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Abstract

Background: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the
phylogenetic placement of the event remains unclear.

Results: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we
employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic
gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public
transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation
transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-
resolved gamma duplications was placed before the separation of rosids and asterids and after the split of
monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot
evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core
eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate
that the duplication events were intensely concentrated around 117 million years ago.

Conclusions: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species
appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene
trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when
genome sequences are only available for a subset of species represented in the gene trees. Comprehensive
transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis.

Background
Gene duplication provides the raw genetic material for
the evolution of functional novelty and is considered to
be a driving force in evolution [1,2]. A major source of
gene duplication is whole genome duplication (WGD;
polyploidy), which involves the doubling of the entire
genome. WGD has played a major role in the evolution
of most eukaryotes, including ciliates [3], fungi [4], flow-
ering plants [5-16], and vertebrates [17-19]. Studies in
these lineages support an association between WGD

and gene duplications [6,20], functional divergence in
duplicate gene pairs [21,22], phenotypic novelty [23],
and possible increases in species diversity [24,25] driven
by variation in gene loss and retention among diverging
polyploidy sub-populations [26-29].
There is growing consensus that one or more rounds of

WGD played a major role early in the evolution of flower-
ing plants [2,5,7-9,13,30,31]. Early synteny-based and phy-
logenomic analyses of the Arabidopsis genome revealed
multiple WGD events [8,9]. The oldest of these WGD
events was placed before the monocot-eudicot divergence,
a second WGD was hypothesized to be shared among
most, if not all, eudicots, and a more recent WGD was
inferred to have occurred before diversification of the
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Brassicales [9]. Synteny analyses of the recently sequenced
nuclear genomes of Vitis vinifera (wine grape, grapevine)
[32] and Carica papaya (papaya tree) [7] provided more
conclusive evidence for a somewhat different scenario in
terms of the number and timing of WGDs early in the his-
tory of angiosperms. Each Vitis (or Carica) genome seg-
ment can be syntenic with up to four segments in the
Arabidopsis genome, implicating two WGDs in the Arabi-
dopsis lineage after separation from the Vitis (or Carica)
lineage [7,12,32]. The more ancient one (b) appears to
have occurred around the time of the Cretaceous-Tertiary
extinction [10]. Analyses of the genome structure of Vitis
revealed triplicate sets of syntenic gene blocks [11,32].
Because the blocks are all similarly diverged, and thus
were probably generated at around the same time in the
past, the triplicated genome structure is likely to have
been generated by an ancient hexaploidy event, possibly
similar to the two successive WGDs likely to have pro-
duced Triticum aestivum [33]. Although the mechanism is
not clear at this point, the origin of this triplicated genome
structure is commonly referred to as gamma or g (here-
after g refers to the gamma event). Comparisons of avail-
able genome sequences for other core rosid species
(including Carica, Populus, and Arabidopsis) and the
recently sequenced potato genome (an asterid, Solanum
tuberosum) show evidence of one or more rounds of poly-
ploidy with the most ancient event within each genome
represented by triplicated gene blocks showing interspeci-
fic synteny with triplicated blocks in the Vitis genome
[7,11,34,35]. The most parsimonious explanation of these
patterns is that g occurred in a common ancestor of rosids
and asterids, because all sequenced genomes within these
lineages share a triplicate genome structure [12,35].
Despite this growing body of evidence from genome

sequences, the phylogenetic placement of g on the
angiosperm tree of life remains equivocal (for example,
[13]). As described above, the g event is readily apparent
in analyses of sequenced core eudicot genomes, and
recent comparisons of regions of the Amborella genome
and the Vitis synteny blocks indicate that the g event
occurred after the origin and early diversification of
angiosperms [36]. In addition, comparisons of the Vitis
synteny blocks with bacterial artificial chromosome
sequences from the Musa (a monocot) genome provide
weak evidence that g postdates the divergence of mono-
cots and eudicots [11].
As an alternative to synteny comparisons, a phyloge-

nomic approach has also been used successfully to deter-
mine the relative timing of WGD events. By mapping
paralogs created by a given WGD onto phylogenetic
trees, we can determine whether the paralogs resulted
from a duplication event before or after a given branch-
ing event [9]. In a recent study, Jiao et al. [5] used a simi-
lar strategy to identify two bouts of concerted gene

duplications that are hypothesized to be derived from
successive genome duplications in common ancestors of
living seed plants and angiosperms. When using a phylo-
genomic approach, extensive rate variation among spe-
cies could lead to incorrect phylogenetic inferences and
then possibly also result in the incorrect placement of
duplication events [11]. Gene or taxon sampling can
reduce variation in branch lengths and the impact of
long-branch attraction in gene tree estimates (for exam-
ple, [37-39]). Therefore, effective use of the phyloge-
nomic approach requires consideration of possible
differences in substitution rates and careful taxon sam-
pling to divide long branches that can lead to artifacts in
phylogenetic analyses.
The availability of transcriptome data produced by both

traditional (Sanger) and next-generation cDNA sequen-
cing methods has grown rapidly in recent years [40,41].
In PlantGDB, very large Sanger EST datasets from multi-
ple members of Asteraceae (for example, Helianthus
annuus, sunflower) and Solanaceae (for example,
S. tuberosum, potato), in particular, provide good cover-
age of the gene sets from the two largest asterid lineages.
With advances in next-generation sequencing, compre-
hensive transcriptome datasets are being generated for an
expanding number of species. For example, the Ancestral
Angiosperm Genome Project has generated large, multi-
tissue cDNA datasets of magnoliids and other basal
angiosperms, including Aristolochia, Persea, Lirioden-
dron, Nuphar and Amborella [5]. The Monocot Tree of
Life project [42] is generating deep transcriptome data-
sets for at least 50 monocot species that previously have
not been the focus of genome-scale sequencing. The
1000 Green Plant Transcriptome Project [43] is generat-
ing at least 3 Gb of Illumina paired-end RNAseq data
from each of 1,000 plant species from green algae
through angiosperms (Viridiplantae). In this study, we
draw upon these resources, including an initial collection
of basal eudicot species that have been very deeply
sequenced by the 1000 Green Plant Transcriptome Pro-
ject. Six members of Papaveraceae (Argemone mexicana,
Eschscholzia californica, and four species of Papaver)
have been targeted for especially deep sequencing, with
over 12 Gb of cDNA sequence derived from four or five
tissue-specific RNAseq libraries. Three other basal eudi-
cots (Podophyllum peltatum (Berberidaceae), Akebia tri-
foliata (Lardizabalaceae), and Platanus occidentalis
(Platanaceae)) sequenced by the 1000 Green Plant (1KP)
Transcriptome Project, and EST sets available for addi-
tional strategically placed species (for example, [44,45])
were employed for phylogenomic estimation of the tim-
ing of the g event. Assembled unigenes (sequences pro-
duced from assembly of EST data sets) were sorted into
gene families and then the phylogenetic analyses of gene
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families were performed to test alternative hypotheses for
the phylogenetic placement of the g event.

Results and discussion
Since the g event was first identified in a groundbreak-
ing phylogenomic analysis of the Arabidopsis genome
[9], its timing has been hypothesized to have predated
the origin of angiosperms (for example, [25,46]), the
divergence of monocots and eudicots (for example, [47])
and the divergence of asterid and rosid eudicot clades
(for example, [11,35]) (Figure 1). Most recent analyses
suggest that g occurred within the eudicots, but the tim-
ing of the g event relative to the diversification of core
eudicots remains unclear [13]. Resolving whether g
occurred just before the radiation of core eudicots or
earlier, in a common ancestor of all eudicots, has impli-
cations for our understanding of the relationship

between polyploidization, diversification rates, and mor-
phological novelty (for example, [14]).

Phylogenomic placement of the g polyploidy event
To ascertain the timing of the g event relative to the ori-
gin and early diversification of eudicots, we mainly
focused on dating paralogous gene pairs that are retained
on synteny blocks in Vitis [11,12]. Vitis displays the most
complete retention for g blocks among all genomes
sequenced to date, and thus provides the best target for
phylogenomic mining of the g history. Vitis also repre-
sents the sister group to all other members of the rosid
lineage (APG III, 2009) [48,49], so homologous genes
were sampled from other species of rosids, asterids, basal
eudicots, monocots, and basal angiosperms in order to
estimate the timing of the g event in relation to the diver-
gence of these lineages. Genes were clustered into

Figure 1 Schematic phylogenetic tree of flowering plants. BR1 to BR4 denote potential time points when the g event may have occurred.
BR1, monocots + eudicots duplication; BR2, eudicot-wide duplication; BR3, core eudicot-wide duplication; BR4, rosid-wide duplication.

Jiao et al. Genome Biology 2012, 13:R3
http://genomebiology.com/2012/13/1/R3

Page 3 of 14



‘orthogroups’ (homologous genes that derive from a sin-
gle gene in the common ancestor of the focal taxa) using
OrthoMCL [50] with eight sequenced angiosperm gen-
omes (Table 1). By excluding Vitis pairs that are not
included in the same orthogroups, and requiring that
orthogroups contained both monocots and non-Vitis
eudicots, 900 pairs of Vitis genes were retained from 781
orthogroups. These orthogroups were used in our inves-
tigation of the g duplication event.
To verify that the phylogenetic placement of the g

event was shared by rosids and asterids, and to test
whether it was shared by all eudicots or by eudicots and
monocots (near angiosperm-wide), these orthogroups
were then populated with unigenes of asterids, basal
eudicots, non-grass monocots, and basal angiosperms
(Table 2). Grasses are known to be distinct from other
angiosperms in their high rate of nucleotide substitu-
tions, and codon biases within the grasses make this
clade distinct from other angiosperms, including non-
grass monocots (for example, [51,52]), so inclusion of
non-grass monocots was necessary to reduce artifacts in
gene tree estimation. More generally, when dealing with
phylogenomic-scale datasets, we strive for adequate
taxon sampling to cut long branches, but avoid adding a
large proportion of unigenes with low coverage. Inade-
quate taxon sampling could lead to spurious inference of
phylogeny, while incomplete sequences (that is, low-cov-
erage unigenes) can greatly degrade branch support and
resolution of phylogenetic trees.
To phylogenetically place the g event with confidence,

we adopted the following support-based approach. Three
relevant bootstrap values were taken into account when
evaluating support for a particular duplication. For exam-
ple, given a topology of (((clade2)bootstrap2,(clade3)
bootstrap3)bootstrap1), bootstrap2 and bootstrap3 are
the bootstrap values supporting clade2 (clade2 here will
include one of the Vitis g duplicates) and clade3 (includ-
ing the other Vitis duplicate), respectively, while boot-
strap1 is the bootstrap value supporting the larger clade
including clade2 and clade3. The value of bootstrap1

indicates the degree of confidence in the inferred ances-
tral node joining clades 2 and 3. In this study, when boot-
strap1, and at least one of bootstrap2 and bootstrap3
were ≥50% (or 80%), we determined whether an asterid,
basal eudicot, monocot, or basal angiosperm was con-
tained in clades 2 or 3 (for example, asterids in Figures 2
and 3) or sister to their common ancestor (node defining
clade 1) with a bootstrap value (BS) ≥50% (or 80%; for
example, basal eudicots, monocots and basal angiosperms
in Figures 2 and 3).
Homologous sequences were identified for 769 of the

781 orthogroups and were subsequently used for phylo-
genetic analysis. For example, orthogroup 1202 was well
populated with unigenes of asterids, basal eudicots, non-
grass monocots, and basal angiosperms (Figure 2). Two
Vitis genes, which were located on a syntenic block, were
clustered into two clades, both of which include genes
from asterids and other rosids. This phylogenetic tree
supports (BS ≥80%) the duplication of two Vitis genes
before the split of rosids and asterids and after the diver-
gence of basal eudicots, indicating that g is restricted to
core eudicots (BR3 of Figure 1; Figure 2). In another
example, only one asterid unigene passed the quality con-
trol steps and was clustered into orthogroup 1083. This
asterid unigene was grouped into one of the duplicated
clades, also supporting (BS ≥50%) a duplication in the
common ancestor of extant core eudicots (BR3 of Figure
1; Figure 3). Only a few duplications of Vitis gene pairs
were identified as occurring before the divergence of
monocots and eudicots (BR1 of Figure 1; seven duplica-
tions with BS ≥50%), or restricted to rosids (BR4 of
Figure 1; six duplications with BS ≥50%, four duplications
with BS ≥80%). We identified 168 Vitis gene pairs that
were duplicated after the split of basal eudicots (BR3 of
Figure 1) with BS ≥50%, and 80 of these had BS ≥80%.
We also found that 70 Vitis genes were duplicated before
the separation of basal eudicots (BR2 of Figure 1) with
BS ≥50% and 19 with BS ≥80% (Table 3). Therefore, our
phylogenomic analysis provided very strong support that
g occurred before the divergence of rosids and asterids,

Table 1 Summary of datasets for eight sequenced plant genomes included in this study

Species Annotation version Number of annotated genes

Arabidopsis thaliana (thale cress) TAIR version 9 27,379

Carica papaya (papaya) ASGPB release 25,536

Cucumis sativus (cucumber) BGI release 21,635

Populus trichocarpa (black cottonwood) JGI version 2.0 41,377

Glycine max (soybean) Phytozome version 1.0 55,787

Vitis vinifera (grape vine) Genoscope release 30,434

Oryza sativa (rice) RGAP release 6.1 56,979

Sorghum bicolor JGI version 1.4 34,496

These eight genome sequences were used to construct orthogroups, which were then populated with additional unigenes of asterids, basal eudicots, non-grass
monocots, and basal angiosperms. The number of annotated genes in each genome is indicated. ASGPB, Advanced Studies of Genomics, Proteomics and
Bioinformatics; JGI, Joint Genome Institute; RGAP, Rice Genome Annotation Project; TAIR, The Arabidopsis Information Resource.
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after the split of monocots and eudicots, and most likely
after the earliest diversification of eudicots.

Molecular dating of the g duplications
To estimate the absolute date of the g event, we cali-
brated 161 of the 168 orthogroups supporting (BS ≥50%)
a core eudicot-wide duplication and 66 of the 70
orthogroups supporting a eudicot-wide duplication, and
then estimated the duplication times using the program
r8s [53] (Materials and methods). We then analyzed the
distribution of the inferred duplication times using a
Bayesian method that assigned divergence time estimates

to classes specified by a mixture model [54]. The distri-
bution of duplication times of core eudicot-wide Vitis
pairs shows a peak at 117 ± 1 (95% confidence interval)
(Figure 4a), and the distribution of all eudicot-wide dupli-
cation times has a peak at 133 ± 1 million years ago
(mya) (Figure 4b). Dating estimates have additional
sources of error beyond the sampling effects accounted
for in standard error estimates (for example, [55]). How-
ever, the clear pattern is that the duplication branch
points occurred over a narrow window of time very close
to the eudicot calibration point that represents the first
documented appearance of tricolpate pollen in the fossil

Table 2 Summary of unigene sequences of asterids, basal eudicots, non-grass monocots, and basal angiosperms
included in phylogenetic study

Species Lineage Source Number of reads/ESTs Size of data Assembly
method(s)

Number of
unigenes

Panax quinquefolius Asterid NCBI-SRA 209,745 89.7 Mb MIRA 22,881

Lindenbergia phillipensis Asterid PPGP 69,545,362 5.9 Gb CLC 104,904

Helianthus annuus Asterid TIGR PTA 93,279 NA Megablast-CAP3 44,662

Solanum tuberosum Asterid TIGR PTA 219,485 NA Megablast-CAP3 81,072

Mimulus gutatus Asterid PlantGDB 231,012 NA Vmatch-PaCE-CAP3 39,577

Papaver somniferum Basal eudicot 1KP + SRA 140,604,904 + 3,709,876 10.3 Gb + 1.3 Gb MIRA-
SOAPDenovo-CAP3

252,894

Papaver setigerum Basal eudicot 1KP 134,478,938 9.8 Gb SOAPDenovo-CAP3 406,167

Papaver rhoeas Basal eudicot 1KP 157,506,374 11.5 Gb SOAPDenovo-CAP3 383,426

Papaver bracteatum Basal eudicot 1KP 89,663,900 6.5 Gb SOAPDenovo-CAP3 201,564

Eschscholzia californica Basal eudicot NCBI + SRA +
1KP

14,381 + 559,470 +
133,422,402

6.8 Mb + 55 Mb +
9.7 Gb

MIRA-
SOAPDenovo-CAP3

165,260

Argemone mexicana Basal eudicot 1KP + NCBI 144,520,360 + 1,692 10.5 Gb + 1 Mb SOAPDenovo-
CAP3

148,533

Akebia trifoliata Basal eudicot 1KP 29,156,514 2.1 Gb CLC-CAP3 46,024

Podophyllum pelatum Basal eudicot 1KP 20,139,210 1.5 Gb CLC-CAP3 31,472

Platanus occidentalis Basal eudicot 1KP 25,508,642 1.9 Gb CLC-CAP3 42,373

Aquilegia formosa x Aquilegia
pubescens

Basal eudicot PlantGDB 85,040 NA Vmatch-PaCE-CAP3 19,615

Mesembryanthemum
crystallinum

Caryophillid PlantGDB 27,553 NA Vmatch-PaCE-CAP3 11,317

Beta vulgaris Caryophillid PlantGDB 25,883 NA Vmatch-PaCE-CAP3 18,009

Acorus americanus Monocot MonATOL +
1KP

149,320 + 15,427,316 44.9 Mb + 1.1 Gb MIRA-
SOAPDenovo-CAP3

59,453

Chamaedorea seifrizii Monocot MonATOL 33,100,948 2.5 Gb CLC 68,489

Chlorophytum rhizopendulum Monocot MonATOL 59,505,714 4.5 Gb CLC 58,766

Neoregelia sp. Monocot MonATOL 49,121,506 3.7 Gb CLC 63,269

Typha angustifolia Monocot MonATOL 70,733,124 5.7 Gb CLC 57,980

Persea americana (avocado) Magnoliid AAGP 2,336,819 683 Mb MIRA 132,532

Aristolochia fimbriata
(Dutchman’s pipe)

Magnoliid AAGP 3,930,505 880 Mb MIRA 155,371

Liriodendron tulipifera (yellow-
poplar)

Magnoliid AAGP 2,327,654 543 Mb MIRA 137,923

Nuphar advena (yellow pond
lily)

Basal
angiosperm

AAGP 3,889,719 1.1 Gb MIRA 289,773

Amborella trichopoda Basal
angiosperm

AAGP 2,943,273 776 Mb MIRA 208394

1KP, 1000 Green Plant Transcriptome Project; AAGP, Ancestral Angiosperm Genome Project [44]; MonATOL, Monocot Tree of Life Project [42]; NA, not available;
NCBI, National Center for Biotechnology Information; PPGP, Parasitic Plant Genome Project [65]; SRA, Sequence Read Archive; TIGR PTA, The Institute for Genomic
Research Plant Transcript Assemblies [66].
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record. We also analyzed the 80 nodes and 19 nodes
showing duplication shared by core eudicots and all eudi-
cots, respectively, with bootstrap support ≥80% (Figure
4d, e) and found similar distributions (116 ± 1 mya for
core eudicot duplications and 135 ± 2 mya for all eudicot
duplications). The inferred dates for Vitis duplications
shared either by core eudicots or all eudicots are very

close to each other, and are concentrated around 125
mya. We also investigated the distribution of all inferred
duplication times together (core eudicot-wide and eudi-
cot-wide). Even given a time constraint (125 mya) that
would split the date estimates for core eudicot and eudi-
cot-wide duplications, the distributions of combined
inferred duplication times show only one significant
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Figure 2 Exemplar maximum likelihood phylogeny of Ortho 1202. RAxML topology of an orthogroup (Ortho 1202) indicating that the g
paralogs of Vitis were duplicated before the split of rosids and asterids and after the early radiation of eudicots. The scored bootstrap (BS) value
for this duplication is over 80%, because nodes #1 and #2 (and/or #3) have BS > 80%. Legend: green star = core eudicot duplication; colored
circles = recent independent duplications; numbers = bootstrap support values.
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Figure 3 Exemplar maximum likelihood phylogeny of Ortho 1083. RAxML topology of an orthogroup (Ortho 1083) indicates that the g
paralogs of Vitis were duplicated before the split of rosids and asterids, and after the early radiation of eudicots. The scored bootstrap (BS) value
for this duplication is over 50%, because nodes #1 has BS < 80%. Legend: green star = core eudicot duplication; colored circles = recent
independent duplications; numbers = bootstrap support values.

Table 3 Phylogenetic timing of Vitis g duplications inferred from orthogroup phylogenetic histories

BR1 BR2 BR3 BR4

Ortho BS ≥ 80 BS ≥ 50 BS ≥ 80 BS ≥ 50 BS ≥ 80 BS ≥ 50 BS ≥ 80 BS ≥ 50

Duplications 0 7 19 70 80 168 4 6

Percent 0% 2.8% 18.3% 27.9% 77.7% 67% 4% 2.3%

BRx designations are illustrated in Figure 1. Bootstrap (BS) ≥80 and BS ≥50 are counts of nodes resolved with BS ≥80 or ≥50, respectively.
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peak, with a mean at 121 mya for orthogroups with boot-
strap support ≥50% (Figure 4c) and 120 mya for
orthogroups with bootstrap support ≥80% (Figure 4f). A
single peak observed for the combined data (Figure 4c)
suggests that the genome-scale event(s) leading to the tri-
plicated genome structure of core eudicots occurred in a
narrow window of time nearly coincident with the sud-
den appearance of eudicot pollen-types in the fossil
record [56].

Hexaploidization and early eudicot radiation are close in
time
Many of the gene trees showed no resolution or low
bootstrap support for nodes distinguishing hypotheses
BR2 and BR3. If the g event had occurred almost any-
where along the long branch leading to eudicots, this
event would have been relatively easy to resolve. The lack
of resolution of the timing of duplication events around
the basal eudicot speciation nodes suggests that the g

event may have occurred during a rapid species radiation.
Another possibility could be due to the nature of hexa-
ploidization. If, as our analyses suggest, the polyploidy
event (see below for possible scenarios) occurred soon
after the divergence of basal eudicots, the substitution
rates for g paralogs could vary. For example, one dupli-
cate could evolve very slowly while the other evolves at
an accelerated rate [4]. These possibilities could add sig-
nificant challenges to the precise resolution of events
occurring at or near the branch points for basal versus
core eudicot lineages. Despite these challenges, most
well-resolved gene trees support the hypothesis that the g
event occurred in association with the origin and diversi-
fication of the core eudicots, after the core eudicot line-
age diverged from the Ranunculales (BR3 of Figure 1).

Nature of the g event
An additional question is whether the ancient hexaploid
common ancestor was formed by one or two WGDs
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that occurred over a very short period (for example, as
with hexaploid wheat). It was demonstrated that two of
the three homologous regions were more fractionated
than the third, suggesting a possible mechanism for the
g event [34]. In one proposed scenario, a genome dupli-
cation event generated a tetraploid, which then hybri-
dized with a diploid to generate a (probably sterile)
triploid. Finally, a second WGD event doubled the tri-
ploid genome to generate a fertile hexaploid. Alterna-
tively, unreduced gametes of a tetraploid and a diploid
could have fused to generate a hexaploid directly.
Another characterization of syntenic blocks indicates
that the three corresponding regions are generally equi-
distant from one another [11]. Our analyses of duplica-
tion points in the phylogenomic analyses resolve only a
single peak in estimated dates for the ‘g event’, which
would be consistent with either scenario, given that any
complex scenario would involve ancient events that
occurred within a brief period of time. More evidence is
needed to establish a more definitive mechanism for the
apparent hexaploidization (that is, as one versus two
events, allopolyploid versus autopolyploid).

Rate variations between paralogs of Vitis
In another attempt to increase resolving power, Ks distri-
butions for duplicate Vitis genes were investigated. The Ks

distributions of Vitis pairs supporting a core eudicot-wide
duplication inferred from phylogenetic analyses show one
significant peak at Ks ~1.03 (Figure 5a). The Ks values for
eudicot-wide duplicate Vitis pairs were not well clustered,
and their distribution shows one peak at 1.31, which indi-
cates slightly more divergence for these Vitis pairs (Figure
5b). This result is consistent with phylogenetic analyses
that show this set of duplications occurred somewhat ear-
lier (all eudicot-wide versus core eudicot-wide). We also
investigated the distribution of all Ks values together (core
eudicot-wide and eudicot-wide). Three statistically signifi-
cant peaks were identified: 0.3, 1.02 and 1.40 (Figure 5c).
Finally, we estimated Ks values for all (2,191) pairs of Vitis
g paralogs identified by Tang et al. [11] in analyses of syn-
tenic blocks. We were able to detect four significant com-
ponents using the mixture model implemented with
EMMIX (McLachlan et al. [54]): 0.12, 1.09, 1.85, and 2.7
(Figure 5d). This Ks distribution clearly shows that the
major peak (approximately 1.09; green curve in Figure 5d)
was close to the peak of Ks distribution of core eudicot-
wide duplicates (at approximately 1.03; Figure 5a). This
intriguing pattern (Figure 5c, d) could be a consequence of
stable hexaploidy arising from two WGDs, one in the
common ancestor of all eudicots and one in the common
ancestor of core eudicots. However, there are no consis-
tent patterns of duplications for entire syntenic blocks; for
example, some syntenic blocks have genes consistently
duplicated in core eudicots, while other syntenic blocks

were duplicated eudicot-wide (results not shown). Alterna-
tively, this pattern also could be consistent with the
hypothesis of an allopolyploidy event for g. If two ancestral
genomes were involved in the hexaploidization and the
Vitis genome had evolved slowly, two significant peaks
might be detected [57]. A third possibility is that Vitis
pairs supporting a eudicot-wide duplication may be the
products of pre-WGD tandem or segmental duplications
that were misidentified as syntenic g paralogs due to loss
of alternative copies through the fractionation process.
These hypotheses will have to be tested through compara-
tive analyses as additional plant genomes, especially of
outgroups (for example, Aquilegia, Amborella) and other
basal eudicots (eg., Buxus, Trochodendron), are sequenced.

Implications of the g event characterizing most eudicots
Our results suggest that the g polyploidy event was closely
coincident with a rapid radiation of major lineages of core
eudicot lineages that together contain about 75% of living
angiosperm species. This rapid lineage expansion follow-
ing the g event could be an important exception to the
general pattern described by Mayrose et al. [31], who con-
cluded that there may generally be reduced survival of
polyploid plant lineages. The eudicots consist of a graded
series of generally small clades (often called early-diverging
or basal eudicots) that are successive sisters to the core
eudicots ([49] and references therein). It is within the core
eudicot clade where most major lineages as well as the
large majority of angiosperm species reside (for example,
rosids, asterids, caryophyllids). Several key evolutionary
events seem to correspond closely to the origin of the core
eudicots, including the genome-wide event described here,
the evolution of a pentamerous, highly synorganized
flower with a well-differentiated perianth, and the produc-
tion of ellagic and gallic acids [58]. Significantly, the dupli-
cation of several genes crucial to the establishment of
floral organ identity also occurred near the origin of the
core eudicots (AP3, AP1, AG, and SEP gene lineages)
[46,59,60], suggesting that these duplications - possibly
originating from the g event - may also be involved in the
‘new’ floral morphology that emerged in this clade [61,62].
This study also helps to shed light on prior studies,

where the potential timing of the g event varied widely
from possibly in an ancestor of all angiosperms [9] to
perhaps as recent as only rosids [63]. A polyploid event
has been detected that is angiosperm-wide, but this was
an earlier event (ε, epsilon) [5]. Our results are consis-
tent with a recent study that identified a signature of
the g event in the genome of the potato, an asterid [35].
The g event was suggested to be absent from grass gen-
omes in comparisons of Vitis and Oryza [32], but this
finding was questioned by Tang et al. [11]. However,
the draft genome of strawberry (Fragaria vesca), a rosid
that shares the g event, did not show evidence for g in
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syntenic block analysis [64], suggesting that either the g
event has been obscured by further rearrangements and
fractionation, or expansion of the Fragaria genome
sequence data may be necessary. Although sequenced
plant genomes are being produced at an increasing rate,
a much larger source of genome-scale evidence is

coming from very large-scale transcriptome studies such
as the 1000 Green Plant Transcriptome Project and the
Monocot Tree of Life Project. In this paper, we have
used gigabases of transcriptome data from species at key
branch points to phylogenetically time hundreds of
ancient gene duplications. Combined with evidence
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from Ks analysis and syntenic blocks, global gene family
phylogenies could incorporate extensive evidence with-
out a sequenced genome, and ultimately facilitate a
much better understanding of plant evolution.

Conclusions
Phylogenetic analyses and molecular dating provide con-
sistent and strong evidence supporting the occurrence
of the g polyploidy event after the divergence of mono-
cots and eudicots, and before the asterid-rosid split. It is
difficult to determine whether the g event was shared by
monocots or not based only on synteny patterns shared
between Vitis and other monocot genomes [11]. By
including massive transcriptome datasets from many
additional taxa, such as basal angiosperms, non-grass
monocots, basal eudicots and asterids, we employed a
comprehensive phylogenomic approach, and dated gene
pairs on syntenic blocks in a relatively slowly evolving
species (Vitis) [11]. We were able to place the g event(s)
in a narrow window of time, most likely shortly before
the origin and rapid radiation of core eudicots.

Material and methods
Data and assemblies
Genomes were obtained from various sources as given
in Table 1. EST data or assemblies were obtained from
sources indicated in Table 2. The largest quantities of
new sequence data are represented by transcriptome
datasets for nine basal eudicot species produced by Beij-
ing Genomics Institute for the 1000 Green Plant Tran-
scriptome Project [43]. The Monocot Tree of Life
Project (MonATOL) generated five non-grass monocot
transcriptomes. One transcriptome dataset for Linden-
bergia philippensis (asterid) was obtained from the Para-
sitic Plant Genome Project [65]. Several methods were
used for EST data assembly, according to the type and
quantity of data that were available. Assemblies invol-
ving large numbers of Sanger reads were obtained either
from the Plant Genome Database [45] or The Institute
for Genomic Research (TIGR) Plant Transcript Assem-
blies [66]. Hybrid assemblies with Sanger and 454 data
were performed with MIRA.Est. Short-read Illumina
datasets were assembled either with SOAP denovo (K-
mer size = 29 and asm_flag = 2) [67] or with CLC
Genomics Workbench (reads trimmed first, and using
default parameters except minimum contig length set to
200 bases). Assemblies for species with data from more
than one sequencing technology were further post-
assembled with CAP3 (overlap length cutoff = 40 and
overlap percent identity = 98) to merge contigs that
have significant overlap but could not be assembled into
contiguous sequences by primary assemblers due to
either the presence of SNPs in the consensus or path
ambiguity in the graph.

Gene classification and phylogenetic analysis
The OrthoMCL method [50] was used to construct sets
of orthogroups. Amino acid alignments for each
orthogroup were generated with MUSCLE, and then
trimmed by removing poorly aligned regions with tri-
mAl 1.2, using the heuristic automate1 option [68]. In
order to sort and align transcriptome data into our
eight-genome scaffold for downstream phylogenetic ana-
lyses, we first used ESTScan [69] to find the best read-
ing frame for all unigenes. The best hit from a blast
search against the inferred proteins of our eight-genome
scaffold was then used to assign each unigene to an
orthogroup. Additional sorted unigene sequences for the
orthogroups of sequenced genomes were aligned at the
amino acid level into the existing full alignments (before
trimming) of eight sequenced species using ClustalX 1.8
[70]. Then these large alignments were trimmed again
using trimAl 1.2 with the same settings. Each unigene
sequence was checked and removed from the alignment
if the sequence contained less than 70% of the total
alignment length. Corresponding DNA sequences were
then forced onto the amino acid alignments using cus-
tom Perl scripts, and DNA alignments were used in sub-
sequent phylogenetic analysis. Maximum likelihood
analyses were conducted using RAxML version 7.2.1
[71], searching for the best maximum likelihood tree
with the GTRGAMMA model by conducting 100 boot-
strap replicates, which represents an acceptable trade-off
between speed and accuracy (RAxML 7.0.4 manual).

Molecular dating analyses and 95% confidence intervals
The best maximum-likelihood topology for each
orthogroup was used to estimate divergence times. The
divergence time of the two paralogous clades in each
orthogroup was estimated under the assumption of a
relaxed molecular clock by applying a semi-parametric
penalized likelihood approach using a truncated Newton
optimization algorithm as implemented in the program
R8S [53]. The smoothing parameter was determined by
cross-validation. We used the following dates in our
estimation procedure: minimum age of 131 mya [72]
and maximum age of 309 mya for crown-group angios-
perms [73], and a fixed constraint age of 125 mya for
crown-group eudicots [56]. We required that trees pass
both the cross-validation procedure and provide esti-
mates of the age of the duplication node. The collection
of inferred divergence times was then analyzed by
EMMIX [54]. For each significant component identified
by EMMIX, the 95% confidence interval of the mean
was then calculated.

Finite mixture models of genome duplications
To explore the divergence patterns for duplicated genes,
the inferred distribution of Ks divergences were fitted to
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a mixture model comprising several component distri-
butions in various proportions. The Ks value for each
duplicated sequence pair was calculated using the Gold-
man and Yang maximum likelihood method implemen-
ted in codeml with the F3X4 model [74]. The EMMIX
software was used to fit a mixture model of multivariate
normal components to a given data set. The mixed
populations were modelled with one to four compo-
nents. The EM algorithm was repeated 100 times with
random starting values, as well as 10 times with k-mean
starting values. The best mixture model was identified
using the Bayesian information criterion.

Abbreviations
BS: bootstrap value; EST: expressed sequence tag; Ks: rate of synonymous
substitutions per synonymous site; mya: million years ago; WGD: whole
genome duplication.
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