carlo Experiments:
Number of replications for each experiment 400
True parameters (ASC1, ASC2∗, p, q) 1.5, 1, -3, 5

Note *: ASC1 and ASC2 are alternative specific constants for Alternative 1 and Alternative 2, by
setting Alternative 3 as the base choice. They reflect the normalized utilities not revealed by price and
quality attributes. Their parameters are interpreted as the magnitudes of average utility differences
to Alternative 3. In this setting, these magnitudes are 1.5 and 1.

Following the model defined in section 3.2, we generate in each replication the

observed individual choices through two steps. In the first step, each individual forms

their own choice set by excluding from their global choice set the alternatives whose

qualities are lower than a random threshold. In the correctly specified model, we

assume this threshold is determined by three components (see equation (3.2)). The

first component is the average perceived quality τ0 = 0.5, a constant across individuals

and the real DGP. The second component is a socially interacted term τ1
∑

nmwnmqmj,

indicating how and to what extent other individuals’ perceptions of the quality would

influence a specific individual’s quality perception of the same alternative. The third

is a random component ξnj drawn from a logistic distribution with the scale of µ = 10

and location of zero17.

17Changing scales of the logistic distribution obviously affects the availability of alternatives, but
this does not have a direct impact on our analysis of incorporating social interactions in the CSF
process. See further discussions in Li, Adamowicz and Swait (2012).
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After the alternative(s) rule-out or the CSF process, in the second step the indi-

vidual compares the utilities of the alternatives remaining in his choice set through

random utility maximization rules. Recall that utilities being compared are random

utilities (see equation (2.5)), which consist of a systematic part V plus a random error

ε that follows a Gumbel distribution with the scale of unity18. For simplicity, we as-

sume that V takes a linear functional form V = x
′
β, where x is a vector of independent

variables, which includes the two alternative-specific constants ASC1, ASC2, price and

quality; β is a vector of the corresponding true parameters, which is set to equal {1.5, 1,

-3, 5} for each independent variable respectively (see Table 4.1). Variations in random

error draws lead to variations in observable choices in each replication, allowing us to

perform maximum likelihood estimations given the unconditional choice probabilities

calculated from equation (2.3), (2.4), (2.6) and (3.2).

4.2 Distribution of probabilistic choice sets

Distributional sensitivities of choice sets to the network parameters (i.e. network den-

sity and τ1) are of much interest in this research. As we stated above, each individual

initially faces a global choice set containing three global alternatives. In a two-stage IAL

model that incorporates social interactions, the individual chooses first to rule out some

alternatives that have quality attribute levels lower than his random threshold cutoff

criterion. This alternative(s) rule-out process determines the distribution of probabilis-

tic choice sets. To not lose data, we control this cutoff criterion through redrawing the

error ξn for individual n in the real DGP if all alternatives are ruled out19. Therefore,

each individual is guaranteed to have at least one alternative left after the CSF pro-

cess. That is, subsets expected for each individual are strictly nonempty. Following the

18Note that in the real DGP the error term is generated using full sample size not the reduced size
after the first step.

19This will not significantly change the overall distribution of ε since they are i.i.d. drawn from the
same distribution. It is especially true because we redraw only a small percentage of errors, which
mostly is less than 5%.
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quality cutoff (CSF) process, we count the number of subsets in each category to form

their distributions. For example, assume each person initially faces a global choice set

containing three global alternatives {1, 2, 3}. The CSF process may lead to: i) the

first individual forms a subset {2, 3}; ii) the second individual forms a subset {1, 3};

iii) the third individual has a subset {1, 2, 3}, and so on. Whatever these subsets are,

they are inevitably nonempty subsets of {1, 2, 3}, and may vary as a function of our

social context settings. These variations lead to further variations in observable choices

made by individuals in each replication and in each social context.

The CSF process with social interactions indicates that individuals can compress the

initial global choice set into a simpler choice set to, for instance, reduce transaction costs.

Comparison and selection of alternative for utility maximization will be much easier.

One also can easily imagine that the CSF process will be much more necessary if the

number of global alternatives in the initial global choice set is large, say 7 fishing lakes,

10 possible vacation destinations, or 20 types of cars, etc. Under these circumstances,

CSF process obviously helps reduce the informational complexity and transaction costs.

It can also result in more variation of the probabilistic choice sets distribution and its

corresponding observable choices.

4.3 Estimation, welfare measures and bias

4.3.1 Parameter estimates and its measurement of bias

Based on the true model and real DGP described respectively in section 3.2, 3.3 and

4.1, we estimate two models for each social context. The first is an IAL model that

incorporates social interactions in its CSF process. We call this the correctly specified

model. Another is an incorrectly specified model that ignores social interactions, or a

pure IAL model as indicated in section 2.2 and subsection 2.3.2. Two pairs of parameter

estimates are obtained, one for each model. To evaluate performances of the correctly

36



and incorrectly specified models, we compute the proportional Root Mean Square Errors

(RMSE), which is defined as

(4.1) Proportional RMSE =
1

R

R∑
r=1

√
(
β̂ri − βi
βi

)2

where r = 1, 2, ..., R and R = 400 is the total number of replications for each social

context setting; β̂ri is the ith parameter estimates in replication r; βi represents the

ith true parameter. In the correctly specified model, we have a total number of seven

parameters to be estimated. Hence i = 1, 2, 3, ..., 7 respectively indexes parameters for

ASC1, ASC2, price, quality, τ0, τ1 and µ. In the incorrectly specified model we do not

estimate τ1 since there is no social effect. We therefore only have six parameters to be

estimated and use i = 1, 2, 3, ..., 6 instead to index the corresponding parameters. The

proportional RMSE directly measures the percentage deviation of the values estimated

by our models from the true parameter values.

4.3.2 True welfare and bias

For Monte Carlo simulations with a real DGP, we are able to calculate the true welfare

measure (CV ) since we observe the draws of error terms. Therefore, the true CV is

just the difference of random utilities of the alternatives that have been chosen after

and before the policy change, a 0.4 quality improvement on Alternative 2 in our paper.

The true CV for individual n in replication r is calculated as

(4.2)

CVtrue,n,r =
U1
chosen,n,r − U0

chosen,n,r

−βprice

=
(x1

chosen,n,rβ + ε1chosen,n,r)− (x0
chosen,n,rβ + ε0chosen,n,r)

−βprice

where 0 and 1 respectively represent the states of the world before and after the quality

improvement. CVtrue,n,r is the true CV for individual n in replication r. U1
chosen,n,r is the
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random utility of the chosen alternative after the quality improvement, while U0
chosen,n,r

is that of before quality improvement20. x1
chosen,n,r is a vector of attribute levels of the

chosen alternative after the quality change, while x0
chosen,n,r is that of before quality

change; β are their corresponding true parameters and βprice is the true parameter of

price.

Estimated CV s are calculated based on equation (3.6) in section 3.3. To evaluate

the CV performance of the correctly and incorrectly specified models, we compute the

RMSE of mean CV s, which is slightly different from the one defined in equation (4.1).

Here the RMSE is

(4.3) RMSE =

√∑R
r=1[E( ˆCVr)− E(CVr)]2

R

where E( ˆCVr) is the estimated (correctly or incorrectly specified) mean CV in repli-

cation r, and E(CVr) is the corresponding true mean CV . Specifically E( ˆCVr) =∑N
n=1

ˆCVn,r/N , where N is the total population number, and ˆCVn,r is the predicted

CV for individual n in replication r. RMSE here is measured in dollars, the same as

the measurement of price and therefore can be directly compared with the true CV .

20Note that the alternatives chosen before and after the policy change could be different or be the
same.
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Chapter 5

Results and Discussion

In this chapter we present the results and discuss their implications based on our Monte-

Carlo experiments in Chapter 4. In summary, these results demonstrate that we can

successfully estimate an IAL model that incorporates social interactions in its CSF

process. We compare estimates from the correctly and incorrectly specified models

with their true DGP values. We find that failure to account for network effects may

lead to biased estimates of our models’ parameters, particularly when the strength of

social interactions is high.

5.1 Correctly specified model: the IAL model that

incorporates social interactions

Since the setup in the true model incorporates social interactions, we therefore refer to

the estimated model that also incorporates social interactions as the correctly specified

model. The estimated results of the IAL model incorporating social interactions are

shown in various tables below with clear comparisons to the incorrectly specified model,

which we will discuss in the next section. Each upper part of Table A.1.1-A.1.4 (see

Appendix A) presents the parameter estimates of an IAL model incorporating social
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interactions in the CSF process under all social contexts, that is, four social network

densities with nine different levels of social propensity for each of them.

We find that in each setting of social network densities, the parameter estimates

deviate little from the true parameters with the level of social propensity τ1 varying

from low to high. The stable and good performance of the correctly specified IAL model

is further confirmed by the proportional RMSEs showed in the upper parts throughout

Table A.2.1-A.2.4. Proportional RMSE is a direct measure of percentage differences

between values estimated by our model and the true parameter values. The results

indicate that on average almost all parameter estimates deviate from their true values

less than 5% with only two exceptions, that is, τ̂1 at density=0.05 and τ1 = 0.10, and

τ̂0 at density=0.50 and τ1 = 0.80. In general, the estimate of τ1 in correctly specified

models becomes more precise as the true τ1 value increases21.

Table A.3.1-A.3.4 present a comparison of choice set distributions. Notice that in

each setting of social network densities, the levels of social propensity are divided into

two groups, with the upper columns grouped as low level social propensity (0.05 ≤ τ1 ≤

0.40) and the lower columns grouped as high level social propensity (0.50 ≤ τ1 ≤ 0.80).

For each τ1, the distributions of choice sets from the three models are compared. The

first column shows the distribution of the true model. The second column shows the

distribution of the correctly specified model. The third column shows the distribution

of the incorrectly specified model. We can easily find that under all circumstances of

social context, the distributions of choice sets from the correctly specified model are

very close to that of the true model. In other words, the choice sets estimated by the

correctly specified model are likely the individuals true choice sets. This result is robust

to different social network densities and variations in their corresponding level of social

propensity.

Another interesting finding from Table A.3.1-A.3.4 is that in each social network

21Notice that the NAs in the table indicate that we do not estimate τ1 in the incorrectly specified
models.
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density, when τ1 changes from a lower level to a higher level, the number of alternatives

included in the choice set tend to increase. For example, when social network density

equals 0.25 and τ1 = 0.05, the distribution of choice sets spread quite evenly on each

choice set. That is, for all samples, the number of individuals having the true choice set

containing only Alternative 1 is very similar to the number of individuals having true

choice set containing Alternative 1, 2 or 1, 2, 3. But when τ1 increases to 0.80 with

network density unchanged, the number of individuals having true choice set containing

only Alternative 1 has a very sharp decrease while the number of sets having all three

alternatives increases significantly. The reason for this pattern can be easily derived

from equation (3.2), the availability function. When τ1 increases, the availability of

an alternative (Prob(ξnj < qnj + τ1 ˜qnj − τ0)) also increases since ˜qnj is a nonnegative

term. It leads to an increase in the likelihood of this alternative been included into

individuals choice sets, and therefore we see the number of true choice sets including all

three available alternatives increase. In other words, when levels of social propensity are

very high, the individual tends to put a lot of weight into the quality perception from

his network. The network quality is not discounted much. It is added to his personal

quality making it easy for the alternative to achieve the minimum quality threshold.

5.2 Incorrectly specified model: the IAL model that

ignores social interactions

Lower parts of Table A.1.1-A.1.4 show the results from estimating an incorrectly spec-

ified model, an IAL that ignores social interactions in its first-stage CSF process. In

general, we find that parameter estimates vary much more than those of the correctly

specified model. The most obvious one is τ0, for which estimates tend to get smaller

along with the increase of τ1. Specifically, a sharp change in τ̂0 happens when τ1 in-

creases from 0.40 to 0.50: τ̂0 decreases more than 6 times and changes sign. The other
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parameters signs keep consistent with the true values. However, they deviate signifi-

cantly from the true ones after τ1 ≥ 0.50 . In general, under high level social propensity

(τ1 ≥ 0.50), parameters for ASC1, ASC2, τ0 and µ are underestimated, while parame-

ters for price and quality are overestimated. The magnitudes of these underestimations

and overestimations are indicated by the proportional RMSEs presented in the lower

parts of Table A.2.1-A.2.4. They show that parameter estimates for ASC1, ASC2 and

τ0 deviate from the true ones by 5.26% to 46.54% when the levels of social propen-

sity τ1 are set at lower levels (τ1 ≤ 0.40). But the deviation changes from 7.16% to a

surprisingly 1,952% when τ1 are set at higher levels (τ1 ≥ 0.50). These patterns are

similar across different social network densities. Combining these results with those

of Table A.2.1-A.2.4, we find that the incorrectly specified model underestimates the

true parameter values. Given a typically allowed 5% level of deviation, the parameter

estimates for these three variables are all considered as inaccurate in our Monte-Carlo

simulations.

The behavior of the µ estimate is totally different and all estimates are robust

even in the incorrectly specified model, with proportional RMSEs ranging from 0.74%

to 2.97%. Discussions for proportional RMSEs of the two alternative attributes are

divided into two parts: low and high levels of social propensity. At the lower levels of

social propensity, proportional RMSEs indicate that the deviations are mostly under 5%

with only very few exceptions. However, if τ1 ≥ 0.50, then the parameters on average

are overestimated by 7.56% to 17.9%, which again imply significant inaccuracies.

These inaccuracies are visualized throughout Figure B.1.1-B.3.2 (see Appendix B),

where we draw cross-model22 kernel densities of three key variables (price, quality, and

τ0) for all social contexts. Figure B.1.1-B.1.2 and Figure B.2.1-B.2.2 show that, when

τ1 ≤ 0.40, the parameter estimates for price and quality have kernel densities evenly

distributed around the true values. The distributions of the correctly specified model in

22Cross-model means three models, the true, correctly specified and incorrectly specified models.
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general outperform, though slightly, those of the incorrectly specified models, indicating

more efficient estimation. But when τ1 ≥ 0.50 at the higher level of social propensity,

kernel densities indicate that in the incorrectly specified model the distributions are

highly skewed to the right-hand side, which again confirm the overestimation previously

discussed. Figure B.3.1-B.3.2 indicate that, for each social network density, when τ1

increases the kernel densities of τ̂0 from the incorrectly specified model skew more to

the left-hand side, indicating a significant downward bias of the parameter estimates.

For most variables discussed above, a clear threshold is found when 0.40 ≤ τ1 ≤

0.5023. This threshold gets especially apparent when the sign of estimated τ0 changes

from positive to negative in Table A.1.1-A.1.4. We confirm this with the choice set

distribution outlined in Table A.3.1-A.3.4. From the lower parts of these tables, we

can see that if the model is incorrectly specified, the number of choice sets containing

only part of the three alternatives (strict subsets of B) are all zeros. Individuals’ choice

sets will always contain three alternatives, and no alternatives will be excluded. This is

reasonable if we trace back to Table A.1.1-A.1.4 and the socially isolated quality-based

availability function An(j) = Prob(ξnj < qnj − τ0). If we put the negative τ̂0 back into

this equation, right-hand side probability equals almost 1 given drawn distributions

of ξnj and qnj. In general, we can conclude that, under those representative social

network densities we tested, if the level of social propensity is high enough (τ1 ≥ 0.50

in our experiments), the incorrectly specified model would just collapse into the simple

one-stage MNL model as specified by McFadden (1974).

5.3 Welfare measures and their biasness

An overview of Table 5.1 indicates that, in a correctly specified model, individuals’

willingness to pay for a 0.4 quality improvement on Alternative 2 tends to decrease

23Notice that the specific location of the threshold may change with the parameterization of the
Monte-Carlo experiment. The most important fact is to notice that a threshold behavior indeed
exists.
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Table 5.1 Welfare measures (in dollars): a comparison of the true, correctly and incorrectly specified models

Network Density=0.05 Network Density=0.10
True CV CV Net CV NoNet True CV CV Net CV NoNet

Low level social
propensity

τ1=0.05 0.3860 0.3845(0.0282) 0.3790(0.0347) 0.3856 0.3843(0.0288) 0.3799(0.0373)
τ1=0.10 0.3854 0.3824(0.0250) 0.3785(0.0385) 0.3854 0.3819(0.0245) 0.3765(0.0393)
τ1=0.20 0.3824 0.3780(0.0215) 0.3728(0.0370) 0.3823 0.3794(0.0238) 0.3760(0.0376)
τ1=0.30 0.3750 0.3726(0.0185) 0.3698(0.0291) 0.3756 0.3718(0.0202) 0.3704(0.0298)
τ1=0.40 0.3668 0.3667(0.0178) 0.3677(0.0314) 0.3670 0.3628(0.0176) 0.3622(0.0272)

High level social
propensity

τ1=0.50 0.3584 0.3566(0.0156) 0.4308(0.0965) 0.3582 0.3559(0.0155) 0.4372(0.1011)
τ1=0.60 0.3496 0.3489(0.0136) 0.4492(0.1028) 0.3493 0.3497(0.0152) 0.4500(0.1045)
τ1=0.70 0.3421 0.3408(0.0139) 0.4139(0.0754) 0.3422 0.3405(0.0143) 0.4134(0.0752)
τ1=0.80 0.3365 0.3361(0.0142) 0.3898(0.0588) 0.3363 0.3354(0.0160) 0.3902(0.0596)

Network Density=0.25 Network Density=0.50
True CV CV Net CV NoNet True CV CV Net CV NoNet

Low level social
propensity

τ1=0.05 0.3857 0.3836(0.0262) 0.3816(0.0366) 0.3852 0.3820(0.0270) 0.3773(0.0344)
τ1=0.10 0.3851 0.3833(0.0234) 0.3802(0.0403) 0.3852 0.3827(0.0274) 0.3796(0.0401)
τ1=0.20 0.3825 0.3783(0.0189) 0.3744(0.0328) 0.3831 0.3794(0.0236) 0.3719(0.0366)
τ1=0.30 0.3755 0.3725(0.0174) 0.3706(0.0316) 0.3754 0.3724(0.0202) 0.3705(0.0306)
τ1=0.40 0.3667 0.3660(0.0166) 0.3668(0.0301) 0.3664 0.3647(0.0142) 0.3644(0.0255)

High level social
propensity

τ1=0.50 0.3582 0.3566(0.0156) 0.4367(0.1016) 0.3583 0.3554(0.0163) 0.4343(0.1000)
τ1=0.60 0.3501 0.3488(0.0151) 0.4502(0.1037) 0.3495 0.3494(0.0132) 0.4506(0.1045)
τ1=0.70 0.3423 0.3417(0.0159) 0.4159(0.0774) 0.3421 0.3415(0.0177) 0.4138(0.0755)
τ1=0.80 0.3361 0.3353(0.0129) 0.3868(0.0557) 0.3363 0.3369(0.0142) 0.3896(0.0585)

Note:
1.CVs are measured in mean welfares in each social environment.
2.Correctly and incorrectly specified model respectively indicates an IAL model incorporating and ignoring social interac-
tions.
3.Root Mean Square Errors (RMSEs) are in the parenthesis. Refer to equation (4.3) for specifications.
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from around $0.386 to $0.336 when the social propensity level increases. This trend has

no significant relationship with the density of the social network. In general, network

density is not influencing the results. This result suggests that it is not about the

number of links in the social network, but how important the links actually are (i.e.

τ1) to individuals.

The correctly specified model (CV Net) shows an accurate approximation to the

true model with precise average welfare measures. RMSEs are all well behaved with

average deviation of $0.03, indicating very little deviation from the true model. Its

goodness of fitting to the true model does not vary significantly with variations in so-

cial network densities and τ1. The incorrectly specified model (CV NoNet) in general

also gives good approximation to the true welfare measures when τ1 is set at a lower

level, however with slightly higher RMSEs. A decreasing trend is found when τ1 in-

creases within the low level. Both the correctly and incorrectly specified models tend

to insignificantly underestimate WTPs while the latter one performs worse.

However, if τ1 is at a high level where 0.50 ≤ τ1 ≤ 0.80, the incorrectly specified

model tends to significantly overestimate individuals WTPs for the quality improve-

ment. The estimated WTPs vary between $0.387 and $0.451 with an average deviation

of $0.0557 to $0.1045 from the true WTPs. Since the RMSEs for CVs are measured

in dollars they can be directly compared with true CV s. A measure called coefficient

of variation of the RMSE (CoVRMSE) by normalizing the RMSE to the mean of true

CV s can give us more intuition on the bias analysis. It is defined as RMSE/E(CV ),

and calculated results are presented in Table 5.2.

In Table 5.2, The correctly specified model in general exhibits good approximations

with CoVRMSEs varying under 8% level and mostly under 5%. The incorrect model

has CoVRMSEs slightly higher than that of the correct model at the lower level of

social propensity, with a few CoVRMSEs over 10% level. When τ1 are high, however,

the overestimated bias from the incorrect model measured in CoVRMSE are very large,
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ranging from approximately 17% to 30%. The bias shows no particular pattern across

different social network densities.

Table 5.2 Coefficient of variation for correctly and incorrectly specified models

Network Density=0.05 Network Density=0.10
CV Net CV NoNet CV Net CV NoNet

Low level social
propensity

τ1=0.05 0.0731 0.0899 0.0747 0.0967
τ1=0.10 0.0649 0.0999 0.0636 0.1020
τ1=0.20 0.0562 0.0968 0.0623 0.0984
τ1=0.30 0.0493 0.0776 0.0538 0.0793
τ1=0.40 0.0485 0.0856 0.0480 0.0741

High level social
propensity

τ1=0.50 0.0435 0.2693 0.0433 0.2822
τ1=0.60 0.0389 0.2941 0.0435 0.2992
τ1=0.70 0.0406 0.2204 0.0418 0.2198
τ1=0.80 0.0422 0.1747 0.0476 0.1772

Network Density=0.25 Network Density=0.50
CV Net CV NoNet CV Net CV NoNet

Low level social
propensity

τ1=0.05 0.0679 0.0949 0.0701 0.0893
τ1=0.10 0.0608 0.1046 0.0711 0.1041
τ1=0.20 0.0494 0.0858 0.0616 0.0955
τ1=0.30 0.0463 0.0842 0.0538 0.0815
τ1=0.40 0.0453 0.0821 0.0388 0.0696

High level social
propensity

τ1=0.50 0.0436 0.2836 0.0455 0.2791
τ1=0.60 0.0431 0.2962 0.0378 0.2990
τ1=0.70 0.0465 0.2261 0.0517 0.2207
τ1=0.80 0.0384 0.1657 0.0422 0.1740

Note:
1.Coefficient of variation is calculated with CV RMSE = RMSE

E(CV ) .
2.Correctly and incorrectly specified model respectively indicates an IAL model incorporating
and ignoring social interactions.

Combining Table 5.1 and 5.2, the abrupt change of welfare measures in the in-

correctly specified models when 0.40 ≤ τ1 ≤ 0.50 is best explained with the dis-

tribution of probabilistic choice sets and the estimated marginal utility of income

(− ˆβprice). The incorrectly specified IAL model collapses to the standard MNL model

when 0.40 ≤ τ1 ≤ 0.50, as we discussed at the end of section 5.2. Notice in equation

(3.6), section 3.3, that the estimated CV s are weighted by a probabilistic CSF process.

If Q(C) has a probability 1 ∀C ⊆ B and C 6= ∅, then equation (3.6) is reduced to
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equation (3.5), the estimated CV function for standard IAL model. The change in

difference between indirect utilities from chosen alternatives after and before quality

improvement is unclear when social interactions are completely ignored from the choice

set formation process (term in the square brackets of equation (3.5)). However, we do

notice that, at the high level social propensity, the underestimated marginal utility of

income reaches the lowest when τ1 = 0.60. This is consistent with our welfare measures

where the bias correspondingly reaches the highest value.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this study we first discussed potential problems existing in traditional modeling

of individuals’ unordered discrete choice behaviors. Starting from a standard MNL

model, we showed the necessity of including a CSF process such that the MNL model

is decomposable with two stages, a CSF stage and a RUM stage. In the first stage,

individuals apply certain constraints (rules) to compress the universe of choice sets they

face. In the second stage, individuals compare alternatives remaining in the choice sets

through RUM theory and select the one that maximizes utility.

Given the benefits of CSF models and their improved welfare estimates, it is impor-

tant to further explore the choice set formation processes focusing on relaxing standard

(but potentially restrictive) assumptions. One of these assumptions is that individuals

make decisions in social isolation when forming their choice sets. Although some studies

had tried to model social interactions in discrete choice analysis, they all focused on the

RUM-base. Incorporating networks to the RUM step is an interesting idea; however,

it does not address the social effects in the choice set formation step. This would still

lead to bias of standard CSF model estimation and welfare measures when networks
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are indeed part of the choice set process.

We address this issue by introducing social interactions into the CSF process (we

denote this process by SCSF) to set up a social IAL model. This SCSF process is

able to capture additive social interaction effects. Our approach assumes that the so-

cial network is captured by a row-stochastic sociomatrix that weights the influence of

connections in the CSF process. We explore different social context with varying net-

work densities and levels of social propensity. A series of Monte-Carlo experiments

were conducted under different social contexts. We find that the correctly specified

model with a SCSF process in general outperformed the incorrectly specified model in

which social interactions were totally ignored in the CSF process. Estimation bias is

particularly strong in scenarios of high social interaction. In these cases, the distri-

butions of probabilistic choice sets and welfare measures are also significantly biased.

These biases, however, have little relationship with the densities of social networks,

but they vary with the levels of social propensity. Specifically, biases were significantly

larger beyond a certain threshold of social propensity. After reaching this threshold,

the incorrectly specified IAL model would collapse into a standard MNL model. This

indicated that, in a highly interactive society, efforts made to infer individuals’ CSF

process in social isolation are not necessary. It only adds burdensome computations to

the analysis since a standard MNL model delivers the same estimates. Recall, however,

that these estimates would be significantly biased and the consistent model is the social

IAL model.

In general, this study shows that traditional two-stage choice models without con-

sidering social interactions in the CSF process would lead to biased parameter estimates

and welfare measures. Public policy makers who frequently deal with non-market valu-

ation problems using discrete choice analysis can have a high risk of misinterpreting the

real data collected in field studies, if the implicit social network effects are ignored. Wel-

fare measures derived from such a misinterpretation tend to significantly overestimate
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individual’s WTPs if the social network effects are high (see Table 5.1). This would

largely increase the cost of implementing public policies due to failures in a benefit-cost

analysis. Our results also indicate that, a two-stage CSF model is not always superior

to a standard MNL model. Specifically, if social network effects are ignored, welfare

measures derived from a CSF model could be much worse than that from a MNL model.

6.2 Discussion for future research

Both the approach in which we treat social interactions using the CSF process and

our subsequent empirical findings add to the choice set formation literature. However,

with respect to social interactions, this literature is just taking off and there are still

several unanswered questions. First, this thesis shows one possible way of incorporating

social interactions in the CSF process. But for a two-stage IAL model, should the

social interactions be considered in both stages, i.e. the CSF stage and RUM stage?

In our model, the probabilistic choice sets derived from a SCSF process incorporate

social effects in the first stage. Following that, the second stage RUM considers a

pure private behavioral model. That is, after SCSF process, alternatives left in the

choice set carry social information, and individuals no longer consider social constraints

when maximizing random utilities through comparing these remaining alternatives.

Moreover, we also found that a threshold exists at a certain level of social propensity,

which finally leads to connections between a standard IAL model and MNL model. But

it is still unclear why this happened. Future modeling approaches may benefit from a

better understanding of this threshold behavior.

Secondly, an unavoidable challenge for the application of our model to field studies

is the data requirement. Specifically, how to appropriately measure the social network

and construct the sociomatrix are still questions to be answered in sociology and be-

havioral economics. Social links within a network are complicated, especially when the
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size of the network is large. Network boundaries in reality are usually vague. Social

propensity may cause another problem since it is very difficult to model. For instance,

as we discussed in subsection 3.1.2, they might change with individuals and random

coefficient models may be more appropriate. Also, individuals facing different choice

contents may exhibit very different interactions within their social network. An index

approach that measures social propensity as a function of individual and choice specific

characteristics could be explored. While this work takes a first step towards incorpo-

rating social structure into unordered discrete choice models with choice set formation,

further research is needed to shed light on these additional questions.

Thirdly, like any other parameterized explicit model approaches, the functional form

of availability function An(j) has effects on parameter estimates and welfare measures.

One problem is that, in our social IAL model (equation 3.2) the quality perception

from neighbors enters the availability function as a nonnegative term. This indicates

that adding network qualities would always make it easier for an alternative to pass the

selection threshold, even if every other individual has a lower quality perception. This

contradicts the intuition that if all neighbors have relatively lower quality perceptions

on a specific alternative, then one would also downgrade his quality perception on that

alternative in a social context. A more appropriate approach could be one that includes

such a possibility by taking the perception differences rather than the perception itself

into consideration. That is, the ˜qnj in equation 3.2 is no longer equals
∑

nmwnmqmj but

should be
∑

nmwnm(qmj − qnj). Perception differences are modeled with (qmj − qnj).

The latter term says that, if the neighbors have higher quality perceptions where qmj >

qnj, it would be easier for one alternative to pass individual n’s threshold; and when

qmj < qnj, this process becomes harder. Another problem might happen in deciding the

distribution of random component ξn (equation 3.2), which is assumed to be logistically

distributed with location 0 and scale µ. Both parameters have effects on the availability.

Higher locations and scales lead to a harder alternative exclusion. This needs to be
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further explored and decided with the individual specific data characteristics in field

experiments.

Fourthly, our social IAL model still encounters the burdensome computation prob-

lem as in many other explicit models of CSF process (Manski, 1977; Swait and Ben-

Akiva, 1987a,b; Haab and Hicks, 1997, etc.). Since all nonempty subsets of the global

choice set will be used to model the probabilistic true choice sets, a slight increase in the

number of alternative, e.g. to 10, would substantially increase the number of nonempty

subsets to 1023 (210− 1). A possible way to address this problem might be the nesting

approach applied to spatial choice problems in Hicks and Schnier (2010). But that

approach is still limited since many discrete choice problem does not exhibit the spatial

patterns as in commercial fisheries. In the field experiment of common choices among

public goods and services, the survey approach suggested by Peters, Adamowicz and

Boxall (1995) might be an alternative because the responses to their designed survey

questions could have implied individuals’ social characteristics. However, if the prob-

lems frequently encountered in choice experiment design are not controlled properly, a

truthful revealing of individual specific choice sets is not possible, and this could again

lead to biased welfare measures.
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Appendix A

Tables

1. Each table is measured in a unique density of the social network. We test four different
densities {0.05, 0.10, 0.25, 0.50}.

2. Table A.1.1-A.1.4, Table A.2.1-A.2.4 and Table A.3.1-A.3.4 are three groups of tables
respectively display the parameter estimates of Monte-Carlo experiments, correspond-
ing proportional RMSEs, and calculated distributions of probabilistic choice sets.

3. In each table of Table A.1.1-A.1.4 and A.2.1-A.2.4, the upper part displays the results
estimated from an IAL model incorporating social interactions, while the lower part is
from a model that ignores social interactions.

4. Each table in Table A.3.1-A.3.4 categorizes the results into two groups. The upper
group is labeled with low level social interactions where 0.05 ≤ τ1 ≤ 0.40. The lower
group is for estimations in high level social interactions where 0.50 ≤ τ1 ≤ 0.80.
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Table A.1.1 Parameter estimates under 0.05 social network density

Social Network Density = 0.05

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5005 1.5047 1.5095 1.4993 1.4959 1.5002 1.5011 1.4998 1.4975
ASC2 (1) 1.0069 1.0057 1.0067 1.0042 0.9993 0.9991 0.9989 0.9945 0.9950
Price (-3) -3.0042 -3.0075 -3.0055 -3.0031 -2.9849 -3.0000 -3.0064 -3.0028 -3.0042
Quality (5) 5.0115 5.0062 4.9930 5.0062 5.0042 4.9981 5.0049 4.9955 5.0110
τ0 (0.5) 0.4997 0.5006 0.5024 0.4996 0.4978 0.4995 0.5014 0.4967 0.4961
τ1 (varied) 0.0497 0.1005 0.2008 0.2996 0.4002 0.5001 0.6000 0.7001 0.8000
µ (10) 10.0095 9.9908 10.0108 10.0176 10.0127 10.0039 10.0019 10.0018 10.0016

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.4995 1.5099 1.5048 1.4916 1.4838 1.3531 1.3200 1.3645 1.3894
ASC2 (1) 1.0060 1.0036 0.9931 0.9854 0.9788 0.8922 0.8823 0.9071 0.9302
Price (-3) -3.0343 -3.0197 -3.0174 -3.0045 -2.9644 -2.6741 -2.5803 -2.6779 -2.7617
Quality (5) 5.002 5.0088 5.019 5.0582 5.0567 5.6248 5.8950 5.6737 5.5214
τ0 (0.5) 0.4765 0.4522 0.4022 0.3494 0.2673 -1.5422 -7.1086 -8.5690 -9.2110
τ1 (varied) NA NA NA NA NA NA NA NA NA
µ (10) 10.0144 9.9956 10.0074 9.9854 9.9499 9.9445 9.8096 9.7457 9.7032

Note: True parameters are in the parenthesis.
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Table A.1.2 Parameter estimates under 0.10 social network density

Social Network Density = 0.10

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5036 1.5090 1.5023 1.5046 1.5068 1.4989 1.4981 1.5077 1.5033
ASC2 (1) 1.0068 1.0027 1.0012 1.0026 1.0041 1.0017 0.9963 1.0009 1.0020
Price (-3) -3.0000 -3.0125 -2.9979 -3.0044 -3.0168 -3.0087 -2.9986 -3.0103 -3.0097
Quality (5) 5.0046 5.0135 5.0052 4.9978 4.9987 4.9985 5.0098 4.9994 5.0001
τ0 (0.5) 0.5003 0.5012 0.5008 0.5011 0.5010 0.4997 0.4986 0.4985 0.4954
τ1 (varied) 0.0496 0.1004 0.1991 0.2993 0.4000 0.5002 0.6001 0.7000 0.8000
µ (10) 9.9798 10.0165 10.0171 10.0306 9.9953 9.9964 10.0091 10.0013 10.0022

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5012 1.5069 1.5151 1.4984 1.4915 1.3415 1.3122 1.3727 1.3981
ASC2 (1) 1.0033 0.9996 0.9988 0.9904 0.9849 0.8902 0.8743 0.9132 0.9324
Price(-3) -3.0125 -3.0311 -3.0047 -2.9961 -2.9998 -2.6460 -2.5632 -2.6901 -2.7588
Quality(5) 4.9820 5.0061 5.0419 5.0434 5.0331 5.6550 5.8688 5.6883 5.5241
τ0 (0.5) 0.4761 0.4522 0.4017 0.3507 0.2943 -1.5003 -7.0395 -8.6223 -9.2174
τ1 (varied) NA NA NA NA NA NA NA NA NA
µ (10) 10.0044 10.0393 10.0041 9.9600 9.9704 9.9285 9.8084 9.7466 9.7051

Note: True parameters are in the parenthesis.
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Table A.1.3 Parameter estimates under 0.25 social network density

Social Network Density = 0.25

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5048 1.5078 1.5002 1.5032 1.4993 1.5060 1.5030 1.5076 1.4956
ASC2 (1) 1.0087 1.0042 1.0008 1.0043 1.0061 1.0035 1.0061 1.0072 0.9994
Price (-3) -3.0137 -3.0043 -2.9970 -3.0013 -3.0013 -2.9986 -3.0058 -3.0055 -3.0060
Quality (5) 5.0181 5.0194 4.9920 5.0028 5.0165 4.9937 4.9956 4.9954 5.0014
τ0 (0.5) 0.5012 0.5009 0.5003 0.5001 0.4986 0.5005 0.5010 0.5012 0.4944
τ1 (varied) 0.0498 0.1008 0.1999 0.3001 0.4001 0.5001 0.5999 0.7000 0.8000
µ (10) 9.9857 10.0005 10.0131 10.0042 10.0117 9.9886 9.9959 9.9990 10.0002

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5090 1.5031 1.5024 1.4923 1.4800 1.3499 1.3153 1.3754 1.4037
ASC2 (1) 1.0099 0.9951 0.9937 0.9900 0.9749 0.8914 0.8848 0.9227 0.9393
Price (-3) -3.0217 -3.0161 -2.9996 -2.9877 -2.9708 -2.6433 -2.5642 -2.6819 -2.7875
Quality (5) 5.0181 5.0347 5.0141 5.0251 5.0593 5.6553 5.8604 5.6940 5.5319
τ0 (0.5) 0.4763 0.4515 0.4008 0.3504 0.2814 -1.3914 -7.1379 -8.5985 -9.2605
τ1 (varied) NA NA NA NA NA NA NA NA NA
µ (10) 9.9971 9.9982 9.9763 9.947 9.942 9.9483 9.8071 9.7488 9.7039

Note: True parameters are in the parenthesis.
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Table A.1.4 Parameter estimates under 0.50 social network density

Social Network Density = 0.50

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5082 1.5019 1.5069 1.4962 1.5015 1.5003 1.4985 1.5020 1.4993
ASC2 (1) 1.0052 0.9972 1.0095 1.0068 0.9982 0.9921 0.9964 0.9994 1.0052
Price (-3) -3.0213 -2.9988 -3.0051 -3.0087 -3.0020 -3.0085 -2.9938 -3.0072 -3.0016
Quality (5) 5.0156 5.0042 5.0110 5.0060 5.0122 5.0074 4.9979 5.0000 5.0110
τ0 (0.5) 0.5007 0.4997 0.5003 0.4990 0.4989 0.4993 0.4996 0.4995 0.4950
τ1 (varied) 0.0508 0.1004 0.1995 0.3000 0.3998 0.5000 0.6000 0.7000 0.8001
µ (10) 10.0223 10.0027 10.0193 9.9893 10.0108 10.0105 9.9968 10.0035 9.9950

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 (1.5) 1.5012 1.4980 1.5186 1.4911 1.4940 1.3487 1.3123 1.3595 1.3973
ASC2 (1) 0.9977 0.9942 1.0098 0.9941 0.9797 0.8871 0.8728 0.9017 0.9415
Price (-3) -3.0445 -3.0201 -3.0434 -2.9915 -2.9901 -2.6537 -2.5617 -2.6763 -2.7662
Quality (5) 5.0128 5.0315 5.0399 5.0285 5.0664 5.6474 5.8773 5.6712 5.5194
τ0 (0.5) 0.4758 0.4507 0.4026 0.3499 0.2897 -1.4747 -6.9164 -8.5924 -9.2268
τ1 (varied) NA NA NA NA NA NA NA NA NA
µ (10) 10.0079 10.0065 9.9880 9.9269 9.9661 9.9431 9.8108 9.7471 9.7031

Note: True parameters are in the parenthesis.
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Table A.2.1 Proportional RMSEs of parameter estimates: density=0.05

Social Network Density = 0.05

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0310 0.0298 0.0345 0.0304 0.0295 0.0251 0.0247 0.0270 0.0267
ASC2 0.0446 0.0451 0.0456 0.0443 0.0401 0.0397 0.0355 0.0393 0.0382
Price 0.0211 0.0196 0.0185 0.0134 0.0156 0.0153 0.0138 0.0146 0.0146
Quality 0.0117 0.0136 0.0121 0.0107 0.0107 0.0095 0.0082 0.0084 0.0074
τ0 0.0329 0.0331 0.0329 0.0324 0.0360 0.0356 0.0379 0.0395 0.0494
τ1 0.0488 0.0522 0.0129 0.0060 0.0026 0.0016 0.0005 0.0004 0.0003
µ 0.0053 0.0063 0.0057 0.0053 0.0040 0.0031 0.0010 0.0008 0.0006

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0603 0.0773 0.0718 0.0634 0.0570 0.1176 0.1208 0.0943 0.0814
ASC2 0.0844 0.1152 0.1009 0.0928 0.0851 0.1368 0.1285 0.1083 0.0932
Price 0.0411 0.0516 0.0503 0.0403 0.0420 0.1232 0.1400 0.1077 0.0842
Quality 0.0235 0.0318 0.0359 0.0258 0.0278 0.1311 0.1790 0.1347 0.1050
τ0 0.0545 0.0970 0.1955 0.3011 0.4654 4.0845 15.2172 18.1380 19.4220
τ1 NA NA NA NA NA NA NA NA NA
µ 0.0117 0.0158 0.0158 0.0136 0.0122 0.0087 0.0190 0.0254 0.0297

Note: Proportional RMSEs are calculated based on equation (4.1) in Chapter 4.
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Table A.2.2 Proportional RMSEs of parameter estimates: density=0.10

Social Network Density = 0.10

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0344 0.0334 0.0260 0.0330 0.0245 0.0258 0.0279 0.0243 0.0273
ASC2 0.0478 0.0466 0.0431 0.0488 0.0343 0.0379 0.0378 0.0388 0.0381
Price 0.0218 0.0194 0.0160 0.0174 0.0165 0.0153 0.0159 0.0137 0.0174
Quality 0.0148 0.0115 0.0136 0.0145 0.0093 0.0076 0.0088 0.0076 0.0082
τ0 0.0324 0.0314 0.0340 0.0354 0.0316 0.0339 0.0377 0.0398 0.0626
τ1 0.0352 0.0155 0.0102 0.0047 0.0016 0.0009 0.0004 0.0002 0.0003
µ 0.0070 0.0059 0.0049 0.0053 0.0023 0.0022 0.0017 0.0006 0.0006

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0611 0.0771 0.0678 0.0652 0.0549 0.1194 0.1263 0.0877 0.0767
ASC2 0.0848 0.1095 0.1011 0.0985 0.0790 0.1337 0.1348 0.1031 0.0887
Price 0.0402 0.0476 0.0486 0.0440 0.0394 0.1312 0.1456 0.1044 0.0851
Quality 0.0264 0.0338 0.0343 0.0270 0.0219 0.1375 0.1738 0.1379 0.1050
τ0 0.0546 0.0966 0.1965 0.2986 0.4115 4.0006 15.0790 18.2446 19.4349
τ1 NA NA NA NA NA NA NA NA NA
µ 0.0124 0.0165 0.0163 0.0123 0.0113 0.0074 0.0192 0.0253 0.0295

Note: Proportional RMSEs are calculated based on equation (4.1) in Chapter 4.
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Table A.2.3 Proportional RMSEs of parameter estimates: density=0.25

Social Network Density = 0.25

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0330 0.0314 0.0327 0.0264 0.0293 0.0255 0.0252 0.0279 0.0284
ASC2 0.0454 0.0415 0.0451 0.0388 0.0392 0.0344 0.0380 0.0395 0.0425
Price 0.0199 0.0187 0.0159 0.0147 0.0149 0.0154 0.0149 0.0172 0.0132
Quality 0.0151 0.0098 0.0087 0.0082 0.0082 0.0084 0.0078 0.0091 0.0071
τ0 0.0301 0.0310 0.0319 0.0328 0.0350 0.0339 0.0347 0.0409 0.0537
τ1 0.0217 0.0130 0.0048 0.0027 0.0021 0.0009 0.0006 0.0003 0.0002
µ 0.0074 0.0044 0.0062 0.0041 0.0043 0.0026 0.0015 0.0009 0.0005

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0629 0.0750 0.0683 0.0617 0.0602 0.1199 0.1235 0.0854 0.0716
ASC2 0.0891 0.1022 0.1002 0.0892 0.0865 0.1293 0.1256 0.0969 0.0854
Price 0.0457 0.0496 0.0448 0.0432 0.0397 0.1290 0.1453 0.1068 0.0756
Quality 0.0282 0.0318 0.0283 0.0229 0.0258 0.1371 0.1721 0.1391 0.1072
τ0 0.0526 0.0980 0.1985 0.2992 0.4371 3.7828 15.2758 18.1969 19.5211
τ1 NA NA NA NA NA NA NA NA NA
µ 0.0130 0.0153 0.0126 0.0104 0.0088 0.0082 0.0193 0.0251 0.0296

Note: Proportional RMSEs are calculated based on equation (4.1) in Chapter 4.
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Table A.2.4 Proportional RMSEs of parameter estimates: density=0.50

Social Network Density = 0.50

CSF process incorporates social interactions
HHHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0315 0.0284 0.0305 0.0279 0.0267 0.0284 0.0248 0.0259 0.0250
ASC2 0.0467 0.0457 0.0461 0.0428 0.0377 0.0393 0.0383 0.0359 0.0404
Price 0.0218 0.0183 0.0190 0.0148 0.0120 0.0152 0.0133 0.0161 0.0130
Quality 0.0146 0.0118 0.0140 0.0098 0.0082 0.0095 0.0072 0.0084 0.0078
τ0 0.0308 0.0312 0.0323 0.0334 0.0316 0.0353 0.0349 0.0389 0.0504
τ1 0.0260 0.0102 0.0051 0.0014 0.0011 0.0007 0.0002 0.0002 0.0003
µ 0.0073 0.0059 0.0048 0.0033 0.0046 0.0034 0.0011 0.0008 0.0010

CSF process ignores social interactions
H
HHH

HHPar
τ1 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ASC1 0.0620 0.0768 0.0668 0.0647 0.0555 0.1156 0.1256 0.0960 0.0764
ASC2 0.0838 0.1130 0.1017 0.0908 0.0809 0.1356 0.1320 0.1117 0.0867
Price 0.0422 0.0512 0.0496 0.0400 0.0352 0.1247 0.1467 0.1082 0.0812
Quality 0.0267 0.0339 0.0362 0.0249 0.0216 0.1363 0.1755 0.1352 0.1044
τ0 0.0544 0.1002 0.1949 0.3002 0.4206 3.9493 14.8329 18.1849 19.4536
τ1 NA NA NA NA NA NA NA NA NA
µ 0.0121 0.0181 0.0133 0.0137 0.0118 0.0076 0.0189 0.0253 0.0297

Note: Proportional RMSEs are calculated based on equation (4.1) in Chapter 4.
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Table A.3.1 Probabilistic choice sets distribution in the True, Network and Non-network models: density=0.05

Social Network Density = 0.05
Low level social propensity (0.05 ≤ τ1 ≤ 0.40)

τ1 = 0.05 τ1 = 0.10 τ1 = 0.20 τ1 = 0.30 τ1 = 0.40
Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet True Net NoNet

{1} 0.1489 0.1488 0.1495 0.1372 0.1373 0.1381 0.1132 0.1139 0.1143 0.0910 0.0909 0.0908 0.0698 0.0688 0.0571
{2} 0.1363 0.1362 0.1371 0.1251 0.1252 0.1265 0.1029 0.1036 0.1047 0.0823 0.0822 0.0832 0.0634 0.0626 0.0525
{3} 0.1526 0.1525 0.1527 0.1408 0.1409 0.1408 0.1166 0.1174 0.1163 0.0941 0.0940 0.0924 0.0735 0.0725 0.0595
{1,2} 0.1251 0.1252 0.1253 0.1282 0.1282 0.1288 0.1338 0.1337 0.1354 0.1363 0.1364 0.1390 0.1345 0.1344 0.1361
{1,3} 0.1482 0.1483 0.1477 0.1542 0.1542 0.1531 0.1629 0.1627 0.1608 0.1666 0.1666 0.1639 0.1665 0.1665 0.1594
{2,3} 0.1370 0.1370 0.1370 0.1409 0.1408 0.1408 0.1473 0.1472 0.1475 0.1486 0.1486 0.1495 0.1456 0.1455 0.1431
{1,2,3} 0.1518 0.1519 0.1507 0.1737 0.1734 0.1719 0.2233 0.2215 0.2210 0.2810 0.2813 0.2812 0.3467 0.3498 0.3923

High level social propensity (0.50 ≤ τ1 ≤ 0.80)
τ1 = 0.50 τ1 = 0.60 τ1 = 0.70 τ1 = 0.80

Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet
{1} 0.0516 0.0514 0.0000 0.0360 0.0363 0.0000 0.0234 0.0227 0.0000 0.0144 0.0138 0.0000
{2} 0.0466 0.0464 0.0000 0.0325 0.0328 0.0000 0.0211 0.0205 0.0000 0.0129 0.0123 0.0000
{3} 0.0554 0.0552 0.0000 0.0397 0.0400 0.0000 0.0264 0.0256 0.0000 0.0167 0.0160 0.0000
{1,2} 0.1280 0.1280 0.0000 0.1180 0.1182 0.0000 0.1033 0.1023 0.0000 0.0861 0.0848 0.0000
{1,3} 0.1603 0.1603 0.0000 0.1498 0.1502 0.0000 0.1341 0.1329 0.0000 0.1141 0.1123 0.0000
{2,3} 0.1386 0.1385 0.0000 0.1269 0.1273 0.0000 0.1122 0.1111 0.0000 0.0937 0.0922 0.0000
{1,2,3} 0.4194 0.4202 1.0000 0.4972 0.4951 1.0000 0.5795 0.5849 1.0000 0.6621 0.6685 1.0000

Note:
1.Alts represents choice sets containing alternatives labeled as 1, 2 and 3.
2.Numbers displayed are proportions, indicating the ratio of that subset to the summation of all possible non-empty subsets..
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Table A.3.2 Probabilistic choice sets distribution in the True, Network and Non-network models: density=0.10

Social Network Density = 0.10
Low level social propensity (0.05 ≤ τ1 ≤ 0.40)

τ1 = 0.05 τ1 = 0.10 τ1 = 0.20 τ1 = 0.30 τ1 = 0.40
Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet True Net NoNet

{1} 0.1498 0.1500 0.1503 0.1373 0.1377 0.1383 0.1133 0.1137 0.1141 0.0908 0.0914 0.0915 0.0699 0.0703 0.0681
{2} 0.1367 0.1369 0.1375 0.1252 0.1255 0.1266 0.1032 0.1036 0.1047 0.0828 0.0832 0.0842 0.0629 0.0632 0.0622
{3} 0.1524 0.1526 0.1523 0.1401 0.1405 0.1403 0.1166 0.1171 0.1161 0.0937 0.0942 0.0927 0.0733 0.0736 0.0700
{1,2} 0.1245 0.1245 0.1248 0.1287 0.1286 0.1292 0.1341 0.1341 0.1359 0.1359 0.1360 0.1385 0.1346 0.1347 0.1378
{1,3} 0.1478 0.1478 0.1472 0.1541 0.1540 0.1529 0.1632 0.1631 0.1612 0.1675 0.1675 0.1645 0.1669 0.1671 0.1624
{2,3} 0.1371 0.1370 0.1371 0.1410 0.1410 0.1411 0.1470 0.1469 0.1472 0.1487 0.1488 0.1493 0.1462 0.1464 0.1465
{1,2,3} 0.1516 0.1512 0.1507 0.1736 0.1727 0.1718 0.2225 0.2215 0.2208 0.2806 0.2789 0.2793 0.3462 0.3449 0.3531

High level social propensity (0.50 ≤ τ1 ≤ 0.80)
τ1 = 0.50 τ1 = 0.60 τ1 = 0.70 τ1 = 0.80

Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet
{1} 0.0512 0.0511 0.0000 0.0359 0.0355 0.0000 0.0236 0.0232 0.0000 0.0143 0.0135 0.0000
{2} 0.0467 0.0466 0.0000 0.0325 0.0321 0.0000 0.0211 0.0207 0.0000 0.0128 0.0122 0.0000
{3} 0.0551 0.0549 0.0000 0.0394 0.0390 0.0000 0.0268 0.0265 0.0000 0.0167 0.0159 0.0000
{1,2} 0.1286 0.1286 0.0000 0.1184 0.1180 0.0000 0.1039 0.1034 0.0000 0.0866 0.0851 0.0000
{1,3} 0.1610 0.1609 0.0000 0.1500 0.1496 0.0000 0.1341 0.1335 0.0000 0.1150 0.1128 0.0000
{2,3} 0.1385 0.1385 0.0000 0.1270 0.1266 0.0000 0.1109 0.1105 0.0000 0.0939 0.0922 0.0000
{1,2,3} 0.4189 0.4195 1.0000 0.4968 0.4992 1.0000 0.5797 0.5822 1.0000 0.6607 0.6683 1.0000

Note:
1.Alts represents choice sets containing alternatives labeled as 1, 2 and 3.
2.Numbers displayed are proportions, indicating the ratio of that subset to the summation of all possible non-empty subsets..
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Table A.3.3 Probabilistic choice sets distribution in the True, Network and Non-network models: density=0.25

Social Network Density = 0.25
Low level social propensity (0.05 ≤ τ1 ≤ 0.40)

τ1 = 0.05 τ1 = 0.10 τ1 = 0.20 τ1 = 0.30 τ1 = 0.40
Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet True Net NoNet

{1} 0.1500 0.1504 0.1505 0.1377 0.1379 0.1383 0.1137 0.1138 0.1141 0.0908 0.0908 0.0913 0.0700 0.0693 0.0628
{2} 0.1367 0.1371 0.1376 0.1248 0.1250 0.1261 0.1029 0.1030 0.1042 0.0819 0.0820 0.0834 0.0632 0.0626 0.0577
{3} 0.1525 0.1530 0.1526 0.1402 0.1404 0.1400 0.1168 0.1169 0.1161 0.0941 0.0941 0.0931 0.0734 0.0727 0.0652
{1,2} 0.1246 0.1245 0.1249 0.1281 0.1280 0.1287 0.1335 0.1335 0.1352 0.1363 0.1363 0.1387 0.1345 0.1344 0.1369
{1,3} 0.1480 0.1478 0.1474 0.1542 0.1542 0.1532 0.1632 0.1631 0.1612 0.1672 0.1671 0.1643 0.1662 0.1661 0.1608
{2,3} 0.1367 0.1365 0.1366 0.1413 0.1413 0.1413 0.1470 0.1470 0.1473 0.1488 0.1488 0.1493 0.1457 0.1456 0.1446
{1,2,3} 0.1515 0.1506 0.1505 0.1736 0.1733 0.1724 0.2229 0.2226 0.2218 0.2810 0.2809 0.2798 0.3471 0.3492 0.3720

High level social propensity (0.50 ≤ τ1 ≤ 0.80)
τ1 = 0.50 τ1 = 0.60 τ1 = 0.70 τ1 = 0.80

Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet
{1} 0.0514 0.0515 0.0000 0.0361 0.0364 0.0000 0.0237 0.0239 0.0000 0.0143 0.0134 0.0000
{2} 0.0461 0.0463 0.0000 0.0322 0.0325 0.0000 0.0209 0.0212 0.0000 0.0131 0.0123 0.0000
{3} 0.0553 0.0554 0.0000 0.0397 0.0400 0.0000 0.0266 0.0269 0.0000 0.0168 0.0158 0.0000
{1,2} 0.1290 0.1290 0.0000 0.1178 0.1181 0.0000 0.1037 0.1040 0.0000 0.0862 0.0844 0.0000
{1,3} 0.1601 0.1602 0.0000 0.1491 0.1494 0.0000 0.1339 0.1344 0.0000 0.1141 0.1117 0.0000
{2,3} 0.1384 0.1385 0.0000 0.1267 0.1270 0.0000 0.1111 0.1115 0.0000 0.0932 0.0911 0.0000
{1,2,3} 0.4197 0.4191 1.0000 0.4983 0.4966 1.0000 0.5801 0.5783 1.0000 0.6623 0.6712 1.0000

Note:
1.Alts represents choice sets containing alternatives labeled as 1, 2 and 3.
2.Numbers displayed are proportions, indicating the ratio of that subset to the summation of all possible non-empty subsets..
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Table A.3.4 Probabilistic choice sets distribution in the True, Network and Non-network models: density=0.50

Social Network Density = 0.50
Low level social propensity (0.05 ≤ τ1 ≤ 0.40)

τ1 = 0.05 τ1 = 0.10 τ1 = 0.20 τ1 = 0.30 τ1 = 0.40
Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet True Net NoNet

{1} 0.1495 0.1496 0.1498 0.1377 0.1374 0.1380 0.1132 0.1134 0.1145 0.0908 0.0903 0.0911 0.0699 0.0695 0.0661
{2} 0.1362 0.1363 0.1369 0.1250 0.1248 0.1259 0.1035 0.1036 0.1057 0.0822 0.0818 0.0835 0.0632 0.0629 0.0608
{3} 0.1526 0.1527 0.1525 0.1405 0.1403 0.1401 0.1169 0.1170 0.1167 0.0943 0.0937 0.0931 0.0734 0.0730 0.0687
{1,2} 0.1251 0.1250 0.1254 0.1281 0.1282 0.1288 0.1343 0.1343 0.1358 0.1355 0.1356 0.1381 0.1349 0.1349 0.1379
{1,3} 0.1481 0.1481 0.1476 0.1539 0.1540 0.1530 0.1628 0.1628 0.1608 0.1672 0.1673 0.1644 0.1666 0.1665 0.1617
{2,3} 0.1369 0.1369 0.1368 0.1409 0.1410 0.1410 0.1465 0.1465 0.1465 0.1489 0.1489 0.1493 0.1461 0.1460 0.1456
{1,2,3} 0.1516 0.1514 0.1510 0.1738 0.1743 0.1732 0.2229 0.2223 0.2200 0.2811 0.2823 0.2805 0.3460 0.3473 0.3592

High level social propensity (0.50 ≤ τ1 ≤ 0.80)
τ1 = 0.50 τ1 = 0.60 τ1 = 0.70 τ1 = 0.80

Alts True Net NoNet True Net NoNet True Net NoNet True Net NoNet
{1} 0.0518 0.0515 0.0000 0.0362 0.0361 0.0000 0.0237 0.0236 0.0000 0.0145 0.0137 0.0000
{2} 0.0460 0.0458 0.0000 0.0320 0.0319 0.0000 0.0207 0.0206 0.0000 0.0129 0.0122 0.0000
{3} 0.0552 0.0550 0.0000 0.0396 0.0395 0.0000 0.0265 0.0264 0.0000 0.0169 0.0160 0.0000
{1,2} 0.1285 0.1284 0.0000 0.1184 0.1183 0.0000 0.1031 0.1029 0.0000 0.0858 0.0840 0.0000
{1,3} 0.1605 0.1603 0.0000 0.1491 0.1490 0.0000 0.1335 0.1333 0.0000 0.1135 0.1114 0.0000
{2,3} 0.1384 0.1383 0.0000 0.1269 0.1268 0.0000 0.1117 0.1115 0.0000 0.0936 0.0916 0.0000
{1,2,3} 0.4196 0.4206 1.0000 0.4979 0.4985 1.0000 0.5808 0.5816 1.0000 0.6628 0.6710 1.0000

Note:
1.Alts represents choice sets containing alternatives labeled as 1, 2 and 3.
2.Numbers displayed are proportions, indicating the ratio of that subset to the summation of all possible non-empty subsets..
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Appendix B

Figures

1. All groups of figures, Figure B.1.1-B.1.2, Figure B.2.1-B.2.2 and Figure B.3.1-B.3.2, are
kernel density plots of estimated parameters, respectively for the price, quality and τ0.

2. First plot in each group is for that of low level social interactions, while the second is
for high level social interactions.

3. The vertical dashed line represents true parameter values.
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Figure B.1.1 Price estimator under low level social interactions
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Figure B.1.2 Price estimator under high level social interactions
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Figure B.2.1 Quality estimator under low level social interactions
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Figure B.2.2 Quality estimator under high level social interactions
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Figure B.3.1 τ0 estimator under low level social interactions
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Figure B.3.2 τ0 estimator under high level social interactions
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