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ABSTRACT 

This thesis proposes methods to apply real-time data to improve manufacturing operations in 

offsite construction using a combination of tools such as simulation, machine learning, and 

exploratory data analysis. These methods are applied to increase flexibility in operations and 

digitalize the design, planning, and manufacturing phases in offsite construction. Through 

empirical implementations, the proposed methods provide applications of digitalization to improve 

offsite construction manufacturing operations by integrating existing information systems while 

combining and applying design-related and real-time data gathered from shop floors. The proposed 

framework includes implementation of digitalization strategies in the design, bidding, and 

procurement phases of offsite construction. The proposed framework also integrates building 

information modelling with lean-based metrics based on real-time data gathered using radio-

frequency identifier sensors logistically installed on a shop floor The proposed method addresses 

improvement measures using a combination of expert’s knowledge and statistical analysis, thus 

reducing the impact of personal opinions with respect to proposed changes to the shop floor in 

favor of empirical analysis supported by actual production data. A simulation-based analysis is 

also introduced to address the impact of the proposed framework in terms of increasing labour 

flexibility and reducing the average cycle time of projects in offsite construction. The key 

contribution of this research is the development of a framework and methods to improve 

manufacturing operations in offsite construction by leveraging digitalization and real-time data. 
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CHAPTER 1: INTRODUCTION 

1.1. Background and motivation 

Offsite construction (OSC) is an approach in which concepts from manufacturing are applied to 

produce building components in a controlled environment (i.e., shop floor), then transported to the 

site for installation (Goodier and Gibb 2007). Following this approach results in a significant 

reduction in construction cycle time while providing increased predictability in terms of schedule 

and cost of construction projects (van Vuuren and Middleton 2020). Despite its well documented 

benefits, though, Bertram et al. (2019) argue, in a report commissioned by McKinsey Global 

Institute, that adoption of OSC has been relatively low, with housing market shares of less than 

6% in countries such as China, Australia, the United Kingdom, and the United States.  

Several barriers to the adoption of OSC, such as low standardization of operations due to high 

variability in projects requested from clients, process uncertainty, and increased fixed costs due to 

factory overhead and personnel, have been identified in the literature (Gan et al. 2018; Killian et 

al. 2016). These barriers are common characteristics of OSC, and they have also been identified 

by Zolghadr et al. (2022), who suggest the application of advanced technologies to alleviate the 

effect of product variability during manufacturing operations and to improve project coordination 

during premanufacturing phases (i.e., design, bidding, and procurement).  

According to Oesterreich and Teuteberg (2016), a number of advanced technologies, such as 

building information modelling (BIM), computer simulation, and sensor technologies—e.g., radio 

frequency identification (RFID), barcodes, etc.—by which to digitalize processes, have been 

applied and reached their maturity in construction. Applications of these technologies in OSC, 
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moreover, such as for quality control, material waste optimization, real-time production control, 

and the automation of quantity takeoff estimations from BIM models to other information systems, 

are widely available in the literature (Altaf et al. 2015; Malik et al. 2021; Martinez et al. 2019; 

Wang et al. 2019). Nevertheless, although these technologies have been successfully applied 

individually to specific phases (e.g., design, manufacturing, etc.), their integration among the 

various areas of expertise in OSC enterprises have yet to be explored (Mukkavaara et al. 2018). 

A common practice to bridge this gap in OSC has been the application of lean construction as a 

conceptual framework for process improvement and for the implementation of novel technologies 

(Innella et al. 2019). Lean construction is highly applicable to OSC, given its roots in 

manufacturing and the adaptation of concepts and tools from the manufacturing industry (Yu et al. 

2013). In this regard, Brown et al. (2019) link multiple BIM models in a discrete-event simulation 

model to collect lean-based performance indicators and to further leverage this information for 

production forecasting. In recent studies by Barkokebas et al. (2017) and by Ritter et al. (2020), 

meanwhile, a combination of value stream mapping (VSM) and Monte Carlo simulation is used to 

assess process improvements in OSC. Despite the extensive work carried out in process 

improvement of OSC manufacturing, though, Erikshammar et al. (2013) argue that existing 

approaches involving the use of simulation are not sufficient for leveraging these tools outside of 

an academic environment due to the significant discrepancies between input data and actual data, 

and the time-consuming nature of simulation model development and validation. In practice, in 

order to achieve efficient manufacturing operations, processes must be improved continuously, 

with decision-making firmly rooted in actual operational data (Ahn et al. 2022). Hence, it is 

imperative to collect, process, and apply data regarding both products (e.g., wall and floor panels) 
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and processes to improve OSC manufacturing operations and reduce its fixed costs while 

accounting for its inherent variability.  

According to Björkdahl (2020), digitalization is characterized as the creation, analysis, and use of 

data to increase an enterprise’s internal efficiency while creating value-adding opportunities for 

its clients through digital platforms. Despite the prominence of digital tools such as spreadsheets, 

BIM, and other information systems in this paradigm, OSC still lacks a digitalized approach by 

which stakeholders can work collaboratively with high efficiency. Attouri et al. (2022), based on 

a comprehensive survey of OSC practitioners, identify low adoption of digitalization strategies as 

a notable issue. Meanwhile, they also identify digitalization as a strategic lever by which to 

increase the efficiency of OSC by significantly reducing construction cost and enhancing 

communication using real-time data combined with BIM models. 

Hamzeh et al. (2021) argue that the triad, people–processes–technology, must be at the core of any 

effort to advance digitalization in construction, while also noting the increased use of sensors 

combined with artificial intelligence/machine learning and automation as evidence of a trend in 

this direction. Sjödin et al. (2018) propose a similar triad for the digitalization of manufacturing 

operations and implementation of Industry 4.0 while providing four levels at which it can be 

implemented as outlined below: 

Connected technologies: This involves mapping existing and applicable new technologies and 

connecting existing technological applications to create a continuous data flow. It also involves 

creating an inclusive environment by involving personnel from different hierarchical levels and 

formalizing a process to develop a connected information platform.  
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Structured data gathering and sharing: At this level, data-mining processes to support 

information gathering across departments are created, and production insights are identified based 

on data gathered from the shop floor. It is also important in this regard to train stakeholders to 

develop new abilities to exploit the connected data systems, and to establish internal procedures to 

automate data extraction from different sources. 

Real-time process analytics and optimization: At this level, production insights are used as the 

basis for streamlining operational processes and establishing methods by which to evaluate 

proposed process improvement measures in manufacturing operations. Moreover, simulation 

systems are implemented to test and prototype information systems (e.g., digital twins) in order to 

optimize manufacturing operations in real time. 

Smart, predictable manufacturing: Finally, it is critical to create a culture of continuous 

improvement, creating processes for integrating data visualization into decision-making while 

implementing systems to monitor critical operational analytics. 

In this context, this thesis provides frameworks and methods for process improvement in OSC 

using a digitalization approach and data gathered in real time or offline (e.g., BIM models, cost 

databases, and other information systems.). First, a framework to map and evaluate processes and 

connect different information systems across the design, bidding, and procurement phases in OSC 

using a lean-BIM approach—i.e., level 1, according to Sjödin et al. (2018)—is presented. As per 

level 2 above, this thesis proposes structured methods to evaluate proposed process improvement 

measures using exploratory data analysis, machine learning, data visualization, and statistical 

analysis (i.e., hypothesis-testing) using large sets of data from RFID antennas installed on an OSC 

shop floor and project features from BIM models. Corresponding to level 3 above, this thesis 
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evaluates in real time the impact of digital twins (DT) in improve manufacturing operations using 

a combination of discrete and continuous simulation as a surrogate system. (Due to the novelty of 

this topic, maturity level 4 as described in Sjödin et al. (2018) is outside the scope of this thesis.) 

In this manner, this thesis contributes to the application of digitalization approaches to improve 

manufacturing operations in OSC.  

1.2. Hypothesis and Research Objectives 

This research is built upon the following hypothesis: 

“Digitalization and the use of real-time data can be applied to improve offsite construction 

operations by reducing cycle times and process waste” 

Hence, the primary goal of this thesis is to develop frameworks and methods to improve OSC 

operations through digitalization and the application of real-time data combined with expert 

knowledge and data generated offline (e.g., BIM models). To meet this primary goal, this research 

pursues three specific research objectives (Ox): 

O1: propose a BIM–Lean framework to map currently available innovative technologies that are 

applicable to OSC in order to establish formal linkages among different information systems for 

the digitalization and process improvement of the premanufacturing phases of OSC; 

O2: develop methods for evaluating proposed process improvement measures that combine 

manufacturing and data science expertise in OSC using real-time data and a digitalization 

approach; and 
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O3: evaluate the impact of novel technologies such as DT to digitalize manufacturing operations 

and reduce waste in OSC. 

Table 1.1 shows the relationship between the research objectives and the maturity levels as 

proposed by Sjödin et al. (2018) within the context of this thesis. As observed in the table, each 

objective is related to a digitalization maturity level that Industry 4.0 must achieve to improve their 

processes leveraging their own data. 

Table 1.1: Relationship between the digitalization maturity level and research objectives. 

Maturity level Research objectives (Ox) 

Level 1: Connected 

technologies 

O1: Framework for the digitalization of the premanufacturing 

phases of OSC 

Level 2. Structured data 

gathering and sharing 

O2: Methods to evaluate manufacturing operations using real-time 

data through a digitalization approach 

Level 3. Real-time process 

analytics and optimization 

O3: Evaluate the impact of digital twins to leverage manufacturing 

operations in OSC 

 

1.3. Thesis Organization 

This thesis is composed of seven chapters. Chapter 1 provides the background and motivation, 

culminating in the formulation of a hypothesis and corresponding research objectives to address 

the identified gaps in the literature. Chapter 2 provides a review of the main topics relevant to the 

research presented in this thesis. As such it provides the state of the art on digitalization strategies 

and the impact of BIM on the OSC premanufacturing phases, reviews relevant research on the 

application of real-time data in OSC manufacturing operations, and provides a summary of the use 
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of DT in construction. Chapter 2 also identifies the main gaps related to this research and the point 

of departure for Chapters 4, 5, and 6. Chapter 3 describes the main research methods and the 

underlying approach applied to achieve each of the specific objectives. This chapter also 

characterizes the linkages among the various research objectives and the contributions of each 

toward meeting the overarching research goal described in Chapter 1. 

Chapter 4 presents the development of a framework to address the impact of digitalization in OSC 

premanufacturing (design, bidding, and procurement) phases, with BIM and lean principles being 

the main drivers (O1). The framework uses design science research (DSR) while also applying 

VSM and simulation to identify existing sources of process waste and to quantify process 

uncertainties, respectively. The proposed framework is tested and validated through empirical 

implementation, being found to result in a reduction of up to 23.33% in total time during the design 

and procurement phases of projects as a result of waste minimization and digitalization of 

processes. The impact of digitalization in the premanufacturing phases and a formal framework 

for identifying the necessary connections between BIM and other information systems having been 

established, this research then evaluates the impact of digitalization in OSC manufacturing 

operations as presented in Chapters 5 and 6 (i.e., O3 and O4, respectively). 

Chapter 5 describes the development of a method that leverages exploratory data analysis, machine 

learning, and digitalization to develop novel procedures for validating proposed process 

improvement measures on an OSC shop floor (O2). Using the cross-industry standard process for 

data mining (CRISP-DM), the research takes a structured approach leveraging machine-learning 

algorithms to identify production insights in semi-automated workstations by combining insights 

from experts, project features from BIM models, and actual durations of wall panel fabrications 
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collected via RFID. This chapter also evaluates the efficiency of approaches adopted on the shop 

floor to deal with variability in production using statistical analysis. As notable contributions of 

the research presented in this chapter, the proposed method provides a number of different 

procedures for applying project- and production-related data for process improvement in OSC. 

Additionally, it provides novel insights regarding the impact of product variability as well 

regarding the process wastes associated with the use of semi-automated framing machines. 

Chapter 6 presents empirical evidence by which to evaluate the impact of digitalization (leveraging 

a DT) as a means of increasing flexibility on the shop floor by reassigning multi-skilled workers 

dynamically and reduce waiting waste on an OSC shop floor (O3). Using simulation as a surrogate 

system, this study emulates a shop floor (leveraging actual production data collected in real time) 

to improve manufacturing operations via the proposed DT. In this respect, this research emulates 

a DT that reassigns multi-skilled workers to deal with project fluctuations and uncertainties in 

different scenarios. The proposed approach simulates relevant aspects of production such as the 

important features of multi-skilled workers (learning effect, multi-skilling strategies, cost, etc.), 

the impact of DT in increasing productivity, and the average waiting time per module. The 

practical application of the proposed system demonstrates a significant decrease in waiting waste 

in manufacturing operations in comparison with the current baseline for a case OSC operator. 

Finally, Chapter 7 summarizes the research, outlining the conclusions drawn, the study limitations, 

and the recommendations for future research in this area. 
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CHAPTER 2: LITERATURE REVIEW 

Applying real-time data and digitalization to improve manufacturing operations in offsite 

construction (OSC) is a major challenge in both industry and academia. In the context of this thesis, 

it should be noted, OSC manufacturing operations refers to the processes involved in transforming 

raw materials or components into OSC projects, including the management of labour, materials, 

and data. To conduct OSC manufacturing operations, a number of different information systems 

need to be put in place and integrated, given the multi-disciplinary nature of OSC whereby 

different stakeholders (e.g., designers, estimators, builders, etc.) must interact in a coordinated 

manner to efficiently deliver projects. In this regard, there is a lack of methods by which to 

integrate and apply real-time data on the shop floor using a digitalization approach. Accordingly, 

this thesis explores three main areas within the literature so that the barriers to implementation of 

digitalization can be identified and addressed in order to better leverage the value of OSC 

manufacturing operations. This research endeavors to reduce the adverse effects of these barriers 

and bridge the gap between the gathering of real-time data and its application for data-driven 

improvements in OSC. 

2.1. Digitalization strategies at premanufacturing phases of OSC projects 

The premanufacturing phases (i.e., design, bidding, and procurement) in OSC are characterized by 

uncertainty, given that projects vary considerably depending on client requirements and inherent 

market fluctuations (Sutrisna et al. 2019). Meanwhile, uncertainty in the form of varying 

productivity of designers and estimators results in significant process waste due to inadequate data 

exchange and inadequate tools for performing premanufacturing tasks. Given the complexity of 

OSC projects, Bakhshi et al. (2022) argue that current strategies to design and deliver OSC projects 
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lack the requisite flexibility to accommodate client requests in an efficient manner. Arashpour and 

Wakefield (2020) voice similar concerns, while attributing inefficiencies in the OSC 

premanufacturing phases to inadequate data or improper data exchange among stakeholders (e.g., 

designers, estimators, plant managers, etc.). Indeed, OSC stakeholders often disregard data 

generated at earlier phases due to inaccuracy of the data, while in other cases they may be entirely 

unaware of its existence, and these deficiencies ultimately result in various forms of process waste. 

In this regard, Wang et al. (2020) conclude that productivity in OSC manufacturing is inhibited by 

inadequate data exchange due to a lack of digitalization, a shortcoming that results in a number of 

issues such as information delays and a lack of consistency and accuracy in data. 

Gartner Analytics (2022) defines “digitization” and “digitalization” differently, where the former 

deals with transformation of processes from analog to digital (without changing the process itself), 

while the latter is defined as an approach to generate, analyze, and apply data to improve internal 

processes while creating new opportunities for further improvement. In this context, Assaad et al. 

(2022) point out that OSC can significantly leverage digitalization through the generation of 

information pertaining to the feasibility of alternative construction methods and by providing data 

to be used in the future as part of a continuous improvement program. In fact, digitalization 

strategies and a greater degree of adoption of advanced technologies are often acknowledged as 

being strategically advantageous for contractors (Biggs 2018). Nevertheless, OSC operators are 

hesitant to invest in new technologies or digitalization initiatives without a clear picture of the 

trade-off between the investment needed and the inherent uncertainties in the process, such as in 

the case of the considerable initial investment in software and training, and without a clear path to 

implementation of these technologies (Kumar and Kaushik 2020).  
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In light of this, Ghaffarianhoseini et al. (2017) identify building information modelling (BIM) as 

a key technology for digitalizing the OSC industry, as BIM models provide accurate project 

information in a structured manner that can be automated. Meanwhile, Jin et al. (2018) argue that 

the integration of BIM with other information systems is the cornerstone of any effort to increase 

productivity in OSC. Despite the benefits of BIM in the design phase (which have been widely 

recognized by industry practitioners and academia), though, Mostafa et al. (2020) argue that 

frameworks by which to integrate BIM with other information systems in OSC are lacking, and 

that this hinders further collaboration with other premanufacturing phases. To bridge this gap, Pan 

and Pan (2022) point to the integration of lean thinking with BIM in OSC-centric frameworks as 

a way to systematically reduce process waste, while Marte Gómez et al. (2021) argue that 

combining lean concepts with the digitalization features of BIM can improve communication and 

reduce costs compared to current frameworks. 

Nascimento et al. (2017) propose a BIM–lean framework to improve the constructability of 

prefabricated building components, the focus of this framework being on increasing the degree of 

digitalization in the workflow of data being exchanged between different stakeholders. Popovic et 

al. (2021), meanwhile, develop a digitalization-based framework to increase the design flexibility 

of OSC projects by identifying the key information required at each stage of project development. 

Despite recent developments, though, Herrera et al. (2021) argue that, even as they necessitate 

investment in other advanced technologies, quantitative evidence of the advantages of BIM–lean 

frameworks is still lacking. Strategies by which to formally identify new technologies and connect 

different information systems are currently missing in the literature, and this hinders the 

digitalization of the premanufacturing phases of OSC. 
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2.2. Advanced technologies and the application of real-time data in OSC 

manufacturing operations 

Various technologies are applied to improve processes in the context of OSC, and technologies 

such as BIM and computer simulation have been explored extensively within academia 

(Oesterreich and Teuteberg 2016). Despite not having a clear definition on the term, Li et al. (2021) 

point to a lack of research specifically pertaining to OSC and the application of advanced 

technologies such as work-monitoring systems leveraging sensors, data analytics, and the 

automation of processes in shop floors. Therefore, in the context of this thesis, advanced 

technologies are characterized as technologies where methods for their implementation in the 

construction industry are still under development. Within the context of OSC in particular, 

advanced technologies capable of leveraging large volumes of data are required due to the dynamic 

and multi-disciplinary interactions between the shop floor and the site where installation occurs 

(Wang et al. 2020c). In a study exploring the deployment of various advanced technologies, 

Assaad et al. (2022b) identify sensors, machine learning, and data analytics applications as the 

technologies with the greatest potential for use in OSC projects. As an example of the application 

of such a technology to OSC, Zhou et al. (2021) propose a cloud-based platform to improve the 

onsite assembly of volumetric OSC projects by leveraging data from BIM models, mobile 

applications, and location-based sensors. Meanwhile, Martinez et al. (2022) apply vision-based 

algorithms coupled with statistical tools to assess the non-conformity of manufactured components 

on OSC shop floors and generate predictive maintenance models for the equipment used. 

Wang et al. (2020b), in their review of various work-monitoring technologies in OSC, identify 

RFID as the advanced technology that is most commonly used in combination with BIM models 



 

13 

 

for this purpose. As noted in other studies, RFID has been deployed in OSC in applications ranging 

from near-real-time material tracking to scheduling and real-time retrieval of building component 

information (Li et al. 2018, 2020; Zhai et al. 2019). Moreover, Forsythe et al. (2019) highlight the 

ability of RFID to integrate the supply chain of prefabricated components (i.e., supply, 

transformation, transportation, and installation of raw materials). Meanwhile, Mohsen et al. (2022) 

develop comprehensive machine-learning applications to predict the performance of the shop floor 

under different scenarios, combining the cycle time duration of manufactured panels with design 

and shop floor features extracted from BIM models and by inferring information from data 

gathered on the shop floor, respectively. Similarly, Ritter et al. (2018) propose the use of RFID 

data in combination with design features extracted from BIM models to balance and forecast 

production in OSC. 

However, Barkokebas et al. (2018) argue that, despite its successful application to locate and 

calculate the cycle times of components being produced in OSC, RFID technology is not capable 

of identifying whether work is actually being performed on components that are in-between 

antennas (i.e., it is not able to distinguish between process times and idle times). To account for 

this limitation, they propose to subject the RFID data to a series of statistical analyses based on 

manual time studies performed on selected workstations. To address the same limitation, Rashid 

and Louis (2021) install inertial measurement sensors to detect process times and idle times at 

workstations in an OSC facility. Martinez et al. 2021 employ a similar approach to identify process 

times and idle times in an OSC shop floor by applying vision-based algorithms. These examples 

demonstrate that a combination of multiple advanced technologies must be applied in careful 

consideration of the characteristics and limitations of the given OSC shop floor in order to increase 

manufacturing efficiency. 
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In this regard, Hou et al. (2020) assert that applications leveraging artificial intelligence and sensor 

monitoring can result in increased productivity and can yield useful production insights to improve 

OSC operations. Nevertheless, Ahn et al. (2022) argue that the effective implementation of these 

applications has yet to be achieved due to the lack of a systematic approach to gather, process, 

evaluate, and apply data for process improvement in OSC. To implement such applications, 

approaches must be developed that take into consideration the nature of the operations to be 

optimized, followed by extensive preprocessing of the raw data collected from different sources. 

However, Wu et al. (2020) point out that the current paradigm of data preprocessing is heavily 

reliant on the experience of experts and is time-consuming, error-prone, and largely manual. 

Wang et al. (2020b), meanwhile, argue that the lack of empirical validation and case studies 

restricts the use of real-time data applications in OSC, particularly at the conceptual level, thus 

hindering the development of digitalization methods to improve OSC operations. Indeed, there is 

a lack of expertise in data analysis in the context of OSC operations, which requires a combination 

of knowledge of the operations conducted on the OSC shop floor and data science skills to analyze 

data and develop machine-learning models for process improvement. Therefore, data-mining 

approaches must be developed that are tailored to accommodate the unique nature of OSC 

manufacturing operations. 

2.3. Digital twins in construction 

The construction industry is characterized by a high level of customization, where clients are given 

a wide range of options related to dimensions and building specifications (Smith 2018), resulting 

in a high degree of product variability on OSC shop floors. Additionally, the inherent uncertainty 

of manual tasks increases variability on the shop floor, thus introducing even more complexity to 
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overall production in OSC. According to Bataglin et al. (2020), the complexity involved in 

managing several projects concurrently with short lead times and accommodating different clients’ 

requests is the principal challenge in OSC. In light of this, Ding et al. (2019) propose the 

application of novel technologies leveraging real-time monitoring and automated systems such as 

digital twin (DT) to account for production variability and allow for a flexible manufacturing 

system on the shop floor. 

In their seminal work, Grieves and Vickers (2017) define DT as an informational construct 

describing a physical system, object or process, while providing its virtual counterpart in real-time. 

They go on to argue that three elements are required in order to develop a DT: (1) a physical 

system, (2) its virtual counterpart (i.e., virtual system) generated from data gathered in the physical 

system, and (3) a seamless connection between both systems in real time. In manufacturing, DT 

has been applied to increase the flexibility of shop floors while considering the influence of 

external factors such as fluctuations in demand and the need to accommodate individualized 

demand from clients (Zhang et al. 2022). In this regard, Fera et al. (2019) apply DT to monitor and 

balance manual operations on a shop floor considering the pace of manual and automated 

workstations, while Arnarson et al. (2022) develop a DT to adapt and increase the flexibility of a 

shop floor, thus shifting the manufacturing paradigm of mass manufacturing to customized 

production in small batches. It should be noted that in the current paradigm of OSC, clients expect 

customized products (e.g., single-family houses, condos, etc.) at a low number of units per product 

type, rather than large volumes of uniform products. 

Correa (2018) argues that OSC shop floors are more likely to implement advanced technologies 

such as DT than are traditional construction jobsites, given the controlled environment (and the 
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relative ease with which sensor infrastructure can be installed) in OSC. Indeed, a critical factor in 

the future course of OSC will be the uptake of various methods to process data from sensors and 

BIM models and the successful application of these methods to improve construction processes 

using advanced technologies such as automation and DT (Baduge et al. 2022). Jiang et al. (2022) 

apply DT to improve the coordination of operations between the shop floor and the site where 

products are installed. Rausch et al. (2020) develop algorithms to support DT in order to optimize 

the production and quality of manufactured components. Rausch et al. (2021) also apply DT to 

verify the geometric compliance of manufactured components by comparing actual geometrics 

gathered by laser scans against a virtual counterpart in the BIM model. 

In this regard, a considerable amount of data is generated by sensors on the shop floor that could 

be used to improve production in real or near-real time. In the present research, DT is used to 

gather and process real-time data from sensors in order to increase the flexibility of manufacturing 

operations in OSC. Despite promising results in the literature, practitioners remain reluctant to 

adopt DT to assist in managing their manufacturing operations, and more case studies are needed 

in order to validate its impact and applicability in OSC (Qi et al. 2021). Neto et al. (2020), in a 

study addressing issues related to the implementation of DT in shop floors, argue that there is also 

a lack of studies quantifying the impact of DT in manufacturing. To bridge this gap, Glatt et al. 

(2021) apply simulation as a surrogate system to quantify the impact of DT in shop floors 

identifying and simulating important factors for its implementation. Meanwhile, Zhou et al. 

(2021b) conclude that a comprehensive study identifying the key features and issues in the 

implementation of DT on a project basis is needed. Moreover, Dittmann et al. (2021), in a study 

in which they propose open source standards for data exchange in DT implementation, argue that 

generic and scalable approaches for DT implementation in OSC have yet to be developed. In fact, 
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despite its potential benefits, DT technology is still in the early stages of development, and further 

research is needed concerning its implementation in OSC that considers such factors as: (1) the 

variable production rate of automated and manual workstations, (2) the impact of human behaviour 

during production, and (3) the significant variability and customization of products based on client 

requirements. 

2.4. Identified gaps in the literature and point of departure 

Based on the literature review, three gaps are identified: (1) there is no digitalization approach for 

the premanufacturing phases in OSC that considers the formal connection between different 

information systems and the multi-disciplinary nature of OSC, (2) a digitalization method is 

needed to integrate real-time data with expert knowledge for process improvement, and (3) there 

is a lack of sound methods and quantitative evidence by which to evaluate the impact of DT on 

OSC. Hence, this thesis aims to address these gaps (and thereby improve manufacturing operations 

in OSC) through the development of frameworks and methods rooted in digitalization and the use 

of real-time data. 
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CHAPTER 3: METHODS 

This chapter summarizes the research methods employed to address the identified research 

problems. This research takes an inductive reasoning approach whereby hypotheses are developed 

based on field work and observations (Williamson 2013).  

Figure 2.1 illustrates the methodologies applied as well as the inputs and outputs corresponding to 

each research objective. To develop a framework for digitalization in offsite construction (OSC) 

premanufacturing phases (O1), design science research (DSR) is applied, as it involves the creation 

and testing of a research artefact (i.e., the proposed framework). According to Hevner et al. (2004), 

DSR is a methodology focused on developing a research artefact (e.g., framework, forecast model, 

etc.) to solve an identified problem, where the effectiveness and contribution of the research 

artefact must be rigorously demonstrated and explained. DSR is selected as a suitable methodology 

for achieving O1 based on its popularity among researchers as a means of developing and 

evaluating frameworks within the information systems domain (Nimmagadda et al. 2019). The 

framework having been completed, implemented, and tested; it serves as an input to the second 

research objective (O2), which is to devise digitalization methods leveraging real-time data, expert 

knowledge, and design features from BIM models. These methods are devised through a Cross-

Industry Standard Process for Data Mining (CRISP-DM), where the development of the proposed 

methods constitutes an exploratory study on large sets of data aimed at improving manufacturing 

processes in OSC based on expert input. CRISP-DM is applied in this case because it is the 

standard methodology for analyzing large sets of data in industrial applications (Huber et al. 2019). 

The expected impact of applying these advanced technologies (e.g., DT) is then assessed by using 

simulation as a surrogate system to test different scenarios involving the use of multi-skilled 

workers to increase labour flexibility in OSC. Due to the significant risk and complexity involved 
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in the implementation of DT on a shop floor, Al Hattab et al. (2018) argue that simulation can be 

a useful approach to employ prior to implementation, since significant aspects of a system (in this 

case, the OSC shop floor) can be modelled and forecasts performed accordingly with a reasonable 

level of certainty. Hence, for the present study, simulation is selected as a suitable method for 

assessing the impact of DT in increasing labour flexibility in OSC (i.e., O3). 

 

Figure 2.1: Methods applied and linkages among research objectives 

Figure 2.2 illustrates the procedure followed in this research, including the inputs, criteria, and 

outputs. For O1, a framework is required for the establishment of a repository of project-related 

data by which to formally develop digitalization approaches for the premanufacturing phases of 

OSC. This framework is based on the current-state assessment of OSC premanufacturing tasks 

developed from a combination of discrete-event simulation and value stream mapping (VSM). The 

current-state assessment having been validated, measures to improve the mapped processes are 

proposed, while the expected impacts of these measures are forecast using the same methods (i.e., 

discrete-event simulation and VSM). 

Using the proposed framework, a repository containing project-related data from the BIM models 

is linked with data gathered by sensors on the shop floor, while methods by which to assess 
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potential process improvement measures are proposed based on a combination of input from OSC 

experts and exploratory data analysis (EDA) techniques (i.e., O2). A hypothesis is developed for 

each of the improvement measures formulated based on expert input, and machine learning 

techniques and statistical analysis are applied to assess the feasibility of each improvement 

measure at the early stages of its implementation. Furthermore, a simulation-based approach for 

the near-real-time assessment of the potential impact of DT (in both industrial and academic 

contexts) in improving manufacturing operations is implemented (i.e., O3). The proposed 

assessment will assist practitioners and researchers in assessing the impact of DT in increasing 

labour flexibility in OSC manufacturing operations. 
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Figure 2.2: Overview of the research 

In summary, this thesis provides a framework to implement digitalization approaches in the 

premanufacturing phases of OSC; describes the development of novel methods to apply large sets 

of BIM data and real-time production data for process improvement in manufacturing operations; 

and proposes a novel approach to evaluate the impact of DT in terms of production efficiency and 

flexibility, taking into account various aspects of production, including, but not limited to, the 

trade-off between average process times and waiting times during production.  
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CHAPTER 4: A BIM–LEAN FRAMEWORK FOR DIGITALIZATION OF 

THE PREMANUFACTURING PHASES OF OFFSITE CONSTRUCTION1 

4.1. Introduction 

Offsite construction (OSC) is an approach that reduces construction time, defects, and risks by 

manufacturing building components in a factory-like environment and installing them at their final 

destination on site (Mostafa et al. 2016). In spite of the recognized benefits, OSC still faces several 

challenges as researchers discuss these issues and suggest ways to overcome them. Bataglin et al. 

(2020) argue that the short lead times required in order to accommodate clients’ requests and the 

complexity involved in managing different projects being manufactured at the same time are the 

main challenges in OSC projects. By providing an integrated solution (design, procurement, 

manufacturing, and installation) based on the client’s requirements, offsite contractors take on the 

majority of the risk while dealing with a range of different professionals such as consultants, 

suppliers, plant managers, and construction personnel. Information transmitted by the client that 

is translated into drawings, commercial proposals, and design specifications must be consistent 

and shared throughout the process to avoid waste, such as cost overruns, and product 

nonconformity (Li et al. 2018). Building information modelling (BIM) has been used to streamline 

the flow of information while facilitating the use of digital technologies in OSC even though its 

implementation has not received widespread attention (Luo et al. 2020). However, despite 

 
1 The manuscript appearing as Chapter 2 of this thesis is published as Barkokebas, B., Khalife, S., Hamzeh, F., and 

Al-Hussein, M. (2021) “A BIM–lean framework for digitalisation of premanufacturing phases in offsite 

construction.” Journal of Engineering, Construction and Architectural Management, 28(8), 2155–2175. 
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evidence of the benefits of using BIM to digitalize and enhance design and procurement processes 

in OSC, Razkenari et al. (2020) argue that most benefits are not yet measured or quantified. 

Seamless data flow and the integration of different information systems is crucial for efficient 

product development and management (Caldas et al. 2005). In this context, Grieves (2006) pointed 

out that there is a substantial cost associated with the rework required to deal with information 

isolated between departments (e.g., sales, engineering, estimation) and the re-creating or 

reconstructing of missing/ incomplete information in inter-departmental work. Similarly, Agarwal 

et al. (2016) attribute the construction industry’s low productivity to a lack of timely information 

sharing, which results in stakeholders often working on different versions of documents creating 

disagreements and additional cost. Agarwal et al. (2016) accordingly recommend the adoption of 

digitalization, which they define as the transformation to an environment in which information is 

digital, updated in real time, and transparent, resulting in improved and more reliable outcomes. 

Moreover, Ghaffarianhoseini et al. (2017) claim that continued digitalization will allow the 

construction industry to reinvent project design and delivery processes and position BIM as a key 

technology in this initiative. In this context, BIM has been used to bridge information gaps in 

various areas such as schedule and project coordination between stakeholders (Ocheoha and 

Moselhi 2018). 

Moreover, OSC has benefited from concepts derived from other domains, such as lean 

manufacturing. Through its premise of minimizing waste and adding value to the process, lean 

construction provides tools to identify and minimize wastes in offsite operations (Innella et al. 

2019). Lean philosophy provides a comprehensive framework to propose and quantify 
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improvements in construction-related processes, such as the implementation of BIM or its 

integration with different information systems.  

Despite relevant work in the area, Yin et al. (2019) argue that researchers have yet to establish 

criteria by which to quantify the improvements achieved by BIM adoption and thereby encourage 

its wider adoption in OSC. Organizations acknowledge the benefits inherent to the integration of 

BIM with other information systems to harness their advantages, yet further research is required 

at the organizational level to quantify the benefits from these implementations (Lu and Korman 

2010). Additionally, the adoption of the lean approach in offsite companies shall be guided early 

on from the design phase, and research needs to examine the help of advanced technology to 

support lean techniques in achieving its full potential (Innella et al. 2019). 

Accordingly, this chapter proposes a framework to introduce digitalization in OSC 

premanufacturing phases (pre-bidding, design, and procurement) using a BIM–Lean approach 

where BIM is characterized as the main source of project-related information; while lean 

philosophy is applied as a guiding principle to identify and minimize wastes in current and future 

processes. The proposed framework integrates BIM and other information systems to improve 

inter-departmental communication focusing on three organizational needs: improved planning, 

improved information exchange, and quantification of improvements. The motive behind this 

research is to provide OSC companies with a roadmap for improving their performance during 

premanufacturing phases while also providing methods to quantify improvements due to 

digitalization. This study contributes to the body of knowledge by providing a well-defined 

reproducible approach that serves as a guide to digitalize and improve processes in the offsite 

sector using BIM, lean principles, and other tools. Additionally, the suggested measures for 
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tracking the improvements will benefit practitioners by having recorded evidence of improvement 

while establishing a culture of continuous improvement at their organizations. 

4.2. Background 

Gartner (2020) defines digitization as the process of transforming analogue information to digital 

without changing the process itself, whereas digitalization (or process digitization) refers to the 

use of digital technologies to transform processes and produce value-adding opportunities. 

Therefore, premanufacturing processes in OSC are highly digitized given the predominant use of 

spreadsheets, digital construction drawings, and the use of enterprise resource planning systems 

(ERP) to design, estimate, and bid projects. In fact, despite advancements of BIM in OSC and 

growing demands for customization in the industry, premanufacturing may become a future 

bottleneck since its processes are still carried out manually and rely heavily on experience (An et 

al. 2020). Hence, OSC lacks digitalization as it continues to conduct its processes in an analogue 

manner with digitized tools. While BIM research has been focused on methods and tools at the 

practical level (Santos et al. 2017), Yin et al. (2019) argue that researchers must establish criteria 

and quantify the improvements attributable to BIM in OSC to further its adoption. In this regard, 

Al Hattab and Hamzeh (2018) assert that the full implementation of BIM is inhibited by traditional 

management strategies and short-term goals, where the lack of guidance and assertive procedures 

constitute a significant barrier to BIM implementation. To bolster the use of BIM and digitalization 

at an organizational level in OSC, this research applies lean philosophy given its origins in 

manufacturing and previous applications in OSC. 

Many studies offer frameworks and approaches to incorporate lean philosophies into OSC, as 

continuous efforts are made to transform the industry into a highly efficient and cost-effective one 
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(Zhang et al. 2020). Value stream mapping (VSM) techniques have been fundamental lean tools 

used to identify the current state and its areas of improvement, then redesign processes to maximize 

performance by identifying and quantifying waste (Howel and Ballard 1998). Three different types 

of waste are found in activities: value adding, necessary waste (i.e., non-value adding but necessary 

activities to the process), and pure waste, which are non-value adding activities and can be 

eliminated from the process (Lee et al. 1999). Discrete-event simulation is another tool applied 

successfully by lean practitioners in OSC to forecast different scenarios and establish measures for 

future-state scenarios (Goh and Goh 2019). Furthermore, simulation has helped in providing a 

means of test the concepts of lean in construction simulation, and templates have been suggested 

to quantify the impact of implementing such concepts (Farrar et al. 2004). Other studies focus on 

implementations for process improvement by developing measures to evaluate current and future 

states of shop floors (Karim and Arif‐Uz‐Zaman 2013). Regardless of the tools applied, Innella et 

al. (2019) points out that the full potential of OSC will be achieved once lean principles are used 

with the support of technology to integrate knowledge across different phases of the project. 

Hence, there is a need for a framework to promote the digitalization of OSC organizations during 

early stages taking into consideration differences inherent to each company and the inherent 

uncertainties in applying predetermined measures to quantify its impact. 

Several studies have investigated the combination of BIM and lean methods to improve processes 

in the OSC sector. For instance, Moghadam (2014) offers an integrated BIM–Lean framework for 

offsite manufacturing operations mapping the current state and proposing improvements through 

simulation while generating data and shop drawings for modular projects. Gbadamosi et al. (2019) 

propose a framework to optimize the constructability of prefabricated building components by 

applying lean principles and optimization algorithms in BIM models to leverage the design of 
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building envelope components. The literature acknowledges the benefits of both lean principles 

and technologies such as BIM that emphasize the necessity of incorporating these concepts into 

the curricula (Li et al. 2018). For instance, Jin et al. (2018), in their literature review of various 

OSC topics, identify the integration of BIM and lean with technological applications as a 

prominent research trend. 

However, even with the implementation of information technologies (BIM) and lean frameworks 

into OSC processes, factories still encounter major challenges as the whole sector remains behind 

(Fenner et al. 2018). This is likely the result of a disconnect between current studies and current 

practices where BIM–Lean approaches are in dire need of being integrated with other digital 

technologies (Hosseini et al. 2018). Additionally, Al Hattab and Hamzeh (2017) claim that the 

impacts attributable to the integration of lean practices and BIM in the flow of design-related 

information and communication between different departments has not yet been realized, nor have 

measures been proposed to quantify the benefits. As such, more studies are needed to evaluate the 

combination of BIM, lean, and other tools to improve OSC through the digitization of its processes 

and to provide empirical case studies of implementation to demonstrate applicability.  

In summary, this research identifies the following problems and gaps in the literature: (1) the 

misuse of digital strategies in premanufacturing phases of OSC companies, where BIM and other 

digital technologies are not fully implemented, (2) the lack of quantitative measures that facilitate 

the assessment and implementation of these digital strategies, and (3) the little attention in the 

literature given to premanufacturing phases when compared to the fabrication phase. 

Consequently, this chapter herein presents a tested framework to leverage digitalization in the 
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premanufacturing phases of OSC using a BIM–Lean approach, predetermined measures, and 

simulation. 

4.3. Research Methodology 

This chapter implements the design science research (DSR) methodology to propose a framework 

for improving premanufacturing processes in OSC. DSR involves the development of an artefact 

to resolve a relevant problem identified in a specific environment, for which the effectiveness and 

contribution should be demonstrated and rigorously explained (Hevner et al. 2004). In the present 

research, the artefact is a BIM–Lean framework to improve premanufacturing processes in OSC 

using digitalization. The development of the framework follows a six-step process (Peffers et al. 

2007), as follows:  

1. identify the problem under study and main motivation; 

2. define specific objectives to address the specified problem; 

3. design and develop the proposed artefact; 

4. test and demonstrate the artefact’s implementation through established metrics in a 

specified environment; 

5. evaluate the artefact’s effectiveness based on a proposed experiment; and 

6. communicate the artefact through publications. 

In step one, the major challenges in OSC were identified by reviewing the state-of-the-art literature 

and engaging in discussions with practitioners. Step two focused on identifying the objectives in 

consultation with four different OSC companies and based on the extensive review of common 
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challenges found in these organizations. The objectives of this research were thus determined to 

be the quantification of improvements from digitalization and integrating data exchange in the 

context of the use of BIM in OSC companies. In step three, the framework was carefully developed 

by applying lean principles to account for the possible differences in offsite companies while 

serving as a generic guideline for proposing and implementing improvements step by step. 

Multiple lean principles are adopted in this framework. Mainly, the framework uses VSM to 

identify current wastes and then forecasts future processes after minimizing wastes. The objective 

of the mapping exercise is to minimize waste and improve the existing workflow by digitizing 

processes when applicable and by using the measures proposed in this research. Two types of 

variation are encountered in OSC premanufacturing processes: (1) variation caused by internal 

processes at the organization, and (2) variation caused by the range of project specifications offered 

to clients. While the first type of variation should be minimized using different approaches ranging 

from low-tech solutions to the implementation of digital solutions, digitalization is applied to 

minimize the effects from the second type of variation. The latter is due to the fact that external 

customers value the high range of options OSC offers to them.  

The framework takes into consideration the voice of the customer being the internal customer 

(different teams within the organization) or the external customers (OSC clients). Forecasting is 

part of this exercise to promote pull from the customer. Moreover, the framework advocates 

continuous improvement (i.e., kaizen) of current processes by constantly repeating the framework 

to identify new improvement opportunities. The overall objective is to have continuous flow of 

information. Furthermore, it calls for implementing genchi genbutsu, a lean principle that is helpful 

in identifying the unique features of a given organization but that requires being physically present 
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to investigate and understand the process. Lean construction calls for releasing work by achieving 

flow where you can, pull where you cannot, and push where you must. 

To this end, the process of developing the framework is iterative. The proposed framework 

specifies the required input and data from the company while providing details to identify and 

account for variations in each company, i.e., the framework highlights the practices needed in order 

to develop the context-specific improvements. By applying simulation and statistical tools 

expressed in the framework, the current state of premanufacturing processes is quantified while 

the impact of future digitalization is forecast at the company under study. At step four, test stage, 

an empirical implementation was used to: (a) help in establishing the instructions or steps in the 

framework, and (b) demonstrate the effectiveness of the framework. A detailed explanation of the 

implementation is provided in Section 5. Step five included the evaluation of the proposed 

framework by recording the observed results. Lastly, the present study communicates the 

importance of the problem and the effectiveness of the artefact as part of step six of the DSR. The 

framework targets different departments working at premanufacturing phases in OSC companies 

to improve their processes by digitizing their work while providing quantitative evidence so the 

upper management can make the required investment for the proposed digitalization plan. The 

detailed explanation of the framework is clarified in the next section.  

4.4. Proposed BIM–Lean Framework 

The proposed framework, presented in Figure 4.1, includes the methods employed to quantify the 

impact of digitalization achieved by automating and integrating BIM and other information 

systems in OSC companies. The guiding principles of this framework are presented taking into 

consideration characteristics identified in each area (OSC, lean and digitalization) at earlier 
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sections. The specific context of OSC- where an integrated solution (design, procurement, and 

construction under the same company) is presented following standardized construction methods 

under short lead times- is a determining factor for mapping premanufacturing processes. 

Moreover, lean is applied to align OSC practices and digitalization features through the lean 

principles mentioned earlier such as conducting in situ observation (i.e., genchi genbutsu), 

mapping of activities, achieving continuous flow of information, and applying continuous 

improvement (i.e., Kaizen) to identify and minimize waste in the process. The digitalization of 

design and procurement of building components is proposed by using BIM as means to generate, 

store, and transform project-related data. By working with BIM-based tools, the digitalization of 

premanufacturing tasks is proposed by connecting different systems (e.g., BIM, ERP), automating 

processes and sharing data between departments in real-time. 
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Figure 4.1: Methods employed in the proposed framework. 
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Lean philosophy is applied as the guiding principles to measure, identify, and implement 

opportunities for improvements. This framework is therefore divided into three stages as 

demonstrated in Figure 4.1: stage (1) is measure, which involves measuring the current processes 

observed at the organization, stage (2) is design, which involves identifying and designing 

opportunities for improvement based on the previous assessment, and stage (3) is propose and 

evaluate, which involves proposing opportunities and forecasting the impact of implementing the 

identified opportunities at the design stage. In summary, the measure stage maps and quantifies 

the current situation of the addressed offsite organization, whereas the remaining stages suggest 

improvement opportunities (i.e., design stage) while proposing these opportunities based on 

simulation models that forecasts their impact on the same organization (i.e., propose and evaluate 

stage).Simulation is applied at the first and third stages to estimate durations and variations in the 

process taking the inherent identified uncertainties into account. The proposed framework must be 

replicated after a testing phase of improvements to allow company experts to measure the impact 

of the implemented changes and propose new ones, thus creating a culture of continuous 

improvement around the digitalization of premanufacturing processes. 

Table 4.1 summarizes which lean and BIM-based principles were applied to the steps of the 

proposed framework. Lean philosophy is applied at every stage of the framework while the 

digitalization of processes acts as an enabler for improvements at the addressed company and is 

only present at the later stages of the process. Hence, while lean principles such as genchi genbutsu 

and VSM are applied for data collection and analysis, kaizen and waste minimization are applied 

concurrently with digitalization principles to plan and improve future processes. During the 

development and implementation of the proposed framework, it is important to understand how 

the impact of parametric modelling from BIM differs from processing real-time data from different 
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information systems (e.g., BIM, ERP systems, etc.). While the first enhances the quality and speeds 

the process of design and drafting, the second may change the way and the sequence of present 

tasks since information between departments is shared continuously (e.g., real-time unit costs for 

bid proposals and current production status at the shop floor). Hence, BIM-based digitalization 

principles will play a decisive factor in how tasks will be performed in the future, while lean 

principles will help forecast and address its actual impact (i.e., kaizen). 

Table 4.1: Guiding principles applied to proposed framework steps 

 
Measure Design 

Propose 

& 

Evaluate 

1 2 3 4 5 6 7 

Lean 

Genchi Genbutsu X  X     

Kaizen   X    X 

VSM X   X    

Waste minimization  X X  X X  

BIM-based 

digitalization 

Parametric modelling   X  X  X 

Real-time data 

processing 
  X X X  X 

1: Input for simulation model; 2: Analysis on simulation output; 3- Improvement brainstorm; 4- 

Future process map; 5- Improvement opportunities; 6- Opportunities selection; 7- 

Implementation and re-evaluation 

4.4.1. Stage 1: Measure 

This stage is divided into two procedures: (1) data collection used as an input for the simulation 

model, and (2) analysis on simulation output to measure current process performance at the 

company under study. The measures calculated at this stage are used as a benchmark and indicate 

the current state of process digitization at the company taking into consideration both performance 

and uncertainties forecast by the simulation model. 
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4.4.1.1. Input for the Simulation Model 

Based on a combination of semi-structured interviews and analysis of historical data provided by 

the case company, current-state VSM was developed using lean techniques, and sales forecasts 

were established accordingly. The resulting current-state maps, containing task durations 

estimated by the organization’s experts (e.g., engineers, managers, etc.), and forecasts are used as 

inputs for the simulation model to estimate different scenarios. At this stage, the organization must 

appoint experts that directly oversee or perform the mapped tasks to indicate the current situation 

as close to reality. The semi-structure interviews are carried until both parties (i.e., the organization 

and research team) are satisfied with the level of details mapped, and their duration is dependent 

upon the length of the mapped tasks. Tasks are grouped into two main phases: (1) pre-award, 

including all of the work involved in preparing bid documentation; and (2) post-award, including 

all of the work performed after submitting the bid (in the event that the project is awarded to the 

given proponent). Due to the uncertainties inherent in the development of offsite projects, task 

durations are estimated by experts, since these durations depend on factors such as project size, 

the complexity of the project, and the inherent uncertainty of the process (e.g., low productivity, 

changes from client, etc.). For instance, if a task duration is collected and mapped as a range (e.g., 

16 h to 24 h) or as discrete values (16 h, 24 h, and 30 h), it is modelled as either a uniform or 

triangular distribution in the simulation model, respectively. 

Besides mapping the process, the research team also classifies each task as value-added, necessary 

waste, or pure waste. This classification is based on the nature of the work, i.e., whether it is 

directly affecting the end-product, whether it is merely related to the processes needed to manage 

the work, or whether it can be removed or replaced. Likewise, event occurrences such as changes 

in design, rework, and sales forecast are estimated in the form of likelihoods and scenarios. The 
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simulation input combines data from the organization’s historical data (e.g., number and size of 

projects developed in a year, sales forecast, etc.) with information based on the company experts 

experience. Together with the current-state VSM, sales forecast is an input to the simulation model 

to estimate the volume of work the organization under study will undertake in the future and 

whether the investment in process digitization is justified. 

4.4.1.2. Data Analysis on Simulation Output 

The developed simulation model reports the maximum, average, and minimum durations for each 

task followed by a sales estimate of how many proposals are rejected (J) and awarded (A) per year. 

These durations and volume of work are assigned to each phase and presented as pessimistic (P), 

realistic (R), and optimistic (O) scenarios. This framework applies the program evaluation and 

review technique (PERT) to calculate the expected duration (E) and coefficient of variation (CV) 

of pre- and post-award phases under project-related uncertainty (e.g., durations of tasks, project 

features, etc.) as per Equations (4.1) and (4.2), respectively. Equation (4.3) incorporates 

uncertainty that falls outside the engineering team scope such as the yearly number of rejected and 

accepted bids provided by the sales forecast. The equation is used to calculate the total number of 

hours (H) spent by the organization, thus indicating the volume of work expected from the 

company. Validation from the team of experts is required at this point to address the current 

situation of premanufacturing tasks and suggest impactful solutions. This can be done using 

different methods such as Delphi, nominal group, and face validation by a third party with relevant 

knowledge of the process. After the analysis is validated, the design stage of the proposed 

framework is initiated to identify potential solutions based on the measures derived from Equations 

(4.1), (4.2), and (4.3). 
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𝐸 =
𝑃 + 4 × 𝑅 + 𝑂

6
 

(4.1) 

𝐶𝑉 =
𝑃 − 𝑂

6 × 𝐸
 

(4.2) 

𝐻 = (𝐴 + 𝐽) × 𝐸𝑝𝑟𝑒 + 𝐴 × 𝐸𝑝𝑜𝑠𝑡 
(4.3) 

where: 

𝐸: Estimated duration from different simulated scenarios 

𝑃: Simulated duration for the pessimistic scenario 

𝑅: Simulated duration for the realistic scenario 

𝑂: Simulated duration for the optimistic scenario 

𝐶𝑉: Coefficient of variation 

𝐻: Total hours spent on mapped tasks by the team in a year 

𝐸𝑝𝑟𝑒: Estimated duration per project at pre-award phase 

𝐸𝑝𝑜𝑠𝑡: Estimated duration per project at post-award phase 

𝐴: Accepted bids in one year 

𝐽: Rejected bids in one year 

 

 

4.4.2. Stage 2: Design 

At the design stage, solutions for improvement are identified and developed based on the analysis 

from the simulation model output and based on whether the tasks are value-added or not. The 

specific context of design development and procurement in OSC is a primary factor at this stage. 

Given the low number of OSC companies and documented case studies in the area, this framework 

becomes a repository of solutions and improvements for OSC premanufacturing phases that is 

expanded according to the number of companies addressed. Combined with this repository, 
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existing software solutions (e.g., BIM-based software, ERP systems, database management 

systems, etc.) are tested while the development of further innovative solutions not available for the 

context of OSC are suggested as means to fill a gap identified at the measure stage. An 

improvement brainstorm is performed by the research team to identify possible improvement 

suggestions based on the mapped tasks and internal expertise. Besides what was previously 

mentioned, expertise requires knowledge in different areas such as project management, design 

development, and software development in case some solutions can be developed specifically for 

the company under study. After the brainstorm session, a list of possible improvements is 

developed considering potential impact on task durations at the current state. The improvements 

are classified under one of the following three categories: (1) low-tech solutions, where changes 

are proposed by improving processes without the introduction of new technologies; (2) BIM-based 

solutions, where processes are digitized by commercially available software; and (3) client-based 

solutions, in which solutions are designed specifically for the addressed company taking into 

consideration tasks mapped at the measure stage. By following lean principles, the proposed 

framework prioritizes low-tech solutions over the remaining categories when its forecast 

improvements are not significantly higher according to the simulation models. This decision is 

made to improve current premanufacturing phases in OSC by improving the flow in their processes 

without investing heavily in digitalization (e.g., software, hardware and training), but rather 

focusing on the existing personnel and current practices applied at the addressed company. In this 

regard, any effort to digitalize premanufacturing phases in OSC must address the significant wastes 

at the current processes to be effective and pursued by the organization. 

Future-state VSMs are developed based on each improvement category. These maps address 

changes in the process regarding the duration of tasks and the impact of adding and/or removing 



 

39 

 

tasks from the mapped workflow. In the present study, future-state VSM is used to evaluate the 

proposed changes with the team and identify the validity of these changes in terms of practical 

implementation at the company under study. After discussing these changes internally and with 

the organization, a list of improvement opportunities for the mapped tasks is provided, taking into 

consideration the projected impact of the proposed improvement measures on the total duration 

and current workflow as identified in the previous stage. The work performed during this stage is 

used to provide input for the future-state simulation model to determine the impact of process 

digitization for each improvement category. 

4.4.3. Stage 3: Propose and evaluate 

The “propose and evaluate” stage presents changes in mapped processes in each improvement 

category as forecast by the future-state simulation model. By replicating the post-simulation 

calculations for each improvement category, the potential improvement is presented taking into 

consideration the organization’s own data and the inherent uncertainties mapped in the process. 

During the analysis, the quantification of the estimated improvement is approached three ways: 

(1) average duration per project as per Equation ((4.1); (2) wasteful tasks in the process (value-

added, necessary waste, and pure waste); and (3) coefficient of variation as per Equation ((4.2). 

Meanwhile, the average duration per project is often the primary metric employed to measure 

process improvement. The proposed framework acknowledges the team’s current waste and 

variation as equally important in determining the rate at which the team generates value and how 

the duration of a project varies.  

Moreover, Equation ((4.3) calculates the total hours saved in a year in each improvement category 

to provide company experts with the overall impact of the proposed improvements. The results 
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from current and future states are compared, and options for process improvement (including a 

quantitative projection of their expected impacts) are proposed to the organization. Then, a 

qualitative assessment of the improvements is undertaken to identify intangible outcomes such as 

improved communication. Once a complete analysis is performed, the organization must choose 

which process improvement suggestions will be selected for implementation and tested for a period 

of time. After this period, the proposed framework must be applied once again to determine the 

impact and identify new opportunities for improvement. 

4.5. Empirical Implementation 

The empirical implementation of the proposed framework involves one of the largest modular 

contractors in Brazil specialized in temporary and permanent construction of commercial projects. 

While the commercial department is decentralized in nine different branches for wider sales 

coverage across the country, all estimation and engineering work is centralized at the company’s 

main headquarters and at their factory, which are approximately 700 km apart from one another. 

This geographical limitation requires the company to rely on emails and a commercially available 

ERP system for all inter-departmental communications while relying on computer-aided design 

(CAD) systems for design development. Here, all project-related information is manually 

interpreted in the form of text or schedules from quantity take-offs. This section is divided 

according to the proposed framework in Figure 4.1 where the current state at the company is 

measured, and solutions for improvement are designed, and then proposed. 
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4.5.1. Implementation of Framework: Stage 1 (Measure) 

4.5.1.1 Input for Simulation Model 

For two months, nine semi-structured interviews were conducted on weekly basis with experts in 

each department to identify and determine durations for each task. A total of four experts were 

interviewed to map all tasks required according to each expert’s expertise and practical experience 

in the addressed phases. Table 4.2 depicts all the mapped tasks identified during the semi-

structured interviews and the likelihood of event occurrences, stochastic durations, and the task 

type (value-added, necessary waste, or pure waste). A likelihood lower than 100% means the 

mapped task may not occur depending on requirements from the client or the nature of the project. 

These tasks, combined with durations dependent upon project features, are the main drivers of 

process uncertainty that reduce the ability of managers to plan available resources during the year. 

As previously mentioned, stochastic durations are applied to allow experts a more representative 

duration of their tasks and to acknowledge the uncertainty of design, bidding, and procurement 

phases at the company. These durations represent the time experts spent working on each task, but 

they do not take into account time that is out of their control, such as the duration of the entire bid 

event conducted by the client or time spent waiting for quotes from suppliers. 

As demonstrated in Table 4.2, the major uncertainties in pre-award tasks depend on the occurrence 

of events that are most often related to interactions with the client. These include, for instance, 

providing extra documents, such as renderings, for better clarification of the project. Uncertainty 

in post-award tasks is driven by a project’s features such as its complexity and number of modules 

to be designed. Project complexity at the company under study is quantified according to the 

number of special items in the project that are customized items and that have never used by the 

company before. These items must be outsourced, registered at the organization’s ERP system, 
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then purchased and installed at the factory while complying with an unknown delivery time from 

suppliers. After collecting all data required during interviews, current-state VSMs are prepared, 

and then validated through consensus and face validation by the company’s experts and managers.
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Table 4.2: Information of tasks collected during interview process. 

Phase Task name Type Likeliho

od 

Task duration (hr) Observation 

P R O 

Pre-

award 

More information from client PW 30% 16–24 8 1.5–2  

1st Layout development VA 100% 5  4  

3D model development NW 15% 6–8  2  

Rendering VA 15% 6–8  2  

Commercial to respond client NW 60%  1   

Engineering to respond client NW 12% 1.5  1  

Project quantity take-off VA 100% 10–20 20–40 40–60 min per module as 

project complexity 

Client adaptations on 1st revision  NW S:65% 

R:30% 

8  0.17–0.33  

Client adaptations on 2nd revision or more NW S:30% 

R:15% 

40% of previous revision  

Post-

award 

Special items and quantity take-off NW 100% 8 4 2 as per project complexity  

Special items to ERP NW 100% 7 min per special item 

Electrical design VA 100%  1.3  per module 

Plumbing design VA 100%  1  per module 

Electrical design rework PW 7.5%  2.5   

Plumbing design rework PW 5%  2   

Openings and partitions design VA S:90% 

R:10% 

2 5 9 1–10 modules 

5 10 15 11+ modules 

Revised quantity take-off NW 100% 10 20 40 as per project complexity 

Registry to ERP system NW 100% 10–20 20 40 as per project complexity 
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In addition to the information provided during the semi-structured interviews, other data are collected by 

analyzing historical data from the company in two areas: (1) estimated number of modules per project to 

indicate project size, and (2) sales forecasts indicating the number of projects the company expects to bid 

and award during the year. The number of modules per project is acquired by analyzing and curve-fitting 

historical data containing past projects awarded by the company for two years containing a dataset of 235 

projects. Through multiple interactions and addressing the goodness of fit by visual assessment and 

Pearson’s chi-squared method, the best distributions that match the dataset are found by splitting the data 

by project negotiation (i.e., sales and rental which indicates whether the commercial proposal contains 

modules that will be sold or rented) and subsequently splitting the rentals dataset into projects with 15 

modules or more, and less than 15 modules, as per Equations (4.4) and (4.5). Those distributions are added 

to the simulation model to calculate the duration of tasks dependent on the project size and to estimate the 

yearly production volume. Equation (4.6) is a distribution for the quantity and likelihood of special items 

per project determined through the analysis of historical data and consensus from the engineering 

department.  

𝑁𝑜𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑖𝑛 𝑆𝑎𝑙𝑒𝑠 𝑝𝑟𝑗𝑒𝑐𝑡𝑠 = 𝐿𝑜𝑔𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(1.32, 2.01) (4.4) 

𝑁𝑜𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑖𝑛 𝑅𝑒𝑛𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠

=  {
𝑊𝑒𝑖𝑏𝑢𝑙𝑙(1.23, 2.99), 𝑖𝑓 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(3.93) < 15

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(1.23, 2.99), 𝑖𝑓 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(3.93) ≥ 15
 

 

(4.5) 

 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑛𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑖𝑡𝑒𝑚𝑠 𝑝𝑒𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡: 0 − 5
= 50%| 6 − 19 = 30%| 20 − 30 = 20% 

(4.6) 

 

Moreover, sales forecasts provided by the commercial department are shown in Table 4.3 and reveal the 

expected number of bids their sales team intends to bid followed by the conversion rate (i.e., number of 
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bids awarded divided by total bids) on scenario-basis during a year. With the information described in Table 

4.2 and Table 4.3, and with Equations (4.4), (4.5), and (4.6), a simulation model is developed in 

Simphony.NET to generate different scenarios for premanufacturing tasks, including the number of projects 

to bid on each year and the number expected to be awarded at the company under study based on the 

optimistic, realistic, and pessimistic scenarios extracted from the simulation model. 

Table 4.3: Yearly sales forecast from commercial department. 

 
Sales Rentals 

 
Number of bids Conversion rate Number of bids Conversion rate 

Pessimistic 174 10% 435 8% 

Realistic 196 20% 490 15% 

Optimistic 225 15% 563 12% 

 

4.5.1.2 Analysis of Simulation Output 

Figure 4.2 depicts the performance of the company during the pre- and post-award phases by indicating the 

man-hours required to perform tasks according to each scenario and categorized by value-added, necessary 

waste, and pure waste as per the lean principles previously discussed. In the pre-award phase, wasteful tasks 

are driven by uncertain information exchanged between the company and the client wherein more 

information is required to fulfil the client’s scope or questioned by the client during the bidding process. 

According to company experts, questions from clients are a common occurrence in practice since some of 

them lack an engineering/architectural background or are not experienced in modular construction projects. 

Besides sales representatives seeing this as an opportunity to explore future business opportunities with the 

client, the engineering department indicates a lack in procedure to receive complete information from the 
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start, as one sales representative may be more experienced than another in gathering this information. 

Hence, rework is required to complete the information prior to starting a new project, and this may take 

days or may preclude the company participating in bidding due to deadlines imposed by the client. 

 

Figure 4.2: Pre- and post-award average man-hours per project according to scenario and 

performance. 

In the post-award phase, necessary and pure waste occur for different reasons. Necessary waste occurs due 

to the changes in the project and the manual interaction with the existing ERP system, while pure waste 

occurs due to manual quantity take-offs and registry of special items required by the client (e.g., panic 

doors, curtain walls, etc.). Pure waste is significantly lower at this phase due to the experience of the 

engineers and since most of the project-related uncertainties are solved during the bid event. Table 

4.4indicates a higher coefficient of variation at the post-award phase where the durations are predominantly 

determined by project features, thus indicating that a high level of product flexibility has an impact on 

premanufacturing at the company under study. Additionally, in Table 4.4, the total times of phases are 
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presented according to each scenario (P, R, or O), while estimated times and coefficient of variations are 

calculated based on PERT analysis as per Equations (4.1) and (4.2). The total estimated time of the pre-

award phase is found to be slightly lower than post-award, which is a positive result since it is not in the 

company’s interest to focus on projects that may not be awarded. It is expected that, by digitalizing and 

automating processes, wasteful tasks can be reduced or eliminated to decrease durations and variation in 

each phase. 

Table 4.4: PERT analysis on simulation results. 

  Scenarios PERT analysis 

  P R O Estimated total Coefficient of variation 

Simulated total 

man-hours 

Pre-award 19.16 15.21 13.91 15.65 5.59% 

Post-award 24.94 17.56 15.17 18.39 8.85% 

Total bids 

processed 

Accepted 

bids 

50 87 133 - - 

Rejected 

bids 

520 606 708 - - 

Hours spent in a year 9,842 12,448 15,610 - - 

 

Moreover, Table 4.4 presents the simulation results using the information provided by the commercial 

department indicating the expected number of bids accepted and rejected during a year according to 

information provided in Table 4.3. Table 4.4 shows a high volume of bids processed, where the conversion 

rate is more dependent on external factors such as market conditions and competitiveness. Although the 

operational staff (e.g., engineers, architects, and estimators) understand the value of upgrading and 
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connecting their information systems by using BIM and ERP, managers are often unsure of the required 

investment given the short duration of projects and the low conversion rate between pre- and post-award 

phases. Therefore, Table 4.4 presents the total number of hours spent by the engineering team during the 

year as calculated by Equation (4.3), which is used as a benchmark to measure the impact of the proposed 

improvements at the company. This information is very important since it quantifies the overall impact and 

assists managers to better plan resources for future demand.  

4.5.2. Implementation of Framework: Stage 2 (Design) 

With the current process assessment evaluating the efficiency of mapped tasks, improvement solutions are 

formulated in consideration of their projected impact on task durations and expected role (or lack thereof) 

in reducing waste and variation in the overall process. Different improvements were suggested and 

discussed during internal brainstorming sessions then mapped in the future-state map to better understand 

its impact on the overall workflow. After reaching consensus, suggestions were listed as improvement 

opportunities in three categories: (1) low-tech solutions, (2) BIM-based solutions, and (3) client-based 

solutions. These opportunities refer to improvements in the existing tasks listed in Table 4.2 that provide 

an estimated impact measured in saved hours or likelihood of an event occurring. Table 4.5 includes the 

improvement opportunities in each category starting from low-tech improvements and moving to the 

introduction of commercially available BIM software and BIM add-ons to address the specific needs of the 

company. For the low-tech solutions category, a checklist to capture client requirements at early stages was 

recommended for two reasons: (1) to help the sales team from different branches use methods to collect 

client requirements, and (2) to save a considerable amount of the effort required by engineering staff to 

acquire the information needed to fulfil the intended scope. 
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Table 4.5: Improvement opportunities for the company under study. 

Improvement 

category 

Affected task Task 

type 

Proposed improvement Estimated 

improvement (hr) 

Best practices More project 

information 

Pure 

waste 

Checklist to collect most 

frequent missing information 

from client’s expectations 

during pre-award phase  

Reduced time 

resulting from 50% 

reduction in clients 

questions  

Best practices 3D model and 

rendering 

development 

Value-

added 

Acquiring a computer for 

renderings 

50% reduced time 

in rendering 

BIM-based  Develop 1st 

layout as per 

project specs 

Value-

added 

Model development in BIM 

authoring software 

0 

BIM-based  3D model 

development 

Necessary 

waste 

Modify 3D geometry from the 

BIM model for rendering 

1.5 

BIM-based  Identification 

of special items 

and quantity 

take-off 

Necessary 

waste 

Create automatic schedules in 

the BIM model 

2 

BIM-based  Rework Pure 

waste 

More assertive modelling will 

reduce rework 

1 

Client-based  Project 

quantity take-

off 

Value-

added 

Add-on for generation of take-

offs and company forms 

4 

Client-based  Revised 

quantity take-

off 

Necessary 

waste 

Add-on for generation of take-

offs and company forms 

4 

Client-based  Registry to 

ERP system 

Necessary 

waste 

Connection between BIM and 

ERP systems 

2 

Client-based  Electrical 

design 

Value-

added 

Add-on for automated 

drawings for electrical design 

1 

Client-based  Plumbing 

design 

Value-

added 

Add-on for automated 

drawings for plumbing design 

1 

Client-based  Openings and 

internal 

partitions 

design 

Value-

added 

Add-on for automated 

drawings for internal partitions 

design 

1 

 

Under the BIM-based solutions category, the author suggests the implementation of a BIM authoring 

software to enhance the design process and streamline quantity take-off for estimation and procurement is 

suggested. It was determined that the use of Autodesk Revit instead of using a traditional CAD software 
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will not affect the time required to develop the initial drawings given the time saved on later stages such as 

providing renderings, easier revisions, and automated schedules for quantity take-off. Apart from creating 

automated schedules, Revit does not provide sufficient information for modular construction practitioners 

and does not connect the required information with existing ERP systems. Therefore, manual work still 

must be done by engineers to provide the take-off required for estimation and procurement processes.  

Changes in the client-based solutions category are introduced by the development of add-ons in Autodesk 

Revit to automate and connect the BIM model to different information systems, including the existing ERP 

system, and digitalize the quantity take-off exercise. These add-ons are conceptualized and developed using 

Dynamo, while others are automated by programming directly into Revit’s application programming 

interface. These opportunities are focused on digitalizing the premanufacturing processes by providing a 

seamless exchange of data between different design options while accelerating the procurement of special 

items. Other improvement opportunities in this category deal with the digitalization of the development of 

fabrication drawings by automating routing paths and drawing generation according to constraints provided 

by designers in each discipline (Table 4.5). 

In terms of the implementation of the identified improvement opportunities, reduction of wasteful tasks is 

given priority to increase efficiency in the overall process. By automating these tasks, engineers no longer 

have to perform tedious and error-prone activities, instead, they will have more time to dedicate themselves 

to value-added tasks and even work on a higher number of projects. After running the updated simulation 

model with the proposed changes in Table 4.5, quantitative measures are recalculated and benchmarked for 

each improvement category. 
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4.5.3. Implementation of Framework: Stage 3 (Propose and evaluate) 

With results from the simulation model for the improvement opportunities proposed at the design stage, the 

updated measures in Equations (4.1), (4.2), and (4.3) for each improvement category are benchmarked with 

values from the measure stage. Figure 4.3 shows the estimated durations and coefficient of variation at the 

pre- and post-award phases for each improvement category where all proposed categories outperformed the 

company’s current state. Whether by reducing the variation in the process or the duration of wasteful tasks, 

significant improvements were estimated by digitizing premanufacturing processes. While the low-tech 

solutions category reduced significantly the variation of pre-award tasks, BIM-based solutions 

demonstrated a significant improvement for the post-award task durations where only accepted bids are 

processed. The significant benefits of digitalization were demonstrated for the client-based solutions 

category by automating repetitive tasks and connecting the model to the existing ERP system. The 

automation of quantity take-off and its connection to the ERP system reduced the duration of value-added 

tasks by 22% in pre-award, and the duration of necessary waste tasks by 47% in post-award, thus 

demonstrating significant improvements in both phases.  
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Figure 4.3: Estimated duration according to each improvement category and phase. 

Moreover, Figure 4.4 demonstrates the overall number of hours saved in a year by improvement category 

in comparison with the current state for the pessimistic, realistic, and optimistic scenarios, which are a 

function of the company’s sales in a given year. This analysis is meant to quantify the potential benefits of 

the proposed improvements while taking into consideration uncertainties that are outside the scope of the 

engineering department, such as the market conditions and number of awarded proposals. As shown in 

Figure 4.4, all categories indicate a significant reduction in hours worked, varying between 9.45% and 

23.33% for the various improvement categories and scenarios. Among the improvement categories, client-

based provide a significant increase in the savings compared to other categories by developing add-ons to 

digitize BIM processes and connecting BIM models to ERP systems. In addition to the quantitative 
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assessment, a qualitative assessment was provided to the company that enumerates the benefits to the team 

such as improved communication, and readily available and easily accessible information and drawings 

produced by the engineering department. After the assessment was complete, the company under study 

selected which proposed process improvement suggestions to implement. After a period of implementation 

and testing, the proposed framework can be applied once again to evaluate the actual benefits of the 

proposed changes. 

 

Figure 4.4: Yearly estimated savings from proposed improvements. 

4.5.4. Framework Evaluation and Assessment 

According to the DSR methodology, the evaluation of an artefact (the framework, in this case) is achieved 

by demonstrating its utility, quality, and efficacy using carefully selected methods. The assessment could 

be done through quantitative performance measures which can be results of satisfaction surveys (Peffers et 
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al. 2007). Accordingly, the framework and its steps are assessed using a survey administered to the experts 

and managers who participate directly in practical implementation at the company. The survey requested 

feedback tackling the following: (1) the effectiveness of the framework to improve processes, (2) its 

easiness to understand and implement, (3) the sufficiency of the steps and the completeness of the 

framework, and (4) its applicability to other OSC companies. A five-point Likert scale was used to capture 

responses with 1 being ‘strongly disagree’ and 5 being ‘strongly agree’. The survey had a total of five 

responses, with all of the key company experts involved in the empirical implementation of the proposed 

framework being represented among the respondents, including the head of the engineering team, the 

project manager, and the parties responsible for developing all of the pre- and post-award tasks mapped. 

Figure 4.5 demonstrates the questions, the answers from respondents, and the average of responses for each 

question. 

 

Figure 4.5: Survey questions and results from the proposed framework evaluation 
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Results reveal that respondents saw that the framework implementation in the company was effective for 

the improvement of the engineering team (average answer was 4.4). As for the steps presented in the 

framework, respondents scored their agreement with the steps being easy to understand, feasible to 

implement, and in the right sequence for implementation as 4.4, 4.6, and 4.6, respectively. When asked 

about the completeness of the framework and the sufficiency of the steps to make the framework exhaustive 

for applying digitalization and improvements in premanufacturing sequence, the average reply was reported 

as ‘agree’; this indicates the framework should comprehend a wider scope to digitize processes in OSC 

premanufacturing operations. Following the continuous improvement approach, the failure to receive a 

‘strongly agree’ for this entry would constitute an opportunity for future investigation on other case studies. 

In this case, though, all respondents indicated strong agreement with the statement that the framework is 

applicable to other modular and OSC companies, supporting the conclusion that the proposed framework 

is replicable to the OSC industry. 

In addition to validating the framework applicability and efficacy with the selected experts, informal 

discussions were held out while and after the implementation. Although improvements in information 

exchange and engineering processes have been reported, some resistance towards the multiple simultaneous 

changes were recorded. This indicates the need for gradual implementation of the suggested improvement 

measures for easier transition and adoption on the part of practitioners and management. Accordingly, it is 

recommended that each company additionally take into account time considerations when evaluating a 

given set of proposed improvement measures. 
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4.6. Conclusions 

This study introduces a framework to evaluate processes and leverage digitalization during the 

premanufacturing phases in OSC companies. The framework was developed to address the following main 

problems: (1) the misguided use of digital technologies in premanufacturing phases, where OSC companies 

are not applying the full potential of BIM and other digital technologies due to insufficient implementation 

procedures and guidance for connections with existing systems, (2) the shortage in measurements and 

quantifications of benefits and proposed improvements; and (3) the poor focus of OSC literature on the 

earlier phases, where the major attention is given to the fabrication phases and production lines. 

Accordingly, this study promotes the use of a stepwise framework to measure, analyze, design, propose 

and evaluate processes of premanufacturing phases in OSC companies. The novelty of this framework lies 

in the detailed steps and guidance provided to enhance these phases using (a) BIM potentials and (b) Lean 

principles, in addition to the development of methods based on (c) statistical analysis and (d) simulation 

for quantifying the suggested improvement measures. Specifically, this framework helps practitioners to 

quantify the benefits of integrating BIM and other information systems (e.g., ERP), thus expanding the use 

of BIM beyond the design stage in a practical manner based on quantitative evidence. This is achieved by 

providing replicable methods to promote digitalization in OSC companies while providing measures to 

assist in its implementation and establishing a continuous improvement cycle at the offsite company. Thus, 

the proposed framework provides practitioners with quantitative assessment so they can discover different 

opportunities to improve processes through digitalization in a structured manner. In addition to providing 

a quantitative assessment using the proposed measures, a qualitative assessment is also presented where 

intangible benefits are highlighted such as improved communication between departments and more readily 
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available information through BIM models. Moreover, it allows processes for each OSC company to be 

evaluated while considering the unique features of each organization individually. 

Based on the results of a case study undertaken in a modular construction facility, 22% and 47% of the task 

durations in the pre-award and post-award phases, respectively, were reduced through the use of 

digitalization and various different improvements methods. These methods were categorized into 3 types: 

low-tech solutions, BIM-based solutions, and client-based solutions. Companies invest in different methods 

based on the different considerations, primary their budget and the level of improvements obtained from 

the diverse suggested solutions. An important understanding of this framework is the connection to lean 

principles that endorse solutions based on the feedback of internal and external customers to digitize 

processes. Simulation-based trade-off analysis and potential impacts are important considerations in the 

evaluation phase before selecting and implementing the improvements. The need for a learning loop and 

continuous improvement is highlighted in the framework. 

The practical implication of the framework was also observed in a survey distributed to the main experts 

involved at the empirical implementation of the proposed framework. The survey demonstrated that the 

majority of respondents find the proposed framework easy and feasible to implement at their context with 

averages of 4.4 and 4.6 in a 5-point Likert scale. Moreover, all respondents strongly agree that the proposed 

framework is applicable to identify and propose digitalization-driven improvements at OSC companies. 

This indicates the readiness of the framework and its practical implementation to assist OSC companies to 

improve its premanufacturing tasks. 

On a final note, the successful implementation of the framework depends on acquiring accurate information 

from experts working at the company. This could be a potential limitation since imprecise information will 
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provide an inaccurate baseline for the assessment of current and future states. Hence, further work is 

recommended to evaluate the use of automated methods for data collection followed by methods to estimate 

the negative impact of inaccurate data used in premanufacturing phases in OSC. 
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CHAPTER 5: DIGITALIZATION METHOD FOR PROCESS IMPROVEMENT 

AND DECISION-MAKING IN OFFSITE CONSTRUCTION2 

5.1. Introduction 

Offsite construction (OSC) is an approach in which the majority of the building components are fabricated 

in a controlled environment (i.e., shop floor) and subsequently installed on site (Joo et al. 2007). The 

benefits of OSC manufacturing can be summarized as follows: (1) it allows for the establishment of a 

culture of process improvement and for added value to be identified in the overall process (Nahmens and 

Ikuma 2012), (2) it promotes the use of automation to increase production (Linner and Bock 2012), and (3) 

it provides a fruitful environment for the adoption of new technologies such as sensors—in combination 

with data analysis, machine-learning applications, and digitalization—for process improvement (Correa 

2020). Indeed, working in a controlled offsite facility is highly conducive to both process improvement and 

the adoption of the requisite technologies and methods for digitalization. Nevertheless, strategies and 

decision-making with respect to process improvement are often based on personal experience rather than 

empirical evidence. This poses significant risks considering the financial or productivity loss that could 

result from an unsuccessful process improvement program. 

Various approaches, such as the application of lean philosophy and simulation, are used for process 

improvement in OSC. Lean philosophy is highly applicable to OSC, given its origins in manufacturing and 

the tools it offers to minimize the effect of variability and waste. Simulation, meanwhile, is widely used in 

 
2 The manuscript appearing as Chapter 3 of this thesis has been submitted for publication in Automation in Construction as of 

the time of writing of this thesis as Barkokebas, B., Martinez, P., Bouferguene, A., Hamzeh, F., and Al-Hussein, M. 

“Digitalization method for process improvement and decision-making in offsite construction”. 
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combination with lean to improve processes in OSC. Goh and Goh (Goh and Goh 2019) present a discrete-

event simulation model for identifying and addressing process waste in OSC based on indicators such as 

cycle time, labour productivity, and process efficiency. Despite significant efforts in the area, the current 

paradigm for the practical implementation of simulation is not sufficient to leverage the tools being 

developed in academia due to discrepancies between actual data and input to current simulation models 

(Erikshammar et al. 2013). The effective application of lean principles in combination with simulation tools 

for process improvement in a real-life setting requires (1) the use of reliable real-time data gathered by 

work-monitoring technologies (i.e., sensors) as inputs, and (2) large enough sample sizes to avoid biased 

results.  

In addition to providing real-time production status, sensor-monitoring systems generate large volumes of 

useful data. However, this data is not typically put to use for process improvement purposes (Buer et al. 

2018; Gantz and Reinsel 2011), despite the fact that having large volumes of data is fundamental to 

improving operations through digitalization, wherein decisions are made on the basis of both the personal 

domain knowledge of experts and actual data gathered from operations. Furthermore, the implementation 

of frameworks to apply machine learning for process improvement must be tailored to the type of data 

available and the problem at hand (Chien et al. 2007). In the context of OSC, the most notable knowledge 

gap lies in the lack of methods to evaluate process improvement measures leveraging empirical evidence 

gathered by work-monitoring technologies, e.g., radio-frequency identification (RFID), bar code, etc. 

(Razkenari et al. 2018). Although aware of the potential value real-time data can provide as the basis for 

improving current operations, operators are hesitant to digitize their processes due to a lack of robust 

methods and frameworks to incorporate production insights derived from data-mining experiments and 

apply its findings into managerial decisions (Lundkvist et al. 2010). Moreover, limited research is available 
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regarding the implementation and efficiency of automation in OSC (Bowmaster and Rankin 2019), whereas 

strategies to increase flexibility in manufacturing systems are rarely discussed or evaluated. Therefore, 

studies are needed to develop methods that combine the operational expertise from experts and the robust 

data analysis techniques to evaluate process improvement measures in OSC manufacturing operations.  

To address this gap, the present study develops a novel method for evaluating proposed process 

improvement measures by combining real-time production data collected from sensors and design features 

(e.g., surface area, number of components, etc.) of projects manufactured on OSC shop floors. This method 

takes a hybrid (qualitative and quantitative) approach leveraging digitalization to evaluate the validity of 

proposed process improvement measures using statistical and machine-learning applications while 

gathering production insights. This method is tested in a case study using two years of data drawn from 

building information modelling (BIM) and from RFID sensors installed at workstations on an OSC shop 

floor to measure production durations. Hence, the large volume of data employed helps to mitigate the risk 

of bias in the results. 

5.2. Literature Review 

5.2.1. Automation and Process Improvement in OSC 

The use of automated and/or semi-automated machines in OSC adds more flexibility in the fabrication of 

building components (e.g., wall and floor panels) by reducing process variation regardless of the size of 

component (Ritter et al. 2020). Indeed, automation has been implemented extensively to improve 

productivity and performance in OSC, as in other industries (Chen et al. 2018), while also enabling the 

introduction of innovative construction methods to increase operational efficiency. The multi-panel 

approach as an example is an innovative method in which a combination of smaller panels (i.e., single 
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panels) are framed together by a framing machine as a “multi-panel” to reduce set-up times. These multi-

panels are separated into single panels later in the process and finished at different workstations according 

to their features (Ajweh 2014). Single panels are combined into multi-panels in a particular manner taking 

into consideration all the panels required for a given project. For this purpose, designers must extract the 

panel geometries (widths, heights, and lengths) from BIM models and implement a greedy algorithm in 

which panels are optimally sequenced in such a way as to span the full length of the top and bottom tracks 

of the framing machine (e.g., 12 m) in order to minimize material waste (Zhao 2015). In other words, the 

multi-panel approach leverages principles of both automation and manufacturing to reduce variation in the 

process times and material waste based on the extraction of design data from BIM models and the creation 

of optimized computer numerical control (CNC) files (which are used as inputs to framing machines). This 

synergy allows designers, production planners, and automation experts to develop new methods of 

construction that can be later adapted to traditional construction on site. 

Despite the significant improvements in industry practice, the uptake of automation in OSC is still very 

limited and has drawn little interest from practitioners (Delgado et al. 2019; Razkenari et al. 2020). Mao et 

al. (2016) argue that practitioners struggle to adopt more automated processes due to various obstacles such 

as the lack of skilled labour, lack of expertise to develop automated processes in OSC, and high initial cost 

(including purchase of machinery, and factory setup). Despite the growing trend toward improving 

construction productivity through a manufacturing approach, the capital-intensive investment required to 

adopt automated processes increases the risk to practitioners, especially when the trade-off between 

productivity gains and capital investment is not easily identified (Taylor 2010). The impact of semi-

automation in OSC, for instance, where some workstations are assisted by machines while others are 

dependent on manual work, is limited due to a natural imbalance in production between the manual and 
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automated workstations. In this regard, the impact of automation in the context of other aspects of 

production in OSC, such as utilization of resources and inventory, still needs to be evaluated (Zhang et al. 

2020), since the available literature in this domain is limited to evaluating the effect of automation on 

production rates at automated workstations. In reality, the automation of some processes in OSC can have 

adverse effects such as production imbalance brought to bear by the increased rate, resulting in 

reengineering and production waste (Razkenari et al. 2019). To better leverage the use of automation in 

OSC, Zhang et al. (2016) suggest the use of sensors to enable process improvement analysis based on actual 

data. It has also been noted that the use of work-monitoring technologies and information modelling must 

be prioritized to improve operations and increase the adoption of OSC (Taylor 2020). In this regard, a 

method leveraging digitalization in which data from sensors is collected, combined with other information 

systems (e.g., BIM models), and applied to improve current manufacturing operations is required. 

5.2.2.  Digitalization and Real-time Work-monitoring Technologies in OSC 

Digitalization (or “process digitization”) is defined as the use of digital technologies to transform processes 

and generate value-adding opportunities to current operations (Gartner 2020). In other words, digitalization 

focuses on the increased use of data to improve internal efficiency while adding value to processes by 

moving them from analog to digital platforms (Björkdahl 2020). Despite the increased use of digital 

platforms such as BIM and the use of sensors to collect production data, OSC is lagging behind other 

industrial sectors in terms of the adoption of digitalization methods and the integration of different 

information systems to improve internal processes (Barkokebas et al. 2021). That being said, various data 

collection methods, ranging from sensor-monitoring (e.g., RFID and audio signals) to image capture, can 

be used to capture the progress and location of elements on a shop floor. Meanwhile, machine-learning 

algorithms can be applied to extract meaningful information from the data collected as discussed below. 
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For instance, a production control system that uses various sources of information (e.g., BIM models, 

barcodes, and RFID sensors) and spans the design and procurement phases has been proposed as a means 

of facilitating just-in-time procurement of materials and mitigating the risk of shortages or excess inventory 

during production (Wang et al. 2018). Elsewhere in the literature, a production control system has been 

applied to manage materials on the shop floor during production in accordance with project specifications 

while facilitating ready communication within the team using mobile devices (Yin et al. 2009). To 

accommodate process uncertainty, an approach combining RFID data and information inputted to mobile 

devices to monitor quality and manage the schedule while proposing further usage of this information 

during the product’s lifecycle has been proposed (Min and Junyu 2013). Moreover, Altaf et al. (2015) 

proposed a tool that provides production managers with real-time feedback regarding the production rate 

by comparing the planned production schedule against data from sensors capturing the actual production 

rate.  

Martinez et al. (2021) applied convolutional neural networks to identify tasks in, and evaluate the efficiency 

of, OSC operations using video data from security camera footage. Their study achieved an accuracy of 

92% in a case study involving the manufacturing of floor panels in a semi-automated production facility. 

Other machine-learning algorithms, such as support-vector machines, have been applied to automatically 

identify common tasks (e.g., hammering, sawing, and nailing) using audio signals from cameras installed 

on an OSC shop floor (Rashid and Louis 2020). This approach was found to yield similar accuracy in its 

results to the previous study, and a case study was presented that generated relevant production insights. 

Another recent study used historical data to predict future performance, with RANdom Sample Consensus 

(RANSAC) being applied to predict performance using a large dataset of historical data combining 

information from BIM models (i.e., project specifications) and RFID sensors (i.e., workstation cycle times) 
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(Altaf et al. 2018). The authors of that study noted that predictions are subject to a high degree of variability, 

not only due to the variability of project features in OSC, but also due to the uncertainties of production 

itself. 

To address issues with product variability, Kalman filters have been applied to predict cycle times of 

identical panels manufactured in an OSC setting (Wen et al. 2017), with the results of that particular study 

demonstrating that: (1) only 1% of panels were repeated more than 10 times, indicating a low degree of 

repetition of identical panels, and (2) predictions of cycle time are not reliable due to significant variation 

in the manufacturing process. Mohsen (2021), meanwhile, used the location of panels in the RFID system 

in combination with its features (e.g., length) to calculate the work-in-progress (WIP) at downstream 

workstations as a way of increasing the accuracy of prediction models. After applying different machine-

learning algorithms such as linear regression and random forest regressor, Mohsen concluded that the 

accuracy of regression models in predicting workstation cycle times is governed largely by production-

based features (i.e., WIP). Despite significant research in the area, further investigations are required in 

order to address the impact and increase the use of machine-learning applications in OSC using data from 

work-monitoring technologies (Elghaish et al. 2021). Moreover, further study is needed to develop methods 

and procedures to analyze, process, and apply data from work-monitoring technologies to achieve 

operational improvements in OSC. 

5.2.3. Identified Gaps in the Literature and Point of Departure 

Based on the above literature review, three gaps are identified: (1) research is needed to address the use of 

automation in OSC considering its impact on the overall productivity of the shop floor, (2) there is a lack 

of methods to leverage digitalization and evaluate proposed process improvement measures based on both 
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qualitative and quantitative evidence in OSC, and (3) more studies are needed to develop and implement 

machine-learning applications to achieve operational improvements in OSC. Accordingly, the present study 

proposes a structured method to leverage digitalization in the evaluation of proposed process improvement 

measures for OSC. In this method, qualitative data in the form of inputs from OSC experts and quantitative 

data from sensors and BIM models are combined, thus creating a synergy between expert input and data 

analysis. The proposed method is then tested using actual data collected from RFID antennas and BIM 

models from projects manufactured over a period of almost two years on an OSC shop floor. An important 

aim of the present study, then, is to provide extensive evidence on the validity of proposed process 

improvement measures developed in collaboration with OSC experts while providing a structured stepwise 

procedure to address them. 

5.3. Methodology 

The present study applies cross-industry standard process for data mining (CRISP-DM) as the methodology 

for assessing the validity of proposed process improvement measures in OSC. CRISP-DM is the most 

common methodology for conducting data-driven improvements in the context of Industry 4.0, where high 

volumes of production data are generated (Martinez-Plumed et al. 2021; Schröer et al. 2021). Even twenty 

years removed from its introduction, CRISP-DM remains the de-facto method due to its flexible and reliable 

structure for conducting data-mining projects, the explainable data it generates, and the robust modelling 

and evaluation it provides (Martinez-Plumed et al. 2021; Schröer et al. 2021). The present study also applies 

an inductive approach that can be characterized as data-driven and exploratory to develop, test, and 

subsequently generalize on the basis of hypotheses formulated based on observation (Woo et al. 2017). It 

should be noted in this regard that hypotheses are not required in order to initiate inductive research, as they 
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are a by-product of exploration emerging from the interactions between data and participants (Antwi and 

Hamza 2015). This chapter also applies exploratory data analysis (EDA) as a set of tools and techniques to 

explore, find patterns, and draw conclusions from the data (Sharma et al. 2021). Using well-known EDA 

techniques, such as visualization and statistical analysis, a hypothesis is prepared for each proposed process 

improvement measure based on consultation with experts and actual production data collected by sensors. 

The steps in CRISP-DM applied in this research are presented as follows: 

1. Business understanding: assess the current business situation and define the project goal to 

be transformed into a specific data-mining problem. 

2. Data understanding: explore the data collected and develop hypotheses based on the data, 

experience, and expert input. 

3. Data preparation: clean, process, and combine the data by applying data-mining techniques 

to create meaningful datasets for the testing of the developed hypotheses. 

4. Modelling: select which machine-learning algorithms (e.g., k-means, linear regression, 

among others) to use based on the given problem and build/train models as required to test 

the developed hypotheses. 

5. Evaluation: evaluate and present the results from the developed models so that the next steps 

can be determined. 

6. Deployment: in the case that the project is approved, plan the deployment of the developed 

models in consideration of the monitoring and maintenance requirements in a real-world 

setting. 
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Since data-mining projects must followed a tailored approach that considers the type of data and the 

problem at hand (e.g., predictive maintenance, process improvement, quality management, etc.), CRISP-

DM provides a structured yet flexible approach (Ribeiro et al. 2020). Meanwhile, an inductive approach 

allows the researcher to identify counterintuitive patterns (Faems 2020) in data, while EDA methods 

provide a statistical foundation for interpreting results and drawing conclusions. The present study applies 

these paradigms in a semi-automated wall panel production facility by collecting project specifications from 

BIM models and RFID timestamps from the panels manufactured. To apply CRISP-DM in the context of 

digitalization in OSC manufacturing, a case study is used to develop the proposed method. Given that this 

is an exploratory study, the final step of CRISP-DM (i.e., step 6 in the previous list, ‘deployment’) falls 

outside the scope of this chapter.  

5.4. Development of the Proposed Digitalization Method Using a Case Study 

This research presents a case study of a semi-automated OSC operation in Alberta, Canada, in which wall, 

floor, and roof panels are manufactured in distinct areas of the shop floor and then loaded onto trailers to 

be transported to the site for assembly. The wall panel area is selected for the present case study. Some of 

the wall panel workstations are furnished with semi-automated machines that are continuously monitored 

by RFID antennas that collect location information and timestamps for each panel in production. Figure 5.1 

provides an overview the manufacturing process, which begins at the framing workstation (listed as W01), 

where multi-panels (single panels combined together in 12 m sections, as described in Section 5.2.1 above) 

are framed by a semi-automated machine according to the specifications in a CNC file extracted from a 

BIM model. At the beginning of the framing process, an RFID tag is affixed to the first stud of each single 

panel within the multi-panel. The sheets of oriented strand board (OSB) are placed manually and then nailed 
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automatically by a CNC machine at workstations W03 and W04, respectively, whereas interior panels 

bypass these workstations since they do not require OSB sheathing. The multi-panels are then separated 

into single panels at workstation W05, from where they are directed to different workstations according to 

wall panel type (exterior or interior). 

 

Figure 5.1: Wall manufacturing tasks according to current workstations layout at the shop floor 

under study and locations of RFID antennas. 

Windows, insulation, and vapour barrier are installed in exterior walls at W06 and then sent to either 

workstation W09 or workstation W10 depending on whether or not the project requires exterior finishing 

to be installed on the shop floor (as opposed to being installed on site). Interior panels, meanwhile, are sent 

from W05 to one of two buffer lines (stations W07 and W10) and then loaded onto the trailers together 

with the exterior panels. Buffers are also provided between each workstation throughout the shop floor, 

while RFID antennas are installed at the start of each workstation, as indicated in Figure 5.1. A significant 

portion of the work being carried out at workstations W01 and W04 is semi-automated, and this increases 

the production rate significantly. The present research evaluates the effect of this automation on production 

balance and flexibility. The following subsection are divided according to the steps in the CRISP-DM 

methodology as indicated in Figure 5.2. 
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Figure 5.2: Study procedure and methods. 

5.4.1. Business Understanding 

To better understand the current process and define the goals for a data-mining project, several in-person 

observations of the shop floor are conducted, followed by consultations with experts from the case 

company. On this basis, three conclusions are drawn at this juncture: (1) there is a high degree of variability 

in demand over the course of the year due to market fluctuations (e.g., more projects are manufactured 

during the summer); (2) there is a discrepancy in productivity between manual and semi-automated 

workstations, given the higher pace of production of semi-automated workstations over manual ones; and, 

(3) the initial workstation, W01—which features a semi-automated framing machine—dictates the pace of 

production throughout the shop floor and is often referred to as the benchmark for overall production.  

Although the automation of workstations increases the overall wall production significantly, any adverse 

effects on overall production have yet to be investigated and quantified. A notable challenge concerning 

any effort to improve operations is the varying demand over the course of the year and thus the lack of a 

fixed production target. In other words, the shop floor must be flexible enough to accommodate significant 

market fluctuations throughout the year despite there being various fixed overhead costs such as the cost of 

factory space and the cost of idle machinery at semi-automated workstations. 
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To account for variable demand and deadlines imposed by clients, the management team applies two 

strategies to increase operational flexibility are considered in the case study: (1) irregular days, and (2) 

work beyond hours. Irregular days are extra working days added into a week during a period of unusually 

high demand, with all workers at their workstations as they would be on a regular working day. Work 

beyond hours, on the other hand, occurs when workers work slightly before or after hours (e.g., 5 to 10 

minutes) to finish the remaining portion of their work or to compensate for an unscheduled break. This 

typically results in a few workers either remaining at their workstation after their shift or arriving early for 

a shift. In the case that workers extend their shift beyond a reasonable limit (e.g., 30 minutes), the 

management team creates issues to production such as loss of productivity due to fatigue and increased 

factory overhead (since the shop floor must remain open beyond planned hours). The RFID system can 

identify instances of both flexibility strategies (irregular days and work beyond hours by detecting when 

panels are entering workstations (based on the RFID timestamps). 

The impact of product variability (i.e., differing panel features) on production is also a matter of interest in 

the case study, especially at the initial workstations (W01 to W04), where automation is more prominent. 

Panel features such as panel length, panel type (exterior or interior), and number of studs are extracted 

directly from BIM models used to produce the CNC files that are inputted to the semi-automated 

workstations. After consultation with production managers at the case company to obtain information 

concerning regular working hours (Monday to Thursday from 7:00 a.m. to 5:00 p.m.) and scheduled breaks, 

various assumptions are adopted accordingly for the purpose of the study as listed below. 

• The wall framing station, W01, operates at an increased pace and provides reliable durations for the 

manufacturing of multi-wall panels. 
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• Wall surface area (in m2) is the common metric for input and output production. 

• In current practice at the case company, there are two flexibility strategies in use (as described 

above): (1) work on irregular days, and (2) work beyond hours. 

• Work on irregular days (Fridays, Saturdays, and Sundays) is a common strategy to make production 

more flexible and to accommodate occasional high demand. The use of this strategy is detected by 

observing the day of the week in the RFID timestamps when panels are moved from one workstation 

to another. 

• Work beyond hours is another common strategy to make production more flexible and to 

accommodate occasional high demand. For the purpose of the present study, “work beyond hours” 

is deemed to have occurred any time a panel is moved between workstations more than 30 minutes 

prior to or more than 30 minutes after regular working hours. The management team will evaluate 

the effectiveness of this strategy and determine whether its application on the shop floor should 

continue. 

As determined in consultation with production managers from the case company, the objective of the data-

mining project is to evaluate the impact of automation, as well as the impact of the two strategies employed 

in current practice to increase operational flexibility, on production. Accordingly, hypotheses are 

formulated to evaluate: (1) the impact of automated machinery on production, taking into account both the 

production rate and the capacity to accommodate different panel features, and (2) the effectiveness of 

existing flexibility strategies (working on irregular days and beyond hours) in enabling a flexible 

manufacturing process and accommodating varying demand. 
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5.4.2. Data Understanding 

RFID data (i.e., timestamps and locations of panels, as described in Figure 5.1) and information about panel 

features available in BIM models are collected for the purpose of the initial investigation of the current state 

of production. The data is combined, processed, and visualized using Python scripts various data science 

libraries (e.g., Pandas, Pyplot, Scikit-learn, etc.) to identify initial patterns in production and to investigate 

the capacity of the shop floor throughout the period under study. In this period, no significant changes are 

made either to the manufacturing process or to the shop floor layout. As an initial investigation, the daily 

input and output productions are measured by identifying the total surface area (in m2) of panels entering 

and leaving production (entering W01 and leaving W11, respectively, as per Figure 5.1) based on the RFID 

readings. Additionally, the average production output is calculated using a 14-rolling window to quantify 

the variation in production over the course of the year, and production days are then labelled in accordance 

with assumptions developed in the “business understanding” step of the research (described above). 

Figure 5.3 shows the daily production output according to the flexibility strategy employed (irregular day, 

work beyond hours, both strategies, or neither strategy). The average daily production output using a 14-

rolling window is also displayed to visualize varying demand. Figure 5.3 demonstrates that the flexibility 

strategy of working beyond hours (thirty or more minutes before or after regular hours) is commonly 

employed at the case company, while the strategy of working irregular days is only employed during periods 

of high demand, as indicated by the rolling mean. The use of both strategies on the same day, meanwhile, 

is relatively rare. It is also clear that the production output is highly variable over the course of the year, as 

indicated by the rolling mean. 
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In this regard, Table 5.1 shows that the rolling mean production output varies by 230%, 264%, and 230% 

across 2016, 2017, and 2018, respectively (when long holiday breaks such as Christmas and Easter are 

excluded). In other words, the case company must accommodate a significant variation in production, thus 

requiring a high degree of flexibility in its operations. The variation in the rolling mean is the result of a 

combination of factors, such as season (e.g., summer period is a high season for construction), inherent 

market fluctuations, and low productivity due to material shortages, skilled labour shortages, machine 

breakdowns, etc. It should be mentioned that these inferences regarding the causes of variation are made 

on the basis of consultation with the case company’s production managers due to the unavailability of 

quantitative data concerning the production capacity and demand. Nevertheless, the available data confirms 

that the shop floor must be flexible to accommodate different output demands, especially when dealing 

with fixed overhead costs, such as lease, utilities, and equipment depreciation and maintenance. 

Table 5.1: Minimum and maximum daily rolling mean production at the case shop floor 

Year Minimum production (m2) Maximum production (m2) Variation 

2016 240 557 230% 

2017 251 665 264% 

2018 137 322 230% 

 

Figure 5.4 shows the daily production output (in m2) according to the status of the framing station 

(operating or shut down) and the work-in-progress (WIP) (i.e., total area of walls being produced between 

W01 and W11) while also displaying capturing the work performed on irregular days. Ideally, the 

production output will be relatively uniform, indicating balanced production; however, Figure 5.4 
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demonstrates that this is not the case. Instead, Figure 5.4 shows that production is imbalanced and that there 

is a high variation in WIP. The figure also shows that the framing station is shut down on several days 

across the year, particularly when there is a significant WIP. (The framing station, W01, is shut down on 

occasion to suspend the input of new panels so that downstream workstations can clear a backlog of panels 

in progress.) 

To better illustrate the operations at W01, a callout from the one of the busiest periods of production is 

included in the figure. The callout shows the work being performed on irregular days to accommodate the 

increased demand during the period where the framing station is shutdown to reduce current WIP. As can 

be seen, the framing station’s high speed of production causes overproduction, and strategies such as 

temporarily suspending the operation of W01 or working on irregular days are used to reduce current WIP 

and accommodate increased production demand. The initial assessment of the data demonstrates that the 

case company must maintain a flexible operation, given the variable demand throughout the year that must 

be met with fixed resources and factory space. 
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1 

 2 

Figure 5.4: Production output according to WIP, framing station status, and irregular days3 

Figure 5.3: Production rolling mean with a window of 14 days and daily production output according to approaches to 

maintain flexibility on sample data gathered on the shop floor 
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Based on the initial assessment and consultation with the case company’s production managers, 

three proposed process improvement measures with corresponding hypotheses are developed as 

presented in Table 5.2. Each hypothesis is tested to verify the feasibility of its practical application 

based on actual data collected from the shop floor. If a given hypothesis is accepted, then additional 

efforts are to be made on the development and deployment of the corresponding process 

improvement measures, whereas, if the hypothesis is rejected, the given process improvement 

measure must be modified or discarded, as the rejection of the hypothesis means that the actual 

production data shows that the improvement measure is not feasible under the existing shop floor 

conditions. As previously mentioned, the framing machine is given special attention in the study 

since it is at the first workstation (i.e., W01) and its production capacity is often cited by the case 

company’s production managers as being synonymous with the production capacity of the shop 

floor overall. Moreover, the hypotheses developed in this study are categorized as either design- 

or production-based depending on the nature of the given process improvement measure. The 

design-based hypotheses are tested based on the design features of multi-panels, while the 

production-based hypotheses are tested based on the panel production data. Hypotheses 1 and 2 

(H1 and H2, respectively) are formulated based on the process improvement measures proposed to 

increase the flexibility and improve the operations of the framing machine at W01. 
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Table 5.2: Proposed process improvement measures and hypotheses developed for the 

present study 

 

The first process improvement measure proposes to alter the existing layout of the shop floor, 

shifting the separation of multi-panels into single panels from W05 to W02 (as per Figure 5.1). In 

this alternative layout and workflow, exterior single-panels continue along the same path as before, 

whereas interior single-panels are moved directly from W02 to W07 as indicated in Figure 5.1. As 

a result, workstations W03 and W04 (only applicable to exterior panels) will be less congested, 

and operations may improve since there are no interior panels occupying buffer space 

unnecessarily. Since multi-panels are combined primarily based an algorithm that considers panel 

type and other features extracted from BIM models, three steps are needed in order to test and 

deploy this process improvement measure: (1) verify whether W01 manufactures exterior and 

interior panels at a similar pace, (2) modify the current algorithm to combine multi-panels 

according to this process improvement measure so that the CNC files that serve as inputs to the 

semi-automated machine can be generated accordingly, and (3) alter the layout to accommodate 

ID Proposed process improvement measure Hypothesis 

H1 Combine different panel types (exterior and 

interior) at W01 and separate them at W02  

The panel cycle time at W01 is not affected 

by panel type 

H2 Combine multi-panels at W01 according to a 

predetermined takt time in order to balance 

overall production 

The panel cycle time at W01 is directly 

related to the features of the given panel 

H3 Add extra shifts and allow for extended 

working hours to meet production targets 

Working on irregular days and beyond work 

hours is an effective strategy for meeting 

production target 
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this change to the workflow. Since implementing these changes would entail a significant 

investment of capital and effort, H1 is tested to determine whether the cycle time of W01 is 

significantly affected by panel type (i.e., interior versus exterior). 

The second process improvement measure proposes to create multi-panels at W01 according to a 

predetermined takt time in order to balance overall production. Accordingly, the semi-automated 

framing machine should manufacture multi-panels at a slower pace to avoid congestion in 

downstream workstations and thereby decrease WIP without having to further alter the plant 

layout. According to consultation with the case company’s production managers, the framing 

machine is very reliable and predictable in its operation, so the process time for a multi-panel is 

governed largely by its features (e.g., surface area, number of openings, etc.) rather than by the 

performance of the framing machine. Hence, the algorithm used to lay out the single panels to 

form multi-panels must be revised to change its objective function from material waste 

minimization to achieving a predetermined takt time and balancing production. To address the 

practical feasibility of this process improvement measure, then, H2 determines whether the cycle 

times at W01 are directly governed by the multi-panel’s features or there are other inherent 

uncertainties during production that are having a significant effect. 

The third process improvement measure addresses the existing strategies in use for achieving 

operational flexibility and meeting production targets. Figure 5.3 and Figure 5.4demonstrate that 

working beyond hours and on irregular days are commonly used strategies to employ when needed 

for accommodating variation in demand and meeting production deadlines. Despite being effective 

in these respects, these strategies do not take under consideration other aspects, such as production 

efficiency and balance. In this context, it should be noted that a production target is considered to 

have been met when the output is within a 25% range of the input during the same period (e.g., 
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day or week). As determined based on consultation with production managers from the case 

company and shown in Figure 5.4, the production target is set on a weekly rather than on a daily 

basis, since there are minor fluctuations between days in the week. Based on the three hypotheses 

formulated, data is prepared, modelled, and evaluated as described in the following sub-sections. 

5.4.3. Data Preparation 

This subsection describes the creation of datasets to test the hypotheses proposed in Section 5.4.2. 

The initial dataset consists of design specifications and production data for 27,680 multi-panels 

drawn from BIM models and RFID readings spanning the period, September 2015 to October 

2018. To ensure consistency, the data cleaning phase is performed in three steps: (1) removal of 

data for panels manufactured before June 1, 2016 due to significant changes to the shop floor 

layout; (2) removal of data for panels manufactured before September 18, 2016 due to a detected 

malfunction in the RFID system before this period; and, (3) removal of custom panels built 

manually on the shop floor (mainly due to having an abnormally short height or length). 

After the initial cleaning, the data is processed in order to calculate the cycle times of panels at 

each workstation. Since each multi-panel is actually a combination of multiple single panels, each 

with an RFID tag affixed to the leading study, each multi-panel has multiple RFID tags according 

to the number of single panels it comprises. To avoid having multiple cycle time readings for the 

same multi-panel, only the RFID tag from the first single panel of a given multi-panel is 

considered, as this will be the first one to enter the workstation. As a result of the data cleaning 

process, the number of multi-panels is reduced from 27,680 to 7,819. The most significant portion 

of panels discarded is at the first step as 16,679 multi-panels were manufactured before June 1, 

2016. Furthermore, the RFID data is prepared differently according to the nature of each 

hypothesis. Cycle times are calculated for each panel at W01 for the design-based dataset in order 
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to evaluate H1 and H2, whereas the production-based dataset is used to evaluate the weekly 

production and address the efficiency of flexibility strategies, as stated in H3. 

5.4.3.1 Design-based Data Preparation for H1 and H2 

Figure 5.5 shows the configuration of RFID antennas at a given workstation, as well as how the 

durations are interpreted from the data collected by these antennas. Equation (5.1), meanwhile, 

demonstrates how the cycle time 𝐶𝑇𝑝,𝑛 (in minutes) for panel 𝑝 at workstation 𝑛 is calculated by 

subtracting the timestamp of when the panel entered the workstation from the timestamp of when 

the subsequent one did (𝑡𝑝,𝑛 and 𝑡𝑝,𝑛+1, respectively). Due to the arrangement of antennas at the 

workstations, only cycle times can be extracted from the timestamps, whereas the processing 

(𝑃𝑇𝑝,𝑛) and waiting times (𝑊𝑇𝑝,𝑛) cannot be calculated based on the RFID data. The lack of 

processing and waiting times hinders more in-depth analysis of the manufacturing process, since 

we cannot discern based on the cycle times alone whether the panel is being processed or is idle 

(Barkokebas et al. 2018). Nonetheless, in some cases, the panel cycle times can be adjusted to give 

a clearer picture of actual production. For instance, in the case that a panel has remained at a 

workstation during non-working hours (e.g., scheduled breaks, weekends, etc.), time is deducted 

accordingly. To give a specific example, if a panel has remained at a workstation between 9:20 

a.m. and 10:00 a.m., fifteen minutes will be deducted from its cycle time since the shop floor has 

a scheduled break between 9:30 a.m. and 9:45 a.m. 

 

Figure 5.5: Data collected from the RFID system 
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𝐶𝑇𝑝,𝑛 → 𝑡𝑝,𝑛+1 − 𝑡𝑝,𝑛 =  𝑃𝑇𝑝,𝑛 + 𝑊𝑇𝑝,𝑛 (5.1) 

Since H1 and H2 are focused on the duration of W01, multi-panel’s features are combined with 

data from BIM models and cycle times calculated for this workstation. As indicated in Figure 5.6, 

there is a significant number of panel features extracted from BIM models that are dependent on 

one another (e.g., length and number of studs) and that may not be relevant for the prediction of 

cycle times at W01. These interdependent features can cause two problems during analysis: (1) 

overfitting due to the high number of input variables, and (2) skewed and misleading results due 

to multicollinearity. Therefore, multi-panel features are selected according to validated time 

studies to predict the process times at W01 performed by (Shafai 2012). Figure 5.6 lists the selected 

features. The selection of features having been performed, the design-based dataset is ready to be 

deployed for the training of the machine-learning models to be used to test H1 and H2. 
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Figure 5.6: Design-based dataset on multi-panels 

5.4.3.2 Production-based Data Preparation for H3 

Since H3 addresses the efficiency of the flexibility strategies currently in use, the initial dataset is 

created from the data from the RFID system, organized according to the initial date of the panels 

manufactured. According to the assumptions determined in Section 5.4.1, the data is organized by 

labelling each working day (1 for yes and 0 for no) according to the following criteria: (1) whether 

any work was performed more than 30 minutes before or after the scheduled work shift (i.e., work 

beyond hours) according to the earliest and latest timestamps of the day; (2) whether work was 

performed on an irregular day based on the days of the week given in the timestamps; and (3) daily 

production input and output (in m2). Once the daily production data has been prepared, it is grouped 

into weeks of the year and includes the following: (1) number of days when work beyond hours 

occurred; (2) amount of work on irregular days in the week; and (3) weekly production input and 

output. In addition, an indication of whether the production target was met or not in a given week 
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is also included in the dataset following the criteria defined in Section 5.4.2. As per Equation (5.2), 

the production target (𝑃𝑚𝑒𝑡) is met if the weekly production output (𝑂𝑤) is within a 25% range of 

the weekly production input (𝐼𝑤). Finally, the dataset is ready to be used in testing H3. 

𝑃𝑚𝑒𝑡 = {
1, 𝑂 ≥ 0.75 × 𝐼𝑤 ∧  𝑂𝑤 ≤ 1.25 × 𝐼𝑤

0, 𝑂𝑤 ≤ 0.75 × 𝐼𝑤 ∨ 𝐼𝑤 ≥ 1.25 × 𝑂𝑤
 

(5.2) 

5.4.4. Modelling 

This subsection describes the selection of the machine-learning models and other methods to be 

deployed in addressing the proposed hypotheses according to its nature. Since H1 and H2 deal with 

the influence of panel’s features to predict its cycle time at W01, a design-based analysis is 

performed in which a series of machine learning and statistical methods are applied to test the 

proposed hypotheses. Furthermore, given that H3 has to do with the ability of existing flexibility 

strategies to accommodate variability in demand, a production-based analysis is performed in 

which Pearson’s correlation algorithm is applied in order to identify and characterize the 

correlation between the application of these strategies and production targets being met. In other 

words, the purpose of testing H3 is to determine whether working beyond hours and/or on irregular 

days are effective strategies for meeting production targets under the current production. The 

different modelling approaches employed for this purpose are described in the following 

subsections. 

5.4.4.1 Design-based Data Modelling for H1 and H2 

As previously discussed, OSC is characterized by significant variation in both products and 

processes. Hence, a series of models is implemented combining and testing different machine-

learning algorithms to identify design-related patterns in the manufactured multi-panels and 

evaluate cycle times at W01 accordingly. Figure 5.7 depicts the steps and machine-learning 
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algorithms applied in the present study to test H1 and H2. Initially, multi-panels from the dataset 

prepared as described in Section 5.4.3.1 are clustered according to their features under the 

assumption that similar multi-panels will have similar cycle times. Due to the lack of scholarship 

specifically pertaining to the clustering of wall panels according to their features, popular 

algorithms from each clustering category are selected. Hierarchical density-based spatial clustering 

of applications with noise (HDBSCAN), an improved version of density-based spatial clustering 

of applications with noise (DBSCAN), is selected due to its popularity as a density-based 

clustering algorithm (Campello et al. 2013). It offers the advantage of being able to automatically 

select the number of representative clusters based on a relatively small number of samples from 

each cluster, while it can also identify noise in the dataset so that it can be addressed accordingly. 

k-means and agglomerative, meanwhile, are selected due to their popularity as density-based and 

hierarchical clustering algorithms, respectively (Ahmed et al. 2020; Naeem et al. 2019). 

 

Figure 5.7: Machine-learning modelling to test H1 and H2 

In contrast to HDBSCAN, the latter-mentioned algorithms require the user to specify the desired 

number of clusters beforehand, since there is not an initial indication of what that number might 

be. For this reason, HDBSCAN is first performed to obtain a possible number of clusters in the 

design-based dataset, and this number of clusters is found to be 4 based on a minimum of 700 

multi-panels per cluster as the input parameter. This number is increased to 5 in order to gain a 

better understanding of the variation in features, and the same number of clusters is used for the 
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other algorithms as well. The multi-panels having been clustered according to their design features, 

the cycle times are filtered through outlier detection algorithms to exclude abnormal durations that 

may have occurred due to unforeseen events such as machine breakdown, low productivity, or lack 

of material. Interquartile range (IQR) is used for this purpose as a classical statistical method for 

detecting outliers, while a Hampel filter is also employed due to its good performance in detecting 

outliers in manufacturing cycle times in particular (Nishigaki et al. 2020). 

Various approaches are then applied in order to test H1 and H2. To test H1, samples from each 

cluster are grouped into interior and exterior panels so that a statistical test can be performed to 

evaluate whether the cycle times of exterior and interior panels are significantly different. To select 

which test to use (parametric or non-parametric), a Shapiro-Wilk test is applied to the cycle time 

samples in each cluster to determine whether they behave as Gaussian or non-Gaussian 

distributions. The distributions of both exterior and interior multi-panels having been found to 

exhibit non-Gaussian behaviour, the Kruskal-Wallis test—a popular non-parametric method to 

evaluate means of durations in manufacturing (Chien et al. 2007)—is applied to test H1. To 

evaluate H2, three regression algorithms—linear regression, random forest regression (RFR), and 

support vector regression (SVR)—are applied, and the R2 value (also known as coefficient of 

determination) from each regression is calculated in order to determine the degree design-related 

features of multi-panels explain the variation in the forecast of its cycle-times. Given that the 

efficiency of regression algorithms such as RFR and SVR is dependent on the parameters used 

during regression, the parameters are fine-tuned according to the sample in each cluster using a 

GridSearchCV algorithm. GridSearchCV, it should be noted, performs an exhaustive search over 

a range of predefined parameters to identify the best set of parameters to be used in a regression 

model based on the training set provided in each cluster. A two-fold cross-validation using a 
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90%/10% ratio is applied in each cluster for training/testing to ensure the models are not over-

fitted. 

5.4.4.2 Production-based Data Modelling for H3 

As indicated in Figure 5.3 and in Table 5.1, there is significant variation in output production, and 

different flexibility strategies (i.e., working beyond regular hours and/or during irregular days) are 

used to make production more flexible when needed. To capture this aspect, graphical tools are 

applied to visualize when these flexibility strategies are being applied and whether production 

targets are being met when these strategies are applied. Following the visual assessment, Pearson’s 

correlation method—a method to evaluate the linear relationships among productivity parameters 

in manufacturing (Charaniya et al. 2010)—is applied to determine the extent to which there is a 

correlation (measured by the covariance factor) between these flexibility strategies being applied 

and the weekly production targets being met. 

5.4.5. Evaluation 

In this subsection, the results of the modelling are evaluated and presented. The data is presented 

visually to demonstrate the function of the developed models and to illustrate the results of the 

design-based assessment. The figures below aid understanding of the important design features in 

the multi-panels and the sample sizes in each clustering algorithm. Moreover, the graphs indicate 

the number of weeks during which flexibility strategies have been used, followed by the number 

of weeks during which the production targets have been met, as determined in the production-

based assessment. These graphs aid understanding of the results and shed light on the 

determinations made to either accept or reject the proposed hypotheses. Each hypothesis is 

evaluated separately according to its nature and the type of testing. For the design-based 

hypotheses (i.e., H1 and H2), the multi-panels are grouped into clusters according to their design 
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features. The p-values from the Kruskal-Wallis test can then be used to evaluate whether there is 

a significant difference in cycle times between exterior and interior panels (H1). To address H2, the 

R2 values from the regression models are used to evaluate the extent to which the design features 

can explain the variance in the cycle times of the multi-panels in a given cluster. To address the 

production-based hypothesis, H3, Pearson’s correlation method is applied to determine the linear 

relationship between the existing flexibility strategies being used and the production targets being 

met. 

5.5. Computational Results 

5.5.1. Design-based Assessment 

Figure 5.8 depicts the results of each model according to the number of multi-panels per cluster 

and outliers detected using IQR and Hampel filter. As can be observed in the figure, the number 

of openings (windows and doors) is the determining feature used to cluster the multi-panels. 

Furthermore, the number of single panels in each multi-panel appears in some models as a 

secondary feature when using HDBSCAN and agglomerative with five clusters. This is attributable 

to the influence that the number of openings has in determining the process times at the framing 

station, as noted in previous studies performed at the particular shop floor under study(Altaf 2016; 

Shafai 2012). Figure 5.8 also demonstrates that more cycle times are identified as outliers when 

applying the Hampel filter method compared to when applying IQR, since the Hampel filter 

provides narrower acceptable ranges compared to IQR (Domanski 2020; Falkowski and Domanski 

2020). The models having been obtained, normal values in each cluster are saved to new datasets 

that can be used in the calculations performed for the purpose of testing H1 and H2. 
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(a)HDBSCAN (4 clusters) and IQR (b)HDBSCAN (4 clusters) and Hampel filter 

  
(c)k-means (4 clusters) and IQR (d) k-means (4 clusters) and Hampel filter 

  
(e)k-means (5 clusters) and IQR (f) k-means (5 clusters) and Hampel filter 

  

(e)Agglomerative (4 clusters) and IQR (f) Agglomerative (4 clusters) and Hampel filter 

  
(e) Agglomerative (5 clusters) and IQR (f) Agglomerative (5 clusters) and Hampel filter 
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Figure 5.8: Clusters and outliers created from the design-based dataset according to the 

proposed models. 

5.5.1.1 H1: The panel cycle time at W01 is not affected by panel type 

Table 5.3 lists the p-values of each cluster, where the cycle time samples of exterior and interior 

panels are compared according to the Kruskal-Wallis test based on a significance of p = 0.05 after 

excluding outliers. This analysis is performed in order to evaluate H1 and determine whether there 

is a significant difference in cycle time at the semi-automated framing station between different 

panel types. The p-values are found to vary considerably within each cluster, where the values 

obtained by the models using the agglomerative algorithms show the widest variation, ranging 

from 0.06 up to 0.98. The models using k-means, meanwhile, are found to vary in terms of the 

range of p-values depending on the number of clusters, with the models with four clusters 

exhibiting the narrowest range between clusters (0.28 to 0.57), and the models with five clusters 

exhibiting similar ranges to the agglomerative models. These ranges indicate that cluster samples 

(e.g., C1, C2, etc.) with higher p-values overall show more similarity in cycle time between 

exterior and interior multi-panels than the cluster samples with lower p-values. Moreover, all the 

p-values in Table 5.3 exceed the significance level of 0.05, meaning that cycle times at the semi-

automated workstation are not affected by wall panel type (i.e., interior versus exterior), and that 

H1 should be accepted. These results are aligned with the findings of previous time studies 

performed at the shop floor under study, wherein wall type (noting that garage walls were excluded 

from these time studies since they are not tracked by the RFID system at the case company) was 

deemed to not be a significant feature to consider in determining the process times of wall panels 

at the framing station (Altaf 2016; Shafai 2012). 
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Table 5.3: P-values between exterior and interior multi-panels cycle times for each cluster 

according to the Kruskal-Wallis test 

 

  

 

 

 

 
 

 

 

 

Note: HF = Hampel filter, Agg. = Agglomerative 

H2: The panel cycle time at W01 is directly related to the features of the given panel 

Table 5.4 lists the R2 values from the regression analysis performed on each cluster using various 

regression algorithms (as described above) to predict cycle times at the framing station (W01) 

according to multi-panel features. Table 5.4 shows that the values of R2 obtained are very low, 

meaning that variation in multi-panel cycle time is not significantly attributable to variations in 

panel design features. At first consideration, these results seem to contradict two of the 

assumptions underlying the present study: (1) multi-panel features are accurate predictors of cycle 

times, according to previous time studies carried out at the shop floor presently under investigation 

(Altaf 2016; Shafai 2012); and (2) the automation at the framing station should allow for a more 

Model C1 C2 C3 C4 C5 

HDBSCAN + IQR 0.87 0.26 0.11 0.89 - 

HDBSCAN + HF 0.87 0.26 0.11 0.89 - 

k-means (4) + IQR 0.28 0.57 0.39 0.47 - 

k-means (4) + HF 0.28 0.57 0.39 0.47 - 

k-means (5) + IQR 0.08 0.42 0.27 0.99 0.79 

k-means (5) + HF 0.08 0.42 0.27 0.99 0.79 

Agg. (4) + IQR 0.06 0.81 0.98 0.66 - 

Agg. (4) + HF 0.06 0.81 0.98 0.66 - 

Agg. (5) + IQR 0.06 0.61 0.98 0.66 0.73 

Agg. (5) + HF 0.06 0.61 0.98 0.66 0.73 
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predictable manufacturing process. To explain the seeming contradiction with respect to the first 

assumption, we simply note that time studies are mainly focused on the process times of activities, 

and thus waiting times are not taken into account. Time studies are also limited in sample size, 

whereas the present study considers production data for a period spanning approximately two 

years. Regarding the seeming contradiction with respect to the second assumption, we note that 

the increased production rate of the semi-automated framing station in the process predictability 

surpasses the variation imposed by the features in the multi-panels. Furthermore, the variation in 

production caused by the dynamic environment of the shop floor also contributes to the decrease 

in significance of the design features in explaining the multi-panel cycle time at W01.
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Table 5.4: R2 values from different regression analyses performed for each cluster 

Note: HF = Hampel filter, Agg. = Agglomerative, LR= Linear regression, RFR = Random forest regression, SVR = Support vector 

regressor 

Model 

R2 value 

C1 C2 C3 C4 C5 

LR RFR SVR LR RFR SVR LR RFR SVR LR RFR SVR LR RFR SVR 

HDBSCAN + IQR 0.05 −0.01 −0.22 0.03 0.00 0.03 0.07 0.07 0.07 0.02 0.06 0.03 - - - 

HDBSCAN + HF 0.08 0.15 0.07 0.13 0.03 −0.07 0.09 0.17 0.12 0.19 0.18 0.06 - - - 

k-means (4) + IQR 0.12 0.13 −0.04 0.03 0.05 −0.02 0.10 0.08 0.05 0.02 0.10 −0.07 - - - 

k-means (4) + HF 0.05 0.23 0.19 0.14 0.10 −0.05 0.09 0.15 −0.01 −0.01 −0.02 −0.05 - - - 

k-means (5) + IQR 0.20 0.18 0.05 0.00 0.05 −0.06 0.06 0.12 0.02 0.12 0.12 0.01 −0.03 0.11 −0.12 

k-means (5) + HF −0.02 0.06 −0.07 −0.09 0.13 0.09 0.12 0.19 0.05 0.22 0.17 0.09 0.04 0.13 0.03 

Agg. (4) + IQR 0.11 0.20 −0.01 0.01 0.01 −0.04 0.01 0.13 −0.03 0.04 0.10 −0.09 - - - 

Agg. (4) + HF 0.20 0.13 0.00 0.00 0.03 0.00 0.05 0.04 0.09 0.06 0.06 0.05 - - - 

Agg. (5) + IQR 0.12 0.16 −0.03 0.08 0.02 −0.03 0.09 0.05 −0.02 −0.01 0.13 −0.06 0.00 0.10 −0.08 

Agg. (5) + HF 0.18 0.09 0.10 0.11 0.09 0.12 0.13 0.11 0.03 −0.09 0.09 0.17 0.05 0.12 0.04 
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Despite these seeming contradictions, the results of the present study are aligned with the findings 

of previous machine-learning studies carried out using the same RFID dataset (Mohsen 2021; Wen 

et al. 2017). As described in Section 5.2.1, Mohsen (2021), using the same dataset from the same 

shop floor as the present study, similarly found that multi-panel design features were not an 

accurate predictor of cycle times. Wen et al. (2017) drew a similar conclusion, finding that 

production variability is high on the shop floor under study, and that this variability impedes the 

accurate estimation of cycle times of identical multi-panels at W01. Since the existing RFID 

system employed by the case company captures the total time each multi-panel spends at W01 and 

at the buffer, we similarly conclude that more granular data that clarifies the production status must 

be obtained before multi-panel design features can be used as an accurate predictor of cycle times 

at W01. In other words, more production-related data is needed in order to assess the variability of 

the manufacturing process itself as a predictor of cycle times at the framing station under 

investigation. Hence, we reject H2, as it is concluded that multi-panel features do not explain the 

variation in cycle times. 

5.5.2. Production-based Assessment 

Figure 5.9 illustrates the production balance—e.g., total surface area of walls started versus 

finished—for every week of the period under study, as well as identifying the flexibility strategies 

used in a given week (if any). In the figure, the regions highlighted in green show where weekly 

production targets have been met as determined using the approach described in Section 5.4.2. As 

shown in the figure, for most weeks, production targets have been met, while a similar number of 

weeks are characterized by either over- or under-production. As can be seen, production targets 

have been met in over 71% of the weeks under study, with work beyond hours being found to be 
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common in these weeks, whereas working on irregular days is found to be less common (Figure 

5.9a and Figure 5.9b, respectively). 

 
(a) Production target according to the number of days with work beyond hours per week 

 
(b)Production target according to the number of irregular days per week 

Figure 5.9: Production status according to existing flexibility strategies 
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5.5.2.1 H3: Working on irregular days and periods will assist to meet production target H3: 

Working on irregular days and beyond work hours is an effective strategy for meeting production 

target 

As previously described, this hypothesis is tested by applying Pearson’s correlation method to 

evaluate the correlation between the flexibility strategies being used and the production targets 

being met in a given week. Table 5.5 lists the occurrence of each flexibility strategy and indicates 

whether the production target has been met; the corresponding Pearson’s correlation coefficient is 

also given in the table. As illustrated in Figure 5.3, in Figure 5.9a, and in Table 5.5, the strategy of 

working beyond hours is commonly employed to make production more flexible. It is important 

to note that the use of this strategy can be identified based on the RFID timestamps, which imply 

that an unknown number of workers are continuing on the shop floor. Allowing extended work 

beyond hours such as 30 minutes or more exposes the shop floor to increased factory overhead 

cost and decreased productivity by workers. Hence, the management team would like to address 

if this flexibility approach is efficient to meet the weekly production target. Despite the high 

occurrence of working beyond hours (68% of the weeks under study), the Pearson’s correlation 

coefficient for this strategy is quite low, meaning that the ad hoc use of this strategy in individual 

workstations does not contribute significantly to production targets being met. 

The strategy of working on irregular days (Fridays, Saturdays, and Sundays), on the other hand, is 

applied to all workstations and is often used at times throughout the year when demand is high. 

This strategy is found to be used less frequently compared to the strategy of working beyond hours 

(i.e., in only 25% of the 99 weeks under study); meanwhile, as with the other strategy, there is not 

a strong linear correlation between its use and the achievement of the production target for the 

given week. This result provides an interesting insight, as it indicates that working extra shifts does 
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not guarantee that the shop floor will be able to meet demand. On the other hand, it results in the 

company incurring extra expenses such as overtime-labour pay and higher expenditure on utilities 

(heat, electricity, etc.) due to the extra working days. Meanwhile, Table 5.5 shows that the framing 

station is often shut down, and this is indicative of imbalanced production (i.e., the framing station 

is being shut down to allow other stations to clear their backlog). In conclusion, the Pearson’s 

correlation analysis indicates a low linear correlation between the use of the flexibility strategies 

and the ability to meet production targets. Therefore, we reject H3. 

Table 5.5: Flexibility strategies and correlation between their use and production targets 

being met 

Flexibility strategy Occurrence Pearson’s correlation coefficient 

Work beyond hours 68% 9.3% 

Work on irregular days 25% 21.0% 

Production target met 72% N/A 

 

5.5.3. Summary of Computational Results 

The aim of the case study is to test the proposed method leveraging digitalization, which evaluates 

proposed process improvement measures based on a series of hypothesis-testing methods and 

using a large dataset containing cycle times and multi-panel design features, the data having been 

gathered from an RFID system installed on the shop floor and from BIM models spanning a period 

of two years. For this purpose, a series of visualization methods, machine learning, and statistical 

methods are applied in a case study involving the production of wall panels in order to evaluate 

the impact of automation and of the case company’s existing flexibility strategies. Hypotheses 
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formulated for this purpose are tested using a combination of machine learning and statistical 

methods. Initially, the impact of the semi-automated machine is characterized by an increased pace 

of production but also interruptions to production due to increased WIP throughout the shop floor. 

In the design-based analyses as described above, the acceptance of H1 and the rejection of H2 

confirm that the impact of design features is not significant in explain the variability in cycle times 

at the semi-automated framing station. H1 is accepted, as noted above, by virtue of the fact that the 

Kruskal-Wallis test shows that all clusters have p-values higher than the 0.05 significance level (in 

fact, the overall values in each cluster are above 50%). Meanwhile, H2 is rejected by virtue of the 

fact that the R2 values are well below 0.70 in each cluster (looking at the values in the models 

combining different approaches of clustering, outlier detection, and regression analysis). H3, a 

production-based hypothesis, is rejected by virtue of the fact that the Pearson’s correlation 

coefficients show a low linear correlation (9.3 and 21%) between the weekly production target and 

the respective flexibility strategies. 

5.6. Conclusions 

The aim of this study was to propose a method to evaluate proposed process improvement 

measures based on production insights from experts and data gathered from RFID sensors and 

BIM models leveraging a digitalization approach. Additionally, this study addresses the impact 

both of automation and of the strategies used to increase operational flexibility based on data-

mining techniques applied using the gathered data. By following the steps in the CRISP-DM 

methodology and the principles of inductive research, the proposed digitalization method is 

implemented to gain understanding of, prepare, model, and evaluate data as the basis for testing 

hypotheses on process improvement measures. The proposed method applies various EDA 
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techniques on a large dataset that includes the cycle times of semi-automated framing station and 

design features of multi-panels gathered from BIM models.  

The novelty of this study lies in its development of a method to apply digitalization to process 

improvement in OSC using real-time RFID data in combination with design features of multi-

panels gathered from BIM models. In the case study used to develop and test the proposed method, 

the design-based hypotheses (H1 and H2) are focused on the impact of the semi-automated framing 

station (i.e., W01), as well as of the design features of the multi-panels being manufactured, in 

determining cycle time. H1 is accepted based on a Kruskal-Wallis test in which interior and exterior 

panels are found to have similar manufacturing durations at the semi-automated framing station. 

H2, on the other hand, is rejected, as an extensive analysis using a combination of machine-learning 

models indicates that design-based features do not explain to a significant degree the variability in 

manufacturing durations at the semi-automated framing station under study. H3 is also rejected, as 

there is not a strong correlation between the use of strategies to increase operational flexibility 

(i.e., working beyond hours and on irregular days) and weekly production targets being met. Two 

notable inferences are derived from the present study: (1) variability poses a great challenge with 

respect to production control, as many of the resources used in production (e.g., semi-automated 

machines and factory space) are fixed throughout the year, and (2) the use of automation or semi-

automation is not sufficient to eliminate the effects of variation in the manufacturing process. In 

this respect it is clear that the increased pace of W01 in the present case creates a push system in 

which downstream workstations become overloaded with panels. Hence, process improvement 

efforts should be focused on achieving balance in production between semi-automated and manual 

workstations in order to ensure the needed flexibility to respond to changing production targets 

over the course of the year. 
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Despite providing a structured, inductive method for process improvement in OSC leveraging 

digitalization, more case studies are needed to improve upon the proposed method in consideration 

of different contexts (e.g., smaller datasets, structured methods to gather qualitative data, etc.). 

Moreover, although the proposed method can be used to test the validity of proposed process 

improvement measures, the present study does not evaluate the potential impact of, or otherwise 

address, the implementation of these measures. As such, future research is needed in order to 

develop the proposed method into a framework in which proposed process improvement measures 

are assessed in terms of both their validity and their potential impact on OSC operations. 
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CHAPTER 6: ASSESSMENT OF DIGITAL TWINS TO REASSIGN 

MULTI-SKILLED WORKERS IN OFFSITE CONSTRUCTION BASED ON 

LEAN THINKING 

6.1. Introduction 

Offsite construction (OSC) has become increasingly popular among construction practitioners due 

to its high productivity and efficiency compared to traditional construction, achieved by shifting 

operations from the construction site to an offsite factory (Modular Building Institute 2010). In 

OSC, projects are divided into building components (e.g., wall panels, modules), manufactured on 

a shop floor, transported to and installed on site. In spite of the numerous benefits of OSC, 

Goulding et al. (2015) identified the lack of production flexibility in OSC as one of the major 

challenges to overcome in order to accommodate customer needs and different economic 

scenarios. Indeed, OSC has a characteristic of offering a large selection of design options, thus 

introducing a high degree of variability to the manufacturing process, since each product (e.g., 

module, panel) is unique, and since the manufacturing operations, even with the use of semi-

automated or fully automated machinery, still rely on labour-intensive tasks and human 

supervision. The significant variability in the product combined with the static production capacity 

of fixed workers in their workstations causes bottlenecks across the shop floor while making future 

performance difficult to predict without significant cost and time deviations. Hence, workstations 

with a static production capacity cannot manufacture different products at a similar duration, and 

this results in production waste that typically goes undetected on the shop floor. This study 

addresses the latter problem whereby OSC manufacturing operations must increase their flexibility 

to optimize the shop floor dynamics to reduce production waste. In summary, a shop floor that 
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lacks flexibility is unable to manufacture projects efficiently and is susceptible to low performance 

due to product variation and process uncertainty from labour-intensive tasks.  

In light of this, Widfeldt et al. (2008) argued that labour flexibility must be a priority in OSC while 

pointing to the lack of available approaches to develop a more flexible manufacturing system while 

Goh and Goh (2019) proposed the use of multi-skilling as a strategy to increase labour flexibility 

in OSC. Despite promising results, Zhang et al. (2020) pointed out that multi-skilled workers can 

lead to waste activities, delays, and interrupted production while also resulting in ineffective labour 

resource allocation due to the traditional management practices in OSC. Clarke and Wall (2000) 

point to the negative psychological effects affecting multi-skilled worker’s productivity due to the 

confusion regarding the overlap between different trades and their management during operations. 

Furthermore, multi-skilling is regularly associated with increased cost and reduced productivity as 

multi-skilled workers cannot be equally productive in two or more trades and due to learning and 

forgetting effects while requiring more training from employers (Ahmadian Fard Fini et al. 2016, 

2017; Goh and Goh 2019; Hegazy et al. 2000). Qin et al. (2015) attributes the lack of consensus 

to apply multi-skilling in construction due to the absence of in-depth studies involving their 

negative effects on workers and the complexity involved to perform these studies. Therefore, it is 

clear that trade-off analyses must be developed to evaluate the actual benefits of using multi-skilled 

workers considering various aspects of production and management practices particular to OSC 

shop floors. Additionally, more research is needed to address if the application of innovative 

technologies will cause a significant impact in manufacturing operations by improving the 

management of multi-skilled workers, reduce production waste and optimize shop floor dynamics. 

In the context of the research presented in this chapter, labour flexibility is defined as the ability 

workers have to adapt shop floor processes in a timely manner in response to events that are 
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inherently uncertain and variable, such as product and production variation due to market demands, 

client requirements, and task durations. 

Initially proposed by Michael Grieves in 2002, a digital twin (DT) is a digital informational 

construct that describes a potential or actual physical system to perform real-time simulations 

composed of three elements: (1) real space containing the actual system, (2) virtual space 

containing the system’s digital representation, and (3) the seamless information flow between the 

real and virtual spaces in real time (Grieves and Vickers 2017). The current focus of DT revolves 

around the design of products, whereas research in manufacturing is considered an evolution of an 

ongoing research stream (Zhang et al. 2019). Commonly mistaken with cyber-physical systems, a 

DT distinguishes itself in that it is a data-driven approach that leverages data collected from 

sensors, whereas cyber-physical systems involve real-time actuation in the physical environment 

leveraging sensor-monitoring data (Tao et al. 2019). Due to it having been only recently introduced 

in the manufacturing and construction industries, the application of DT in OSC is still in its early 

stage wherein various applications and approaches must be developed to facilitate its wider 

adoption. 

Sacks et al. (2020) conceptualize the use of a DT in construction as an innovative approach to 

manage production by acknowledging both products and processes in an inter-exchangeable 

manner through real-time data streaming to provide updated production status and to proactively 

optimize design, planning, and production processes. In the context of OSC shop floors, DT is 

proposed as a solution to monitor and improve labour flexibility since it provides a robust analysis 

using the actual status of production on the shop floor, which is influenced by production 

variability and uncertain manufacturing operations. Despite promising results, Zhang et al. (2020) 

argue that OSC is still labour-intensive, given that planning and control are dependent on personal 
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experience and few technology-driven or digitalized methods are used to improve production. 

Therefore, DT is a suitable technology to manage multi-skilled workers as it receives, processes, 

and analyzes real-time data to improve manufacturing operations at the shop floor without 

requiring any automated actuation in the physical environment such as in cyber-physical systems. 

In fact, DT can assist the management team by reassigning multi-skilled workers dynamically in 

near-real time to avoid bottlenecks based on updated production information from sensors. Hence, 

the investigation of DT applications is crucial for the development of approaches using real-time 

data to optimize shop floor operations in OSC while accounting for aspects such as production 

flexibility, productivity, cost, and information flow between systems. Align to that, lean thinking 

provides a strong theoretical background to quantify improvements, identify wastes and evaluate 

operations within the context of OSC (Koskela et al. 2013). However, despite its importance, few 

studies are found in the literature with the primary objective to increase labour flexibility in OSC 

regardless of being supported by a DT or any type of autonomous system at all. Consequently, this 

study aims to answer the following research questions: (1) are multi-skilled workers a feasible 

approach to improve OSC manufacturing operations despite their reduced productivity and 

increased cost?, and (2) is DT impactful in managing multi-skilled workers to reduce 

manufacturing cycle times in OSC? 

Therefore, this research proposes to improve the dynamics of manufacturing operations on OSC 

shop floors by increasing labour flexibility through multi-skilled workers and by applying a DT to 

leverage real-time data. Using simulation as a surrogate system, a novel approach is presented to 

quantify the impact of applying a DT to manage multi-skilled workers to increase overall 

productivity in OSC while simulating the interactions between the physical/virtual environments 

and the information flow between them. Using a practical application, the present study emulates 
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the shop floor where multi-skilled workers are managed by a DT under different scenarios such as 

different multi-skilling configurations (e.g., dual-skill, direct capacity balancing, etc.), the loss in 

productivity due to the learning effect, and the increased cost as indicated by the literature. 

Therefore, the academic contribution of the present study is two-fold: (1) the present study 

provides a trade-off analysis on the application of multi-skilling to increase labour flexibility on 

OSC shop floors considering different aspects of production such as cost, production time, and 

gained productivity based on a lean thinking perspective; and (2) the present study addresses the 

impact of DT to manage multi-skilled workers and increase labour flexibility in the context of 

OSC shop floors.  

6.2. Background 

The construction industry provides clients with a wide range of options and specifications during 

the design phase, making it one of the largest engineer-to-order sectors (Jansson 2013). Bataglin 

et al. (2020) point out that the complexity of engineer-to-order is further amplified in OSC due to 

the short lead times and the fact resources must be shared between different projects being 

produced concurrently on the same shop floor. This imposes a great variability in the 

manufacturing process since each product (i.e., module or panel) is unique, and its manufacturing 

process is still labour-intensive and prone to a high degree of uncertainty. In this regard, Altaf et 

al. (2018) indicate that the high level of variability in production is not only due to project attributes 

but also due to the uncertainties inherent to the production itself on a semi-automated OSC shop 

floor. Likewise, Goulding et al. (2012) argue that OSC enterprises must embrace methods for mass 

production; however, given the customized nature of construction, manufacturing processes must 

be flexible enough to accommodate design changes and process uncertainties. 
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6.2.1. Multi-skilling in Offsite Construction 

First introduced by Burleson et al. (1998), multi-skilling is a labour utilization strategy used in the 

construction industry to reduce cost, to increase productivity, and to reduce ergonomic risks (Otto 

and Scholl 2013; Leider et al. 2015). Multi-skilling is a widely recognized solution employed to 

deal with production fluctuations and to improve efficiency in operations (Satta et al. 2019). In the 

context of OSC, where there is a significant variability in processes due to the high customization 

of products and labour-intensive tasks, multi-skilling is a highly requested feature capable of 

bridging skilled labour shortages and providing a significant reduction in retention costs by 

increasing production line efficiency (Warszawski 2003; McGuinness and Bennett 2006). In the 

context of a typical OSC shop floor, project management assigns workers with individual 

specializations to each workstation. Workers do not migrate away from their assigned 

workstations, which results in bottlenecks at workstations with higher demand; this, in turn, can 

negatively affect the progress rate of projects (Arashpour et al. 2015). To solve this problem and 

add more flexibility to the production facility, Wongwai and Malaikrisanachalee (2011) propose 

applying multi-skilled workers to reduce project duration, increase job stability for workers, and 

allow for a higher degree of flexibility in task assignment. The use of multi-skilled workers is 

suitable for solving issues related to the lack of flexibility in OSC, as they can be assigned to 

different workstations to balance production according to the required customizations from clients 

while proactively eliminating bottlenecks on the shop floor. Despite relevant work published in 

construction, Nasirian et al. (2019a) found that only six papers, out of a total of 61 papers in their 

review, describe research that applies multi-skilling in an OSC context, which demonstrates that 

research is lacking in this area. 
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Table 6.1: Multi-skilled labour modelling in offsite construction. 

References Method Variables considered Observed 

outcomes 

PR PU PL TC SC RC FO SA LE ET EC RU 

Arashpour et 

al. (2015b) 

DES X X        X  X 

Arashpour et 

al. (2018a) 

MCDM   X* X    X*   X  

Arashpour, et 

al. (2018b) 

Linear and 

integer 

optimization 

 X  X X X    X X X 

Avva and 

Chamberlin K. 

(2020) 

MCDM X   X X X   X* X X  

Barkokebas et 

al. (2015) 

DES & CS X  X       X  X 

Barkokebas et 

al. (2020) 

DES & CS X  X  X  X   X X  

Nasirian et al. 

(2019)  

MCDM X   X X X  X* X* X   

Present study DES & CS X X X X X  X  X X X  

Note: DES = Discrete-event simulation; MCDM = Multicriterion decision-making; CS = Continuous 

simulation; PR = Productivity; PU = Production uncertainty; PL = Production layout; TC = Training cost; 

SC = Salary cost; RC = Retention cost; SA = Safety; LE = Learning effect; FO = Factory overhead; ET = 

Effect in time; EC = Effect in cost; RU = Resource utilization; *=Qualitative variable 

Table 6.1 presents the relevant literature where the use of multi-skilled labour in offsite OSC is 

modelled and forecast using different methods. It can be observed in Table 6.1 that multi-criterion 

decision-making methods are successfully applied by combining quantitative and qualitative 
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criteria to investigate best strategies for multi-skilling implementation in OSC facilities. When 

applying discrete-event simulation, Arashpour et al. (2015b) indicate the limitations of this method 

with respect to modelling multi-skilled resources and their productivity. To address this issue, 

Barkokebas et al. (2020) propose a combination of discrete-event and continuous simulation, so 

the duration of continuing tasks is dynamically updated according to traditional and multi-skilled 

resources. As shown in Table 6.1, the majority of studies examine the productivity of tasks 

performed while taking into consideration the loss of productivity from multi-skilled workers due 

to lack of experience or ongoing training (Arashpour et al. 2018). Production uncertainty is also 

considered in the analysis by assuming stochastic values in the product’s man-hour requirements 

while the facility layout is considered either qualitatively or as a quantitative metric such as the 

maximum number of workers allowed per station (Barkokebas et al. 2020). Cost is evaluated from 

various perspectives whether addressed directly through training, through the increase of salaries, 

and the retention of multi-skilled workers, or indirectly by addressing the impact of multi-skilled 

workers on the factory’s overhead. Other variables considered qualitatively are safety and learning 

effects, which affects productivity and the choice as to which multi-skilled strategy is applied. 

Most studies indicate a positive effect on production time due to using multi-skilling on OSC shop 

floors while also accounting for the financial impact of these strategies and their utilization at the 

workstations under study. Nevertheless, Arashpour et al. (2015b) points out to the lack of 

quantitative evidence involving human behavior while recommending the application of learning 

curves to forecast the learning effect of multi-skilled workers and the impact on productivity over 

time. Despite the significant number of variables considered, none of the studies in Table 6.1 

provides a multi-criterion analysis on the trade-off involving the application of multi-skilling in 

OSC. In turn, these studies are mainly focused on demonstrating the benefits of multi-skilling to 
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increase the flexibility of production and reduce manufacturing times, whereas trade-off analyses 

evaluating the adverse aspects of such strategies are lacking. Indeed, all of these studies rely on 

the assumption that multi-skilled workers are successfully managed to assist workstations when 

needed without the assistance of any proactive system or any delay. As already pointed out by 

Zhang et al. (2020), this is not the case in OSC shop floors where resources are poorly allocated 

and based on personal experience with minimal use of real-time data to perform decisions. Table 

6.1 demonstrates the present study combines a comprehensive number of important variables 

identified in past studies to quantify the impact of multi-skilling, presented here as the main driver 

of labour flexibility in OSC. Moreover, Table 6.1 shows that only human behaviour aspects such 

the learning effect have been addressed qualitatively in previous studies, whereas the present study 

is the first to apply learning curve models to quantify the reduced productivity of multi-skilled 

workers as an input in the proposed trade-off. In addition, this study evaluates the impact 

automated systems (e.g., DTs) could have if used to automate the reassignment of multi-skilled 

workers based on real-time data gathered on the shop floor to balance production and increase the 

flexibility of OSC shop floors. 

6.2.2. Digital Twin Applications in Manufacturing and Offsite Construction Shop Floors  

Traditionally, manufacturing facilities control their production using card systems (e.g., Kanban) 

and/or by way of expert knowhow, such as a foreman walking up and down the production line 

and assigning workers to workstations as needed (Bagni et al. 2020). Ghanem et al. (2018) point 

out that traditional control systems in construction are push-driven wherein labour is moved to 

attend to short-term milestones with little attention given to productivity and future demand. 

Meanwhile, Innella et al. (2019) argue that labour management is more complex on OSC shop 

floors due to the dynamic environment wherein teams of workers with different skills work 
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concurrently on multiple projects. Indeed, production in OSC facilities is heavily influenced by a 

level of variability that is beyond management’s control, since each project’s specifications are 

unique due to client requests and because processes rely on labour-intensive operations. In light of 

this, Zhang et al. (2016) suggest the implementation of simulation-based systems that use real-

time data to balance production in OSC facilities and to enhance decision-making in terms of long-

term strategies regarding inventory and labour utilization. A DT is proposed to increase labour 

flexibility on OSC shop floors by employing a proactive approach in which data is seamlessly 

exchanged and manufacturing operations are improved in near-real time. By adopting this 

approach, a DT is expected to improve labour flexibility and considerably reduce total production 

time. 

In the manufacturing industry, various frameworks for the implementation of a DT in the context 

of a shop floor are proposed in which data extracted from sensors are used to create a high-fidelity 

model and to improve both physical and virtual environments simultaneously (Tao and Zhang 

2017; Zhuang et al. 2018). Several applications of DT have been found to leverage planning in a 

manufacturing environment, such as layout optimization (Guo et al. 2021) and evaluating the 

performance of machine operations (J. Liu et al. 2019). Production control is also a widely studied 

application, where recent research on preventive maintenance of equipment and disturbance 

detection on the shop floor has resulted in several useful models (Zhuang et al. 2018; Zhang et al. 

2021). Despite significant progress, Melesse et al. (2020) argue that the application of DT for 

industrial production is still in its early stages as more research is needed to present feasible 

solutions for complex manufacturing systems. Furthermore, significant gaps still need to be 

addressed such as the consideration of human interactions and DT during the manufacturing phase 

as humans are prone to uncertainty and loss of productivity (Liu et al. 2020).  
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In the construction industry, Opoku et al. (2021) identify only 22 publications on DT in their 

review of literature published between 2017 and 2020 of which more than half are focused on the 

design and engineering phase of projects. This slow rate of adoption is expected since the concept 

of DT in manufacturing is in its infancy and is still being adapted to other domains such as 

construction. Despite the many particularities that need to be addressed, Correa (2020) argues that 

OSC shop floors have the potential to incorporate DT technologies more rapidly than traditional 

construction settings due to their factory-like environment, use of automation, and the relative ease 

with which sensor instrumentation can be implemented. In this regard, Rausch et al. (2020) 

develop algorithms to solve complex geometry challenges to minimize material usage and 

automate quality checking in OSC projects ready for implementation on a DT. Moreover, Lee and 

Lee (2021) propose a DT approach for supply chain coordination to optimize transportation routes 

for modular construction. In addition to these interesting applications, Gerhard et al. (2020) argue 

that data transformation procedures must be analyzed using an integrative approach in the building 

of a DT tailored to the requirements of OSC while exploring information exchange standards in 

both construction and manufacturing industries. In their seminal paper, Sacks et al. (2020) provide 

a holistic approach to collect, transform, and apply data in construction-centric DT considering 

both product and processes. Moreover, they proposed data to be transformed and distinguished in 

four different dimensions considering the physical/virtual environments and the planned/actual 

status relative to information provided and processed by the DT., Xie and Pan (2020) identify the 

lack of empirical evidence related to the benefits of leveraging data by employing a DT as a 

significant barrier to the wider adoption of DT, notwithstanding the recent interest DT has 

garnered. Furthermore, Anderl and Fleischer (2016) indicate that practitioners are still reluctant to 

incorporate novel technologies such as DT due to the lack of internal expertise and the risk 
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involved in the initial investment and associated benefits from its implementation. According to 

Uhlemann et al. (2017), this reluctance is augmented in shop floors that have a low level of 

automation, as is typically the case in OSC, thus encouraging alternative approaches to evaluate 

the impact of these novel technologies. In this regard, Razkenari et al. (2020) suggest the use of 

simulation for the reliable assessment of the performance of new technologies while indicating a 

DT may be used to improve flexibility on OSC shop floors. 

In summary, the main identified gaps in the literature are: (1) the lack of in-depth trade-off analysis 

regarding the actual benefits of increasing labour flexibility (i.e., multi-skilling) on OSC shop 

floors, (2) the lack of studies addressing the impact of automated systems (i.e., DT) to manage 

multi-skilled workers and increase flexibility on OSC shop floors, and (3) the need for approaches 

to measure the impact of DT tailored for the OSC and its contexts of high variability in both 

product and production. These gaps are addressed in the sections below. 

6.3. Methodology and Research Methods 

6.3.1. Methodology 

Due to the excessive risk involved and investment required to implement a DT at full scale, 

simulation is used as a surrogate system to forecast the impact a DT will have in terms of increasing 

labour flexibility in OSC. Discrete-event and continuous simulation are common approaches used 

to forecast the future performance of complex systems, such as that of an OSC shop floor, and to 

forecast the impact of a DT on overall production (Afifi et al. 2020; Jiang et al. 2021). Given the 

complexity of actual systems, simulation is a reductionist approach where only significant aspects 

of the system under study are modelled and evaluated (Al Hattab et al. 2018). Therefore, significant 

aspects of a DT (physical and virtual environments, and their interconnectivity) and its virtual 
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domains are modelled according to production metrics, constraints, and the information provided 

in the practical application. The developed simulation addresses production improvements that 

result from interventions made by the proposed DT. In this chapter, an intervention is defined as 

occurring when the DT suggests a modification to the multi-skilled worker assignment to improve 

production based on data from sensors on the shop floor. For each simulated scenario, production 

on the OSC shop floor is evaluated according to the number of interventions the proposed DT will 

perform during the work shift. The time period during which the DT will intervene is set as equal 

to the duration of the work shift. For example, if the DT is set to intervene in production four times 

during a work shift of eight hours, its intervention period will be 2 h (i.e., the DT will intervene 

every two hours). 

Figure 6.1 demonstrates the flow of information processed by the proposed DT according to its 

inputs and criteria, and the figure also shows how the information is transformed in the developed 

simulation model across physical and virtual environments considering the planned and actual 

status of tasks. Initially, the DT must have a clearly stated goal to determine how key metrics (KM) 

can be used to quantify the system’s performance. Relevant information pertaining to the shop 

floor layout and production resources are identified and modelled according to the model’s 

practical application information to accurately represent the facility and its limitations in terms of 

improvement. Moreover, multiple labour utilization strategies are considered in determining which 

strategy will be used, where the proposed DT intervenes a number of times throughout the work 

shift and production performance is recorded accordingly. Once the simulation model has been 

developed, it is validated and tested by comparing different scenarios. This process is iterative as 

the model is adjusted during the validation and testing/comparing processes. 
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Figure 6.1: Information flow in the proposed DT. 

Built upon the concepts proposed by Sacks et al. (2020), the simulation-based DT processes 

information in four domains: (1) planned-physical, where project and process-related information 

is updated and sent to the shop floor; (2) actual-physical, where the locations of components 

(modules or panels) and workers are monitored by sensors; (3) actual-virtual, where data collected 

on the shop floor is converted into information regarding the actual state of production; and (4) 

planned-virtual, in which improvement interventions are simulated and selected based on the latest 

production status. This process occurs according to the desired number of interventions of the DT 

on the shop floor throughout the work shift and ends after all projects in the schedule are 

manufactured. At the end of simulation, a trade-off analysis is performed considering the 

additional cost incurred from having a more flexible shop floor and the improved efficiency at 

overall production. 

The planned-virtual domain is a cornerstone of the DT because it acts on the shop floor according 

to the established goal and its key metrics. By leveraging the actual data collected by sensors and 
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the production information (e.g., shop drawings, production schedules, etc.), the Specific-Purpose 

Improvement Entity (SPIE) is a proposed decision-support system that simulates different 

scenarios and decides how to best increase labour flexibility for the next given period according 

to the DT’s intervention period (i.e., the duration during which the DT intervenes on the shop floor 

before the next interaction). In the present study, multi-skilling is the labour utilization strategy 

selected to increase production on OSC shop floors. Therefore, the goal for the proposed DT is to 

improve production by reassigning multi-skilled workers according to actual production status in 

near-real time. The SPIE will simulate different scenarios considering current productivity of 

multi-skilled workers and the latest production status as given by sensors in order to reassign multi-

skilled workers in near-real time. The developed simulation model emulates a shop floor on which 

sensors are used to track projects and multi-skilled worker locations and the DT intervenes in 

production according to decisions supported by the proposed SPIE. The simulation model and its 

modules are described in the following subsections. 

6.3.2. Simulation-based digital twin applied for multi-skilled worker reassignment 

To accommodate the specific characteristics in OSC such as the significant variability in task 

durations due to manual operations and highly customizable products to accommodate client’s 

request, a simulation model is developed using a combination of discrete and continuous 

simulation to increase production flexibility on the shop floor. Hence, the proposed model 

emulates the shop floor where multi-skilled workers are reassigned according to the proposed DT 

to accommodate the inherited uncertainties in manufacturing operations while overall production 

performance is forecast based on different scenarios. Considering the nature of manual operations 

in OSC, the effect of human behavior and its impact in the productivity of multi-skilled workers 

is emulated using learning curves based on previous productivity studies in construction followed 
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by the transportation time workers spend moving between workstations. Space limitations are also 

critical in OSC shop floors where the sequence of workstations and space constraints are critical 

to accurately simulation the work performed. In light of that, Figure 6.2 demonstrates how the 

modules simulate various aspects of production and their interactions using input data, data 

produced within the DT, and outputs that include key performance metrics for production. 

Additionally, Figure 6.2 relates each module according to its original three key elements (physical 

environment, virtual environment and a seamless connection between the first two) while 

demonstrating its conceptualization to the construction industry and its domains (planned-

physical, actual-physical, actual-virtual and planned-virtual) according to Grieves and Vickers 

(2017) and Sacks et al. (2020), respectively. The developed simulation model emulates the key 

elements of DT, while workstations are continuously monitored by sensors in the physical 

environment, and data is processed in the virtual environment and sent back to the physical 

environment so that multi-skilled reassignments can be implemented in near-real time. The various 

modules are discussed in detail in the following sections. 

 

Figure 6.2: Developed simulation model to forecast performance under DT interventions. 
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6.3.2.1 Production module 

Simulated in a discrete-event environment, information in this module belongs to the DT’s actual-

virtual domain, which simulates the actual production on the physical shop floor. This module also 

simulates significant multi-skilling criteria, as described in the Background section above. The 

shop floor is modelled to take into account two key aspects: (1) physical features, including the 

shop floor layout, workstations sequence and space limitations; and (2) significant resources used 

in production, such as fixed and multi-skilled workers, workstation production capacity, and data 

obtained by sensors. Data obtained by sensors is simulated providing information such as the 

location of project components and multi-skilled workers in the form of timestamps. 

To simulate the actual impact of multi-skilling in a shop floor environment, this module simulates 

the productivity of multi-skilled workers that decreases for two reasons: (1) the training of multi-

skilled workers using learning curve models, and (2) the time multi-skilled workers spend moving 

between workstations as needed. Learning curve models are widely used in construction and aim 

to forecast the reduction in the amount of time required to complete a specific task based on the 

repetition of the task in question. In the developed simulation, a learning curve model emulates 

the productivity of multi-skilled workers as a variable affecting the workstation’s overall 

productivity based on how many multi-skilled workers are used and how often the work was 

previously performed by them. The improved S-curve model is selected due to its previous success 

in the construction industry and because it accounts for previous experience, mechanization of 

tasks, and a productivity plateau when learning is reached (Srour et al. 2016). 

Equation (6.1) is employed to determine the productivity of multi-skilled workers according to the 

number of repetitions they complete at each workstation and based on which multi-skilling 

configuration (e.g., direct capacity balancing, dual-skill, etc.) is being used. The number of work 
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shifts performed (𝑥𝑡,𝑤) in this equation is only updated by the simulation model once multi-skilled 

workers complete a task for a combined duration equivalent to a complete work shift. Therefore, 

if the DT intervenes in production every two hours during an 8-hour work shift, 𝑥𝑡,𝑤 is only 

updated after multi-skilled workers performed the task at the workstation four times. 𝐵𝑡,𝑤 is 

assumed to be the same as 𝑥𝑡,𝑤 in the present study, meaning that in terms of quality, multi-skilled 

workers perform the same as fixed workers. The remaining inputs variables in Equation (6.1) are 

provided in the model practical application section. The transportation time of multi-skilled 

workers is determined according to the shop floor limitations. 

𝑝𝑡,𝑤 = 𝐴𝑡,𝑤 × 𝑀𝑤 + 𝐶𝑡,𝑤 +  [𝐴𝑡,𝑤(1 − 𝑀𝑤) − 𝐶𝑡,𝑤](𝑥𝑡,𝑤 + 𝐵𝑡,𝑤)
−𝑙𝑜𝑔2𝐿𝑡,𝑤

 (6.1) 

where: 

𝑡: Multi-skilling configuration 

𝑤: Addressed workstation 

𝑝𝑡,𝑤: Productivity factor of multi-skilled workers of configuration 𝑡 at workstation 𝑤 

𝐴𝑡,𝑤: Initial productivity factor of configuration 𝑡 at workstation 𝑤 

𝑀𝑤: Mechanization factor at workstation 𝑤 

𝐶𝑡,𝑤: Productivity factor performed under perfect conditions of configuration 𝑡 at workstation 𝑤 

𝑥𝑡,𝑤: Number of work shifts performed under configuration 𝑡 at workstation 𝑤 

𝐵𝑡,𝑤: Number of acceptable work shifts performed under configuration 𝑡 at workstation 𝑤 

𝐿𝑡,𝑤: Learning factor of configuration 𝑡 at workstation 𝑤 

6.3.2.2 Work-monitoring module 

The proposed work-monitoring module uses continuous simulation to model how information is 

processed once it is received by sensors employed on the shop floor. Since information is provided 
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continuously to the system and the productivity of each workstation is dependent on how many 

multi-skilled workers are used based on the data provided, continuous simulation is applied as it 

allows the simulation model to track and adjust workstation productivity without interrupting the 

work in progress. This module processes actual production data provided by the production 

module into the actual-virtual domain to determine whether there is a queue of projects waiting to 

enter workstations. Various types of sensors (e.g., bar codes, radio-frequency identification, etc.) 

can be used in this module, provided the location of projects and multi-skilled workers are 

registered in real time. 

The work-monitoring module calculates the actual man-hours spent in each workstation in the last 

time period before the DT is activated again as per Equation (6.2). Output values from Equation 

(6.2) are used by the production status module on two occasions: (1) to compare performance 

against the estimated values (e.g., planned versus actual), and (2) as an input for the estimated 

remaining duration of projects at each workstation. This equation also quantifies the impact in 

terms of the duration of time multi-skilled workers spend moving from one workstation to another 

as indicated by the sensors. Moreover, this work-monitoring module identifies bottlenecks on the 

shop floor by informing the SPIE module if workstations have a queue of projects waiting to be 

processed. 

ℎ𝑝,𝑤
𝑎 = (𝐹𝑤 + ∑ 𝑀𝑡,𝑤

𝑖

𝑡=0
) × 𝑟 − 𝑡𝑟 × 𝑀𝑤

′  
(6.2) 

 

where:  

ℎ𝑝,𝑤
𝑎 : Actual man-hours spent by project 𝑝 at workstation 𝑤 during period 𝑟  

𝑝: Project under production  
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𝐹𝑤: Number of fixed workers at workstation 𝑤  

𝑀𝑡,𝑤: Number of multi-skilled workers under configuration t at workstation 𝑤 during period 𝑟 

𝑖: Number of labour utilization strategies simulated at the proposed model  

𝑟: DT’s intervention period in hours  

𝑡𝑟: Transportation duration of multi-skilled workers between workstations  

𝑀𝑤
′ : Number of multi-skilled workers that arrived at workstation 𝑤 for period 𝑟  

6.3.2.3 Production status module 

The production status module is developed using discrete-event simulation and processes data for 

both the SPIE and output analysis modules every time the DT intervenes. By processing data in 

the actual-virtual domain, the production status module’s contribution to the proposed DT is three-

fold: (1) workstation durations are forecast for projects that have not yet started based on current 

production variation on the shop floor and the project’s attributes as per Equation (6.3); (2) planned 

man-hours are forecast for each workstation for projects yet to be manufactured as per Equation 

(6.4); and (3) data are provided by the module in order to evaluate the system by way of a 

comparative analysis of the output and the key metrics. The first two contributions are inputs to 

the SPIE module used to assign multi-skilled workers over the next period, while the third 

contribution assists in determining the impact the DT has on production. 

Equation ((6.3) estimates the man-hours for projects that have not yet started at a workstation based 

on the project’s attributes (𝑚𝑝,𝑤) that are defined during the design stage (e.g., wall lengths, 

number of openings, finishes, etc.) and based on previous project performance at each workstation 

(𝑙𝑤 and 𝑢𝑤). The value for 𝑚𝑝,𝑤 can be calculated by using various methods, such as from previous 

time studies conducted at each workstation, from regression models using sensor data, or even 



 

121 

through practical experience from experts such as assigning a determined number of man-hours 

based on the square footage of a wall. The remaining values in the triangular distribution in 

Equation (6.3) are based on previous project performance of a workstation 𝑤 as recorded by the 

DT and calculated using Student’s distribution considering a 5% interval in variation. Once the 

project is started at the workstation, the remaining planned man-hours are reduced as the actual 

man-hours are accrued during past production. 

ℎ𝑝,𝑤
𝑒 ~𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑙𝑤, 𝑢𝑤 , 𝑚𝑝,𝑤) (6.3) 

ℎ𝑝,𝑤 → {
ℎ𝑝,𝑤

𝑒 , 𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑦𝑒𝑡 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 

ℎ𝑝,𝑤 − ℎ𝑝,𝑤
𝑎 , 𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 
(6.4) 

 

where: 

ℎ𝑝,𝑤
𝑒 : Estimated man-hours of project 𝑝 about to enter workstation 𝑤 

𝑙𝑤: Lower bound for recorded man-hours at 𝑤 using Student’s distribution 

𝑢𝑤: Upper bound for recorded man-hours at 𝑤 using Student’s distribution 

𝑚𝑝,𝑤: Estimated man-hours of project 𝑝 at workstation 𝑤 based on project attributes  

ℎ𝑝,𝑤: Planned remaining man-hours for project 𝑝 at workstation 𝑤 

6.3.2.4 SPIE module for multi-skilled worker reassignment 

The SPIE module uses discrete-event simulation to implement a heuristic approach and determine 

which of the multi-skilled workers should be assigned to each workstation (i.e., a multi-skilled 

work assignment plan) when the DT next intervenes. Located in the DT’s planned-physical 

domain, the SPIE module calculates the remaining duration of the projects that are in-progress at 

each workstation based on information provided by the preceding modules and based on the 
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simulated productivity of multi-skilled workers, which is determined using the improved s-curve 

learning model as shown in Equation (6.5). 

𝐷𝑝,𝑤 =
ℎ𝑝,𝑤

𝐹𝑤 + ∑ 𝑝𝑡,𝑤
𝑖
𝑡=0 × 𝑀𝑡,𝑤

 
(6.5) 

 

where:  

𝐷𝑝,𝑤: Planned remaining duration of project 𝑝 at workstation 𝑤  

The criteria for the multi-skilled worker assignment in the proposed DT are demonstrated in the 

pseudocode available in Appendix A. Considering the location of projects and multi-skilled 

workers on the shop floor, the SPIE module aims to balance production by reducing the queue 

length at workstations. Many aspects of production are considered such as the physical limitations 

of workstations in terms of its maximum worker capacity, 𝐶, the various labour utilization 

strategies in terms of employing multi-skilled workers, and the information generated by the 

preceding modules. Moreover, the SPIE module also considers whether there is already a multi-

skilled worker assigned to the workstation in order to reduce the movement of multi-skilled 

workers between workstations. Other approaches, in addition to a heuristic approach, are likely 

suitable in terms of implementing the reassignment algorithm; however, a heuristic approach offers 

an easy implementation with significant improvements in production by reassigning multi-skilled 

workers in to low-automated shop floors (Campana et al. 2021; Lian et al. 2018). 

6.3.2.5 Updated production information module 

Developed using discrete-event simulation and using information pertaining to the planned-

physical domain, the updated production information module simulates the interface between the 

virtual and physical environments. Based on information processed by preceding modules, this 
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module updates production information (e.g., multi-skilled worker assignment plans, production 

schedules, etc.) to workers on the shop floor. Information that is conveyed to workers on the shop 

floor can be transmitted in various ways such as alerts on smartphones, or smart screens, etc. The 

multi-skilled worker assignment plan that indicates how multi-skilled workers should be assigned 

to workstations on the shop floor is updated with a frequency that corresponds to the number of 

interventions the DT is set to perform in each simulated scenario. 

6.3.2.6 Output analysis module 

The output analysis module determines the impact of the proposed DT on the shop floor under 

study. By processing actual data from production, this module performs a series of benchmark 

analyses by comparing the baseline, i.e., a scenario in which the DT does not assign multi-skilled 

workers to workstations on the shop floor, against scenarios where multi-skilling is the labour 

utilization strategy leveraging the proposed DT. Four key metrics are used in the present study: (1) 

production balance, (2) production total duration, (3) production cost, and (4) average 

processing/waiting time per component in production. Hence, the analysis performed by this 

module uses the abovementioned key metrics to evaluate whether the proposed DT achieves its 

goal to improve production by way of reassigning multi-skilled workers in near-real time. 

Production balance is a product of the features of each different project in production on the shop 

floor and how workers are assigned to workstations. Hence, production balance is processed by 

the output analysis module and represented visually by line of balance graphs as shown in Figure 

6.3. Since the progress at each workstation is measured in man-hours and the total value is different 

for each workstation (i.e., the total required man-hours to perform the work at the wall station 

differs from that required at the floor station due to the nature of the work), raw data from the 

simulation model, represented In Figure 6.3a, is normalized through a python script and converted 
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from man-hours to progress (expressed as a percentage of completion for each workstation) such 

that the slopes for each workstation can be readily compared, as shown in Figure 6.3b. 

 

Figure 6.3: Line of balance conversion from workstation man-hours to progress. 

Moreover, the present study addresses production efficiency by identifying and quantifying 

operation waste using a lean thinking approach. Ohno (1988) identifies overproduction (i.e., more 

parts being manufactured than needed at the time) and waiting (i.e., idle workers) as primary 

wastes, among a total of seven wastes, to be addressed in manufacturing operations. With that in 

mind, the output analysis module quantifies key metrics of production cost and average 

processing/waiting times using Equations (6.6) and (6.7), and Equations (6.8), (6.9) and (6.10), 

whereas the total duration is provided by the production status module at the end of production. 

The man-hours associated with fixed and multi-skilled workers are recorded separately, since the 

hourly wage may differ. The indirect cost considers the factory overhead cost ($𝑜) including 

amenities, ownership of equipment, and rental of the space. Total production cost is also quantified 

by adding both direct and indirect costs wherein the direct cost is based on the number of hours 

worked by fixed or multi-skilled workers. As final output, the output analysis module provides a 

(a) (b) 
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time and cost trade-off analysis indicating the expected impact the proposed DT will have on 

production by reassigning multi-skilled workers. 

$𝐷 =  𝑀𝐻𝑓 × $𝑓 + 𝑀𝐻𝑚 × $𝑚 (6.6) 

$𝐼 =  𝑇𝑠𝑖𝑚 × $𝑜 (6.7) 

𝑊 =
∑

𝑊𝑝
𝑇𝑝

⁄
𝑗
𝑝=1

𝑗
 

(6.8) 

𝑃 =
∑

𝑃𝑝
𝑇𝑝

⁄
𝑗
𝑝=1

𝑗
 

(6.9) 

𝑊$ =  𝑊 × $𝑚 (6.10) 

where: 

$𝐷: Direct production cost 

𝑀𝐻𝑓: Total man-hours worked by fixed workers during production in hours 

$𝑓: Hourly cost for fixed workers in Canadian dollars 

𝑀𝐻𝑚: Total man-hours worked by multi-skilled workers during production in hours 

$𝑚: Hourly cost for multi-skilled workers in Canadian dollars 

$𝐼: Indirect production cost 

𝑇𝑠𝑖𝑚: Total duration for the manufacturing of all projects 

$𝑜: Shop floor’s overhead cost in Canadian dollars 

𝑊: Average waiting time during production 

𝑗: Total number of projects manufactured 

𝑊𝑝: Waiting time of project 𝑝 during its production 

𝑇𝑝: Total duration of project 𝑝 during its production 
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𝑃: Average processing time during production 

𝑃𝑝: Processing time of project 𝑝 during its production 

𝑊$: Average waiting cost per module 

6.4. Practical application of the proposed system 

To address the impact of the DT in terms of increasing labour flexibility in OSC, a practical 

application of the proposed system using production data from an actual OSC shop floor is 

presented. The application of the system is contextualized for the scope of the present work while 

the simulation model is demonstrated and validated using input values provided in the case study 

information. 

6.4.1. Problem description 

The model is applied in the context of the workstations of a modular construction shop floor where 

residential projects are produced with a high degree of customization for clients in Alberta, 

Canada. Modular construction is an OSC method wherein projects are divided into volumetric 

modules that are manufactured and finished on the shop floor, then shipped to the site for assembly 

(Moghadam 2014). Data pertaining to both the production line and its projects were extracted from 

the data provided in a study by Moghadam (2014), who developed and validated a simulation 

model to evaluate the current production cycle. Figure 6.4 presents the layout of the shop floor 

under study and the number of fixed workers (i.e., workers who do not move between 

workstations) at each of the seven workstations that require two skills: (1) carpentry, shown in 

orange; and (2) mechanical, plumbing and electrical (MEP) rough-in, shown in purple. The shop 

floor does not make use of automation to leverage its production making its workers the main 

drivers of production capacity. Currently, a total of eighteen fixed workers are distributed at their 
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respective workstations, thus creating bottlenecks on the shop floor in various circumstances 

(depending on the attributes of the project being manufactured at the time). From lean thinking 

perspective, the shop floor under study is a push system where modules are completed as soon as 

possible and pushed downstream by each workstation, resulting in overproduction of modules and 

frequent instances of workers waiting for work throughout manufacturing operations. The dynamic 

reassignment of multi-skilled workers by the proposed DT will allow for a more flexible 

production system by balancing the production capacity of each workstation in near-real time 

according to production constraints and the particularities of the projects being manufactured at 

any given time. 

 

Figure 6.4: Shop floor under study. 

6.4.2. Simulation inputs 

This section describes the inputs to the simulation model used to evaluate the impact of proposed 

DT on the OSC shop floor under study.  

Table 6.2 presents the estimated man-hour requirements (ℎ𝑝,𝑤
𝑒

) for projects at each workstation on 

the shop floor under study, as well as the coefficient of variation (CV) based on varying project 

attributes. The forecast man-hours per project were determined by Moghadam (2014), who 

developed a regression model based on project attributes and time studies conducted at each 
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workstation on the shop floor under study. There is significant variation in the man-hours at those 

workstations where the coefficient of variation reaches values higher than 90% in some cases. The 

high variation in product demand, as indicated by the high CV, when combined with a 

workstation’s fixed capacity due to the lack of multi-skilling in current production, leads to the 

observed bottlenecks. These variations imposed by the different project attributes must be 

addressed during the planning stage when workers are being assigned to each workstation. 

Table 6.2: Estimated man-hour requirements per project for the workstations under study. 

Adapted from Moghadam (2014). 

Module 

ID 

Total 

Area (m2) 

Forecast man-hours of projects 𝒑 per workstation 𝒘 (𝒎𝒑,𝒘) 

1a 1b 1c 2 3 4 5 

420A 65.59 18 17 16 0 18 20 28 

420B 64.85 16 16 18 7.5 16 20 24 

432 147.16 24 22 46 3 32 32 16 

433 122.63 21 18 32 3 31 28 16 

434 147.16 22 20 54 9 30 32 16 

442A 61.78 10 14 13 0 12 16 20 

442B 61.78 12 14 14 6 16 12 28 

443A 61.78 7 14 12 0 12 12 20 

443B 61.78 11 12 15 6 15 12 28 

431A 61.32 12 14 12 0 12 12 28 

431B 56.58 14 11 26 6 11 12 28 

CV 44% 36% 21% 55% 92% 44% 43% 24% 
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Table 6.3 shows the data related to the layout and cost analysis in the context of the present case 

study. For simulation purposes, multi-skilled workers are paid the same hourly rate as fixed 

workers. However, a sensitivity analysis is conducted to evaluate the weight of premiums in multi-

skilled worker wages on production cost. The rate for factory overhead is assumed to be $700 per 

hour. In addition, a maximum of seven workers are allowed to work in the same workstation due 

to insufficient physical space. Although the present study establishes a maximum number of 

simultaneous workers in each workstation to account for space restrictions, the simulation model 

does not account for productivity fluctuations due to the increased number of workers at 

workstations. These data serve as inputs to the output analysis module in the proposed simulation 

model. 

Table 6.3: Cost and layout data for production line under study. 

Description Value 

Fixed worker hourly wage ($𝒇) $25/h 

Multi-skilled worker hourly wage ($𝒎) $25/h* 

Factory overhead ($𝒐) $700/h 

Maximum number of workers allowed per workstation (C) 7 workers 

Work shift duration 8 h 

*Hourly wage will increase until it doubles for cost sensitivity analysis  

Table 6.4 includes the various combinations of workers used as inputs to the simulation model 

based on the number of fixed and multi-skilled workers at each workstation and the multi-skilling 

strategies employed. The baseline combination represents the current state on the shop floor in 

which multi-skilling is not applied. In addition to the baseline, other combinations of workers are 

created wherein fixed workers are trained to be multi-skilled according to different multi-skilling 
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strategies in an attempt to increase labour flexibility while keeping the same number of workers 

on the shop floor. According to Nasirian et al. (2019), direct capacity balancing (DCB) is a multi-

skilling configuration where workers are trained to cover bottlenecks at overloaded workstations 

based on their skills and affinities, whereas dual skill (DS) does not consider workers’ skills and 

affinities, and training is based instead on idle trades that can be reassigned to overloaded 

workstations. In the context of this practical application, DCB is applied to workers that will move 

between workstations requiring the same skill (i.e., carpenters will work only in carpentry 

workstations), whereas DS is applied such that multi-skilled workers are able to work at 

workstations regardless of the skills required. In other words, according to the DS strategy, 

carpenters can work at both carpentry and MEP rough-in workstations. Moreover, a hybrid 

scenario (HB) considers multi-skilled workers under both multi-skilling strategies. The process of 

selecting which fixed workers should be trained to be multi-skilled is performed interactively by 

running the simulation model and identifying which workstations are the most imbalanced through 

line of balance graphs. 
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Table 6.4: Number of workers according to each multi-skilling configuration in the 

simulation model. 

Worker 

combination 

label 

Fixed workers at workstations (𝑭𝒘) 

Direct capacity 

balancing (DCB) 

Dual skill 

(DS) 

1a 1b 1c 2 3 4 5 Carpentry MEP Multi-skilled 

Baseline 1 2 2 3 2 4 4 0 0 0 

DCB-1 1 2 2 2 2 3 4 1 1 0 

DCB-2 1 2 2 1 2 2 4 2 2 0 

DCB-3 1 2 2 1 2 1 3 3 3 0 

DS-1 1 2 2 2 2 3 4 0 0 2 

DS-2 1 2 2 1 2 2 4 0 0 4 

DS-3 1 2 2 1 2 1 3 0 0 6 

HB-1 1 2 2 2 2 3 4 1 0 1 

HB-2 1 2 2 1 2 2 4 2 0 2 

HB-3 1 2 2 1 2 1 3 3 0 3 

 

In addition to the baseline, which does not have multi-skilled workers, four scenarios are simulated 

for every combination of workers shown in Table 6.4. These scenarios are developed based on the 

number of times the DT will intervene during the work shift to determine the impact of the DT in 

labour flexibility on the shop floor regardless of which multi-skilling configuration is used. 

Therefore, the simulation-based DT emulates the shop floor and the DT will intervene 1, 2, 4, or 

8 times during the work shift at intervention periods (𝑟) of 8 h, 4 h, 2 h, or 1 h, respectively. 

Table 6.5 shows the learning rates (L, in Equation 4.1) adapted from Hijazi et al. (1993) for the 

required skills (carpentry and MEP rough-in) followed by the assumed initial productivity factor 
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(A, in Equation (6.1)) for DCB and DS strategies, respectively. A higher productivity factor is 

assumed for DCB since the in-training multi-skilled worker is not learning a new skill but working 

on a different workstation that requires he use his existing skill (e.g., a carpenter working in both 

wall and floor framing). However, if this carpenter starts working at a workstation that requires a 

different skill (e.g., insulation rough-in), it is assumed he is half as fast as the skilled worker the 

first time he performs this work. 

Table 6.5: Input parameters applied in the learning model. 

Learning rate (𝑳) Initial productivity (A) 

Skill Value Multi-skilling Value 

Carpentry 80% DCB 70% 

MEP 90% DS 50% 

 

6.4.3. Baseline calibration 

The developed simulation model is calibrated by obtaining similar results from previously 

validated models where results were compared according to validation techniques proposed by 

Sargent (2010). As previously mentioned, Moghadam (2014) developed a simulation to forecast 

the current production capacity for the shop floor under study and validated her model using face 

validation from experts and by comparing simulation results with actual historical data. The 

proposed simulation model replicated the same conditions as Moghadam (2014): (1) only fixed 

workers performing activities (𝑀𝑡,𝑤 = 0), and (2) fixed workstation man-hours according to  

Table 6.2 (ℎ𝑝,𝑤
𝑒

= 𝑚𝑝,𝑤). By running both models one thousand times and applying the comparison 

between models technique proposed by Sargent (2010), the results between the proposed 

simulation model and from Moghadam (2014), differed 1% and 2.06% in the total production time 
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and average cycle time per module, respectively. Another validation was performed using a 

simulation model from Barkokebas et al. (2020) who simulated the use of multi-skilling at the 

initial workstations of the addressed shop floor considering the productivity of multi-skilled 

workers the same as fixed workers (i.e., not considering the impact of learning in production) 

(𝑝𝑡,𝑤 = 1) and fixed workstation durations as per  

Table 6.2 (ℎ𝑝,𝑤
𝑒

= 𝑚𝑝,𝑤). Since both the present study and Barkokebas et al. (2020) address the 

impact of multi-skilling, the results from similar scenarios considering the application of multi-

skilled workers (Baseline, DCB-1 and DCB-2) were compared following the approach described 

in Sargent (2010). By running models one thousand times, both models presented similar results 

considering the same stated conditions with a difference of 1.05, 1.01, and 3.05% for total 

production time in the Baseline, DCB-1 and DCB-2 scenarios, respectively. Moreover, the average 

cycle per module from both models differed 0.02, 3.11, and 5.13% for the Baseline, DBC-1 and 

DCB-2 scenarios, respectively. Furthermore, an event validity test suggested by Sargent (2010) 

was performed to evaluate if both models behave in a similar manner by comparing the queue 

length of the addressed workstations. The average queue length in the addressed workstations 

differed 7.3, 3.94, and 3.89% for the Baseline, DBC-1 and DCB-2 scenarios, respectively. These 

differences are explained by the different logic applied in the respective studies, where Barkokebas 

et al. (2020) applied multi-skilled workers to give preference to specific workstations, while the 

present study applies multi-skilled workers to reduce the waiting time per module on the shop 

floor. Nevertheless, differences in the presented results are acceptable to simulation efforts 

involving OSC operations and uncertain events (Alvanchi et al. 2012). In summary, the proposed 

simulation model incorporates more aspects of production (the use of multi-skilled workers to 

balance production, their decreased productivity due to the learning effect and uncertainty 
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regarding workstation durations), thus removing assumptions present in the mentioned previous 

studies. Therefore, the model developed in the present study to assess the impact of the simulation-

based DT is calibrated through a comparison with the previously validated models. 

6.5. Results and discussion 

Results from the developed simulation model are presented herein to determine the impact of on 

production on the OSC shop floor under study of reassigning multi-skilled workers. The results 

are presented in terms of the predetermined key metrics for each of the simulation scenarios and 

in terms of a sensitivity analysis of the hourly wages paid to multi-skilled workers. In Table 6.6, 

scenarios are labelled according to the multi-skilling configuration (DCB, DS or HB), worker 

combination (as described in Table 6.4), and number of DT interventions during the work shift. 

As an example, DCB-1-8 is the scenario where multi-skilled workers perform tasks using the 

multi-skilling configuration direct capacity balance (DCB), under the first worker combination and 

the proposed DT intervenes a total of eight times during the work shift.   
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Table 6.6: Simulation results according to key metrics. 

Scenario 

Total 

production 

time (𝑻𝒔𝒊𝒎) in 

hours 

Average 

processing 

time per 

module (𝑷) in 

hours 

Average 

waiting time 

per module 

(𝑾) in hours 

Total fixed 

worker 

man-hours 

(𝑴𝑯𝒇) 

Total multi-

skilled worker 

man-hours 

(𝑴𝑯𝒎) 

Baseline 182.55 54.01 56.22 1,266 0 

DCB-1-8 137.28 49.46 27.53 1,166 265 

DCB-1-4 135.24 49.26 27.46 1,162 259 

DCB-1-2 133.82 49.01 27.13 1,157 256 

DCB-1-1 132.22 48.77 25.93 1,152 253 

DCB-2-8 129.52 48.35 24.56 1,063 496 

DCB-2-4 125.40 48.43 19.28 1,066 480 

DCB-2-2 122.82 48.39 16.87 1,066 471 

DCB-2-1 121.27 48.33 16.19 1,066 465 

DCB-3-8 137.20 49.06 33.49 938 779 

DCB-3-4 132.04 49.52 24.06 948 753 

DCB-3-2 129.20 49.74 20.83 954 741 

DCB-3-1 128.08 49.69 19.95 954 736 

DS-1-8 129.58 48.36 21.76 1,147 258 

DS-1-4 128.22 48.46 20.49 1,148 254 

DS-1-2 127.92 48.68 20.52 1,152 252 

DS-1-1 127.32 48.55 20.19 1,149 250 

DS-2-8 123.14 48.19 23.11 1,039 489 

DS-2-4 119.19 48.68 17.05 1,048 471 

DS-2-2 118.21 49.04 14.61 1,057 465 

DS-2-1 117.53 49.17 14.11 1,061 460 

DS-3-8 127.13 48.78 29.97 919 757 

DS-3-4 124.37 49.60 20.57 934 737 

DS-3-2 124.53 50.11 19.07 944 734 

DS-3-1 124.92 50.40 18.67 950 733 

HB-1-8 129.28 47.48 22.03 1,133 255 

HB-1-4 125.43 47.39 18.72 1,132 236 

HB-1-2 122.75 47.18 16.60 1,130 230 

HB-1-1 121.14 46.99 15.94 1,126 226 

HB-2-8 117.21 46.81 23.01 1,037 428 

HB-2-4 116.94 46.82 16.97 1,017 439 

HB-2-2 114.21 46.80 14.74 1,018 428 

HB-2-1 112.45 46.28 14.55 1,009 421 

HB-3-8 124.14 46.66 28.36 890 685 

HB-3-4 121.78 46.87 22.07 893 673 

HB-3-2 118.47 47.09 19.12 897 659 

HB-3-1 116.14 46.68 18.24 891 648 
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Figure 6.5 shows, for all of the simulated scenarios, the total production duration and a sensitivity 

analysis that compares the total cost reduction to the baseline in which neither a DT nor multi-

skilled workers are used on the shop floor. Since multi-skilling is the strategy employed to increase 

labour flexibility, a sensitivity analysis is conducted to evaluate the impact multi-skilled workers 

have on the total cost of production. The variable in this sensitivity analysis is the hourly wage for 

multi-skilled workers, which varies from the value paid to fixed workers to an amount that is 

doubled (i.e., $25 and $50 Canadian dollars per hour, respectively). All simulated scenarios 

indicate a significant reduction in total production duration of almost 38% in comparison to the 

baseline, while seven out of the ten shortest simulated production durations have four or more DT 

interactions during each work shift. These results are consistent with previous publications where 

the simulation of multi-skilled workers leads to reductions of 21%, 22%, and 32% in total 

production time while not using any autonomous system to reassign multi-skilled workers 

(Arashpour et al. 2015; Barkokebas et al. 2015; Barkokebas et al. 2020). 
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Figure 6.5: Total duration and cost reduction considering the total cost from baseline. 

Moreover, Figure 6.5 demonstrates the total cost of production can be reduced in the range of 21% 

to 28% depending on how much the multi-skilled workers are paid in comparison to fixed workers, 

whereas the number of DT interactions are not directly correlated to lower production costs. 

Although similar results are found when the hourly wage of multi-skilled workers is similar to the 

fixed worker hourly wage, the total production cost (i.e., direct and indirect cost) of using multi-

skilled workers varies by a significantly higher amount in comparison to the sensitivity analysis 

developed by Barkokebas et al. (2020) that presented a range of 27% and 29%. This is explained 

by the difference between the criteria adopted by the respective studies: the proposed simulation-

based DT aims to reduce queue lines at workstations, while Barkokebas et al. (2020) proposes 

multi-skilled workers work at delayed workstations paying little attention to queue lines at 

workstations. Another impact factor leading to a wider range of total production cost is the adopted 

multi-skilling configuration. Figure 6.5 depicts a lower range in the sensitivity analysis is more 

related to the multi-skilling configuration where DCB (i.e., direct capacity balancing) provides 

lower cost ranges despite having higher durations in comparison to other multi-skilling strategies. 
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Still regarding the adoption of multi-skilling configurations, these results are consistent with 

previous studies where hybrid (HB) and dual-skill (DS) demonstrate lower total production times 

compared to DCB (Avva and Chamberlin 2020; Nasirian et al. 2019b). 

6.5.1. Production assessment 

To illustrate the impact on production efficiency, Figure 6.6 depicts the key metrics: the average 

cycle time per module (further divided between process time and waiting time), and the average 

waiting cost per module according to a similar sensitivity analysis as that shown Figure 6.5 where 

multi-skilled hourly wages vary between $25 and $50 per hour. Figure 6.6 demonstrates that the 

average cycle time per module is reduced 37% depending on the number of DT interactions and 

multi-skilling configurations. As observed in a study authored by Arashpour et al. (2015), who 

presented a reduction in production cycle time of 8% and 18% using direct capacity balancing 

(DCB) and hybrid (HB) multi-skilling configurations, Figure 6.6 presents a similar trend with 

reductions of 33% and 40%, respectively, using the same configurations. 



 

139 

 

Figure 6.6: Production efficiency assessment and average waiting cost per module. 

Based on Figure 6.5 and Figure 6.6, the present study presents improved results compared to 

previous studies where production on shop floors is simulated using multi-skilled workers. These 

results can be explained by the increased number of interactions the proposed DT makes, which 

makes production more flexible as needed. Scenarios in which the proposed DT intervenes more 

frequently have a lower average cycle time per module, this being driven by a significant reduction 

in the waiting time (considered as waste) between modules. Figure 6.6 shows the average waiting 

time per module using multi-skilled workers reassigned by the DT, which is, on average, 62% 

lower compared to the baseline despite some scenarios presenting slightly higher average process 

time. This is due to the learning effect and the time multi-skilled workers spend moving between 

workstations as needed. Moreover, the average waiting cost per module varies significantly with 
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variations in the hourly wage paid to multi-skilled workers since its value is calculated directly 

from the total number of multi-skilled man-hours spent on production. From a lean thinking 

perspective, the use of multi-skilled workers causes the increase of over-processing and 

transportation wastes (wastes also listed by Ohno 1988). Indeed, multi-skilled workers perform 

inefficient operations due to the learning effect and movement between workstations, followed by 

a decrease of waiting waste as they are assigned to workstations by the proposed DT. As 

demonstrated in Figure 6.6, the decrease of waiting waste greatly compensates the increase of 

other wastes caused by the learning effect and transportation of multi-skilled workers between 

workstations. Hence, over-processing and transportation wastes are considered in this present 

study as necessary wastes for an improved production performance. 

To assess the impact of the proposed DT in terms of increasing labour flexibility on the shop floor, 

Figure 6.7 shows the average waiting time per module for each scenario represented by the worker 

combination (as defined in Table 6.4), multi-skilling configuration, and number of DT 

interventions on the shop floor. As depicted in the figure, an increased number of interventions 

leveraging the DT reduces the average waiting time per module by 29%, on average, regardless of 

the worker combination and multi-skilling configuration adopted. A negative correlation between 

the average waiting time per module and the number of DT interactions is expected since an 

increased number of interactions during the work shift allows the DT to reassign multi-skilled 

workers more frequently and more responsively, thus minimizing queues and bottlenecks at their 

very beginnings. Therefore, the application of a DT to reassign multi-skilled workers and increase 

labour flexibility is validated since a traditional approach (e.g., a foreman is responsible for 

controlling production and reassigning multi-skilled workers based on his experience and personal 

judgement) is not feasible. Typically, the foreman would have to dedicate himself solely to the 
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task of assigning rotating multi-skilled workers, and even in this case, such a manual system would 

be prone to human error. Sensors must be installed to monitor the location of each module and 

each multi-skilled worker, while the proposed DT processes the generated data and automatically 

reassigns multi-skilled workers to workstations according to the proposed method described in the 

present study. 

 

Figure 6.7: Average waiting times per module as per proposed combinations and rotation 

intervals.  
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6.5.2. Schedule comparison 

Based on the results presented herein, the recommended multi-skilling configuration for the shop 

floor under study is scenario HB-2-8 (i.e., the second worker combination using a hybrid multi-

skilled configuration with eight DT interventions during the work shift) due to its superior 

performance in terms of total production duration, and due to the fact this scenario resulted in the 

lowest production cost, as shown in Table 6.6, Figure 6.5, and Figure 6.6. As demonstrated in 

Figure 6.8b, production at the workstations in the proposed scenario is significantly more balanced 

in comparison to its baseline (Figure 6.8a), which results in a reduction in the total production 

duration of approximately 40%. As previously mentioned, the production is balanced by reducing 

the waiting time between workstations by reassigning multi-skilled workers among the 

workstations under study. It can also be observed in Figure 6.8b that production at the walls 

workstation, which is the main bottleneck in the baseline scenario, is significantly improved by 

the addition of multi-skilled workers. 
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Figure 6.8: Line of balance comparing the production between the baseline and scenario 

HB-2-8, respectively. 

6.6. Conclusion 

To answer the research questions related to the feasibility of increasing flexibility (i.e., multi-

skilling) and address the impact of automated systems such as DT in OSC, the present study 

proposes a simulation-based application of DT to manage multi-skilled workers to address the 

inherited variability from customized products and manual operations in OSC. To address the first 

research question related to the feasibility of multi-skilled workers despite their reduced 

productivity and increased cost, the present study sets its first contribution by performing an in-

depth trade-off analysis considering main variables identified in previous studies. Indeed, the 

present study provides evidence that, despite increasing transportation and over-processing wastes 

a b 
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due to the dynamic reassignment of multi-skilled workers, the reduction in waiting waste greatly 

improves manufacturing operations on the shop floor. In addition, the gains from the production’s 

indirect cost due to the reduced production time surpasses the impact of increased wages for multi-

skilled if needed. In summary, the performed in-depth trade-off analysis indicate that the increased 

flexibility improved the shop floor dynamics while reducing its cost despite the perceived reduced 

productivity of multi-skilled workers. Meanwhile, to address the second research question related 

to the impact of DT on the shop floor considering different multi-skilling configurations and 

inherited uncertainties of manual operations, the present study proposes its second contribution by 

demonstrating that the average waiting time per module (waiting waste according to lean thinking) 

is significantly reduced according to the number of DT interventions and despite the different 

stated conditions. The implementation of DT to increase flexibility in OSC shop floors is derived 

by the particular characteristics of OSC manufacturing where products are highly customizable 

and operations are still labour-intensive. Hence, different bottlenecks are created in shop floors 

since traditional workstations have a static production capacity that cannot accommodate the 

inherited variability caused by these characteristics. Therefore, the proposed model is developed 

to address the following main research gaps: (1) the lack of trade-off analyses related to the impact 

of multi-skilling on OSC shop floors, (2) the absence of studies pertaining to the application of a 

DT on OSC shop floors, and (3) the need for approaches to evaluate the impact of DT in OSC.  

The present study employed simulation to emulate the implementation of a DT that is designed to 

improve production rates in OSC by increasing labour flexibility, which involves reassigning 

multi-skilled workers to balance production while taking into account the following information: 

(1) production uncertainty, (2) physical space limitations and shop floor layout, (3) learning effect, 

(4) production cost, and (5) the number of DT interventions during the work shift. The present 
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study determines the impact the proposed system will have on production by providing practical 

application of the beneficial impacts attributable to the use of a DT, supported by real-time data, 

while addressing labour flexibility as a key subject of interest in OSC. This is accomplished by 

developing a simulation model based on actual information from the model’s practical application.  

The results of the practical application indicate that the average waiting time, total production 

duration and production cost are reduced by approximately 62%, 40% and 25%, respectively, 

compared to the baseline, while the findings show a positive correlation between the reduced 

average waiting time per module and the number of times per shift the DT intervenes on the shop 

floor. Moreover, the application of the proposed DT provides beneficial outcomes to OSC 

manufacturing operations regardless of any multi-skilling configuration applied or duration 

uncertainties caused by labour-intensive tasks. While these results are promising, the proposed 

method requires a significant modelling effort to develop the simulation, thus requiring constant 

monitoring of physical changes (e.g., layout and workstations sequence) and shop floor conditions 

(e.g., number of workers on production), which can be considered a limitation. Despite accounting 

for the loss of productivity due to the learning effect and establishing a maximum number of 

workers working simultaneously in the same station, the simulation model does not account for 

other productivity fluctuations due to space limitations (e.g., works in congested areas) which is 

another limitation of the present study. Moreover, additional practical applications, in a real 

setting, are needed to validate the positive impact a DT can have by reassigning multi-skilled 

workers on OSC shop floors considering similar assumptions. Nevertheless, broader application 

of these methods, such as the implementation in real-scale and the addition of other significant 

aspects of production such as quality management and worker absence, is recommended. The use 

of recursive algorithms to better assign multi-skilled workers in consideration of the production 
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schedule, as well as the use of DT to increase flexibility in other areas of production such as 

scheduling and design of OSC projects, is also recommended. Finally, the present study 

contributes to the body of knowledge by providing a novel method to determine the impact of a 

DT in terms of dynamically reassigning multi-skilled workers using a set of methods to acquire, 

transform, and apply data to increase labour flexibility on OSC shop floors. 
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CHAPTER 7: CONCLUSIONS 

7.1. Research Summary 

Offsite construction (OSC) is gaining significant attention from industry and academia due to the 

increased productivity achieved in controlled environment compared to in traditional construction. 

Nevertheless, significant variability is observed on OSC shop floors due to various product- and 

process-related factors. To allow for a more flexible manufacturing system, this thesis proposed 

the use of design-related data generated from the premanufacturing phases combined with real-

time data gathered from sensors on the shop floor to improve manufacturing operations and 

provide valuable production insights. 

The research described in Chapter 4 involved the development of a framework to identify existing 

and prospective new technologies to improve processes and to link different information systems 

employed in the OSC premanufacturing phases into a centralized system containing all relevant 

project features. This system can later be connected to real-time data from sensors on the shop 

floor and used to improve operations. To account for the inherent uncertainties and process waste 

associated with premanufacturing processes, a combination of discrete-event simulation and value 

stream mapping (VSM) is embedded in the proposed framework to allow for the participation of 

company experts in identifying existing forms of waste and prospective new technologies to reduce 

them. The proposed framework was tested and validated by company experts, and was found to 

provide a robust foundation for the development of a centralized system containing relevant design 

features (wall area, volume, material specifications, etc.) of OSC projects. 

Chapter 5 described the development of a structured method for performing data science analyses 

on design-based data gathered by deploying the system proposed in Chapter 4 together with 
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production-based data in the form of timestamps extracted from RFID sensors installed on the 

shop floor. This culminated in a hybrid method (qualitative and quantitative evidence) by which 

to preprocess and analyze the data focusing on process improvement of manufacturing operations 

in OSC. This method provides production insights on the empirical implementation while allowing 

for the evaluation of proposed improvement measures using statistical analysis. 

Chapter 6 discussed the impact of automated systems in terms of achieving dynamic operational 

improvements, as well as and to account for the inherent variability in manual manufacturing 

operations in near-real time. As per the description of the practical application in that chapter, DT 

and deployment of multi-skilled workers were selected as the applicable automated system and 

strategy to account for variability in production, respectively. Using simulation as a surrogate, a 

DT performs simulations leveraging real-time data to reduce the identified production bottlenecks 

by reassigning multi-skilled workers between workstations to balance production among stations 

was represented. By simulating different scenarios in consideration of several factors (physical 

limitations on the shop floor, learning effect of multi-skilled workers, fluctuations in production, 

DT intervention interval, and production cost), the DT was found to present significant 

improvements using real-time data in terms of production time and cost. Moreover, this application 

provided significant evidence of the potential impact of DT in reducing process waste in the form 

of waiting times in OSC. 

7.2. Research Contributions 

Although relatively little research has been carried out in this area, the application of data is highly 

relevant and practical as a means to improve efficiency in OSC manufacturing. The principal 

contributions of the research speak directly to the fundamental question underlying this topic as to 
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how data can be organized and applied to improve manufacturing operations in OSC. The research 

described in this thesis addressed three significant challenges pertaining to this question by 

applying a combination of different techniques (e.g., simulation, machine learning, BIM, VSM, 

etc.) while using lean philosophy as the theoretical framework. The notable contributions to 

academic study in this area and to industry practice are presented below: 

7.2.1. Academic Contributions 

1) Proposed a framework to identify wastes, connect different systems, and improve 

premanufacturing processes in OSC (O1). This framework provides hybrid 

methods, based on qualitative and quantitative evidence, that can be employed by 

practitioners as part of a company’s digitalization strategy and that takes into 

consideration the inherent uncertainties related to design, bidding, and procurement 

in OSC projects. 

2) Combined simulation, VSM, and statistical analysis as the basis for a decision 

support tool to aid OSC enterprises in adopting and implementing new technologies 

and in evaluating the potential impact of linking different information systems 

(BIM and ERP) in a central platform. 

3) Proposed a novel method for evaluating proposed process improvement measures 

for OSC manufacturing using real-time data and digitalization processes (O2). This 

method allows for a structured analysis of proposed process improvement measures 

based on statistical analysis. 

4) Developed novel approaches using machine-learning algorithms to identify 

patterns in design features of manufactured products, perform outlier detection, and 
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evaluate the impact of design features on the manufacturing durations for wall panel 

fabrication at semi-automated stations (O2). 

5) Adapted digital twin (DT) implementation methods to the OSC manufacturing 

context (O3), thereby providing empirical evidence of the potential impact of DTs 

in terms of reducing the adverse effect of variability on production while reducing 

total duration and cost on OSC shop floors. 

6) Developed a novel approach for evaluating the potential impact of DT based on a 

series of production constraints while proposing methods to acquire, transform, and 

apply real-time data to increase labour flexibility on OSC shop floors (O3). 

7.2.2. Contributions to Industry Practice 

1) Developed methods to quantify the benefits of integrating BIM with other 

information systems (e.g., ERP) and to expand the use of BIM beyond the design 

phases. 

2) Developed replicable methods to implement digitalization in OSC companies while 

providing quantitative metrics to assist in the implementation and to promote a 

culture of continuous improvement in OSC companies. 

3) Developed a method for evaluating proposed process improvement measures in 

OSC manufacturing using real-time data and machine learning through 

digitalization. This method demonstrates how to apply data—data that, in current 

practice, would often go unused by OSC companies—to monitor the current 

production status and evaluate proposed process improvement measures 

accordingly on a quantitative basis. 
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4) Provided empirical evidence of the impact of semi-automation on overall shop floor 

production while demonstrating its ability to accommodate design variability. 

7.3. Limitations and Future Research 

Notwithstanding the successful achievement of research objectives, the research presented in this 

thesis was subject to the following limitations, which will be addressed in future work: 

1) The effectiveness of the developed framework for the digitalization of the 

premanufacturing phases depends on the accuracy of the information gathered from 

experts, which is often qualitative, anecdotal, and based on personal experience. 

This is a potential limitation since inaccurate input information will lead to an 

inaccurate baseline for the digitalization of future states. Two courses of action are 

recommended to address this limitation: (1) incorporate proven methods for 

collection of qualitative data (e.g., delphi) into the framework to improve the 

precision and accuracy of the information collected, and (2) incorporate automated 

data extraction procedures from ERP system as a way of gathering information 

pertaining to the premanufacturing phases of OSC, such as the volume of 

commercial proposals per year, bid conversion rates, and average duration of 

activities. 

2) Several research limitations posed by low-quality data (e.g., inconsistent, flawed, 

small sample sizes, etc.) are identified with respect to forecasting and data analysis. 

However, no method by which to quantify the impact of using low-quality data in 

OSC is available in the literature. Therefore, the development of a framework to 

quantify the impact of using low-quality data as a way of alerting practitioners of 
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the importance of using reliable methods for data collection in OSC manufacturing 

is suggested as a direction for future research. 

3) The proposed method for evaluating proposed process improvement measures in 

OSC manufacturing operations should be further validated using case 

implementations in different production scenarios (e.g., different sample sizes, 

production constraints, and automation levels). Moreover, although the proposed 

method assesses the validity of proposed process improvement measures, it does 

not evaluate their potential impact on production. Hence, the development of a 

framework for applying the proposed method that incorporates the use of 

simulation to evaluate the potential impact of validated process improvement 

measures is recommended. 

4) In the implementation of the proposed DT, a greedy approach was used for the 

reassignment of multi-skilled workers on the shop floor, and this approach 

prevented further optimization of the reassignment. Hence, the testing and 

implementation of different algorithms, such as recursive, are recommended as a 

way of allowing for further optimization leveraging DT. 

5) While significant improvements were observed in the case study, an application in 

a real-life setting is recommended as further proof of concept of the use of DT in 

OSC. 
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APPENDIX A 

Figure A.1 presents the pseudocode used for the objective function applied in the proposed DT. 

 

Figure A.1: Pseudocode for multi-skilled worker assignment. 


	ABSTRACT
	PREFACE
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: INTRODUCTION
	1.1. Background and motivation
	1.2. Hypothesis and Research Objectives
	1.3. Thesis Organization

	Chapter 2: LITERATURE REVIEW
	2.1. Digitalization strategies at premanufacturing phases of OSC projects
	2.2. Advanced technologies and the application of real-time data in OSC manufacturing operations
	2.3. Digital twins in construction
	2.4. Identified gaps in the literature and point of departure

	Chapter 3: METHODS
	Chapter 4: A BIM–LEAN FRAMEWORK FOR DIGITALIzATION OF the PREMANUFACTURING PHASES of OFFSITE CONSTRUCTION
	4.1. Introduction
	4.2. Background
	4.3. Research Methodology
	4.4. Proposed BIM–Lean Framework
	4.4.1. Stage 1: Measure
	4.4.1.1. Input for the Simulation Model
	4.4.1.2. Data Analysis on Simulation Output

	4.4.2. Stage 2: Design
	4.4.3. Stage 3: Propose and evaluate

	4.5. Empirical Implementation
	4.5.1. Implementation of Framework: Stage 1 (Measure)
	4.5.1.1 Input for Simulation Model
	4.5.1.2 Analysis of Simulation Output

	4.5.2. Implementation of Framework: Stage 2 (Design)
	4.5.3. Implementation of Framework: Stage 3 (Propose and evaluate)
	4.5.4. Framework Evaluation and Assessment

	4.6. Conclusions

	Chapter 5: DIGITALIZATION METHOD FOR PROCESS IMPROVEMENT AND DECISION-MAKING IN OFFSITE CONSTRUCTION
	5.1. Introduction
	5.2. Literature Review
	5.2.1. Automation and Process Improvement in OSC
	5.2.2.  Digitalization and Real-time Work-monitoring Technologies in OSC
	5.2.3. Identified Gaps in the Literature and Point of Departure

	5.3. Methodology
	5.4. Development of the Proposed Digitalization Method Using a Case Study
	5.4.1. Business Understanding
	5.4.2. Data Understanding
	5.4.3. Data Preparation
	5.4.3.1 Design-based Data Preparation for H1 and H2
	5.4.3.2 Production-based Data Preparation for H3

	5.4.4. Modelling
	5.4.4.1 Design-based Data Modelling for H1 and H2
	5.4.4.2 Production-based Data Modelling for H3

	5.4.5. Evaluation

	5.5. Computational Results
	5.5.1. Design-based Assessment
	5.5.1.1 H1: The panel cycle time at W01 is not affected by panel type
	H2: The panel cycle time at W01 is directly related to the features of the given panel

	5.5.2. Production-based Assessment
	5.5.2.1 H3: Working on irregular days and periods will assist to meet production target H3: Working on irregular days and beyond work hours is an effective strategy for meeting production target

	5.5.3. Summary of Computational Results

	5.6. Conclusions

	Chapter 6: ASSESSMENT OF DIGITAL TWINS TO REASSIGN MULTI-SKILLED WORKERS IN OFFSITE CONSTRUCTION BASED ON LEAN THINKING
	6.1. Introduction
	6.2. Background
	6.2.1. Multi-skilling in Offsite Construction
	6.2.2. Digital Twin Applications in Manufacturing and Offsite Construction Shop Floors

	6.3. Methodology and Research Methods
	6.3.1. Methodology
	6.3.2. Simulation-based digital twin applied for multi-skilled worker reassignment
	6.3.2.1 Production module
	6.3.2.2 Work-monitoring module
	6.3.2.3 Production status module
	6.3.2.4 SPIE module for multi-skilled worker reassignment
	6.3.2.5 Updated production information module
	6.3.2.6 Output analysis module


	6.4. Practical application of the proposed system
	6.4.1. Problem description
	6.4.2. Simulation inputs
	6.4.3. Baseline calibration

	6.5. Results and discussion
	6.5.1. Production assessment
	6.5.2. Schedule comparison

	6.6. Conclusion
	6.7. Data availability statement
	6.8. Acknowledgments

	Chapter 7: CONCLUSIONS
	7.1. Research Summary
	7.2. Research Contributions
	7.2.1. Academic Contributions
	7.2.2. Contributions to Industry Practice

	7.3. Limitations and Future Research

	REFERENCES
	APPENDIX A

