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Abstract

Equivalence check of two programs (or two versions of a program) is the prob-

lem of deciding if the two programs produce the same values as output for the

same input. Symbolic execution is a program analysis technique that executes

the programs under analysis using symbolic values. Several approaches and

tools utilize symbolic execution to check equivalence. Existing symbolic execu-

tion implementations face multiple difficulties including scalability and limited

support for language constructs. Current equivalence check approaches and

implementations focus primarily on the scalability issue, often by abstracting

unchanged parts of the programs under check. Despite the existence of several

extensions to symbolic execution that deal with complex data types, current

equivalence check implementations are incapable of performing equivalence

checks for programs that deal with non-primitive data types.

We present an equivalence checker that can check Java programs with non-

primitive method parameters, fields, and return types., including parameter-

ized types. The checker tracks input and output variables (e.g., instance and

static fields, parameters, and returns) for changes throughout the symbolic

execution of the program, and collects the transformations of those variables.

The checker relies on a symbolic execution extension known as Lazy Initializa-

tion, to handle non-primitive data types, and extends the technique to further

deal with parameterized types by utilizing type signatures. By supporting

non-primitive types and more input and output variables, the checker extends

the space of possible programs that we can check for equivalence.
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Chapter 1

Introduction

Formal software verification tools provide verifiable guarantees on software

behaviour. Such tools often require specialized understanding, may impose a

limited set of development languages and frameworks, and require the produc-

tion of a formal specification or proofs. The costs incurred by these require-

ments can be acceptable within certain software categories that warrant high

correctness assurance. However, for other types of software such costs can be

prohibitively high [23].

A more feasible alternative to formal verification is program equivalence.

The goal is to check if two programs are functionally equivalent. Instead of

checking a program against a formal specification, an equivalence checker relies

on another program instead. This alleviates the costs associated with writing

a formal specification, and the need for specialized languages or frameworks

for writing the software.

Generally, the problem of deciding whether two programs are equivalent

is undecidable. Deciding equivalence of two programs is to decide non-trivial

properties about the programs, which is undecidable according to Rice’s The-

orem [29]. The equivalence check process involves the exploration of the state

spaces of the programs. Such space might be large or even infinite, hence af-

fecting the scalability of the checking process. However, equivalence checkers

may exploit the commonalities between the programs to render the problem

tractable [17]. Additionally, checking the equivalence of closely related pro-

grams or successive versions of the same program (or its components) is of
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practical importance, as exemplified by the prevalent use of regression tests in

software engineering.

One program analysis technique that is used to explore the state space of

a program is symbolic execution. In concrete execution, a program runs on

specific values as its inputs. While, in symbolic execution, input variables are

initialized to symbols. These symbols do not represent specific values, but

rather a set of values that can comprise the entire range of the type of the

corresponding variable. Consequently, symbolic execution explores all feasible

paths of a program. Uses of symbolic execution include checking if a program

violates certain properties and test case generation [5], [21]. Symbolic execu-

tion may also be used to generate symbolic summaries that characterize the

behaviour of the program. Program equivalence, in combination with a deci-

sion procedure, may utilize these summaries to perform equivalence check [27].

As a state space exploration technique, symbolic execution suffers from the

state space explosion problem [1]. As a result, the main focus for the design

of numerous symbolic execution equivalence checkers has been how to control

the state search domain without sacrificing the completeness of the analysis.

However, due to lack of support of some language features, those checkers

can operate on a limited set of programs. For Java programs checkers, these

features include: dynamic data structures, methods that take input or produce

output on multiple fields, and parameterized types [4], [27], [33].

To address these limitations, this thesis presents HeapChecker: an equiv-

alence checker for Java programs. As an input, HeapChecker takes two

methods and as an output states whether they are equivalent or not. HeapChecker

relies on Symbolic PathFinder (SPF) [25], a symbolic executor that supports

dynamic data structures through a technique known as Lazy Initialization.

HeapChecker builds on SPF by generating summaries that include repre-

sentations for those structures that may then be checked by a satisfiability

solver. During execution, HeapChecker identifies writes to fields and pa-

rameters and encodes them in the symbolic summaries. Since SPF executes

Java bytecode, it lacks support for parameterized types due to type erasure. To

recover those types during its analysis, HeapChecker uses type signatures
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from the method’s attributes table.

By adding support to this set of features, HeapChecker adds heap mod-

ifying programs to the set of programs that can be checked for equivalence

via symbolic execution. The hypothesis we make and investigate in this the-

sis is that HeapChecker represents heap-modifying programs in formulae

that are checkable for equivalence using satisfiability solvers with equality and

uninterpreted functions theory.

1.1 Thesis Contributions

This thesis details the design and implementation of HeapChecker. Its

contributions include:

• A methodology for representing data structures in first-order logical for-

mulae for satisfiability solvers over equality with uninterpreted functions

and arithmetic theories.

• An implementation, HeapChecker, that checks the equivalence of Java

methods that deals with heap related features: user-defined data struc-

tures, writes to fields, and parameterized types.

• An evaluation of HeapChecker to investigate the validity of the hy-

pothesis of the thesis. The evaluation details HeapChecker’s capa-

bilities and limitations. We find that HeapChecker performance on

basic benchmarks with no heap-related features is comparable to previ-

ous equivalence checkers. We show that HeapChecker correctly de-

cides equivalence and non-equivalence for programs with heap related

features, in the absence of execution paths that are dependent on alias-

ing check. We show that while HeapChecker’s execution times for

most heap-related features are within similar ranges to checks on pro-

grams with basic features, the execution times do not scale as well when

dealing with reference type input in recursive methods.
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1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 offers an overview of

related work regarding symbolic executors and approaches for program equiv-

alence check. Chapter 3 provides background information on the symbolic

execution equivalence check process, starting with symbolic execution, gener-

ating symbolic summaries, satisfiability, and ending with an overview of the

two frameworks we build HeapChecker on: the Java PathFinder (JPF)

model checking framework and the Symbolic PathFinder (SPF) symbolic ex-

ecutor. Chapter 4 details the approach and workings of HeapChecker and

how it enables the equivalence check of methods that accept and modify dy-

namic data structures, write and modify fields and parameters, and accept

parameterized type input. Chapter 5 provides an overview of the implementa-

tion of HeapChecker and how it builds on SPF and JPF. Chapter 6 details

the evaluation of HeapChecker, the benchmarks used to perform the eval-

uation, and demonstrates the capabilities and limitations of HeapChecker.

Finally, Chapter 7 concludes the thesis and offers future research directions.
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Chapter 2

Related Work

This chapter provides an overview of previous work on symbolic execution and

equivalence checking tools that rely on symbolic execution.

2.1 Symbolic Execution

Several equivalence checking and semantic difference analysis tools rely on

symbolic execution to explore the state space of the programs under check [3],

[4], [27], [33]. Researchers introduced several symbolic executors that vary

in language support, path exploration strategy, and memory modelling [5].

Symbolic executors such as angr [30], BAP [7], and BitBlaze [31] analyze

binary code after translating (lifting) it to intermediate language (IR). KLEE

[8] operates on code compiled to LLVM IR. Other symbolic executors execute

Java bytecode, such as Symbolic PathFinder (SPF) [24] and JDart [22], both

built atop Java PathFinder (JPF) [34], which is a model checking framework

for Java bytecode programs.

A symbolic executor may need to deal with complex constraints or external

code that it cannot symbolically execute. Several symbolic executors such as

DART [14], SAGE [15], and S2E [9], alleviate this issue by executing the

program both concretely and symbolically, by resorting to concrete execution

when dealing with external code or complex constraints.

KLEE, BitBlaze, and BAP implement symbolic memory model, in which

the memory addresses are modelled as symbolic values. On the other hand,

SPF implements a lazy initialization approach [20], where fields of objects
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gets initialized symbolic values when they are first accessed. Kiasan [12] im-

plements different variations of the lazy initialization algorithm and formalized

operational semantics. Java StarFinder (JSF) [28] implements symbolic execu-

tion with separation logic to handle heap programs. To generate the symbolic

summaries necessary for equivalence check, HeapChecker relies on SPF to

symbolically execute the programs under check.

2.2 Equivalence Checking

While the problem of deciding the equivalence of two programs is undecid-

able, the problem can be tractable if a degree of similarity exists between

the programs under check [17]. Several equivalence checking tools attempt to

utilize this aspect by restricting the analysis to the parts that can be read-

ily identified as different through syntactic means. For example, Regression

Verification Tool (RVT) [17] checks the equivalence of C programs by travers-

ing the call graph of the programs under check, and skipping the functions

that are syntactically equivalent across the two programs. Thus, it only re-

sorts to checking the semantic equivalence when it encounters functions that

are syntactically different. RVT relies on CBMC to check for the semantic

equivalence. CBMC [10] implements a Bounded Model Checker for C. It can

check the validity of assertions by transforming the program into a static sin-

gle assignment (SSA) form and conjoining the resulting statements to obtain

a logical formula that can be checked using a SAT solver.

Besides equivalence checking, techniques have been proposed to identify

and characterize the nature of the change between the programs. One ex-

ample is Differential Symbolic Execution (DSE) [27], which aims to decide

the equivalence of programs under check and also, for programs that are not

equivalent, characterize the differences between them. DSE uses a syntactic

diff tool to identify the syntactically identical portions of the programs under

check. It then abstracts those parts and replaces them with uninterpreted

functions, thus avoiding the execution of those common parts. DSE relies on

SPF to perform symbolic execution and hence operates on Java bytecode.
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ModDiff [33] provides equivalence checking and difference characterization.

It follows a similar approach to RVT as it also traverses the call graph and

restricts the checks on the syntactically different functions. Furthermore, even

for the syntactically different functions, it abstracts the common part and allow

for the refinement of those abstracted parts to provide more precise analysis.

ModDiff operates on programs written in an IR known as the goto-language,

and thus can analyze programs that can be translated to this language.

Proteus [3] performs equivalence checking by restricting the symbolic ex-

ecution to the execution paths impacted by the differences between the two

programs under check. To identify the parts affected by the change, Proteus

performs a static analysis to extract control and data dependence informa-

tion. Proteus uses this information to identify the parts of the programs that

are impacted by the change and restrict the equivalence check to those parts.

Proteus relies on the KLEE symbolic executor and operates on LLVM code.

To balance the over-approximation introduced by the abstraction of parts

of the programs under check with the cost of the equivalence check, ARDiff [4]

implements an iterative approach that relies on a number of heuristics to guide

the process of refining the abstracted portions of the program.

While the focus of those equivalence checkers is to either improve the com-

pleteness or balance the completeness with the precision of the analysis, little

attention is given to tackling programs that manipulate dynamically allocated

objects. The main focus of HeapChecker is to handle such programs, rather

than the issue of managing the amount of equivalence check that a tool needs

to perform.

7



Chapter 3

Symbolic Execution Equivalence
Check

This chapter provides background information on the process of checking pro-

gram equivalence using symbolic execution.

3.1 Symbolic Execution

Executing a program concretely runs the program on a specific set of input

values, exploring a single execution path on each run. Alternatively, symbolic

execution replaces concrete values with symbols. Having symbols instead of

concrete values enables symbolic execution to explore multiple paths that may

result from executing different sets of concrete inputs.

Example 3.1.1. Consider the code snippets in Figure 3.1. Methods abs1()

1 int abs1(int x) {

2 if(x < 0) {

3 result = -x;

4 } else {

5 result = x;

6 }

7 return result;

8 }

(a) Version 1 of abs.

9 int abs2(int x) {

10 if(x == 0) {

11 result = 0;

12 } else if(x > 0) {

13 result = x;

14 } else {

15 result = -x;

16 }

17 return result;

18 }

(b) Version 2 of abs.

Figure 3.1: An example illustrating syntactically different methods with the
same functionality.
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and abs2() have the same functionality, which is the computation of the ab-

solute value of the input. The difference between the two is that abs1() adds

an additional if-condition (Line 10) that checks whether the input is equal to

zero and changes the order of the other input checks (Line 12 and Line 14).

The change does not affect the functionality. We refer to each statement by

its line number.

When executing a method, the symbolic execution engine records for each

execution path a path condition and path transformations. An execution path

of a method is a sequence of statements that starts at the entry point of the

method, and ends at an exit point. The method abs1() in Figure 3.1a has two

execution paths. One path comprises Line 3 and Line 7, which we refer to as

p(3,7). The second path is composed of Line 5 and Line 7, which we label p(5,7).

For a method execution to follow a certain path, the path condition needs

to be satisfiable, that is, there exists a valuation of the variables of the path

condition that renders it true. A feasible execution path is a path whose path

condition is satisfiable.

Definition 3.1.2. A path condition (cond(p)) of an execution path p is a for-

mula that encodes constraints on variables that statements in p read. It is a

conjunction of the conditional expressions (or their negations) of branch state-

ments in p. The variables in the path condition must satisfy those conditions

for an execution to take that path.

For the execution to take the path p(3,7), the conditional expression x < 0

needs to be true. Therefore, the path condition for p(3,7), cond(p(3,7)), is x < 0,

while for p(5,7), which follows the else branch, cond(p(5,7)) ≡ x ≥ 0.

Path transformations map program variables to the values (symbolic or

concrete) obtained throughout the execution of the method.

Definition 3.1.3. Path transformations (transform(p)) encode the effect of

the execution path p on the variables that m writes to.

transform(p) :=
∧

v ∈Write(p) =⇒ v = fp,v(Vm,in) (3.1)
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Write(p) denotes the set of variables the execution path p writes to. The

function fp,v maps the set of input variables Vm,in, that constitutes the input

to the method m, to the value that p computes and writes to v [33].

Each execution path of abs1 in Figure 3.1a takes a single variable (x)

as an input and a single value (the return value) as an output. Therefore,

the sets Write(p) (for both execution paths), and Vm,in are {return} and

{x}, respectively. It follows that, transform(p(3,7)) ≡ (return = −x) and

transform(p(5,7)) ≡ (return = x).

One use of symbolic execution is to generate a symbolic summary for the

program or method under analysis. A method symbolic summary is a formula

that captures the behaviour of the method. A method’s feasible execution

paths constitute all of the method’s execution possibilities. Therefore, the

method’s symbolic summary is comprised of the symbolic summaries of its

feasible paths; the symbolic summary of each execution path combines its

path condition and transformations.

Definition 3.1.4. A symbolic summary of a path p is the conjunction of the

path condition (cond(p)) and transformations (transform(p)) resulting from

that path.

sp := cond(p) ∧ transform(p) (3.2)

The conjunctions of path conditions and transformations of p(3,7) and p(5,7)

yield their symbolic summaries:

sp(3,7) ≡ cond(p(3,7)) ∧ transform(p(3,7))

≡ x < 0 ∧ return = −x

sp(5,7) ≡ cond(p(5,7)) ∧ transform(p(5,7))

≡ x ≥ 0 ∧ return = x

Definition 3.1.5. The symbolic summary of a method m is the disjunction

of the symbolic summaries of the feasible execution paths of m.

Sm :=
∨

p ∈ Feasible(p) =⇒ sp (3.3)

Where Feasible(m) is the set of feasible execution paths in m.
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The disjunction of the summaries of the execution paths abs1() (i.e., p(3,7)

and p(5,7)) compose its symbolic summary:

Sabs1 ≡ sp(3,7) ∨ sp(5,7)

≡ (x < 0 ∧ return = −x) ∨ (x ≥ 0 ∧ return = x) (3.4)

The symbolic summary of abs2() is composed of the summaries of its three

execution paths:

Sabs2 ≡ (x = 0 ∧ return = 0) ∨ (x > 0 ∧ return = x) ∨ (x < 0 ∧ return = −x)

(3.5)

3.2 Lazy Initialization

The symbolic execution of a method that takes an input of primitive type

assigns a single symbolic value to the input prior to the execution. However,

if the method accepts a reference type (non-primitive) input, then symbolic

execution requires multiple symbolic values to represent the reference to the

object in addition to each one of its fields. One way to handle methods that

access reference fields and parameters, is to lazily initialize those variables [20].

The algorithm works by initializing a reference field or parameter and its fields

when the method first accesses the field or parameter. The algorithm explores

initialization possibilities for each variable to:

• null

• an object of the same type that has been previously initialized

• a new object

Example 3.2.1. The class LinkedList in Figure 3.2 is an implementation of

a linked list of integers. It has two instance fields next and content, and a

single method getNextInt() that retrieves the integer stored in the next node

11



19 class LinkedList {

20 LinkedList next;

21 int content;

22

23 int getNextInt() {

24 if(this.next == null) {

25 return 0;

26 } else {

27 return next.content;

28 }

29 }

30 }

Figure 3.2: An example demonstrating lazy initialization.

if it exists, or zero otherwise. When the symbolic executor encounters the first

read of the field this.next (Line 24), it initializes this.next to one of the three

initialization options: null, which results in returning zero; another object of

the same type, which in this case is the current object; or a new object and

returning the integer field of that object. After the symbolic executor finishes

executing the path resulting from a specific initialization option, it backtracks

and explores another one until it exhausts all feasible paths.

The summaries that correspond to each path are:

Initializing this.next to null:

snull ≡ (this .next = null ∧ return = 0) (3.6)

Initializing this.next to an object of the same type (the current object in

this case):

snext=this ≡ (this .next = this ∧ this .next 6= null ∧ return = this .content) (3.7)

Initializing this.next to a new object:

snext 6=this ≡ (this .next 6= this ∧ this .next 6= null ∧ return = this .next .content)

(3.8)

3.3 Equivalence check

We base the definition of equivalence on the definition of full equivalence in-

troduced by Godlin and Strichman [16].
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Definition 3.3.1. Two methods m1 and m2 are equivalent if and only if for

all possible values of input variables, they terminate and they produce the

same values on the same output variables.

A symbolic method’s summary fully characterizes the input-output be-

haviour of the method. Therefore, an equivalence checker may utilize the sym-

bolic summaries of methods to decide on their equivalence. To check whether

two methods m1 and m2 are equivalent or not, we check the validity of the

equivalence verification condition:

Cequiv(m1,m2) := Sm1 ⇐⇒ Sm2 (3.9)

Where Sm1 and Sm2 are the symbolic summaries of m1 and m2. The two

methods are equivalent if and only if the equivalence verification condition is

valid. For the two versions of abs in Figure 3.1, the equivalence verification

condition is composed of the summaries in Equations (3.4) and (3.5):

Cequiv(abs1 , abs2 ) := Sabs1 ⇐⇒ Sabs2

= (x < 0 ∧ return = −x) ∨ (x ≥ 0 ∧ return = x) ⇐⇒

(x = 0 ∧ return = 0) ∨ (x > 0 ∧ return = x) ∨ (x < 0 ∧ return = −x)
(3.10)

3.4 Satisfiability

The problem of propositional satisfiability (SAT) [6] is to decide whether a

propositional formula is satisfiable or not. A formula is satisfiable if and only

if there exists a combination of true or false values that can be assigned to the

boolean variables of the formula such that the formula evaluates to true. If

no such combination exists, then the formula is unsatisfiable. Another related

concept is validity. A formula is valid if and only if for every combination of

true or false value the formula is true. Validity and satisfiability are related.

A formula is valid if and only if its negation is unsatisfiable.

A Satisfiability Modulo Theories (SMT) [6] solver extends SAT solving so

that it can check the satisfiability of more expressive logic, such as first-order
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logic. SMT solvers achieve this by incorporating specific theory solvers, in

additional to the propositional SAT solver. One such theory is the theory

of equality with uninterpreted functions (EUF) and integer arithmetic. A

SAT modulo EUF can, for instance, check formulae such as Equations (3.6),

(3.7), and (3.8). With both EUF and integer arithmetic, an SMT solver can

check the satisfiability (and validity) of the verification condition (3.10). Since

Equation (3.10) is valid, it follows that abs1() and abs2() are equivalent.

Symbolic executors rely on SMT solvers to determine the feasibility of a

path by checking the satisfiability of its path condition. Equivalence checker

may use SMT solvers to check the validity of the equivalence verification con-

dition. Several off-the-shelf SMT solvers exist such as Microsoft’s Z3 theorem

prover [11], which supports several theories such as EUF, arithmetic, and bit-

vectors.

3.5 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) is an extensible model checking framework for Java

programs [19], [34]. JPF contains a modular implementation of the Virtual

Machine for Java bytecode. This implementation enables the user to re-define

the semantics of the Java bytecode instructions, and provide their own inter-

pretation of Java bytecode instructions. JPF provides a search component that

enables the JPF VM to systematically explore the state space of the program

under check. One key feature of JPF is the Attribute System. In addition

to the normal data flow (e.g., operands on the stack and objects in the heap)

in JPF VM that is similar to the normal VM, JPF provides a storage system

that allows additional attributes to be attached to the data. The Attribute

System can be used to propagate symbolic values during the execution.

Symbolic PathFinder (SPF) is a symbolic executor for Java bytecode pro-

grams [25], [32]. It extends JPF by overriding some of the bytecode instruc-

tions in the JPF VM and providing a symbolic interpretation for those instruc-

tions. SPF utilizes the Attribute System of JPF to enable the propagation of

symbolic data. SPF supports primitive data types as well as data structures
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through lazy initialization. Applications of SPF include test case generation

and error detection.
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Chapter 4

Overview of HeapChecker

This chapter details the approach that HeapChecker follows to enable sym-

bolic execution equivalence check of methods that operate on non-primitive

data types. Figure 4.1 provides an overview of HeapChecker’s equivalence

check process.

4.1 Fields Transformations

Sound equivalence check requires symbolic summaries that fully characterize

the behaviour of the methods under check. Thus, we need to include trans-

formations of all the fields that the methods have written to. HeapChecker

builds and adds the transformations for fields during and after symbolic exe-

cution.

Prior to the beginning of executing the instructions of a method m under

check, HeapChecker initializes all of m’s parameters, and the containing

object’s fields to symbols. If during the symbolic execution of a path p in m

HeapChecker encounters a write to a field f , it checks whether the field is

symbolic or not. A symbolic field constitutes an input to the method under

check, and a write to that field means that the field is also part of m’s output.

If f is symbolic, HeapChecker adds f to a set Fp that consists of fields that

p has written to, if it has not been added before. If HeapChecker encounters

a return statement, it creates and adds a symbol return to Fp to represent the

value the method returns, if it exists.

Example 4.1.1. Figure 4.2 depicts two equivalent versions of the method m().
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Method execution and paths exploration

Lazy initialization

Handling parameterized types (§ 4.3)

Compose summaries

Add fields transformations (§ 4.1)

Add data structures transformations (§ 4.2)

Add identity expressions (§ 4.1)

Combine summaries into verification condition

Methods

Symbolic 
Summaries

Equivalence verification condition

Figure 4.1: Workflow of HeapChecker up to the generation of verification
condition. Thick borders indicate the new components in HeapChecker.

31 void m1() {

32 if (x == 0) {

33 return;

34 } else {

35 y = y + x;

36 }

37 }

(a) Version 1 of m().

38 void m2() {

39 y = y + x;

40 }

(b) Version 2 of m().

Figure 4.2: An example illustrating the scenario when two versions of method
m() are equivalent while their summaries are inequivalent if they only contain
changed fields transformations.
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Version 1 has two execution paths (indicated by lines numbers): p33 and p35,

while version 2 has a single execution path p39. Since both p35 and p39 write

to the same field y, each one of Fp35 and Fp39 have the single element y. The

path p33 writes to no field, so Fp33 is the empty set.

At the end of the execution path p, indicated by a return instruction,

HeapChecker builds the path transformations and summaries. For each

field f in F , HeapChecker retrieves the value of the field f , vf , from the

heap, builds an expression fout = vf , and adds the expression as a conjunct to

the transformations formula of p:

transform(p) := transform(p) ∧ (fout = vf ) (4.1)

The symbol fout represents the value of f at the end of the execution of p,

while fin represents the value of f at the beginning. Thus, transform(p33) is

an empty conjunction, while both transform(p35) and transform(p39) equals

yout = yin + xin .

Consequently, we get the summaries for m1 and m2 as follows:

Sm1 ≡ (xin = 0) ∨ (xin 6= 0 ∧ yout = yin + xin) (4.2)

Sm2 ≡ (yout = yin + xin) (4.3)

After the termination of the symbolic execution of both methods under

check and the generation of their summaries, HeapChecker proceeds to build

the equivalence verification condition. While the summaries’ transformations

include all changed fields, they do not correctly characterize execution paths

where those same fields remain unchanged. Despite the fact that m1 and m2

are equivalent, the verification condition Sm1 ⇐⇒ Sm2 is not valid, since Sm1

does not assert that y remains unchanged when x is zero. Rather, it implies

that when x is zero, y can take any value, as opposed to retaining its initial

value.

To resolve this, HeapChecker adds an identity expression fout = fin to

the transformations of each execution path p where f is unchanged, for each

field f such that f ∈ Fq for some other execution path q that writes to f .
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transform(p) := (
∧

f /∈ Fp ∧ f ∈ Fq ∧ p 6= q =⇒ (fout = fin))∧ transform(p)

(4.4)

For the path p33 in m, yout = yin is added to transform(p33), yielding the

following summary for m1:

Sm1 ≡ (xin = 0∧yout = yin) ∨ (xin 6= 0 ∧ yout = yin + xin) (4.5)

The resulting summaries fully characterize the methods under check. HeapChecker

composes the verification condition and uses an SMT solver to check its valid-

ity.

4.2 Dynamic Data Structures

If the right-hand side of a transformation expression is a dynamic data struc-

ture, then HeapChecker encodes the object in the summary by recursively

adding to the transformation formula, a transformation expression for each of

its fields.

For each field f that is assigned a reference to a dynamic data structure in

an execution path p, HeapChecker adds a conjunction of transformations

transform(p, f) that represents the assignment of the reference of the structure

to f , and recursively, the values assigned to the fields of the structure.

For each field f that p writes to, HeapChecker generates transform(p, f)

using the following recursive formula:

transform(p, f) ≡


fout = vf f is primitive
fout = null f is null
fout = f ′

out ∧ (
∧

fi ∈ Fields(f) =⇒ transform(p, f ′
out.fi)) f is not null
(4.6)

Where Fields(f ) is the set of fields of the data structure assigned to f.

The formula is a generalization of fields’ transformations to both primitive

and non-primitive fields. If the field f is of a primitive type, then the formula

reduces to fout = vf , which is the rightmost conjunct in Equation (4.1). For a
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42 class Tree {

43 Tree left, right;

44 int content;

45

46 public Tree(Tree l, Tree r,

int c) {

47 left = l;

48 right = r;

49 content = c;

50 }

51 }

54 class TreesBuilder {

55 Tree t1, t2;

56 public void buildTrees(int x) {

57 Tree small_t = new Tree(null,

null, x);

58 Tree medium_t = new Tree(small_t

, null, x);

59 if (x > 0) {

60 t1 = small_t;

61 t2 = medium_t;

62 } else {

63 t1 = medium_t;

64 t2 = medium_t;

65 }

66 }

67 }

Figure 4.3: An example illustrating how HeapChecker encodes data struc-
tures transformations.

non-primitive null assignment, HeapChecker adds an expression fout = null.

For the non-primitive non-null case, where f is assigned a data structure ob-

ject, HeapChecker introduces a new symbol, f ′
out, to designate that ob-

ject. It adds an expression fout = f ′
out to represent the assignment. Then

HeapChecker recursively adds the transformations of each field fi of the

object assigned to f . HeapChecker assigns each field the symbol f ′
out.fi,

where the dot ’.’ represents the field access relation between f ′
out and fi. The

naming pattern that HeapChecker follows assigns f ′
out the same name as

fout, but appends the suffix " local" to it.

HeapChecker builds the transformations for each field following this

pattern. Thus if multiple fields are assigned the same object, HeapChecker

will add separate transformations for each field. This approach ensures that

the summaries remain consistent regardless of the order of the assignment in

the methods under check. To indicate that multiple fields (e.g., f , g, and h)

are assigned the same object, HeapChecker adds additional expressions to

indicate so:

f ′
out = g′out ∧ f ′

out = h′
out (4.7)
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Example 4.2.1. The method buildTrees() in Figure 4.3 takes an integer

x as an argument, builds two trees (Lines 57–58), and, based on the value

of x, assigns the built trees to instance fields, t1 and t2 (Lines 60–61 and

Lines 63–64).

The following is the formula HeapChecker produces for transform(pconsequent , t1);

the transformations of the field t1 for the execution path that follows the con-

sequent branch (x>0) of the if statement (Lines 59–61). In other words, the

effects of the statements Tree small t = new Tree(null, null, x); and

t1 = small t;:

_this.t1_out = _this_t1_out_local &&

_this_t1_out_local.content = x &&

_this_t1_out_local.right is NULL &&

_this_t1_out_local.left is NULL

The term this denotes a reference to the current object. Consequently,

the terms this.t1 out and this.t2 out reference the fields t1 and t2 of the

current object. The expression in Line 68 denotes the assignment of the refer-

ence of small t to the field t1. Thus, this t1 out local represents small t.

Lines 70–72 denote the transformations of the fields of this t1 out local

(i.e., small t).

While for transform(pconsequent , t2), HeapChecker produces the following:

_this.t2_out = _this_t2_out_local &&

_this_t2_out_local.content = x &&

_this_t2_out_local.right is NULL &&

_this_t2_out_local.left = _this_t2_out_local_left_local &&

_this_t2_out_local_left_local.content = x &&

_this_t2_out_local_left_local.right is NULL &&

_this_t2_out_local_left_local.left is NULL

The expression at Line 73 denotes the assignment of the reference of medium t

to the field t2. Therefore, this t2 out local represents medium t.

Lines 75–77 denote the transformations of the fields of this t2 out local

(i.e., medium t). Lines 79–81 encode the transformations of this t2 out local left local

(i.e., this.t2.left). The object this t2 out local left local is the same

object as this t1 out local, which is small t. To represent this alias-
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ing fact, HeapChecker adds the following expression to indicate that both

this.t1 and this.t2.left are assigned references to the same object:

_this_t1_out_local = _this_t2_out_local_left_local

The conjunction of these three formulae comprises the formula transform(pconsequent),

that is, the transformations of fields that the consequent branch of the if-

statement (Lines 59–61).

Algorithm 1 Encodes dynamic data structure transformations.

Input:
1: f : name of the field that is assigned the object.
2: r: reference to the object on the heap.
3: names : a function that maps objects’ references to names. Returns null if

a reference is not assigned a name.
Output:

4: transforms : fields transformations of the object.
5: procedure EncodeTransforms(f, r, names , transforms)
6: if r is null then
7: transforms ← transforms ∧ (f = null)
8: return
9: end if

10: f ′ ← f + ” local”
11: transforms← transforms ∧ (f = f ′)

. Check if there are previous names for the same object
12: a← names(r)
13: if a is null then
14: names(r)← f ′

15: else
16: transforms ← transforms ∧ (a = f ′)
17: end if
18: for fi ∈ Fields(f) do
19: vf ← getFieldValue(fi)
20: if vi is a concrete value and primitive or vi is symbolic then
21: transforms ← transforms ∧ (fi = vf )
22: else . Field is non-primitive
23: EncodeTransforms(fi, vi, names , transforms)
24: end if
25: end for
26: end procedure

To generate the recursive formula in Equation (4.6), HeapChecker im-

plements Algorithm 1. EncodeTransforms takes four input parameters.
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The first one, f , is the name of a field that has as a value a reference to an

object on the heap. The second parameter, r, is the object reference that the

field f is assigned its reference. The third parameter, names , is a function

that maps each encountered object reference to its variable name. The algo-

rithm uses names to record the first name associated with a reference so that

it can add aliasing expressions if it encounters more instances of the same ref-

erence. The function names returns null for any reference that is not assigned

a name. The last parameter, transforms , is where the algorithm writes its

output. When EncodeTransforms terminates, transforms contains all the

transformations of the fields of r.

After HeapChecker finishes the symbolic execution of a path p, for

each field fi in Fp that is assigned a reference ri for dynamic data structure,

HeapChecker invokes EncodeTransforms(fi, ri, names , transforms). Prior

to the first call to EncodeTransforms, HeapChecker initializes transforms

to the empty formula and names to return null on all references.

EncodeTransforms first checks if the reference r assigned to the field

f is null (Line 6). If that is the case, EncodeTransforms adds a null-

equality expression f = null as a conjunct to the transformations formula

transforms and then terminates. Otherwise, in Line 10, EncodeTrans-

forms creates a symbol f ′ that represents the assigned reference by append-

ing the suffix local to the field’s name. It then, in Line 11, adds an equality

expression f = f ′ that denotes the assignment of the reference to the field. Af-

terwards, EncodeTransforms checks if a previous call to EncodeTrans-

forms has added transformations for the same object’s reference and created

a name for it. It does this check by calling the function names on the ref-

erence r in Line 12. The function names is a mapping from references to

the names EncodeTransforms assigned to them. If a name a exists for

the reference r (Line 15), EncodeTransforms adds an aliasing expression

a = f ′ to indicate so. If no name exists (Line 13), EncodeTransforms

redefines names to include the newly created name f ′. After that, Encode-

Transforms iterates on each field fi of the object assigned to f and adds

the transformations associated with each field fi (Lines 18–25). The value vi
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that the field fi holds can be one of three possibilities: a symbolic value, a

primitive concrete value, or a non-primitive concrete value. For the first two

possibilities, EncodeTransforms adds an equality expression denoting the

assignment of the field to the value (Line 21). While for the third possibility,

where vi is a reference to a data structure, EncodeTransforms recursively

calls itself to add all fields of the object vi references (Line 23).

4.3 Parameterized Types

HeapChecker relies on SPF to symbolically execute method with symbolic

non-primitive data types through lazy initialization. Upon accessing, on an

execution path p, a symbolic field or parameter f of a non-primitive type T for

the first time, SPF branches into 3+n execution paths, where n is the number

of fields of type T SPF has previously initialized to symbolic references to

distinct objects. Each execution path follows a different initialization choice

with respect to f :

1. assigning f null.

2. assigning f a previously distinctly initialized symbol g of type T .

3. assigning f a new distinct symbol f ′ followed by assigning symbols to

each of f ′’s fields.

For lazy initialization to work correctly, it needs to acquire the correct type T

of the field f . If T is not available or incorrect, then lazy initialization cannot

correctly build the set of fields of type T necessary for initialization option

number 2. Additionally, it cannot retrieve the set of fields of f ′ if it cannot

correctly establish its type.

Since SPF executes Java bytecode, arguments to parameterized types are

erased, and have the type java.lang.Object, if they are unbounded and their

upper bound if they are bounded. When it comes to the second initialization

option type erasure can cause imprecise summaries generation in the following

cases:
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• During the lazy initialization of a field that has a variable type that

had been erased into the type java.lang.Object during compilation.

Consequently, multiple fields can have the type java.lang.Object during

the execution, due to type erasure. As a result, SPF forks spurious

execution paths to accommodate the aliasing possibilities between these

fields. These execution paths are spurious because the compile-time type

safety imposed by the parameterized types guarantees that such aliasing

is not possible.

• During the lazy initialization of a parameterized type field or parameter

that had its type arguments erased into the type java.lang.Object. Mul-

tiple fields or parameters can have the same generic type, yet different

type arguments. However, type erasure renders these fields or parame-

ters to have the same type, because the type arguments had been erased.

Similar to how SPF handles erased variable types, SPF will fork spurious

execution paths to accommodate the aliasing possibilities between these

fields or parameters.

For the third initialization option, a field f of a variable type with a type

argument T that is erased into the type java.lang.Object or its upper bound

means that SPF will not be able to symbolically initialize the fields of f that

are specific to the type T . This could result in SPF treating those fields as

concrete values and missing execution paths and fields’ transformations.

To remove potential imprecise paths resulting from erroneous aliasing pos-

sibilities and avoid the omission of execution paths or fields’ transformations,

HeapChecker constrains lazy initialization of fields and parameters that are

of a parameterized type and variable types to the type invocation and the ar-

guments to the type invocation. While the compiler erases type arguments for

types invocations in the code, it retains those type arguments in the method

signature, which HeapChecker has access to through JPF.

HeapChecker parses the signature of the method under check and ex-

tracts the type arguments for parameterized types. HeapChecker then looks

up the generic type definition of the parameterized type, maps each type ar-
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83 class TestPair {

84 String strField;

85 int intField;

86 boolean changed;

87

88 void setField(Pair<String,

Integer> t, int choice) {

89 if (choice == 0) {

90 strField = t.elem1;

91 } else if (choice == 1) {

92 intField = t.elem2;

93 }

94

95 changed = (choice == 0) || (

choice == 1);

96 }

97 }

(a) Accessing fields of a generic-type pa-
rameter.

98 aload_0

99 aload_1

100 getfield #2 // Field Pair.elem1

:Ljava/lang/Object;

101 checkcast #3 // class java/lang/

String

102 putfield #4 // Field strField:

Ljava/lang/String;

(b) JVM bytecode for Line 90, String is
erased.

103 aload_0

104 aload_1

105 getfield #5 // Field Pair.elem2:

Ljava/lang/Object;

106 checkcast #6 // class java/lang/

Integer

107 invokevirtual #7 // Method java/

lang/Integer.intValue:()I

108 putfield #8 // Field intField:I

(c) JVM bytecode for Line 92, Integer
is erased.

Figure 4.4: An example illustrating the erasure of type arguments in Java
programs.

gument to its parameter, and then resolves the type of each field or parameter

that has a parameterized or a variable type.

Example 4.3.1. As an example for the first case in the second initializa-

tion option (fields with variable types), consider the method setField() in

Figure 4.4a. The method has two parameters. The first parameter is an ob-

ject t that has the parameterized type Pair<String, Integer>. This type is

an invocation of the generic type Pair<T, S>, which has two fields: elem1 of

variable type T and elem2 of variable type S. During compilation, the Java

compiler erases the type arguments of parameterized types. In this example,

after compilation, the fields of object t (t.elem1 and t.elem2) assumes the

type java.lang.Object, as Figure 4.4b and Figure 4.4c show. Consequently,

SPF will falsely fork an execution path in which t.elem1 and t.elem2 are

aliases. However, HeapChecker extracts each type argument (String and

Integer) and assigns it to the field that corresponds to the type parameter
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taking the argument. Therefore, HeapChecker assigns java.lang.String

to t.elem1, and java.lang.Integer to t.elem2. This approach prevents the

symbolic execution engine from forking an imprecise path where t.elem1 and

t.elem2 are aliases.

Algorithm 2 Finds possible aliases for an object of a parameterized type.

Input:
1: t: a parameterized type Type < arg1, . . . , argn >, with type definition

Type < T1, . . . , Tn >.
2: H: the set of objects allocated on the heap.

Output: S: a set of objects with parameterized types that are subtypes of t.
3: procedure GetPossibleAliases(t,H)
4: targs ← getTypeInvocationArgs(t) . < arg1, . . . , argn >
5: tparams ← getTypeDefinitionParams(t) . < T1, . . . , Tn >
6: S ← ∅
7: for object ∈ H do
8: t′ ← getType(object) . Type′ < arg′1, .., arg

′
m >

9: t′args ← getTypeInvocationArgs(t′) . < arg′1, . . . , arg
′
m >

10: t′params ← getTypeDefinitionParams(t′) . < T ′
1, . . . , T

′
m >

11: if t′ extends t then
12: t′result ← tparams

13: for i← 1,m do
14: t′result ← t′result.replace(t

′
params[i], t

′
args[i])

15: end for
16: if t′result = targs then
17: S ← S ∪ {object}
18: end if
19: end if
20: end for
21: return S
22: end procedure

Algorithm 2 details the algorithm for finding possible aliases for an object

with a parameterized type. As an input, the algorithm takes a parameterized

type t that has the form Type < arg1, . . . , argn >, and the set H of objects

allocated on the heap. The type t is an instantiation of the generic type

definition Type < T1, . . . , Tn >. The algorithm’s output is the set of all objects

with types that are subtypes of t. First, the algorithm parses the type t to

extract the type arguments (arg1, . . . , argn) (Line 4), and the type definition to

extract the type parameters (T1, . . . , tn) (Line 5). Then, the algorithm iterates
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over all objects with parameterized types in the heap for the current execution

path. For each object, the algorithm parses its type and type definition for

arguments (arg′1, . . . , arg
′
m) (Line 9) and parameters (T ′

1, . . . , T
′
m) (Line 10).

Then it checks if the object’s type extends t (Line 11). If yes, the algorithm

then obtains the object’s parameterized supertype. The algorithm obtains the

supertype (t′result) by replacing in the type parameter sequence T1, . . . , Tn each

type parameter T ′
i with its corresponding argument arg′i (Line 14). If the

resulting supertype is t, the algorithm adds the object to the possible aliases

(Line 17). This is because in Java, a parameterized type t is a subtype of a

parameterized type t′ if and only if the generic type definition of t extends the

generic type definition of t′, and both types have the same type argument for

each common type parameter [18]. The algorithm terminates when it finishes

iteration over all objects on the heap and returns the set of possible aliases.
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Chapter 5

Implementation

This chapter provides an overview of the implementation of HeapChecker

and how it extends and integrates with Java PathFinder (jpf-core) [19], [34] and

Symbolic PathFinder (jpf-symbc) [25], [32]. HeapChecker consists of three

major subsystems: SymbolicVerifier, a modified version of jpf-symbc, and jpf-

core. Figure 5.1 shows these subsystems and their major constituent classes.

Each of the following sections detail the major classes of each subsystem. Since

both JPF and SPF contain a substantial number of classes, we only include

classes that are relevant to the production of symbolic summaries, and to the

novel functionality that HeapChecker provides.

5.1 SymbolicVerifier

SymbolicVerifier contains the entry point of the system and is responsible for

receiving the input, preprocessing and compiling the program files containing

the methods to be checked, configuring and starting SPF and JPF, collecting

the summaries, composing the equivalence verification condition, and checking

the validity of the verification condition.

The main classes under SymbolicVerifier are:

• MethodsEquivalenceChecker. This is the class that receives the input

of the system. The input consists of the paths to the Java program

files containing the methods to be checked, and the name of the method.

MethodsEquivalenceChecker instantiates two instances of MethodSummarizer,

one for each method. MethodsEquivalenceChecker calls the method
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summarize on each instance to obtain the summaries of the two meth-

ods. Afterwards, MethodsEquivalenceChecker extracts all the trans-

formed fields from both summaries for all symbolic paths’ summaries.

Then, for each symbolic path summary, it invokes the method completeTransformations,

to add to summary the identity expressions, as described in Equation (4.4).

After that, MethodsEquivalenceChecker constructs the equivalence ver-

ification condition in Equation (3.9). Finally, it checks the validity of

verification condition, using the SMT interface provided by SPF.

• MethodSummarizer. This class receives a path to a Java program file and

a name of a method in the file to be checked. If multiple methods with

the same name exist, it chooses the first method declared in the file.

MethodSummarizer pre-processes the file by adding a wrapper method

that instantiates an object and calls the target method, if it is an in-

stance methods. This step is necessary because SPF requires having a

main or entry method that invokes the target method. MethodSummarizer

relies on the Spoon library [26] to perform these transformations on the

Java program file. After pre-processing, MethodSummarizer invokes the

Java compiler to compile the Java file to bytecode class file. Following

this, MethodSummarizer configures and starts JPF. JPF configurations in-

clude setting the target class and method, specifying search strategy and

search depth, and decision procedure. Finally, MethodSummarizer regis-

ters CustomSymbolicListener as a listener and starts JPF. After JPF

terminates, MethodSummarizer retrieves the summaries from the listener,

returns the generated symbolic summary and terminates.

5.2 Java PathFinder (jpf-core)

The JPF framework handles the search process and the execution of the

method under check. JPF provides extensible interfaces and classes, allow-

ing third-party software to override many of JPF’s default search and execu-

tion behaviour. These interfaces and classes include JVM instructions, search

strategies, and property listeners. JPF consists of numerous classes. However,
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in this section, we focus on a small subset. Specifically, some of the classes

that interact with SPF and SymbolicVerifier:

• JPF. This class is JPF’s main class and is the entry point through which

SymbolicVerifier starts JPF. JPF receives configurations detailing the sys-

tem under test, search strategy, listeners, virtual machine type, instruc-

tion factory, and many other configurations. This class initializes JPF

virtual machine and starts the search mechanism. It also loads the main

class file of the system under test and prepares the class by adding its

instructions in accordance to the configured instruction factory.

• Search. This abstract class provides methods’ declarations that governs

how JPF explores the search space of the system under check. One con-

crete class that extends Search is DFSearch, which implements a depth-

first search strategy. The basic methods that Search provides are search,

forward, and backtrack. Both forward and backtrack instructs the VM

to move to the next state or backtrack to a previous one, while the search

method controls the overall search strategy.

• VM. This abstract class represents the virtual machine. The class pro-

vides forward and backtrack methods that move the execution one step

forward or backwards. The VM calls methods of registered listeners dur-

ing various stages of the execution of the program under test. One such

listener is PropertyListenerAdapter, which provides methods that JPF

VM calls each before or after a particular event during the execution

of the program under test. Such events include instruction execution,

property violation, class loading, and thread termination.

• MethodInfo. This class, and other similar ones such as ClassInfo, con-

tains information about the method under execution. Such info include

the sequence of instructions in the method and its arguments. JPF VM

builds the sequence of instructions in MethodInfo according to the con-

figured instruction factory.
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5.3 Symbolic PathFinder (jpf-symbc)

SPF extends JPF to provide symbolic execution capability. SPF provides

symbolic implementations for JVM instructions and property listeners for the

collection of symbolic summaries and exceptions detection. We modify existing

SPF classes to support handling parameterized types during lazy initialization

and we add new classes to support inclusion of writes to fields in the summaries

and representation of dynamic data structures.

The sets of classes that SPF provides include:

• SymbolicInstructionFactory. Provides a lookup table for JPF to access

SPF’s version of the JVM instructions.

• Symbolic implementations of instructions: SPF provides a set of classes

that implement a number of the JVM instructions. These include branch-

ing instructions, arithmetic instructions, and method invocation instruc-

tions. Of particular importance to HeapChecker are the instructions

ALOAD, GETFIELD, and GETSTATIC. ALOAD loads a reference from a local

variable on the stack frame to the operand stack. Local variables in

the JVM stack frame corresponds to the current method’s parameters.

Therefore, ALOAD loads a method’s parameters on the operand stack.

GETFIELD loads an instance field from an object onto the operand stack,

while GETSTATIC loads a static field.

If one of the three instructions loads a field or parameter that is both

symbolic and of a non-primitive type, then it initializes the field to

one of the three options of Lazy Initialization. These instructions call

SymbolicInputHeap.getNodesOfType() to retrieve previously initialized

symbols of the same type as the field or parameter currently being ini-

tialized. We have modified SymbolicInputHeap.getNodesOfType() to ac-

count for parameterized types by implementing GetPossibleAliases

detailed in Algorithm 2. Whenever SPF creates a new distinct symbol for

the field, each of the three instructions invokes Helper.addNewHeapNode(),

which allocates an object on the heap, and initializes each field of the
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symbolic field or parameter to symbolic values. Similar to SymbolicInputHeap.getNodesOfType(),

we modify Helper.addNewHeapNode() to account for fields of parameter-

ized type, allowing for complete initialization of the fields of the symbolic

field or parameter.

• ProblemGeneral. This is an abstract class that provides an interface to

satisfiability solvers, while abstracting the API differences between the

solvers. SPF provides a number of concrete subclasses of ProblemGeneral

that are specific for particular solvers such as Z3 [11]. SPF uses meth-

ods this class provides to check for the satisfiability of paths conditions,

while SymbolicVerifier uses it to check for the validity of the equivalence

verification condition.

Additionally, we have added the following classes to SPF:

• CustomSymbolicListener. SPF provides a class that extends PropertyListenerAdapter

called SymbolicListener. It collects the path conditions and return

transformations of the execution paths of the method under check. The

class CustomSymbolicListener is a modified version of SymbolicListener

that collects, in addition to the return transformations, fields transfor-

mations and adds representations of data structure objects assigned to

field in transformations.

Two of the fields that CustomSymbolicListener have are: methodsSymbolicSummaries,

which is a map that stores the symbolic summaries of the methods under

check, and transformedSymFields which is a list of symbolic fields that

the method under check has written to.

The methods of CustomSymbolicListener that are relevant to the col-

lection of fields and objects transformations are executeInstruction

and instructionExecuted. The JPF Virtual Machine (VM) calls the

executeInstruction methods of the registered listeners just prior to the

execution of the current instruction.

The method executeInstruction in CustomSymbolicListener checks if

the current instruction is the first instruction in the current execution
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path to write to a symbolic field. These instructions are PUTFIELD and

PUTSTATIC. If that is the case, executeInstruction instantiates an object

of type TransformedSymField and stores the field information and infor-

mation that identifies the execution path that wrote to the field in that

object. It then adds the instantiated object to the list transformedSymFields.

The JPF VM calls the method instructionExecuted after execution of

the current instruction. CustomSymbolicListener’s implementation of

instructionExecuted is responsible for the construction of the symbolic

summaries of the execution paths and method under check. The method

instructionExecuted checks if the last instruction executed was a return

instruction. If so, it adds the return transformation, then iterates over

transformedSymFields and constructs the transformations of the fields

that the current execution path has written to. The method then con-

structs the path summary and adds it to method’s summary.

• TransformedSymField. This class represents a symbolic field that an ex-

ecution path has written to. The class has fields that specify the trans-

formed field’s symbol, type, and a reference to the owner object of the

field. TransformedSymField also stores information that identifies the ex-

ecution path that has written to the field. The class includes a method

getTransformationConstraint that constructs the transformation ex-

pression specific to the field. CustomSymbolicListener.instructionExecuted()

calls this method when it is iterating over the transformed fields and con-

structing the path’s summary. TransformedSymField also provides the

method getConcreteObjectFieldsTransformations() that adds trans-

formations of dynamic data structures. It implements EncodeTrans-

forms specified in Algorithm 1. The method getTransformationConstraint()

calls getConcreteObjectFieldsTransformations() whenever the trans-

formed field is assigned a concrete (non-symbolic) reference to an object

on the heap.

• SymbolicPathSummary. This class represents the symbolic summary of

an execution path. A SymbolicPathSummary object stores the path con-
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dition and transformations of an execution path of the method under

check. The class provides a method completeTransformations() that

adds the identity expressions for the unchanged fields as described in

Equation (4.4).

• SymbolicMethodSummary. A SymbolicMethodSummary object stores the

symbolic summary of the method under check in the form of a list of

SymbolicPathSummary objects.
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Chapter 6

Evaluation

The goal of this chapter is to provide an assessment of HeapChecker’s per-

formance in terms of correctness and efficiency when checking heap-modifying

programs.

Prior equivalence checking tools have primarily focused on perfecting meth-

ods for abstraction and refinement that accomplish a complete and precise

analysis. The focus of HeapChecker, however, is to allow for the analysis

of programs that operate on the heap. Specifically, programs that write or

modify fields and parameters, instantiate objects on the heap, and receive in-

put of parameterized type. HeapChecker intersects with previous checkers

in providing equivalence check for programs with basic arithmetic operations,

looping, and conditionals. In order to assess HeapChecker’s efficiency on

heap-modifying programs, we first evaluate HeapChecker’s performance on

this area of intersection with previous tools. This provides us with a base-

line which we can then use to assess HeapChecker’s performance on heap-

modifying benchmarks. We summarize these goals in the following research

questions:

• RQ1: How does the performance of HeapChecker compare to previ-

ous equivalence checkers on programs with basic arithmetic operations,

loops, and conditionals?

• RQ2: Does HeapChecker correctly check programs with writes to

fields, dynamic allocation of objects, and parameterized types?
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• RQ3: How efficient is HeapChecker in checking programs with writes

to fields, dynamic allocation of objects, and parameterized types?

6.1 Experimental Setup

To address RQ1, we evaluated HeapChecker on the benchmarks that Trostanet-

ski et al. selected to evaluate their tool, ModDiff [33]. We refer to these

benchmarks as the ModDiff benchmarks. Badihi et al. provide the imple-

mentation of their tool, ARDiff, along with two additional tools DSE [27] and

IMP-S [3]. The implementations of the three tools are available online [2].

To provide a fair comparison, we execute these implementations along with

HeapChecker on the ModDiff benchmarks using the same machine.

Given that the programs in the existing benchmarks do not contain the

features HeapChecker focuses on, we created a new set of benchmarks To

answer RQ2 and RQ3. We refer to these as HeapChecker benchmarks.

We ran all experiments on an x86 64 Ubuntu 18.04.5 LTS machine with

four AMD EPYC 7351 16-Core processors and 472GB of memory. We built

HeapChecker using OpenJDK 1.8.0 282. We compiled all subjects and ran

all tools using Oracle JDK 1.8.0 201.

6.2 RQ1: How does the performance of HeapChecker

compare to previous checkers on basic pro-

grams?

The ModDiff benchmarks comprise 28 benchmarks. Each benchmark contains

two versions of a method. Of those, 16 pairs are equivalent and 12 pairs are

non-equivalent. Figure 6.1 shows samples of these benchmarks.

We execute each tool on each benchmark 10 times. Figures 6.2, 6.3, 6.4,

and 6.5 depict boxplots of the execution times of HeapChecker, ARDiff,

DSE, and IMP-S on the equivalent pairs of the ModDiff benchmarks. Figures

6.6, 6.7, 6.8, and 6.9 depict the execution times of HeapChecker, ARDiff,

DSE, and IMP-S on the non-equivalent pairs of the ModDiff benchmarks. Each
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int snippet(int x) {

if ((x >= 5) && (x < 7)) {

int c = 0;

for (int i = 1; i <= x; ++i)

c += 5;

return c;

}

return 0;

}

int snippet(int x) {

if ((x >= 5) && (x < 7)) {

int c = 0;

for (int i = 1; i <= 5; ++i)

c += x;

return c;

}

return 0;

}

Two equivalent versions of the LoopMult5 benchmark.

int snippet(int x) {

if ((x >= 9) && (x < 12)) {

int c = 0;

if (x < 0) {

for (int i = 1; i <= 10; ++i)

c += x;

}

return c;

}

return 0;

}

int snippet(int x) {

if ((x >= 9) && (x < 12)) {

int c = 0;

if (x < 0) {

for (int i = 1; i <= x; ++i)

c += 10;

}

return c;

}

return 0;

}

Two equivalent versions of the LoopUnreach10 benchmark.

Figure 6.1: ModDiff benchmarks samples.

boxplot depicts the execution times of a tool on a benchmark.

Figure 6.2 shows that for equivalent pairs, except LoopMult2 and UnchLoop,

HeapChecker’s execution times range from 2.1 to 2.4 seconds. For LoopMult2

HeapChecker’s execution times range is between 3.0 and 3.6 seconds, while

for UnchLoop it is 2.8 and 3.2 seconds. For ARDiff, execution times on equiv-

alent pairs (Figure 6.3) vary from a minimum of 3 seconds for LoopSub and

Sub benchmarks, up to 13 seconds for the Comp benchmark. ARDiff’s times

for LoopMult2 range between 7.7 and 8 seconds. For UnchLoop, ARDiff’s

execution times range between 6.2 and 6.4 seconds. DSE’s execution times on

equivalent pairs (Figure 6.4) range from 3 seconds for the Sub benchmark up

to 8.4 seconds for the LoopMult20 benchmark. For LoopMult2, DSE’s times

range from 4.7 to 5.0 seconds, while for UnchLoop DSE’s execution times

range from 3.0 to 3.2 seconds. IMP-S’ execution times on equivalent pairs

(Figure 6.5) vary from a minimum of 3 seconds for the Sub benchmark and

a maximum of 8 seconds for the LoopMult20 benchmark. The LoopMult2
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Figure 6.2: HeapChecker’s execution times on equivalent pairs of ModDiff
benchmarks.

benchmark ranges from 4.7 to 4.9 seconds, while the UnchLoop ranges from

4.7 to 5 seconds.

For the equivalent pair of the UnchLoop benchmark, HeapChecker’s ex-

ecution times (2.8-3.2) are similar to DSE’s (3.0-3.2), and shorter the other

tools. For the rest of the equivalent pairs benchmarks, HeapChecker’s ex-

ecution times are shorter than the execution times of the other tools. For

the non-equivalent pairs (Figures 6.6, 6.7, 6.8, and 6.9), HeapChecker’s

execution times are shorter than the other tools.

The shorter execution times of HeapChecker may be due to the abstrac-

tion employed by DSE, the abstraction-refinement iterations ARDiff performs,

and the static analysis in IMP-S. Since HeapChecker does not implement

any abstraction, refinement, or prior static analysis, it exhibits shorter exe-

cution times in benchmarks that are sufficiently simple as in the case with

ModDiff benchmarks. The abstraction and static analysis techniques pay off

in programs with complex operations and constraints where abstracting parts

containing such operations does not affect the equivalence checking decision.

HeapChecker, however, does not address this aspect.

HeapChecker’s execution times range from 2.1 to 3.1 and are shorter than
other tools times (DSE, ARDiff, and IMP-S) on most of the ModDiff bench-
marks.
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Figure 6.3: ARDiff’s execution times on equivalent pairs of ModDiff bench-
marks.
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Figure 6.4: DSE’s execution times on equivalent pairs of ModDiff benchmarks.
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Figure 6.5: IMP-S’s execution times on equivalent pairs of ModDiff bench-
marks.
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Figure 6.6: HeapChecker’s execution times on non-equivalent pairs of Mod-
Diff benchmarks.
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Figure 6.7: ARDiff’s execution times on non-equivalent pairs of ModDiff
benchmarks.
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Figure 6.8: DSE’s execution times on non-equivalent pairs of ModDiff bench-
marks.
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Figure 6.9: IMP-S’s execution times on non-equivalent pairs of ModDiff bench-
marks.

6.3 RQ2: Does HeapChecker correctly check

heap programs?

6.3.1 HeapChecker Benchmarks

The HeapChecker benchmarks consist of 15 benchmarks. Each benchmark

contains two pairs of methods: one equivalent pair and one non-equivalent

pair, thus totalling 30 pairs of methods. The benchmarks exhibit the features

that we want to assess HeapChecker’s performance on: writes to fields,

dynamic objects allocation, and parameters and fields of parameterized types.

The details of these benchmarks are provided in Appendix A.

Table 6.1 shows the results of running HeapChecker on the HeapChecker

benchmarks. HeapChecker succeeds in correctly deciding the equivalence

and non-equivalence of all benchmarks, except the equivalent pair of Alias2,

shown in Figure 6.10.

The aliasing choice in lazy initialization assigns the field (or parameter)

being initialized the symbol of a previously initialized field of the same type,

that has been assigned a new object. The aliasing initialization option is

necessary for HeapChecker to explore execution paths that depends on two

fields being aliases.
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Table 6.1: Correctness results of running HeapChecker on the
HeapChecker benchmarks.

Benchmarks Equivalent Benchmarks Non-equivalent Benchmarks

Lazy 3 3

Dynamic 3 3

Generic 3 3

Alias1 3 3

Alias2 7 3

BuildList5 3 3

BuildList10 3 3

BuildList20 3 3

SetList5 3 3

SetList10 3 3

SetList20 3 3

BuildTree5 3 3

BuildTree10 3 3

SetTree1 3 3

SetTree2 3 3

149 void snippet(Tree t, int x) {

150 if (t != null) {

151 if ((t.left == t.right) && (t

.left != null))

152 t.left.content = x;

153 }

154 }

(a) Version 1: t.left is read first.

155 void snippet(Tree t, int x) {

156 if (t != null) {

157 if ((t.right == t.left) && (t

.left != null))

158 t.left.content = x;

159 }

160 }

(b) Version 2: t.right is read first.

Figure 6.10: Equivalent pair of Alias2 benchmark.
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For execution paths that HeapChecker takes only when aliasing between

two fields exists (as in Alias2 in Figure 6.10), the resulting transformations re-

flect this aliasing. Specifically, the transformation encodes either of the two

aliased symbols, but not both of them. A consequence of this is that for two

execution paths that are equivalent, their resulting summaries may not reflect

that because the transformations for one summary contain only the transfor-

mations of one field, while the other summary contains the transformations of

the other field that aliases with the first one. The snippet methods of Alias2 in

Figure 6.10 are identical, save for the change in the order of the operands of the

comparison expressions in Line 151 and Line 157 in Figure 6.10. This change

translates to change in the order of how the two parameters are accessed. In

the first version, in Line 151, t.left is accessed first and its initialization op-

tions are either null or a new object, since no other object of the other type

has been accessed. After t.right is accessed, it is initialization options are

null, the same object assigned to t.left (since it has already been initialized),

or a new object.

The path summary corresponding to the aliasing case for version 1 is:

t.right = t.left && t.left.content_out = x

The reverse happens in the second version, where codet.right is accessed

first, resulting in the following summary for version 2:

t.left = t.right && t.right.content_out = x

The resulting summaries are non-equivalent. For equivalence to work in

this case, additional transformations need to be added for each aliasing case:

t.right = t.left && t.left.content_out = x && t.right.content_out = x

t.left = t.right && t.right.content_out = x && t.left.content_out = x

HeapChecker does not currently add transformations for aliasing possi-

bilities, so it fails to correctly decide the equivalence of the pair of Alias2.

A potential remedy to this problem, is for each aliasing expression (e.g.,

t.right = t.left) that HeapChecker encounters, HeapChecker checks

if there is a transformation involving any fields of the aliasing symbols (e.g.,

t.left.content out = x). If yes, then HeapChecker adds a corresponding

transformation for the field of the other symbol (e.g., t.right.content out =
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Figure 6.11: HeapChecker’s execution times on equivalent pairs of
HeapChecker benchmarks.

x).

HeapChecker correctly checks programs with writes to fields, dynamic ob-
jects allocation, and parameters and fields of parameterized types, with no
explicit alias checks. HeapChecker, however, fails to correctly check pro-
grams with explicit alias checks.

6.4 RQ3: How efficient is HeapChecker in check-

ing programs with writes to fields, dynamic

allocation of objects, and parameterized

types?

Figure 6.11, Figure 6.12, and Figure 6.13 show the execution times results for

running HeapChecker on the HeapChecker benchmarks. To obtain those

results, we ran HeapChecker on each benchmark 10 times, with the aliasing

option for lazy initialization disabled. For most benchmarks, the execution

time remains below 3 seconds (Figure 6.11 and Figure 6.12), similar to the

range of the execution times on the ModDiff benchmarks (Figure 6.2 and

Figure 6.6). The notable exceptions to this are benchmarks BuildTree10, and

SetTree2 (Figure 6.13).

For the equivalent pair of BuildTree10 (Figure 6.14), the execution time

for most runs ranges between 30 and 40 seconds, and exceeds 120 seconds in
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Figure 6.12: HeapChecker’s execution times on non-equivalent pairs of
HeapChecker benchmarks.

one instance (Figure 6.13a). The reason for this is that BuildTree10 is an

exponential-time method with an upper-bound of 10, resulting in a very large

number of execution paths. Similarly, we notice large execution times (12-

15 seconds) for the non-equivalent pair of BuildTree10 (Figure 6.15), but less

than the equivalent pair (Figure 6.13b). The reason for this is that version

1 of the snippet method contains two recursive calls (Line 192), resulting in

an exponential time complexity, while for version 2, the method contains a

single recursive call (Line 204), thus resulting in linear complexity and a small

execution time, and also being the reason for the non-equivalence between the

two versions.

Despite having only an upper bound of 2, SetTree2 (Figure 6.16) execution

times (Figure 6.13c) are higher than BuildTree5, despite having a smaller

upper bound. The reason for this is the execution paths that lazy initialization

generates in the case of SetTree2. Since the method snippet of SetTree2 takes

as an input a reference type parameter, HeapChecker explores two possible

execution paths (not counting aliasing possibilities) for each field accessed

for the first time. Since two new fields get accessed (t.left and t.right in

Line 214 and Line 215) in each call, then 4 new execution paths result from

each call, to account for all initialization possibilities of the accessed fields.
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Figure 6.13: HeapChecker’s execution times on the BuildTree10 and Set-
Tree2 benchmark.
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165 public Tree snippet(int x) {

166 if ((x >= (-1)) && (x < 9)) {

167 if (x <= 0) {

168 return new Tree(x, null,

null);

169 } else {

170 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

171 }

172 }

173 return null;

174 }

175 public Tree snippet(int x) {

176 if ((x >= (-1)) && (x < 9)) {

177 if (x == 0) {

178 return new Tree(0, null,

null);

179 } else if (x <= 0) {

180 return new Tree(x, null,

null);

181 } else {

182 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

183 }

184 }

185 return null;

186 }

Figure 6.14: Equivalent pair of BuildTree10 benchmark.

187 Tree snippet(int x) {

188 if ((x >= (-1)) && (x < 9)) {

189 if (x <= 0) {

190 return new Tree(x, null,

null);

191 } else {

192 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

193 }

194 }

195 return null;

196 }

(a) Version 1: Two recursive calls.

197 Tree snippet(int x) {

198 if ((x >= (-1)) && (x < 9)) {

199 if (x == 0) {

200 return new Tree(0, null,

null);

201 } else if (x <= 0) {

202 return new Tree(x, null,

null);

203 } else {

204 Tree t = snippet(x - 1);

205 return new Tree(x, t, t);

206 }

207 }

208 return null;

209 }

(b) Version 2: A single recursive call.

Figure 6.15: Non-equivalent pair of BuildTree10 benchmark.

210 void snippet(Tree t, int x) {

211 if ((x >= 0) && (x < 3)) {

212 if (t != null) {

213 t.content = x;

214 snippet(t.left, x - 1);

215 snippet(t.right, x - 1);

216 }

217 }

218 }

220 void snippet(Tree t, int x) {

221 if ((x >= 0) && (x < 3)) {

222 if (t != null) {

223 snippet(t.right, x - 1);

224 snippet(t.left, x - 1);

225 t.content = x;

226 }

227 }

228 }

Figure 6.16: Equivalent pair of SetTree2 benchmark.
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This results in the number of execution paths growing rapidly with higher

upper bounds. The BuildTree benchmarks do not take reference type input,

so they do not exhibit similarly large execution times.

HeapChecker efficiently checks programs with dynamic allocation of ob-
jects, parameterized types, and non-recursive programs that read and write to
reference type input. HeapChecker, however, is inefficient when checking
recursive programs that read and write to reference type input.
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Chapter 7

Conclusion

This thesis details the design, implementation, and evaluation of HeapChecker.

HeapChecker is an equivalence checker for Java programs that contain heap-

related features: writing or modifying instance fields and parameters, allo-

cating objects on the heap, and dealing with input of paramaterized types.

HeapChecker builds on and leverages the capabilities of the symbolic ex-

ecutor SPF. Specifically, it relies on SPF to explore the execution paths of

the programs under check that result from branching statements and the ini-

tialization options of reference type input. HeapChecker builds symbolic

summaries during the symbolic execution and verifies whether the summaries

are equivalent or not using a satisfiability solver such as Z3.

The evaluation shows that HeapChecker is capable of correctly check-

ing the equivalence of programs containing heap-related features, with the

exception of programs containing explicit alias checks. The performance of

HeapChecker remains within similar ranges to previous tools, with the ex-

ception of cases that involve recursive methods taking reference type input.

The following are ideas for improving HeapChecker:

• Including transformations for fields of aliasing references to correctly

check programs with execution paths that depend on alias checks.

• Adding support for methods symbolic arrays, based on SPF support for

symbolic arrays [13].

• Including summaries for exceptional execution paths.
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• Integrating HeapChecker’s approach to heap-related features with ab-

straction and refinement techniques to help alleviate HeapChecker’s

scalability issues and to deal with programs containing complex con-

straints.
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symbolic pathfinder,” SIGSOFT Softw. Eng. Notes, pp. 1–5, 2017. doi:
10.1145/3011286.3011296.

[14] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated ran-
dom testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05,
2005, pp. 213–223. doi: 10.1145/1065010.1065036.

[15] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “Automated whitebox
fuzz testing.,” in NDSS, vol. 8, 2008, pp. 151–166.

[16] B. Godlin and O. Strichman, “Inference rules for proving the equivalence
of recursive procedures,” Acta Informatica, vol. 45, no. 6, pp. 403–439,
2008.

[17] ——, “Regression verification,” in Proceedings of the 46th Annual Design
Automation Conference, 2009, pp. 466–471. doi: 10.1145/1629911.

1630034.

[18] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. (2015). The
java R© language specification, [Online]. Available: https://docs.oracle.
com/javase/specs/jls/se8/html/jls-4.html#jls-4.10.2 (visited
on 03/31/2021).

[19] (). Java pathfinder, [Online]. Available: https://github.com/javapathfinder/
jpf-core/wiki (visited on 03/31/2021).
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Appendix A

HeapChecker Benchmarks

The HeapChecker benchmarks consist of 15 benchmarks. Each benchmark

contains two pairs of methods: one equivalent pair and one non-equivalent

pair, totalling 30 pairs of methods. The benchmarks can be divided into

two categories: constant-time methods and iterative/recursive methods. The

benchmarks methods contain writes to fields and parameters, dynamic objects

allocation, and reads and writes to parameters and fields of parameterized

types. The details of the benchmarks are as follows, where the target method

in each benchmark is snippet:

• Lazy (Figure A.1 and Figure A.2): reads a fixed size linked list of integers

and sets all its elements to the same value.

• Dynamic (Figure A.3 and Figure A.4): reads an integer and stores it in

a fixed size dynamically allocated tree.

• Generic (Figure A.5 and Figure A.6): Same as Lazy, but the type of the

linked list is an invocation of a generic type.

• Alias1 (Figure A.7 and Figure A.8): reads a binary tree, assigns its right

node to its left node, then assigns an integer to the left or right node.

• Alias2 (Figure A.9 and Figure A.10): reads a binary tree and then assigns

an integer to its left node only if both left and right reference the same

object.
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229 void snippet(LList list, int x)

{

230 for (int i = 0; i < 10; i++) {

231 if (list == null)

232 return;

233 list.content = x;

234 list = list.next;

235 }

236 }

237 void snippet(LList list, int x) {

238 aux(list, x, 0);

239 }

240

241 void aux(LList list, int x, int length)

{

242 if ((list == null) || (length == 10))

{

243 return;

244 } else {

245 list.content = x;

246 aux(list.next, x, length + 1);

247 }

248 }

Figure A.1: Equivalent pair of Lazy benchmark.

• BuildList5, BuildList10 (Figure A.11 and Figure A.12), and BuildList20:

dynamically builds a linked list of variable size, with upper length bounds

of 5, 10, and 20.

• SetList5 (Figure A.13 and Figure A.14), SetList10, and SetList20: writes

to the element of a linked list of variable size, with upper length bounds

of 5, 10, and 20.

• BuildTree5 (Figure A.15 and Figure A.16) and BuildTree10: dynamically

builds a binary tree of variable size, with upper length bounds of 5 and

10.

• SetTree1 and SetTree2 (Figure A.17 and Figure A.18): writes to the

element of a binary of variable size, with upper height bounds of 1 and

2.
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249 void snippet(LList list, int x)

{

250 for (int i = 0; i < 10; i++) {

251 if (list == null)

252 return;

253 list.content = x;

254 list = list.next;

255 }

256 }

257 void snippet(LList list, int x) {

258 aux(list, x, 0);

259 }

260

261 void aux(LList list, int x, int length)

{

262 if ((list == null) || (length == 10))

{

263 return;

264 } else {

265 list.content = x;

266 aux(list, x, length + 1);

267 }

268 }

Figure A.2: Non-equivalent pair of Lazy benchmark.

269 Tree snippet(int x) {

270 if (x == 0) {

271 return new Tree(0, null, null

);

272 } else if (x < 0) {

273 return new Tree(x, null, null

);

274 } else {

275 Tree t1 = new Tree(x - 2,

null, null);

276 Tree t2 = new Tree(x - 1,

null, null);

277 return new Tree(x, t2, t1);

278 }

279 }

280 Tree snippet(int x) {

281 if (x <= 0) {

282 return new Tree(x, null, null

);

283 } else {

284 Tree t1 = new Tree(x - 1,

null, null);

285 Tree t2 = new Tree(x - 2,

null, null);

286 return new Tree(x, t1, t2);

287 }

288 }

Figure A.3: Equivalent pair of Dynamic benchmark.
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289 Tree snippet(int x) {

290 if (x == 0) {

291 return new Tree(0, null, null

);

292 } else if (x < 0) {

293 return new Tree(x, null, null

);

294 } else {

295 Tree t1 = new Tree(x - 2,

null, null);

296 Tree t2 = new Tree(x - 1,

null, null);

297 return new Tree(x, t2, t1);

298 }

299 }

300 Tree snippet(int x) {

301 if (x == 0) {

302 return new Tree(0, null, null

);

303 } else if (x < 0) {

304 return new Tree(x, null, null

);

305 } else {

306 Tree t1 = new Tree(x - 1,

null, null);

307 Tree t2 = new Tree(x - 1,

null, null);

308 return new Tree(x, t1, t1);

309 }

310 }

Figure A.4: Non-equivalent pair of Dynamic benchmark.

311 void snippet(LList<Integer> list

, int x) {

312 for (int i = 0; i < 10; i++) {

313 if (list == null)

314 return;

315 list.content = x;

316 list = list.next;

317 }

318 }

319 void snippet(LList<Integer> list

, int x) {

320 aux(list, x, 0);

321 }

322

323 public static void aux(LList<

Integer> list, int x, int

length) {

324 if ((list == null) || (length

== 10)) {

325 return;

326 } else {

327 list.content = x;

328 aux(list.next, x, length + 1)

;

329 }

330 }

Figure A.5: Equivalent pair of Generic benchmark.
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331 void snippet(LList<Integer> list

, int x) {

332 for (int i = 0; i < 10; i++) {

333 if (list == null)

334 return;

335 list.content = x;

336 list = list.next;

337 }

338 }

339 void snippet(LList<Integer> list

, int x) {

340 aux(list, x, 0);

341 }

342

343 public static void aux(LList<

Integer> list, int x, int

length) {

344 if ((list == null) || (length

== 10)) {

345 return;

346 } else {

347 list.content = x;

348 aux(list, x, length + 1);

349 }

350 }

Figure A.6: Non-equivalent pair of Generic benchmark.

351 void snippet(Tree t, int x) {

352 if (t != null) {

353 t.left = t.right;

354 if (t.left != null)

355 t.left.content = x;

356 }

357 }

358 void snippet(Tree t, int x) {

359 if (t != null) {

360 t.left = t.right;

361 if (t.right != null)

362 t.right.content = x;

363 }

364 }

Figure A.7: Equivalent pair of Alias1 benchmark.

365 void snippet(Tree t, int x) {

366 if (t != null) {

367 t.left = t.right;

368 if (t.left != null)

369 t.left.content = x;

370 }

371 }

372 void snippet(Tree t, int x) {

373 if (t != null) {

374 t.right = t.left;

375 if (t.right != null)

376 t.right.content = x;

377 }

378 }

Figure A.8: Non-equivalent pair of Alias1 benchmark.

379 void snippet(Tree t, int x) {

380 if (t != null) {

381 if ((t.left == t.right) && (t

.left != null))

382 t.left.content = x;

383 }

384 }

385 void snippet(Tree t, int x) {

386 if (t != null) {

387 if ((t.right == t.left) && (t

.left != null))

388 t.left.content = x;

389 }

390 }

Figure A.9: Equivalent pair of Alias2 benchmark.
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391 void snippet(Tree t, int x) {

392 if (t != null) {

393 if ((t.left == t.right) && (t

.left != null))

394 t.left.content = x;

395 }

396 }

397 void snippet(Tree t, int x) {

398 if (t != null) {

399 if ((t.right == t.left) && (t

.left != null))

400 return;

401 else if (t.left != null)

402 t.left.content = x;

403 }

404 }

Figure A.10: Non-equivalent pair of Alias2 benchmark.

405 LList snippet(int num, int x) {

406 if ((x > 0) && (x < 11)) {

407 LList head = new LList(num,

null);

408 LList list = head;

409 for (int i = 1; i < x; i++) {

410 list.next = new LList(num,

null);

411 list = list.next;

412 }

413 return head;

414 }

415 return null;

416 }

417 LList snippet(int num, int x) {

418 if ((x > 0) && (x < 11)) {

419 LList nextNode = new LList(num, null

);

420 LList head = nextNode;

421 for (int i = x - 1; i > 0; i--) {

422 head = new LList(num, nextNode);

423 nextNode = head;

424 }

425 return head;

426 }

427 return null;

428 }

Figure A.11: Equivalent pair of BuildList10 benchmark.

429 LList snippet(int num, int x) {

430 if ((x > 0) && (x < 11)) {

431 LList head = new LList(num,

null);

432 LList list = head;

433 for (int i = 1; i < x; i++) {

434 list.next = new LList(num,

null);

435 list = list.next;

436 }

437 return head;

438 }

439 return null;

440 }

441 LList snippet(int num, int x) {

442 if ((x > 0) && (x < 11)) {

443 LList nextNode = new LList(num, null

);

444 LList head = nextNode;

445 for (int i = x; i > 0; i--) {

446 head = new LList(num, nextNode);

447 nextNode = head;

448 }

449 return head;

450 }

451 return null;

452 }

Figure A.12: Non-equivalent pair of BuildList10 benchmark.
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453 void snippet(LList list, int num

, int x) {

454 if ((x >= 0) && (x < 6)) {

455 for (int i = 0; i < x; i++) {

456 if (list == null) return;

457 list.content = num;

458 list = list.next;

459 }

460 }

461 }

462 void snippet(LList list, int num

, int x) {

463 if ((x >= 0) && (x < 6)) {

464 if (list != null) {

465 for (int i = 0; i < x; i++)

{

466 LList elem = list.get(i);

467 if (elem == null) return;

468 elem.content = num;

469 }

470 }

471 }

472 }

473

474 public LList get(int x) {

475 LList current = this;

476 for (int i = 0; i < x; i++) {

477 if (current == null) return

null;

478 current = current.next;

479 }

480 return current;

481 }

Figure A.13: Equivalent pair of SetList5 benchmark.

482 void snippet(LList list, int num

, int x) {

483 if ((x >= 0) && (x < 6)) {

484 for (int i = 0; i < x; i++) {

485 if (list == null) return;

486 list.content = num;

487 list = list.next;

488 }

489 }

490 }

491 void snippet(LList list, int num

, int x) {

492 if ((x >= 0) && (x < 6)) {

493 if (list != null) {

494 for (int i = 0; i < x; i++)

{

495 LList elem = list.get(i);

496 if (elem == null) return;

497 elem.content = num;

498 }

499 }

500 }

501 }

502

503 public LList get(int x) {

504 LList current = this;

505 for (int i = 0; i <= x; i++) {

506 if (current == null) return

null;

507 current = current.next;

508 }

509 return current;

510 }

Figure A.14: Non-equivalent pair of SetList5 benchmark.
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511 public Tree snippet(int x) {

512 if ((x >= (-1)) && (x < 9)) {

513 if (x <= 0) {

514 return new Tree(x, null,

null);

515 } else {

516 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

517 }

518 }

519 return null;

520 }

521 public Tree snippet(int x) {

522 if ((x >= (-1)) && (x < 9)) {

523 if (x == 0) {

524 return new Tree(0, null,

null);

525 } else if (x <= 0) {

526 return new Tree(x, null,

null);

527 } else {

528 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

529 }

530 }

531 return null;

532 }

Figure A.15: Equivalent pair of BuildTree10 benchmark.

533 public Tree snippet(int x) {

534 if ((x >= (-1)) && (x < 9)) {

535 if (x <= 0) {

536 return new Tree(x, null,

null);

537 } else {

538 return new Tree(x, snippet(

x - 1), snippet(x - 1))

;

539 }

540 }

541 return null;

542 }

543 public Tree snippet(int x) {

544 if ((x >= (-1)) && (x < 9)) {

545 if (x == 0) {

546 return new Tree(0, null,

null);

547 } else if (x <= 0) {

548 return new Tree(x, null,

null);

549 } else {

550 Tree t = snippet(x - 1);

551 return new Tree(x, t, t);

552 }

553 }

554 return null;

555 }

Figure A.16: Non-equivalent pair of BuildTree10 benchmark.

556 void snippet(Tree t, int x) {

557 if ((x >= 0) && (x < 3)) {

558 if (t != null) {

559 t.content = x;

560 snippet(t.left, x - 1);

561 snippet(t.right, x - 1);

562 }

563 }

564 }

566 void snippet(Tree t, int x) {

567 if ((x >= 0) && (x < 3)) {

568 if (t != null) {

569 snippet(t.right, x - 1);

570 snippet(t.left, x - 1);

571 t.content = x;

572 }

573 }

574 }

Figure A.17: Equivalent pair of SetTree2 benchmark.
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575 void snippet(Tree t, int x) {

576 if ((x >= 0) && (x < 3)) {

577 if (t != null) {

578 t.content = x;

579 snippet(t.left, x - 1);

580 snippet(t.right, x - 1);

581 }

582 }

583 }

585 void snippet(Tree t, int x) {

586 if ((x >= 0) && (x < 3)) {

587 if (t != null) {

588 snippet(t.right, x - 2);

589 snippet(t.left, x - 1);

590 t.content = x;

591 }

592 }

593 }

Figure A.18: Non-equivalent pair of SetTree2 benchmark.
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