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A bstract
Real-time motion p la n n i n g  and control are fundamentally important in robotics. In this 

thesis, a framework, based on biologically inspired neural networks, is developed for real

time robot motion planning with obstacle avoidance in a nonstationary environment. Each 

neuron in the topologically organized neural network is characterized by a shunting equation 

or an additive equation. The developed algorithms can be applied to point mobile robots, 

manipulation robots, holonomic and nonholonomic robots, and multi-robot systems. The 

planned real-time robot motion with safety consideration does not suffer from either the 

“too far” or the “too close” problems. The real-time optimal robot motion is planned 

through the dynamic activity landscape of the neural network without explicitly search

ing over the free workspace or the collision paths, without explicitly optimizing any cost 

functions, without any prior knowledge of the dynamic environment, without any learn

ing procedures, and without any local collision checking procedures at each step of robot 

movement. Therefore the proposed algorithms are computationally efficient. The compu

tational complexity linearly depends on the neural network size. The global stability and 

convergence of the neural network system is guaranteed by both qualitative analysis and 

the Lyapunov stability theory. The model algorithms are not sensitive to model parameter 

variations nor sensor noise.

The last part of the thesis presents an efficient neural network based approach to real

time fine motion control of robot manipulators with completely unknown robot dynamics 

and subject to significant uncertainties. The real-time fine robot motion control is achieved 

through only the on-line learning of the neural network, without any off-line training pro

cedures. The proposed controller is capable of quickly compensating sudden changes in 

the robot dynamics. The neural network assumes a single-layer structure, and the learning 

algorithm is computationally efficient. The global asymptotic stability of the system and 

the convergence of the tracking error is proved by the Lyapunov stability theory.
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S f ,  S~ Excitatory and inhibitory inputs to the z-th neuron

/, External input to the z-th neuron

Wij Connection weight between the z-th and j - th  neurons

N  Number of neurons in the neural network

k Number of neighboring neurons of a neuron

Pi Position vector of the z-th neuron in the state space

dij Euclidean distance between positions p,- and qy

p  Connection weight constant

r 0 Receptive field constant

S  State space of the neural network

W  Workspace of the robot

C Configuration space of the robot
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1Z{ Receptive field of the i-th neuron

v ( t) Lyapunov function candidate

x .y  X  and Y  coordinates in Cartesian workspace

9 Orientation angle of the robot

R  Turning radius of a nonholonomic car-like robot

K  Curvature of the curve followed by the nonholonomic robot

Sym bols in  R o b o t M otion  C ontrol A lgorithm s

q Vector of joint position of the robot manipulator

q Vector of joint velocity of the robot manipulator

q Vector of joint acceleration of the robot manipulator

qd, qd-. qd Vector of desired joint position, velocity and acceleration

e, e, e Error vector of joint position, velocity and acceleration

r  Vector of control torque applied to the robot manipulator

tnn  Vector of control torque from the neural network

tpd Vector of control torque from the PD loop

M  Mass m atrix of the robot manipulator

Cq Vector of centripetal and Coriolis torques

G  Vector of gravitational torques

Y  Regressor of the robot manipulator

W  Vector of connection weight of the neural network

K p, K d Coefficient matrices of PD control torque

P, T Positive definite constant matrices in Lyapunov function candidate
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Chapter 1

Introduction

In the past three decades, there has been a great deal of research in the field of 

robotics. In this thesis, we will primarily concern with the motion planning and 

motion control of robotic systems.

Before a robot is to move, motion planning is required to tell the robot where 

to move. In a static, priorly known environment, the robot motion path from the 

starting position to the target position can be planned before the robot starts to 

move. However, when the environment is nonstationary, real-time motion planning 

with obstacle avoidance is needed. After knowing where to go, the immediate problem 

that the robot faces is to know how to move. Therefore real-time motion control of 

the robot is required.

Even if confining our scope only to the motion planning and motion control of 

robotic systems, the huge volume of published work makes a concise review very dif

ficult if not impossible. Therefore, this chapter will sta rt with an overview of some 

related previous works on robot motion planning, especially on neural network based 

approaches to motion planning, safety consideration in motion planning, and motion 

planning of car-like robots. Then the objectives of the proposal of a novel framework, 

based on biologically inspired neural networks, for real-time collision-free motion plan

ning of robotic systems will be presented. After that, some related previous works on 

motion control of robot manipulators will be reviewed. The objectives of the proposal 

of a novel efficient neural network based approach to real-time fine motion control of
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robot manipulators will be presented. Finally, the contributions of this thesis will be 

summarized, and the organization of this thesis will be outlined.

1.1 O verview  o f R obot M otion  P lanning

Motion planning is a very important issue in robotics. It becomes much more difficult 

when the robot is in a nonstationary environment. In this section, we will sta rt with 

a brief review of robot motion planning using various approaches. Then, some of 

the neural network based approaches to robot motion planning will be introduced. 

After that, the safety consideration in robot motion planning, and motion planning 

of holonomic and nonholonomic car-like robots will be addressed.

1.1.1 Various Approaches to  R ob ot M otion  P lan n in g

There are a lot of studies on motion planning of robotic systems using various ap

proaches (e.g. Lozano-Perez, 1983; Thorpe, 1984; Brooks and Lozano-Perez, 1985; 

Crowley, 1985; Kant and Zucker, 1986; Khatib, 1986; Lumelsky and Stepanov, 1986; 

Donald, 1987; Noborio et al., 1989; R itter et al., 1989; Dari and Torras, 1990; de 

Lamadrid and Gini, 1990; Payton, 1990; Barraquand and Latombe, 1991; Latombe, 

1991; Zhu and Latombe, 1991; Seshadri and Ghosh, 1993; Chang et al., 1994; Glasius 

et al., 1994; Li and Ogmen, 1994; Gambardella and Versino, 1994; Zelinsky, 1994; Gla

sius et al., 1995; Hyun and Suh, 1995; Kyriakopoulos and Saridis, 1995; Muniz et al., 

1995; Stentz, 1995; Zalama et al., 1995; Zelek, 1995; Zhang and Zhang, 1995; Al-Sultan 

and Aliyu, 1996; Ferrari et al., 1996; Glasius et al., 1996; Gaudiano et al., 1996; Mu- 

raca et al., 1996; Schmitt and Book, 1996; Azarm and Schmidt, 1997; LaValle and 

Sharma, 1997; Lumelsky and Harinarayan, 1997; Namgung and Duffy, 1997; Pruski 

and Rohmer, 1997; Bander and White, 1998; Chakravarthy and Ghose, 1998; Fang 

and Dissanayake, 1998; Haddad et al., 1998; Katevas et al., 1998; Kimmel et al., n.d.; 

Kreczmer, 1998; LaValle and Hutchinson, 1998; Li and Bui, 1998; Marti and Qu, 1998; 

Meng and Yang, 1998; Nearchou, 1998; Podsedkowski, 1998; Tsoularis and Kambham- 

pati, 1998; Yang and Meng, 1998c; Yih and Ro, 1998; Yung and Ye, 19986; Kassim
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and Kumar, 1999; Kruse et al., 1999; Saab and VanPutte, 1999; Tsoularis and Kamb- 

hampati, 1999; Yang and Meng, 19996; Yang and Meng, 1999e). Some of the previous 

models (e.g. Lozano-Perez, 1983; Brooks and Lozano-Perez, 1985; Crowley, 1985; Kant 

and Zucker, 1986; Donald, 1987; Barraquand and Latombe, 1991; Zelinsky, 1994; Ra- 

tering and Gini, 1995; Wyard-Scott and Meng, 1995; Al-Sultan and Aliyu, 1996; Van- 

dorpe et al., 1996; Meeran and Shafie, 1997; Namgung and Duffy, 1997; Chen and 

Hwang, 1998; de Leon and Sossa, 1998; Jerez et al., 1998; Kreczmer, 1998; Li and 

Bui, 1998; Podsedkowski, 1998; Saab and VanPutte, 1999) use global methods to 

search the possible paths in the workspace, which are computationally expensive 

when the environment is complex, and most of them deal with static environment 

only. Ong and Gilbert (1998) proposed a new searching based model for path plan

ning with penetration growth distance, which searches over the collision paths instead 

of searching over free space as most other models. Ong and G ilbert’s (1998) model is 

capable of planning optimal, continuous robot paths in a static environment. Some 

of the searching based models (e.g. Khatib, 1986; Glasius et al., 1994; Wyard-Scott 

and Meng, 1995) suffer from undesired local minima, which may be trapped in the 

deadlock situations, such as with concave U-shaped obstacles, or in maze-like envi

ronment. For example, Wyard-Scott and Meng (1995) proposed a potential maze- 

solving algorithm. It can effectively obtain a locally optimized path  that is a  solution 

to the maze-solving type problems. Figure 1.1 shows the generated solution to the 

well-known Beam Robot Competition Micromouse Maze. Obviously the obtained 

solution is not globally optimal.

Many other models were proposed for robot motion planning. Seshadri and Ghosh 

(1993) proposed a path planning model using an iterative approach, but it is com

putationally complicated, particularly in a complex environment. Li and Bui (1998) 

proposed a fluid model for robot path planning in a static environment, which is based 

on the theory of fluid mechanics. Oriolo et al. (1997) proposed a  model for real-time 

map building and navigation for a mobile robot using a global path  planning plus 

a local graph searching algorithms, where several cost functions are used (Oriolo et 

al., 1997; Oriolo et al., 1998). Lumelsky and Harinarayan (1997) proposed a cocktail

3
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Figure 1.1: Solution to a maze-solving type problem using a searching based potential 

model, (from Wyard-Scott and Meng, 1995)

party model for motion planning of multiple mobile robots in a  static environment, 

which is based on the maze-searching techniques. Fiorini and Shiller (1998) proposed 

a model for motion planning of robot in a dynamic environment by selecting avoidance 

maneuvers to avoid static and moving obstacles in the velocity space. Gambardella 

and Versino (1994) proposed a learning method, based on an artificial potential field, 

for robot path planning in a cluttered workspace by combining the sensor perception, 

field information and planner experience. It can detect the dynamic local minima, 

and incrementally learn to escape or prevent deadlock situations. Figure 1.2 shows 

the motion path of a 3-degree of freedom (d.o.f.) mobile robot in a room-like environ

ment, where the robot can eventually reach the target without collisions through the 

learning procedures. The planned robot motion path using learning based approaches 

may be much longer than the shortest path from the starting robot location to the 

target (Gambardella and Maex, 1993; Gambardella and Versino, 1994).

4
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Figure 1.2: Planned robot motion using an artificial potential field based planner 

through learning, (from Gambardella and Versino, 1994)

1.1.2 N eural N etw ork based A pproaches to  R o b o t M otion  

P lan n in g

Many neural network based approaches were proposed for motion planning of robotic 

systems (e.g. R itter et al., 1989; Chan et al., 1993; Li and Ogmen, 1994; Glasius et 

al., 1994; Beom and Cho, 1995; Castellano et al., 1995; Glasius et al., 1995; Muniz et 

al., 1995; Zalama et al., 1995; Chang and Song, 1996; Gaudiano et al., 1996; Glasius et 

al., 1996; Kawakami and Kakazu, 1996; Naruse and Leu, 1996; Matric, 1997; Nagrath 

et al., 1997; Zhang et al., 1997; Chohra and Benmehrez, 1998; Fang and Dissanayake, 

1998; Meng and Yang, 1998; Nearchou, 1998; Pulakka and Kujanpaa, 1998; Yang and 

Meng, 1998a; Yang and Meng, 1998c; Kassim and Kumar, 1999; Yang and Meng, 

1999a; Yang and Meng, 19996; Yang and Meng, 1999c; Yang and Meng, 1999d; Yang 

and Meng, 1999e; Yang and Meng, 1999f). Most of the previous neural network models

5
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for robot motion planning are learning based (e.g. Ritter et al., 1989; Simon, 1993; 

Baginski and Eldracher, 1994; Li and Ogmen, 1994; Millan and Torras, 1994; Beom 

and Cho, 1995; Li, 1995; Muniz et al., 1995; Zalama et al., 1995; Gaudiano et al., 1996; 

Bourbakis et al., 1997; Grolinger et al., 1997; Zhang et al., 1997; Araujo and Vieira, 

1998; Fang and Dissanayake, 1998; Kanaya and Tanaka, 1998; Touzet and Santos, 

1998; Yamaura and Onozuka, 1998; Kassim and Kumar, 1999). For example, R itter 

et al. (1989) proposed a neural network model based on Kohonen’s self-organizing 

mapping algorithm, which can learn the transformation from Cartesian workspace to 

the robot manipulator joint space. Li and Ogmen (1994) proposed a neural network 

model for real-time trajectory generation by combining an adaptive sensory-motor 

mapping model and an on-line visual error correction model. However, these models 

deal with static environment only and assume no obstacles in the workspace.

Muniz et al. (1995) proposed a neural network model for the navigation of a 

mobile robot, which can generate dynamic trajectory with obstacle avoidance through 

unsupervised learning. However, this model is computationally complicated since it 

incorporated the vector associative m ap (VAM) model and the direction-to-rotation 

effector control transform (DIRECT) model (Zalama et al., 1995; Gaudiano et al., 

1996). The left panel of Figure 1.3 shows four planned paths of a mobile robot in 

a static environment (from Zalama et al., 1995), where there is no obstacle in the 

workspace. This neural network model is capable of avoiding the undesired local 

minima in the deadlock situations such as with concave U-shaped obstacles through 

learning procedures (Muniz et al., 1995; Zalama et al., 1995; Gaudiano et al., 1996). 

The right panel of Figure 1.3 shows the planned real-time robot motion path with 

concave U-shaped obstacles (from Muniz et al., 1995), where the robot initially runs 

into the concave obstacles, then moves around, and finally reaches the static target 

with obstacle avoidance. These examples demonstrate that the planned robot motion 

using learning based neural network approaches is not optimal, particularly during 

the initial learning period of the neural network.

There are various learning based neural network approaches for robot motion 

planning with obstacle avoidance. Beom and Cho (1995) proposed a robot motion

6
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Figure 1.3: Planned robot motion of a mobile robot using learning based neural network 

approaches. (Left panel: from Zalama et al., 1995; Right panel: from  Muniz et al., 

1995)

planning model using reinforcement learning. Kassim and Kum ar (1997) proposed 

learning based robot path planner using a wave expansion neural network. Chang and 

Song (1996) proposed a virtual force guidance model for dynamic motion planning 

of a mobile robot in a predictable environment, where an artificial neural network 

is used to predict the future environment through a relative-error-back-propagation 

learning algorithm (Chang and Song, 1997). Kawakami and Kakazu (1996) proposed 

a reactive motion planning model for robot manipulators using classifier-systems- 

based reinforcement learning. Nagrath et al. (1997) proposed a Kohonen’s topology 

conserving neural network model for real-time navigation of a  mobile robot, where the 

reinforcement learning based on stochastic real-valued technique is also used. Matric

(1997) proposed a reinforcement learning model for motion planning of multiple robots 

in a dynamic environment, which involves minimizing the learning space through the 

use of behaviors and conditions, and dealing with the credit assignment problem 

through shaped reinforcement in the form of heterogeneous reinforcement functions 

and progress estimators. Thrun (1998) proposed a model for indoor mobile robot 

navigation, which integrates two paradigms: grid-based map and topological map,

7
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where the grid-based maps are learned using artificial neural networks and naive 

Bayesian integration, while the topological maps are generated on top of the grid- 

based maps by partitioning the latter into coherent regions. Kanaya and Tanaka

(1998) proposed a path planning model for multiple robots using a cellular neural 

network. Fujii et al. (1998) proposed a multi-layer reinforcement learning model for 

navigation of multiple mobile robots. A schematic diagram of its learning procedure 

is shown in the upper panel of Figure 1.4. After the neural network is well learned, 

the planned collision-free motion of two mobile robots in the same workspace is shown 

in the lower panel of Figure 1.4. However, in addition to extra learning procedures 

required by the neural network, the model algorithm is computationally complicated.

Some neural network and fuzzy logic based models were proposed for robot mo

tion planning (e.g., Song and Sheen, 1995; Wu, 1995; Zhang et al., 1997; Yung and 

Ye, 1998a). However, the learning procedures are still needed in these models. For 

example, Yung and Ye (19986) proposed an adaptive fuzzy approach to motion plan

ning with obstacle avoidance, which uses a supervised learning method based on back 

propagation to determine the parameters for the membership functions.

Glasius et al. (1995) proposed a non-learning based Hopfield type neural network 

model for real-time trajectory generation with obstacle avoidance in a nonstationary 

environment. This model does not suffer from undesired local minima (Glasius et 

al., 1995). Glasius et al. (1996) later proposed another model by cascading two 

neural network layers where each layer has a similar architecture to the model in 

Glasius et al. (1995), which becomes an unsupervised learning model but doubles the 

computational burden as well. However, all these models suffer from slow dynamics, 

i.e., they cannot perform properly in a fast changing environment. For example, they 

require that the robot must move faster than the target and obstacles (Glasius et 

al., 1995; Glasius et al., 1996).

1.1.3  S afety  C onsideration  in  R ob ot M otion  P lan n in g

Safety consideration is a very important issue in motion planning of robotic sys

tems. The clearance from obstacles should not be ignored. Many models for robot

8
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Figure 1.4: Robot motion planning using multi-layer reinforcement learning model. 

Upper panel: procedure of reinforcement learning; Lower panel: planned motion of 

two mobile robots after the learning procedures o f the neural network are completed, 

(from Fujii et al., 1998)
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motion planning concentrate on minimizing the distance between the starting po

sition and target (e.g. Lozano-Perez, 1983; Brooks and Lozano-Perez, 1985; Don

ald, 1987; Payton, 1990; Laumond et al., 1994; Desaulniers and Soumis, 1995; Gla

sius et al., 1995; Alexander et al., 1998; Bander and W hite, 1998; Meng and Yang, 

1998; Wang, 1998; Szczerba et al., 1998; Yang and Meng, 1998a; Saab and Van

Putte, 1999; Yang and Meng, 1999a; Yang and Meng, 1999e). In a static environ

ment, the robot motion planned by the neural network models in Glasius et al. (1995), 

Glasius et al. (1996), Meng and Yang (1998), Yang and Meng (1998a) and Yang and 

Meng (1999e) has the shortest distance as well, although they do not explicitly mini

mize any cost functions. They assume that the shortest path  is the “best” path. The 

clearance from obstacles is not considered during the robot motion planning. There

fore, the planned robot motion path clips the corners of obstacles and runs down the 

edges of obstacles. This is the so called “too close” problem (Thorpe, 1984; Zelin

sky, 1994; Yang and Meng, 19996; Yang and Meng, 1999h). Such a “too close” problem 

can be avoided by expanding the obstacles by an extra size, but some possible solu

tion paths are blocked out. This strategy is not acceptable, particularly when all the 

possible solution paths are blocked out after the expansion.

On the other hand, some models (e.g. Ilari and Torras, 1990) maximize the clear

ance from obstacles while minimizing the distance from the starting position to the 

target. Ilari and Torras (1990) proposed a path finding approach by constructing a 

Voronoi diagram of the free space and then removing branches in the diagram tha t 

are not relevant to planning. The left panel of Figure 1.5 shows a complete Voronoi 

diagram. The planned path  after removal of the irrelevant path branches is shown 

in the right panel of Figure 1.5. It shows that the planned path passes through the 

middle of free space (Ilari and Torras, 1990; Zelinsky, 1994). Therefore it may de

viate significantly from the shortest path. This is the so called “too far” problem 

(Thorpe, 1984; Zelinsky, 1994; Yang and Meng, 19996; Yang and Meng, 1999/i). In 

addition, Ilari and Torras’s (1990) model is sensitive to noise. For example, the small 

triangular obstacle on the boundary causes an unnecessary deviation in the global 

path. In this model there is no mechanism to limit the effect of the irrelevant obsta-
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cles (Zelinsky, 1994). An example of motion planning of a mobile robot using Ilari 

and Torras’s (1990) model is shown in Figure 1.6. It shows tha t the planned robot 

motion path deviates significantly from the shortest path.

Figure 1.5: A complete Voronoi diagram (left panel) and the planned path after re

moval o f the irrelevant path branches (right panel), (from Ilari and Torras, 1990)

Several models were proposed to reduce or solve the “too far” problem and/or 

the “too close” problems (e.g. Noborio et al., 1989; Zelinsky, 1994; Zhu and Latombe, 

1991; Lambert and Le-Fort, 1998). Zelinsky (1994) proposed a path  transform model 

for robot motion planning by combining the distance transform and the obstacle 

transform approaches, which is considered as an extension to Jarvis and Byrne’s 

(1986) distance transform approach. A schematic diagram of the distance transform 

(left panel) and obstacle transform (right panel) is shown in Figure 1.7. The cost 

function in Zelinsky’s (1994) model is referred as the path transform (PT) defined as

P T (c ) =  min ( length(p) +  a  obstacle(ci) ) , (1.1)
P € P  V  c , € P  )

where P  is the set of all possible paths from the cell c to the goal, and p € P  is a 

single path to the goal. Function length(p) is the length of path p  to the goal, while 

function obstacle(c) is a cost function generated by using the values of the obstacle 

transform. The weight a  < 0 represents the degree of discomfort the nearest obstacle 

exerts on a cell c. By minimizing the cost function P T, Zelinsky’s (1994) model can 

find a neither “too far” nor “too close” path in a static environment.

11
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Figure 1.6: Planned robot motion path o f a mobile robot by maximizing the clearance 

from obstacles while minimizing the robot traveling path, (from Ilari and Torras, 

1990)
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Figure 1.7: Schematic diagrams o f the distance transform (left panel) and the obstacle 

transform (right panel). (from Zelinsky, 1994)

1.1 .4  M otion  P lan n in g  o f  H olonom ic and N on h o lon om ic Car

like R ob ots

A small and maneuverable mobile robot can be treated as a point robot, with the 

comparison of the size of the robot and its maneuvering possibilities with the size of 

free workspace space. For example, in practice, a car in the traffic planning in large 

cities or tanks in field military operations can be treated as point robots. A point 

robot has 2-d.o.f., i.e., the translation along X  and Y  axes in the 2-dimensional (2D) 

Cartesian workspace. However, in many situations, e.g., when the size of the robot 

is comparable to the free space, or the length of the robot is obviously larger than 

its width (e.g., a rectangular robot), the robot should be considered with its shape 

and size. A holonomic car-like robot is a freely movable object with 3-d.o.f., i.e., 

two are the translation of the robot base point in the 2D workspace, and one is the 

rotation with respect to the base point. Therefore, the motion planning of holonomic 

car-like robots is referred as the motion planning of 3-d.o.f. robots in 2D workspace. 

The left panel of Figure 1.8 shows a simple rectangular robot with 3-d.o.f., where 

the configuration of the robot can be uniquely represented by the spatial Cartesian 

position of its base point and its orientation angle with respect to the base point.

A nonholonomic car-like robot is not a freely movable object. The turning ra

dius of the robot is lower-bounded, i.e., the curvature of the curve followed by the
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Figure 1.8: Schematic diagram o f car-like robot. Left panel: model o f a holonomic 

3-d. o.f. robot; Right panel: possible next configurations for a nonholonomic car-like 

robot.

robot is upper-bounded. The kinematic constraint makes the degree of freedom for a 

nonholonomic car-like robot be two. In order to plan the motion path  of a nonholo

nomic car-like robot, the control variables of the robot, the robot velocity and the 

curvature of the robot moving curve, must be discretized (Latombe, 1991; Podsed- 

kowski, 1998; Kreczmer, 1998). In Podsedkowski’s (1998) model, for a given robot 

configuration there are at most six successors (i.e., possible next configurations) by 

setting the velocity and curvature of the robot to six discrete values. The right panel 

of Figure 1.8 shows an example of the possible next configurations for a given config

uration of a nonholonomic car-like robot. In Kreczmer’s (1998) model, there are at 

most ten possible next configurations for a given robot configuration.

Motion planning in ‘2D workspace for mobile robots with size and shape is an 

im portant issue in robotics. There are a lot of studies on motion planning of 3-d.o.f. 

robots using various methods (e.g. Ilari and Torras, 1990; Barraquand and Latombe, 

1991; Latombe, 1991; Gambardella and Versino, 1994; Zelinsky, 1994; Fraichard and 

Mermond, 1998; Kreczmer, 1998; Ong and Gilbert, 1998; Podsedkowski, 1998; Kassim 

and Kumar, 1999). Most of the previous models deal with static environment only 

(e.g. Ilari and Torras, 1990; Barraquand and Latombe, 1991; Latombe, 1991; Lau- 

mond et al., 1994; Zelinsky, 1994; Kreczmer, 1998; Laumond et al., 1998; Kreczmer, 

1998; Ong and Gilbert, 1998). Most of them use a global motion planner plus a 

local collision checking procedure (e.g. Ilari and Torras, 1990; Zelinsky, 1994; Podsed-
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kowski, 1998). A local collision checking procedure is required a t each step of the robot 

movement. This is not a trivial task. Therefore those models are computationally ex

pensive, particularly when the environment is complex. For example, to detect local 

collisions, Barraquand and Latombe’s (1991) model uses a divide-and-conquer tech

nique; Zelinsky’s (1994) model uses a hierarchical collision testing procedure based on 

“distance space bubbles” . Figure 1.9 shows an example of collision detection between 

a rectangular robot and an obstacle using the distance space bubble hierarchy (from 

Zelinsky, 1994).

Figure 1.9: A n example o f local collision checking between a rectangular robot and an 

obstacle using distance space bubble hierarchy, (from Zelinsky, 1994)

There are many studies of motion planning of nonholonomic car-like robots (e.g. 

Vasseur et al., 1992; Samuel and Keerth, 1993; Fraichard and Scheuer, 1994; Jagan- 

nathan et al., 1994; Laumond et al., 1994; Wang et al., 1994; Bicchi et al., 1995; 

Desaulniers and Soumis, 1995; Bemporad et al., 1996; Desaulniers, 1996; Hong et 

al., 1996; Jiang et al., 1996; Moutarlier et al., 1996; Paromtchik and Laugier, 1996; 

Wang, 1996; Jiang et al., 1997; Khatib et al., 1997; Pruski and Rohmer, 1997; Scheuer 

and Fraichard, 1997; Simeon et al., 1997; Svestka and Overmars, 1997; Bicchi et 

al., 1998; Fraichard and Mermond, 1998; Kreczmer, 1998; Laumond et al., 1998; Pei 

and Horng, 1998; Podsedkowski, 1998; Schlegel, 1998; Sekhavat et al., 1998). Most 

of these models deal with static environment only, or are computationally compli

cated. Some previous models use two-step approaches tha t consist of first computing 

a collision-free holonomic path, and then transforming this path by a sequence of
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feasible ones. The quality of the solution and the computational cost of the sec

ond step depend on the shape of the holonomic path. For example, Moutarlier et 

al. (1996) proposed a model for planning the shortest path in configuration space 

of a car-like robot, which is based on a Lagrange method for optimizing a function. 

Paromtchik and Laugier (1996) proposed a searching based iterative algorithm for 

motion generation for parking a car-like robot. Svestka and Overmars (1997) pro

posed a probabilistic learning approach to motion planning of car-like robots, which 

involves a learning phase and a query phase and uses a local method to compute the 

feasible paths for the robots. Khatib et al.'s (1997) motion planning model for car-like 

robots used a bubble method to find the locally reachable space and a parameter

ization method to satisfy the kinematic constraint. Podsedkowski (1998) proposed 

a path planner for nonholonomic car-like robot using a searching algorithm, which 

requires a local collision checking procedure and the minimization of cost functions. 

Jiang et al. (1997) proposed a time-optimal motion planning method for a robot with 

kinematic constraints, which consists of three stages: planning for a point mobile 

robot; planning for a car-like robot; and optimizing cost functions for a time-optimal 

solution. Sekhavat et al. (1998) proposed a multi-level approach to motion planning 

of nonholonomic robots, where at the first level, a path is found that disrespects 

the nonholonomic constraints; a t each of the next levels, a new path is generated 

by transformation of the path generated at the previous level; a t the final level, all 

nonholonomic constraints are respected. This model is computationally expensive.

1.2 O bjectives o f th e  P roposal o f a N ovel Frame

work for R obot M otion  P lanning

Inspired by Hodgkin and Huxley’s (1952) membrane model for a biological neural sys

tem and Grossberg’s (1973) shunting model, we will propose a novel neural network 

approach to real-time robot motion planning with obstacle avoidance in a nonsta- 

tionary environment. The proposed neural network will be topologically organized.
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Each neuron in the neural network will be characterized by a shunting equation or 

an additive equation, which is derived from Hodgkin and Huxley’s (1952) membrane 

equation. The target globally attracts the robot in the whole robot workspace through 

neural activity propagation, while the obstacles only locally push the robot away in 

a small region to avoid the possible collisions. The robot motion will be generated 

through the dynamic activity landscape of the neural network. In contrast to most 

previous models for robot motion planning, the optimal real-time robot m otion will 

be planned without explicitly optimizing any cost functions, without explicitly search

ing over the free workspace or the collision paths, without any prior knowledge o f the 

dynamic environment, and without any learning procedures. Therefore, the proposed 

approach will be computationally efficient. The generated solution to maze-solving 

type problems or the planned robot motion in a static environment is globally optim al 

in the sense of the shortest path from the starting position to the target position, if 

it exists. The optimality of the real-time robot motion planning in a nonstationary 

environment is in the sense of a continuous, smooth path toward the target. The 

term “real-time” is in the sense tha t the robot motion planner responds immediately 

to the dynamic environment, including the robot, target, obstacles and sensor noise. 

In order to make the computational complexity of the proposed algorithms linearly 

depend on the neural network size, each neuron will have only local lateral connec

tions to its neighboring neurons. The model algorithm will be not sensitive to model 

parameter variations, connection weight function, nor sensor noise. The global sta

bility and convergence of the proposed neural network system will be proved by both 

qualitative analysis and a Lyapunov stability theory.

Secondly, safety consideration in robot motion planning will be studied. Based 

on the biologically inspired neural network model for a point mobile robot, by in

troducing inhibitory lateral connections among neurons and thresholds of the neural 

connections in the neural network, we will propose an extended model for real-time 

robot motion planning with safety consideration in a nonstationary environment. In 

addition, the state space of the neural network will be extended to either the C arte

sian workspace or the joint space of multi-joint robot manipulators. This extended
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neural network model will be capable of planning a real-time “comfortable” robot 

motion path w ithout suffering from either the “too close” problem nor the “too far” 

problem. The strength of the clearance from obstacles will be adjustable. By selecting 

suitable model param eter values, this model will be able to plan the shortest path, a 

comfortable path , or the safest path for a point mobile robot or a multi-joint robot 

manipulator.

Thirdly, real-time collision-free motion planning of holonomic 3-d.o.f. robots in 

2D Cartesian workspace will be investigated based on the proposed neural network 

model for a point mobile robot. By extending the state space of the neural network 

to the configuration space of holonomic car-like robots, an extended neural network 

model for real-time motion planning with obstacle avoidance of holonomic 3-d.o.f. 

robots will be proposed. In contrast to the previous models that require local col

lision checking procedures at each step of the robot movement, no local collision 

checking will be needed in the proposed algorithms. In addition, some complicated 

robot motion planning problems, such as real-time motion planning with sudden en

vironmental changes, motion planning of a robot with multiple moving targets, and 

motion planning of multi-robot system, will be studied.

Furthermore, real-time motion planning with obstacle avoidance of nonholonomic 

car-like robots will be studied based on the neural network model for motion planning 

of holonomic 3-d.o.f. robots. By introducing directionally selective lateral neural 

connections, we will propose an extended neural network model for real-time collision- 

free motion planning of nonholonomic car-like robots in a nonstationary environment.

In summary, a  framework, using biologically inspired neural networks, for real

time collision-free motion planning of robotic systems will be developed. It will be 

able to deal w ith point mobile robots, multi-joint manipulation robots, holonomic 

and nonholonomic car-like robots, and multi-robot systems. In comparison to pre

vious motion planning methods, the proposed framework will have several feature 

properties, e.g., efficient computational algorithm; global stability; global optimality; 

robustness to model parameter variations and sensor noise; safety consideration; no 

learning procedures; no explicit minimization of cost functions; no explicit searching
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procedures; and biological plausibility.

1.3 O verview  o f  M otion  C ontrol o f  R ob ot M anip

u lators

Motion control of robot manipulators in real-time is very im portant in robotics but 

very difficult to achieve, particularly when without any prior knowledge of the robot 

dynamics and with sudden changes in the robot dynamics. There are a lot of studies 

on motion control of robot manipulator using various approaches (e.g. Slotine and 

Li, 1987; Craig, 1988; Ortega and Spong, 1988; Slotine and Li, 1988; Lewis et al., 

1990; Miller et al., 1990; Sadegh and Horowitz, 1990; van der Smagt and Krose, 1991; 

Zomaya and Morris, 1992; Lu and Meng, 1993; Wada and Kawato, 1993; Khemaissia 

and Morris, 1993; Gomi and Kawato, 1993; Behera et al., 1994; Meng and Lu, 1994; 

Pham and Oh, 1994; Ahmed et al., 1995; Lewis et al., 1995; Meng, 1995; W atanabe et 

al., 1995; Behera et al., 1996; Jung and Hsia, 1996a; Lewis et al., 1996; Meng, 1996; 

Morris and Khemaissia, 1996; Chiaverini et al., 1997; Ciliz and Isik, 1997; Meddah 

and Benallegue, 1997; Yan and Li, 1997; EIDeeb and EIMaraghy, 1998; Li et al., 

1998; Song and Sun, 1998; Tomiyama et al., 1998; Yang and Meng, 19986; Dixon et 

al., 1999; Meng and Yang, 1999; Yang and Meng, 1999^). In this section, we will start 

will a brief introduction to the conventional approaches to motion control of robot 

manipulators. Then, some neural network based approaches to robot motion control 

will be reviewed.

1.3.1 C onventional A pproaches to  R o b o t M otion  C ontrol

The traditional proportional and derivative (PD) controller is very simple and does 

not require any knowledge of the robot dynamics. But it requires very large actuation 

to achieve fine motion control robot manipulators, which is not practical but highly 

demanded in many cases (Craig, 1988; Meng, 1992; Meng, 1995; Meng, 1996). The 

computed torque control approach and other model-based approaches (e.g. Meng,
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1995; Dixon et al., 1999) are capable of achieving fine robot motion control. However, 

they requires the exact model of the robot dynamics, which is alm ost impossible 

in practice (Meng, 1992; Meng, 1996). The adaptive controllers (e.g. Slotine and 

Li, 1987; Slotine and Li, 1988; Meng, 1992; Lu and Meng, 1993; Meng and Lu, 1994; 

Chiaverini et al., 1997; EIDeeb and EIMaraghy, 1998) can achieve fine robot motion 

control and compensate the partially known manipulator dynamics. B ut, they often 

require complicated on-line estimation of the robot dynamics (Slotine and Li, 1987; 

Slotine and Li, 1988; Lu and Meng, 1993; Meng, 1996).

1.3.2 N eu ral N etw ork based A pproaches to  R o b o t M otion  

C ontrol

A lot of neural network based controllers were proposed for motion control of robot 

manipulators (e.g. van der Smagt and Krose, 1991; Goh et al., 1993; Gomi and 

Kawato, 1993; Khemaissia and Morris, 1993; Kim et al., 1993; VVada and Kawato, 

1993; Sanger, 1994; Hamavand and Schwartz, 1995; Kguchi and Fukuda, 1995; Lewis 

et al., 1995; Tso and Lin, 1995; Behera et al., 1996; Chen and Gill, 1996; Jung and 

Hsia, 19966; Kim and Lee, 1996; Lewis et al., 1996; Meng, 1996; Morris and  Khemais

sia, 1996; Xu et al., 1996; Ciliz and Isik, 1997; Ertugrul and Kaynak, 1997; Jeong et 

al., 1997; Jung and Hsia, 1997; Meddah and Benallegue, 1997; Nam et al., 1997; Sun 

and Sun, 1997; Yan and Li, 1997; Jung and Hsia, 1998; Song and Sun, 1998), which 

succeed in some areas where the model-based approaches failed. However, these mod

els need an off-line learning procedures, or are computationally complicated. Khe

maissia and Morris (1993) proposed a neuro-adaptive controller by using a neural 

network plus a servo feedback controller, which does not require an off-line training. 

However, it suffers from computational complexity and very slow convergence, since 

for an n-d.o.f. robot manipulator it requires n  three-layer neural networks. Later 

Morris and Khemaissia (1996) proposed a new neural network based controller by 

using recursive prediction error technique to improve the convergence speed. But it 

is still computationally complicated. Kguchi and Fukuda (1995) proposed a fuzzy
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neural controller for control of robot manipulators, where the neural networks control 

has a learning ability from experiments and the fuzzy control has an ability of deal

ing with human knowledge. Behera et al. (1996) proposed a neuro-adaptive hybrid 

controller for tracking control of robot manipulators, where three multi-layer neural 

networks are used to learn the mass matrix, centrifugal and Coriolis force m atrix, and 

the gravitational torque vector, respectively, but it is computationally expensive.

Meng (1996) proposed a signal-layer neural network based model for fine motion 

control of robot manipulators. This model takes advantage of the robot regressor 

dynamics and is computationally simple. However, it requires an off-line training 

procedure for the neural network to perform satisfactorily (Meng, 1996).

1.4 O b jectives o f th e  P rop osa l o f  a N ovel N eu ral 

N etw ork  based C ontroller

A novel neural network based method will be proposed for real-time fine motion con

trol of multi-joint robot manipulators. Unlike most previous neural network based 

approaches, no off-line training procedures will be required in the proposed con

troller. Unlike the model-based approaches, no knowledge of the robot dynamics will 

be needed. The proposed neural network based controller will be capable of perform

ing real-time fine motion control of robot manipulators with the ability of quickly 

compensating sudden changes in the robot dynamics. To achieve these objectives, 

the proposed controller will consist of two parts: a control torque from a feedforward 

neural network, and a control torque from a conventional PD feedback loop. The 

PD feedback loop will be used to guarantee the global stability during the learning 

period of the neural network at the initial phase or when sudden changes in the robot 

dynamics happen. The real-time fine motion control of robot manipulators will be 

achieved through only the on-line learning of the neural network. Therefore the pro

posed neural network based controller will inherit advantages from both the neural 

network based controllers and the PD type controllers.
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In addition, to obtain a simple neural network architecture and an efficient learn

ing algorithm of the neural network, the proposed controller will take advantage of 

the robot regressor dynamics formulation th a t expresses the highly nonlinear robot 

dynamics in a linear form in terms of the robot dynamic parameters. The neural 

network will assume a single-layer structure. The learning algorithm of the neural 

network will be derived from the global stability analysis of a Lyapunov function 

candidate. Therefore, the control algorithm will be computationally efficient. In ad

dition, the global asymptotic stability of the control system and the convergence of 

the tracking error will be guaranteed.

1.5 C ontributions o f th is T h esis

The proposed neural network approaches to real-time motion planning and motion 

control of robotic systems have potential industrial applications, and offer insight 

into the biological mechanism. The contributions of this thesis can be summarized 

as follows.

1 . A novel framework, based on biologically inspired neural networks, for real-time 

collision-free motion planning of robotic systems in a nonstationary environment 

is developed. The proposed motion planning approach can deal with point mo

bile robots, multi-joint robot manipulators, holonomic and nonholonomic car

like robots, and multi-robot systems. The sta te  space of the neural network can 

be either the Cartesian workspace, the jo in t space of multi-joint robot manip

ulators, or the configuration space of the car-like robots. Each neuron in the 

topologically organized neural network is characterized by a shunting equation 

or an additive equation. There are only local connections among neurons. The 

computational complexity of the proposed algorithms linearly depend on the 

neural network size. The real-time optim al robot motion is planned through 

the dynamic activity landscape of the neural network without explicitly opti

mizing any cost functions, without explicitly searching over the free workspace 

or the collision paths, without any prior knowledge of the dynamic environment,
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without any learning procedures. Therefore, the model algorithms are computa

tionally efficient. The stability and convergence of the neural network system is 

guaranteed by both qualitative analysis and the Lyapunov stability theory. The 

proposed algorithms are not sensitive to model parameters, connection weight 

function, nor sensor noise.

2. A novel neural network model for real-time robot motion planning with safety 

consideration is proposed. By employing both excitatory and inhibitory lateral 

connections among neurons and thresholds of the neural connections, the pro

posed neural network model is capable of planning a real-time comfortable robot 

motion path without suffering from the “too far” nor the “too close” problems. 

The strength of the clearance from obstacle is adjustable. By choosing suit

able model parameters, the proposed model is capable of generating either the 

shortest path, a comfortable path, or the safest path for a point mobile robot 

and a multi-joint robot manipulator.

3. A novel neural network model for real-time motion planning with obstacle avoid

ance of holonomic 3-d.o.f. robots in a nonstationary environment is proposed. 

Based on the biologically inspired neural network model for motion planning of 

point mobile robot, a neural network is proposed by extending the state space 

of the neural network to the configuration space of 3-d.o.f. robot. Unlike most 

previous models that require local collision checking procedures a t each step 

of the robot movement, no local collision checking procedure is needed in the 

proposed neural network model.

4. A novel neural network model for real-time collision-free motion planning of 

nonholonomic car-like robot in a nonstationary environment is proposed. In 

contrast to the neural network model for motion planning of holonomic 3-d.o.f. 

robot, the lateral connections among neurons in the proposed neural network 

is directionally selective, and the neural activity propagation is subject to the 

nonholonomic kinematic constraint of the car-like robot. To the best of our 

knowledge, it is the first time that the real-time collision-free motion planning of
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car-like robot are studied using a non-learning based neural network approach.

5. Some complicated robot motion planning problems are studied using the pro

posed framework for real-time robot motion planning with obstacle avoidance, 

including motion planning with sudden environmental changes, motion plan

ning of a robot with multiple moving targets, and motion planning of multiple 

robots in the same workspace.

6 . An efficient neural network based model is developed for real-time fine motion 

control of robot manipulators with completely unknown robot dynamics and 

subject to significant uncertainties. No off-line training procedure is needed in 

the proposed controller. The real-time fine robot motion control is achieved 

through only the on-line learning of the neural network. In addition, the pro

posed neural network based controller is capable of quickly compensating sud

den changes in the robot dynamics. The proposed controller inherits advantages 

from both the PD type controllers and the neural networks based controllers. By 

taking advantage of the robot regressor dynamics, the neural network assumes 

a single-layer structure, and the learning algorithm is computationally efficient. 

The globed asymptotic stability of the control system and the convergence of 

the tracking error to zero is guaranteed by a  Lyapunov stability theory.

1.6 O rganization o f th is T hesis

In Chapter 2 we develop a novel biologically inspired neural network approach to  

real-time robot motion planning with obstacle avoidance in a  nonstationary environ

ment. The originality, the model algorithm, and the system stability analysis of the 

proposed neural network approach are presented. Several simulation studies of real

time motion planning of a point mobile robot under various situations are included 

to demonstrate the effectiveness and efficiency of the proposed algorithm. The pa

rameter sensitivity of the proposed model is discussed by both descriptive analysis 

and computer simulations. Three model variations are introduced and a comparison
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study among these models is presented. Finally, several feature properties of the 

proposed approach are outlined.

In Chapter 3 we develop a novel neural network approach, based on the neu

ral network model presented in Chapter 2 , to real-time robot motion planning with 

safety consideration in a nonstationary environment. Both excitatory and inhibitory 

connections among neurons and threshold of the neural connections are used in the 

proposed neural network model. In addition, the state space of the neural network is 

extended to either the Cartesian workspace or the joint space of a multi-joint robot 

manipulator. Several simulations studies of real-time motion planning of a  point mo

bile robot and a robot manipulator, in static and nonstationary environment, are 

carried out with various strength of the clearance from obstacles. A model variation 

is presented, and the feature properties of the proposed approach is summarized.

In Chapter 4 we develop a novel neural network approach to real-time collision- 

free motion planning of holonomic 3-d.o.f. robots in a nonstationary environment. 

The configuration space of a 3-d.o.f. robot is used as the state space of the neu

ral network. Some complicated robot motion planning problems, such as real-time 

robot motion planning with sudden environment changes, motion planning of a  robot 

with multiple moving targets, and motion planning of multiple robots in the same 

workspace, are investigated. Finally we introduce a model variation and outline some 

feature properties of the proposed neural network model.

In Chapter 5 we develop an novel neural network approach, based on the model 

presented in Chapter 4, to real-time collision-free motion planning of nonholonomic 

car-like robots in a nonstationary environment. To satisfy the kinematic constraint of 

the nonholonomic car-like robot, the lateral connections among neurons in the neural 

network are directionally selective. Simulation studies of real-time motion planning 

of a nonholonomic car-like robot in both static and nonstationary environment are 

carried out. A model variation is introduced and the feature properties of the proposed 

neural network model is highlighted at the end.

In Chapter 6  we develop an efficient neural network based approach to real-time 

fine motion control of multi-joint robot manipulators. The philosophy of the proposed
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approach, the control algorithm, the on-line learning algorithm of the neural network 

are presented. The global asymptotic stability of the system and the convergence of 

tracking error are proved using a Lyapunov stability theory. A case study of a two- 

link robot manipulator is carried out to track an elliptic trajectory in real-time with 

demonstration of the capability of quickly compensating sudden changes in the robot 

dynamics. In addition, an alternative neural network based control algorithm, based 

on the same concept, is presented. Finally, the feature properties of the proposed 

neural network based controller is outlined.

Chapter 7 summarizes the work presented in this thesis and discusses possible 

future research projects as extension to the presented work.
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Chapter 2

A  Biologically Inspired Neural 

Network Approach to  R eal-tim e  

R obot M otion Planning with  

O bstacle A voidance

In this chapter, a novel biologically inspired neural network approach is developed for 

real-time robot motion planning with obstacle avoidance in a nonstationary environ

ment. The proposed neural network is topologically organized, where the dynamics 

of each neuron is characterized by a shunting equation or an additive equation. There 

are only local connections among neurons in the neural network. The real-time op

timal robot motion is planned through the dynamic activity landscape of the neural 

network, which represents the dynamic environment. The stability and convergence 

of the neural network system is proved by both qualitative analysis and the Lyapunov 

stability theory. In addition, this model is not very sensitive to the model parame

ters nor connection weight function. Three model variations are introduced, and a 

comparison among these models is presented. The effectiveness and efficiency of the 

proposed approaches are demonstrated through simulation and comparison studies.
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2.1 In troduction

Motion planning with obstacle avoidance is a very im portant issue in robotics. There 

are many studies on motion planning for robots using various approaches. Most of the 

previous models use global m ethods to search the possible paths in the workspace. 

Ong and Gilbert (1998) proposed a new searching based model for path planning 

with penetration growth distance, which searches over collision paths instead of the 

free workspace. Most searching based models can deal with static  environment only 

and are computationally complicated when the environment is complex. Some of 

the previous models, especially the potential based approaches, suffer from undesired 

local minima, which may be trapped in the deadlock situations such as with concave 

U-shaped obstacles. To obtain an optimal solution to the motion planning problems, 

most of the previous motion planning models require the minimization of some cost 

functions. For example, Oriolo et al. (1997) proposed a motion planning model for a 

mobile robot by a global path planning plus a local graph search algorithm. Several 

cost functions are used to achieve a satisfactory performance (Oriolo et al., 1997; 

Oriolo et al., 1997). Some of the previous robot motion planning models require the 

prior information of the nonstationary environment, including the varying target and 

obstacles. For example, Chang and Song (1996) proposed a virtual force guidance 

model for dynamic motion planning of a mobile robot in a  predictable environment, 

where an artificial neural network is used to predict the future environment through 

a relative-error-back-propagation learning algorithm (Chang and Song, 1996; Chang 

and Song, 1997).

Many neural network based models were proposed for motion planning of robotic 

systems. Some of the previous neural network models for robot motion planning 

deal with static environment only (e.g. Ritter et al., 1989; Li and Ogmen, 1994). 

Most of the neural network models are learning based (e.g. R itter et al., 1989; Li 

and Ogmen, 1994; Muniz et al., 1995; Zalama et al., 1995; Fujii et al., 1998; Kassim 

and Kumar, 1999). The learning based approaches suffer from extra computational 

cost because of the learning procedures. In addition, the planned robot motion using
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learning based approaches is not optimal, especially during the initial learning phase 

of the neural network. A detailed review of various robot motion planning approaches 

can be found in Chapter 1 .

Glasius et al. (1995) proposed a non-learning based Hopfield type neural network 

model for real-time trajectory generation with obstacle avoidance in a nonstationary 

environment. This model does not suffer from undesired local minima (Glasius et 

al., 1995). Glasius et al. (1996) later proposed another model by cascading two 

neural network layers where each layer has a similar architecture to the model in 

Glasius et al. (1995), which becomes an unsupervised learning model but doubles the 

com putational burden as well. However, all those models suffer from slow' dynamics 

and cannot perform properly in a fast changing environment, e.g., they require that 

the robot dynamics must be faster than  the target and obstacle dynamics (Glasius et 

al., 1995; Glasius et al., 1996).

In this chapter, inspired by Hodgkin and Huxley’s (1952) membrane model for a bi

ological neural system and Grossberg’s (1973) shunting model, a  novel neural network 

approach is proposed for real-time robot motion planning with obstacle avoidance in a 

nonstationary environment. The proposed neural network is topologically organized. 

The state space of neural network is the Cartesian workspace. The dynamics of each 

neuron is characterized by a shunting equation or a simple additive equation, which 

is derived from Hodgkin and Huxley’s (1952) membrane equation. In the proposed 

neural network, the target globally a ttrac ts the robot in the whole state  space through 

neural activity propagation, while the obstacles locally push the robot away to avoid 

possible collisions. Such a property is guaranteed by the fact th a t each neuron has 

only local, excitatory lateral connections to its neighboring neurons in the neural 

network. Therefore, unlike some previous models such as Ilari and Torras (1990), 

the proposed model is not sensitive to any irrelevant obstacles nor sensor noise. In 

addition, the computational complexity linearly depends on the neural network size.

In the proposed neural network model for robot motion planning, the dynamically 

varying environment is represented by the dynamic neural activity landscape of the 

neural network. The real-time optimal robot motion is directly planned through the
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dynamic activity landscape of the neural network without any prior knowledge of the 

dynamic environment. Unlike previous searching based models whose robot motion 

is planned by searching over the free space or the collision paths, there are no explicit 

searching procedures in the proposed model. In contrast to  most previous models 

where the optimal robot motion is generated by optimizing some cost functions, there 

are no explicit optimization procedures in the proposed model. The optimal robot 

motion results from the nature of the neural network design. Distinct from most 

neural network based motion planning models, no learning procedures are needed in 

the proposed model. Therefore, the model algorithm is computationally efficient. The 

term  “real-time” is in the sense that the robot motion planner responds immediately 

to the dynamic environment, including the robot, target, obstacles and sensor noise. 

The generated solution to a maze-solving type problem or the planned robot motion 

in a  static environment is globally optimal in the sense of the shortest path from 

the starting position to the target if it exists. If there exist more than one shortest 

paths, the proposed model provides only one of them. The optim ality of the real-time 

collision-free motion planning in a nonstationary environment is in the sense that the 

robot travels a continuous, smooth path toward the target.

2.2 The M odel

In this section, the originality of the proposed neural network approach to real-time 

collision-free robot motion planning is briefly introduced. Then, the philosophy of the 

proposed neural network approach and the model algorithm are presented. Finally, 

the stability of the proposed model is proved by using both qualitative analysis and 

the Lyapunov stability theory.

2.2 .1  O riginality

Hodgkin and Huxley (1952) proposed a computational model for a patch of membrane 

in a biological neural system using electrical circuit elements. This modeling work 

together with other experimental work led Hodgkin and Huxley to a  Nobel Prize
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in 1963, for their discoveries concerning the ionic mechanisms involved in excitation 

and inhibition in the peripheral and central portions of the nerve cell membrane. In 

Hodgkin and Huxley’s (1952) membrane model, the dynamics of voltage across the 

membrane, Vm, is described using state equation technique as 

dV
Cjn =  ~(Ep +  Kn)</p +  (E no. — Kn)<7Va — (Ef< + Vm)9K, (2.1)

where Cm is the membrane capacitance. Parameters E k , E ^ a and Ep are the Nernst 

potentials (saturation potentials) for potassium ions, sodium ions and the passive 

leak current in the membrane, respectively. Parameters gK ,gsa and gv represent the 

conductances of potassium, sodium and passive channels, respectively. This model 

provided the foundation of the shunting model and led to a lot of model variations 

and applications (Hodgkin, 1964; Plonsey and Fleming, 1969).

By substituting Cm = 1 , =  Ep +  Vm, A  = gp, B  =  ENa +  Ep, D = E k -  Ep, S f  =

9Na and S~  =  gx  in Equation (2.1), a shunting equation is obtained (Ogmen and 

Gagne, 1990a; Ogmen and Gagne, 19906),

^  = - / i f ,  + ( B -  f , )S*(t) - ( D  + f,)S-(«), (2.2)

where i is the index of the neuron. Variable & is the neural activity (membrane 

potential) of the z-th neuron. Parameters A, B  and D  are nonnegative constants rep

resenting the passive decay rate, the upper and lower bounds of the neural activity, 

respectively. Variables S* and S~  are the excitatory and inhibitory inputs to the neu

ron (Ogmen and Gagne, 1990a; Ogmen and Gagne, 19906; Yang, 1996). This shunting 

model was first proposed by Grossberg to understand the real-time adaptive behavior 

of individuals to complex and dynamic environmental contingencies (Grossberg, 1973; 

Grossberg, 1982; Grossberg, 1983; Grossberg, 1988), and has a lot of applications 

in biological and machine vision, sensory motor control, and many other areas (e.g. 

Grossberg, 1982; Bullock and Grossberg, 1988a; Bullock and Grossberg, 19886; Gross

berg, 1988; Bullock and Grossberg, 1989; Ogmen and Gagne, 1990a; Ogmen and 

Gagne, 19906; Gaudiano and Grossberg, 1991; Ogmen, 1991; Ogmen, 1993; Li and 

Ogmen, 1994; Muniz et al., 1995; Yang and Ogmen, 1995; Zalama et al., 1995; Gau

diano et al., 1996; Maguire and Yang, 1996; Yang, 1996).
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2 .2 .2  M od el A lgorithm

The fundamental concept of the proposed model to develop a neural network archi

tecture, whose dynamic neural activity landscape represents the dynamically varying 

environment. By properly defining the external inputs from the varying environment 

and internal neural connections, the target and obstacles are guaranteed to stay at 

the peak and the valley of the activity landscape of the neural network. The target 

can globally attract the robot in the whole workspace through the neural activity 

propagation, while the obstacles have only local effect to avoid collisions. The real

time collision-free robot motion is planned through the dynamic activity landscape 

of the neural network.

The neural network architecture of the proposed model is a discrete topologically 

organized map that has been used in many neural network models (e.g. Kohonen, 

1982; Linsker, 1986; Zelinsky, 1994; Gambardella and Versino, 1994; Glasius et al., 

1995; Podsedkowski, 1998; Kassim and Kumar, 1999). The proposed model is ex

pressed in a finite (F—) dimensional (F —D) state  space S , which is the Cartesian 

workspace. The location of the z-th neuron at the grid in the F -D sta te  space S , 

denoted by a vector pt- € R F, uniquely represents a  position in the workspace. Each 

neuron has a local lateral connections to its neighboring neurons th a t constitute a 

subset Hi in S. The subset Hi is called the receptive field of the z-th neuron in 

neurophysiology. The neuron responds only to the stimulus within its receptive field.

In the proposed neural network model, the dynamics of the z-th neuron in the 

neural network is characterized by a shunting equation derived from Equation (2.2). 

The excitatory input S*  results from the target and the lateral connections from its 

neighboring neurons, while the inhibitory input S~  results from the obstacles only. 

Thus the differential equation for the z-th neuron is given by

=  -A ( ,  + { B -  ft) ([/,]+  +  ■£ r a s t e r )  -  {D +  &)[/<]-, (2.3)

where N  is the total number of neurons in the neural network. The terms [/j]+ +  

52f=i and [/j]~ are the excitatory and inhibitory inputs, S*  and S~  in Equa-
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tion (2.2), respectively. The external input /, to  the z-th neuron is defined as

E , if there is a  target

/, =  — E , if there is an obstacle , (2-4)

0 , otherwise

where F  >  B  is a very large positive constant. Function [a]+ is a linear-above- 

threshold function defined as [a]+ =  max{a, 0 }, and the nonlinear function [a]-  is 

defined as [a]-  =  max{—a, 0}. The connection weight Wij from the j- th  neuron to

the z-th neuron is a function of distance defined as

W ij= f{d ij) , (2.5)

where dtJ =  |pt- — pj | represents the Euclidean distance between positions p, and pj in 

the state space S  of the neural network. The connection weight function / ( d tJ) is a 

monotonically decreasing function, e.g., a function defined as

/{da) =
p/dij, if 0  <  dij < rQ

(2.6)
0 , if dij > r0

where p and r 0 are positive constants. Therefore, it is obvious that the connection 

weight is symmetric, — Wji, and is a function of distance only, not depending 

on directions. In addition, the neuron has only local connections in a small region 

(0 , r 0), i.e., its receptive field 7^ is the space whose distance to the z-th neuron is less 

than r0. The neurons located within the receptive field of the z-th neuron is referred 

as its neighboring neurons. Therefore, the dynamics of the z-th neuron can be further 

described as,

^  + ( B -  ft) ([/,]+ +  ±  -  (D  +  ? ,)[*]-, (2.7)

where k is the total number of neighboring neurons of the z-th neuron.

The proposed neural network characterized by Equation (2.7) guarantees that 

the positive neural activity can propagate from one neuron to its neighboring neu

rons through lateral neural connections, but the negative activity stays locally only. 

Thus, the target globally influences the whole sta te  space to a ttrac t the robot through
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neural activity propagation, while the obstacles have only local effect to avoid possi

ble collisions due to no inhibitory lateral neural connections in the neural network. 

Therefore, unlike some previous models such as Ilari and Torras (1990) where the 

planned global path is sensitive to irrelevant obstacles, the proposed neural network 

model is not sensitive to any irrelevant obstacles because the obstacles have only local 

effect. In addition, the activity propagation from the target is blocked when it hits 

the obstacles. Such a property is very important for maze-solving type problems.

The positions of the target and obstacles may vary with time. The activity land

scape of the neural network dynamically changes according the varying external in

puts and the lateral excitatory connections. As shown in Equation (2.7), the neuron 

responds to only the immediate inputs from the target and obstacles. Therefore no 

prior knowledge of the varying environment is needed in the proposed model. The 

real-time robot motion is planned from the dynamic activity landscape by a steepest 

gradient ascent rule. For a given present position in the state space of the neural net

work (i.e., a position in the Cartesian workspace, or a neuron in the neural network), 

denoted by pp, the next position pn (also called “command position” ) is obtained by

Pn <= = m a x { ^ -,i =  1,2, •••,£} , (2.8)

where k  is the total number of all the neighboring neurons of the pp-th neuron in 

the neural network, i.e., all the possible next positions of the present position pp. 

After the present position reaches its next position, the next position becomes a new 

present position. The present position adaptively changes according to the varying 

environment.

In a static environment, the activity landscape of the neural network will reach 

a steady state. Mostly the robot reaches the target much earlier than the activity 

landscape reaches the steady state of the neural network. When a robot is in a 

dynamically changing environment, the neural activity landscape will never reach 

a steady state. Due to the very large external input constant E , the target and 

the obstacles keep staying at the peak and the valley of the activity landscape of the 

neural network, respectively. The robot keeps moving toward the target with obstacle

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



avoidance till the designated objectives are achieved.

2.2 .3  S tab ility  A n alysis

In the shunting model in Equations (2.2), (2.3) or (2.7), the neural activity increases 

at a rate of (B — £i)S* , which is not only proportional to the excitatory input S+, but 

also proportional to an auto gain control term  B  — Thus, with an equal amount 

of input St+, the closer the values of and B  are, the slower & increases. When the 

activity & is below  B , the excitatory term is positive causing an increase in the neural 

activity. If £, is equal to B, the excitatory term becomes zero and will no longer 

increase no m atter how strong the excitatory input is. In case the activity exceeds 

B, B  — & becomes negative and the shunting term pulls & back to B . Therefore, 

& is forced to stay below B, the upper bound of the neural activity. Similarly, the 

inhibitory term forces the neural activity stay above the lower bound — D. Therefore, 

once the activity goes into the finite region [—D, B], it is guaranteed tha t the neural 

activity will stay in this region for any value of the total excitatory and inhibitory 

inputs (Yang, 1996).

The stability and convergence of the proposed model can also be rigorously proved 

using a Lyapunov stability theory. Introducing the new variables, 77, =  & —B , the pro

posed model in Equation (2.3) or (2.7) can be written into the general form proposed 

by Grossberg (1983),

(2.9)

by the following substitutions:

( H i m )  =  ~ V i , (2.10)

b,(tk) = - ( A B  + Vi(A +  [/,]+ +  [/<)-) +  (B +  D )[/i]-) ,
Vi

(2.11)

Cij — Wjj j (2.12)

and

dj(Vj) =  [Vj +  B]+. (2.13)
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Since the neural connection weight is symmetric, Wij = Wji, then c*j =  cJt- (symmetry). 

Since 77* varies within the finite interval [—B  — D, 0], where B  and D  are nonnegative 

constants, then 77* is a nonpositive number. Hence the amplification function 0 ,(77*) 

is nonnegative, i.e., 0 ,(77*) >  0 (positivity). From the definition of function [a]+, have 

dj(r}j) =  0 at rjj < —B  and d^rjj) =  1 at tjj > —B . Hence the signal function dj(r)j) 

has a nonnegative derivation, i.e., dj(rjj) > 0 (monotonicity). Therefore, Equation 

(2.7) satisfies all the three stability conditions required by Grossberg’s general form 

(Grossberg, 1983; Grossberg, 1988). The Lyapunov function candidate for Equation

(2.9) can be chosen as

v =  “ 53 bi(Vi)di(T}i)dTji +  i  ]T  Cjkdj(jij)dk(r}k). (2.14)
i = l  J z  j , k =  1

The derivative of v along all the trajectories is given by

j  n  /  n  \ 2

— =  -  53 Vh ~  53 CijdA . (2.15)

Since a* >  0  and d\ > 0, then dv /d t < 0 along all the trajectories. The rigorous 

proof of the stability and convergence of Equation (2.9) can be found in Grossberg 

(1983). Therefore, the proposed neural network system is stable. The dynamics of 

the network is guaranteed to converge to an equilibrium state of the system.

2.3 Sim ulation  S tu d ies

The proposed neural network model is capable of planning real-time optimal robot 

motion with obstacle avoidance in a nonstationary environment. The generated solu

tion to a maze-solving type problem or the planned robot motion in a static environ

ment is globally optimal in the sense of the shortest path from the starting position 

to the target, if it exists. Such a property results from the fact that the connection 

weight of the neural network is a function of the distance only. The neural activity 

propagation is omnidirectional, i.e., the propagation from the target to all directions 

is exactly in the same manners. In a static environment, the neural activity propa

gation from the target always reach the robot location along the shortest path. For
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real-time robot motion planning in a nonstationary environment, the optimality is in 

the sense that the robot travels a continuous, smooth route toward the target. The 

term “real-time” is in the sense that the robot motion planner responds immediately 

to the dynamic environment, including the robot, target, obstacles and sensor noise.

In this section the proposed model is applied to motion planning of a point mobile 

robot in a 2D Cartesian workspace. A small and maneuverable mobile robot can 

be treated as a point mobile robot, when comparing the size of the robot and its 

maneuvering possibilities to the size of the free workspace. For example, in practice, 

a car in the traffic planning in large cities or tanks in field military operations can be 

treated as point mobile robots. Several cases of robot motion planning are studied, 

including a maze-solving type problem, motion planning to avoid concave U-shaped 

obstacles, a moving target tracking problem, and varying obstacles avoiding problem. 

In the simulation, the responses of the neural network are numerically calculated 

using the adaptive step-size Runge-Kutta-Fehlberg 4-5 formula.

2.3.1 M otion  P lan n in g  in a S ta tic  E nvironm ent

The proposed model is first applied to the obstacle avoidance problem for a set of U- 

shaped obstacles. Potential field methods and other strictly local obstacle avoidance 

schemes cannot deal with this type problems (Muniz et al., 1995; Meng and Yang, 

1998: Yang and Meng, 1999e). The concave U-shaped obstacles are shown in Figure

2 . 1  A by solid squares. The neural network has 30x30 topologically organized neurons, 

where all the neural activities are initialized to zero. The model parameters are chosen 

as: .4 =  10 and B  = D = 1 for the shunting equation; n  =  1 and r 0 =  2 for the 

lateral connections; and E  =  100 for the external inputs. The planned robot motion 

is shown in Figure 2.1 A by solid circles. It shows that the planned robot motion path 

is a continuous, smooth route from the starting position to the target with obstacle 

avoidance. The stable (the time is long enough) activity landscape of the neural 

network is shown in Figure 2.IB, where the peak is a t the target location, while the 

valley is at the obstacle location.

The solution to a maze-solving type problem can be treated as a special case
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Figure 2.1: Motion planning of a point mobile robot to avoid a set of concave U-shaped 

obstacles. A; the planned robot motion path; B: the stable activity landscape of the 

neural network.

of robot motion planning problem in a 2D workspace, along which a point mobile 

robot can reach the target from a given starting position with obstacle avoidance. 

The example of the well-known Beam Robot Com petition Micromouse Maze (solid 

squares in Figure 2.2 shows a typical quarter of the maze) is used. Wyard-Scott 

and Meng (1995) proposed a searching based potential algorithm  that can effectively 

obtain a locally optimized solution to this maze-solving type problem (see Figure 1 .1 ). 

The proposed neural network model is used to solve th e  maze type problem shown 

in Figure 2.2. The neural network has 17 x 17 neurons. The model parameters are 

chosen as the same as in the previous case. The generated globally optimal solution 

is shown in Figure 2.2, where the robot motion path is represented by solid circles. 

Therefore, the proposed model does not suffer from undesired local minima, i.e., will 

not be trapped in the deadlock situations, even with the concave U-shaped obstacles 

and the complex maze-solving type problems.
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Figure 2.2: Solution to a maze-solving type problem. The travel route of the robot is 

represented by solid circles, while the obstacles (wall) are represented by solid squares.

2.3.2 M o tio n  P lan n in g  for T racking a M oving Target

The proposed model is then applied to a real-time motion planning problem for a 

point mobile robot tracking a moving target. The neural network has 30 x 30 neurons 

with zero initial neural activities. The model parameters are chosen as the same as 

in previous cases, i.e., .4 =  10, B  = D =  1, p —  1, r 0 =  2 and E  = 100. In a 2D 

workspace free of obstacles, the travel route of the target is shown in Figure 2.3A 

as indicated by hollow triangles, with an initial position at (X .Y )  =  (5,5). The 

target moves a t a speed of 25 block/minute (it is convenient to assume that the space 

and time units are block and minute, respectively), and stops at position (25,25) 

after it arrives there. Note that the proposed neural network dynamically responds 

to the immediate location of the targets and obstacles. No prior knowledge of the 

dynamically varying environment is needed. The robot starts to move from position
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(0,0) a t a speed of 10 block/minute. The planned robot motion path  is shown in 

Figure 2.3A by solid circles. The activity landscapes of the neural network a t two 

time instants during the motion are shown in Figures 2.3B and 2.3C, where the target 

arrives at positions (16,16) and (2 0 ,2 1 ), respectively.

When the robot tracks a moving target, the relative moving speed between the 

target and the robot is an important factor to  influence the robot tacking trajectory. 

W ith the same model parameters as in Figure 2.3, Figure 2.4A shows the planned 

real-time motion path of a robot moving at a speed of 2 0  block/minute, which is twice 

of tha t in Figure 2.3. When the robot moves faster than  the target a t a  speed of 30 

block/minute, the planned real-time robot motion is shown in Figure 2.4B. It shows 

that the target is caught before it reaches its final position. Comparing Figures 2.3A 

and 2.4, it is shown that the robot with a slower moving speed takes less steps (not 

time) to reach the target, since the robot has more time to “wait and see” which 

position is to go next. However, the faster moving robot spends less time to reach 

the target. It takes 0.67, 2.04 and 3.06 minutes for the robot at speeds of 30 (Figures 

2.4B), 20 (Figures 2.4A) and 10 (Figure 2.3) block/minute, respectively, to reach the 

target.

W hen there are obstacles in the workspace, the robot is able to  follow the target 

with collision avoidance. Choosing the same model parameters as in Figure 2.3, the 

planned real-time robot motion with presence of obstacles is shown in Figure 2.5. 

The robot takes more steps (and time) to reach the target due to  the influence of 

the obstacles. Note that all the robot motion paths in Figures 2.3, 2.4 and 2.5 are 

continuous, smooth routes. The traveling path  of the robot is generally shorter than 

that of the target.

2 .3 .3  M o tio n  P lanning for R each in g  a M oving T arget w ith  

M ovin g  O bstacles

Then, the proposed model is applied to a more complex case, where both the tar

get and the obstacles are moving. The neural network architecture and the model
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Figure 2.3: Motion planning of a point mobile robot to track a moving target. A: the 

real-time motion paths of the target (hollow triangles) and the robot (solid circles); 

B: the neural activity landscapes when the target arrives at position (16,16); C: when 

the target arrives at (20,21).
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Figure 2.4: Motion planning of a robot to track a moving target at a faster robot 

moving speed than in Figure 2.3. The target moves at 25 block/minute. The robot 

speed in Figure 2.3 is 10 block/minute. A: the dynamic robot motion path when the 

robot moves at 20 block/minute; B: the path when robot moves at 30 block/minute.
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Figure 2.5: Motion planning of a robot to reach a moving target with presence of 

obstacles. The obstacles are represented by sold squares.
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parameters sire chosen as the same as in the previous cases, i.e., 30 x 30 neurons, 

zero initial neural activity, A =  10, B  = D  = 1, p, = 1, r 0  =  2 and E  =  100. The 

target starts a t position (4,25) and continuously moves back and forth along the line 

between positions (4,25) and (24,25) at a speed of 10 block/minute (shown in Figure 

2.6 by hollow triangles). The static obstacles shown in Figure 2.6 by solid squares 

form two possible channels for the robot to reach the target. In addition, there are 

10 movable obstacles. They initially stop for 0.5 minute at positions from (5,19) to 

(14,19) inside the left channel, where they completely block the left channel. Then 

the obstacles s ta rt to move toward the right at a  speed of 2 0  block/minute, and fi

nally stop at positions from (14,19) to (23,19), where they completely block the right 

channel. Note that no prior knowledge of the dynamically varying environment is 

needed in the proposed model, because it dynamically responds to the instantaneous 

locations of the targets and obstacles. The robot starts to move from position (14,1) 

a t a speed of 2 0  block/minute. The planned robot motion is shown in Figure 2.6 

bv solid circles. Initially the robot moves toward the right channel, since the left 

channel is completely blocked while the right channel is open. However, during the 

time the robot is moving toward the target through the right channel, the obstacles 

are gradually moving to close the right channel and open the left channel. Before 

the robot is able to pass through the right channel, the moving obstacles completely 

block the right channel and leave the left channel completely open. The robot has 

to move away from the target, passes around the middle static obstacles, and finally 

catches the moving target through the left channel. Here again the robot travels a 

continuous, smooth route to catch the target free of collisions.

2 .4  P aram eter S en sitiv ity

The sensitivity of a system to parameter variations is a factor of prime importance 

to be considered when proposing or evaluating a model. An acceptable model should 

be not very sensitive to the variations in its parameters. There are few param eters in 

the proposed model: parameters A, B  and D  for the shunting equation, parameters
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Figure 2.6: Motion planning of a point mobile robot to reach a moving target with 

moving obstacles. The moving obstacles are represented by solid hexagons. The target 

moves back and forth along the hollow triangles.

p. and r 0  for the lateral neural connections, and parameter E  for the external inputs 

from the target and obstacles. In this section, the sensitivity of parameters for the 

shunting model, the lateral neural connections and the external inputs will be studied 

by qualitative analysis and quantitative simulations.

2.4 .1  P aram eters for th e  Shunting E quation

In the shunting equation (2.2), for simplification without losing generality, assume 

the excitatory and inhibitory inputs are step signals with different onset times, i.e., 

S +(t) = Seu(t — te) and S~(t) =  S{u(t — t,), where Se, 5,, te and t, are positive 

constants, and u(t) is the unit step function. The steady-state neural activity is
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given by
e ~~ f ° 1 fit

fi -  4  +  S ^ S , -  (2' 16)
It shows that a t steady-state the neural activity & linearly depends on the parameters 

5  and D, while nonlinearly depends on the parameter A.

To illustrate the parameter sensitivity of the shunting model, a set of simulations 

is carried out. The parameters for the step inputs are chosen as: / c =  /,- =  1 0 , te =  

0.2 and U =  0.8. Initially the parameters of the shunting equation are chosen as: 

.4 =  10, B  =  D  =  1  (a set of parameters used in the simulations in Section 2.3). The 

neural activity &(£) with various model parameters is shown in Figure 2.7. The solid 

curves in all panels correspond to the neural activity obtained without parameter 

change, i.e., A  =  10, B  =  D  =  1. In Figure 2.7A, the five curves from the uppermost 

to the lowermost correspond to the activities obtained with A = 1, 5, 10, 50 and

100, respectively. It shows that a larger A  value results in a shorter duration to

reach its maximum activity and a smaller maximum activity value caused by the 

excitatory input. In Figure 2.7B, from the uppermost to the lowermost, the five 

curves correspond to the activities obtained with 5=10, 5, 1, 0.5 and 0.1, respectively. 

It shows that a larger B  value causes a larger maximum activity value, but nearly 

no change in the duration to reach the maximum activity. In Figure 2.7C, the five 

curves from the uppermost to the lowermost correspond to the activities obtained 

with 5 = 0 .1 , 0.5, 1 , 5, and 1 0 , respectively. It shows that when D  increases, the 

component caused by the inhibitory input shifts down further, but there is almost no 

change in the time-constant as well. In addition, Figures 2.7B and 2.7C show that the 

maximum values caused by the excitatory and inhibitory input is nearly proportional 

to the B  and D  values, respectively. Therefore, B  and D  determine the upper and 

lower bounds of the activity, respectively. Parameter A  determines the time-constant 

of the system (Yang, 1996).

Therefore, in the shunting equations (2.2) or (2.7), parameters B  and D  are not 

im portant factors to the proposed model, because we concern only the relative value 

of the neural activity with an arbitrary unit. For example, B  and D  can be chosen as 

5  =  5  =  1 for all cases. Parameter A  determines the transient response to an input
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Figure 2.7: Parameters sensitivity of a shunting equation. The solid curves in all 

panels are the neural activity with parameters A  =  10 and B  = D  = 1 . A: activities 

with A  = 1, 5, 10, 50 and 100 (from the uppermost to the lowermost), respectively; 

B: with B =  10, 5, 1, 0.5 and 0.1 (from the uppermost to the lowermost), respectively; 

C: with D =  0.1, 0.5, 1, 5 and 10 (from the uppermost to the lowermost), respectively.
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signal. It plays an essential role in the system dynamics, which is very im portant when 

the target and obstacles are varying. To demonstrate the importance of parameter 

.4, we do two simulations under the same condition as the case in Figure 2.3 except 

choosing two different values of param eter A.

First, a much smaller A  value is chosen, A  = 2 instead of A =  10 as in Figure

2.3. Figure 2.8B shows the neural activity landscape of the neural network when the 

target arrives at position (2 0 ,2 1 ), which is a t the same time instant as in Figure 2.3C. 

Comparing Figures 2.8B and 2.3C, it shows that the activity landscape in Figure 

2.8B has a much longer and wider “tail” . This is because that a smaller .4 value 

results in a slower passive decaying of the neural activity. The planned robot motion 

path is shown in Figure 2.8A by solid circles, where the robot follows the target for 

a few steps and then completely stops at ( 1 0 ,1 0 ), failing to finally reach the target. 

The slow decaying of the activity causes a fast increase of the neural activity due to 

the lateral excitatory connections among neurons, yielding a quick saturation of the 

neural activity. When the robot moves to (10,10), the neuron activity over there is 

saturated. The robot cannot find its next position through the activity difference and 

has to stop there forever. The activity landscape of the neural network a t time =  6.0 

minute is shown in Figure 2.8C, where the neural activity is saturated. Therefore, 

when the value of A  is too small, this model cannot function properly due to the 

quick activity saturation.

Then, a much larger A  value is chosen, A  =  50 instead of A  =  10 as in Figure

2.3. Figure 2.9B shows the neural activity landscape of the neural network when the 

target arrives at position (20,21), which is at the same time instant as in Figures 2.3C 

and 2.8B. It shows tha t the activity landscape has a much shorter “ta il” than those 

in Figures 2.3C and 2.8B. This is because that a larger A  results in a faster passive 

decaying of the neural activity. The planned robot motion path is shown in Figure 

2 .9A, where the robot takes much less steps to reach the target (the travel route of 

the robot becomes a straight line). Since the robot moves at the same speed as in 

Figure 2.3, it certainly takes less time (2.55 minutes, in comparison to  3.06 minutes 

in Figure 2.3) to catch the target. The faster decaying of the remaining activity after
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Figure 2.8: Motion planning urith a much smaller A  value than in Figure 2.3. A  =  

2  instead of A  =  10 as in Figure 2.3. A: the planned robot motion path; B: the 

neural activity landscapes when the target arrives at position (20,21); C ; the activity 

landscape at time= 6.0 minute.
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the target passes away makes the travel “history” of the target disappear faster. The 

activity propagation from target becomes the domain contribution in forming the 

neuron activities. Hence, the motion of the robot highly aims at the current position 

of the moving target. Therefore, choosing a large enough A  value is necessary for the 

robot to aim at the target. However, as we will see later in Figures 2.11A and 2.16, 

if the robot is required to tightly follow the travel route of the target, a  smaller value 

of parameter A  is necessary.

25-

Yis-

5 -

Targct

0 15
X

»5 to 25

Figure 2.9: Motion planning with a much larger A  value than in Figure 2.3. A  — 50 

instead of A = 10 as in Figure 2.3. A: the planned robot motion path; B: the neural 

activity landscapes when the target arrives at position (20,21).

2.4 .2  P aram eters for the L ateral N eural C onnections

Although each neuron has only local connections in a small region and the target is 

the only positive stimulus, the positive neural activity can propagate to the whole 

state space of the neural network through neural activity propagation. Therefore 

the lateral connections among neurons are essential in forming the dynamic neural 

activity landscape. It shall be pointed out that the proposed model is not sensitive 

to the connection weight function /(d y ) in Equation (2.6), which can be chosen as
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any monotonically decreasing function. The connection weight is solely determined 

by param eter p. Therefore, /z is an important factor in the proposed model. To 

illustrate the role played by p, a simulation is carried out under the same condition 

as in Figure 2.3, except choosing a much smaller p  value, p  =  0.2 instead of p  =  1 over 

there. The neural activity landscape of the neural network when the target arrives 

at position (20,21) is shown in Figure 2.10B. It shows th a t the activity landscape has 

a much narrower “tail” than in Figure 2.3C, since a small /z value results in weak 

lateral connections. The robot motion is shown in Figure 2.10A, which is very similar 

to th a t in Figure 2.3A, since they have the same A  value, and thus have the same 

system dynamics. However, there is a difference: the travel route of the robot in 

Figure 2.10A takes more steps to reach the target. This is because th a t a  smaller p  

value weakens the propagation from the target, and results in a relatively stronger 

contribution from the remaining activity after the target leaves there. Therefore, to 

aim a t the target, a large enough p  value is necessary.

10 
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Figure 2.10: Motion planning with a much smaller p  value than in Figure 2.3. p  =  0.2 

instead o f p  =  1 as in Figure 2.3. A: the planned robot motion path; B: the neural 

activity landscapes when the target arrives at position (20,21).

To further illustrate the role played by /z, one more simulation is carried out under 

the same condition as in Figure 2.8, except choosing a much smaller p  value, p  =  0.2
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instead of p =  1 over there. Figure 2.11B shows the neural activity landscape of 

the neural network when the target arrives at position (20,21). As expected, the 

“tail” is very narrow in comparison to the very wide “tail” in Figure 2.8B, where 

they are at the same time instant. It also shows that both of them have a very long 

“tail” , because they have the same very small A  value, A  =  2 , which results in a very 

slow passive decaying of the neural activity. The planned robot motion is shown in 

Figure 2.11A. It shows th a t the robot is able to catch the target, whereas the robot 

in Figure 2.8 fails to do so due to the activity saturation. A small p  value results in 

weak lateral connections and can prevent the possible saturation in neural activity. 

In addition, Figure 2.11 A shows that the travel route of the robot tightly follows the 

travel “history” of the target. This result is caused by both the small A  value and the 

small p  value: the small A  slows down the passive decaying of the neural activity and 

increases the influence from remaining activity; the small p  weakens the propagation 

from target activity and decreases the direct influence from the target.

2 5 -

Y I 5 -

Target

0 235 10 IS
X

20

Figure 2.11: Motion planning with a much smallerp value than in Figure 2.9. p  =  0.2 

instead of p — 1 as in Figure 2.9. A: the planned robot motion path; B: the neural 

activity landscapes when the target arrives at position (20,21).

When parameter p  >  1, the propagated neural activity is amplified and the neural 

activity is very easy to saturate. Therefore, to prevent the possible saturation a
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smaller fi is necessary; to strengthen the influence from the target, a larger n  is 

needed. Thus, parameter n  is usually chosen in the region fj. €  (0,1].

Parameter r 0 determines the size of the receptive field of the neuron. It is not an 

important factor in the proposed model. A larger value r 0  increases the propagation 

of the neural activity. However, when applying the proposed neural network model 

to solve maze type problems, a small value is necessary, e.g., r 0 =  2 , since it is re

quired that the neural activity cannot pass through any obstacles ( “wall”). Therefore 

parameter r 0 can be chosen as r 0 =  2  for all cases.

2.4 .3  P aram eter for th e  E xternal In p u ts

Parameter E  determines the amplitude of the external inputs from the target and 

the obstacles. To keep the target and obstacles staying a t the peak and valley, re

spectively, the value E  should be chosen as a very large value over the total input 

from the lateral neural connections. Since the neural activity is bounded at the in

terval [—D ,B ], by choosing B  = D — 1 and ro =  2, the maximum total input from 

lateral connections is 8 , then choosing any value E  > 40 is good enough. Therefore, 

parameter E  is not an im portant factor in the proposed model.

In summary, only two parameters, A  and /x, are fundamentally important in the 

proposed neural network model for real-time collision-free robot motion planning. 

The system dynamics is determined by the value of A. Param eter n  determines the 

activity propagation among neurons. Note that the param eter values in the above 

simulations is chosen in a very wide range, and all the simulations for various cases 

in Section 2.3 choose exactly the same model parameters. Therefore, it is apparent 

that the proposed model is not very sensitive to the model param eter variations.

2.5 M odel V ariations

The neural network model for robot motion planning characterized by Equation (2.7) 

has only excitatory lateral neural connections. Based on the same philosophy pre

sented in Section 2.2, a shunting model with only inhibitory lateral connections is
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developed. In addition, by lumping together the excitatory and inhibitory terms 

and removing the auto gain control terms in the shunting models, two simple neu

ral network models for real-time collision-free robot motion planning, characterized 

by the additive equations, are obtained. Finally, a  comparison among these models 

and Glasius et a/.’s (1995) model is studied by qualitative analysis and quantitative 

simulation.

2.5.1 A  Shunting M od el w ith  O nly In h ib itory  Lateral C on

n ection s

The proposed neural network model for real-time robot motion planning with ob

stacle avoidance is characterized by the shunting equation in (2.7), where there are 

only excitatory lateral connections amon neurons. As presented in Section 2.2, the 

fundamental concept is that the dynamically varying environment is represented by 

the dynamic neural activity landscape that is used for real-time collision-free robot 

motion planning. In the dynamic activity landscape of the neural network, the target 

is always at the peak and the obstacles are always a t the valley (e.g., see Figure 2.IB). 

The procedure to plan the real-time robot motion can be viewed as that the robot is 

climbing up the dynamic neural activity landscape to reach the activity peak. Such a 

network property is guaranteed by the fact that there are only excitatory connections 

among neurons.

Alternatively, based on the same philosophy, a different neural network model is 

proposed, which is characterized by a  shunting equation derived from Equation (2.2), 

where there are only inhibitory connections among neurons. In this inhibitory-lateral- 

connection shunting model, the total excitatory input S *  in Equation (2.2) results 

from the obstacles only, while the toted inhibitory input S~  results from the target 

and the lateral connections to its neighboring neurons, Thus the dynamics of the i-th 

neuron activity is characterized by

•  (2 -17)
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The definitions of [a]+, [a]- , Wij and k  are the same as those in Equation (2.7). The 

external input J, is defined as: J, =  E , if there is an obstacle; «/,- =  —E , if there is a 

target; and =  0 , otherwise.

The shunting model characterized by Equation (2.17) guarantees that only the 

negative neural activity can propagate to the other neurons. In addition, the target 

and obstacles are guaranteed to  stay at the valley and peak of the dynamic activity 

landscape of the neural network, respectively. The real-time robot motion is planned 

through the dynamic neural activity landscape using a steepest descent rule. For a 

given present position pp of the robot in the state space S )  of the neural network, the 

next robot position pn is obtained by

Pn <= = m in{& ,j =  1,2, ••• ,*}.  (2.18)

The present robot position adaptively changes according to the varying environment. 

The procedure to plan the real-time collision-free robot motion can be viewed as that 

a ball (the robot) is naturally falling down to reach the valley of the dynamic activity 

landscape.

The inhibitory-lateral-connection shunting model in Equation (2.17) is a stable 

system, because the neural activity is bounded in the finite region [—D, B], In addi

tion, the stability and convergence can also be rigorously proved using a Lyapunov 

stability theory. Introducing the new variables, 77* =  & +  D, i.e., where 771- is a nonneg

ative number varying in the finite interval [0, B + D \, Equation (2.17) can be rewritten 

into Grossberg’s general form in Equation (2.9) via the following substitutions:

OiiVi) = Vi, (2.19)

bi(Vi) =  — (A D  — pM  +  [Ji]+ +  [4 ]-) + (B  +  L>)[7i]+) , (2.20)
Vi '

Cij = -w ^ ,  (2.21)

and

dAVj) =  ~[Vj ~ D]~. (2.22)

Obviously, have d j = Cji (symmetry), and 0 ,(6 ) > 0 (positivity). From the definition 

of function [a]- , have d'j{pj) =  0 at 7y  > D and d'j(r}j) =  1 a t rjj < D. Hence
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the signal function dj(rjj) has dj(rjj) > 0 (monotonicity). Therefore, Equation (2.17) 

satisfies all the three stability conditions required by the Grossberg’s general form in 

Equation (2.9) (Grossberg, 1983; Grossberg, 1988). Therefore, this inhibitory-lateral- 

connection neural network system in Equation (2.17) is stable. The dynamics of the 

neural network is guaranteed to converge to an equilibrium sta te  of the system.

A case study using the inhibitory-lateral-connection shunting model in Equation

(2.17) under the same condition as in Figure 2.1 is simulated. The neural network 

architecture and all the model parameters are chosen as the same as in Figure 2.1. 

The planned robot motion is exactly the same as in Figure 2.1 A. The stable (time is 

long enough) neural activity landscape is shown in Figure 2.12. In contrast to Figure 

2.IB, the activity peak is at the obstacle location, while the valley is at the target 

location.

Obstacles

0,5 .

>»
>
o<

-0 .5 .

Target

Figure 2.12: The stable neural actixrity landscape of the neural network using the 

inhibitory-lateral-connection shunting model in Equation (2.17).
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2.5 .2  Sim ple A d d itive  M odels

If the excitatory and inhibitory terms in the excitatory-lateral-connection shunting 

equation in Equation (2.7) are lumped together and the auto gain control terms are 

removed, then Equation (2.7) can be written into a simpler form

This is an additive equation first proposed by Grossberg (1982), which is widely 

applied to a lot of areas such as vision, associative pattern learning and pattern 

recognition (Grossberg, 1982; Grossberg, 1988). The term icij[£?-]+ represents

the total input to the z-th neuron from the external and lateral connections. The 

definitions of [a]+ and Wij are the same as those in Equation (2.7). The nonlinear 

function [a]+ guarantees that only the positive neural activity can propagate to the 

other neurons. In addition, because of the very large external input constant E  »  B, 

the target and obstacles are guaranteed to stay at the peak and the valley of the 

dynamic neural activity landscape, respectively. Therefore, this simple additive model 

also satisfy the fundamental concept of the proposed approach to real-time collision- 

free robot motion presented in Section 2 .2 . The procedure to plan the  real-time robot 

motion is the same as the procedure presented in Section 2.2, which is described in 

Equation (2.8). This additive model is capable of planning real-time robot motion 

with obstacle avoidance in most situations.

Unlike the shunting model whose neural activity is bounded, the  neural activity 

characterized by the additive model in Equation (2.23) does not have any bounds. 

However, it is easy to prove that this additive neural network model is a stable 

system using a Lyapunov stability theory. Equation (2.23) can be rewritten into the 

Grossberg’s general form in Equation (2.9) by substituting

(2.23)

0 ,(6 ) =  i, (2.24)

bi(£i) = - A  £  +  /,, (2.25)

Cij — Wij, (2.26)
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and

<*;(£) =  fo]+- (2-27)

Obviously, have =  Cji (symmetry), a j(£ ) >  0 (positivity), and d '(£j) >  0 (mono

tonicity). Thus Equation (2.23) satisfies all the three stability conditions required by 

the Grossberg’s general form in Equation (2.9) (Grossberg, 1983; Grossberg, 1988). 

Therefore this additive neural network system is stable.

A case study using the simple additive model in Equation (2.23) under the same 

condition as in Figure 2.1 is simulated. The neural network architecture and all 

the model parameters are chosen as the same as in Figure 2.1. The planned robot 

motion is exactly the same as in Figure 2.1A. The stable (time is long enough) neural 

activity landscape is shown in Figure 2.13, which is qualitatively the same as the 

neural activity landscape in Figure 2.IB, except some quantitative differences. Such 

a difference is because tha t the neural activity of the additive model is not bounded.

0 0

Figure 2.13: The stable neural activity landscape of the neural network using the 

additive model in Equation (2.23).

Similarly, a different additive model for real-time collision-free robot motion plan

ning can be obtained from the inhibitory-lateral-connection shunting model in Equa-
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tion (2.17). By lumping together the excitatory and inhibitory term s and removing 

the auto gain control terms in Equation (2.17), the dynamics of the i-th  neuron is 

given by the additive equation,

^  =  - M i  + Ji +  £  (2-28)
az j=i

where Ji+J2j=i *%'[£;] ~ is fche total input to the i-th neuron from the external and lat

eral connections. The definitions o f «/,-, [a]-  and W{j are the same as those in Equation

(2.17). The nonlinear function [a]-  guarantees that only the negative neural activity 

can propagate to the other neurons. In addition, those definitions guarantees th a t the 

target and obstacles stay at the valley and peak of the dynamic activity landscape of 

the neural network, respectively. The procedure to plan the real-time robot motion is 

the same as the inhibitory-lateral-connection shunting model described in Equation

(2.18). This additive model is also capable of planning real-time robot motion with 

obstacle avoidance in most situations.

The additive neural network in Equation (2.28) can also be rigorously proved to be 

stable using a Lyapunov stability theory, although its neural activity is not bounded. 

Equation (2.28) can be rewritten into Grossberg’s (Grossberg, 1988) general form in 

Equation (2.9) by the following substitutions:

0 ,( 6 ) =  1, (2.29)

bi(Zi) = -A Z i + Ji, (2.30)

C{j =  U>ij: (2.31)

and

d jit i)  =  -& ]"■  (2-32)

Again, we have c*, =  Cj{ (symmetry), Ot(ft) >  0 (positivity), and d'-(fj) >  0 (mono

tonicity). Therefore, all the three stability conditions required by the general form 

in Equation (2.9) are satisfied by Equation (2.28) and this additive neural network 

system is stable.

There are a lot of important differences between the shunting models (e.g., Equa

tions (2.7) and (2.17)) and the additive models (e.g., Equations (2.23) and (2.28)),
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although the additive model is computationally simpler and can also plan real-time 

robot motion with obstacle avoidance in most situations. First, by rewriting them 

into the Grossberg’s general form in Equation (2.9), unlike the additive model in 

Equation (2.23) with a constant a,(f,) =  1  and a linear function 6 ,(f,) , for the shunt

ing model in Equation (2.7) the amplification function 0 ,(77,) in Equation (2.10) is not 

a constant, and the self-signal function 6 ,(77,) in Equation (2 .1 1 ) is nonlinear. Second, 

the shunting model in Equation (2.7) has two auto gain control terms, (B  — £,) and 

(D  4- £t), which result in that the dynamics of Equation (2.7) remains sensitive to 

input fluctuations (Grossberg, 1988). Such a property is im portant for the real-time 

robot motion planning when the target and obstacles are varying. In contrast, the 

dynamics of the additive equation may saturate in many situations (Grossberg, 1988). 

Third, the activity of the shunting model is bounded in the finite interval [—D, B ], 

while the activity in the additive model does not has any bounds. A detailed analy

sis of the shunting model and the additive model can be found in Grossberg (1988), 

Ogmen and Gagne (1990a), Ogmen and Gagne (19906) and Yang (1996).

Glasius et al. (1995) proposed a Hopfield type neural network model for real-time 

trajectory generation, where the output Zi of the i-th neuron is modeled by

^  =  - s .  +  9 | h  +  WijZj  I > ( 2 -3 3 )

wrhich is derived from a discrete input-output model,

Zi{t  +  I )  =  g  ( Ii  + J 2  1 ( 2 -3 4 )

where g(a) is an input-output transfer function that can be any sigmoid function, 

e.g., a function defined as
*

0 , if a < 0

9 ip) =  " 7 a, if 0 <  a < 1 , (2.35)

1 , if a > 1

where 7  is a constant, 7  G [0,1]. The connection weight Wij is defined as a function
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of the distance e/y between i-th and j-th. neurons, e.g., ictJ =  1, if dij < 2; w,j =  1, 

otherwise (from Glasius et al., 1996).

Comparing between Glasius et a/.’s (1995) model in Equation (2.33) and the pro

posed shunting model in Equation (2.7) or simple additive model in Equation (2.23), 

the most important difference is that Equation (2.33) has a constant passive decay 

rate at A  = 1. As discussed previously, param eter A  plays an essential role in the 

real-time robot motion planning. Although parameters /z in Equation (2.23) or 7  in 

Equation (2.33) can prevent the possible saturation in the neural activity, they do 

not have any effects to the transient response characteristics of the model, i.e., the 

system dynamics. Therefore, Glasius et a/.’s (1995) model has limitations w ith fast 

dynamic systems. It cannot perform properly in a fast changing environment. For 

example, it requires that the dynamics of the robot is faster than that of the target 

and the obstacle (Glasius et al., 1995; Glasius et al., 1996).

Another major difference between Glasius et a/.’s (1995) model in Equation (2.33) 

and the proposed shunting model in Equation (2.7) or simple additive model in Equa

tion (2.23) is that Equation (2.33) describes the dynamics of the neuron output z,, 

which is derived from a simple discrete input (/, +  Y  wijzj)  -output (2 ,-) function; 

while Equations (2.7) or (2.23) characterize the dynamics of the neural activity 

which is derived from Hodgkin and Huxley’s (1952) biological model, and describes 

the relationship among the input ( S f  and S~),  output ([f,]+) and activity (£,) of a 

neuron. In addition, unlike Glasius et a/.’s (1995) model in Equation (2.33) which 

does not model the neural activity, the proposed shunting model has a continuous 

neural activity with both upper and lower bounds. Therefore the proposed model is 

more biologically plausible.

By doing a linear, invertible mathematical transformation, u, =  /, -I- Y wijzj > 

where u, is the input to the i-th neuron, Equation (2.33) can be rewritten into the 

following form,
du N
—7— — U{ ~F Ii +  ^  \ Wijg(uj). (2.36)
01 j = 1

This equation describes the dynamics of the input to the i-th neuron (biologically this 

is not meaningful). Therefore, Equation (2.36) is similar to the proposed Equation
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(2.23) in the special case of a constant passive decay rate A  =  1. This transforma

tion from a nonlinear signal function of sum (g(J2zj)) to a sum of nonlinear signals 

($2 g(€j)) is usually called “S £  exchange” (signal-sum exchange) in neural network 

analysis.

2.5 .3  A  C om parison  S tu d y  am ong M odels

A set of computer simulations is carried out to illustrate the differences among these 

models. A target catching case is designed. In a  2D Cartesian workspace, the target 

starts to move from position (10,5) at a speed of 25 block/minute. The travel route 

of the target is shown in Figure 2.14 by hollow triangles. After target reaches (20,29) 

a t time=3.0 minute, it disappears, i.e., the target leaves the workspace. The robot 

moves at a speed of 20 block/minute starting from (0,0). The task of the robot is to 

catch the target before the target disappears. Since the robot moves slower than the 

target, it can catch the target only if it can find a  shorter travel route than  the target.

First, the proposed additive model in Equation (2.23) is used. The neural network 

has 30 x 30 neurons, and the parameters A  and p. are chosen as A  =  1 and p  =  0.01. 

All the other model parameters are chosen the same as in previous cases, i.e., B  = 

D = I, p  = 1, ro  =  2 and E  =  100, which are also used in the following simulations of 

the proposed models. The activity landscape of the neural network when the target 

leaves the workspace is shown in Figure 2.14B. As expected, it has a very long and 

very narrow “tail” , since a very small A  value and a very small p  value are used. The 

planned robot motion is shown in Figure 2.14A by solid circles. It shows tha t the 

robot ends at (12,5) and fails to catch the target. This is caused by the limitations 

of the additive equation.

Second, Glasius et a/.’s (1995) model in Equation (2.33) is used. Param eter 7  is 

chosen as 7  =  0 . 1  (from Glasius et al., 1996). The planned robot m otion is shown 

Figure 2.15A, where the robot ends at (20,6) and fails to catch the target. The 

activity landscape when the target leaves the workspace is shown in Figure 2.15B. 

This result is qualitatively the same as tha t in Figure 2.14 except some quantitative 

differences.
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Figure 2.14: Motion planning o f a point mobile robot to catch a moving target using 

the additive model in Equation (2.23). >1 =  1 and p =  0.01. A: the planned robot 

motion path; B: the neural activity landscape when the target leaves the workspace.
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Figure 2.15: Motion planning o f a robot to catch a moving target using the additive 

model in Equation (2.33). A: the planned robot motion path; B: the neural activity 

landscape when the target leaves the workspace.
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Third, the proposed shunting model in Equation (2.7) is used with .4 =  1 and 

p  =  0.1. The neural activity landscape when the target leaves the workspace is shown 

in Figure 2.16B. Unlike those in Figures 2.14B and 2.15B, the neural activity in Figure 

2.16B is bounded in [0,1], although their activity landscapes are qualitatively the 

same. The planned robot motion is shown in Figure 2.16A. It shows that the robot 

tightly follows the travel route of the target. However, the robot also fails to catch 

the target before the target leaves the workspace, because it does not travel a shorter 

route than the target. If the task is to detect and follow the travel route of the target, 

the robot does a very good job. Unlike the cases in Figures 2.14A and 2.15A where 

the robot ends at a location forever, the robot in Figure 2.16A can continuously follow 

the travel route of the target. This result demonstrates the advantage of the shunting 

model.
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Figure 2.16: Motion planning of a robot to catch a moving target using the shunting 

model in Equation (2.7). A  — 1 and p =  0.1. A: the planned robot motion path; B: 

the neural activity landscape when the target leaves the workspace.

Forth, the proposed additive model in Equation (2.23) is used with A =  50 and 

p  =  1. The planned robot motion is shown in Figure 2.17A. It shows that the robot 

travels a shorter route than the target and catches the target a t position (11,15). The 

neural activity landscape when the robot catches the target is shown in Figure 2.17.
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Robot

Figure 2.17: Motion planning o f a robot to catch a moving target using the additive 

model in Equation (2.23) A  =  50 and p  =  1. A: the planned robot motion path; B: 

the activity landscape when the robot catches target.

As expected, it has a very short “tail” .

Fifth, the proposed shunting model in Equation (2.7) is used with the same pa

rameters as in Figure 2.17, i.e., A  =  50 and p  =  1. The planned robot motion path 

is the same as that shown in Figure 2.17A. The neural activity landscape when the 

robot catches the target is qualitatively the same as tha t in 2.17B.

In summary, the above simulations demonstrate tha t param eter A  is fundamen

tally important in real-time robot motion planning, particularly when the environ

ment is changing in a fast manner. The neural dynamics of the additive models may 

saturate in some situations.

2.6 C onclusion

In this chapter, a novel biologically inspired neural network approach is developed for 

real-time robot motion planning with obstacle avoidance in an arbitrarily dynamic 

environment. Based on the same philosophy, three model variations are presented and 

the differences are compared by descriptive analysis and quantitative simulation. The
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optimal real-time robot motion is planned through the dynamic activity landscape of 

the neural network. The global stability and convergence of the proposed models are 

guaranteed by the qualitative analysis and the Lyapunov stability analysis. Some 

points are worth mentioning about the proposed model:

•  The model algorithm is computationally efficient. The real-time optimal robot 

motion is planned without explicitly searching over the free workspace or the col

lision paths, without explicitly optimizing any cost functions, without any prior 

knowledge of the dynamic environment, and without any learning procedures.

•  The computational complexity linearly depends on the state space size of the 

neural network. Each neuron in the neural network has only local connections, 

which does not depend on the size of the overall neural network.

•  This model is biologically plausible. It is derived from Hodgkin and Huxley’s 

(1952) biological membrane model. The neural activity is a continuous analog 

signal and has both upper and lower bounds. In addition, the continuous ac

tivity prevents the possible oscillations related to  parallel dynamics of discrete 

neurons (Glasius et al., 1995; Marcus et al., 1990).

•  This model is not very sensitive to the model parameters nor the connection 

weight function. Only two model parameters, A  and n, are im portant factors. 

The model param eters can be chosen in a very wide range. The weight function 

can be any monotonically decreasing function.

•  This model is not sensitive to any irrelevant obstacles. There are no inhibitory 

lateral connections in the neural network. The negative neural activity from 

the obstacle location stays locally only without propagating to any other neu

rons. Thus the obstacles have only local effect to  push the robot away to avoid 

collisions. Therefore, unlike some previous models (e.g. Ilari and Torras, 1990) 

where the planned global path is sensitive to irrelevant obstacles, the irrelevant 

obstacles do not influence the robot motion planning.
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•  The proposed models do not suffer from undesired local minima, i.e., it will 

not be trapped in the deadlock situations, e.g., even with the concave U-shaped 

obstacles and the complex maze-solving type problems. The target is the only 

source of positive neural activities. The target globally influences the whole 

workspace through neural activity propagation. The neural activity propagates 

to all directions exactly in the same manners. There is no activity source from 

inside the deadlock.
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Chapter 3 

A  N ovel N eural N etw ork Approach  

to  R eal-tim e M otion P lanning w ith  

Safety Consideration

An novel neural network approach, based on the biologically inspired neural network 

model presented in Chapter 2 for motion planning of a point mobile robot, is proposed 

for real-time motion planning with safety consideration in a nonstationary environ

ment. In the proposed shunting neural network model, the state space is extended 

to either the Cartesian workspace or the joint space of a multi-joint robot manipu

lator. Both excitatory and inhibitory lateral connections in the neural network and 

the threshold of neural connections are used in the proposed algorithms. The real

time optimal robot motion is planned through the dynamic activity landscape of the 

neural network that incorporates the clearance from obstacles. The proposed neural 

network model is capable of planning real-time “comfortable” robot motion that does 

not suffer from either the “too close” problem nor the “too far” problem. The stability 

and convergence of the proposed neural network system are proved using qualitative 

analysis and the Lyapunov stability theory. The effectiveness and the efficiency of 

the proposed model are demonstrated through simulation and comparison studies.
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3.1 In trod u ction

Safety consideration is very important in robot motion planning. The clearance from 

obstacles should not be ignored (Thorpe. 1984; Zelinsky, 1994; Yang and Meng, 1998c; 

Yang and Meng, 19996). Many models for path planning concentrate on minimizing 

the distance between the starting position and target (e.g. Lozano-Perez, 1983; Brooks 

and Lozano-Perez, 1985; Donald, 1987; Payton, 1990; Bander and W hite, 1998; Wang, 

1998; Saab and VanPutte, 1999). In a static environment, the planned robot motion 

by some neural network models (e.g. Glasius et al., 1994; Glasius et al., 1995; Glasius 

et al., 1996; Meng and Yang, 1998; Yang and Meng, 1998a; Yang and Meng, 1999e) has 

the shortest path as well, although they do not explicitly minimize any cost functions. 

They assume that the shortest path is the “best” path. The clearance from obstacles 

is not considered during the motion planning. Therefore, the planned path  clips 

the corners of obstacles and runs down the edges of obstacles. This is the so called 

“too close” problem (narrow safety margin) (Thorpe, 1984; Zelinsky, 1994; Yang and 

Meng, 1998c: Yang and Meng, 19996). Such a “too close” problem can be avoided by 

expanding the obstacles by an extra size, but some possible solution paths are blocked. 

Therefore, this strategy is not acceptable, particularly when all the possible solution 

paths are blocked after the expansion (Zelinsky, 1994; Yang and Meng, 19996).

On the other hand, some models (e.g. Ilari and Torras, 1990) maximize the clear

ance from obstacles while minimizing the distance from the starting position to the 

target. The found path passes through the middle of free space. Therefore it may devi

ate significantly from the shortest path. This is the so called “too far” problem (waste) 

(Thorpe, 1984; Zelinsky, 1994; Yang and Meng, 19996; Yang and Meng, 1999/i). Sev

eral models (e.g. Noborio et al., 1989; Zhu and Latombe, 1991; Zelinsky, 1994) were 

proposed to solve or reduce the “too far” and/or the “too close” problems. For exam

ple, Zelinsky (1994) proposed a path transform model for finding a neither “too far” 

nor “too close” path in a static environment by combining the distance transform 

and the obstacle transform.

In this chapter, a novel neural network approach for real-time motion planning
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with safety consideration in a nonstationary environment is proposed, based on the 

biologically inspired neural network model for motion planning of a point mobile robot 

presented in Chapter 2 (also in Meng and Yang, 1998; Yang and Meng, 1998a; Yang 

and Meng, 1999e). The dynamics of each neuron in the neural network is character

ized by a shunting equation or an additive equation derived from the previous model 

for a point mobile robot. Unlike those models presented in Chapter 2 tha t has either 

excitatory or inhibitory lateral connections among neurons, there are both excitatory 

and inhibitory connections in the proposed model (Yang and Meng, 19996). In ad

dition, the threshold of neural connections is introduced, which guarantees that the 

negative neural activity is confined in a small region only. Furthermore, the state 

space of the topographically ordered neural network is extended to either the Carte

sian workspace or the joint space of a multi-joint robot manipulator. The proposed 

model is capable of planning real-time “comfortable” motion path of a point mobile 

robot or a robot manipulator without suffering from the “too close” problem and/or 

the “too far” problem (Yang and Meng, 19996). The stability of the proposed neural 

network system is proved by the Lyapunov stability analysis.

The proposed neural network model for robot motion planning with safety consid

eration Inherits advantages from the previous model for motion planning of a point 

mobile robot. There are only local connections among neurons, thus the computa

tional complexity linearly depends on the neural network size. The real-time optimal 

robot motion is planned through the dynamic neural activity landscape, which in

tegrates the clearance from obstacles, without any prior knowledge of the dynamic 

environment, without explicitly searching over the free workspace or the collision 

paths, without explicitly optimizing any cost functions, and without any learning pro

cedures. Therefore the model algorithm is computationally efficient. When there 

is no clearance from obstacles, the planned robot motion path is one of the short

est paths from the starting position to the target (Meng and Yang, 1998; Yang and 

Meng, 1998a; Yang and Meng, 1999a; Yang and Meng, 1999e), which is referred as 

the shortest path  tha t may suffer from the “too close” problem. When the strength of 

the clearance from obstacles is strong, the planned robot motion keeps away from the
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obstacles as far as possible while reaching the target, which is referred as the safest 

path that may suffer from the “too far” problem. When a suitable strength of the 

obstacle clearance is selected, the planned robot motion does not suffer from either 

the “too close” problem nor the “too far” problem, which is referred as a comfortable 

path of the robot.

3.2 T he M odel

The basic concept of the proposed neural network model for real-time robot motion 

planning with safety consideration is to enlarge the obstacle influence by employing 

inhibitory later neural connections, and to confine the obstacle influence to a desired 

small region by employing threshold of the neural connections in the neural network. 

The strength of the clearance from obstacles is adjustable by changing the relative 

inhibitory neural connection weight and the threshold of the inhibitory connections 

in the neural network.

The neural network architecture of the proposed model for real-time robot mo

tion planning with safety consideration is a discrete topographically organized map. 

The proposed model is expressed in a finite (F —) dimensional ( F —D) state space. 

Unlike those neural network models presented in Chapter 2 where the state space is 

the Cartesian workspace of the point mobile robot, the state space of the proposed 

neural network is either the Cartesian workspace or the joint space of a multi-joint 

manipulator. For example, a 2D workspace has F  =  2; a 6 d.o.f. robot manipula

tor has F  =  6. The location of the i-th neuron at the grid in the F -D state space, 

denoted by a vector pi G R F, represents a position in the Cartesian workspace or a 

configuration in the robot joint space. Like the previous neural network models, each 

neuron has a local lateral connections to its neighboring neurons that constitute a 

subset in the state space, which is the receptive field of the neuron.

In contrast to those neural network models presented in Chapter 2 where there 

are only excitatory or inhibitory lateral connections in the neural network, there are 

both excitatory and inhibitory lateral neural connections in the proposed neural net-
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work model for robot motion planning with safety consideration. The target globally 

attracts the robot through neural activity propagation, while the obstacles push the 

robot away only locally in a small region to take into account of the clearance from ob

stacles. The dynamics of the i-th neuron in the neural network is given by a  shunting 

equation,

dti 
dt = -,4& +  ( b  — e,) ([/i]- +  £ ;  u,yfo]+)

v j = 1 '

- ( .D +  ft) ( [ / ,] -  +  £  Vijfc -  a ] " ) , (3.1)
v j= i  J

where N  is the total number of the neurons in the neural network. Param eters A, B  

and D  are nonnegative constants representing the passive decay rate, the upper and 

lower bounds of the neural activity, respectively. Variable is the neural activity 

of the i-th neuron, which has a continuous value in the finite interval G [—D, B] 

The external input 7  to the i-th neuron is defined as the same as in Equation (2.7), 

i.e., Ii = E , if there is a target; =  — E, if there is an obstacle; /,• =  0, otherwise, 

where E  2> B  is a very large positive constant. The excitatory input S~  in Equation 

(2.2) is given by [7j]+ + u;,j[£j]+ , which is the total input from the target and the

lateral neural connections in the neural network. In contrast to the neural network 

model presented in Chapter 2 where the inhibitory input is from only the obstacles,

in the proposed model the inhibitory input S~  in Equation (2.2) is given by [/,]“ +

JZjLi Vij[£j — a]~, which is from the obstacles and the later neural connections in the 

neural network. Function [a]+ is defined as [a]+ =  max{a, 0}, and [a]-  is defined as 

[a]~ =  m ax{—a, 0}. The weights of the excitatory and inhibitory connections, Wij 

and Vij, from the j'-th neuron to the i-th  neuron are defined as

Wij = f{dij)  (3.2)

and

= {3 (3.3)

respectively, where /3 is a positive constant, /? G [0,1], and <Uj =  \pj — p,-| represents 

the Euclidean distance between positions Pj and Pi in the state space. Function f (di j )
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is a monotonically decreasing function, e.g., a function defined as f(dij)  =  n/dij ,  if 

0 < dij < r 0; f (dij )  =  0, otherwise, where fi and r0 are positive constants. Therefore, 

it is obvious th a t the weights u/y and Uy are symmetric. The neuron has only local 

connections in a  small region (0, r 0), i.e., its receptive field is the space whose distance 

to the i-th neuron is less than r0. Therefore, the dynamics of the i-th neuron can be 

further w ritten as,

where k is the total number of neighboring neurons of the i-th neuron. Param eter 

a  is the threshold of the inhibitory lateral neural connections. The threshold of the 

excitatory connections is chosen as a constant zero.

The proposed neural network characterized by Equation (3.4) guarantees that the 

positive neural activity can propagate to the whole state space, while the negative 

activity stays locally only in a small region, because of the existence of the threshold 

cr of the inhibitory lateral neural connections in the neural network. Therefore, the 

target globally influences the whole state space to a ttrac t the robot, while the obstacles 

have only local effect in a small region to avoid the possible collisions and to take 

into account of the clearance from obstacles. In addition, the local influence from 

the obstacles is adjustable by changing the relative lateral connection strength (3 

and/or the threshold cr of the inhibitory lateral neural connections. Therefore, by 

selecting a suitable strength of clearance from obstacles, the proposed model is capable 

of generating either the shortest path from the starting position to the target, a 

comfortable path, or the safest path of a point mobile robot and a multi-joint robot 

manipulator, depending on the different requirement.

The positions of the target and obstacles may vary with time. The activity land

scape of the neural network dynamically changes due to the varying external inputs 

and the internal lateral neural connections. Similar to those neural network models 

presented in Chapter 2, the robot motion is planned through the dynamic activity
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landscape by a steepest gradient ascent rule. For a given present position (a position 

in the Cartesian workspace or a configuration in the robot joint space), denoted by 

pp, the next position pn (also called “command position”) is obtained by

Pn <= €Pn =  max{6fc, A: =  1,2, • - •, A;}, (3.5)

where k  is the number of all the neighboring positions of the present position, i.e., all 

the possible next positions. After the present position reaches its next position, the 

next position becomes a new present position. The present robot position adaptively 

changes according to the varying environment.

The proposed neural network is a stable system, where the neural activity is 

bounded in a finite interval [—D, B]. In addition, similar to the stability analysis in 

Chapter 2, the stability and convergence of the proposed model can be rigorously 

proved using a Lyapunov stability theory. From the definition of [a]+, [a]-  and utJ, 

Equation (3.4) can be rewritten into Grossberg’s (1983) general form,

^  = mte) ^ t e )  -  £ ; co d ite ij , (3.6)

by the following substitutions:

B ~ i f ^ °  
a i ( € i )  — S i (3 -7 )

[ D + Zi ,  if £j < 0

6 ite) =  s f e y ( B[/<1+ -  D[I,]~ ~ { A + [ / il+ + [/i |_ )f i) ’ (3-8)
C{j ^ ij, (3.9)

and
0 ,  i f £ > 0

dj(€j) =  ~cr),  if < a  ■ (3.10)

0, otherwise

Since B  and D  are positive constants and & € [—D, B\,  then a*(&) >  0 (positivity); 

Since w{j = wji, then =  cJt (symmetric); Since d '(£ ,) =  1 a t > 0; d'-(^) = (3 > 0
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at < cr: and d'(£j) =  0, otherwise, then dj-(fj) >  0 (monotonicity). Thus, Equa

tion (3.4) satisfies all the three stability conditions required by Grossberg’s general 

form (Grossberg, 1983; Grossberg, 1988). Therefore, the proposed neural network 

system is stable. The dynamics of the neural network is guaranteed to converge to 

an equilibrium state of the system.

3.3 Sim ulation Studies

In this section, to illustrate the concept of safety consideration in robot motion plan

ning, the proposed neural network model is first applied to very simple case, where a 

point mobile robot is to reach a target in a static environment. Then, a complicated 

real-time motion planning case of a point mobile robot to catch a moving target with 

moving obstacles is studied. After that, the proposed neural network model is applied 

to a two-link planner robot to reach a target in both static and dynamic environment, 

where there are two targets in the joint space. The joint space of robot manipulators 

is used as the state space of the neural network.

3.3.1 M otion  P lan n in g  o f a  Point M obile R o b o t w ith  S tatic  

O bstacles

To illustrate the concept of safety consideration, the proposed model is first applied 

to a very simple case of motion planning, where a point mobile robot is to reach a 

target in a static environment. The workspace is shown in Figure 3.1, where the 

target located at position (14,14) is shown by an empty triangle, while the obstacles 

are shown by solid squares. The robot starts to move a t position (0,0). The neural 

network has 15 x 15 topographically ordered neurons. The model parameters are 

chosen as: A  =  10 and B = D = 1 for the shunting equation; fi =  1, /? =  1 and 

r0 =  2 for the lateral connections; and E  =  100 for the external inputs.

First, the threshold of the inhibitory connection is chosen as cr =  —1.5, the planned 

robot motion is shown in Figure 3.1A by solid circles. Since the neural activity is
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Figure 3.1: Motion planning of a point mobile robot in a static environment. A: no 

clearance from obstacles yields the shortest robot motion path; B: a moderate clearance 

from obstacles yields a comfortable robot motion path; C: a strong clearance from  

obstacles yields the safest robot motion path.
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bounded in [-1, 1], when a  < —1, the lateral inhibitory term, £*=i — c]~, hi

Equation (3.4) is equal to zero. Note th a t when (3 = 0, i.e., =  0, this term

becomes zero as well. Thus no negative neural activity is able to propagate to the 

other neurons. There is no clearance from the obstacles. Therefore, the planned robot 

motion in Figure 3.1A has the shortest path  from the starting position to the  target 

(Meng and Yang, 1998: Yang and Meng, 1998a; Yang and Meng, 1999e). Second, 

choosing a  =  —0.7, the robot motion with a  moderate obstacle clearance shown in 

Figure 3.IB is generated. Third, a  is chosen as cr = —0.5, a strong obstacle clearance 

is selected. We have the safest path from the starting position to the target shown in 

3.1C. It takes 15, 19 and 26 steps to reach the target when parameter a  is chosen as 

-1.5 (Figure 3.1A), -0.7 (Figure 3.IB) and -0.5 (Figure 3.1C), respectively. It shows 

that along the shortest path  in Figure 3.1 A the robot clips the corners of obstacles 

and runs down the edges of obstacles. Thus it suffers from the “too close” problems. 

The safest path in Figure 3.1C has a very strong clearance from obstacles. It stays far 

away from the obstacles whenever possible, which usually suffers from the “too far” 

problems. However, it is capable of being very close to the obstacles when it has to be 

so in order to reach the target (the last phase of the path in Figure 3.1C). The safer 

path in Figure 3.IB is considered as a “comfortable” path, which takes a moderate 

clearance from obstacles. It not also does not clip the corners of obstacles nor runs 

down the edges of obstacles, but also takes a  much shorter path than the safest path. 

Thus it avoids to be either “too close” to or “too far” from the obstacles. Note 

that in this example, those models suffering from “too close” problems (e.g. Lozano- 

Perez, 1983; Brooks and Lozano-Perez, 1985; Donald, 1987; Payton, 1990; Glasius et 

al., 1994; Glasius et al., 1995; Glasius et al., 1996; Meng and Yang, 1998; Yang and 

Meng, 1998 a) will fail to reach the target by expanding the obstacles with an extra 

size, because all possible solution paths are blocked after the expansion.
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3.3 .2  M otion  P lanning o f a P oin t M ob ile  R obot w ith  M ovin g  

T arget and O bstacles

The proposed model in Equation (3.4) characterizes the dynamics of the neural ac

tivity. It is capable of planning real-time motion with obstacle clearance in a nonsta- 

tionary environment. This model is applied to a more complex motion planning case 

first introduced in Section 2.3.3, where both the target and the obstacles are moving. 

There are 30 x 30 neurons in the neural network. The model parameters are chosen 

as: .4 =  10, B  =  D  =  1, // =  1, r0 =  2 and E  =  100. The target starts a t position 

(4,25) and continuously moves back and forth along the path between positions (4,25) 

and (24,25) a t a speed of 10 block/minute (shown in Figure 3.2 by empty triangles). 

The static obstacles are shown in Figure 3.2 by solid squares, which form two pos

sible channels for the robot to reach the target. In addition, there are 10 movable 

obstacles. They initially stay for 0.5 minute along positions (5,19) to (14,19) inside 

the left channel, where they completely block the left channel. Then these obstacles 

start to move toward the right at a speed of 20 block/minute, and finally stay along 

positions (14,19) to (23,19), where they completely block the right channel.

First, choosing =  0, no clearance from obstacles is considered. The planned 

robot motion is shown in Figure 3.2A by solid circles. Initially the robot moves 

toward the right since the left channel is completely blocked while the right channel 

is open. However, during the time the robot is moving toward the target in the 

right channel, the obstacles are gradually moving to close the right channel, while 

gradually leaving the left channel open. Before the robot is able to pass through the 

right channel, the moving obstacles completely block the right channel and leave the 

left channel completely open. The robot has to move away from the target, passes 

around the middle static obstacles, and finally catch the moving target through the 

left channel. Because no obstacle clearance is taken into account, as shown in Figure 

3.2A the planned robot path clips the corners of obstacles and runs down the edges 

of obstacles, thus it suffers the “too close” problem.

Then, we take the safety consideration by choosing /? =  0.01 and a  =  —0.6. The

77

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



planned robot motion is shown in Figure 3.2B. Unlike the real-time path in Figure 

3.2A, the robot in Figure 3.2 travels a continuous, smooth, “comfortable” route to 

catch the moving target without clipping the corners of obstacles nor running down 

the edges of obstacles.

3 .3 .3  M otion  P lan n in g  o f a R o b o t M anipulator in  a  S ta tic  

E nvironm ent

The proposed neural network model is capable of planning real-time robot motion 

with multiple targets as well, where the task can be designed as either catching the 

closest target or catching all the targets. In the latter case, a target must disappear 

from the state space once it is caught. The proposed model is applied to  motion 

planning of a two-link planner robot, where there are two targets in the jo int space. 

The state space of the neural network is the joint space of the robot manipulator. 

The robot link lengths are l\ =  1 m and l2 =  1.1m, respectively. The robot is located 

in a 5m x 5m Cartesian workspace (Figure 3.3A), where the base of the first link 

is at in the center (0,0). The initial robot m anipulator configuration in jo int space 

is at (#i,02) =  (30°,30°) (Figure 3.3B), where 6i and 02 are the joint angles of the 

first and second links, respectively. Thus Initially the tip of the second link is at 

position (1.366,1.366) in the workspace (Figure 3.3A). The task is to move the tip 

of the second link to position (1.366, —1.366) in the workspace (Figure 3.3A), i.e., to 

plan a continuous path to change the initial robot configuration to one of the two 

target configurations in joint space, {0i,02) =  (330°, 330°) and (300°, 30°) (shown in 

Figure 3.3B by empty triangles).

The neural network architecture has 60 x 60 topographically ordered neurons, 

which represent the joint angles from 0° to 354° with a step of 6°. Because geometri

cally 360° =  0°, the (0 ,0)-th neuron in the neural network is an neighboring neuron 

of the (59,59)-th and (0 ,59)-th neurons, and likewise. The model param eters are 

chosen as: .4 =  10, B  =  D  =  1, / /  =  1, t * o  =  2 and E  =  50. First, simulations are 

carried out without clearance from the obstacles by choosing (3 =  0 or <7 =  —1.5. The
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Figure 3.2: Motion planning of a point mobile robot with moving target and moving 

obstacles. A: the real-time robot motion path without clearance from  obstacles; B: the 

path with clearance from  obstacles.
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solid circles in Figure 3.3B gives the planned robot motion from the starting position 

to the first target {6 1 , 6 2) =  (330°, 330°), the closest target, in robot joint space. Note 

that neuron (59,59) is an neighboring neuron of neuron (0,0) due to the geometrical 

relationship, although it looks th a t they are very far in the plot. It shows that the 

robot is able to plan the shortest path to reach the closest target, Target 2. The 

corresponding dynamic robot performance in the workspace is shown in Figure 3.3A.

X (m)

360

£5 270-eo

Target 1

180 270 3600 90
1st Jo in t A ngle  (degree)

Figure 3.3: Motion planning of a two-link robot manipulator without any obstacles in 

the workspace. A: the real-time robot motion in workspace; B: the planned path in 

jo in t space of the robot manipulator.

Second, an obstacle is placed a t position (0.8,0) in the workspace (Figure 3.4A 

with solid circle). The corresponding obstacles in joint space is shown in Figure 3.4B 

by sold squares. Choosing the same model parameters as in Figure 3.3, the planned 

path in joint space is shown in Figure 3.4B, and the corresponding dynamic robot 

performance in workspace is shown in Figure 3.4A. It shows the robot is able to avoid 

the obstacle and reach Target 1 a t {6 1 , 6 2 ) =  (300°, 30°), the closest target. Then, one 

more obstacle is placed at position (0, —1.5). W ith the same model parameters as 

in Figure 3.3, the planned path in joint space and the corresponding dynamic robot 

performance in workspace is shown in Figures 3.4B and 3.4A, respectively. In both 

cases, the robot can reach the closest target, Target 1, with obstacle avoidance.
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Figure 3.4: Motion planning o f a two-link robot manipulator with one obstacle in the 

workspace. A: the real-time robot motion in workspace; B: the planned path in jo int
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Figure 3.5: Motion planning o f a two-link robot manipulator with two obstacles in the 

workspace. A: the real-time robot motion in workspace; B: the planned path in jo int

space.
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Third, one more obstacle is placed at position (0,1.5) in the workspace (Figure 

3.6A). W ith the same model parameters as in Figures 3.3 and 3.4, the planned robot 

path in joint space and the dynamic robot performance in workspace are shown in 

Figures 3.6A and 3.6B, respectively. Note that the planned paths in Figures 3.3B, 

3.4A and 3.6B have the shortest distance from the starting  position to  the closest 

targets, due to no clearance from obstacles is considered. The stable (time is long 

enough) activity landscape of the neural net is shown in Figure 3.6C, where the peak 

of the activity landscape is at the target location, while the valley is a t the obstacle 

location.

Because no clearance from obstacles is considered, the planned path w ithout safety 

consideration shown in Figure 3.6 clips the comers of obstacles and runs down the 

edges of obstacles. Two more simulations with obstacle clearance are carried out un

der the same condition as in Figure 3.6, i.e., there are three obstacles in the  workspace. 

By choosing (3 =  1 and a =  —0.8, a “comfortable” path from the starting  position 

to the closest target is planned (Figure 3.7). Figures 3.7A and 3.7B shows the dy

namic robot performance in workspace and the path in joint space, respectively. It 

shows th a t the robot does not clip the corners of obstacles nor run down the edges 

of obstacles. The stable (time is long enough) activity landscape of the neural net is 

shown in Figure 3.7C. In contrast to the neural activity landscape where there is no 

propagation of negative neural activity, the negative neural activity in Figure 3.7C 

slightly propagates from the obstacles to its neighboring positions.

Then, by choosing j3 =  1 and <r =  —0.5, a strong clearance from obstacles is 

chosen. We have the safest path from the initial robot location to the closest target, 

Target 1 (Figure 3.8). The dynamic robot performance in workspace and the path 

in joint space are shown in Figures 3.8A and 3.8B, respectively. It shows th a t the 

robot does not pass through the small gate at the lower-left corner in the joint space, 

instead it goes across the figure to reach the closest target. The stable (time is long 

enough) activity landscape of the neural net is shown in Figure 3.8C. Comparing with 

the stable neural activity landscapes in Figures 3.7C and 3.6C, there is a  more neural 

activity propagation from the obstacles to their neighboring positions.
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Figure 3.6: Motion planning of a two-link robot manipulator with three obstacles 

in the workspace. No obstacle clearance yields the shortest path. A: the real-time 

robot motion in workspace; B: the planned path in jo in t space; C: the stable activity 

landscape of the neural network.
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Figure 3.7: Motion planning of a two-link robot manipulator with three obstacles in the 

workspace. A moderate obstacle clearance yields a comfortable path. A: the real-time 

robot motion in workspace; B: the planned path in joint space; C: the stable activity 

landscape of the neural network.
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Figure 3.8: Motion planning o f a two-link robot manipulator with three obstacles in 

the workspace. A strong obstacle clearance yields the safest path. A: the real-time 

robot motion in workspace; B: the planned path in joint space; C: the stable activity 

landscape of the neural network.
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3 .3 .4  M otion  P la n n in g  o f  a  R ob ot M an ip u la tor w ith  Sud d en  

E nvironm ent C h an ges

The proposed neural network model can perform properly in an arbitrary environ

ment, even with sudden environmental changes, such as suddenly adding or removing 

obstacles or targets in the dynamic environment. A case w ith sudden placement of 

obstacles in front of the robot manipulator is studied. The neural network architec

ture and the robot manipulator model are the same as in previous section. The task 

of the robot is the same as well, i.e., reach one of the targets in the joint space of the 

robot manipulator. The model parameters are chosen as: A  =  20, B  = D = 1, fi = 1, 

r0 =  2 and E  =  80. There is one static obstacle located a t (0, —1.5). The initial 

configuration of the robot m anipulator in joint space is a t (^1 ,^ 2 ) =  (30°, 30°), i.e., 

the initial tip position of the second link is a t (1.366,1.366) in the workspace (Figure 

3.9A). First, no clearance from obstacles is considered by choosing /? =  0. When 

the robot moves toward to the closest target, Target 2, there is an obstacle suddenly 

placed in its front at position (0.8,0) in the workspace (Figure 3.9A). The neural 

activity landscape of the neural network right after the sudden obstacle placement is 

shown in Figure 3.9B. It shows th a t there appears a large negative neural activity at 

the sudden obstacle locations in the joint space. The proposed neural network is sen

sitive to any sudden stimulus from the dynamic environment. The planned real-time 

path in joint space is shown in Figure 3.10B, and the corresponding dynamic robot 

performance in workspace is shown in Figure 3.10A. It shows th a t the robot reaches 

the closest target, Target 1, w ithout any collisions with both  the static and sudden 

obstacles.

Then, clearance from obstacles is taken into account by choosing (3 =  0.1 and 

<7 =  —0.7. The planned robot path  in joint space is shown in Figure 3.11B, and the 

corresponding dynamic robot performance in workspace is shown in Figures 3.11 A. 

Unlike the real-time path in Figure 3.10 where the robot motion suffers from the 

“too close” problem, the planned robot motion in Figure 3.11 travels a continuous, 

smooth, “comfortable” route to catch the moving target w ithout clipping the corners
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Figure 3.9: Motion planning of a two-link robot manipulator when an obstacle is 

suddenly placed in front of the robot. A: the robot performance in workspace. B: the 

activity landscape o f the neural network right after the obstacle is placed.
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Figure 3.10: Motion planning without obstacle clearance of a two-link robot manipu

lator with sudden environmental changes. A: the real-time robot motion in workspace; 

B: the planned path in jo int space.
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Figure 3.11: Motion planning with obstacle clearance of a two-link robot manipulator 

with sudden environmental changes. A: the real-time robot motion in workspace; B: 

the planned path in joint space.

of obstacles nor running down the edges of obstacles.

3 .4  M odel V ariation

If the excitatory and inhibitory connections in the shunting equation in Equation (3.4) 

are lumped together and the auto gain control terms are removed, then a simpler form 

can be obtained from Equation (3.4),

T =  — Aft +  U +  — — a] • (3-11)
ai l j=i

This is an additive equation. The term /, -I- wij{€j]+ ~  vi j ~  G]~ repre

sents the total inputs to the z-th neuron from the external and internal connections. 

The nonlinear functions [a]+, [a]- , the connection weight Wij and u,j, the threshold 

cr, and the external input /, are defined as the same as in Equation (3.4). These 

definitions together guarantee tha t the positive neural activity can propagate to the 

whole workspace, while the negative activity can propagate locally in a  small region 

only. From the definitions of [a]+ , [a]-  and utJ-, Equation (3.11) can be rewritten into
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a compact form as

^  = - M i  +  Ii +  T ,  “ iA i l ) ,  (3.12)
a z  j = i

where «£(£,-) is defined in Equation (3.10). In this additive neural network system, the 

targets and obstacles are guaranteed to stay at the peak and valley of the dynamic 

neural activity landscape. By properly choosing the strength and threshold of the 

inhibitory lateral neural connections, the influence of the obstacles to the activity 

landscape is confined in a desired small region. Therefore, the additive neural network 

model in Equation (3.12) is capable of planning real-time robot m otion with clearance 

from obstacles in most situations. Although the additive model is computationally 

simpler, there are several im portant differences between the shunting and additive 

models (Grossberg, 1988; Meng and Yang, 1998; Yang and Meng, 1998a; Yang and 

Meng, 1999e), which are discussed in Chapter 2.

The stability of the additive neuron network in Equations (3.11) or (3.12) can 

be proved using a Lyapunov stability theory. Equation (3.12) can be rewritten into 

Grossberg’s general form of Equation (3.6) by the following substitutions:

a.-(6) =  1, (3.13)

&<(&) = + (3.14)

and

Cij — W{j. (3.15)

Obviously, we have =  c,, (symmetry), a,(f,) > 0 (positivity), and d'-(fj) > 0 

(monotonicity). Therefore, Equation (3.12) satisfies all the three stability conditions 

required by the Grossberg’s general form. The global stability and convergence of the 

additive neural network system is proved (Grossberg, 1983; Grossberg, 1988).

A case using the proposed additive neural network model in Equation (3.12) under 

the same condition as in Figure 3.6 is simulated, where there are three obstacles in

the workspace. The neural network architecture is the same as in Figure 3.6. The

model parameters are chosen as: A  =  5, B  = D = 1, fi =  1, r 0 =  2, and E  =  50. 

By choosing 0  = 0 and a = 0, 0  =  0.1 and a = —1, and 0  =  0.1 and a  =  —0.8,
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the additive model in Equation (3.12) is capable of generating the shortest path in 

Figure (3.6), the comfortable pa th  in Figure (3.7), and the safest path in Figure 

(3.8), respectively. The stable landscape activity (time is long enough) under the 

same condition as in Figure (3.8) is shown in Figure 3.12. This result is qualitatively 

the same as tha t in Figure 3.8C except some quantitative differences because there is 

no bounds of neural activity in the  additive model.

Target 2

T a rg e t 1

-15

O bstacles

Figure 3.12: The stable neural activity landscape of neural network using the additive 

model. There are three obstacle in the workspaces. A strong clearance from obstacles 

is considered.

3.5  C onclusion

In this chapter, a novel neural network approach, based on the biologically inspired 

neural network work model for motion planning of a point mobile robot, is proposed 

for real-time robot motion planning with safety consideration in a  nonstationary 

environment. The dynamics of each neuron in the neural network is characterized
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by a shunting equation or an additive equation. In contrast to the neural network 

models presented in Chapter 2, both excitatory and inhibitory neural connections 

are employed, and the threshold of neural connections are introduced. In addition, 

the state space of the topographically organized neural network is extended to either 

the Cartesian workspace or the joint space of a multi-joint robot manipulator. The 

proposed model is capable of planning real-time motion with safety consideration for 

a point mobile robot or a robot manipulator. The stability and convergence of the 

proposed neural network system is proved using a Lyapunov stability theory. The 

real-time optimal robot motion is planned through the dynamic activity landscape 

of the neural network that integrates the clearance from obstacles. The planned 

robot motion in a static environment without obstacle clearance is globally optimal 

in the sense of the shortest path from the starting position to the target if it exists. 

W hen the clearance from obstacles is considered, the optimality is in the sense of a 

“comfortable” path not being “too close” to nor “too far” from the obstacles. The 

term  “real-time” is in the sense th a t the robot motion planner responds immediately 

to the dynamic environment, including the robot, target, obstacles and sensor noise. 

The proposed neural network approach is based on the robot motion planning model 

presented in Chapter 2. Therefore it inherits the feature properties from the neural 

network model presented in Chapter 2 plus the capacity of obstacle clearance. Several 

points are worth to highlight about the proposed neural network model for real-time 

robot motion planning with safety consideration:

•  The strength of the obstacle clearance is adjustable. By selecting suitable model 

parameters, this model can plan the shortest path, a comfortable path, or the 

safest path of a point mobile robot or a robot manipulator.

•  This model is biologically plausible.

•  This model does not suffer from undesired local minima.

•  This model is not very sensitive to the model parameters nor the connection 

weight function.
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•  The computational complexity linearly depends on the state space size of the 

neural network.

•  The model algorithm is computationally efficient. The real-time robot motion 

with safety consideration is planned through the dynamic activity landscape 

of the neural network that integrates the obstacle clearance, without any prior 

knowledge of the dynamic environment, without explicitly searching over the free 

space or the collision paths, without explicitly optimizing any cost functions, and 

without any learning procedures.
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C hapter 4 

A  N ovel N eural N etw ork A pproach  

to  R eal-tim e Collision-free M otion  

Planning of 3-D .O .F . R obots in  2D

In this chapter, a novel neural network approach, based on the biologically inspired 

neural network model presented in Chapter 2 for motion planning of a point mobile 

robot, is proposed for real-time collision-free motion planning of 3-d.o.f. robots in 

a nonstationary environment. The s ta te  space of the proposed neural network is 

3D, where two represent the spatial position in the 2D Cartesian workspace and 

one represents the orientation of the robot. The proposed neural network model 

is capable of planning real-time optim al motion path for 3-d.o.f. robots through 

the dynamic neural activity landscape. In addition to the feature properties of the 

neural network model for a point mobile robot, unlike most previous models that 

require a local collision checking procedure a t each step of the robot movement, no 

local collision checking is needed in the proposed neural network model. Therefore 

the model algorithm is computationally efficient. Some complicated robot motion 

planning problems, such as real-time motion planning with sudden environmental 

changes, motion planning of a  robot w ith multiple targets, and motion planning of 

multiple robots in the same workspace, are studied in this chapter. The effectiveness 

and efficiency of the proposed algorithm are demonstrated through simulation studies.
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4.1 In trod u ction

Real-time collision-free motion planning of a mobile robot in 2D is a very im portant 

issue in robotics. A small and maneuverable mobile robot can be treated as a point 

mobile robot that has 2-d.o.f., i.e., the translation along X  and Y  axes. However, in 

many situations, e.g., when the size of the robot is comparable to the free workspace, 

the robot should be considered with its shape and size, where the robot has 3-d.o.f., 

i.e., two are the translation of the robot base point in the 2D Cartesian workspace, 

and one is the rotation with respect to the base point. A freely movable 3-d.o.f. robot 

is referred as a holonomic car-like robot.

There are a lot of studies on motion planning of 3-d.o.f. robots using various ap

proaches (e.g. Ilari and Torras, 1990; Barraquand and Latombe, 1991; Latombe, 1991; 

Zelinsky, 1994; Gambardella and Versino, 1994; Podsedkowski, 1998; Fraichard and 

Mermond, 1998; Kreczmer, 1998; Ong and Gilbert, 1998; Kassim and Kumar, 1999). 

Most of the previous models are searching based and deal with static environment 

only. These models are computationally complicated, particularly when the environ

ment is complex, because a local collision checking procedure is needed for obstacle 

avoidance at each step of the robot movement. For example, to detect local colli

sions, Barraquand and Latombe’s (1991) model uses a divide-and-conquer technique; 

Zelinsky’s (1994) model uses a distance space bubble hierarchy.

Some learning based models were proposed for the motion planning of 3-d.o.f. 

robots in 2D workspace. For example, Gambardella and Versino (1994) proposed 

a learning method for motion planning of a robot in a cluttered workspace where 

dynamic local minima can be detected. Through learning it can avoid the local 

minima, such as in the deadlock situations. Fujii et al. (1998) proposed a multi-layer 

reinforcement learning model for motion planning of multiple mobile robots, However, 

the robot motion planned by learning based approaches is not optimal, especially in 

its initial learning phase (e.g., see Figure 1.2).

In this chapter, a novel neural network approach to real-time collision-free motion 

planning of 3-d.o.f. robots in a nonstationary environment is proposed, which is based
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on the biologically inspired neural network model presented in Chapter 2 for motion 

planning of a point mobile robot. Unlike those models presented in Chapters 2 and 3 

(also in Meng and Yang, 1998; Yang and Meng, 1998a; Yang and Meng, 1998c; Yang 

and Meng, 1999a; Yang and Meng, 19996; Yang and Meng, 1999e) where the state 

space of the neural network is either the Cartesian workspace or the joint space of a 

multi-joint robot m anipulator, the proposed neural network model is expressed in a 3D 

state space, where two represent the spatial position in the 2D Cartesian workspace 

and one represents the orientation of the robot. Unlike most previous models that 

require a local collision checking procedure at each step of the robot movement, no 

local collision checking procedure is needed in the proposed model. Similar to the 

neural network models presented in Chapters 2 and 3, the real-time optimal robot 

motion is planned through the dynamic activity landscape of the neural network. 

The model algorithm is computationally efficient. In addition, some complicated 

robot motion planning problems, such as real-time motion planning with sudden 

environmental changes, motion planning of a robot with multiple moving targets, 

and motion planning of multiple robots in the same workspace, are studied in this 

chapter.

4.2 The M od el

A freely moving robot with shape and size in the 2D Cartesian workspace W  can be 

modeled as a 3-d.o.f robot, whose location can be uniquely determined by the spatial 

position (x, y) of the base point and the orientation angle 6 with respect to the base 

point (see Figure 4.1A). A robot location in W, called a robot configuration, uniquely 

corresponds to a point in the robot configuration space C. The robot configurations 

not allowed are called obstacle configurations in C.

The proposed model is based on the biologically inspired neural network approach 

to real-time collision-free motion planning of a point mobile robot in a nonstationary 

environment. The neural network architecture is a discrete topographically orga

nized map, where the neural dynamics of each neuron is characterized by a shunting
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equation or an additive equation. Unlike those neural network models presented in 

Chapters 2 and 3 where the state space S  of the neural network is either the Cartesian 

workspace or the joint space of a multi-joint robot manipulator, the proposed neural 

network model is expressed in a 3D state space S , where two represent the spatial 

position of the robot base point in the 2D Cartesian workspace and one represents 

the orientation of the robot with respect to the base point, i.e., the state space S  is 

the robot configuration space C. The location of the i-th neuron at the grid in S , 

denoted by a vector pi 6 R 3, uniquely represents a configuration in C or a location 

in W of the 3-d.o.f robot. The dynamics of the i-th neuron in the neural network is 

characterized by a shunting equation,

^  = ---If. + (B -  fi) f[/il+ + E  u'iifol-J ~ ( D  +  (4.1)

where all the parameters and functions are defined as the same as those in Equa

tion (2.7). Parameters .4, B  and D  are nonnegative constants tha t represent the 

passive decay rate, the upper and lower bounds of the neural activity, respectively. 

Variable is the neural activity of the i-th neuron, which has a continuous value

6 [—D, B]. The excitatory input, [/,-]+ -I- J2j=i u;u[£j]+> results from the targets 

and the lateral connections among neurons, while the inhibitory input [/,]“ results 

from the obstacles. Function [a]+ is defined as, [a]+ =  max{a, 0}, while [a]-  is de

fined as [a]-  =  max{—a, 0}. The lateral connection weight Wij from the j- th  neuron 

to the i-th neuron axe defined as =  /(<£,-), where dij =  |p,- — Pjj represents the

Euclidean distance between vectors p* and Pj in the state space. Function /(</*•, ) is a

monotonically decreasing function, such as a function defined as: /(d y ) =  p /d ,j, if 

0 <  dij < r 0; f ( d i j ) =  0, if d,_, >  r0, where p  and r0 are positive constants. Therefore 

the neuron has only local connections in a small region (0, r 0). It is obvious tha t 

the weights is symmetric, wtj =  u;Jt. The external input /, to the i-th neuron 

is defined as: /, =  E , if there is a target; / t- =  —E , if there is an obstacle; R =  0,

otherwise, where E  »  B  is a  very large positive constant.

In the proposed neural network model for 3-d.o.f. robots, if there is one obstacle 

in the 2D Cartesian workspace VV, several configurations in C of the 3-d.o.f. robot
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are not allowed ( “forbidden” ), i.e., there are several obstacle configurations in C. For 

example, when the obstacle is at position (0,0) and the base point of the robot is at 

position (1,0) in W , the forbidden robot locations are shown in Figure 4.IB, where 

the obstacles are shown by dark solid squares, while the robot is shown by light solid 

rectangular with its base point shown by a dark solid circle.

Obstacle

x

B ase

(x.y)

Figure 4.1: A schematic diagram of a 3-d.o.f. robot (A) and the forbidden robot 

locations (B) when the obstacle and the robot base point are at positions (0,0) and 

(1,0), respectively.

The proposed neural network characterized by Equation (4.1) guarantees that 

only the positive neural activity can propagate to the whole sta te  space. The negative 

activity stays locally only. Therefore, the target globally influences the whole state 

space to attract the robot, while the obstacles have only local effect to avoid collisions. 

The locations of the target and obstacles may vary with time. The neural activity 

landscape dynamically change due to the varying external inputs from the targets and 

obstacles and the internal activity propagation among neurons. The optimal robot 

motion is planned from the dynamic activity landscape by a gradient ascent rule. For 

a given present location in S  (i.e., a location W or a configuration in C), denoted by
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pp, the next location p n is obtained by

Pn <= £Pn =  max{&, A; =  1,2, • - •,&}, (4.2)

where k is the number of all the neighboring neurons of the present robot location 

pp, i.e., all the possible next locations. The current robot location adaptively changes 

according to the varying environment.

The proposed neural network is a stable system, where the neural activity varies 

in the finite interval [—D, B]. In addition, by rewriting Equation (4.1) into Gross

berg’s general form in Equation (2.9), it can be proved tha t Equation (4.1) satisfies 

all the three stability conditions required by Grossberg’s general form. Therefore, the 

stability and convergence of proposed neural network system characterized by Equa

tion (4.1) can be rigorously proved using the Lyapunov stability analysis (Grossberg, 

1983; Grossberg, 1988; Meng and Yang, 1998; Yang and Meng, 1998a; Yang and 

Meng, 1999d; Yang and Meng, 1999e).

4.3  S im ulation  Studies

In this section, several simulations are carried out to demonstrate the effectiveness 

of the proposed neural network approach to real-time collision-free motion planning 

of 3-d.o.f. robots. First this model is applied to motion planning of a robot in a 

static environment. Then, some complicated robot motion planning problems, such 

as real-time motion planning with sudden environmental changes, motion planning 

of a robot with multiple moving targets, and motion planning of multiple robots in 

the same workspace, are studied.

4.3 .1  M otion  P lan n in g  in a S ta tic  E nvironm ent

The proposed neural network model is first applied to motion planning of a  3-d.o.f. 

robot in a deadlock situation. The initial robot location is shown in Figure 4.2A, 

where it is in a deadlock situation. The task is to replace the robot to face in the 

opposite direction as shown in Figure 4.2B. The neural network has 20 x 20 x 24
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topographically ordered neurons, where 20 x 20 represents the size of the discretized 

2D Cartesian workspace, and 24 represents number of the orientation angles from 

0° to 345° with a step of 15°. Since geometrically 360° =  0°, the neuron at location 

(AT,-, Yi, 0) in the neural network is an neighboring neuron of the neuron at (X,-, Yi, 23), 

and likewise. The model parameters are chosen as: A = 10 and B  = D = 1 for the 

shunting equation, /i =  1 and tq = 2 for the lateral connections, and E  =  100 for the 

external input. The planned robot motion path to move the robot out is shown in 

Figure 4.2C, while the path to move the robot in is shown in Figure 4.2D. It shows 

that the robot changes to the opposite direction without any collisions.

Target locationInitial location

Robot

Move out Move in

Figure 4.2: Motion planning of a robot to replace to the opposite direction in a deadlock 

situation. A and B: the initial and target location of the robot, respectively; C and D; 

the planned robot motion fo r moving out and moving in, respectively.

Then this model is applied to a more complex house-like environment, where there 

are several deadlock situations that the robot may be trapped in. Figure 4.3 shows a 

house-like environment, where the doors can be opened or closed. The neural network 

has 30 x 30 x 24 neurons with the same model parameters as in the previous case. 

Figure 4.3A shows the planned real-time robot motion in the case that the central 

door C is opened. When the central door C is closed, the planned robot motion is 

shown in Figure 4.3B, where the robot has to travel a much longer route to reach the
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target location. It shows that without any learning procedures, the robot is capable of 

reaching the target without any collisions and without being trapped in any deadlock 

situations. In a static environment, the robot motion is globally optimal in the sense 

of the shortest route from starting location to the target.

4 .3 .2  M o tio n  P lan n in g  w ith  S u d d en  E nvironm ental C h an ges

The proposed neural network model can perform properly in an arbitrary environ

ment, even with sudden environmental changes. A difficult motion planning case with 

sudden placement of obstacles in front of the robot is studied. The neural network 

architecture is a 30 x 20 x 24 neural network map. The model parameters are chosen 

as: A  =  10, B  =  D  =  1, // =  1, r 0 =  2 and E  =  100. The initial and target 

robot locations are at locations (2,5,0) and (27,17,12) in W, respectively. F irst, the 

planned robot motion without any obstacles is shown in Figure 4.4A. In the second 

case, when the robot arrives at location (11,14,15) on the way toward the target, the 

obstacles (V-shaped, shown in Figure 4.4C by dark sold squares) are suddenly placed 

in front of the robot. The planned real-time robot motion path is shown in Figure 

4.4B, where the robot first has to first move away from the target, then passes around 

these obstacles, and finally reaches the target. It shows that the robot is capable of 

avoiding the sudden obstacles to reach the designated target.

4 .3 .3  M o tio n  P lan n in g  w ith  M u ltip le  M oving T argets

The proposed neural network model is capable of planning real-time motion for a 

robot with multiple targets as well, where the task can be designed as either catching 

the closest target or catching all the targets. In the latter case, a target must disappear 

from the state space once it is caught. A complicated case is carried out where there 

are two moving targets with different speed in the 2D Cartesian workspace. The task 

of the robot is to catch one of moving targets. The neural network has 30 x 30 x 24 

neurons. The model parameters are chosen as: A  =  50, £  =  D =  1,/* =  1, r o = 2  

and E  =  100. Figure 4.5A shows the travel routes of the targets. The moving
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Figure 4.3: Motion planning o f a robot in a house-like environment with several dead

lock situations. A: the planned robot motion when the central door C is opened; B: 

the planned robot motion when door C is closed.
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Figure 4.4: Real-time motion planning of a robot with sudden placement o f obstacles. 

A: the robot motion in case of no obstacles; B: the real-time robot motion in case that 

a set of V-shaped obstacles are suddenly placed in front of the robot.
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speeds of Targets 1 and 2 are 30 and 50 block/minute, respectively (it is convenient 

to assume that the space in S  and time units are block and minute, respectively). 

The orientation varying speeds of both targets are  30 block/minute. Note that the 

proposed neural network dynamically responds to the real-time location of the targets 

and obstacles. No prior knowledge of the dynamic varying environment is needed. 

First, the robot starts at location (1,1,0), with a speed of 100 block/minute for both 

space and orientation. Figure 4.5B shows the dynamic routes of the robot and targets 

(the route of Target 2 is hidden by the route of the  robot when plotted). The robot 

catches Target 2 a t location (12,16,14), since the robot moves much faster than the 

targets. Then, the robot moves a t a much slower speed, 50 block/minute. The real

time motion paths of the robot and targets are shown in Figure 4.5C. I t shows that 

initially the robot moves toward Target 2, since it is closer to Target 2. However, 

finally the robot catches Target 1 at location (10,7,4), because Target 1 is moving 

toward the robot, while Target 2 is moving away from the robot.

4.3 .4  M otion  P lanning o f a  M u lti-rob o t S ystem

The proposed neural network model is capable o f planning real-time collision-free 

motion paths for multiple robots. The dynamic motion of four robots in the same 

2D Cartesian workspace is studied. The overall neural network architecture consists 

of four 20 x 20 x 24 neuron nets that have no lateral connections among neurons in 

different neuron net, which produce four dynamic neural activity landscapes for these 

four robots, respectively. The neuron net for Robot 1 treats the other three robots as 

moving obstacles, and likewise for the other robots. The model parameters are chosen 

as: A  =  10, B  =  D  =  1, p. = 1, r 0 =  2 and E  =  100. All the robots move at the same 

speed of 100 block/minute. The planned real-time motion paths for Robots 1, 2, 3 

and 4 are shown in Figure 4.6A. To illustrate more clearly, the overall path in Figure 

4.6A is plotted in two parts that are shown in Figures 4.6B and 4.6C, respectively. It 

shows that all these four robots travel smooth, continues routes to reach their targets 

without any collisions.
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Figure 4.5: Real-time motion planning of a robot xvith two moving targets. A: the 

moving routes o f Targets 1 and 2; B; the real-time motion paths of the robot and the 

targets when the robot speed is twice of the speed of Target 2; C : the real-time motion 

paths when the robot moves at the same speed as Target 2.
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Figure 4.6: Real-time motion planning of four robots in the same 2D workspace. A; 

the real-time paths of Robots 1, 2, 3 and 4; B and C: the first and second parts of the 

whole path, respectively.
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4 .4  M odel V ariation

If the excitatory and inhibitory connections in the shunting equation in Equation (4.1) 

are lumped together and the auto gain control terms are removed, then Equation (4.1) 

may be written into a simpler additive equation,

=  ~ M i  +  li +  H  wij[€j] + ■> (4-3)az j=i

where /,-+53”=i UJtj[£j]+ represents the total input to the i-th  neuron from the external 

and lateral connections. The definitions of /*, [a]+ and Wij are the same as those in 

Equation (4.1). The nonlinear function [a]+ guarantees that only the positive neural 

activity can propagate to the other neurons. This additive neural network system 

can be easily proved to be a stable system by rewriting the model equation into the 

general form in Equation (2.9). There are a lot of important differences between the 

shunting and the additive models (see Chapter 2), although the additive model is 

computationally simpler and can also plan real-time collision-free motion planning of 

3-d.o.f. robots with in most situations.

4.5 C onclusion

In this chapter, a novel neural network approach is proposed for real-time collision-free 

motion planning of 3-d.o.f. robots in a nonstationary environment, which is based 

on the biologically inspired neural network model for motion planning of a point 

mobile robot presented in Chapter 2. In contrast to the neural networks presented in 

Chapters 2 and 3, the state space of the neural network is the 3D configuration space 

of the robot, where two represent the spatial position in the 2D Cartesian workspace 

and one represents the orientation of the robot. The real-time optimal robot motion 

is planned through the dynamic neural activity landscape of the neural network that 

represents the dynamic environment. Several points are worth to notice about the 

proposed neural network model for motion planning of 3-d.o.f. robots:

•  This model can perform properly in an arbitrary varying environment, even 

with sudden environmental changes, such as suddenly adding or removing ob-
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stacles and targets. The neural network system is characterized by a continuous 

shunting equation, it is stable and keeps sensitive to changes of the target and 

obstacles.

•  This model is not sensitive to  sensor noise nor disturbance. The obstacles have 

only local effect due to no inhibitory lateral connections among neurons. The 

irrelevant obstacles and/or sensor noise (false-detected obstacles by the sensors) 

far from the robot will not influence the global robot motion planning. On the 

other side, because the proposed model is capable of dealing with the sudden 

environmental changes, the obstacles un-detected by the sensors a t a  far distance 

still can be avoided by robot motion planner a t a short distance, even when they 

are very close to the robot.

•  This model is capable of planning real-time motion for a robot with multiple 

moving targets, and real-time motion for multiple robots in the same workspace.

•  This model is biologically plausible.

•  This model will not be trapped in the deadlock situations.

•  This model is not very sensitive to the model parameters nor the connection 

weight function.

•  The computational complexity linearly depends on the neural network size.

•  The model algorithm is computationally efficient. The real-time optimal robot 

motion is planned without explicitly searching over the free workspace or the 

collision paths, without explicitly optimizing any cost functions, without any 

prior knowledge of the dynamic environment, without any learning procedures, 

and without any local collision checking procedures at each step of the robot 

movement.
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C hapter 5

A  N ovel N eural N etw ork Approach  

to  R eal-tim e M otion P lanning w ith  

O bstacle A voidance o f  

N onholonom ic Car-like R obot

In this chapter, a novel neural network approach, based on the neural network model 

for motion planning of 3-d.o.f robots presented in Chapter 4, is proposed for real-time 

motion planning with obstacle avoidance of nonholonomic car-like robots in a non- 

stationary environment. The dynamics of each neuron in the biologically inspired, 

topologically organized, locally connected neural network is characterized by a shunt

ing equation or an additive equation. In contrast to  those neural network models 

presented in Chapters 2, 3, and 4 where the neural activity propagation is omni

directional, the lateral neural connections in the proposed model are directionally 

selective, and the neural activity propagation is subject to the nonholonomic kine

matic constraint of the car-like robot. The real-time collision-free robot motion is 

planned through the dynamic neural activity landscape of the neural network, under 

the kinematic constraint, without any local collision checking procedures at each step 

of the robot movement. Therefore it is computationally efficient.
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5.1 Introduction

Real-time collision-free motion planning of nonholonomic mobile robots is one of the 

most important issue in robotics. A small and maneuverable mobile robot can be 

treated as a point robot that has 2-d.o.f., i.e., the translation along X  and Y  axes. 

However, in many situations, the robot should be considered with its shape and size. 

A robot with size and shape has 3-d.o.f., i.e., two are the translation of the robot 

base point in the 2D Cartesian workspace, and one is the rotation with respect to the 

base point. In realistic robotic applications, most mobile robots are nonholonomically 

constrained and the robots are not freely movable object. For a nonholonomic car-like 

robot, because of the kinematic constraint that the turning radius is lower-bounded, 

the degree of freedom of the robot becomes two.

There are more and more studies on motion planning of car-like robots using var

ious approaches (e.g. Laumond et al., 1994; Paromtchik and Laugier, 1996; Khatib 

et al., 1997; Svestka and Overmars, 1997; Scheuer and Fraichard, 1997; Pruski and 

Rohmer, 1997; Fraichard and Mermond, 1998; Kreczmer, 1998; Laumond et al., 1998; 

Podsedkowski, 1998; Sekhavat et al., 1998). However, most of them deal with static 

environment only, or are computationally expensive. In addition, the local collision 

checking procedures are required a t the step of the robot movement. Most previous 

models use two-step approaches tha t consist of first computing a collision-free holo- 

nomic path, and then transforming this path by a sequence of feasible ones. The 

quality of the solution and the computational cost of the second step depend on the 

shape of the holonomic path. For example, Paromtchik and Laugier (1996) proposed 

a searching-based iterative algorithm for motion generation for parking an car-like 

robot. Jiang et al. (1997) proposed a time-optimal motion planning method for a 

robot with kinematic constraints, which consists of three stages: planning for a point 

mobile robot; planning for a car-like robot; and optimizing cost functions for a time- 

optimal solution. Podsedkowski (1998) proposed a path planner for nonholonomic 

robot using a searching algorithm, it requires a local collision checking procedure and 

the minimization of cost functions. Sekhavat et al. (1998) proposed a multi-level ap-
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proach to motion planning of nonholonomic robots, where at the first level, a path is 

found that disrespects the nonholonomic constraints; a t each of the next levels, a new 

path is generated by transformation of the path generated at the previous level; at the 

final level, all nonholonomic constraints are respected. This model is computationally 

complicated.

In this chapter, a novel neural network approach, based on the neural network 

model presented in Chapter 4 for motion planning of 3-d.o.f. robots (also in Yang 

and Meng, 1999c; Yang and Meng, 1999<f), is proposed for real-time collision-free mo

tion planning of nonholonomic car-like robots in a nonstationary environment. Like 

the neural network model for motion planning of 3-d.o.f. robots, the proposed neural 

network is topologically organized, locally connected, where the dynamics of each 

neuron is characterized by a shunting equation or an additive equation. The state 

space of the neural network is the 3D configuration space of the car-like robot. Un

like those neural network models present in Chapters 2, 3, and 4 (also in  Meng and 

Yang, 1998; Yang and Meng, 1998a; Yang and Meng, 1998c; Yang and Meng, 1999a; 

Yang and Meng, 19996; Yang and Meng, 1999c; Yang and Meng, 1999 d; Yang and 

Meng, 1999 e) where the lateral connection strength of one neuron to its neighboring 

neurons is a function of the distance only and the neural activity propagation is om

nidirectional, in the proposed neural network model the lateral connection strength 

is directionally selective, and the neural activity propagation is subject to the kine

matic constraint of the car-like robot. The real-time optimal robot m otion is planned 

through the dynamic activity landscape of the neural network, under th e  nonholo

nomic constraint, without any local collision checking procedures at each step of the 

robot movement. Therefore the model algorithm is computationally efficient. The 

planned robot motion in a static environment is globally optimal in the sense of the 

least steps from the starting location to the target if it exists. The optim ality in the 

real-time motion planning in a nonstationary environment is in the sense of a contin

uous, smooth path toward the target. The term “real-time” is in the sense th a t the 

robot motion planner responds immediately to the dynamic environment, including 

the robot, target, obstacles and sensor noise. To the best of our knowledge, it is the
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first time that the real-time motion planning of car-like robots are studied using a 

non-learning based neural network approach.

5.2 T he M odel

In this section, we will briefly introduce the mathematical model of a nonholonomic 

car-like robot. Then the proposed neural network model for real-time collision-free 

motion planning of nonholonomic car-like robot will be presented. The stability of 

the proposed neural systems will be proved using a Lyapunov stability theory.

5.2 .1  T h e N onholonom ic C ar-like R ob ot M o d el

A freely movable robot with shape and size in the 2D Cartesian workspace W  can 

be modeled as a 3-d.o.f. robot, which is referred as a holonomic car-like robot. If a 

3-d.o.f. robot is subject to nonholonomic constraint, the kinematically constrained 

3-d.o.f. is referred as nonholonomic car-like robot. The location of a car-like robot 

in the 2D Cartesian workspace can be uniquely determined by the spatial position 

( x ,  y) of the base point and the orientation angle 9 with respect to the base. A robot 

location in W, also called a robot configuration, uniquely corresponds to a point 

( x ,  y , 6) in the robot configuration space C.

The kinematic constraint of a nonholonomic car-like robot is described as

—x sin 9 4- y cos 9 =  0. (5.1)

Thus a nonholonomic car-like robot has 2-d.o.f. Equation (5.1) can be parameterized 

by time t. Given the robot velocity v and the curvature K  of the curve followed by 

the robot (see Figure 5.1A), the so called control variables, the velocity parameters 

of the robot are given by

x =  i;sin0, y =  ucos0 and 9 =  vK , (5.2)

where the control variables v are K  are limited to vmAX and K max, respectively, i.e.,

\K\ < K mstx and |v| < vmax. (5.3)
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The minimum turning radius R  is given by R  =  \ / K max. W hen planning the robot 

motion, the control variables v and K  must be discretized (Latombe, 1991; Podsed

kowski, 1998). As shown in Latombe (1991) and Podsedkowski (1998), for a given 

robot configuration, there are at most six possible next robot configurations by setting 

the v and K  to the six discretized values:

{ Uo, Uo} ^ { J^max> 0 , ATmax}i (0-4)

where v0 is the discretized robot moving velocity. Such a discretization is used to 

generate the robot movement (one step). After the integration over the time interval 

of one step, the next robot position is given by

0(t -I- A t)  =  6{t) -I- v K A t ,

x (t +  A t) = x{t) +  - 7  (sin0(t +  A t) — s in d { t) ) , (5.5)
A

y(t + A t) = y(t) +  —  (cos 6{t +  At) — cos 9{t) ) ,I\

where A t is time interval of one step. Figure 5.IB shows an example of the possible 

next robot configurations of a given robot configuration. In realistic robot motion 

planning, the length of one step of robot movement is significantly smaller, so the 

next robot configuration partially overlaps themselves.

If there is an obstacle in the 2D Cartesian workspace W, several configurations of 

the car-like robot in C are not allowed ( “forbidden” , called the obstacle configurations

in C). For example, when the obstacle and the robot base point are a t positions (0,0)

and (1 ,0 ) in W , respectively, the forbidden robot configurations are shown in Figure 

4.1C, where the obstacles are shown by dark solid squares, while the robot is shown 

by light solid rectangular with its base point shown by a dark solid circle.

5.2 .2  T h e N eu ra l N etw ork  M odel

The proposed neural network model for real-time collision-free motion planning of 

nonholonomic car-like robots in a  nonstationary environment is based on the neural 

network approach to motion planning of holonomic 3-d.o.f. robots presented in Chap-
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B

Figure 5.1: Schematic diagram fo r  a nonholonomic car-like robot. A: the kinematics 

of a car-like robot, where (x, y) is the base point, 0 is the orientation angle, R  is the 

turning radius, and K  is the curvature of curve followed by the car; B: the six possible 

next robot configurations of a given robot configuration.

ter 4 (also in Yang and Meng, 1999c; Yang and Meng, 1999d). Like the model for 3- 

d.o.f. robots, the proposed neural network architecture is a topologically organized, lo

cally connected map, where the dynamics of each neuron is characterized by a shunting 

equation or an additive equation. Unlike those models presented in Chapters 2, 3, and 

4 (Meng and Yang, 1998; Yang and Meng, 1998a; Yang and Meng, 1998c; Yang and 

Meng, 1999a; Yang and Meng, 19996; Yang and Meng, 1999d; Yang and Meng, 1999e) 

where the lateral connection strength of each neuron to  its neighboring neuron is a 

function of the distance only and the neural activity propagation is omnidirectional, 

in the proposed neural network model the lateral neural connection strength is di- 

rectionally selective, and the neural activity propagation is subject to the kinematic 

constraint of the nonholonomic car-like robot.

The proposed neural network architecture is expressed in a 3D state space S , where 

two represent the spatial position in the 2D Cartesian workspace and one represents 

the orientation of the robot, i.e., the state space S  is the robot configuration space C. 

The location of the z-th neuron at the grid in S , denoted by a vector pi 6  R3, uniquely 

represents a configuration in C or a location in W of the car-like robot. The dynamics
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of the z-th neuron in the neural network is characterized by a shunting equation,

=  -M U  +  (B  -  (t) ~ ( D  +  £ )[ /,]- . (5.6)

where all the parameters and functions are defined as the same as in Equation (4.1), 

except the lateral neural connection weight Wij. Parameters A, B  and D  represent the 

passive decay rate, the upper and lower bounds of the neural activity, respectively. 

Variable & is the neural activity of the z-th neuron. The excitatory input, [/,-]+ +  

H"=1 Wij[£j}+, results from the targets and the lateral connections among neurons, 

while the inhibitory input [/,]“ results from the obstacles. Functions [a]+ and [a]-  

are defined as, [a]+ =  max{a, 0} and [a]-  =  max{—a, 0}. The external input to the 

z-th neuron is defined as: /, =  E, if there is a target; /, =  —E , if there is an obstacle; 

/, =  0, otherwise, where E  B  is a very large positive constant.

Unlike the previous neural network models presented in Chapters 2, 3 and 4 where 

the lateral connection weight is defined as a function of the distance only, in the 

proposed model the lateral connection weight, w ^, from the / - th  neuron to the z-th 

neuron are defined a function of the robot orientation 9 and the Euclidean distance, 

dij = I Pi — Pj\, between positions pj and p, in the state space of the neural network,

W i j  =
f(d ij), if the z-th and j- th  neurons are neighboring

(5.7)
0 otherwise

where function /(d r,) is a monotonically decreasing function, e.g., a function defined 

as the same as in previous chapters: f{dij) =  if 0 <  dij < r 0; f{<kj) =

0, otherwise, where p and r 0 are positive constants. In contrast to those neural 

network models presented Chapters 2, 3 and 4 where the neighboring neurons of the 

z-th neuron are defined in Equations (2.5) and (2.6) as all neurons whose Cartesian 

distance dij to the z-th neuron is less than a constant r 0, in the proposed model the 

neighboring neurons is defined in Equation (5.5), i.e., the neighboring neurons of the 

z-th neuron are all neurons satisfying the kinematic constraint and whose distance 

to the z-th neuron is less than  ro- Therefore, due to  the kinematic constraint of the 

nonholonomic car-like robot, the z-th neuron has a t most six neighboring neurons.

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



An example illustrating all the neighboring configurations (next car locations) of a 

given robot configuration is shown in Figure 5.IB, where the relationship between the 

neighboring locations and the given robot location satisfies the kinematic constraint 

described in Equation (5.5). T here are a t most six neurons in the receptive field of 

the z-th neuron in the neural network. Therefore each neuron has only local lateral 

connections in a small region [0, Tq]. It is obvious that the lateral neural connection 

weight is symmetric, =  zo,-,-. T he dynamics of the z-th neuron can be further 

written as,

^  = - a s + ( b —&) ( [ / . r + E ^ f e r j  -(£ > + & )[/< ]- . (5.8)

where k < 6 is the number of all th e  neighboring neurons of the z-th neuron.

The proposed neural network characterized by Equation (5.8) guarantees that 

only the positive neural activity can propagate to the whole sta te  space. The negative 

activity stays locally only. Therefore, the target globally influences the whole state 

space to attract the robot, while the  obstacles have only local effect to avoid collisions. 

In contrast to those neural network models presented in Chapters 2, 3, and 4 (Meng 

and Yang, 1998; Yang and Meng, 1998a; Yang and Meng, 1998c; Yang and Meng, 

1999a; Yang and Meng, 19996; Yang and Meng, 1999d; Yang and Meng, 1999e) where 

the neural activity propagation to all directions is exactly in the same manner, the 

activity propagation in the proposed model is directionally selective, which is subject 

to the kinematic constraint described in Equations (5.1) or (5.2). The locations of 

the target and obstacles may vary with time. The activity landscape of the neural 

network dynamically changes due to  the varying external inputs from the targets and 

obstacles and the internal activity propagation among neurons. The optimal robot 

motion is planned from the dynam ic activity landscape by a gradient ascent rule. 

For a given present robot location in S  (i.e., a location in W  or a configuration in 

C), denoted by pp, the next robot location pn (also called “command location”) is 

obtained by

Pn 4= fPn =  max{(,-,j =  1,2, • • - ,£},  (5.9)

where k is the number of all the neighboring neurons of the present location pp, i.e.,
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all the possible next locations described in Equation (5.5). After the present location 

reaches its next location, the next location becomes a  new present location. The 

current robot location adaptively changes according to the varying environment.

The proposed neural network is a stable system. The neural activity in the shunt

ing equation (5.8) is bounded in the finite interval [—D , B\. Although the lateral 

neural connections are directionally selective, the connection weight u/.y in proposed 

neural network model in Equation (5.8) is symmetric. Similar to the Lyapunov sta

bility analysis presented in Chapter 2, the neural network model in Equation (5.8) 

can be rewritten into Grossberg’s general form in Equation (2.9), and we can prove 

tha t Equation (5.8) satisfies all the three stability conditions required by Grossberg’s 

general form (Yang and Meng, 1999/). Therefore, the stability and convergence of 

the proposed neural network system be rigorously proved using a Lyapunov stability 

theory (Grossberg, 1983; Grossberg, 1988; Yang and Meng, 1999/).

5.3 Sim ulation S tu d ies

In this section, several simulations are carried out to demonstrate the effectiveness 

of the proposed neural network approach to real-time collision-free motion planning 

of nonholonomic car-like robots. The real-time motion planning for parallel parking, 

motion planning in a house-like environment with several deadlock situations, and 

motion planning with sudden environmental changes are studies.

5.3 .1  M otion  P lan n in g  for Parallel P ark ing

The proposed neural network model is first applied to the famous parallel parking 

problem. Motion planning for parallel parking of a nonholonomic car-like robot under 

various situations are studied. The neural network has 40 x 30 x 24 topologically 

ordered neurons, where 40 x 30 represents the discretized 2D workspace at a size of 

40 block x 30 block, and 24 represents the discretized orientation angles from 0° to 

345° with a step of 15°. The model parameters are chosen as: A  =  10 and B = D  = I 

for the shunting equation, p  =  1 and r0 =  2 for the lateral connections, and E  =  100
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for the external input. The minimum turning radius of the car is i?=20 block, i.e., the 

maximum curvature of the curve followed by the car-like robot is K  = 1 /R  =  0.05. 

The planned motion to park the car is shown in Figure 5.2A, where the inset shows 

the dynamic trace of the base point and orientation of the car. It shows that the 

car first moves forward to the left, then turns backward to park the car at the target 

location without any collisions. In case of a narrow road (Figure 5.2B), the car has to 

turn back and forth for several times, and eventually the car is also able to properly 

park at the target location with obstacle avoidance. The real-time robot motion is 

shown in Figure 5.2B, where the inset shows the dynamic trace of base point and 

orientation of the car.

5.3 .2  M otion  P lan n in g  in  a H ouse-like E nvironm ent

Then, the proposed neural network model is applied to a complex house-like environ

ment, where there are several deadlock situations that the robot may be trapped in. 

Figure 5.3 shows a house-like environment, where the doors can be opened or closed. 

The neural network has 90 x 90 x 24 neurons. The model parameters are chosen as the 

same as the previous case, i.e., A  =  10, B  =  D =  1, p  =  1, r0 =  2 and E  =  100. In 

case that Door L is opened, the planned car motion is shown in Figure 5.3A, where 

the car moves to the target along the shortest path. When Door L is closed, the 

planned motion path is shown in Figure 5.3B. The car has to travel a much longer 

path to reach the target. Note there are no learning procedures. The car is capable 

of reach the target along the shortest path without any collisions, without violating 

the kinematic constraint, and without being trapped in any deadlock situations.

5 .3 .3  M otion  P lan n in g  w ith  Sudden E nvironm ental C hanges

The proposed neural network model can perform properly in an arbitrarily dynamic 

environment, even with sudden environmental changes. A case with sudden placement 

of obstacles in front of a nonholonomic car is studied. The neural network has 50 x 

30 x 24 neurons, and the model parameters are chosen as the same as in the previous
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Figure 5.2: Motion planning o f a nonholonomic car-like robot in parallel parking 

problem. A: parallel parking in a wide area; B: parallel parking in a narrow road.
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Figure 5.3: Motion planning of a nonholonomic car-like robot in a house-like environ

m ent with several deadlock situations. A: the planned robot motion path when door L 

is opened; B: the path when door L is closed.
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cases. The initial and target locations of the car are at locations (5,5,6) and (40,25,0) 

in VV, respectively. First, the car motion path without any obstacles in the workspace 

is shown in Figure 5.4A. In the second case with the same initial condition, when the 

car reaches location (15,22,2) on the way toward the target, the obstacles (V-shaped, 

shown in Figure 5.4B with dark sold squares) are suddenly placed in front of the car. 

The real-time car motion is shown in Figure 5.4B, where the car first has to move 

away from the target, then passes around these obstacles, and finally reaches the 

target without any collisions, satisfying the kinematic constraint.

5 .4  M odel V ariation

If the excitatory and inhibitory connections in the shunting model in Equation (5.8) 

are lumped together and the auto gain control terms are removed, then Equation 

(5.8) may be written into a simpler additive equation,

—j- = - A x i  + I i + ^2  wij[xj}+, (5.10)
at j=i

where the term /, +  Y,kj=\ Wij{xj]+ represents the total input to the i-th neuron from 

the external and lateral connections. The definitions of /,, [a]+ and w^j are the same 

as those in Equation (5.8). The stability and convergence of this simple additive 

model can be easily proved by rewriting Equation (5.10) into Grossberg’s general 

form in Equation (2.9). This additive model is capable of planning real-time collision- 

free motion of nonholonomic car-like robots in most situations. There are a lot of 

im portant differences between the shunting and the additive models (see Chapter 2), 

although the additive model is computationally simpler.

5.5 C onclusion

In this chapter, a novel neural network approach is proposed for real-time collision- 

free motion planning of nonholonomic car-like robots in a nonstationary environment, 

which is based on the neural network model for motion planning of holonomic 3-
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d.o.f. robots. The state space of the neural network is the configuration space of 

the robot. Unlike those neural network models present in Chapters 2, 3, and 4 

where the lateral connection strength of one neuron to its neighboring neuron is a 

function of the distance only and the neural activity propagation is omnidirectional, 

in the proposed neural network model the lateral connection strength is directionally 

selective, and the neural activity propagation is subject to the kinematic constraint of 

the holonomic car-like robot. The optimal real-time robot motion is planned through 

the dynamic activity landscape of the neural network. The planned robot motion in a 

sta tic  environment is globally optimal in the sense of the least steps from the starting  

location to the target if it exists. The optimality of the real-time motion planning in a 

dynamic environment is in the sense of a continuous, smooth path toward the target. 

The stability and convergence of the proposed neural network system is also proved by 

a Lyapunov stability theory. To the best of our knowledge, it is the first time th a t the 

real-time motion planning of car-like robots are studied using a non-learning based 

neural network approach. Several feature properties are worth to notice about the 

proposed neural network model for motion planning of nonholonomic car-like robots:

•  This model can perform properly in an arbitrary varying environment, even 

with sudden environmental changes.

•  This model is biologically plausible.

•  This model does not suffer from undesired local minima, i.e., it will not be 

trapped in the deadlock situations.

•  This model is not very sensitive to the model parameters, connection weight 

function, nor sensor noise.

•  The computational complexity linearly depends on the state space size of the 

neural network.

•  The model algorithm is computationally efficient.
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Chapter 6

A n Efficient N eural Netw ork B ased  

Approach to  R eal-tim e Fine  

M otion C ontrol o f R obot 

M anipulators

In this chapter, a novel neural network based approach is proposed for real-time fine 

motion control of robot manipulators without any knowledge of the robot dynamics 

and subject to significant uncertainties. The controller structure consists of a simple 

feedforward neural network and a PD feedback loop, which inherits advantages from 

both the neural network based controllers and the traditional PD type controllers. 

By taking advantage of the robot regressor dynamics, the neural network assumes a 

single-layer structure, and the learning algorithm is computationally efficient. The 

real-time fine motion control of robot manipulators is achieved through only the on

line learning of the neural network, without any off-line training procedures. The 

PD control loop guarantees the global stability during the initial learning period of 

the neural network or sudden changes in the robot dynamics occur. In addition, 

the proposed neural network based controller does not require any knowledge of the 

robot dynamics, and is capable of quickly compensating sudden changes in the robot
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dynamics. The global asymptotic stability of the system and convergence of the 

tracking error are proved using a Lyapunov stability analysis. A model variation 

based on the same concept is presented. The proposed controller is applied to a 

two-link robot m anipulator to track an elliptic trajectory and to compensate sudden 

changes in the robot dynamics in real-time. The effectiveness and the efficiency of the 

proposed controller are demonstrated through simulation and comparison studies.

6.1 In trod u ction

Motion control of robot manipulators in real-time is a very important but also diffi

cult issue in robotics, especially when there is no knowledge of the robot dynamics 

and when sudden changes in the robot dynamics occur. There are a  lot of studies on 

motion control of robot manipulators using various approaches. The PD controller is 

very simple and does not require any knowledge of the robot dynamics. However it 

requires very large actuation to achieve fine control, which is not practical but highly 

demanded in many cases (Meng, 1992; Meng, 1995; Meng, 1996). The computed 

torque control approach and other model-based approaches (e.g. Meng, 1995; Dixon 

et al., 1999) are capable of achieving fine motion control. However, they require 

the exact model of the robot dynamics to achieve fine motion control, which is al

most impossible in practice (Meng, 1992; Meng, 1996). The adaptive controllers (e.g. 

Slotine and Li, 1987; Slotine and Li, 1988; Meng, 1992; Lu and Meng, 1993; Meng and 

Lu, 1994; Chiaverini et al., 1997; EIDeeb and EIMaraghy, 1998) can achieve fine con

trol and compensate the partially known manipulator dynamics. But, they often re

quire complicated on-line estimation of the robot dynamics (Slotine and Li, 1987; Slo

tine and Li, 1988; Meng, 1992; Lu and Meng, 1993; Meng, 1996).

Many neural network based controllers were proposed, which succeeded in some ar

eas where the model-based approaches failed. Khemaissia and Morris (1993) proposed 

a neuro-adaptive controller by using a neural network plus a servo feedback controller, 

which does not require an off-line training. However, it suffers from computational 

complexity and very slow convergence, because for an n-d.o.f. robot manipulator this
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model requires n  multi-layer neural networks. Later Morris and Khemaissia (1996) 

proposed a new neural network based controller by using recursive prediction error 

technique to improve the convergence speed. But it is still computationally compli

cated. Behera et al. (1996) proposed a neuro-adaptive hybrid controller for robot 

manipulator tracking control, where three multi-layer neural networks are used to 

learn the mass m atrix, centrifugal and Coriolis force matrix and the gravitational 

torque vector, respectively, but it is computationally expensive.

Meng (1996) proposed a signal-layer neural network based model for fine control 

of robot manipulators. This model takes advantage of the robot regressor dynamics 

formulation that expresses the highly nonlinear robot dynamics in a linear form in 

terms of the robot dynamic parameters, thus the control algorithm is computationally 

simple. However, Meng’s (1996) model requires an off-line training procedure for the 

neural network to perform satisfactorily.

In this chapter, a novel neural network based approach is proposed for real-time 

fine motion control of multi-joint robot manipulators without any knowledge of the 

robot dynamics and without any off-line training procedures (Yang and Meng, 19986; 

Meng and Yang, 1999; Yang and Meng, 1999/i). This model is also capable of compen

sating sudden changes in the robot dynamics. The proposed controller consists of two 

parts: a control torque from a feedforward neural network and a control torque from 

a PD feedback loop. The PD feedback loop guarantees the global stability during the 

learning period of the neural network at the initial phase or when a sudden change in 

the robot dynamics occurs. Unlike most neural network based controllers th a t require 

off-line training, no off-line training procedures are needed in the proposed controller. 

The real-time fine motion control of robot manipulator is achieved through only the 

on-line learning of the neural network. Therefore it inherits advantages from both the 

neural network based controllers and the PD type controllers. By taking advantage 

of the robot regressor dynamics formulation, the neural network assumes a single

layer structure. The learning algorithm of the neural network is derived from the 

global stability analysis of a  Lyapunov function candidate, which is computationally 

efficient. The control system is guaranteed to be globally asymptotically stable, and
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the tracking error is proved to converge to zero.

6.2 T h e C ontrol A lgorithm

In this section, we will briefly introduce the robot dynamics and regressor dynamics 

of robot manipulator. Then, the philosophy of the proposed neural network based 

approach to real-time fine motion control of robot manipulators is presented, including 

the control algorithm and the on-line learning algorithm of the neural network. The 

system stability analysis using a Lyapunov theory and the proof of convergence of 

tracking error are provided.

6.2 .1  T h e  R o b o t D ynam ics and R egressor  D ynam ics

In absence of friction and other disturbances, the dynamics of an n-d.o.f. rigid robot 

m anipulator can be modeled by

M(q)q + C{q, q)q + G(q) =  r , (6.1)

where r  is the n  x  1 vector of joint torques; q, q and q are the n  x 1 vectors of the 

joint position, velocity, and acceleration, respectively; M  is the n x n  symmetric, 

positive definite mass matrix; Cq is the n x 1 vector of centripetal and Coriolis 

torques; and G  is the n x 1 vector of gravitational torques (Meng, 1992; Lu and 

Meng, 1993; Meng, 1996).

One very im portant property of robot dynamics, the regressor dynamics (Slotine 

and Li, 1987; Meng, 1992; Lu and Meng, 1993; Meng, 1996), is used in the proposed 

controller design. The highly nonlinear robot dynamics in Equation (6.1) can be 

expressed in a  linear form in terms of the robot dynamic parameters,

M (q)q + C(q, q)q +  G(q) =  Y (q , q, q)Q =  r , (6.2)

where 6 is a  r  x 1 vector consisting of the known and unknown robot dynamic param 

eters, such as link masses, moments of inertias, etc.; K i s a n n x r  coefficient m atrix 

consisting of the known functions of joint position q, velocity q and acceleration q, 

which is referred to as the manipulator regressor.

126

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.2 .2  T he C ontrol A lgorithm

The function of a controller is to implement a mapping between the known infor

mation (e.g., the desired information and the sensory information) and the actuator 

commands designed to achieve the robot’s task. The controller design problem can 

be described as: given the desired manipulator joint position velocity qd{t) and 

acceleration <&(£), design a control law for the actuator torques, which drive the robot 

to move, such that the joint position q{t) precisely tracks q<i(t).

The fundamental concept of the proposed controller is to take advantages from 

both the PD type controllers and the neural network based controllers. In addition, by 

incorporating the robot regressor dynamics formulation, the neural network assumes 

a single-layer architecture. The very simple learning algorithm is derived from the 

Lyapunov stability analysis, thus the global system stability and convergence are 

guaranteed. Therefore, in the proposed model, the actuator torque consists of two 

parts: the torque from a PD feedback loop and the torque from the feedforward neural 

network. The PD loop is used to guarantee the global stability. The neural network 

is used to achieve the real-time fine robot motion control through its on-line learning.

A schematic diagram of the proposed neural network based controller is shown 

in Figure 6.1, which consists of a feedforward neural network and a  feedback PD 

loop. The PD feedback loop guarantees that the system is globally stable during the 

learning period of the neural network a t the initial phase or when a sudden change 

in the robot dynamics happens, e.g., the robot picks up a load or drops off a load. 

The neural network is capable of achieving real-time fine robot motion control after 

a short on-line learning period and performing better and better as time goes on. 

Therefore the proposed controller inherits advantages from both the neural networks 

based controllers and the PD type controllers.

The control law for the actuator torque r  of an n-d.o.f. rigid robot manipulator 

is assigned as

T =  t NN +  Tpo, (6-3)

where tn n  and rpD are n  x 1 vectors that represent the torques from the single-layer

127

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



• •
4

d
I

d

PD

NN

robot
learning

law

Figure 6.1: Schematic diagram o f the proposed neural network based controller. 

neural network and the PD loop, respectively. The torque Tpp is given by

t pd — K pe 4- K de, (6.4)

where e =  qd — q is the n x 1 error vector of the joint position. The torque ryjv is the 

output the single-layer neural network, which is given by

Tn n  =  Y (q ,q ,q )w , (6.5)

where W  is a r  x 1 vector that represents the connection weights of the neural network. 

The input of the neural network is the regressor Y, which is an n  x r  matrix.

6.2 .3  T h e Learning A lgorith m  and S ta b ility  A n alysis

Substituting Equations (6.3)-(6.5) into (6.2), the error dynamics is obtained as

i.e..

K de + K pe = Y (q, q, q)d -  Y (q, q, q)W,

e + Ke = K d lY (9  - W )  = - K d Y 0 ,

(6.6)

(6.7)

128

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



where 9 = W  — 9, and K  =  K d lK p is a positive constant matrix. Substituting 

.4 =  —K  and B  = K d l , Equation (6.7) can be rewritten as

e =  Ae -  B Y 9. (6.8)

To derive the learning law of the neural network and to prove the system stability 

and track error convergence, the Lyapunov function candidate of the control system 

is chosen as,

v(t) =  eTPe + 9t T - 19, (6.9)

where P  and T are n x n and r  x r  positive definite constant matrices, respectively. 

Apparently the Lyapunov function candidate is positive definite, i.e., v (t) > 0. In 

addition, v(t) — 0 if and only if e =  0 and 9 = 0. By differentiation, the derivative of 

v(t) along the trajectory of the system is given by

v(t) =  eTPe + eTPe + 29Tr - l9 

= eT(P A  +  A P )e -  eTP B Y 9  -  9r Y TB TPe  +  2§r r ~ 1§

= —eTQe +  29t (T~1§ — Y TB TPe), (6.10)

where Q =  — (P A  +  A P ) = P K  +  K P  is a positive definite symmetric matrix. By 

choosing the following equation,

r ~l9 -  Y TB TP e = 0, (6.11)

then Equation (6.10) becomes

v(t) =  —eTQe < 0. (6.12)

Equation (6.12) implies that the proposed control system is globally stable. In addi

tion, Equation (6.12) implies that v =  0 if and only if e =  0. Therefore, according to 

LaSalle’s lemma, the control system is asymptotically stable, and the joint position 

tracking error e is guaranteed to converge to zero.

Since 9 =  W  — 9, then 9 = W . Therefore, from Equation (6.11), the derivative of 

W  is given as

W  = Y Y TB TPe. (6.13)

129

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Equation (6.13) is used as the learning law for updating the connection weight W  of 

the neural network in the proposed model. Obviously, it is much simpler than most 

commonly used learning rules such as the famous least mean square learning rule and

the multi-layer network back-propagation (BP) learning rule.

In summary, Equations (6.4), (6.5) and (6.13) define the proposed control algo

rithm.

The proposed neural network based controller is capable of achieving real-time fine 

motion control of multi-joint robot manipulators without any off-line training proce-

terized in Equation (6.3), and the corresponding learning law of the neural network is 

characterized in Equation (6.13). For simplification without losing generality, in this 

section, the proposed controller is applied to a simple two-link robot manipulator to 

track a desired elliptic trajectory and to compensate a sudden change in the robot 

dynamics in real-time with on-line learning only.

The two-link robot manipulator (shown in Figure 6.2) is modeled as two rigid links 

with lengths /j =  lm  and l2 =  2 m, and with point masses mi =  2 kg  and m 2 =  1 kg 

(including the load at the tip of Link 2) at the distal ends of the links. In this case, 

the signal-layer neural network has 5 neurons, thus the connection weight W  is a 5 x 1 

vector. The input of the neural network is the 2 x 5  matrix of the robot regressor 

Y . The computation of Y  requires the measurement of acceleration q in addition to 

joint position q and velocity q. To avoid this impractical requirement, qj. is used to

replace q. Thus Y  is given by (Meng, 1992; Lu and Meng, 1993; Meng, 1996; Yang 

and Meng, 19986; Meng and Yang, 1999)

where c* =  cos(g,), s, =  sin(9 .) and C12 =  cos(gi +  q2), and g is the gravitational 

acceleration constant. The output of the neural network is a  2  x  1  vector, which

6.3 A  Case Study

dures and without any knowledge of the robot dynamics. The control law is charac-

C2 <7id +  s2qx
(6.14)
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is the torque from the neural network. The learning rule in Equation (6.13) is used 

to update the weight IV. Note that there are no off-line training procedures in the 

proposed controller. During the on-line learning of the neural network, the connection 

weight \V  updates once when the robot moves one step. In the simulations, the robot 

takes 628 steps to track the whole ellipse, therefore the neural network learns 628 

times per tracking cycle. The model parameters used in the simulations are chosen 

as: K p =  100/2, K* =  14/ 2, P  =  / 2, and T =  15/3, where Ik is a k x k identical matrix.

Figure 6.2: Schematic diagram of a two-link robot manipulator. It is modeled as two 

rigid links with lengths ly =  1 m and U =  2m. and with point masses my =  2kg and 

m2 =  1 kg at the distal ends of the links.

6.3 .1  M otion  C ontrol o f a R ob ot M anipulator to  Track an 

E llip tic  T rajectory

The proposed controller is used to control this two-link robot to track an elliptic 

trajectory' (shown in Figure 6.3A with solid line). In the simulation, it is assumed 

that the robot dynamics is completely unknown. The initial connection weight W  is 

set randomly within the interval [0,1]. The initial joint position is set to be at an 

position with 20% offset from the desired initial joint position, i.e., g(0) =  0 .8 <7d(0 ).
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A Coulomb friction term,

F  = [O.Ssi^n^'x) 0.5sz<7n(<72)]r , (6.15)

is added to the robot dynamics, which is not modeled in the control algorithm in 

Equation (6.3). The dynamic tracking performance in the workspace is shown in 

Figure 6.3A. Figure 6.3B shows the error dynamics of the joint position. It shows 

that the tracking error sharply drops to near zero. Thus the proposed controller 

can achieve good real-time tracking performance through only the on-line learning of 

the neural network, even though there exist unmodeled disturbances. The applied 

torques to Joints 1 and 2 are depicted in Figures 6.4A and 6.4B, respectively. The 

total applied control torque, the torque from the neural network and the torque from 

the PD loop are plotted. It shows that at the initial period, the main contribution to 

the total applied torques results from the PD  loop, which then quickly decreases to 

near zero. After the initial learning phase, the contribution from the neural network 

increases and becomes the dominant component.

To see the roles played by the PD loop and the neural network, the two-link robot 

manipulator is controlled by the PD loop alone and the neural network alone to track 

the same elliptic trajectory. First, the robot is controlled by the PD control loop 

alone without the neural network, where the parameters K p and K j  are chosen as the 

same as in the previous simulation. Figure 6.5A shows the dynamic robot tracking 

performance in workspace, while the error dynamics of the joint position is shown 

in Figure 6.5B. It shows that the PD control loop alone cannot achieve a similar 

level of fine motion control. Then, the robot is controlled by the signal-layer neural 

network alone without the PD loop. Simulations show that the system is unstable 

and the robot moves in an uncontrolled manner. The connection weights and the 

tracking error quickly goes to infinity. This is because th a t the proposed learning 

algorithm for the neural network is derived from the global stability analysis of a 

Lyapunov function candidate with the presence of the PD loop. The neural network 

alone cannot perform properly without some off-line training or without the PD loop.

The ability to learn of the neural network ensures that the proposed controller
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performs better and better as time goes on when there is no disturbance or changes in 

the robot dynamics. Figure 6.6A shows the dynamic robot tracking performance when 

the robot to repeatedly track the same desired elliptic trajectory at the second round. 

It shows that the actual and desired trajectories almost overlap each other. The error 

dynamics of the joint position is shown in Figure 6.6B. It shows tha t the position 

error still decreases toward zero. Note that there exist unmodeled disturbances, the 

Coulomb friction term in Equation (6.15). The controller performs be tte r a t the 

second round, even with unmodeled disturbances.

6 .3 .2  M otion  C on tro l o f a R o b o t M anipulator to  C o m p en 

sa te  S u d d en  C hanges in th e  R o b o t D yn am ics

The proposed controller is capable of compensating any sudden changes in the robot 

dynamics. Such a property results from the fact that it inherits advantages from both 

the neural networks based controllers and the PD type controllers: when the sudden 

changes in the robot dynamics happens, the PD loop provides the dom inant control 

torque to guarantee the system stability; the learning ability of the neural network 

enable it quickly compensate the sudden changes. Two simulations are carried out: 

the robot suddenly picks up a  load and drops off a load.

In the first case, when the robot just passes a quarter of the whole elliptic tra

jectory a t the second round, it suddenly picks up a load with point mass m  =  lkg, 

equivalently, the link mass of Link 2 suddenly increases from m 2 =  1 kg to  m 2 =  2kg. 

The dynamic robot tracking performance and the error dynamics of the jo in t position 

are shown in Figures 6.7A and 6.7B, respectively. It shows that there is a  large track

ing error after the presence of the sudden change in the robot dynamics. However, 

the tracking error sharply drops back toward zero, and the robot still perform very 

well in trajectory tracking.

In the second case, the robot drops off a  load with point mass of 0.5kg when 

passing a quarter of the whole elliptic trajectory a t the second round, th a t is, the link 

mass suddenly changes from m 2 =  lkg  to m2 =  0.5kg. The dynamic robot tracking
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Figure 6.6: Motion control o f a two-link robot manipulator to track an elliptic tra

jectory using the proposed controller at the second round. A: the real-time tracking 

performance; B: the error dynamics o f the jo int position.
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performance and the error dynamics of the joint position are shown in Figures 6.8A 

and 6.8B, respectively. It shows that the robot can quickly compensate such a sudden 

change in the robot dynamics as well. The applied torque to Joint 2 is shown in 

Figure 6.8C, where the total applied torque, the torque from the neural network 

and the torque from the PD loop are plotted separately. It shows th a t initially the 

dominant contribution of the total applied torque to  Joint 2 is the torque from the 

neural network, because this is at the second round, when the change in the robot 

dynamics occurs, the torque from the PD loop has a sharp change. However, the 

quick learning of the neural network results in th a t the contribution from the PD 

loop quickly drops toward zero, and the torque from the neural network becomes 

dominant again.

6.4  A n A lternative C ontrol A lgorithm

The basic idea of the proposed controller is to take advantages from both the PD

control and the neural network based control. By incorporating the robot regressor

dynamics formulation, the neural network assumes a single-layer architecture. The 

very simple learning algorithm is derived from the Lyapunov stability analysis, thus 

the global stability of the control system and the convergence of the tracking error are 

guaranteed. In addition to the learning algorithm of the neural network in presented 

Section 6.2, an alternative control algorithm is presented in this section based on the 

same philosophy, which does not require the measurement of the acceleration q in its 

computation.

Alternatively, the control torque from the neural network t s n  is given by

t n n  = Y(q ,q ,qr)W, (6 .1 6 )

where qr is defined as

<Zr =  Qd +  K e ,  ( 6 .1 7 )

<7r =  q d  +  K e ,  ( 6 .1 8 )

1 3 9
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where K  = K d lK p. The control torque from the PD loop described in Equation (6.4) 

can be rewritten as

Tpo — K d{e 4- K d lK pe) = K d{e 4- Ke.) = —K ds, (6.19)

with the definition

s =  - e  -  K e  = ~{qd -  q) -  (qr -  qd) = q -  qr. (6.20)

Thus the control torque is now given by

r  =  T/vjv +  tpd =  Y (q ,q ,q r)W  — K ds. (6-21)

To prove the system stability and convergence of the tracking error, and to derive 

the learning law of the neural network, the Lyapunov function candidate of the control 

system is chosen as

v(t) =  l ( s TMs +  eTr - le), (6.22)

where T is a r  x r  positive constant matrix. Thus have v(t) >  0, and v(t) =  0 if and 

only if s = 0 and 6 = 0. By Differentiation, the derivative of v(t) along the trajectory 

of the system is given as

v(t) = sTM s + ^ s TM s + 6r r - l§

= sT(M q — Mqr ) +  ^-st M s + §r T~l9£
= sT{Mq -  M qr +  Cs) +  \ s t { M  -  2C )s  +  0t T~19 

= sT(M q  — Mqr +  Cs) 4- 9t T~19, (6.23)

where the property that M  — 2C  is skew symmetric (Meng, 1992; Lu and Meng, 1993; 

Meng, 1996) has been used. From Equations (6.1), (6.2) and (6.21), the closed-loop 

robot dynamics is given as

Mq +  Cq + G = Y (q ,q , qr)W  — K ds

= M qr +  Cq +  G — K ds, (6.24)
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i . e . ,

M q  — M qr =  M qr 4-Cq + G — K ds

=  Y(q, q, qr)9 -  K ds, (6.25)

where (*) =  (*) — (*), (*) is the estimated value of (*). Thus Equation (6.23) becomes

v(t) =  sT ( Y (q, q, qT)0 — K ds 4- C s) +  9TY~lQ 

=  — sT {Kd — C )s  4- sTY{q, q, qr)9 +  9t T~19 

= - s T (K d - C ) s  + 9r  ( Y T{q,q,qr)s + r ~ l9) , (6.26)

where C  =  |( C  4- C7 ) is a  symmetric matrix. By choosing the following equation

Y T(q,q,qr) s +  r - l§ = 0, (6.27)

then the derivative of v(t) is given as

v(t) = - s T (K d -  C)s. (6.28)

Because Equation (6.28) in conjunction with the same argument as adopted in Meng 

(1992) and Lu and Meng (1993), it can be proven tha t both position and velocity 

errors converge to zero (see Meng, 1992; Lu and Meng, 1993; Meng, 1996). From 

Equation (6.27), the learning algorithm for the neural network is obtained as

W  = - r Y T(q,q,qr)s. (6.29)

In summary, Equations (6.5), (6.4) and (6.29) define the alternative control algo

rithm. This control algorithm is applied to the same tracking control case described 

in Section 6.3. By choosing K p =  100/2, K d =  20/2, and T =  10/5, the dynamic 

robot tracking performance and the error dynamics of the joint position are shown 

in Figure 6.9A and Figure 6.9B, respectively. It shows th a t the proposed controller 

with an alternative input and learning law of neural network is capable of achieving 

a similar level of real-time fine motion control of robot manipulators.
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6 .5  C onclusion

In this chapter, an efficient neural network based approach is proposed for real-time 

fine motion control of multi-joint robot manipulators with completely unknown robot 

dynamics and subject to significant uncertainties. Several feature properties of the 

proposed controller are worth pointing out:

•  The control algorithm is computationally efficient. The neural network has 

signal-layer structure by taking advantage of the robot regress dynamics formu

lation. The learning algorithm derived from the Lyapunov stability analysis is 

much simpler than most commonly used neural network learning algorithms.

•  No off-line training is needed. Unlike most neural network based controllers that 

required off-line training procedures before the controllers can perform properly, 

the proposed controller achieves the real-time fine motion control through the 

on-line learning only.

•  No knowledge of the robot dynamics is needed. The proposed control can 

achieve real-time fine motion control with completely unknown robot dynamics 

parameters.

•  The control system is proved to be globally, asymptotically stable and the track

ing error is guaranteed to converge to zero.

•  The proposed controller is capable of quickly compensating sudden changes in 

the robot dynamics. This property results from the fact that the proposed 

controller inherits the advantages from both the PD type controllers and the 

neural networks based control algorithms.
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C hapter 7

C onclusion and Future Work

In this chapter, the results obtained in this thesis will be summarized in the conclusion 

section. Then the future work related to our study will be outlined.

7.1 C onclusion

In this thesis, we have investigated several aspects of motion planning and motion 

control of robotic systems. The results obtained in Chapters 2, 3, 4, 5, and 6 can be 

summarized as follows.

•  A biologically inspired neural network approach is developed for real-time mo

tion planning with obstacle avoidance of a point mobile robot in a nonstationary 

environment. The state space of the neural network is the Cartesian workspace 

of the robot. Each neuron in the topologically organized neural network is 

characterized by a shunting equation or an additive equation. The stability 

and convergence of the neural network system is guaranteed by both qualita

tive analysis and the Lyapunov stability theory. The proposed approach is not 

sensitive to model parameter variations nor sensor noise. The real-time opti

mal robot motion is planned through the dynamic activity landscape of the 

neural network without explicitly optimizing any cost functions, without ex

plicitly searching over the free workspace or the collision paths, without any
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prior knowledge of the dynamic environment, and without any learning proce

dures. Therefore, the model algorithms are computationally efficient. There 

are only local connections among neurons. The computational complexity of 

the proposed approach linearly depends on the neural network size.

•  A novel neural network approach is developed for real-time robot motion plan

ning with safety consideration in a nonstationary environment. By employ

ing both excitatory and inhibitory lateral connections among neurons and the 

threshold of neural connections, the proposed model is capable of planning a 

real-time “comfortable” motion path of a point mobile robot or robot manip

ulator, not suffering from either the “too far” nor the “too close” problems. 

The strength of the clearance from obstacle is adjustable. By choosing suit

able model parameters, the proposed model is capable of generating either the 

shortest path, a comfortable path, or the safest path of a point mobile robot or 

robot manipulator.

•  A novel neural network approach is developed for real-time motion planning 

with obstacle avoidance of 3-d.o.f. robots in a nonstationary 2D workspace. By 

extending the state space of the neural network to the configuration space of 

3-d.o.f. robots, the proposed model is capable of planning real-time collision- 

free robot motion without any local collision checking procedures. In addition, 

some complicated robot motion planning problems are studied, such as real

time motion planning with sudden environmental changes, motion planning of 

a robot with multiple moving targets, and motion planning of multiple robots 

in the same workspace.

•  a novel neural network approach is developed for real-time collision-free mo

tion planning of nonholonomic car-like robots in a nonstationary environment. 

Based the neural network model for motion planning of 3-d.o.f. robots in 2D 

workspace, the proposed model employs directionally-selective lateral connec

tions in the neural network. The neural activity propagation is subject to the 

kinematic constraint of the nonholonomic car-like robot. The real-time optimal
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robot motion is planned through the dynamic neural activity landscape, with 

the robot nonholonomic constraint, without any local collision checking proce

dures a t each step of the robot movement. Therefore the model algorithm is 

computationally efficient. To the best of our knowledge, it is the first time that 

the real-time motion planning of car-like robots are studied using a  non-learning 

based neural network approach.

•  An efficient neural network based approach is proposed for real-time fine motion 

control of robot manipulators with completely unknown robot dynamics and 

subject to significant uncertainties. No off-line training procedure is needed in 

the proposed controller. The real-time fine motion control of robot manipulators 

is achieved through only on-line learning of the neural network. In addition, 

the proposed controller is capable of quickly compensating sudden changes in 

the robot dynamics. By taking advantage of the robot regressor dynamics, 

the neural network assumes a  single-layer structure, and the learning algorithm 

is computationally efficient. The proposed controller inherits advantages from 

both the PD type controllers and the neural networks based controllers. The 

global asymptotic stability of the control system and the convergence of the 

tracking error is proved by a Lyapunov stability theory.

7.2 Future W ork

The work presented in this thesis can only be considered preliminary, since many 

challenging and possibly more important problems have not been touched in this 

thesis. In this section, we would like to propose a number of problems as possible 

future work related to our study.

• In this thesis, we limit our scope to robot motion p la n n in g  and robot motion 

control only and do not consider the multi-sensor fusion problems. Therefore, 

the future work shall study the multi-sensor fusion using biologically inspired 

approaches, which provides the necessary environmental and internal informa-
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tion to the robotic systems.

•  As an continuation of our work in real-time position control of robot manipu

lators, it is quite natural to seek force control or hybrid position/force control 

strategies using neural network based approaches.

•  As an continuation of our work in real-time motion planning of car-like robots, 

the future work shall seek motion control strategies of car-like robots using 

biologically inspired approaches.

•  In this thesis, we limit our scope to  theoretical aspects of motion planning and 

motion control of robotic systems. Future work shall study the practical aspects 

of the proposed neural network based approaches.
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