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ABSTRACT

Conditions on the Eopology~of a topq]ogical spé;e X
* which require that it be in some sense cohéreqt with the to%ologiés on
certaln subspaces of X have recentiy received a great deal of
attention. Perhaps the most familiar examples’ére the defiﬁing conditions
for k spaces and sequential spaces, athough less‘faﬁiliar examples
abound. Our endeavour in this thésis has been to.éstablish a general
f;amework for the investigation of Ehese cohefence concepts and then to

present several new results that will throw light on less’investigated

classes, for example, SR and kR. spaces ..

To be precise, we have introduced very general T' , T , TR.

spaces by relating their respective topologies to subspaces belonging
to a quité arbitrary prechosen class T of topological spaces on the,
same pattern as the topologies of k', k, kR spaces depeﬁd on (a very

restrictive) class of compact subspaces

e

(.
Our primary results are structure theorems, covering mapping

characterizations, and combinatorial and product theorems for ‘' , T ’iﬁ
. './'.'\,"

. and >TRN spaces ; and these are obtained in as general a setting as

possible so as to yield many interesting known results as corollaries .

Our new results usually concern Tg spaces . The centre of

(v)



our interest has always been the class of SR spaces being a class of ~
. ‘

spaces of recent interest wider than the traditional class of sequential

spaces . Some questions remain unsettled ; they are stated precisely at

~

appropriate places . = . ' s \

—

e
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INTRODUCTION

This thesis began as an investigation of Frechet, sequential

and SR spaces, our point of view broadening when it became apparent
that most results in this area carry over, without essential change in
. : . .
{i  arguments, to similar situations (as represented, for example, by

the k' , k and kR spaces) . Thus we begin with a discussion of

Frechet, sequential and SR spaces

A séace is Frechet if the closure of each of 1ts subsets
is the set of limits of gequences contained in that subset . Frechet
spaces were introduced.by Arhangel'ski; [3] and represent a class of
spaces broadef than the first coﬁntable spaces, whose topologies ar
"sequentially determined" . Seizing on thié‘poiﬁt of view Franklin
( [12] and” [I13] ) introduced and studied the still broader class of

sequential spaces . (A space is sequeﬁtial if each sequentially closed

set, that is, each set containing all limits of sequences taken from chat

set, is closed .)

Arhangel'skii ®howed that the Frechet spaces were precisely
the pseud8:336n4images of metric spaces, and Franklin established that

the sequential spaces were precisely the quotients of metric spaces.
J :

-

But an even wider class of spaces exists whose topology is



in some scnse determined by its convergent éequences . A space is o
an SR sp;ce if each sequentially continuous function (one whicﬂ
'prcserves sequential limits) with Tychonoff range is continuous . (We
may note in passing thaf if one replaces ''Tychonoff" , in this
definition, with '"Hausdorff'" , one has an ;lternate definition of
sequential spaces . ) Mazur [18] and Noble [27] Have broved an
~important product theorém for SR spaces (seg Theorem I1.3.2 ) ,

but it is significancutﬁat,’unt{l ngw, no characterization theorem for
SR spaces similar to the Arhangel'ski; - Franklin results on Frechet

and sequential spaces has been produced . Our Theorem 1II.4.3 fills

this gap

That theorem, as well as most of the results in this thesis,
is cast in a very'gederal setting . We adopted this point of view upon

observing that, for example, sequential spaces are defined in the same

Qay k spa ¢s are defined, and what is more, the standard characteriza-
tion theorems for these spaces (Franklin's in the case of sequential

o~
spaces, Cohen's [9] in the case of k spaces ) are proved in exactly
.

:the same way . The quasi-k spaces of Nagata [2?] and cluster
spaces (we call them ¢ spaces ) of Schedler [28] are likewise

structurally no different fiom sequential or k spaces and are consequently

A3

encompassed by our general scheme .

Apart from the fundamental structure theorems, certain

relevant combinatorial and product questions are also treated. OccasiBhally,

.

certain concepts had to be dealt with individually when doing so had a

/



d tinite advantage . Material which could have possibly obstruct:d
the general flow of the presentation is reserved for the last chapter .
This mainly consist: of certain examples and some results on linearly

ordered topological spaces, which have no direct bearing on the develop-

ment of the general theory

: ' ;



CHAPTER 1

PRELIMINARIES
I.1 . It is most appropriate to start with definitions of vario@s
concepts which we intend to look at in a general setting a little later.

For tlie sake of neatness, we prefer to present them in groups.

Recall that a filter base F 1s a non-empty collection of
non-empty subsets of a certain set Y such that for every two members

Fl and F2 .ef F there is a member F3 of F such that F3 is

contained in Fl n F2 . In a topological space Y , a filter base F

accumulates at a point y if y € F for every F ¢ F . A decreasing -

a

sequence of non-empty subsets - a special filter base - is called a

-decreasing sequence herein.

i & v
We are now ready for the following groups of definitions.

Group I : A space Y 1is stronglszréchet iff whenever a decreasing

sequence (Fn) accumulates at y in Y , there exists Yo € Fn for

gach n , such that Y4 b .
\\ ) . . . . -

A space Y 1s strongly k' (strongly quasi-k' , strongly c'

respectively) iff whenever a decreasing sequence (An) accumulateg_at
y in Y , there is,a compact (countably compact, countable respective-

ly) subset K of Y such vy € (K n An)_' for every n



. 3 _ 9
Group. 1I : A space Y is Frechet iff whenever y ¢ A in Y , there

is a sequence in A which converges to y

A space Y is k' (quasi-k' , c' respectively) iff

whenever vy € A in Y , there is a compact (coudtably compact, countable

respectively) subset K of Y such that y ¢ (K n A)~

Group IIT : A space Y is sequential iff a subset A of Y 1is closed

whenever a sequence (yﬁ) c A and YoV o then y € A

A space Y is k (quasi-k , ¢ respectively) 1iff a sub-
set A of Y is closed whenever A n K 1is closed in K for every
compact (countably compact, countable respectively) subset K of Y

) Group IV : A space - Y is §R iff every sequentially continuous real-

valued function on Y 1is continuous. (A function f : Y > R is sequen-

tially continuous iff .whenver LA then f(yn) > £(y) )

A space Y isv,ER‘ (quasi—5¥ » Sp %mespeccively) iff eve?y '
real-valued function on Y which is continuous on every compéct~(oouﬁ+
~ tably compact, couotable rospecﬁively) subset of Y is continuous.
We are now in a position to introduce the gemeral scheme.
" The corrgspondenoe between the following set of definitions and Groups I
through IV is indeed one-to-one and obvious. For example, Group I corres-

v |
ponds to Definition I.1.1', Group II to Definition I.1.2 and so on.

Let Y be a topological space and T a class of topdlogioal

spaces which is closed under homeomorphisms . The statements " A is



a T-space” , " A 1is a T-subspdce of ¥ " and "A is a T-subset

of Y" will be synonymous and will mean simply that A ¢ T .

I.1.1 Definition A space Y 1is strongly T' iff whenever a decreasing

sequencé (Ah) accumulates at y in Y , there exists a T-subset K

of- Y. such that y ¢ (K n An)— for every n

1.1.2 Definitionv A space Y 1is T' 1iff whenever Yy ¢ A for a subset

A of Y , there is a T-subset K of Y such that y e (K n A

I1.1.3 Definition A space Y 1s T iff whenever F n K 1s closed in

K for each T-subspace K of Y , then F is closed in Y . (A sub~-

set F of Y with the propefty that F n K is closed (open) in K for

_ each T—subspace‘ K of Y will be called T;closed (T-open) . )

I.1.4 Definition A space Y is T, iff every real-valued function on

=R

Y whose restriction to each T-subspace of Y 1is continuous 1is continu-
ous. on Y . (A function which is continuous on - each T-subspace of a space

Y will be said to be T—éontinuous on Y .) In view of the fact that

every Tychonoff space can be embedded in a product of lines, the condition
that functions be real-valued is sﬁperfluous here. That is, Y 1is a TR
space iff every T;continuohs functioﬁ on Y- with arbitrary Tychonoff range
is continuous. (If arbitgéry Hausdorff ranges are allowed the class of

Hausdorf{ T spaces coincides w1th the class of Hau. .dorff T spaces

To see that a Hausdorff TR space X is a T space, consider the ;

identity mapping id : X > TX (see I.3.1(b) ) .

~



1.2 For several different classes T , the topological spaces

in some sense coherently determined-by T have familiar.names as listed
| .

in Groups I through IV in 1.1 It seems.most convenient to list them

again in an 'implication' diagram as done below. While doing so, we have

¢ '

also taken an opportunity to introduce certain connected coherence

topologies.
strongly T' strongly c'+ strongly »strongly k'_> strongly strongly
Frechet quasi-k' c'
' : [30] [30]
v i ¥ v ¥ T
T' _ c' « Frechet - k' -+ quasi-k' c'
[28] [3] (5]
¥ 0 ¥ ¥ ¥ 2
ﬁ? ' ¢ <« sequential » k -+ quasi-k - ' C
[28] (81 - (1] [25]
+ + + + + ¢
T, c “ S > k -+ quasi- C
R R - 27} 1281 . R
L : countably
,ﬁ«' countable. convergent compact compact connected
T spaces sequences spaces spaces spaces
-
O
Fig. 1

, vﬁhere a reference is supplied in the diagram it serves to
lead to the earliest mention of the concept to the best of author's know-
ledge, as well as to indicate that the terminology is not ours. In this
cohneotion we might mention that Schedler [281 refers to (what we call)
c spaces as cluster soaces: We should also further add that by 'conver-

gent sequence' we mean the range of a seqoence together with its limit.



We have some comments about the use of sepatation axioms in
\this thesis. First, note that in general, in the absence of separation
'_eiioms, if T is the class o} convergent sequences the'concepts.of strongly
T'\ , ', T and TR spaces.do not coincide with(those of strongly
Frech 't Frechet, sequential and SR spaces respectinely (in fact, the
topologies of the former are weaker than the respective topologies of the
latter) . However, in the class of Hausdorff spaces the distinction bet-

- ween the rfspect .acepts 1n these two groups vanishes. Hence, when-

ever we spe gi{gﬂbtrongiX>Frechet, Frechet, sequential or §R space we

will assume Hausdorff separation without explicit mention - there exists

no such blanket assumption regardingrseparation'axioms.other@ise.

We must point out here the fact that first countable epaces
are strongly‘Frechet, 1ocaily compact (in the sense that every®point of
the space has a compact neighbourhood) spaces are strongly{k' and that
locally countebly compact (in the sense that every point of the space has
a countahly cqmpact neighbourhood)vspaces are strongly quasi-k' . Also, by
considering characteristit'functions of components, one easily sees that

X is C iff each component is open and closed 1ff X 1is a disj01nt

R

union of comnnected spaces. The equivalence cf strongly ¢' and CR spaces
’

follows. (This equivalence with its proof is pointed out by A. Csaszar.)
These spaces coherently determined by connected spaces will be used mainly
, : \

to illustrate certain points.

¥

Lastly, in order to get quickly to the core of the matter, we
" have reserved comments 5uch as reversibility of certain implication-
arrows in the diagram for the last chapter Mostdof the implications,

/
however, - follow qulte easily. Also, in general there exists no relation



between connécted coherence tépologies and those other in the diagram.
b

[.3 ‘ There are certain results of basic importance which we

mention here. They will be used without explicit reference.

™y

-~

Let (X,T) be a topological space and T a class of topo-
logical spaces. By TT we mean the topology on X consisting of all
sets which are T-open in (X,T) . We often write "TX" for the topole-

gical space‘ (X,ZT) , reserving "X" for the space (X,E)

1.3.1 Proposition

a) The identity map from TX to X 1is continuous.

b) If K is a T-subset of X , the relativization of T

to K is identical with that of Tr . Consequently, if T "is closed

]

under continuous bijections, a set is a T-set in. X iff it is a

T-set in TX

¢) TX 1is a T space.

t4
d) A function on .TX _is continuous iff it is T-continuous

on X . 1 . ° 7 ‘.

-

.e) T is the léigest topology on X which agrees with

T
T on T-subsets in X

Proofs : a) This is easy to prove.

P

b) To verify that the relativization of Iy to K 1is the

relativization of T to K , let G < K be T-open in K . Then there

———



b '
o : , , 10.
LY ‘); "

is a T-open subset 0 ~of X such thag G =0n K . But thén by defi-

Y]

. ) .
nition of T-open sets, 0 n K 1is open in K for every T-set K in

gl

X . The result follows.

&)
4 to
! &

The seébnd statement is now easy to see. The condition that -
T ‘;E“tlésed under continuous bijéctions is indeed essential here. For,
if T is fhe class of discrete spaces, then TX 1is discrete for anf X,
- whence "each of the subspaces of TX 1is a T-subset without beiﬁg a T-
subset in X . That the saié condition 1s essential aS Qell as the

foregoing example was pointed out by A. Csaszar

¢) TX will be a T space iff every T-open subset of TX
is open in TX . But a subset of X 1is T-open in TX iff it 1is T-open

in X . (This needs (b) .) Hence TX is a T space.

d) If a function on TX is continuous, it is also continuous
with respect to ZT on every f—subspace .K of fX . But since . TX
and X 1induce the same topology on K , éhe functioﬁ under consideration
is T-continuous on X . Conversely, if f : X>Y be T—conéinuous on
X , suppose that 0 is an‘open subset of ¥ . To prove that f is
continuous with respect to IT we must provee£hat f—l(O)‘ ig T-open in
X . Bﬁt‘this,is obvious since f~l(0) n K 1is open in K for -wery"

T~subset K of X

e) This is easy to prove.:

Little work has been done on TR spaces in general. The

-~

main result in this area»is the fundamental theorem of Mazur “[18]1 -,

. -
| SN
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improved by Noble {27] , about SR spaces.

I.3.2 Theorem (Mazur, Noble)
a) Every weakly inaccessible# cardinal ié non-sequential.**

b) 1f Xa is non~-indiscrete Hausdorff and first countable
for every, a € A , then T.X d4s an S space if the cardinal of
acA"a - R

A is non-sequential.

The following results will also be~needed in the sequel.

‘1.3.3 Theorem (Schedler [28] ) X is a c' space iff X is a ¢

space.

I1.3.4 Theorem (Arhangel'skii [6] ) A topological space X is

Frechet iff every subspace of X 1s a k space. '

* A cardinal 7(a is said to be weakly inaccessible 1iff

> . Z < N\ - =< .
a >0 is a limit ordinal and oL mS 7‘& whenever S ?\a and ‘

each m < v .
s :\a

*% A cardina%i A is said to be non-sequential iff there

does not exist a non-zero real-valued sequentially continuous function

o 2A -~ R which maps finite sets to zero.
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1.4 We will define here several classes of mappings which will
be used in the Structure ‘heorems of Chapter II and in the T-covering
characterizations of Chapter I1I . We will also introduce a new class

of mappings wider than the class of quotient mappings which we call
T-weak-quotient mappings. These will be mentioned when their need arises.

(Quotient mabpings are not defined due to their familiarity.)

I1.4.1 Definition A mapping f from X onto Y is called countably
bi-quotient mapping 1if it satisfies either of thé following equivalent

conditions :

a) Whenever y € Y and (Un) is an increasing countable

cover of f_l(y) by open subsets of X , then y ¢ Int. f(Un) for

some n

b) Whenever (An) is a decreasing-sequence accumulating

at y ‘in Y , then (f—l(An)) accumulates at some X € f_l(y)

(These mappings were introduced by A. H. Stone in [31] and the equi-

valence of a) and b) is proved by F. Siwiec in [30] l)

. B . :
1.4.2 Definition A mapping £ from X onto Y 1is called hereditarily
quotient mapping if it satisfies any one of the following equivalent

conditions :

a) f | f—l(S) N f_l(S) + S 1s quotient mapping fof

every S c Y
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b) Whenever U 1is a neighbourhood of f—l(y) in X
f(U) 1is a neighbourhood of 'y in Y . (Neighbourhoods need not be

open.)

c) Whenever y € A in Y , then x € (f—l(A))— for

some X € f-l(y)

(The equivalence of a) and b) was proved by A. V. Arhangel'skii in
' {3] who also introduced these mappings. The equivalence of b) and

¢) is due to E. Michael [22] . The concept as at b) above is USﬁéll&“'T

called Eseudo—ogen.)

Obviously, every countably bi-quotient mapping is héredi-
tarily quotient mapping and every hereditarily quotientFmapping is

quotient mapping.

1.5 We will say that a space X is locallestronglztz'

'(locallz T' , locally T , locally Tp respectively) 1ff each pci§t of
X has a neighbourhood whose closure is strongly T' (T' , T , Tp
respectively) space. We will say that a space X is locally T iff

each point of X has a neighbourhoodkwhich as a subspace of X belongs

~

to T

I1.5.1 Theorem If X is locally éfrongly T' (locally T' , locally T,
locally TR: respectively), then X 1is strongly T' (T', T, TR

respectively) spacé. Also, if X 1is locally T , X 1is strongly T'.
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Proof : Suppose X 1is locally strongly T' . Let (An) be a
decreasing sequence accumulating at a point x of X . Let U be a

neighbourhood of x such that U 1s a strongly T' space. But then

3

€ (ﬁ n An)—' for every n whence one can find a }T—sqbﬁet K of

=1

such that x ¢ (U n An n K) for every n which proves that X

is stronglvy T'

Now'if X 1is locally T' , let F < X and let xngf
Let U be a closed neighbourhood of x which is a T' space. Then
X € ClU(F n U) and hence\there is a subspace K o} U which Belongs -
to T such that x ¢ ClU(F n Un K) . Then certainly x ¢ ClX(F n K)

Thus X is a .T' space

For T spaces, the result has been observed by Mrowka [24].

(See his 'heorem 1.3 .)

For TR spaces the result follows easily from the fact

.that a "locally continuous' function is continuous.

1

The second part of the statement of the result is easy.

Corollary The disjoint union of strongly T' (T' , T, TR respectively)

spaces is a strongly T' (T' , T, Tr respectively) space

1.5.2. Theorem

’ -
a) If T 1is closed under countably bi-quotient mappings,

then every countably bi-quotient image of a strongly T' space  is



strongly T'

b) If T 1is closed under hereditarily quotient mappings,

then every sgTtarily quotient image of a T' space is a T' space.
¢) If T 1is closed under quotient mappings, then

i) every quotient of a T space is a T space

and il) every quotient of a TR _gpace 1is a TR space.

\

Proofs @ .a) Let f bea countably bi-quotient mapping from a

strongly T' space X énto Yy . lLet y bea point in Y at which -

a decreasing sequence (Aﬁ) in Y accumulates. Then there exists

a point X ¢ f_l(y) such that X e (f—l(An))_. for each n . But
.. ' ! [ &

since X 1is strongly T' , there exists a T—shbse; K in X guch

that x e (Kn f_l(An))ﬁ' for every n . Then f(RK) is a T-subset

in Y and y = £(x) ¢ (£(K) n'An)— for every n

b) Let X be a T' space and suppose ¢ is a hereditarily

quotient mapping of X onto Y . Let FecY , ye F Let x be
a point of q_l(y) n (q—l(F))_- . Then for some subspace K of X
which belongs to T , Xe€ (q_l(F) n K) . But then Y e (q(qfl(F) n K))

-which is'a subset of (F nq(K))—: since q(K) ¢ T , we are done.

b
¢) (i) This has been proved by Mrowka ( [24] , proposition

1.8)
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-
¢) (ii) Let q be a quotierit mapping of a TR space X
onto Y . If f:Y >R 1s T-continuous, then f . q 18 T~-continuous

and hence continuous. Then f must be continuous, so Y is a TR

‘ space.

The following comments are appropriate at this place :

For Frechet spaces, Franklin ( [12] , proposition 2.3)
has provéd the following converse to 1.5.2(b) : 1f X , Y are Frécﬁet
spaces and q : X 7 Y 1is a quotient mapping, then gq . is ﬁéreditarily
quotient mapping. This result cannot be proved for T' spaces in
general, for every ¢ space 1s a c! space (r.3.3) and according
to 1.5.2(c)(i) this would imply every quotient mapping of a countable
space is_necessarily a hereditarily;quotient mapping. This 1s seen to
be éalse in the exémple below. |

1.5.3 Example Let 7X1_ be the space of ratiomals in (0,1) and X2

be the space {0,1/2,1/3, .} ‘with usual topology. lLet X be the

-
S

disjoint union of 'Xl and X2 . Let Y Dbe the space obtaineﬁ by
identifying each 1/n ¢ Xl with 1/n € X2 . (This is a modification of
[12] , Example 1.8) . Let f ; X - ¥ be the quotient mapping . Then

f dis not Hereditérily quotient mapping; for X2 is é neighbourhood

of £1(£(0)), but £(x,) 1is not a neighbourhood of £(0) -

v



CHAPTER TI

STRUCTURE THEOREMS

There are available now several theorems of the ‘Torm q;ken
by Cohen's theorem on k spaces ([9]1) : " X 1is a k space Lff X. is

a quotient of a locally compact space'. Thus

a)bFréchet spaces are hereditarily quotient images of

metric space5~([12])
b) Sequential spaces are quotients of metric spaces (rizn.

¢) c spaces are quotients of disjoint unions of countable

spaces ([281).

Two of the following theorems exhibit the above as special

: - .
casés of certaln general structure theorems for T' spaces and T
. - L

Teadl

spaces. This is fql;owed by the,developmént of a structure theorem for
T, Spaces which is, so far as we know, new for any cholce of T . Ve

. have also. a structurg?theorem for strongly T' spaces.

P
* -

II.1 Theorem Let T be a class of spaces which is closed under
countably bi—quotient‘mappings andvincludeé K u\i{x} whenever K € T,

and x € K 1in the tdpological space K U {x} . Then the following

)

- 17 -
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L

are equivalent for any topological space Y

a) Y is a strongly T' space .

-

b) Y is the countably bi-quotient image of a disjoint

union of spaces from T

-
]

¢) Y 1is the countably bi-quotient image of a locally T

_—"Space.

BIEEE : a) > b) : Let X be the disjoint union of all subspaces
of Y which belong to T and let f : X > Y .be the natural mapping.
Now if kAnj. is a decreasing sequence accumulating at a point y in.
Y , then since Y is strongly T' , there 1s a T-subset’ K c ¥
sucn’that” ye (Kn An)_' for every n .. Consideting'the sumﬁand
K u{y} iof X , it follows that f is countably bi-quotient mapp;ng.
N |

b) » ¢) ; Quvious.

c) - a) : Followsvfrom I.5.1 and I.5.2(a)

11.2 Theorem Let T be a claes of spaces which is closed under

hereditarily quotient mappings ‘and includes (K u {x} whenever KeT,
‘and X ¢ K in®the topological-space K.U {x} . Then the following

’are.equiValent for any topological spcce"Y
a) Y is a T' space.

b) Y is the hereditarily quotient image of a disjoint



19.
union of spaces from T

) Y ist¥the hereditarily quotient image of a locally T

space.
N

Proof : | a) > b) “: ‘Lét..X__be‘tHe disjoint union of the subsp;ces
of Y which belong to T and iet f:X->Y be ghe nafural mapp}ng.
To see'that f 1is hereditarily quotient mapﬁing; let vy € A iﬂ Y .
Then-for some K € .T in Y , ye (An K) . Then Iy e K and hénce
K u {yi ¢ T . But then K u {y} is a summand in the disjoint union

X . It is easy to see that this summand contains a point common to

£ ly) and AN .

-~

b) » ¢) Obvious.
c) - a) : A locally T space 1s a T' space and the
hereditarily quotient image of T' space is, by .1.5.2 , a T' space,

~1.3 Theorem Let T be a class of spaces which?1s closed under

quotient\maﬁpings. Then the following are equivalent for any topological

5

space Y
1
a) Y 1is a T space.

b) Y is the quotient of a disjoint union of spaces from T.

¢) Y is the quotient of a locally T spacéu

Proof : a) > b) : Let X be the disjoint union of the subspaces
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of Y which belong to T , and f : X * Y the natural mapping. It is

routine to verify that f 1is a quotlent mapping.
b) - ¢) : Obvious.

c) > a) : A locally T space is a T space, and the
quotient of a T space isa T space\by' I1.5.2(c) (1)
I1.4 Iﬁ‘order to characterize the TR. space 1in the spirit of
structure theorems just given, we'need some concepts which were introduced
by McArthur [19] . A linear order < ‘hon a set S 4dis said to be
» dense provided whenever X <‘y in- S o then x < z <y for some 2z € S.
,We.write A ccB in a topologieel space X provided AcB . A set
F ¢ X 1s said to be a strong‘ G.-set in X prov1ded F is closed -

25

i lGi where each Gi'~1s open and cc is a dense linear order-

and F =

II'D 8

on {Gi}

We introduce now some terms based on the above. A subset

F of a topological space X will ‘be called a T-g-set 1if

F = 21 { where each - Gi is T-open and <<r -1is a dems e linear order

on {Gi} (where A << B iff ClTX AcB) . A T-closed T-g-set will

be called a T-G-set .‘Clearly, a T-G-set in X 1s precisely a strong
Gé—set in TX . Finally, we define a class of mappings wider than the

-class of quotient mappings. We call a continuous mapping f of X onto

Y a T-weak-quotient mapping provided every T-g-set A is closed

in Y whenever ﬁ_l(A) is closed in X . Our.characterizatidn'of T

»spaces will use T—weak—quotient mappings, but to prove it efficiently,
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we first prove the easy lemma:

I1.4.1 Lemma A spahe X is a. TR space if and only if every

T-G-set in X 1is closed.

Proof : According tp’McArthur [19] , aset F in X 1is a
T-G-set if and only if F 1is a zero-get in TX . Thus it suffices to
show X 1s a TR space if -and only if zero-sets in TX are closed

in X .

)

To prove sufficiéncy, let f : X > R be T-continuous,

and Z a zero-set in, R . Then g1

(z) is a zero-set in TX and
hence closed in X . It follows easily that the inverse image of any

closed set in R is closed in X , so f 1is continuous.

To prove necessity,flet Z be a zero—set'in X . Then
Z = f—l(O) for some real-valued T-continuous function f on X . Bui

f 1is then continuous, so Z is closed.

IT1.4.2 Lemma Let T be a class of spaces which is closed under T-weak

quotient mappings.

Then a T\weak quotient of a T, space is a T, space..

Proof : - Let f : W - Z“be a T-weak ‘quotient mapping from a
TR .space’ W onto Z . Let A be a T-G-set in Z . We must prave
1

that A 1is closed. For this, it suffices to prove that £ ~(A) 1is

closed in W . But; since W 1is a TR space, one would just show



that f—l(A) is a T-G-set in W . We, however, prove that if G be

...l(

a T-open set in .Z,, f G) 1is T-open in W , for other ‘details would
» :

then follow easily. Hence, consider f_l(G). Let K be any subset
A .
of W which-belongs to T . Then £(K) € T whence £(K) n G 1is open

1

in f(K) . It follows that f_l(G) n K is open in K which implies

f-l(G) is T-open in W . This proves-the lemma.

I11.4.3 Theorem Let T be a class of spaces which is closed under

‘T-weak quotient mappings. Then the following are equivalent for any

topological space Y:

A

a) Y 1is a TR space.

b) Y is the T-weak quotient .of a disjoint union of spaces

belonging to T .

c) Y is the T-weak quotient of a locally T space.

Proof : a) > b) Let X be the disjoint union of all subspaces
of Y which belong to T and let f be the natural mapplng of X

onto Y . Then f 1is a T-weak quotient mapping.

To see this, let A be a T-g-set in Y such that f—l(A)
is closed in "X ; However, since f: X~>TY is a quetient mapping,

f
A is T-closed. Thus A is a T-G-set and hence closed by II.4.1.

b) > ¢) : Obvious. B

22.
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¢) » a) :  This follows from the fact that a locally T

R
by I1I.4.2. : ' .

space is T and that a T-weak qudtien: of a TR space is a TR space

-

As special cases of'the foregoing- theorems one gets struc-
ture ‘theorems for all the various coherence topologies mentioned in

the implication diagram on page 7.



CHAPTER III
T-COVERING MAPPINGS AND COHERENCE TOPOLOGIES

Our main interest here centres around characterizing some
of the coherence topologles in terms of T-covering mappings which

generalize the existing 'compact covering mappings' and 'sequence

covering mappings'.

IIT.1 In this section we discuss various covering mappihgs. First
we define T-covering mappings. 4 o A /

I11.1.1 'Definition A qdntinuous funbtiod’ f from X onto Y ié

called a T-covering mapping iff to every Tfsubset' A of Y there

corresponds a T-subset B .of X such that f£(B) = A .

.When T consists of compact spaces,. a T-covering mapping
©is compact covering mapping of Whyburn [35] and Arhangel'skiz [3]
Likewise, one gets countably compact-covering mapping% when T 1is the

class of countably compact spaces. When T is the class of convergent

sequences, |-covering mappings will be ca;led S—covering,mappinggf
One might recall at this stage how Siwiec [30] hgé defined sequence
éovering mappings. A continuous function from X ‘ontd Y is called
a sequence covering iff whenever y_~>*y in Y for some X_ '€ f_lfyﬁz
- n - ’ “n
1

and x € f (y) , x, 7 x . The following example shows that S-covering

mappings are not quite the same as sequence covering mappings.

- 24 -
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111.1.2 Example lLet X be an uncountable set. Let C be the
co—fin;té topéiogy on X while T be the topology on X having for
its subbasis the family {a} u C where a is a fixed point of X .

Then the identity mapping 1d : (X,7) » (X,0) 1is certainly continuous.

In fact, 1d 1is an S-covering mapping. ‘For, if SC be

any sequehcé (xn) together with a limit, sa§ x in. (X,C) , consider
Ltwp'cases: (1) _SC is an infinite set

(1ii) SC is a finite set.

Case (i) : Here there are infinite number of points of SC which are
different from a (1f at all ac¢ SC ). Fix some point of SC other
than a and call it y . Let ¥y = a (if at all a'e SC‘) and

let y,, - Vs o be an enumeration of . S, - {a , y} . Then y_ >

in ST where' ST has the same set as -SC with the topology inherited

from (X,T) . Then ST is a sequence with a limit in (X,T) such that

1d(ST) = Sc .

Case (ii) : Here SC may be regarded as an evenyually stationary

sequencé with a limit in both the topologies simultaneouél?i

'However, 1id 1s not a sequence covering mapping. (For, if

T

(xn) be a sequence of distinct points such ﬁhat X g a, xnf+ a .

(Note that the épacés in. this example are non-Hausdorf£f.)

The following proposition, however, shows that in the
class of Hausdprff spaces the distinction between S-covering mappings

and sequence covering mappings vanishes. S

U

25.
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II1.1.3 Proposition If Y 1is a Hausdorff space, then f : XY

is a sequence covering mapping if and only if f 1s an S-covering

v

mapbing. T .
Proof : Only if : Easy.

If : Let f : X>Y be an S-covering mapping. Let
Yo in" Y and let further SY = (yn) u (y).

,.
We consider cdase (1) B SY is a finite set
and case (1i) : SY is an infinite set.

Case (1) . Here it is easy to find a sequence (zn) in X such-that
z + 2z 1n X where z'e f_l(y ) and 2z € f—l(y)
n n n
Case (11) : Here we first note that since f 1s an S-covering

mapping there is SX = (xn) U (%) ;spg?‘that X + x and lf(Sx) = SY .
Then £(x) =y . For, 1if ﬁbt, by continuity of - f ,

f(xn) + f(x) whence if £(x) # y , the sequence (f(xn)) is eventually

equal to f(x) as SY has discrete topology on SY - {y} . However,

this means that Si is a finite set giving a contradiction.

|

Now cheose a point from f—l(yn) c Sx and call it =x .

It suffices to show that x; + x . Let hence O be an open set
containing x . Then, as X =~ X , X, € 0 whenever n > m for some.

m . But then 1if vffxl, cee s xm} = {ykl P }, one has x; €0

m

whenever n > max {kl s eee s km} whence xé > X .

E!

26.
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We now introduce some more concepts.

111.1.4 Definitions A continuous function f from X " onto Y is

said to be a cluster covering mapping iff whenever Y, ~ y in Y ,

for some X € f—l(yn) and x € f_l(y) y X ~> x 1in X where ' ~>'
is to be read ' clusters to ' . A C-covering maREi“S will be ~

T-covering mapping where T 1is the class of all clustering sequences.
(By a clustering sequence we will .mean the range of a sequence -

together with one of its cluster points.) A countable covering mapping

is obtained by interpreting T as the class of allfcountable spaces.

3 v
”

It is easy to see that every cluster covering‘mapping is
a C—éovering mapping and that every C-covering mapping is a countable
cové;ing mapping. In fact, évery_continuous surjection is a couﬁtable
covering mabping and alsq a C-covering mapping. This can be easily seen.
Indeed, @e have meptioned these mappings to attain a certain completeness
in presentation. To see that a C-covering mapping need not be a cluster
‘covering mapping_consider the identity mapping id from (R,C) onto’
_'“?(R;U) where U 1s the usual topology of the real line R -and C is

the usual topology on the real line R with zero discretized.

Also, just note in passing that one gets the same T and
T' topologies, that is, ¢ (=c') topology, irrespectivé of whether

one uses the class of countable spaces or the class of clustering
- ke

sequences for T
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IIT1.2 We are now in a position to turn to the characterization
of certain coherence topologies in terms of T-covering mappings. We

will assume that

(1) T is closed hereditary

(11) T 1is closed under continuous mappings

~and (i1i) all T-subsets of the range sgacé Y under consideratiory

are closed .

The discussion of cluster covering mappings and cluster coherence
topologies 1is reserved for the end of this chapter. This is because
even in very good spaces cluster sets or countable sets are not always
closed and, as:we will discover later, a c space in which countable
sets are closed reduces tb a discrete space. Lastly, we must mention

that we could not obtain T—cbvering mapping characterization of strongly

T' spaces.

II11.2.1 Theorem A topological space Y 1s a T' space if and only

if every T-covering mapping onto Y 1is hereditarily quotient mapping.

Proof : If :’ Let Y be a topological space such. that every
T-covering mapping onto Y 1is hereditarily quotient mapping. Let‘ X

ﬁwbe the disjoint unionlof all subspaces of Y which belong to T and

let f : X+ Y be the natural mapping. Then X 1is certainly a

T' space. Further,. f 1is a T-covering mapping which then, by hypothesis, -
is hereditarily quotient mapping. But then, since by- 1.5.2 (b) a

hereditarily quotient image of a T' space is a T' space, it follows téat

Y is a T' space.
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Only if : Let f :X>Y bea T—covefing mapping onto
a T' space Y but yet not hereditarlily quotient. Then there is a point
y € Y and an open neighbourhood U of f_l(y) such that y .does
not belong to Int. £(U) . Then y €Y - Int., f(U) = (Y - f(U))_' .
Hence there is a T-subspace K of Y such that y € {¢Y - £(U) n.Ki—
= (K - £(U)) . Also, there is a T-get L in X such that f(L) =
(K - f(U)) . Since K - f(U) < £(L) - f(ﬁ) c f(L - U) and f(L - U)
is closed, f(L) = (K - f(U))— < (f(L - U)) = f(L -U) . Hence y

belongs to f(L - U) and f_l(y) n(L-U)+#¢ . This is a contradiction

.since fil(y) <l

Corollaries 1) (siwiec and Mancuso [29] ) A Hausdorff space Y is

a k' space i1ff ‘every compact covering mapping onto Y 1is a hereditarily

quotient mapping .

2) (Siwiec [30] ) A Hausdorff space Y. is Frechet iff

every sequence covering mapping onto Y is a hereditarily quotient

o
. Q

mapping.

’ .

3) If countably compact subsets of Y are closed, then
.Y is quasi-k' iff every countably compact covering mapping oﬁto Y

is hereditarily quotient mapping

III.2.2 Theorem A topological space Y ~is a T space if and only if

-

every T-covering mapping onto Y 1is a quotient mapping.
S

Proof : - If : The proof of this part is very much similar to that

of the 'if' part of III.2.1 and is hence omitted .

A4
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Only if : Let f : X > Y bea T-covering mapping onto

1(B) closed in

)
aT space Y . Let é be a subset of Y with f

X . To prove that B .is closed in Y , we must show that B g Q is
closed in C for every T -set C in Y . But C = f(K) for some
T-set K c-X . sb that f—l(B) NnK is a T -~set since T 1is closed
hereditary and hence so is;its image B n C . It follows that B n C

is closed in C .

T

Corollaries 1) (SiwieC»hnd Mancuso [29] ) . A Hausdorff space Y
is a k space iff every compact covering mapping onto Y is a quotient

mapping. -

/

’ 2) (Siwiec [30] ) . A Hausdorff space Y is seqgential

iff every sequence covering mapping onto Y 1is a quotient mapping,

‘3)" If countably compact subsets of a space Y are
closed, then Y is quasi—k iff every countably compact covering mapping

onto Y 1s a quotient mapping.

4) If countable subsets of a space Y are closed,'then ‘
Y is a ¢ space iff every continuous mapping onto Y is a quoéient
< .
mapping. In other words, Y 1is a discrete topological space iff Y
is a ¢ space in which everyléountable set is closed. (Of cohrse, this
fact can be seen directly.)
e

I111.2.3 Theorem A topologicai space Y 1is a TR space if and only

if every T-covering mapping onto Y is a T-weak quotient mapping.
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Proof : If : The proof of this part is very much similar to

®

that of the 'if' part of III.2.1 and hence omitted.

\;gPlx_lg : Let Y be a TR space and let f : X > Y
be a T-covering mapping onto Y . We must show that f 1is a T-weak

quotient mapping.

To see this, let A be a T-g-set in Y and let f-léA)
be clo;ed‘in X . We must shdw that A is clos;d in Y . But since
Y is a TR gspace it suffices to prove that A is a T-G-set. That
is, in fact it suffices tq prove that A 1s T-closed.

Now-bnsider f as a mapping from TX onto TY . Then
srncé Y-‘and TY as also X and TX have the same T-subsets, it
follows that f is a T-covering mapping from TX onto fY if we can
prove that f : TX > TY is continuous. Hence, let G be T-open in

>

Y . Consider f—l(G). Let K be any T-set in X\: Then f£(K) € T
whence G n f(K) 1is open in f(K) . But then f—l(G) n K 1is open in

K . Thus ffl(G) is T-open in X.. Hence f : TX > TY 1is a T-covering
mapping. vBut then by IiI.Zkz f: X->TY is a quoﬁieﬁt mapping.

This means that A 1is T-closed as f_l(A) is known to be closed.

'Corolléries 1) A Hausdorff space Y 1s a kR space iff every compact

covering mapping onto Y is.a compact-weak quotient mapping.

4
“ -

K 2) A Hausdorff space Y is an SR space 1ff ewery

_§eqﬁen¥e covering mapping onto Y 1is a sequencé—weak quotient mapping.

it.



'3) I1f countably compact subsets of a space Y are closed,
then Y 1is a quasi—kR space iff every countably compact covering
mapping onto Y 1is a countably compact-weak quotient mapping.

-
o !

4) 1If countable sdbéets of a space Y are closed, then
Y is a R space 1ff every continuous mapping onto Y is a countable-

weak quotient mapping.

111.3 All discussion in previous section assumed, among other
things, that all T-subsets in the range space Y were closed. As we.
have already seen, such a restriction makes the undexrlying c space

discrete.. In fact, one can prove the following without any conditions.
) , - .

II1.3.1 Theorem The following are equivalent in any topological

r@quce Y : p ‘ T B

L &3

a) Y isac (=c") spaéﬁ%

fr; .
b) Every cluster covering mappf%g onto Y 1is a hered-

itarily quotient mapping. &

¢) Every cluster covering mapping onto Y is a quotient

mapping. “
Proof : a) >b) : let X be a c¢ space and let f:X~>Y be

a cluster covering mapping onto Y .JiTheé if f is not hereditarily

. quotient mapping, there exists y e Y. and open neighbourhodd  U of

f_l(y) ‘such that y ¢ Int. f(u) . Ihgh y e‘kY - f(U))—'. Then there ’

2
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is a sequence (yn) in Y - f(U) clustering to Yy . (Recall that
¢ = ¢' .) But then there is a sequence (xn) and-a point X of X

-1,

such that X, e f (yn) for every n , X € f—l(y) . i&d X ~> X .

“

Now since X € f_l(y) and f_l(y) <y, x ~>X implies that (xn)

is frequently in U . However, (yn) c'y - f£(U) implies that for

every 1n , X ¢ U . We thus have a contradiction.

b) » ¢) : Obvious.

c) » a) : Let X be the disjoint union of all clustering
sequences in Y and let £ : X~>Y be the natural mapping. Under
the present gituation f turns out to be a quotient mapping from a

¢ space whence Y becomes a ¢ Space.

111.3.2 Theorem A topological space Y is a c¢p space if and only
if every cluster covering mapping onto Y is a countable—weak quotient

mapping.

Proof The proof of this theorem-is very. much similar to that of
111.2.3 and is hence omitted. of course, while proving it, one will

have to use 111.3.1 rather thah‘ 111.2.2. :



CHAPTER IV
SUBSPACES

Iv.l Franklin [12] has observed that a Fréchet space iq
hereditarily”fréchet, a se?uentia} space is closed hereditarily
sequential, and a hereditarily seqﬁential space is Fréchet. These

- results can be extended ratﬁer nicely to include'the SR spaces and
generalized to T*, T, TR spaces. This is accomplished ‘in the
following two theorems. (Mrowka [24] has observed that (a). and

(b) in Theorem'IV.l.l are equivalent.)

IV.1.1 Theorem' If T 1is closed hereditary, then the following are

equivalent for any Tl space X :
a) X is a T space.
b) Every closed subspace of X isa T épace.

¢) Every T-closed subspace of X 1is a Tp éﬁace.

giggé : Clearly a) - b) » c¢). To show-that c) - a) , let.

F ¢ X be T-closed and sqpﬁose # e F-F . Tﬁen» Fu {x} 1is T-closed

and hence a TR space. _IfAﬁhere is n6 T—suﬁset K of Fu fx} containing %
such that x € (F q K) , theﬁ tﬁe characteristic function of {x} 1is

f-continuous but not continuous on F u {x} . This is impossible; hence
. . -

F is élosed.
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Note that the equivalence of a) and b) does mot need T, .

1V.1.2 Theorem 1f T 1is hereditary, the following are equivalent

for any T, space X
| a) X is a T' space . .-
b) ‘Every‘sgbspace of X is.a T' space .
c¢) Every subspace of X 1s a T space .
d) Eveyry subspace of: X is a TR space .
Proof : Clearly a) ™ b) ~ ey d) R To.shoy thg; d)~ .a)‘ , let

F cX and let x ¢ F.— F . As in the proof of Theorem Iv.1.1 , this -
‘would entail the ex{stence of a T-subset K Qﬁ, F u {x} such that

x € (K " F) , which proves that X is a T' space .

Note that the‘equivalénce of a) , b) and c) does'not
need Tl .

The' separation axiom Tl is really needed in both 1IV,1.1
- and 1IV.1.2 . To see this, let T comsist of finite spaces so that T
is hereditary. Let X be a countably infinite set consisting of distinct
peints a ,'b1 ’ b2 s o s e s bn sy o e & : Topologize X by calling
a subset of - X open iff it is empty or ﬁas-the form {a , Bi , bk+1 y seel .
Then every subspace of X 1is TR . But X is not a T space, since

{b b, , b, , ...} 1is a T-closed set in X which is not closed .
1?72 3 .



(Note that only constant real-valued functions on X are eontinuous .)
i

The conditions on T in 1IV.1.1 and 1IV.1.2 ‘cannot be
significaﬁtly weakened. For example, every compact Hausdorff sﬁace_#s
. a k' space, but not all subspaces of compact Hausdorff spaces (i.e.,
not all T&chonoff spaces e.g. Aren's space discussed in VI .2.4) are
k' spaces, or‘even kR spéces; so thét Iv.1.2 cannqt be much
improved. Likewise, to see‘that _IV;l.l cannot be improved, iet T
be all conneéted.spaces. Let Y be any totally disconnécted non-
discrete Tz spéce; ahd let X be the.cone AY‘ over Y . Then X
is connected and hence a T‘vspace, but Y is a clpgea subspace of

X and is not a T space. Indeed, with this definition of T, a
B \ -

totally disconnected space will be a T space 1ff it is discrete.

' The following results now become corollaries to theorems
a .

iv.1.1 and 1IV.1l.2:

-

i
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Corolla a) X 1is sequéntial iff every sequentially closed subspace
Lorol ary : : : p

of X 1is an SR space.

b) X 1is a k space iff every k-closed subspace of X -

is a kR space.

¢) X is 'a ¢ space iff every c—éioséd'subspace of X

is a ¢

g Space.

d) X is a quasi-k space iff every quasi-k-closed subspace

of X is a quasi-kk space.
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Corollary a) X 1is a Fréchet space 1ff every subspace of X 1s

sequential 1ff every subspace of X 1is an SR space.

[

b) X 1is a Fréchet space 1iff every subspace of X 1is

a k space iff every subspace of X 1is a kp ~space.

c) X is a c¢ space 1iff every subspace of X 1s a

¢ space iff every subspace of X 1is a cx space.

Iv.2 ' A closed or open subspace of a TR space need not be Tk.

In fact, one can give examples to show that_in none of SR » Cp s kR ;
: \

or quasi—kR spaces are closed subspaces necessarily of the same kind.

IV.2.1 Example This example shows that a closed subspace of an Sx

space need not be even -CR (thus a closed subspace of an SR space

need not be’ SR and a closed subspacé of a CR space need not be cR).

.

Let § be the ordinals = Wy the first uncountable
ordinal. Then & is a compact non--cR space (the characteristic
function of {wl} is continuous on every countable subspace of { but

: ) v .
not continuous on £ ). But £ is the Stone-Cech compactification of

QO'= Q - {wl}' and, as such can be embedded as a closed subspace of

* .
IC (QO) , where C*(QO) denotes the set of all real-valued bounded

continuous functions on Qo" Since the cardinal of C*(QO). is "small"

. . o o
IC (QO) is an SR' space by the Mazur-Noble Theorem (I.3.2).
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Iv.2.2 Example This example ‘shows that a closed subspace of a k.R

épace need not be even quasi—kR (thus a closed subspace of a kR space
need not be .kR ahd a closed subspace of a quasi-kR space need not be

qua81—kR).

NoEle 126]) has proved that a Tychonoff space can be.always
embedded as a closed -subspace of a pseudo-compact kR space. Since
there exist countable Tychonoff spaces which are not kR , €.8. Aren's
space discussed in VI .2;4 , the claim madé in the previous paragraph
stanﬁs. (To see that Aren's space X is non—quasi—kR, note first thaf
a subset of X 1is compacé iff countably compact iff finite, Further,
the characteristic function of the set {(0,0)} is_conﬁinuous on every

countably compaét set but not continuous.)

These examples raise the question whether 'T—closed' in

Theorem 1IV.1.1 can be replaced by 'closed'. 'This question remains

'

unanswered.

IV.2.3 Example Let T denote the class of all conngcted spaces.
. .

Consider the example of Knaster and Kuratowski [17] . ,Weﬁ
'_.des;ribe the construction briefly: Consider the Cantor'set C obtained
by deleting a countable collection of open intervals ('middle thirds"')
from the unit/}nterval I . Let Q be the set of endpoints of these
intervals (so Q < C )'gnd set P=C-Q . Let pe€ R2 be the point
(1/2,1/25 and& for'each x ¢ C ; denote by L the straighé line segment

-

joining Pp amd x .- Define ; ‘ , o o

\



[ N e -

A

K = - . . ) K
Lx v{(xl’XZ) € Lx PoX, ls rational}l , if x ¢ Q ,
: * = . i ’
and Lx {(xl,xz) € Lx PX, %s irrational} , if x ¢ P .
Then the subspace K = v L* of R2 is connected, while K - {p}

x € C

- 1is totally'disconnected.

It is obvious that w1th T as above, K 1s strongly T'.
However, K - {p} is non—discrete totally disconnected and hence
cannot be TR . {In fact,.a totally disconnected’space X 1is a TR
~space where T stands for:the ciass of all connected spaces iff X 1is
discrete? To see this, consider the identity mapping of X onto
itself where the domain X has the given'totally disconnected topology
while the range X has the discrete topology and recall that a topo-

1og1cal space 1is a TR space iff every T- continuous function defined

. on it with values’ in any arbitrary Tychonoff space is continuous.)

Y

|

N |
oy

4

Thus, in general an open subspace of a strongly T' space

need not be even T However, we do.not know whether an open sub-

R -
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space of ao SR » Cg oo kR , Or quaei—kR space has to be ‘the same kind.

—

——

1v.2.4 There are non-sequential SR spaces :?ose every open
. subspace is SR‘: in fact, 2R is an SR space oy Mazur-Noble theorem
where 2 denotes the two—element discrete space, and since’every oasic
open sef_in 2 is homeomorphic to 2 , each such'basic open set 1s an
SR space. Hence. every open set in 2 is locally an S space_and ‘

hence (see I.S.l ) is an ’SR space. Hence the question here is: For

what spaces is every T-open subspace a TR’ space?
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As already seen, a TR space can have a closed or an open

non-T, subspace. However, the‘folfdwing theorem holds.

1v.2.5 Theorem If T 1is open hereditary and closed hereditary, every

‘

subscace Y of a TR space X which is both T-open and T~closed is TR .

Proof : If F cY 1is a T-G-subset of Y _, it can be easily seen ;<\

‘that F 1is a T-G-set in X . The result then folloWs by 11:4.1

The following example given by A. Gsasz4r shows that IV.2.5'

cannot hold in general without suitable conditions on T

Let T denote the class of uncountable spaces and finite
spaces: If X = (Qn (0,1) ) u (2,3) where Q 1s the set of rationals,
with the usual topology, then X is T, but Q n (0,1) (which is both

open and closed subspace of X ) is not . S

IvV.3 - Weddinton [34] has proved several facts about subepaceéa
of k and k' spaces. We will show in this section 'that T versions of
his proofs yield 31milar results for subspaces of T and T' specse.
However, to do so we- Qefg a condition om the class T of spaces ucder

consideration qnd also a'condition on the spaces we will. consider. Hence

P -

‘throught this sect%&g', we will work in a setting in which =i~ -~

23

\

i) T _is closed hereditary \\\.

[
L

3
Y

and . ii) evegzrscace considered below has all its T-subspaces
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L}
closed.

IV.3.1 Definition Let X be a topological space and A © X . Then
A will be said to have the Brﬁgertz T if a subset of A 1is closed
in A whenever it intersects every-T-subset K of X 1in a set closed

.

in AnK. o , , ]

IvV.3.2 Proposition A subspace A of X is aT space 1iff
i) A has property T,
and i1) A n K 1is a T space for each T-subset K of X .
roof : Onlz_ii : i) holds obviously. Further, A meets each
T-subset of X in a closed subset of A aqd hence in a closed subspace

of A . But since A 1s a T space, thé intersection of A with

such a T-subset is a T space. (ii) follows.
- BN

[

i
If : Llet U be a subset of A which intersects every
T—subset‘bf 'A in a closed set and iet C be a T—sﬁbset of X . We
have then A n C to be a T space. But then UnC is closed in

AnC . .(For, if D be a T-subset of A'nC , D is also a‘T—subset of
A . But then UnD is closed in D . Hence U n C 1is closed in

ANC .)Since A has property T , U is closed in A and A 1is

a T space. . . [

Corollary 1. Every open subspace of a T space in which T-subsets are

regular is a T. space. _ o ,
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Proof : Let V be an open subspace of a T space X and U be

a subset of V such that U n K 1is open in V n K for every T-subset
K of X . Then since V 1is open, U n K {is open it K . But then
since X is a T space, U is oben in X and>hence open in V ,
p;oving that V has property T . Also, by regularity df T-subspaces
of X and'closed—heredity of T ,-one sees that V n*K 1is locally T
and hence certainly a T space. The coréiléry now becomes obvious.
Corollary 2 : If X 1is a topological épace in which every T-subspace
is regular, and if further every poing of X is interior to a T

subspace of X , then X 1is a T space.

Proof : Let A be a T-closed subset of X . Let x ¢ A . Then
since evefy point is interior to a. T subspace of X , it follows by

Corollary 1 that there is an open T subspace U of X containing x .

Now let "K be a T-subset of Un A . Since Kn A is

closed, K n (A n U) is closed in U n A

Now U n A 1is a closed subspace of a T spacé U and

_ hence a T space by the fact that if T 1is closed hereditary, a closed
subspace‘of a T space is a T spuce. Hence sigce Kn (AnU) |is
closed in U n A for evéry T-subset K , An.U is closed in Un A .
Therefore, since x e UnNAn (AnU) =AnU , it follows that A is'.

closed which was to be proved.
1

I1v.3,3 - Proposition A topological space X. is a T' space if and only

if every subset of X has.property T .
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Proof : | Only if : Let A be a subset of X thch is a T' space.
Let U be a subset of A such that U n K 1is closed in A nK for
every ,T-subset K of X . If x e closure of U 1in A ., x also
belofigs to the closure of ﬁ in X . Hence since X 1s a T' space,
therg exists a T-subset K of X such thatvvx e (Un K)—. , closure
beiné with respéct to X . Bug UnK is closed in A (as U n K is

a subset closed in A n K and A n K 1is closéd in A - recall that
‘K is closed in X .) Hence x € U n K | from which it follows that

x € U , that is, U 1is closed in A . The property T is thus

established. ~

If ¢ Suppose that X 1s not é T' space. Then there
is a subset A of X and a po}nt X € A such that x ¢ (A n K)
for every T-subset K of X . If K ié a T-subgset of X , thén
AnK=(AnK) n{kn(@Au{x}D} . Since Ay {#} _has property

T, A 1is closed in A u {x} which contradicts x e A

IV.3.4 Proposition A subspace A ofa T' space X is T' if and

only if A nK is a T' space for each T-subset K of X

Proof : Only if : Let A be a T' subspace of a .T' space X .
Let K be a T-subset of X Let B be a subset of An K . If x
belongs to the closure of B in AnK , x belongs to the closure

of B in A . Then it follows that A n K 1is a T' space.

If : Let B c A and x ¢ the closure of B in A .

Then since X 1is a T" space, there exists a T- subset K of X' such
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that x € (B n K)—i . Then one has x ¢ (B n K) nAc B n (AnK)
Thus there is a T- subset C of ‘A for which x e (B n‘C)_; (Thié

is because A nK 1is a T' space.) It follows that A 1is .T' space.

Corollary 1 : If X is a T' space%‘ﬁhgg every open subspace of X 1is

also a T' space, it being assumed tHat T-subspaces are regular.

Proof : Let O be an open subspace of X . To prove that O is‘

a T' space it @s-sufficient to prové that 0 n K is a T' space for

1

every T-subset K of X

! . : ©y
. oy

‘Let, hence, A ¢ 0 n<K//where K is a T-subset of X and

let x be a closure point of'.A_ in O n K. . We must prove that there

js a T-set K' in O n K such that x ¢ closure of K' n A in O n K .

There is a set N_= open in 0 n K containing x such

that N € 0 n K - Then N nK is a T-set in O n K . Hence we are
X X

done if we prove that x "e{{ﬁx n K) n AT . But since Ac *

ﬁ(ﬁ# ”?K) nAJ = (Nx n Af_ . Now if %3 is a neighbourhood of x ,

(G n Nx) n A+ ¢ whence G n (ﬁx nA)# ¢ . It follows thaﬁ x Dbelongs

t? ;ﬁyx n A = {(Nx n K) n A.}
. )
Corollary 2 If each point'of X 1is interior to a T' space, X ¢

is a T' space, it beiﬁg assumed that T-subspaces are regular.

Proof : To prove that X 18 a 'T' space it suffices to prove that

every subset A of X has the property T by 1v.3.3 . Hence consider
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a subset' A off X . Let B c A be such that B n K 1is closed in
A n K for every T-subset K -of X . We must prove that B is

closed in A

Let x be a closure point of° B in A . Then, figﬁtly,
since each point of X is interiof to a T; space by hypothesis, it
follows by Cdrollary,l above that there is an open subspace G of X
containing x which is a T' space. Then, since x € (¢ .n B) , there

* . -

exists a T-set K' such that x € {(G nB) nK' Y .

e i e

‘Thus, x € (B n K') . But then, since B n K' 1is closed
in A n K' which.is closed in A , it follows that x ¢ BnK' cB .

Hence B {6 closed in A which was to be proved.



CHAPTER V

‘a

PRODUCTS .- L

4

V.l | The behaviour of products of TR spaceé is very dis-
<appoin£ing3 Not only is it true Fhip tthprdduct of two SR s kR

or quasi—-kR spaces 1s not‘in geneégl"bf the same kind, but the product

of familiar éountablethéchet'spaces need not be even a quasi—kR

space. The following examp le illustrates this fact,

©
.~
4 :

V.1.1 Example " This example is indeed due to Franklin [12] . Thanks
are, hoyeQer, due to Professor S. Willard for showing the author that

this example possesses the properties mentioned previously.

. For the sake of simplicity, we break consideration into

~

-

two parts.

1 Let Q be the ratiponals in (-1,1) , Q' the rationals
in R with integers identified, add let X =Q x Q' . X then is the

’ . )
product of two Fréchet spaces.

Let now (xn) ‘be a sequence of irrationals < 1 converging

?;monotonically downward'to 0 . For n=0,1,2, ..., let Tn

. ' : 1
. be ipterior of plané triangle determined by. points _(xaﬂn) s (l,n+§) , -
1, . , | . _ ‘
(lzpﬂy) and Tn the reflection of TnJ_in.thg y-axis. Let Rn' be
: < : ' : o 1
interior of rhombus determined by points (—xn,n) R (0,n+§),,(gn,n)
andf‘gp,ﬁ—%) . Then wn = Tn'u gé%y T;: risvan open;subset of the

*’ &ﬁgz . - 46 -
- S -

Myea Xy



(—1,0)

' respectively-in the x-axis.

1 (-1,-1/2) 0 4-1/2) (
5 - . Fig. 2
plane. Thinking of - X as a subset of the plane with horizontal
integer lines identified, let W =X n (U W) where W_ =T U
R vT',T_ ,R_,T ' being reflections of T , R, T
- -n -n -n -n n n n

&

.~

4

If Py :X > Q and P, X -+ d' .are the projections, for

any neighbourho@ds ‘U and U' of O in Q and Q' respectively,

;l(U') cannoﬁ'be-COntéined in W . Hence (0,0) is not
~ s _

an interior point of W which, therefore, cannot be open.

-1 ..
P1 (U)'n P

¢

N

Now on each S_ defi’ £ S, - [0,1/2] as described ,

bglow; Sn being a strip of X as shown :in the figu~ -"hich follows:

fn(x;y) 1/2 , when (x,y) € &, £ or ©"r urshadeg

1

region

.

0 , when .y =n, n-1=x

]

and fh(x,y)
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(-1,n) ) (A.-xnfn) _(0,_n)_ (x.,_n)> - (l,n‘)

S s e - Y ISP | IR G a i g - |
@n-&) (_,x l,n 1) (0,n-1) - (x 0= ( ,n-1)
Fig. 3 "

At the points ’ (x,y) not covered in the above, define fn by means
of projections from - -the points .(—x 1 n-1) , (xn_1 , n-1) ,‘(—xn , 1)

(xn-, n) as shown in the figure, certain vertical segments being iden-
1] te Tt

" tified with [0 1/2] . For example, the points. a’' , a " , @ etc.

are mapped onto a real number in. [O 1/2] with which the point a is

. 1dentified for the purpose of defining f

. It can be easily verified that f. thus defined is con— _

‘tinuous on Sn'. '

Now define f : X - [0)1/2] by setting £ | Sﬁ = fn

for every n .

" f then is not: continuous, since f_l{[0,1/2)} =W
which ié not open.

Now to prove that @ x Q' .is not a quasi-kR space we must

¥

show that f 1is continuous on every compact subset' KcQxQ'. (Note
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that @ x Q' being countable' there is no distinction between compact
and countably compact subsets.) For. this, it is sufficient to observe
Fhat every compact set K of Q x Q' will intersect {Sn - top & bottom

edges} non—trlvially for .only finitely many . n's , since f,I'Sn = fn

¥ continuous for every n . To prove the above observation, suppose
it does not hold. Then one can pick up one point from K n {S - top
& bottom edges} for infinitely many n . These points form a closed

subset of K and is hence compact. However, one can easily see that

this set is indeed non-compact, giving the necessary contradiction.

Thus @ x Q' 1is a product of two Fréchet spaces which is
not quasi—kR . |

11 We are now in Q' x.Q' . Here first we extend the con-
strucrion in part I to.the whole of the plane by taking reflection into
the line x = 1 of the portion between the lines x = 0' and X =’1
anq repeating this process till the whole right half-plene is covered.
N

Do the'same'for the left half-plane. Then identify the vertical lines’

=0, f1, t2, .

Now each f‘ 'will'be defined on the infinite strip S:

v
Ve e

by a proéese,!imilar to that des!rlbed in part I. Again proceeding the
same ‘way as in part 1, one gets a function £ which is continuous on
every countably compact subset of Q' x Q' but not continuous on

Q' *x Q' . ' J

LR

Thus the square of a Fméchet space need not be even guesi—kR.

-
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One might, however, note that it follows by I.5.2 that
whenever T 1s closed under quotient maps, if 121 Xi is TR , SO
is each Xi‘.
V.2 When every factor in a product is first countable the
situation is much different. This is most effectively 11lustrated by

the theorem of Mazur and Noble = (Theorem I.3.2). Noble has, in fact,

proved‘his theorem for widerAclass of spaces which he cails spaces of

C* type. The relevant definitions are given in the next paragraph..

v.z.l Let Y be any topoldgicaltspace.: Let . C(Y) dehote the
collection of compact subsets of Y which, as.;ubsets, have countable
neighbourhood bases. " (For K cY a neighboﬁrhood'base for K 1is a
coliection of open sets Ua ‘such that for V > K and V open,

K c Ua c V. for some a .) Let C*(Y]QF {K e C(Y) : as a space, K is
first countable} . A space Y is said to be of type C if there is a

subcollectioﬁ‘ CO(Y) of C(Y) such that for'each v in. Y ,.pach _C ‘

in CO(Y) with y in C ,.and each neighbourhood U of y , there

exists a C' in CO(Y)- with ye C' <cUn.C . We say'that'.Y is:.of

type C* if CO(Y) can be chogen;as'a subcollection of C¥(Y)

g
-

EQéry first countable space is of type C* and every space
of type C* 1s of type C
“ On the pattern of sequential cardinals of Noble [27] we _
define T-cardinals below.
- . -,

/ v

!
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vV.2.2 'Definition A cardinal a 1is called a T-cardinal 1if there
exists a non-zero real-valued T-continuous function o : 2° =+ R which
maps finite sets (of "A ) to zero where A 1s any set whose cardinaliﬁy
is a and 2A is the power set of A with the topblogy on 2A - having

for its subbase {{B c A/ xe B} /xe A} u{{BcA/x ¢ B} / x e A}.

| Since every quasi-k continuous function is k-continuous and
every k-continuous function is Sequentiall; continuous, it foliows that
every noﬁ—sequential cardinal is non-k and that évéry non-k cardinal is
non—quaéi—k.‘ One‘can similarly see that every non-sequential cardinal
is non-c. However, we do not know the felation of the non-c cardinal
with the other three mentioned. Also,wsiné; 2A is totally disconnected,

it follows thatievery infinite cardinal is a connected cardinal. In

‘general, the question of existence of the T-cardinals could be di?ficult.

v.2.3 . We need two more conJepfs. A subspace of X = I Xa is
' acA

called a I-subspace if it has the form {x € X : &§(x,y) is countable}
for some fixed y in -X , where §(x,y) = {a : x = y,} - (Such
) : a ,
. . b B
subspaces are studied in Cor7dn [10] .) A r-subspace is a gC-subspace

if each §(x,y) is finite./JA function defined on a product space
‘ .

i}

x =1 Xa will be called I-continuous (respectively 0 —~continuous)
© a€A ' S

if its restriction to each r-subgpace. (respectively Zo—subspace) is

continuous. Also, call a function 2-continuous if it is continuous
" when restricted to each subspace- of the form ;n ‘Ya where for each
- ) a€A . o

a , 1 S-cardf'(Ya) < 2. o .

N



ExtendIng the arguments of Noble we prove n very general

theorcem:

V.2.4 Theorem Let T be closed under continuous mappings. Let

‘X = I Xa be such that every Zo—subspace 1s“awﬂiR space where each
acA ‘ - '
Xa is Ti . Suppose further that for ever§. Ya c Xa with 1 < card Ya
< 2, I Ya is such that every T-continuous function on I Ya is
acA . ' . ' acA '

continuous on some L-subspace of B Ya .
aeA

*

Then whenever card A 1is hon—T , X 1is a TR 'space.
v . ) ‘ . _ o
Proof : It is enough to show that every T-continuous function
f: %>R {is 2-continuous. For, since every.Eo—subspace of X 1is

-

TR , £ 1is $%-continuous. But then this fact together with'2—contin—
uity of f would imply continuity of £ by Theorem 1.1 of *Noble [271 ,

according to which a function .on a product of topological spaces into a

regular space which is~Zofcontinuous and 2-continuous is continuous.

. .
Let Y c'Xao with ‘1 < card Y_ < 2 for every a . Then

. a
fi: 1 Ya~* R is T-continuoys. Hence by hypothesis f: is continuous
acA | ) ) .
on some L-subspace Y of T Y, . Then by Theorem 1 of Engelking
: - acA ’

[11] (by whiéh if X 1is a product of a.family of Tl spaces.éuch
that product of every finite number ééithem is Lindeldf and 1f Y

is a Hausdorff space such that the diagonal of Y X Y is a vGé—set,
then. a contindous function from a.E—subspape.of X into 'Y extends

to X continuously) £ly extends to 4 continuous function f* from-

* [

52.
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i Yén into R .
acA

Fix some x €Y and let y be any point in n Ya and
. acA

A

‘define o : 27 + R by the rule  .o(B) = f(xBy) - f*(xBy) where xBy

!

is a point with co-ordinates Y, for a e B and xa otherwise.

Since f and f* coincide on Y , o maps finite (indeed

countable) sets to zero.

Also, o0 1is T-continuous. (To see thisg, let

p : 2A > I Yé be defined by p(B) = xBy , where xBy has the same

acA

meaning as given before. Then p 1is continuous. ........ A ¢

{Totéee this, let HR% c HYa be a subbasic open set of HYa‘ Then

Ra = Ya for all a except some a . ( HRa stands for aEA Ra , etc.)

There are the following possibilities:
[
i) R =Y o
0 0 ’ : -
ii) _Ra consists of a single point ( Ya being 2 ).
) 0 ‘ : . o} :

i)' Here p-l(HRa) = 2A and hence is open in 'ZA .

ii) There are two cases here; (A) x_ =z y

a a
o o
e . (B) Xa = ya
. - ) o %o
(A) has two subcases : (Al) Rao = {yao}
(AZ) Ré = {x 1}.
o 0

«

-(Al) : Here, p—l(HRa) = the class of all subsets con-
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taining a_ - For, if a_ ¢ B , then p(B) =.xBy = a point z with

z = ja . Also, if z is such that z =y , then z = XBy

0 0 2 3 ' kK
holds only if a, € B .

>~ Also, the class of all subsets of A containing a. certain

point of A 1is a subbasic open set of ZA .

’ (AZ) : Here pfl(HRa) = the class of all sﬁbsets of A

not containing a_ . For, if a ¢ B, p(B) = kBy = a point 2 with

z = X . Also, if =z 1is such that z =X , then 2z = xBy
3 a, : 8 s

holds only if &, ¢'B.

o

Again, the class of all subsets of A not containing a

certain point of A 1is also a subbasic open set of ZA .

=
]
—
<
—
]
—
-]
—

: (h) also has two subcases (Bl)

' 0 %o o ..
(B R, * ly, b= Ax, y.
' ) ) 0
(BI) :  Here p-l(HRa) = the class of all subsets con-

taining a_as in case (Al)

‘ .\i.‘/ e
[ - -1 _ ' 4
, (B, Here »p (HRa) = ¢ obviously :}
Further, f - £* {s T-continuous on HYa I ¢/))
;o Also, T 4is closed under continuous~mappings. veeea(3)

From (1) , (2) and (3) it follows that o 1is -A

T-continuous.)



But since card A 1is non-T , it follows that o 1is

identically zero. Hence _0 = o(A) = f(xAy) - f*(xAy) = £(y) - £*(y) .

Since y was arbitrary, f = f* . Hence f is continuous on n Ya

aecA

that is, f is 2-continuous which was to be proved.

F 3
»

Corollaries 1) (Noble [27] ) ' The product f X of T2 spaces

: acA "a

St -

each 6f”type C* is an S, 'space if card A 1is non—sequentialf

1

R

. Z)iﬁ%he product 1 X_ . of 'Tl spaces each of type C*
O achA ' .

is a c&, space 1f card A 1is nofirc.

4

Incidentally, Noble [27] has proved that arbitrary

product of C type spaces is always kR .

55.

,VA

" Proofs of corollaries : The corollaries will be clear from the following

theorems of Noble:

1) " Each I-subspace of a product of first countable

spaces is a Frécﬁet space. (Noble [27] Theorem 2.1).

" 2) Each I-subspace of a product of spaces of type C*

is a sequential space. (Noble {[27] Theorem 2.4).

V.3 The following results in connection withﬂproducts may be

of interest:

V.3.1 Proposition A Tl

space X is’discrete if and only if X x Y
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is a quasi-k' space for every Fréchet space Y

Proof : Only if : This is easy to see. In fact, the product

' f

of a discrete space and a Fréchet space can be easily seen to be Fréchetfmi

If :—1Itis sufficient to prove that if X 1s a non-
discrete T, space, then'thére'is;a.Fréchet space ~Y-’éﬁdﬁti; .
. . e ,
X x Y 1is not a qUasi—kf’spacé.”We will prove this beldﬁfﬁéﬁ%
. - .‘ y 2 b

Let {xa“: a ¢ A} be a net converging=th x' -Bulll

i Geme g

x, % x for any a Jbelonging to A . Let Y1 3\{(a,n) : a‘e A'.éad'

n=12,3, ... }. Further, let Y = Y, v {z} . The topology on Y
is as follows: Yl is discrete and the open sets containing- z |

contain‘gll but a finite number of elements of each set: Da whére by

Da we denote the set {(a,n).: n =1, 2,3, ... }. Then .Yl is

A
yk'+ y , then one can easily get a sequence (yn) -of points of (yk)

_a Fréchet space. For, if y € Y and if (y.) be a net such that

sugh that,\yn - j,. (Ifb y 1s an eléﬁent'of Y1~’ one can trivially
carry fhis b:%. .ff y =12z, {;x.: yi € (yx§} n D, consists of
infinitely many points at least for one a ,'say a' . If Da'
intersects {yx : yx € (yx)} ip_t?é set, say {(a',nk) :.k1= 1; 2, oo-}
thgn.the sequence (a',nk). converées té; z (where we have already
assumed without loss of generality that n, # Ops when k= k') .)

On the other hand ﬁx,z). is‘an accumulatién point of C = {(xé,(agn))_:
"ae A and n=1,2, 3, ... }. (We are now in the product space

X x Y where X 1is non-discrete Tl space.) However, as we will see"

below (x,z) .is not a closure point of Cn K for any countably-compac;
. S v 1Y
5 : - P e T G

L



set K .

Suppose there is a countably compact set K such that
(x,z) 1is a closure point of Cnk. Then PY(K) yhere PY is .
the projection onto~ Y 1s countably compact. And since each countably
compact subset intersects only finitely many of the sets Da , 1t
follows chatLP (c k) = Ox, o, x } , that is, P (C nK) is
a finite set. But then (x 3) cannot be a cld‘Lre point of C n kK,
for, if it is, x must be a closure point of P (C n K) which cannot

happen s{nce PX(C n K) 1is finite. The ‘contradiction proves the

point.

L 3

The Proposition V.3.1 1s in fact only a slight improve-
ment of a theorem of Bagley and Weddington (7] who have proved that
a T, space X is discrete if X x.Y 1is a k' space for every k'

1
space., Our prdbf is only a very small modification of their proof.

thé the following characterization of quasi-k space; it

will be‘needed,fﬁtéri

v.3.2 Progositioﬁ A topological space X is a quasi-k space if and

only if for each subset A and x € A ,'there is a closed quasi—kf

subspace C such that x € (A n C)_

Proof = : If X 1s a quési—k space and if x glz , consider A .
‘Since a ciosed subspace of a'ﬁuaSi—k space is quasi-k, -one has just ﬁo

take C = A . A ' _ : ‘ '
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Now supaose that for each subset. A and - x ¢ A there is
a closed quasi—k subspace C ' such that- x ¢ (A n,C)— . ITo*prove
that X 1is a quasi~-k space,. let R be a subset of X Luch that R n K
'is clesed in K for every countably compact subset K of X . We

-

must prove that R is closed.

Consider a point x of R . Then there is a closed quasi-k

subspacé C such that x e (R.n C) .

ﬁow let Kf' be a cquntgbly combact subset of C . Then
K' is certainly countably compact in X . Heﬁce RnK' is closéd in .
K' . In other wofds; (R n.C) n K' 1is closed in K' for‘g§2ry count-
ably compact subset K' of c . But.then since C 1s quaéi-k subspace

>

of X, it follows that R n C is closed in C . Furthér, since C

itself is closed in X, Rn C 1is closed in X which means that ﬁx

v

belongs to R n C and hence to R which was to be proved.

c-

We are now in a position to prove the following proposition.

V.3.3 Proposition If X isa T, k' Bpace and Y is'a T;

qdasi—k' space and further if X x Y has a nested neighbourhood base

at each point, then X x Y is a Tl quasi-k' space.

Proof : We will need the following result from Bagley and .

. =
. ;[E;.X x Y has afnested neighbourhood bgse at (x,y)Ae‘K - A

Q) A . ‘,»__‘,'

. Weddington ([7]

o0 !
-,
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and if there are neighoourhoods U of .x‘ and V of' y such that
{x} =V n‘A = ¢ and U X {(y}nA=¢, theu there 1s a net .
{(xa,ya) : ae D} in A wﬁtch converges to. (X,y) and; for each

a, e D, there are neighbourhoods R of x and S of' y such that
X, d R*, y; d S tor a+ ao . Further, tPiS net {(xa,ya)} has a
property that every net consisting of points of the set {xa} (respec—
tively {ya} ) which converges to x (respectively y ) Jisla subnet

‘ - : . i
of .the net {xa} (respectively {ya} ) . |,

{‘7
Consider a subset A of X xY . Let (x,y) be a point’

|
!
>

of
- .
“# If the neighbourhoods U and V as in the ﬁesult quoted
. . 4. e A
above do not exist, then for every neighbourhood U of (U x {y})

intersects A nonftrivially or for every. neighbourhood V of y
({x}.x V) intersects ‘A non-trivially. Suppose thao for every ‘neigh-
bourhood U of x‘{‘ Wx{yh) nAa=z9¢ . This means that X x {y}

is a closed subspace of X § Y (as X and Y ate T ) and (x,y)
is a closure point of (X X {y} ) nA . But then since X.x {y} 1is-

a k' space,'there is a compact subset K of X X {y} such that
(x,y) belongs to the closure of (X X {y}) nAnK in . X x {v},

that is, (k;y) e (An K) . But since K_ is compact in X x Y also,
it follows that the condition in the def;mition of quasi—k' spaces is

satisfied for (x,y) in this case. (If we were to suppose that fof

every neighbourhood V of vy, ({x} x V) nA# ¢ , then the same

proof would work with compact subset K ' being replaced by tcountably

P
s..

compact subset K ' ., This dne‘"bqt affect the argument )

).v



a e D, there are neighbourhoods R of x and S of y for which

\.*lyproduct léf‘even lOCally co ekt

{0, 1} 0

'5as every totally dlsconnected d@%?gpace should be

60,

+  Now supposeithat the neighbourhoods U and V as in the |
.result4of Bagley and Weddington quoted above exist. Then there is a

net {(x_,y )}aeD in A converging to ‘(x,y) and such that for each

LD ‘ - W
X ¢ R and y d S  for,na{ a, . Since X is a k' space, there

.

is a compact subset K ‘of X such'that X. € ({xé}_n K) . Thus

: . ]
there 1s a net {xd} in {x } nK which converges to x . Then by
the latter part of the result of Bagley and Weddington, {xd}k"ﬁs a

J. ‘ . - B B AN |
subnetfoﬁ_the net '{xa} and hence {yd] also converges to“+y., it being

a subhet of- {ya} . Since Y 1is a quasi—k' space, there exists a”
countably dompact subset C of Yi'such that y e ({yd} nC)

Finally, we. obtain a subnet of {(x ,y )} in (K x C) n‘A . Thus
) * -

C(x,Y) belongs to the closure of (K xC)n A Since K x ¢ is

- .

countably»compact;.itwfolldwshthat X xY 1is a quasi—k',space.

,)'.".»' N -”.""l" N ' . e . ‘ ) .

;ﬂ;..'a,_ . q - , | L , hb ﬁﬂ
«, One might note at this p01nt that iﬁvestigatlon ofrproducts

of topological spaces coherently determined by the class of countable
- &

spaces and the class of connected spaces is, as of the date of writing

this thesis very much de51red : gever, it is easy ‘to see that the 7

' n,, R

_is need - not be ‘CR , by g@nsidering

N
d

h g

adi'crete space. "The reasan {0, l} ©
!

§ AR

',{o 1} being émg

1s‘not C is that

R ' J“totally leconhected but not discrete

3 £

i Seom 3" v
_‘ . 4 2t R - " )‘ -
i o : ' v G © o [ Ed
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' subqet {x € X / a<x} .

MISCE;LA%@GUS MATE&RS AND EXAMPL?S vy ; .
. Lo RPN

Ty . e

2t A, B
) e Y SR
| By P Ly
Vi.1 : Y 'ting examples, we proae some res | ts~ concerning
‘ Y P e T o
) "‘ . P vamt [, ., .
linearly ordered‘topqlogﬁbalqspaces\‘ - .
' e o e
% ke R ;“,Jf’ R
P / Let (X,<) be “a LOTS.(* lineafly ofHEred Eopological
. . E L2
space) . Throughout this section, for every a ,belonging to X. , PR
/ R e et

L™ v % _ &
La’ wikl denote the subsez[ {x e X - / x < a} and Ra will denote ,the®-

©
1

RN ) . ” .

«

- W N - .
Let f be the characteristic function of La - {a}” on .

n

s

L3N

‘4 §1.1.1 Proposition Let . (X,<)' be a T, LOTS . If aeX is nop-
c e . . . A v - :
isolated in La (Ra) , then there exists a T- subset K of X in_
. v > <ot C =
~La .(Ra) such that, a is an accumulation point of K , it being7 o o
- assumed that T is cdosed hereditary.} s
1 - o
ha
Proof : ‘GSuppose that there exists an ‘ae X whichbis non—is?lated
“in la but thete~iSzno T—subset 'C‘ of X contained in La of whlch,'
a 1is an accumulation point. . ‘. . . - _— ‘ ? L
) i , . ; | L i
* ‘ 5 g
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X. This function is not continuous at a .; Ho&ever, it is continuous
on every T-subset of X . For, if C be.a T—éubseﬁ contained in

* either La - {a} or Ra, then f is trivially cohtinuéus on C

“Further, if,‘C be a T-subset-of X su@that (La - {a}) nC = ¢

and RanC?®4¢, then A = (La - {a} ) nC does not contain any net
converging to é . (For, if A conFaing a net converging to a , a
will be an accumulation pbint of a T-subset A u {a} ‘which is contaihgﬂ
in La . This will contradict 6ur assumption that tHere is no -
T-subset C ‘of X éontaiqed in La of which a is'an accdmuiatioﬂ
point.) Further, if a net‘of points of C canérges to a point:in

0

A then it is eventually in A and it then cannot converge to a point

of Ra . Also, if a net of points of C converges to anpoint x in
" Ra n C., then it is eventually in Ra n C . (This is obvious when
x ¢ Ra - {a} . If x =+a , the net- (x}) c C converging to a must

be%agaip evenﬁgally iﬁ Ra ?.F ~ -For;.if not,‘ (xx) will;be freqﬁeﬁtly
in A which will in'ﬁurn %mbly that a 1s an aééumulation point of a |
T—sﬁbsét Av {a} contained in‘.La aﬁd this will then contradict oqt‘
‘assumption that there is no T:sﬁbset c o? X conlaiﬂed in 'La' of
which al is an accumylation ﬁoint.)v Also; Such;a.net ceftaihly .

»

cannot converge to a point of A . All this consideration shows that

e , o ‘
CF ig céntinuous on T-subsets of X *
s * .
‘ sooA
We shave thus shown that there exists a real-valued function
on X which is continuous on T-subsets of "X ;hough:ndt'continuous
on X . This contradicts the fact that X 1is a 'TR vspace and proves
’:*_Eﬁgwprbpositioﬂi , : ' - P e ’
s> b—rx e o : ¥ ’_-..

s

e . % , ‘ s
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: A
VI 2 . We m@y present examples:
v -,5'_ ) © ' . .
" PRSI : D ..
L] S, . .. V- " A

" R I

VI .2.1',Exém§¥§k' The spaces 27 , I , RR .constitute easier examples

of ‘SR“ spacﬂs which are not sequential. To see that these are 'SR
- . i . i B

..

spacesiwé use\MQzur—Noble theorem (I.3.2) while to see that they'ére
not sequential we note-that' E=1{(x) :x =0orland x =20 only
I o a a | a
_countably oftexkb is a sequentially closed subset which is not closed.

‘In fact, (oa) where o, = 0 for every a 1is a closure point of E.
whiech does not belong to E . (RR ‘is not .even a k space.)

N
-~

'The folﬂgﬁing example due to E. Michael ([23] is more

.

L
: . o

.

instructive: : . ' : -

N Jy

VI .2.2. Example " Michael has given this examp;e to exhib;t a kR,

space which is not k . However, as we will see in fact it serves to

~

exhibit an SR space which is not even quasi-k .

.\"
wd
s

. . ’ . . .
First, we note a definition: Let B < RZF with usual

63.

 Ltopology fTO say and let x . B . Then a function f : B > R: is calbed

separately continuous at x if f/L 5 B 1is 'Tb - continuous at x

where L 1s either the horizontal or the vertical line through x in R

2



In what follows in this example, whenever X ¢ R?' » X
, ’ v
and X, will denote the first\and the second co-ordinates of x

respectively. A sequence will be denoted By, say {x(n)} . Thus the

i'th co—ordinéte of x(n) will be denoted by xi(n) . ~

Let X be the plane ‘Rz and TO its usual topology.

"T;‘;ﬁt‘ A ¢ X ‘be the x-axis. -Let F be the set of all functions f : X >R
which are ’f —continuous on X - A and separately continuous at every ‘

Ty e
‘point‘ qf A ‘ %Iigt T _be the coarses\l topology making every. f € F

,-,u

c:ontinuous (X,T) fs a Tychonoff space with TO cT . We

L3 LN

First observe that on every horizontal and every vertical .
. | : ’ ’ s [ - ’
line X , T agrees with T0 . , , '7//
) o A ,
et . .f : X+ R be T—sequentially' Vcontinuous (i.e.

3

sequentlally contynuous with respect to the topology T on X ). Since

T and 3.‘ agree oh X - A., it is clear that f is 'Ea-seque_n'tiall“yq
continuous on_ X - A which indeetl Ame‘ans:th;at Af 'b.is_ Eo;éontinupus‘ _o‘n.

X-A. Tp @ce that f is 'go—sepanatg%y' ‘zon‘tinuo SI'-atZ every X € A,
. ‘(}‘ 4

1t w1lJc L@y sufflce to show that if 15 is a hq izontal or a vertical

C e e

llnevrn X ,‘ then f/L. is To—continuouspr;ﬂut ﬁ/L is 'I,“O:sequentlaily

continuous on L (since £ is T se,quentia'ily continuo\\&evgb X" and
, ‘ - \

~V

. : . AL
T, and T coinc1de on L ) But then ‘fﬂ“{’ls'f -continu?x}s‘on" L.

.~O ~ . > ;.' ' ‘.v '/‘("‘
. , s Aag A
. It follows that f € F and hence f is ‘1‘ continuous on X . &(X,T) ?;'q_;
: . ) B
. é “wtl
: Lo ' X/
is thus an SR space. o R ) e _"’A " ,,‘ .
» . ,‘__I,,:,’A . P > . N
e . | ,
¥4 5



" We now need some lemmas:

i
“

.. Then t

Y

Lemma 1 Let xﬂn) +> x 1in (X,I) with x € A

_-anen suchthat xl(n) =X or xz(n) = X,
‘Proof " : See Micﬁael [23] Lemma 3.3.

- Below, a subset Y ¢ X will be said to be

, -

_compact when it is countably compact in . (X,T,) and T

e PR ‘
compact when it is countably compact. in (X,T)

‘4

“Lemma 2 If C ¢ X dis T countably compact, then there.
e > 0: and a finite A' ¢ A such that if y e C and O

. ‘= - ) '.
then Y1 Xy .for some X € A .

" ~
« -

Proof : ,Replace-fcomﬁéct"bx 'countably cdmpact' in
Lemma 3.4 of Michadl [23] , . o .
| T
Lemma 3~ There exists a B c X - A such. that
s a) if € >0, then {x e B:: |x2l.>fs} is

T

b) B intersects each vertical line at most

’

+ o . e .
e ‘ . ‘1.
] .
)

“and ¢) if x.¢~A , each TO neighbourhood of X
) : ~

— 2

4

4. D

= Proof | See'Michael [23] Lemma 3.5.

here exists

R

Ir-cbuntably

0

countably

-

exists.anl
<yl < e

»

the proof of

.{"

finite
once
J A
IR
intersetts
Ce e

.! ‘,.'
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nt T
. .
ngga'ﬁ_ The set B, above is quasi-k closed in (X,7) .

»

.

. : s '
Proof : This fo;lowsifrom Lemma 2 and a) and b) of Lemma 3

. - Now if B ‘were T-closed, X - B would be T-open with.

+ the result that if 'y'e Ac X ~-B, there would exiet H§ regularity of

I~, a T—neighbourhood U of y such that y eUalc X - B . Hence
to contradict our assumption that -B’ is T—closed we will show' that'

1f y € A and if U is a8 T -open neighbourhood of Yy, then U -- the
‘T—closure of U in - x.—- 1s also a To—neighbourhood in X of some'

v ave™,t

b )
x € A . The contradiction will be then clear in vigy of property c) -
) - s Puri™S .
LT . : S L L)
.of the set B . . , . PR s o .g&&&ﬂ

4

"Hence ®e prove the following Lemma.
‘ ’ b - - R
. . P , - o

N A

Lemma-5 If y e A and if U is:a T-open netghbourhopdAof y . in
X ;'thep U -- the T-closure of U in, X -- is avT'?neighhourhodd_in

X of some x € A . v
. . i.’“
i

. . . -~ . / L
. . ‘ ¥ N
(This result.appears in Michael '[23] sﬂightly dtffetently.) -

‘Recall first that Ib agrees with T oh each horizontal
, _ =~ 5 ;

and,each verticalvline L so UnL is’ To—opeh'in "L and 0 n L

—

e is/T ~closed in X . : . - o s
(," ~0 . - ’ 1 y . Y .*,'

i ' ’ - -
Let V={s¢€eR: (s,O)temU} . Then V is open in R

and V * ¢ since Y € v



Now for each # yﬁ@t

. SRS o . _ L
o= {s ¢ R li(s,t) ¢ U whenever |t| < 1/n}
b

Then ‘G’ E =V .
- n
J(To see’ this, f1rst suppose‘ sve E . Then‘.onsider (s,0). From the

definition of En», it follows that (s,0) ¢ U and hence by Ghe

LED
Ad

' ° . . mw
‘-definition of V, s ¢ V. Thus.. u’ En eV . On the other hand, if
. n=1 . . ' ) '

‘s belongs to V., then (s 0)’6 U .' Since U is T—open in X,
. s
UnL is opén in L "where .L is the.vertical through (s 0) Hence

there exists an m _such-that,ﬂ{é} x (-1/m,1/m) < Un L . This means

.

E DL

A
" v

"that s € E_ - It follows that.. V c

t C

n=1
Since V is open in .R’,_the Baire"Catégory‘Theérem

' ' . — Y O
implies that there is an. m such that ‘Em has an interior point sO
. ' 5 : .

in R . Let x'= (sO;O) dnd let W = Eﬁ x (—llm,l/m)' where E@

-

may be thought of as EQClosggf.pf Em in X . Then W is a EO—

neighbourhood of x in X ,’and to complete the proof we will show

that W< U . : ‘ - o
23
Let |t| < 1/m . Then E_x {t} cU . Let Vg =R x (t}

Since U n L is To—closed in‘ f\, and since L ds Io—closed, UnlkL

“

is 3§0—closed in X .

Now since E_ x {t} cUnl, one has Em x {t} cUn L

e~

( denotes closure with respect to IO ) 'which'implies that

Em'x {t} cUnL (és i n L is a To—closed set) which in turn

- -

implies ‘that E_x {t} cUn L . ‘But since T c T, E_ C_Em "JI: .

-

- . e N



follows that- Em x {t} cUnL.

Thus 1if Itl < 1/m’, Eﬁ x {t} cUnLcU. It.follows

that W =‘E"'1"X (—l/m,l/m) c E .

.
e

R
)
14

We have thus exhibited a quasi-k-closed subset in (X,T)
- '

which is not closed. We have hence pfoved that (X,T) 1is not a

quasi-k space.

e - Ve

VI‘;2.3‘\Examgle This is an .example of an SR space (and hence a

p space) which is not a ¢ space. -

* L
IC (Qo) space by-Mazur-Noble

* .
¢ (Qo) is

¥

Consider . :This is an SR

Theorem (I1.3.2) . But Q wh;ch is a closed subspace of]'I
ot R (since the characteristic function of {ml} on @ is not -
+ continuous t'hough continuous on evei-*ountable subset of Q). Since -

every subépace of a ¢ space is a c¢ space (Schedler [28] ) , it

L *
follows that IC (Qo) is not a ¢~ space.. ) fr~§
' ‘ L )

VI .2.4 Example Th;i;ﬁgign'example of a ¢ space which is not Sg -

Q-

v

¥

Consider the following space of R . Arens [2] : Let

’ X be the set of all‘pai;s of non-nega¥ive integers with the topology
described as follows: - For each point (m,h) other than (0,0) “the
" set {(m,n)} 1is open. A’set U 1is a neighbourhood of  (0,6)‘ iff

for all excepf a finite'number of integers/ m the set {n : (m,n) ¢ U}
T i I

. e . - *’
is finite. Since every countable space is a ¢ space, =~ it
folldws that X . s a c space. However, since the charac-

- .
Q
/

i

68.



69.
teristic function of {(0,0):} 1is-sequentially continuou; but not
continuous ify:

v A &N
is a'non—isolhtéﬁ’point of X to which no non-trivial sequence converges.

lows that X is not' an SR space. Indeed, (0,0)

(In fact, any countable space which is non-—SR is an example of the

point.)

VI .2.5 Example This is an example of a compact space which is not

R
o

Consider the space © of the ordinals < Wy s the first
uncountable ordinal. This is a compact space which is nonfSR», since

the chafactfristic‘function of {wl}is sequentially continuous but not

o )
¢

“ continuous ¢
. ;
4

Sy

\

VI .2.6 Example The following is a countable sequential space which
: /
is not quasi~k' . This example which is in reality a modification of

the above quoted example'é% Arens\is taken from Franklin [13] (his

q%'Ex. 5.1). ‘;gkf

- -

‘Let .M = (N x N) UN u.{bj with eath (m,n) € N x N an

isolated point, where N dehotes the set of natural numbers. For a

basis of neighbourhoods at hé € N ; take all sets of the form
{no} U {(m,no) | m 2 mo} . U will be a neighbourhood of 0 ifE B

0OeU and U is a neighbourhood of all but finitely many n € N

/

‘Frénklih has shown that M _is'sequentig we willf%érify

"3f that M is not quasi-k'.



Before proceeding further we ohserve that compact subsets

of M are precksely countably compact subgsets of M

v

sake of convenience we will denote

’
Here O € A .
subset K of M such that

»
4

N x N

0e (Kn A)

If a compact subset K

finite, then obviously O ¢ (iin A)—

-~

by A .

of M ‘be such that

If a compact subset K.

.

.'Awo,fM'we

: we will show that there exists no compact

Kn A 1is

of M

70

contains only a finite number of points on eus;y horizontal line iﬁ A,

then one can find a neighbourhood of

of K0 A which would imply that

0¢ (K:n A

0 which excludes all the points

o

Even if a cOmpact

subset K acont¥lns an infinite YHumber of points oﬁ\onl% finite number

-

of horiZOntalylines in A,

there would exist a neighbourhood of 0

which woJld exclude all the points of K n ‘A - whence O d (K n A) .

N

o

Hence 1if there is a compact subset K of M such éhat 0e (Kn A)

'V

then K must contatn infinite'number of points on i

horizontal lines in A , say

then if (fj;nj

to K , then consider the opeﬁ"covering {(f nj)}J -1,2

o]

{M'— U

1=

(fj,n‘)}

y = n,

h|

€3

finite subcovering can be obtained whence t

gontradicted;

VI..2.7‘ EiamEle

space which is not even kR .

1, 2 ,;3}1&...3) :

) is the first point on the line y

nfinite numben of

But

ﬁ3 which belongs

g e e

U

This is an open covering of K from which no

he tompactnesé of K 1s’

It follows that M 1is not quasi-k' .

3

This is an example of a ‘countably compact.Tychonoff

5

T <
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By 3.1.5 of Frolik [14] there exists a countably compact
space P such that § SP SR with card. P < 2Xo , where N 1is '
the discrete space ofwintegers. Since every infinite closed subset of

X
B(N) has pot®ncy 22 0 . the space P contains go infinite compact set.

¥y,

€hoose a nok—isolated point of the space P and call it

x . Consider the characteristic function of the point x defined on

the space P . This function is continuous on every compact subset of
o

P but not continuous on P . This shows that P  1s not a kR space.

“In fact, Michael [22] has pointed out (seé his .Ex. 10.6)

that P is not a k space. ,
i

< The following examples show that there is ?o telation

between the connecte%tcoherence topologies and the other coherence

‘4

topologies mentioned in the implication diagram on page 7.

g
iy ’

i3 1

VI .2.8 Example Consider the Cantor ternary set C . This is a

totally disconnected compact (metric) subspace of the real line.

+ However, since it is non-discreté it camnot be a Cp' space, as a

'totally disconnected space which is' CR' must be discrete.

w
v

e
RO e k-]
- 4g

'VI .2.9 'Examgle - Let X be the-%eal liﬁe' jTl_ the usual topology

on X and T the topology of countable complements on. X . let
T be ahe smallest topology generated by T U T . (x, T) is connected

but not even a quasi kR'space, since whatever be a non~isolated point

x in (X,T) , one cannot find a countably’ compact subset K  of

~ v



(X,T) of which x is an accumulation point with the result ‘that the
characteristic function..of {x} 1s continuoush on évery countably -
compac?: subspace’ of (X,T) - .but not continuous on (X,T.) (Note
that a subset <'>f (X,T) 1is countably coﬁpact iffAi”g' is fini£e.)
This 1s example 63 in "Counter-examples in Topélogy' of L.A. ‘Steen

and J.A. Seebach, Jr,

72.
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