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ABSTRACT

This work is concerned with studying the validity of the factorization assumption
in two-body hadronic B-decays and investigating the importance of the nonfactoriza-
tion contribution.

The study was done first on the two processes B — K™J/v and B, — ¢.J/v, in
five different theoretical models for the formfactors, using the experimental branching
ratios and the available world averages of longitudinal polarization. Then the study
was performed using the full set of decay amplitudes for the process B — K".J/v mea-
sured by the CLEO II collaboration. The knowledge on nonfactorization so gained.
was used to study the processes B, — J/v(n,n'), Bs — J/v¢ and B — ¥(25)K".
The results showed the need for the nonfactorization contribution in order to explain
experimental data. They also suggest that the nonfactorization parameters do not
depend strongly on the light degree of freedom in such processes.

In the third part of this work, universal values were assumed for the color-singlet
(¢1) and color octet (&) nonfactorization parameters in B-decays. Two sets of color-
favored processes and one set of color-suppressed processes were used to estimate
these parameters quantitatively. It was found (by calculating the branching ratios for
a large number of Cabibbo-favored B-decays) that the values (1) = —0.07 £ 0.03
and eg(uo) = 0.13 £ 0.05 improve significantly the predictions of the factorization
model.

Finally, the NLL and penguin effects on the predictions of the factorization as-
sumption and the nonfactorization parameters €, and ¢z were calculated. It was found

that the estimated values of these two parameters in LL and in NLL are very close.
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a different value for xv. . - . . . .« . o oo
Regions in x4, — x4, space bounded by experimental data on branching

ratio (ellipses) and polarization (open pairs of curves) for the process

—52 — oJ /v assuming CDDFGN model. Each of the six graphs repre-

Regions in x4, — x4, Space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process
?‘,’ — oJ/v assuming AW model. Each of the six graphs represent a
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Regions in x4, — X 4, Space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process
Fg — oJ /v assuming ISGW model. Each of the six graphs represent
a different value for xv. . - . . . -« . .. Lo
Regions in z - y plane allowed by experimental data on polarization
for the process _Eg — oJ/v. The shaded region between the two
solid curves in each graph correspond to the factorization approxima-
tion x4, = X4, = xv = 0. The region between the dashed curves
in each graph corresponds to (a) x4, = 0.02,x4, = xv = 0, (b)
X4, = —0.03,x4, = xv =0, (¢) xv = —0.08,x4, = x4, = 0, (d)
X4, = 0.01, x4, = xv = —0.01. The dots represent predictions of the

theoretical models. . . . . . . . . . . e e e e
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6.2

6.3

Allowed region (bounded by the two curves) of &g as a function of
FPP(m?) defined by B* — K*u. The dots show the model predictions
of the formfactors; from left to right: AW, ISGW, BSW I, CDDFGN,
BSW L . . . e e e e
Branching ratios as functions of £ in each model. Horizontal lines
define the branching ratio bounds to one standard deviation. Data
from [10] for B — v K and [16] for B = v(2S)K . . ...... ...
Branching ratios as a function of £ in each model. In CDDFGN
model, 1 stands for 73 and there is no prediction for 7’. See Fig. 5.2
forlegend. . . . . . . ... ... L
The region in &; and &y, plane allowed by the latest CLEO II mea-
surments of |Ho|? (vertical bands) and |H,|? (horizontal band) for

B—uwK"inBSWIiImodel. .. ... ..................

The values of the nonfactorization parameter £ calculated for six color-
favored processes of the type b — cud. The shaded area represents the
statistical average. . . . . . . . .. .. ... L.,
The values of the nonfactorization parameter £? calculated for four
color-favored processes of the type b — cCs. The shaded area represents
the statistical average. . . . . . . . . . .. ... ... ..
The values of the nonfactorization parameter £3 calculated for four
color-suppressed processes of the type b — c¢s. The shaded area rep-

resents the statistical average. . . . . . . ... ... 0L
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6.4

(a) The regions in €;-c3 space that correspond to the amount of nonfac-
torizations estimated for €2 and £2. The two parallel regions bounded
by thin solid lines correspond to the value £ = 0.80 £ 0.06 calculated
from the color-favored processes of the type b — cttd. The regions
bounded by the dotted lines correspond to the value £2 = 0.86 + 0.14
calculated from the color-favored processes of the type b — c¢s. The
regions bounded by the dashed lines correspond to the value & =
6.6 + 2.4 calculated from the color-suppressed processes of the type
b — cCs. The two intersecting solid lines correspond to the equation
e1/es = 1/N.. (b) A magnification of the interesting region in &£;-&3
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The flavor flow diagram for Class I processes of the type b — cus.

(a) A contour plot of the value of x? in £,-¢3 space. The bullets repre-
sent minima of ¥2; (b) A magnification of the region containing minima
3 of 2. The inner closed curve represent Ax? = 1 while the outer

closed curve represent Ax2=2. . ... . ... ... .. ... ...
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Chapter 1

Introduction

In calculating the decay amplitudes for two-body hadronic decays we encounter matrix
elements of the form (f; fo|Q|i), where i is the initial state particle. f; and f; are
the final state particles and @, a product of two Dirac currents, is a four-fermion
operator. In the absence of a reliable way to evaluate these matrix elements from
basic principles, the common method involves the factorization assumption. In this
method, the matrix element (f; f2|Q|?) is written as a product of two current matrix

elements, such that
(fi flQl2) = (filT¥]7) (fal J;,|0). (1.1)

where J# and J;, are the two Dirac currents. Individual current matrix elements on
the right hand side of (1.1) are then decomposed in terms of formfactors and decay
constants. Any part of the decay amplitude that can not be written in the form of
(1.1) (nonfactorizable part) is omitted.

Our aim in this work is to study the validity of the factorization assumption in
B-decays and to investigate the importance of the nonfactorizable parts. Earlier
work [1, 2, 3] on this subject constitute the basis of our study. In particular. the
parametrization of the nonfactorizable amplitudes advocated by Kamal and Santra
in [2] is employed in a significant portion of this work.

The thesis is divided into 8 chapters including this introduction. In chapters 2



and 3 (which are introductory chapters) we present the notion of the effective Hamil-
tonian and write down the decay amplitudes in the factorization assumption for the
processes of interest. Also, we present the values of the formfactors and decay con-
stants needed to evaluate the current matrix elements.

We begin our investigation of the nonfactorization contribution by a study of
the two color-suppressed processes B — K~J/w and B, — oJ/w. The amount of
nonfactorization contributing to each of these two processes is estimated in chapter 4
using the experimental branching ratio and the available world average of longitudinal
polarization in five different theoretical models for the formfactors. In chapter 5, an
estimate of nonfactorization parameters is made using the full set of decay amplitudes
for the process B — K~J/v¥ measured by the CLEO II collaboration.

The nonfactorization contributions to the product of color-singlet and color-octet
currents are separately parametrized in chapter 6. For this parametrization. we use
the conventions of Neubert and Stech presented in [4]. The values of these parameters
are estimated using the experimental branching ratios of three sets of B-decays. This
is done by assuming universality (process independence) and equal contribution of
these parameters to the different Lorentz-scalar structures in B-decays that have two
vector mesons in the final state.

The calculations up to and including chapter 6 are performed using the leading
logarithmic values for the Wilson coefficients and omitting the contributions from
the penguin diagrams. In chapter 7, we evaluate the effects of penguin processes
and next-to-leading logarithmic contributions to Wilson coefficients. on the results of
chapter 6. Chapter 8 is devoted to an overall summary and conclusion of this work.

All the calculations in the thesis were carried out by me in consultation with Dr.
A. N. Kamal. The idea of calculating the two nonfactorization parameters (defined

by Neubert and Stech [4]) in chapter 6 was entirely mine.
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Chapter 2

The Standard Model and Effective

Hamiltonian

A few decades ago. the only known particles were electrons. protons and neutrons.
These particles were believed to be the building blocks of matter. Protons and neu-
trons combine to form positively-charged and heavy nuclei which act like electric
potential wells that trap electrons and form atoms.

In the present picture (The Standard Model). quarks and leptons are the funda-
mental constituents of matter, and the interactions between them are described by
gauge theories. In this model, quarks exist in six flavors: up (u), down (d). strange
(s). charm (c), bottom (b) and top (t). Also, there are six leptons: electron (e). muon
(u), tau () and their neutrinos (v.), (v,) and (v;) respectively. \Whereas quarks
participate in all interactions, leptons can not feel the strong force and only weak
interaction can be used to detect neutrinos.

Since strong and electromagnetic interactions do not alter quark flavors. quark
decay is carried out through a weak process. However, free quarks have never been
seen in nature. This is because strong interaction binds them permanently inside
hadronic bound states (hadrons). Therefore, it is important to understand the impact

of strong interactions on such weak processes.



2.1 Electroweak Gauge Theory

This theory arranges the left handed fermions (leptons and quarks) in pairs

(1), () ()G

that transform as doublets under the SU(2), weak isospin group. The corresponding
right handed fermions are kept as singlets. d', s’ and b’ above are mixtures of the mass
eigenstates d. s and b. The mixing is carried out through the Cabibbo-Kobayashi-

Maskawa (CKM) matrix as follows:

d' Vie Vas Vs | [ d
S = Va Vo Va || s (2.2)
4 Ve Vi Vi )\ b

The gauge principle requires the Lagrangian to be invariant under the local trans-
formations of the SU(2); x U(1l) group. Since this group has four generators, four
vector fields are introduced to preserve this invariance. As a result. the electroweak

interaction Lagrangian is given as,

€ -
Lint = eApTim + Z,Jc + m(W:jé‘c + WL T, (23)

2sinf,. cosf,.
where e is the electromagnetic coupling constant and 6, is the Weinberg angle. A,
above is the massless electromagnetic gauge field, whereas W;’ W and Z, are the
massive weak gauge fields.

In (2.3). the electromagnetic current is given by

Jh= Y. =¥+ > QiT*e. (2.4)

=e.u,r q=ud,s,c,b,t
where @, are the quark charges relative to e (i. e. Q, = +2/3. ...).

The neutral weak current is given by

The = ST (T{(1 - %) - 2Qssin6,.) f
f

)



Ve
= (T TS (1=%) | w

Ve

+ (a,ﬂw(—%(1—75)+§sin20w) s |, (2.5)

whereas the charged weak current is given by

e d
Te = e 0, UV A =73) | o |+ (@A =)V | s |- (2.6)
T b

where 17 is the CK)I mixing matrix.

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the gauge theory of strong interactions. In this
theory, the fundamental particles which participate in the strong interaction (quarks)
exist in three different colors and transform as triplets under the SU(3). color group.
The rest of the fundamental particles (leptons) are color neutral.

In order to ensure the invariance of the theory under the local SU(3). gauge

transformation, 8 gauge fields (equal in number to the generators of the SU(3) group)



are introduced. These gauge fields (or gluons) are the mediators of the strong force.
They are massless vector particles forming a color octet under ST (3)e.

The Lagrangian density for QCD is

L = —EF,‘,‘.,F v +3; (iv,.D4 — mbi;) g
— 5 (0445) X" OBNC + gf () A (2.7)
where
F2, = 8,A% — 9,45 + gf AL A;, (2.8)
and
DY = 3465 — ig %T,—‘} A% (2.9)

In the equations above, A (a = 1...., 8) are the eight gluon fields, x® are the
Faddeev-Popov ghost fields and g; is the field of the quark carrying flavor (¢ =
u.d.s.c.b,t) and color (i = 1,2,3). T° and fo° are the generators and structure
constants of SU(3) group. respectively. while g is the QCD coupling constant. Also.
we have the Gauge-fixing parameter. a, (e. g. in Feynman gauge, a = 1).

Since QCD is a renormalizable theory, all divergent loop diagrams can be rendered

finite by redefining the fields and parameters in the Lagrangian [1]:

1/2
Agp = 3/ ?Z,_n Qo = Zq1/2QR9 XS =

9o = Z49r. mg = ZmMg. & = Z3ér. (2.10)

The subscripts, 0 and R, refer to the bare and renormalized quantities respectively.

while the Z factors are called the renormalization constants.

2.2.1 Renormalized Strong Coupling Constant

The action

/ &z L (2.11)

-1



is dimensionless. So. in d dimensions the Lagrangian density must have the dimension
L~ where L is a unit of length. Since the Lagrangian contains a free field term of
the form dA JA, then each field A has the dimension L!~%? (or p%/2~! where p is a
mass scale). The three-gluon interaction term has the form grAAJA. This gives the
coupling constant a dimension p2~%/2 [2].

If we define (2¢ = 4 — d), then we can relate gp to a dimensionless coupling
constant g by

gr = K°g. (2.12)

The value of this dimensionless coupling constant depends on the renormalization

scale used (i. e. g = g(u)). By substituting back in (2.10) we get
g=u"Z;"g. (2.13)

Differentiation of (2.13) above leads to the renormalization group equation (RGE)

that governs the dependence of the coupling constant on the renormalization scale .

d
ud—g = —eg + 3(g). (2.14)
fl
where
o) = —y 3. % > 15
J(g) - uzg d/l . . (2’10)

By lowest order calculations of QCD renormalization constants. it is found that

93

3(g) = —'30(4r)2' (2.16)
where (defining Ny to be the number of flavors)
2 .. -
,(3():11—3;’\’}'. (21()
Substituting (2.16) into (2.14) we arrive at the following RGE:
dao . a2
M dﬂ = —2605 - 230;; (218)



where a, is defined in an analogue to the QED fine structure constant such that,
a, =2 (2.19)

The term containing € in (2.18) has been kept since it will be important in calcu-
lating the anomalous dimension of the local operators. later on. The solution of the

differential equation above is given as
() =
T G In(u?] A7)

where, A (called QCD scale constant) is determined experimentally .

(2.20)

If the calculation of the renormalization constant is extended to next-to-leading

order, the beta-function is modified to be

3 3

g

g
, = -3 = —J . .
3(g) : 0(47‘_)2 1(4ﬁ)4 (2.21)
where
;31 =102 — 338'.-'\"']'. (222)
and the coupling constant becomes
47 31 Inln(p?/A%)
s = . 7 - s .23
(1) = BTG/ "D [1 R (2] 1%) (2:23)

Note that a,(u) vanishes as /A — oc. This property of QCD is called asymptotic

freedom.

2.3 H.g Without QCD Effects

Assuming that the strong interaction is turned off, let us consider the decay of the
b-quark to a charm quark and two light quarks b — c%d. The tree-level Feynman
diagram for this process is shown in Fig. 2.1.

Using Fevnman rules, the decay amplitude is written as

—i€2 - gpy — kkEY m2r _ TV
A = gtV (L) (=36 (@)
= T v (o1 — ) (@ =25 +O (2.24)
= \/5 cb Vg \CY Y5 Y 3 )U m%‘, ) .

9



]

W(k) d

Figure 2.1: The tree-level Feynman diagram for the process b — cud.

where the Fermi coupling constant (Gp) is defined as

Gp _ 62
V2~ 8m?-sin’8,’

If the energies involved in the interaction are much smaller than the mass of the

(2.25)

W boson (k < my ), we can approximate the full amplitude by the first term only
and neglect the rest of the terms in (2.24). However, this amplitude can be reached

from a current X current interaction. where, to first order, the S-matrix has the form

S=1- i/d“x Heog. (2.26)
By comparison with (2.24), the effective Hamiltonian for the process b — cid is
GF . <u/x z -
Hegf = -\/Tchqud(Cibi)L (djuj)e- (2.27)
where
(Cibi) = &r*(1 = ¥s)bis (2.28)
and
(dju;)e = djv*(1 — v5)u;- (2.29)

The indices ¢ and j represent color.

2.4 Hsgin LL

When QCD effects are included, the effective Hamiltonian in (2.27) is generalized

to [1, 3]

GF.; <)m
Heff = —\/‘;—‘Vcb‘ﬁd(CIQx + Ca2Q2) , (2.30)

10



Figure 2.2: One loop current x current tree diagrams in the full theory.

where

Q1 = (&bi)r (djuj)L.
Q2 = (&b;)o(djui)e (2.31)

are current X current local operators.
The Wilson Coefficients, C; and (5. are determined by requiring the effective
Hamiltonian to reproduce the amplitude calculated in the full theory. i. e.

Gr.. ...
Agan = Aeg = —ZTSVcqud(Cl (Q1) + C2(Q2)) - (2.32)

This matching of the full theory onto the effective theory is done in three steps.
First, Agq is calculated by evaluating the one loop current X current diagrams in
Fig. 2.2. In the calculation only logarithmic corrections of order a,ln() are kept
while those terms containing constant contributions of order a; are discarded. This
corresponds to the leading logarithmic approximation (LL).

The second step, is to evaluate the matrix elements of the local operators O; and
O from Fig. 2.3. Unlike the full amplitude, the resulting matrix elements contain
divergent terms that can not be removed by the QCD renormalization constants in
(2.10). These will be called the bare matrix elements, <Q§-0) > They are related to

the renormalized ones (Q;), which have the divergent terms removed, by
(@) = z,;(Q;), (2.33)

11
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Figure 2.3: One loop current x current tree diagrams in the Effective theory.

where Z;; is a 2 x 2 matrix found to be [1, 3]

2 1 -3
Z(p) =1+ (45;)2% ( ) _ (2.34)

-3 1

Therefore, in order to be able to match the full theory and the effective theory. an
additional renormalization of the local operators is needed.

So, the bare local operators should be used, instead. in evaluating A.g. such that
iv2 _ l0) £ A0)
GFV;bV—u_d -Aeﬁ' Cx (Ql >
C Zii(1) (Q5(w)
= (25w ") (Qiw))
= Cip)(Qi(n) . (2.35)

where the bare and renormalized Wilson coefficients are related by

¥ = (Z") J. (2.36)

2.4.1 Renormalization Group Equations

The last step, is to substitute the renormalized matrix elements , (O;) into (2.32) and

solve for the Wilson coefficients. The result is

2

_— s m“f
C, = +4Tl
9
C, = -3—1 ";‘2‘ (2.37)

12
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Figure 2.4: In(m32,/u?) for p in the range m; to myy.

In this work. we are interested in the decay of B mesons. For such processes,
the appropriate scale for normalizing the hadronic matrix elements is of the order of
the decaying quark mass. i. e. ¢ = O(m,). This low scale, compared to myy. creates
large logarithms in (2.37) destroying the usefulness of ordinary perturbation theory.
see Fig. 2.4.

The way out of this problem consists of two parts. First. Wilson coefficients are
calculated at a scale where perturbation theory is valid. Then. the evolution matrix,
derived from renormalization group equations (RGE). is used to evolve these values
to the desired scale. This is called RG-improved perturbation theory.

At u = my the logarithm In(m3, /u?) is very small justifving the use of ordinary

perturbation theory. So, from (2.37) the Wilson coefficients in LL is given as

Cl(mw) = 1.
Ca(mw) = 0. (2.38)

Since the unrenormalized Wilson coefficients, C §0), are independent of p, then. it

is easy to derive from (2.36) the following RGE:

d C C
e D kAl (2.39)
H C2 Cg

13



where v is the anomalous dimension matrix defined as

dZ
o= y7-124
From (2.13) and (2.34) we have
—2¢,2
L gp 1 1 -3
Z(p) =14+ ——=- . 2.41
(0 =1+ T e(_3 1 ) (2.41)
So,
dZ g° 1 -3
p— = —2—= . 2.42
du (4m)? ( -3 1 (242)
The anomalous dimension - is then. up to lowest order in a,,
G
v = Z“:’Y(o). (2.43)

where

-2 6
7O = . (2.44)
6 -2

In order to solve the RGE (2.39) let us first introduce the matrix V' that diago-

nalizes v(97 such that

VoI OTy = (2.43)

Actually, the elements on the diagonal of vp are the eigenvalues of ¥¥7 while the

columns of V" are the corresponding eigenvectors. So, we find that

v L[ 7P o (2.46)
V2l 1 1 ’ '

_as [ 7800 e 7
’7o—47r( 0 4)_47.’[/ ]D, (2.47)

where 7 is a column vector containing the eigenvalues of ¥{°) such that

7O = ( 8 ) : (2.48)
4

14



and the subscript D stands for diagonal matrix.
If we define the diagonal basis for the Wilson coefficients, C+, such that

Ci 1 C,—-C (O
V-l = — = , 2.49
(&)-alae)-() e

0 _ _g, +O =4, (2.50)

and

then we can rewrite (2.39) as

dCy _ &s (0 -
S Cs. (2.31)

Using (2.18). the above equation can be written as

s 230 o, (2.52)
which is easily solved to give
0
Qg mw 239 _
Ci(p) = ( a'( (:) )) Ce(mw). (2.33)

Using the relation (2.49) we then have

Ci(p) =V [as(mw)]%(:’—)v_l Cy(mw) . (2.54)
Co(n) as(#) Ip Co(mw)

The following convention has been used to display the above results in a more

compact form: if

( a
a= N I (2.33)
\
then
e
AT = N (2.56)
\ 4an
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Figure 2.5: The tree-level Feynman diagram for the process b — c¢s.

and

2.4.2 Penguin Contribution

Consider the process b — ¢ s whose tree level Feynman diagram is shown in Fig. 2.5.
Similar to (2.27), the effective Hamiltonian for this process. in the absence of QCD.,
is given by

Hegf = f VaVa(8:bi)L (5jcj)e- (2.58)

When the effective Hamiltonian is extended to include QCD effects, the contri-
bution of the penguin diagrams in Fig. 2.6a for the full theory and Fig. 2.6b for the
effective theory should be considered beside the current X current diagrams consid-
ered previously.

As a result, the effective Hamiltonian includes six local operators that mix and
close under renormalization. Explicitly, this is given by

Heg = \/— VaVis (C1Q1 + CoQ2) — tb‘tsgch ; (2.59)

where

Q1 = (Gbi)L (55¢)L,

16
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Figure 2.6: The Penguin Feynman diagrams for the process b — ¢¢s. a: in the full

theory, b: in the effective theory.



Q2 = (&bl (55ci)L,

Qs = (5ibi)e 2_(Ggs)e
Qs = (3:bj)L zqz(fqux')r,,
Qs = (Sibi)s i(ijqj)n,

q
Qs = (5ibj)L D_(3igi)r- (2.60)
q
Operators Og, . . ... Og are called penguin operators. In addition to the (V —A) current

defined in (2.28), these operators also include the (V' + A) current defined as
(:9:)r = @¥"(1 + ¥s)q:- (2.61)

The summation in the penguin operators is carried over all the quarks in the effective

theory.

The procedure of calculating the Wilson coefficients in (2.59) is similar to that
performed previously except that we are dealing with six operators instead of two.
Similar to (2.39), the RGE that controls the dependence of the Wilson coefficients on

the renormalization scale is given by

J Cy Cy
i ol B (2.62)
C6 Ce
where, up to first order in aj, [1. 3]
A" = B0
! . !
—92 2 -
(-2 6 3 3 3 2 )
6 —2 0 0 0 0
=22 22 -
_a| 0 0 5 T 3 3 (2:63)
dml 0 0 6-2N; -2+2N; -INy;  IN
0 0 0 0 2 —6
\ 0 0 -§N; 5Ny —§Ny 16+ 3Ny )




By diagonalizing v7 we can solve (2.62) above, as we did before, and use the

conventicn (2.57) to write the solution as
Cr(u) i Ci(mw)
: =V [—a’(m“’)] * oyt : : (2.64)
as(1) |p
Ce(p) Ce(mw)

where V' is the 6 x 6 matrix that diagonilizes 7' such that

VoiyOTY = [,7(0)] b (2.65)

2.4.3 Numerical Results

For Ny = 5 flavors (suitable for b-decays) the diagonalization of ~OT produces

[ -8
4
7O = _22‘;9 . (2.66)
-13.8
\ 6.27 )
and the following value for V'
[ -0.96 0998 0 0 0 0 )
096 0998 0 0 0 0
vo L -032 -0.143 —118 -0.249 0318 0391 | (2.67)
2| 032 -0143 1.02 —0.121 —-0441 1.14
0 0 0.098 —1.4 0.0696 —0.46
\ 0 0 02 0514 1.3 0.388 )

By extending (2.38) to include penguin operators we have

Ci(mw) = 1,
Ci(my) = O i=2,...,6. (2.68)
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Table 2.1: Wilson Coefficients in LL at y = 4.4, 4.6 and 4.8 GeV,

and for A2- =

MS

225 + 85 MeV. The last four rows are some useful combinations of C;(u) and Ca(u).

NoQCD pu=44GeV p=4.5GeV  pu=48GeV
Ci(p) 1 1.132+£0.017 1.128 +£0.016 1.125 £ 0.015
Ca(p) 0 -0.295+0.030 -—0.288+£0.029 -0.281+0.028
Cs(p) 0 0.0134£0.002 0.013+£0.002  0.013 +0.002
Ca(p) 0 —0.030£0.003 —0.029+0.003 -—0.029 £ 0.003
Cs(p) 0 0.009£0.001  0.008 £0.001  0.008 +0.001
Ce(pt) 0 —0.038 £0.004 —0.037x0.004 —-0.036+0.004
a; 1.034 £ 0.006 1.032 £ 0.006 1.031 £ 0.006
asz 0.082+0.025  0.088+0.024  0.094 £0.023
Csfa; —0.285+0.027 —0.279+£0.027 —0.273+0.026
Ci/ay 13.72 £ 4.30 12.77 £ 3.60 11.99 £3.10

Using Ad= = 225+ 85 MeV [1] for the QCD scale constant in the effective theory

of five flavors, we now calculate the Wilson coefficients from (2.64) at the scale of

b-quark mass. The results are displayed in Table 2.1 for = 4.4. 4.6 and 4.8 GeV'.

It turns out that certain combinations of the Wilson Coefficients are particularly

useful. The dependence of these quantities on u is displaved iﬁ Table 2.1 and in

Fig. 2.7 where a; and a, are defined as

2.5 Heg in NLL

C
ay = C1+‘3—2.

C
a = Cz-l*?l.

(2.69)

(2.70)

In next-to-leading logarithmic (NLL) calculations, the terms containing constant con-

tributions of order a, are also kept in addition to the terms of order a, In(). This leads
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to modifications in the formulas derived in the previous section. Most importantly,

the Wilson coefficients turn out to be regularization scheme dependent. However,

if the matrix elements (Q;(1)) are evaluated at the same scheme as the Wilson co-

efficients Ci(yt), the scheme dependence cancels out, and the effective Hamiltonian

C{p) (Qi(1)) becomes independent of the regularization scheme used.

In here, we choose to evaluate the Wilson coefficients using the naive dimensional

regularization scheme (NDR). In this scheme, the method of dimensional regulariza-

tion (d = 4 — 2¢) is used to evaluate the divergent loop diagrams. Also, in NDR. the

metric tensor in d dimensions and the commutation relations between the y-matrices

are given by [4]

Guv = Gupu, gppgg = Guu, gﬁ =d,

and
{7;17 '7'u} = 29;41/1 {7;49 75} =0.

In NLL, the anomalous dimension matrix in (2.63) extends to

b= B0 (&) 1)
i ! .
iw 47
where [3]
A(l) —
INDR =
21 2 ar 7 2 A 202 354 192
-3 -38 3HIN -33 & -53
T 2N 21 _ 2« 18 T _8s
$+3Nr -3 -5 v -3 s
5911 | Iy 5983 | 1y _2384 _ 71y
0 0 - 5N 62 T3V 243 3N
379 56_ A 91 808 130 502 or
0 0 Tt T twmNr - -
1 3\ 11 Tl 81 -
4] 0 —-9—;\! ——\f T+-§.‘\f
0 0 gy, My, iRy

The Wilson coefficients in NDR are then given by [3]

Ci(n)
Ce(u)

22
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(2.73)

(2.74)

ed

04

1

X1

1808
81
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1343 1348 -
s T & Ny



(0 Ci(mw)

(1 N a, () J.) v [a,(mw)] ot (1 _ “_(M;) : . (2.73)
47 aln) Jp
Cs(myy )

In the above equation, V is the 6 x 6 matrix, defined in (2.65). which diagonilizes

+OT whereas J is defined as

J=VSsv-l, (2.76)
where
Si; = 6571 2‘?310 — o ’ig) (0), (2.77)
and

G = Vi, (2.78)

In order to calculate the Wilson coefficients in NLL from (2.75). we need the values

of Ci{mw ). In NDR. these are given by [3]

(Cl(mw)\ ( 1— llau(mw) \
Co(mw) ye (:.1,"’)
Cs(mw) a(m,W)E( t)
=| . (i“w) (2.79)
Cy(mw) = (1)
Cs(my) -2 5:1: )E(Iz)

\Cs(mw)/) \ 2% E(z,) )

where
2 2 r%(15 — 16z + 412) (18 — 11z — 1?)
=_2_2] 2.
E(z) 373 nr+ 61—z Inz + Di—zp (2.80)
and
2
m;
Iy = —5. (2.81)
t miy,

Using the above values for Ci(my/), we calculated from (2.75) the values of the
Wilson coefficients in NDR at the three scales u = 4.4, 4.6 and 4.8 GeV'. The results

are shown in Table 2.2
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Table 2.2: NLL Wilson Coefficients in NDR at y = 4.4, 4.6 and 4.8 GeV, and for

A% = 225. The last four rows are some useful combinations of C;(z) and Cy(p).
p=44GeV u=4.6GeV p=48GeV
Ci(u) 1.079 1.076 1.073
Ca(pt) -0.185 -0.179 -0.174
Cs(p) 0.012 0.012 0.012
Calp) -0.034 -0.033 -0.033
Cs(p) 0.010 0.010 0.009
Ce(12) -0.041 -0.040 -0.039
a 1.017 1.016 1.015
as 0.175 0.179 0.184
Cafa; -0.182 -0.176 -0.171
Ci/a2 6.172 5.998 3.843
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Chapter 3

Amplitudes and Formfactors

3.1 Current Matrix Elements

Let |[I) and |P) be pseudoscalar mesons and |V) be a vector meson. Since it is not

possible . until now. to do reliable nonperturbative QCD calculations, these hadronic

states are not known. However, the hadronic current matrix elements can be decom-

posed in terms of formfactors and decay constants using Lorentz invariance. So, we

can write [1]:

with

(PJ,[0)
(V1.10)

(Pl D)

(VI D)

fe(pp)u:

my fveg,

2 2

m? —m m? —m
(PI +pp — '—I(P—PQ) Fi(¢®) + —I—qT—ﬁ%-l Fo(q?).
13

-2
T e DT V(P
——— A 4 (g*)
- €.q 2
+ my)e A1(g?) — A
(my + mv)e, A1(q°) m1+mv(pl + pv)u A2(q%)

€.
~2my=3g, (4(e") — 4o(a")

Qu = (PI—pP(V))#,
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(3.1)
(3.2)

(3-3)

(3.4)

(3.3)



As(g?) = MY 4 qz)_ 42(‘12) (3.6)

2my

and
Fi(0) = Fo(0), (3.7)
A(0) = Ay(0). (3.8)

Evaluating the contractions of the above current matrix elements will be useful in
studying the processes of interest in this work. This is because in the factorization
scheme the matrix element of the product of two currents is equal to the product of

the matrix elements of the currents. So. let us first evaluate

(Py|J,|I) (Pe]J*|0) (3.9)

where
pPr = Pp +pP27 (3.10)
q = p;—DPp,=Dp- (3.11)

From (3.1) and (3.3) we find that
(Py|JuI) (Py] J#{0) = (mF — m%,) fp, Fo(@®)- (3.12)

Similarly, we find that

(P|J L) (V|J#|0) = 2my fu(€ pr) Fi(g®)- (3.13)
(VIJuI) (PIT#[0) = 2my fp(e 1) Ao(g?). (3.14)
and
(VA (Ve T#0) = =t iy 2 o 60", P, V()
— (my + my, X(€].€5) A1(¢?)
+2(e.pv,)(€5.0v) A2(?)] (3.15)
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where €, €; and € are the polarization vectors of V, V; and V), respectively.

In decay rate calculations we often find that the absolute square of the above
current matrix elements, summed over all final state polarizations, are needed. Since
the absolute square of (3.12) is obvious, we consider first (3.13). This leads to

3 3
rZ_:l [(PIILIT) (VIT#[O)[* = dm| fu? Zl le;-pr?|Fi(g®)? (3.16)

where r is the polarization index. However,

3 3
S lepl? = (P)u(Pr) ) €te”
r=1

r=1
H v
= (Pr)u(Pr) —9’“'-*-QV)—§2ﬂ
my
2

my
where |k| (given explicitly in (C.29)) is the momentum of the decay products in [

rest-frame. So. we end up with
3
S_ KPIJLD) (VIT#I0)* = ami| fu Pk Fa(g*)[* (3.18)
r=1

Similarly. from (3.14) we find that

3
S KVl (PlT#10)? = 4mi| fpPIk[?| Ao(g®)F - (3.19)

r=1
Regarding the current matrix element (3.13), let us first evaluate it for the three
possible helicities of the final state using (A.34 - A.39) derived in Appendix A. The

result is

(V'IIJ#u-) (%I‘]“IO)O = _fvzmvz(ml +mV1 )‘4'{‘/1 (q2) (a —bl‘) y (320)
(VAT (Val J¥10) s = framua(my + my )AT (@) (1 Fey) . (3.21)

where [2],




2|k[*m]

b = .
my,my, (m; +my, )%
2|k|m1
c = —— 3.22
(m1+mvl)2 ( )
A2 (@)
r = v 217
A1 (g?)
Vii(e®)
Y = Sy
A" (g?)

The absolute square of (3.13) is given by

(VALY (Val J#10) 2 = m2, (my + my )2 fin AT (@) [(a — b2)* +2(1 + & 7).
(3.23)

3.2 Decay Amplitudes

Using the results of the previous section, it is now easy to write down the decay am-
plitudes and decay rates for the processes considered in this work, assuming factoriza-
tion. This means keeping only those terms in the amplitudes that can be factorized as
in (3.12 - 3.15). The nonfactorizable terms, are paramerized and studied in different

ways in the chapters that follow. This will result in modifications to the formulas of

this section.

3.2.1 Type b — cud processes: Class I

These are Cabibbo-favored processes that have b — cud as the basic process (see
Fig. 2.1). The effective Hamiltonian, appropriate for such processes, has been derived

in the previous chapter to be

Heﬁ' = -G‘/—%Vcb u'd [Cl (E,‘b,‘)[, (Ej&j)L + C2 (E,‘U,‘)L (-C?jbj)L] . (3.24)

where the values of the Wilson coefficients C; and C» are taken from Table 2.1. In

what follows the color indices will be suppressed. Also, the index L indicating a

left-handed current will be dropped.
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Figure 3.1: The flavor flow diagrams for class I processes of the type b — cud.

The decays that proceed via an external W emission are called processes of class
I or color favored. In Fig. 3.1. we show the flavor flow diagram for the processes of
this class considered in this subsection.

In order to derive the decay amplitudes and decay rates for these processes, we
need to rewrite the effective Hamiltonian in (3.24) using Fierz transformations (see

Appendix B). The result is

Heg = %v;,,v;d |21 (2b) (@u) + G H®)] . (3.25)
where
C
a=(C+), (3:26)
and
HO) = = 5-(@X%) (@) (3.27)

N, is the number of colors (taken to be 3) and A? are the Gell-Mann matrices.

e B — D¥r~ and Fﬂ — D}n~ Decays
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The decay amplitude for the process B’ = D*r s given by

AB° = D¥s") = (D*n~|[HelB")

= Sy, (a1 (D*7|(2b) (du)[B°) + Co (D*=~[H®|B)] .

V2
(3.28)
The second term on the right hand side of (3.28) is nonfactorizable, while the first

term receives both factorizable and nonfactorizable contributions. So we write

A = D57 = SEVeViam [ (DH(@)/B" >< "|(@u)loy

+ (D*r|(eb) (@w)[BY™ + 2 (D+ -|H®[B )"f} (3.29)

The current matrix elements in the first term above, can now be decomposed as in
(3.12). Since. in this chapter, we are keeping only the factorizable terms, the decay

amplitude for the process B — D¥7~ is written as

Gr )
AyB® = D* ,.-)_7_2- wViaifs (m} —mb) FFP(¢). (3.30)

The decay rate for this exclusive channel is then given by (see Appendix C).
I}(FO — D*77) = (phase space factor) x l.Af(FO - D“’7r‘)|2

G2
167m

7 1kl VeI Vial®laa "1 fof* (] — m5)° |FPP(m3)|
(3.31)

where the subscript f in Ay and Iy indicates that only the factorizable parts were

considered in the evaluation of these quantities.
The decay amplitude and decay rate for the process 'E‘j — D} =~ are found from

above by replacing B by B, and D by D,.

e B - D*p(ay) and 73_2 — D¥p~(a7) Decays

31



In calculating the decay amplitude and decay rate for the process B — D*p~ we
follow a procedure similar to that used above for the process B’ — D*r-. However,

unlike the pion. p~ is a vector particle. So, from (3.13) and (3.18) we have

—0 _ Gr
As(B" = D*p7) = ZSVaVigarf,2my(e ps)Fi PP(d%). (3.32)
and
=0 _ G2 2
OB’ = D*p7) = ZLkP Vol Vi PI5P [FEO(mp). (3.33)

The decay amplitude and decay rate for the process B - D*a7 are found from
above by replacing p~ by a;. Regarding the processes F(: — D¥p~(ay), the decay
amplitude and decay rate are found by replacing B by B, and D by D,.

e B' — D**7~ and Fg — D**7~ Decays

For the process B® — D*+r~ we use (3.14) and (3.19) to write down the decay
amplitude and decay rate. The result is

Af(B® = D*rm) = f/‘i Vo fo2mpe(p)ABD (@), (3.34)

=0 - 2 . . ” . }
[y(B"— D™ r7) = —flkl3 Va2 [Vaal*la1 Pl f2P146 27 (e)°. (3.35)
The decay amplitude and decay rate for the process B — D;*#x~ are found from

above by replacing B by B, and D by D;.

e B® = D**p=(a]) and Fg — D**p~(a7) Decays

For the process B - D*p~, where we have two vector particles in the final state,
the decay amplitude is given by

- F -
B, D) = _CF (___ ’”P)
Af(B p ) \/.Q_Vcbv dalfp 5 D

x [2i €vas € €5 B D VP ()
— (mp +mp-)*(€;.€p.) AP (¢?)
+ 2 (€.pp-)(€p--Po) A7 (6] - (3.36)
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Since the decaying particle is a pseudoscalar, from conservation of angular mo-
mentum the two vector mesons in the final state must have the same helicity. Using
the three current matrix elements derived in (3.20) and (3.21), we can calculate the

three corresponding helicity amplitudes for this decay. These are given by

Gr.. .. . -
Ay = —\—f-;lvcm,,alfpmp(mwmo-)Af" () [a—bz], (3.37)
G - - -
ZEVaVia fomy(mp + mp-)APP () L Fey]. (3.38)

V2

where a, b, ¢,  and y are defined in (3.22).

Az

The decay rate is obtained from (3.23 ) to be,

k|

= — D™+ = 2 2 2
OB = D™p7) = g (ol + 1A + [A-P)
G> ) Y .
= 167.'51% k|| Veo X[ Vaa|Pla1 || folPmE(mp + mp- Y| AP (m2)[?
x [(a=bx) + 201+ 2% (3.39)

The longitudinal (Pp) and transverse (Py) polarizations of the final state are
defined as
| Aol
[Aol? + | A4 + |A-[*

|As|?
|Aol? + |A4|2 + |A-|*°

P (3.40)

(3.41)

Py

The decay amplitude and decay rate for the process B - D~*ay are found from
above by replacing p~ by ay. Whereas for the processes F‘j — D>*p~(ay) they are

found by replacing B by B, and D by D,.

3.2.2 Type b — cud processes: Class II

The decays that proceed via an internal W emission are called processes of class II
or color suppressed. In Fig. 3.2, we show the flavor flow diagram for the processes of

this class considered in this section.
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Figure 3.2: The flavor flow diagrams for class II processes of the type b — cud.

The effective Hamiltonian, in this case, is written from (3.24) and using Fierz
transformations as

Gr

Hoe = ﬁtg,,v;-d (a2 (2u) (db) + Cy H®] (3.42)
where
C
as = (02 + \—‘) , (3.43)
and
H® = 25 (@A) (@\D). (3.44)

a

e B° — D0 Decay

The decay amplitude for this process is given by

.A(—Eo—rDOWO) = (D°7r0|7'{eﬁ-|-§0)
G . =
= —J—;-Vcb%d [a2 (D°7%|(eu) (b)|B°) + C1 (D°="|H®[B")] .

(3.45)
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The second term on the right hand side of (3.45) is nonfactorizable, while the first

term receives both factorizable and nonfactorizable contributions. So we write

AB® — D°x% = %vd, a2 [ (DVl(2u)l0)(| @)/ B°)

+ (D°n°(zu) (@b)|B)™ + %(D%"m(s)m")"f]. (3.46)
2

To write down the decay amplitude in terms of decay constants and formfactors,
we proceed as we did previously for the decay B® - D=~ However, 70 is mixture
of |u@) and |dd) states. So an additional factor of 1/ V2 appears in the amplitude.
The result is

G .
AHB° - D) = -Q—FV;,,V;d as fp (my — m2) FP™(¢°). (3.47)

The decay rate is then given by,

Gk

327m%

. 2 . 2
[4(B° - D%°) = I |Veo 2| Vaal?la2*| f P (m — m2)? |[FP™(m3)]” - (3.48)

e B® = D%(n') Decays

The calculation of the decay amplitude for the process B’ — D%n is similar to that
performed above for the process B° — D%2°. However, an appropriate mixing factor

should be used due to n — 7/ mixing (see Appendix D). As a result, we have

Gr, 1/

4B = D'n) = ZEVaViyarfoCy (mh —my) F(e?). (3.49)

—0 G2 . 2 . 2

TB° = D) = Ty |kl Ve Vaallao Lo |CHf” (s — mi)? [Fo™(m)]”-
mp

(3.50)

where C2 is defined in (D.6).
The decay amplitude and decay rate for the process B - D% are found from

above by replacing n with 7.



e B — D*0y0 Decay

A(B Do) = SEVaViyarfo-2mo-(€ 2p)FE*(d). (3.51)

-9 - G5 * 2 -
[/B" - D% = ZE Val'Vaallaallfo- P [FE*(mbo)] . (3.52)

« B> D*%(n') Decays

G
ZVaVy a2 fp-C§2mp-(€ p8)FL"(d), (3.53)

V2
— G2 ~ orer 2 .
THB = D) = ZEIkf [Val*Vaallao| fo PICHP[FE(mbo)f - (3:54)

A;(B° = D)

The decay amplitude and decay rate for the process B - D% are found from

above by replacing n by 7.

o B® = D%%(a?,w?) Decays

G - . .=
A;(P-o — D%% = TFVcqud as fp2m,(€ .pp) AF? (). (3.35)

G -
DB — %) = SEIP [VallVadllaallfo 21482 (mB)E. (3.56)

The decay amplitude and decay rate for the processes B - D% and B° — DY

are found from above by replacing p° by a and w° respectively.

e B’ — D*p0(a9, w®) Decays

The decay amplitude for the process B — D900 is given by

-—0 =0 0 GF - mD.
= _SEyv Y L
A(B" — D% 5 Veb ud 22D <m3+mp)
X [Qis,,,,a,g &F ep. ps o V()
— (mp +m,)*(€-€5.) AT (¢%)

+2(€;.pp- )(€p--Po) A7 (@] (3.57

S
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Which leads to the following three helicity amplitudes
Gr

Ao = ——VaVuaafo-mp-(mp +m,)Ar*(¢*)(a — bx). (3.58)
G .
Ar = ?FVcqu'dagfp-mD-(mB + mp)Afp(qZ) (I1Fcy). (3.59)

From above, we obtain the following expression for the decay rate,

=0 . G?
DHB = D) = gyt Kl Vel Vaalloal for P (m + my P APP (.
X [(a —bx)2+201+4¢ yz)] . (3.60)

The decay amplitude and decay rate for the processes B - D™%? and B —

D90 are found from above by replacing p° by af and w° respectively.

° _Bg — DOK?O Decay

. GFyr 1 rm . -
As(By —» D°K°) = 7;"&‘/.“102& (sz. - m%) F R (g). (3.61)
. G2 . 19 - 2
(B, — D°K°) = E (k| Ve *|Via*|a2?| o l? (mF, — m%.)? IFoB‘A(m%)I
167mp,
(3.62)

° ‘Bf — D*9K?® Decay

Gr
V2

- G2 9 9
Ti(B, = D°K°) = LIk Vol Vadllaal*|fo-

Ay(B? = DOK®) = —=V,Viaafp-2mp-(€ .pp,)FE¥(g?), (3.63)

- 2
FPEmya|". (3.64)

° F(s) — DYK*0 Decay

. GFir «rm - . -
As(B) - D°K™%) = —\/%VcbV;daszQmK-(f pg,)A¢ " (¢%). (3.63)
Gk

E—[kl”chblle.‘dl2|a2|2|fD|2|.~'1§"‘"(m?,)|2. (3.66)

I4(B, - D°K™) =
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Figure 3.3: The flavor flow diagrams for Class III processes of the type b — cud.

=0
, D

]

° Fﬂ — D*9K*0 Decay

G
A = —\/gV sVosaz fp-mp-(mp, + mp-)AP" (¢°)(a - bz). (3.67)
G )
Ar = \/gvcb‘/ ~as fp-mp-(mp, + mg)APE (@)W1 F ey). (3.68)
. G%
Cf(B. = DOK™) = ol Vel IVadllaal’lfo- 'mb-(m5, +mys- )
x|.4f - (m3 )P [(a—br)*+2(1 +y?)] . (3.69)

3.2.3 Type b — cud processes: Class III

Processes of Class III proceed via external and internal W emissions. The flavor flow

diagrams for the processes of this class considered in this subsection are shown in

Fig. 3.3.

38



e B~ — D% Decay

The factorizable decay amplitude for the process B~ — D%7~ is given by

.Af(B- — DO‘R‘_)

Efgv;b = [a1 (D°I(6)| B+~ |(@u)[0)
+ ay (7|(db)|B~)(D°|(Tc)[0)]

G
—EVaVy [a1 fo(mh — mp) FP(m?3)

V2

+ ay fp(m} —m2) Ff(m})] .

The decay rate is, then. given by,

T(B~ — D%") =

e B~ — D% Decay

As(B™ — D%")

Ts(B~ — D%")

e B~ — D*01~ Decay

Af(B~ — D™%™)

Gt

167m%

+

. 2
az fp(m} — m2) Ff™(m})|

Gr.. =

75 VasVia [a1 (D°|(@)| B™)p7I(@w)[0)
+ az (o~ |(@b)[B~)(D|(zc)|0)]

Gp..

—\/—%Vcqu'd 2m,(€".pB)

X [(1-1 fp FIBD(mg) + a2 fD -4gp(m2D)] ’
2

SE I VaPIVaal

2
X IalfpﬂBD(m%) + aszA()Bp(m%)' -

ZE Vi [or (D@ (@00

+ ay (x7|(db)| B~){D"°|(cu)|0)]
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T(B~ — D) =

e B~ — D*%p~ Decay

The decay amplitude for the process B~ — D%
Gr
V2

Ai(B~ — Dp7) =

Gr
7

G2

4w

. 2
x |ay f+ AFP"(m2) + az fo- FP*(mb)| -

[ lf'rA (

VaVog2mp(€ .pp)
2) + ay fp- FE™(m% ]

—= |k [Ves*Vial*

~ is given by

ZE VsV [a1 (D™°|(20)| B ){p~|(du)]0)

+ a3 (p7|(db)|B~)(D™|(zu)|0)] .

which leads to the following helicity amplitudes

Gr

Ao = —ZEVaVy [afomp(mp + mpe) {a APP"(md) — b AFP" (m})}

V2

+ apfp-mp-(mp + m,) {a' APP(m2.) = ¥ Af"(m%.)}] ,

etV |01 fomp(mp + mp-) {430( ;';)q:cVBD'(mﬁ)}

LML

Gp‘/

4s = £

+ asfp-mp-(mp + m,) {.—'11 P(m?2

where a. b, ¢, a', b’ and ¢ are as defined as

a =

b =

¢ =

2

2 2
mB—mp_mD.

2)FVE(m

2mme-
2|k[>mj

= a.',

memp-(mg +mp-)?’

2|k|m3

(mp + mp-)?’

2|k |*m}

mymp-(mp +m,)?’
2|k|m3

(mB + mp)2 .

The decay rate is then obtained from

Ty(B~ — D7)

IkI
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> 5 —
B"O O D%, D+

Figure 3.4: The flavor flow diagram for class I processes of the type b — cCs

3.2.4 Type b — ccs processes: Class I

The effective Hamiltonian, appropriate for processes of the type b — ¢¢Cs, is given by

Heg = —G\/—chch'; [Cy (@ibi)L (Bjcj) + Ca(Tici) (5jbj)L] - (3.81)

where the values of the Wilson coefficients C; and C, are taken from Table 2.1. Using

Fierz transformations, the effective Hamiltonian is written as

Mg = %vd,vc; (a1 (2b) (5¢) + CH®] . (3.82)
where
a; = (Cl + %) : (3.83)
and
HE = % S"(@A%) (30%). (3.84)

In Fig. 3.4, we show the flavor flow diagram for the decays of class I considered in

this subsection.
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e B — DD; Decay

The forms of the decay amplitude and decay rate for this process are similar to those

derived previously for B© — D*#~ decay. The results are written as

G . -
Af(B = DD,) = ZEVaViafo, (mh — mp) F&°(q) (3.85)
G> o 2
THB = DD,) = TZEr|k| [Val*IVasl*lar i, [* mp(m} — mip)? |FPP (m,)
B
(3.86)

e B — DDj Decay

Similar to the process B - D*p~ discussed previously, the decay amplitude and

decay rate for the process B — DD are given by

- G id - »
Ay(B — DD}) = 7g-vd,VC, a1 fp;2mp;(€”.ps)FEP (%)

. G% ... . > 2
I[y(B—DD;) = 'élk[&I‘"cbl2|Vc.s|2Ia1‘2lfDZ|2|FIBD(7n.D:)| .

e B — D*Dg Decay

. Gry irm . .
Af(B - D"D,) = TQVqu a1 fp,2mp-(€".pp) A7 " (%),

_ G2 e -
[f(B—D'D,) = ok [Vaol’|Vasl*lar £, Pl 457 ()1

e B — D*Dj Decay

Gr

Ay = ——=VaViaifp;mp;(mp +mp-)AT? (¢*) (a - bz),

V2

Gr

Az 7-‘2'Vcbvc:alf0;m0:(m8 +mp- ) AP ()1 F cy),

where a, b, ¢, r and y are defined in (3.22).
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From above, we obtain the following expression for the decay rate,

k|

I'((B—DD;) = 8l?ng(h‘tolz + AL +AP)
= 167(;213'1(' [Ves 2 Vs Pl Pl fp; Pmbe (mp + mp- 2| APP" (b, )2
x [(a = b2 +2(1+ ). (3.93)

The polarization of the final state is defined in terms of P and Py as in (3.40)
and (3.41).

3.2.5 Type b — ccs processes: Class II

The flavor flow diagram for the decays of of class II considered in this subsection are
shown in Fig. 3.5. The effective Hamiltonian for this case is written from (3.81) and

using Fierz transformations as

G .
Hog = 7;1/;,,1/; [as (zc) (3b) + CLH®] . (3.94)
where
a=(C+5h). (3.95)
and
HE = % Y (8X%) (3A%). (3.96)

e B — K1 Decay

In here, B — K v represents B - K%y and B~ — K~ v decays, where v is
either J/w or ¥(2S5) mesons. The forms of the factorizable decay amplitude for these

.. . =0 - .
processes are similar to those in B° — D%%° decay. The results are written as

Gr

AfB ~ K) = Z5VaVsafstmo(e pa)FFN(e). (3.97)
v G2 i i 2
Ti(B— Kv) = —EkPValVallaollfoP|[FPF ). (3.98)
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Figure 3.5: The flavor flow diagram for class II processes of the type b — cCs
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e B ——>K*1/)_§2—>¢¢ Decays

G . .,
A = —TQVvac,aszm.g(mme.)A{”‘ (¢*)a —bzx) (3.99)
G . ..
As = 7;v¢vaa2f¢mw(ma+mh—.>faf"‘ (@)1 F cy). (3.100)
e G%‘ 2 2 2 2,..2 21 ABR* 2412
DB — K'v) = T=trlk| Val’|VesPlaa| folPmi(mg + m- P47 (mD)]
vt
x[(@a=bx)*+2(1+ )] (3.101)

The decay amplitude and decay rate for the process E‘j — ov are found from

above by replacing B by B, and K~ by o.

° Fg — n(n')¥ Decays

Gr

V2
e NN a2

B —mo) = ZE VallVallaalifol I3 [F2m)]" (3.103)

Af(B, — mv) VaVia2foCa2me(e .pp) FE™(g?). (3.102)

The decay amplitude and decay rate for the processes —172 — 1'v is found from

above by replacing n by 7.

3.3 CKM Matrix Elements

To be able to calculate the decay amplitudes of the nonleptonic processes considered
in this work, we need the values of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements presented in (2.2). In Wolfenstein parametrization [3], and up to the fourth

order in ), these elements take the form

Vie Vis Vi 1— 32 A AN(p—1n)
Vi Vo Vg | =] =M1 +i42\%) 1-1M A2 . (3.104)
Vie Vis Vo ANM(1 —p—in) —-AN 1
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<y

Figure 3.6: The tree-level Feynman diagram for the process # — u v,

In a recent update of the CKM matrix [4] the following values have been presented

for the four parameters in (3.104)

A = 0.2205,
A = 081,
p = 003,
n = 0.36. (3.105)

The CKM matrix elements calculated from these values are used throughout this

work. unless it is specified otherwise.

3.4 Decay Constants

The values of the decay constants fr, f,, fa)» fi70: fu2s), fp, fp-+ fp, and fp. are
also needed in this study. A recent calculation of most of these values was performed
by Neubert and Stech in [3]. In this section we reproduce their results showing more

details of the calculations.

3.4.1 fa-

This decay constant can be calculated from the pion leptonic decay 7= — p~7, (see

Fig. 3.6). The decay amplitude for this process up to first order is given by
- — .Gr _ = .« -
A(r™ = p7D,) = —175%4 (u#'}'a(l - 75)1),7“) (0|7, v*(1 — vs)uqlm™(p)). (3.106)
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Figure 3.7: The tree-level Feynman diagram for the process 7= — p~ v,

Using the decomposition in (3.1) for the hadronic current we get
A = 57B,) = =i G Vaaf (T B~ 25)05,) (3.107)
By taking the absolute square of A and summing over the spins in the final state we
get
S JAG — )| = 2GRVl Prd(m? = m2). (3.108)
The decay rate is then found by multiplying the above result by the phase space

factor (see C.28). So, we get

9

. m2\°
|Vaal?| f=*mp ms (1—#) : (3.109)

T

|GF|?
87

Using the experimental values for the branching ratio of 7~ — p~7, and the pion

[(7~ — p7,) =

lifetime [6], we calculate the pion’s decay constant to be around 131 MeV. However, in
[6] the decay rate has been extended to include radiative corrections which produced

the following result for the decay constant:

fo =130.7 £0.37 MeV. (3.110)

3.4.2 f,and f,

These two decay constants can be calculated from the semileptonic 7 decays, 7~ —
p~v- and 7~ — ajv,. The amplitude for the first process (see Fig. 3.7) is given by

A(r = pvy) = -iigvud(m,%(l—vs)u,up-mﬂ,ﬂ(l—~,'s)v,,|o>,

= -i—G—FVudmpfp (T, £ (1=1s)u.). (3.111)

V2
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where we have used (3.2) for the hadronic current. After taking the absolute square
of A we sum over the spins in the final state and average over the spins in the initial

state to get

_ _ 2
> A = o7vn)|” =GP IVadlPIf, 2 (m? = m3)(m? + 2m3). (3.112)
Multiplying above by the phase space factor we get the following expression for the
decay rate:
2 2
—— _ . IGFl® 2( ¢ (2,3 my m,
NG p )= Ton Vadl®| fol“m3 | 1 m? 1+2m,2, . (3.113)

The decay rate for 7~ — aj v, is found by replacing p by a; in the above equation.

The experimental values of the branching ratios are taken to be [6, 5]:

BR(7™ - p7v.) = 24.94%£0.16%.
BR(+~ — afv;) = 17.650.32%. (3.114)

This leads to the following values for the decay constants:

fo- =207+ 1 MeV., (3.115)
for =228 £10 MeV., (3.116)

where the uncertainties are due to the experimental errors in the branching ratios,

the lifetime and the mass of a; vector meson.

3.4.3 f and fyes)

The decay constants of these two neutral vector mesons can be found from the fol-
lowing electromagnetic decays: J/w — e*e™ and ¥(2S) — e*e”. The amplitude for

these processes is given by

. 1 _ - a
A(J[v—ete™) = ze2Qc1—)5 (TeYave) (0T U] I/ 0(P)),
2
.€ — -
= 1 p?ch/ﬁfJ/,,;, (‘ll€ ,évc). (311()
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Figure 3.8: The tree-level Feynman diagram for the process J/¢v — et e~

where Q. is the charge of the ¢ quark. In calculating the absolute square of A we
sum over the spins of the two electrons in the final state. Furthermore, we divide by

3 in order to average over the polarizations of the initial state to get

; +.[2 = 2502 2 m}
S A v — ete)| = € Q2 arel® (1425 (3.118)
Mite
The decay rate is then given by
1/2
i a? md mS
T(J/w—ete”) = ———|fysl’ |1 —-12—5— —16—= . (3.119)
3 mi., My /w M/
=8 | furol?
R Fapol® (3.120)
3 mg/w /

By replacing J/w, above, by ¥(2S) we get the decay rate for ¥(2S) — e*e™.

The experimental values of the decay rates are [6]:

[(J/v —ete”) = 35.26£0.37 MeV,
C(w(2S) — ete™) = 2.14+0.21 MeV. (3.121)

This leads to the following values for the decay constants:

fipe = 405 £ 14 MeV, (3.122)
f,’.-,(gs) =282+14 MeV, (3123)

where the uncertainties are due to the experimental errors in the decay rates.
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3.4.4 fp and fp-

Unlike the decay constants considered above, no values for fp and fp. are available
based on experimental measurements. So, we will use the values given in [5] based

on theoretical models predictions:

fp =200 MeV. (3.124)
fp- = 230 MeV. (3.125)

3.4.5 fp, and fp:

For fp,, we use an average of the five measurements (7, 8, 9, 10, 11]. The first four

of these measurements have been corrected in [11]. The result is
fp, =250 £ 27 MeV'. (3.126)

The value of fp. is taken to be
fp; = 275 MeV', (3.127)

as reported in [3] based on theoretical predictions.
The decay constants presented above are summarized in (6.41). These are the

values used throughout this work unless it is specified otherwise.

3.5 Formfactors

Before proceeding to calculate the decay rates and polarization we need the values
of the formfactors. In this study, several theoretical models are used to calculate the
values of the needed formfactors. These are BSW [1, 12], CDDFGN [13], AW [14]
and ISGW [13] models.

Out of these, BSW model is the one used the most by us. This is the original
Bauer-Stech-Wirbel model [1, 12] (called BSW I here) where the formfactors are

a0



calculated at zero momentum transfer and extrapolated to the desired momentum
transfer using a monopole form for all the formfactors. The predicted formfactors in
this model relevant to the processes of interest are shown in Tables 3.1 - 3.4.

We used the other models in studying a limited number of processes. The values

of the formfactors needed for these studies are shown in Tables 3.1 and 3.2.



Table 3.1: BSW I model predictions of Fy(q?) and Fy(¢*) formfactors for transitions
of the type B — P, where P is a pseudoscalar meson.
Transition q? Fo(¢®) Fi(q?)
B—nw 0 0.335 0.335
m? 0374 0.382
m2. 0.381 0.391
m%,, 0470 0.507
m2 s 0.565 0.644
B —n 0 0.309 0.309
m%, 0.345 0.352
m2%. 0.351 0.360
B—1 0 0.256 0.256
m%, 0.285 0.291
m%.  0.291 0.298
B — K 0 0.381 0.381
mye 0526 0.564
m2.,s 0.626 0.706

B—D 0 0693 0.693
m2  0.693 0.693
m2  0.702 0.703
m2  0.717 0.720
m%,  0.756 0.767
mb.  0.767 0.780




Table 3.2: BSW I model predictions of A4q(g%). Ai(g?), A2(¢?). As(q?) and V(g?)
formfactors for processes of the type B — V., where V is a pseudoscalar meson.
Transition ¢ Ao(q®) Au(d) Ax¢) As(d) V()
B—-p 0 0.283 0.284 0.285 0.283 0.330
m?, 0.323 0.318 0.319 0316 0.377
m3,. 0.331 0324 0325 0.322 0.385

m2, 0432 0402 0403 0400 0.499
m2.,s, 0.553 0487 0488 0484 0.635
B—w 0 0281 0282 0282 0281 0.329

m% 0.321 0.316 0316 0315 0.375
m3,. 0.329 0.322 0.322 0321 0.384
B —a 0 0.211 0.199 0.192 0.211 0.278
m% 0.242 0.223 0.215 0.237 0.316
m%. 0.247 0.227 0.219 0.241 0.324

m2,, 0323 0282 0272 0.299 0.420
m2,s, 0414 0341 0329 0362 0.334
B — K~ 0 0322 0329 0332 032 0370

m3,, 0481 0459 0463 0449 0.548

m2,g 0.606 0.549 0.554 0.537 0.686

B— D" 0 0.628 0.656 0.691 0.628 0.708
2 0.628 0.656 0.691 0.628 0.709
m2  0.637 0.665 0.700 0.636 0.719
m2 ~ 0.633 0.679 0.715 0.650 0.736
m%, 0.696 0.718 0.735 0.687 0.784
m%. 0.708 0.728 0.766 0.697 0.797




Table 3.3: BSW I model predictions of Fy(¢q?) and Fj(q?) formfactors for transitions
of the tvpe B, — P. where P is a pseudoscalar meson.

Transition ¢*  Fo(¢®) Fi(¢®)

B; —n 0 0.329 0.329

m3,, 0.355 0.488

m,s 0.342 0611

Bs —1f 0 0.276 0.276

m?,, 0.382 0.409

m?,s 0.454 0.312

B, - K 0 0.269 0.269

mp 0.300 0.307

m?. 0.306 0.314

B, — D, 0 0.646 0.646

2 0.647 0.647
m?  0.655 0.656

m2  0.668 0.672




Table 3.4: BSW I model predictions of Ag(q?), A1(q%), A2(g?), As(¢?) and V(g?)
formfactors for processes of the type B, — V., where V is a pseudopseudoscalar

meson.

Transition ¢  Ao(g®) Ai(g®) Aa(¢®) As(¢®) V()
B, — K~ 0 0231 028 0227 0231 0277
m? 0264 0.255 0.25¢ 0.259 0.315

m?. 0270 0260 0.258 0.264 0.322

0.267 0.267 0.268 0.267 0.314
m?, 0399 0373 0374 0372 0465

mZas) 0502 0447 0447 0445 0.582

B, — D; 0 0376 0395 0.621 0.576 0.663

Bs— o 0
2
J

m2 0.576 0.396 0621 0.576 0.664
m% 0.584 0.603 0.629 0.583 0.673
m? 0.599 0.616 0.643 0.596 0.689
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Chapter 4

Nonfactorization in B — K*J/v
and B; — ¢J/¢ Decays

4.1 Introduction

The 1/N, expansion of hadronic matrix elements has been a very important approach
in the study of weak nonleptonic decays. The leading terms of this expansion are
factorizable into simpler ones, whereas the next to leading terms are not completely
factorizable.

In the standard approach, Fierz transformation and color algebra are used to
transform the non-leading contribution into a factorizable part, which is added to the
leading terms, and a nonfactorizable part which is neglected [1]. This is called the
factorization approximation which is extensively used and sometimes works well.

It was shown by Gourdin, Kamal and Pham (2] that factorization approximation
in all commonly used models of formfactors could not account for the longitudinal po-
larization in B — K™J/v and the ratio (B — KJ/v¥)/(B — K~J/w). Subsequently,
it was shown in [3] that inclusion of nonfactorized terms enabled one to understand
both data in all the commonly used models of formfactors.

Our aim in this chapter is to investigate the nonfactorization contribution to the

o8



processes B — K~J/¥ and E‘,’ — @J/v using the available world averages of decay
rates and polarization. These two processes have similar flavor flow diagrams - see

Fig. 3.5 - with different spectator quarks.

4.2 Formalism

Using the effective Hamiltonian (3.94), which is relevant to the processes of this

chapter, we write down the decay amplitude for B — K™ J/v as

AB— K"J[v) = (K" J[¥|He|B)
— gf'vcbv:;

V2
x [az (K™J/%|(bs)(2c)| BY + C1 (K~ J/2[HP|BY] . (4.1)

where
H® = % T (BA%s) (@A), (4.2)
C
as = \—1 +Cs, (4.3)

N, is the number of colors and A? are the Gell-Mann matrices.

At this point, the number of colors. N = 3, will be taken seriously. Also. instead
of neglecting the nonfactorizable terms (second term in (4.1) and any nonfactorized
contribution to the first term), we paramerize them as in [3]. The parametrization
is done in such a way that we can conveniently combine the factorizable and the

nonfactorizable terms. Explicitly, this means writing the following:

= : M/ . - =v n
(K I[OIHPIB) = — o fupo (2 Spprej € Py PR VO (07)
— (mp + mg-)(€xe-€570) AT ()

+ 2 (€5ce-Pare) (€170-Px-) AT ()] | (4.4)

where

@u = (P8 — P+ )u = (Daje)p- (4.3)
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The nonfactorized contribution to the first term in (4.1) is parametrized analogously
to (4.4) by writing A{""/ in place of AP ete. .
By substituting (3.15) and (4.4) into (4.1) we arrive at the following helicity

. amplitudes
G . -
Ay = ——\/—g-Vcch,%fwmw(mB + mp.)ABE (¢%) [a€y, — b &4,] - (4.6)
G -
As = ZEVuViasfeme(mp +my-)APK (@) (€4, Fey&y], (4.7)

V2
where a, b, ¢, T and y are defined in (3.22).
Here, we introduce the parameters xa,, X4, and xv to parametrize the nonfac-

torization in the three formfactors A;., As and V respectively. These are defined

as
= (AP (m2) + AP () [4FK (m3), (48)
o o= (A (m2) + Z AT (md)) [4£5 (m3). (49)
w = (VO (m2) + ZVOi(md)) [V (m}). (410)

These parameters are related to £4,. 4, and &y. that appear in Ay and Ag, by

fAi = <1 + %XA;') 1= 1~2 .
o

&v = (1 + —l,w) : (4.11)
as

Note that, a departure of £ from unity, or x from zero, signals nonfactorized contribu-
tion. This can been seen by comparing (4.6) and (4.7), above, by (3.99) and (3.100)
that were derived in the previous chapter.
The decay rate and longitudinal polarization are given by
e (Aol? + AP + 1A P) (4.12)
8rm% " 0 + -t
| Aol

Py(B — K"J/v¥) = A AL F AL (4.13)

(B — K™J/v)

A similar formalism applies for the decay —Bg — oJ/v.

60



Table 4.1: The different experimental measurements of the longitudental polarization

(P,) for the process B — K~"J/w. The first error is statistical and the second is

systematic.
Experiment Py(B — K~ J/v)
ARGUS [3] 0.97+£0.16 +£0.15
CLEO II (94) (6] 0.80 £0.08 =0.05
CDF [7] 0.65+0.10+0.04

CLEOII (97) [8]  0.52+0.07 + 0.04

4.3 B — K*J/vy Decay

The decay B — K"J/v proceeds through both the charged channel B~ — K=~ J/v
and the neutral channel B° — K J /v (see Fig. 3.3). The available experimental
values for the branching ratios of these two decay modes are (1.67 &+ 0.35) x 1073
and (1.49 + 0.22) x 1073 [4], respectively. For the purposes of this chapter. we take
the weighted average of these two values as the experimental value for the branching

ratio of the process B — K™J/%. The result is
B(B — K~ J/v)=(1.54£0.19) x 1077 . (4.14)

Regarding the longitudinal polarization, several measurements have been made
with varying results, as shown in Table 4.1. From these measurements, we obtain the

following average for P,

Po(B — K~ J/v) = 0.66 £ 0.05 . (4.15)

Since nonfactorization is introduced through three parameters (x 4,, x4, and xv)
and only two constraints (branching ratio and longitudinal polarization) are available,

we find that physics here is a little involved.
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Table 4.2: Values of the nonfactorization parameter x4,. calculated in each theoret-
ical model, that explain the available experimental branching ratio and longitudinal
polarization for the process B — K™J/v. The other two nonfactorization parameters

(x4, and xy) were assumed to vanish.

Model fit branching ratio fit polarization

Solution 1  Solution 2 | Solution1  Solution 2

BSW I 0.07+0.02 -0.17£0.02 | 0.02£0.02 -0.07+0.02
BSW II 0.084+0.02 -0.16+0.01]0.06£0.03 -0.07+0.02
CDDFGN | 0.15+£0.02 -0.25+0.02 | 0.07+£0.03 -0.12+£0.04
AW 0.10£0.02 -0.16+0.01|0.114+£0.05 -0.08+0.02
ISGW 0.154+0.02 -0.20+£0.02 |0.124+0.05 -0.07£0.02

4.3.1 Nonfactorization in One Formfactor

The simplest approach is to assume that only one formfactor has nonfactorizable
contribution. We consider this case first. In each of the five models. we find that
allowing only one of x.,, x4, and xv to be nonzero, one could fit the branching
ratio B(B — K~ J/v) with appropriate amounts of nonfactorized contribution. The
results of this study are shown in Tables 4.2 - 4.4. For example. in BSW I model
(x4, = 0.07£0.02, x4, =0, xv = 0), (x4, =0, x4, = 042£0.04, xy = 0) or
(x4, = 0. x4, = 0, xy = 0.45 £ 0.07) are the positive solutions that would fit the
experimental branching ratio in (4.14).

A similar study has been done using the current world average of longitudinal po-
larization in (4.15). In Table 4.2, we show the values of the nonfactorization parameter
X4, needed to reproduce the polarization value, assuming that x4, = xv = 0. Ta-
ble 4.3 shows the results of a similar study regarding x4,. However, assuming that
X4, = X4, = 0, and xy # 0, we can see from Fig. 4.1 that it is difficult to find ac-
ceptable values of xy that produce large enough polarization to fit the experimental

results.
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Table 4.3: Values of the nonfactorization parameter x 4,, calculated in each theoret-
ical model, that explain the available experimental branching ratio and longitudinal
polarization for the process B — K~J/v¥. The other two nonfactorization parameters

(x4, and xv) were assumed to vanish.

Model fit branching ratio fit polarization
Solution 1  Solution 2 | Solution1  Solution 2
BSW I 0.42+0.04 -0.20+0.04 | 0.24 £0.07 -0.02+0.02
BSW II 0.28+£0.02 -0.16+0.03|0.16£0.05 -0.05+0.02
CDDFGN | 0.63£0.05 -0.41+£0.05]0.32+£0.09 -0.09+0.04
AW 0.21 £0.02 -0.15%+0.02 { 0.13£0.04 -0.08+0.02
ISGW 0.25+£0.02 -0.214+0.02}0.11+£0.03 -0.07+0.02

Table 4.4: Values of the nonfactorization parameter v, calculated in each theoretical
model. that explain the available experimental branching ratio for the process B —

K~J/v. The other two nonfactorization parameters (x4, and x.,) were assumed to

vanish.
Model fit branching ratio
Solution 1  Solution 2

BSW I 0.45+0.07 -0.61 £0.05
BSW II 0.29+0.04 —-044+£0.03
CDDFGN | 0.26 £0.04 -0.42+0.03
AW 0.18+0.03 -0.33+0.03
ISGW 0.31£0.04 -0.46+0.04
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CDDFGN——=———=~

Polarization

Figure 4.1: Polarization for the process B — K"J [v with (x4, = xa, = 0), plotted
as a function of xy for each model. Horizontal lines define the measured value to one

standard deviation.

In order to have a better picture of the results produced so far in this chapter,
we combine in Fig. 4.2 the solutions of the nonfactorization parameter x4, presented
in Table 4.2. We also do a similar combination in Fig. 4.3 for the solutions of the
nonfactorization parameter x 4, presented in Table 4.3.

In Fig. 4.2, the horizontal axis corresponds to the nonfactorization parameter x4,.
while the vertical axis differentiates between the various models considered. Each dot
in the figure represents a solution of X 4,. The larger dots are the solutions calculated
from the branching ratio measurement, whereas the smaller ones are the solutions
calculated from the polarization measurement. The error bars represent one standard
deviation uncertainty.

From Fig. 4.2 we see that the negative solutions of x4, that fit the experimental
branching ratio and those that fit the longitudinal polarization do not overlap for
any of the five models considered. This means that the negative solutions of x4,
can not explain the available data on branching ratio and longitudinal polarization

simultaneously. The positive solutions, on the other hand, can explain both branching
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Figure 4.2: Values of the nonfactorization parameter x.4,, calculated in Table 4.2,
that explain the available experimental branching ratio and longitudinal polarization
of the process B — K"J/v. The larger dots are the solutions calculated from the
branching ratio measurement, whereas the smaller ones are the solutions calculated

from the polarization measurement.

ratio and polarization at the same time in three models (BSW II. AW and ISGWV).

In Fig. 4.3. where the horizontal axis corresponds to the nonfactorization pa-
rameter x.,. we notice a lack of overlap between the solutions of Y4, that fit the
experimental branching ratio and those that fit the longitudinal polarization for all
the models considered. So, by assuming that nonfactorization is present only in A,
formfactor, we can not explain the available experimental data on branching ratio
and polarization simultaneously.

For the sake of completeness we show in Fig. 4.4 the solutions of the nonfactoriza-

tion parameter xy, that fit the experimental branching ratio, presented in Table 4.4.
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Figure 4.3: Values of the nonfactorization parameter y,.,. calculated in Table 4.3,
that explain the available experimental branching ratio and longitudinal polarization
of the process B — K~J/vw. The larger dots are the solutions calculated from the
branching ratio measurement, whereas the smaller ones are the solutions calculated

from the polarization measurement.

- —e— | BSW I
- —— BSW II
- - CDDFGN
- -.- AW
- - ISGW
-0.6 -0.4 -0.2 0 0.2 0.4
Xv

Figure 4.4: Values of the nonfactorization parameter xy, calculated in Tables 4.4,

that explain the available experimental branching ratio of the process B — K™J/v.
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4.3.2 Nonfactorization in All Formfactors

Next, we assume that nonfactorization is present in all formfactors (4,, A, and V'). In
order to do a systematic study, we draw the regions in x4, - X4, space that produce
the experimental value for the branching ratio. Also, in the same space. we draw
the regions that produce the experimental polarization. This is done for six different
values of xv in each model. The results are shown in Fig. 4.5 - 4.9. In these figures,
the branching ratio demands that the allowed region in x4, — x4, space lies between
two ellipses, whereas the region allowed by the polarization measurement lies between
two pairs of open curves. Thus, in general, there are four solutions where the domain
allowed by the branching ratio overlaps with the domain allowed by the polarization.

Let us start by studying Fig. 4.5 which was generated using BSW I model. From
this figure, we notice that nonfactorization in only one formfactor is not enough to
explain both branching ratio and polarization at the same time. Nonfactorization in
at least two formfactors is needed. This is consistent with the findings of the previous
subsection. The graphs in Fig. 4.5 also suggest upper and lower bounds on the values
of the nonfactorization parameters x4,. X1, and xv. The value of y4,, for example.
varies between —0.25 and 0.10 whereas x4, has a larger range. from —0.80 to 0.60.
The lower and upper bounds on xy are —0.45 and 0.30 respectively. Even though it
is not shown in Fig. 4.5, this is due to the lack of overlap between the regions that
explain branching ratio and those that explain polarization for values of yy smaller
than —0.45 or larger than 0.30.

From Fig. 4.6, we see that in BSW II model the ranges of validity of the nonfactor-
ization parameters X4,, X4, and yy are smaller than that in BSW I model. We also
notice that, nonfactorization present in x 4, only is sufficient to explain experimental
data. This can be seen from the graph corresponding to xy = 0 where one of the
four areas of overlap lies on the r-axis, i.e. x4, = 0.

From Fig. 4.7, we see that in CDDFGN model the ranges of validity of the non-

factorization parameters x4, and x4, are large compared to those in BSW I model.
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However, v has a smaller validity range. We also notice that. similar to the BSW I
model, nonfactorization present in only one formfactor is not sufficient to explain
experimental data.

Regarding AW model, we see from Fig. 4.8 that the range of validity of the non-
factorization parameters xv is the smallest of all the models considered. Also, we see
from the graph corresponding to xy = 0, that the experimental values of branching
ratio and polarization can be explained be assuming nonfactorization in x4, only.
This later point is also true for the predictions of the ISGW model as can be seen

from Fig. 4.9.

4.3.3 Polarization Contours

Another way to display our results is shown in Fig. 4.10. In this figure, we plotted the
regions in z - y plane (r and y are defined in (3.22)) allowed by the polarization data
for different choices of the nonfactorization parameters x4,, Y4, and xv. The two
shaded regions in each graph correspond to the factorization approximation xa, =
X4, = Xv = 0. As we can see, all models lie outside the shaded areas, and the model
that gives a prediction closest to the world average of longitudinal polarization is
BSW I model. _

If a small positive value is given to x4, only, the allowed regions in r - y plane
move to the right as in Fig. 4.10 a. So. by choosing an appropriate value for x4,
between 0 and 10%. the prediction of any of the models considered can be fitted to the
experimental value. Similarly, Fig. 4.10 b demonstrates how the predictions of the five
models can be fitted to the experiment by choosing a value for x4, between 0 and -8%
while the other two nonfactorization parameters are taken to be zero. In Fig. 4.10 ¢,
we see the allowed regions in z - y plane resulting from a -8% nonfactorization in xv
only. This region contain BSW I and CDDFGN models only. Actually, this is the
best that can be done with xy and, as can also be seen from Fig. 4.1. no other model

can be fitted to the experiment by choosing different values for xy. In Fig. 4.10 d,
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Figure 4.5: Regions in x4, — x4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process B — K~J/v¢

assuming BSW I model. Each of the six graphs represent a different value for xv.

69



T

-0.5
-1
-0.5 0 0.5
XA
1t xv = -0.078

7

L

\

X4, XA,

Figure 4.6: Regions in x4, — x4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process B® — K*0J/v

assuming BSW II model. Each of the six graphs represent a different value for yy.
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Figure 4.7: Regions in x4, — X4, Space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process B® — K*0J/v

assuming CDDFGN model. Each of the six graphs represent a different value for xy.
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Figure 4.8: Regions in x4, — x4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process B® — K*0J /v

assuming AW model. Each of the six graphs represent a different value for xy.
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Figure 4.9: Regions in x4, — x4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process B® — K=0J/v

assuming ISGW model. Each of the six graphs represent a different value for yy.
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we show the allowed regions = - y plane that correspond to x4, = 3%. x4, = —3%
and xyy = —3%.
The values of xa4,,X4,, and xv chosen above are only to illustrate the effect of

nonfactorization on longitudinal polarization.

44 B’ — ¢J /¢ Decays

$

Not much is known about the decays of the B, meson. To the best of our knowledge,
the available values for the branching ratio and longitudinal polarization of the decay
B — oJ/v are [9, 7]

B(B, — ¢ J/v) = (0.93£0.33) x 1073 (4.16)

and
Py(Bs — o J[/v) =0.56 £0.21 . (4.17)

respectivelyv. Even though these experimental results have relatively large errors,
they are still useful for the purposes of our study and they can be used to investigate
the importance of the nonfactorization contribution in the decay _E(: — oJ/w. The
analysis done in this section is similar to that performed in the previous one for the

process B — K~J/v.

4.4.1 Nonfactorization in One Formfactor

In the first part of this analysis, we assume that only one formfactor contains nonfac-
torization contribution. By solving for the corresponding nonfactorization parameter
using the experimental value for the branching ratio and longitudinal polarization, we
arrive at the results in Tables 4.5 - 4.7. The first two columns of data in Table 4.3, for
example, correspond to the values of the nonfactorization parameter yx4,, calculated
in each theoretical model considered, that can explain the experimental branching

ratio (of course x4, and xy are taken to be zero). Fig. 4.11 shows the longitudinal

74



Figure 4.10: Regions in r - y plane allowed by experimental data on polarization
for the process B — K~J/v. The shaded region between the two solid curves in
each graph correspond to the factorization approximation x4, = x4, = xv = 0.
The regions between the dashed curves in each graph corresponds to (a) x4, =
0.10, x4, = xv =0, (b) x4, = —0.08,x4, = xv =0, (¢) xv = —0.08, x4, = X4, =0,
(d) x4, =0.03, x4, = xv = —0.03. The dots represent predictions of the theoretical

models.



Table 4.5: Values of the nonfactorization parameter x4,, calculated in each theoret-
ical model, that explain the available experimental branching ratio and longitudinal
polarization for the process 'E‘,’ — oJ/v. The other two nonfactorization parameters

(x4, and xv) were assumed to vanish.

Model fit branching ratio fit polarization

Solution 1  Solution 2 Solution 1 Solution 2

BSW I 0.07+0.03 —0.17+£0.03 { 0.002£0.042 -0.07+£0.02
BSW II 0.07+0.03 -0.16+0.03| 0.04£0.06 -—0.07%0.02
CDDFGN | 0.11+£0.04 -0.224+0.04 | 0.05+0.07 -0.11%0.05
AW 0.05+0.03 -0.13£0.02| 0.07+£0.08 -0.08£0.03
ISGW 0.15+0.04 -0.23+0.04] 0.06£0.08 -0.07%0.03

polarization, in each model, as function of xy when both x4, and x4, are assumed
not to contribute.

As we did in the previous section, the results presented in Table 4.5 regarding the
amount of nonfactorization in A;, are combined in Fig. 4.12. Similarly, in Fig. 4.13 we
combine the solutions of the nonfactorization parameter x 4, presented in Table 4.6.

From Fig. 4.12 we see that the negative solutions of x4, that fit the experimental
branching ratio do not overlap with those that fit the longitudinal polarization except
in the case of AW model. This means that, similar to the case of B — K™J/v decay,
the negative solutions of x4, do not seem to explain the available data on branching
ratio and longitudinal polarization simultaneously. The positive solutions, on the
other hand, can explain both branching ratio and polarization at the same time in
all the models considered.

In Fig. 4.13, which corresponds to assuming nonfactorization in As only, we notice
that there are no overlaps between the solutions of x4, that fit the experimental
branching ratio and those that fit the longitudinal polarization in four of the five

considered models. In the case of AW model, a 20% or -10% nonfactorization in x4,
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Table 4.6: Values of the nonfactorization parameter x4,, calculated in each theoret-
ical model, that explain the available experimental branching ratio and longitudinal
polarization for the process _E(: — @J/¥. The other two nonfactorization parameters

(x4, and xv) were assumed to vanish.

Model fit branching ratio fit polarization
Solution 1  Solution 2 | Solution 1 Solution 2
BSW I 0.454+0.07 -—0.21+0.08|0.25+0.09 —0.003+0.053
BSW II 0.304+0.05 —0.17+£0.05)|0.16+£0.06 —0.04+£0.04
CDDFGN | 0.55+0.09 -0.33+0.10|0.30+0.12 —0.0740.08
AW 0.21£0.04 -0.11£0.05|0.16£0.07 —0.06+0.05
ISGW 0.36 +0.06 —0.28+0.06|0.13+0.06 —0.05+£0.04

Table 4.7: Values of the nonfactorization parameter xy . calculated in each theoretical
model, that explain the available experimental branching ratio for the process 1—32 —

®J/v. The other two nonfactorization parameters (x.4, and x.,) were assumed to

vanish.
Model fit branching ratio
Solution 1  Solution 2

BSWI 040£0.12 -0.56+0.11
BSW II 0.25+£0.08 -—0.41+0.07
CDDFGN 0.18+£0.06 -0.34+0.06
AW 0.09+0.05 -0.25+0.04
ISGW 0.36 £0.09 -0.51+0.09
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Figure 4.11: Polarization for the process F: — oJ /v with (x4, = x4, = 0), plotted
as a function of xy for each model. Horizontal lines define the measured value to one

standard deviation. See Fig. 4.1 for legend.

can predict both experimental branching ratio and polarization simultaneously.

The solutions of the nonfactorization parameter xy, that fit the experimental
branching ratio are presented in Table 4.7. They are also displayed in Fig. 4.14.
However, unlike the decay considered in the previous section, most of the models
considered can predict the experimental polarization within error by assuming appro-
priate nonfactorization present only in xy. Only ISGW model failed to predict the

experimental polarization for any value of xy. This can be seen clearly from Fig 4.11.

4.4.2 Nonfactorization in All Formfactors

In the second part of this analysis, we assume that nonfactorization is present in A;,
As and V formfactors. The regions in x4, - x4, space that produce the experimental
value for the branching ratio, and those that produce the experimental value for
longitudinal polarization are generated for six different values of xy. The results for

each of the five models considered are shown in Fig. 4.15 - 4.19. As we saw before
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Figure 4.12: Values of the nonfactorization parameter x,4,. presented in Table 4.5,
that explain the available experimental branching ratio and longitudinal polarization

of the process F(: — oJ /.
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Figure 4.13: Values of the nonfactorization parameter x4,, calculated in Table 4.6,
that explain the available experimental branching ratio and longitudinal polarization

of the process F? — oJ /.
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Figure 4.14: Values of the nonfactorization parameter xv, calculated in Table 4.7,

that explain the available experimental branching ratio of the process 1—32 — oJ/fv.

for the case of B — K™J/v decay, the branching ratio demands that the allowed
region in x4, — X 4, Space lies between two ellipses, whereas the region allowed by the
polarization measurement lies between two pairs of open curves. Thus, in general, by
fixing v there are four solutions for x,, and x4,.

If we begin by Fig. 4.15, which was generated using BSW I model, we notice that,
unlike the decay B — K~J/v, nonfactorization in A, only is enough to explain both
branching ratio and polarization at the same time. This can be seen from the graph
corresponding to xv = 0 in Fig. 4.15 where one of the four solutions lies on the
Xa,-axis. On the other hand, we see that nonfactorization in A, or V' only can not
fit the experimental data, which is also consistent with previous subsection’s results.
As also suggested by Fig. 4.15, the upper and lower bounds on the value of x4, are
—0.30 and 0.10, respectively, x4, has a larger range, from —0.80 to 0.70, and xv
varies between —0.50 and 0.40.

From Fig. 4.16, we see that in BSW II model the ranges of validity of the non-

factorization parameters xa4,, X4, and xy are smaller than that in BSW I model.
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This was also the case for the decay B — K™.J/v considered in the previous sec-
tion. We also notice that, nonfactorization present in A; only is sufficient to explain
experimental data.

From Fig. 4.17, we see that in CDDFGN model the ranges of validity of the
nonfactorization parameters x4, and x4, are large compared to those in BSW I
model. However, xy has a smaller validity range. We also notice that, similar to the
BSW I model, nonfactorization present in A; only is sufficient to explain experimental
data.

As for the AW model, Fig. 4.18 suggests that xy has the the smallest range of
validity amongst the models considered in this work. Also the graph corresponding
to xy = 0 shows that the experimental values of branching ratio and polarization can
be explained be assuming nonfactorization in A; only or A5 only.

In ISGW model, we seen from Fig. 4.19 that x 4, has a relatively large range. Also,

notice that nonfactorization in A, only is sufficient to explain experimental data.

4.4.3 Polarization Contours

The third part of this analysis is displayed in Fig. 4.20. In this figure, we plotted
the regions in z - y plane allowed by the polarization data for different choices of the
nonfactorization parameters xg4,, X4, and xv. The two shaded regions in each graph
correspond to the factorization assumption (x4, = x4, = xv = 0). As we can see,
both BSW I and BSW II models lie inside the shaded areas suggesting that, in these
two models, nonfactorization is not needed to explain the polarization data. However,
as can be seen from Fig. 4.20, by assuming a small positive nonfactorization in A;
and/or small negative nonfactorizations in x4, and xy all models will be able to fit

to the experimental results of polarization
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Figure 4.15: Regions in x4, — x4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process E(: — oJ/v

assuming BSW I model. Each of the six graphs represent a different value for xv.
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Figure 4.16: Regions in x4, — X4, Space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process P*j — oJ[v

assuming BSW II model. Each of the six graphs represent a different value for xy.
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Figure 4.17: Regionsin x4, — X4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process F(: — oJfv

assuming CDDFGN model. Each of the six graphs represent a different value for xv.
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Figure 4.18: Regions in x4, — X4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process FS — oJ[v

assuming AW model. Each of the six graphs represent a different value for xv.
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Figure 4.19: Regionsin x4, — X4, space bounded by experimental data on branching
ratio (ellipses) and polarization (open pairs of curves) for the process _Bg — oJ/v

assuming ISGW model. Each of the six graphs represent a different value for xv.
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Figure 4.20: Regions in r - y plane allowed by experimental data on polarization for
the process Te*j — @J /. The shaded region between the two solid curves in each
graph correspond to the factorization approximation x4, = x4, = Xv = 0. The
region between the dashed curves in each graph corresponds to (a) x4, = 0.02, x4, =
xv = 0, (b) x4, = —0.03, x4, = xv =0, (¢) xv = —0.08,x4, = x4, = 0, (d)
x4, = 0.01,x4, = xv = —0.01. The dots represent predictions of the theoretical

models.



4.5 Discussion

Since only the world averages of branching ratio and longitudinal polarization of the
decay B — K~J/v are considered, one can at best derive a constraint between any
two of the three nonfactorization parameters x4,, X4,, and xy. The values of these
parameters depend on the theoretical values of the formfactors 4,, A2 and V. Due
to the fact that of the three parameters, a, b and c (see (3.22)). a is the largest, it is
most economical (largest effect for the least amount) to put nonfactorization in x4, .
We saw that (7 - 15)% nonfactorization in x4, only allows most of the formfactor
models to be consistent with the branching ratio and longitudinal polarization data.

We analyzed the decay B — K~J/v in three ways. In the first way, we assumed
that only one formfactor has nonfactorization contribution. Then, we solved for the
corresponding nonfactorization parameter using the available world average on the
branching ratio and then using the available world average on the longitudinal polar-
ization. What we found is that by assuming nonfactorization in 4, alone or 1" alone
we can not explain branching ratio and polarization simultaneously. Appropriate
positive nonfactorization in A;, however, can fit the experimental data in the BSW
II. AW and ISGW models.

In the second way, we plotted the regions in x4, - x4, space that explain the
experimental branching ratio and those that explain the experimental polarization
for different choices of xv (-0.40, -0.20, -0.078, 0, 0.10 and 0.30). This was repeated
for each of the formfactor models considered. From the graphs generated in this
analysis we were able to set limits for the three nonfactorization parameters x4,.
XA,> and xy. The limits depend on the model used.

In the third way, we made use of the fact that longitudinal polarization de-
pends only on the following ratios of the formfactors: r = Ay(m2)/Ai(m2) and
y = V(m%)/Ai(m%). The regions in r-y space that explain the experimental po-
larization by assuming factorization and nonfactorization were drawn. The results

showed the need for nonfactorization in order to explain the data.
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Regarding the decay B, — ¢J/v, a similar analysis as above was performed. The
errors in the experimental values for this process are relatively large which resulted
in less precise conclusions specially those obtained from the polarization contours.

However, the two processes B — K~J/v and B, — ¢.J/v turned out to be similar
in the amount of nonfactorization needed to explain the experimental data. This
suggests that the nonfactorization parameters do not depend strongly on the light

degree of freedom in such processes.
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Chapter 5

Nonfactorization and Final State
Interactions in (B, Bs) — ¥ P and
1YV Decays

5.1 Introduction

It was shown in [1, 2] that factorization approximation used in conjunction with
formfactors derived in most commonly used models failed to account for the ratio
(B — ¥K)/(B — ¥K™) and the longitudinal polarization I'; /T in B — ¥ K™ decays.
Subsequently, it was realized [3] that nonfactorized contributions could play an im-
portant role in these color-suppressed decays, and it was demonstrated [4, 5, 6] how
such contributions could lead to an understanding of B — wA™ and ¥ A data.

Our aim in this work is to investigate the role of nonfactorization and, where
relevant, final state interactions (fsi). The most recent CLEO data [7] enable us a
complete amplitude analysis of B — ©wK™ decay. We use this to determine the three
partial wave amplitudes, S, P and D, and the two relative phases. We exploit this
knowledge in our work (see [6] for a more restricted analysis).

With the knowledge gained from the study of B — ¥ A and ¥ K™ decays, we have
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also investigated the processes B, — ¥, ¥r/, wé with special emphasis on the role
of nonfactorization. Furthermore, we have extended our analysis to channels with

¥(2S), instead of ¥, in the final state.

5.2 (B, B;) — ¢ (¥(2S))P Decays

We begin with the formulation for B decays involving % (or ¥(2S5)) and a pseudoscalar

particle in the final state. The decay amplitude, in the notation of [3], is written as

A(B —¥P) = (¥P|He|B)

= SEvaVa [ax (wPIEs)EB) + C (wPIHOIB)] . (5.1

where the brackets (bs) etc. represent (VV — A) quark currents and
HE = %za:(sz\"s)(é)‘“c). (5.2)
a = ‘\7‘ L0, (5.3)

N, is the number of colors (taken to be 3) and A* are the Gell-Mann matrices. C

and C, are the standard Wilson coefficients for which we take the values [3],
C; =1.12+0.01, Co = —0.27 £ 0.03, (5.4)

which are consistent with the choice in [8].
While the second term in (5.1), the matrix element of H!{®), is nonfactorized. the
first term receives both factorized and nonfactorized contributions [9]. We introduce

the following definitions to proceed further,

(¥](ee)|0) = emyfs, (5.5)

- 2 _m2 2 .2
(PI(B)B) = (p3+pp—ﬂ'—??1‘-€q) FPP(@) + =2 L quFP7(2).(5.6)
I

The first matrix element in (3.1) is then written as
(wP|(bs)(zc)|B) = (Pl(bs)|B){(¥l(zc)[0) + (¢P(bs)(cc)| B)" (3.7)
= 2myfoCpleps) [FPF () + F{M ()], (5.8)
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where we have defined
(WP|(bs)(ec)|B)™ = 2my foCr(e.pp)Fi ™ (47). (5.9)
In (5.8) and (5.9), Cp has the following values,

\[%—(c050p+7155in0p) P=nq
Cp= \/g(VIE cosfp — sin0p) P=rv (5.10)
1 P=K% K+

with the 7 — 7/ mixing angle §p = —20°. The superscript (1) in F{""*/(¢?) denotes

‘color-singlet’. The nonfactorized matrix element of H®) is parametrized as
(wP|HSB)Y = 2my fuCrle.ps) ™ (). (5.11)

In terms of the definitions in (4) - (8). the decay amplitude for B — ¥P is written

as
o Gro. . ]
A(B — vP) = 7% 2 Vesas' 2m foCole.ps) FEE (), (5.12)
'h
. 11 F™(g2) ¢ F9(g?)
H a1+ Fa + — 55— - 5.13
e P M TP (513

As a short-hand notation. we introduce two parameters xr, and £, as measures

of nonfactorized contributions, as follows:
C -
a5’ = ay (1 + zl-xn) = axéF, . (3.14)
2

where,

y _a F"M(2) | F(g?)
A =CIFPP() ~ FPP(¢d)

Note that as C/as is of the order of 10, the nonfactorized contribution from color-

octet current is greatly enhanced. A departure of { from unity, or xr, from zero,

signals nonfactorized contribution.

93



In terms of the quantities defined in (5.8) - (5.13), the decay rate for the exclusive
channel B — ¥P is given by,

€ 2 2 -

as'!|" FAICRPIRE |FEP(mE)",  (5.16)

o G
[(B — uP) = 2= |Va'|Vasf?

where |k| is the momentum of the decay products in B rest-frame.
Other parameters we used were, V, = 0.974, V; = 0.04 [10], f, = 0.384 £0.014
GeV and f¢(25) =0.282+0.014 GeV [11].

5.2.1 B — ¢(¢¥(2S))K decays

We first consider the decay B* — @R+ whose branching ratio is more precisely
measured than that of the neutral mode [10]. The decay rate formula for this process,
(5.16), can be rearranged and written as
JIL(B* — vK+)
¢ = (78.422 x 10'2 GeV ™2 sec—1)1/2 |V ||Vp|aa fo FEE (M)’

A departure of £, from unity signals the failure of the factorization assumption

(53.17)

for a particular model-value of the formfactor. We emploved five different models
for FB¥(m2). They were: (i) BSW I [12], where the formfactors are calculated at
¢*> = 0 and extrapolated using a monopole form with the pole masses given in [12],
(ii) BSW II. where a dipole extrapolation is used for Fj(g?), A2(¢?) and V(q?), with
the same pole masses as in [12], (i77) CDDFGN [13] , where the normalization of
the formfactors are extrapolated using a monopole form, (iv) AW [14], where the
formfactors are evaluated at the zero-recoil point corresponding to the maximum
momentum transfer and then extrapolated down to the required ¢ using a monopole
form, and (v) ISGW [13], where the formfactors are calculated at the maximum g2
and extrapolated down to the needed value of ¢®> with an exponential form. The
predicted formfactors in these five models relevant to the processes of interest are
shown in Tables 5.1 and 3.2.

We allowed FZ%(m2) to vary continuously and determined the allowed values

of €, from data. The results are shown in Fig. 5.1, where the dots represent the

94



Table 5.1: Model predictions of formfactor Fi(q?) at ¢* = m? or m?,5,. In CDDFGN
model, n stands for 7g, the octet member. This scheme cannot handle 7, the flavor

singlet.

BSWI BSWII CDDFGN AW ISGW

Bt — yK* 0.565 0.837  0.726  0.542 0.548
Bt - w(2S)K* 0.707  1.31 0.909  0.678 0.760
B — v 049  0.726 0.771  0.534 0.293
B® — w(2S)n 0613  1.14 0.964  0.668 0.475
B? — vnf 0.411  0.609 — 1.06 0.463
B® — u(2S)y 0514 0954 — 1.33  0.752

values of F2K(m2) in various models which read from the left, AW, ISGW, BSW I,
CDDFGN, and BSW II, in that order. g, different from unity (or x s, different from
zero), signals presence of nonfactorization contributions.

We repeated the above analysis for B® — wK? and Bt — ©(25)K*. The results
are displayed in the plots of Fig. 3.2. For B* — @K™, this is simply another way to
display the results shown in Fig. 5.1. In Fig. 5.2 we have plotted the branching ratios
predicted in the five different models we have considered against the parameter &g, .
One can read-off the amount of nonfactorization needed to understand the measured
branching ratios in each model. Clearly, nonfactorized contributions are needed to
explain data. For example, B* — @K™ branching ratio requires that the nonfactor-
ization parameter £p, is in the range (2 - 3.5), while B® — ¥wK? data require &g, to
be in the range (1.5 - 3). BSW II model requires the least amount of nonfactorization
due to the fact that a dipole extrapolation of the formfactors allows the factorized

term to be larger thereby reducing the necessity for the nonfactorized contribution.



Table 5.2: Model predictions of A;(m2), As(m?). and V(m2) formfactors for the
processes B — yK~. B — ¥(2S)K™ and B, — vo
A Ay |14 I y
BSW I 0.458 0462 0.548 1.01 1.19
BSW II 0.458 0.645 0.812 141 1.77

B — vK~ CDDFGN 0.279 0.279 0.904 1.00 3.24
AW 0425 0.766 1.19 1.80 2.81
ISGW 0.316 0.631 0.807 2.00 2.56

BSWI 0349 0354 0.685 1.01 1.25
BSWII 0349 0924 1.27 1.68 2.32
B — ¥(2S)K~ CDDFGN 0.334 0.334 1.13 1.00 3.39
AW 0.509 0916 1.49 1.80 2.94
ISGW 0.438 0.875 1.12 2.00 2.56
BSWI 0374 0375 0466 1.00 1.24
BSWII 0374 0523 0691 1.40 1.85
B, — o CDDFGN 0.265 0279 0919 1.05 3.47
AW 0.449 0.703 1.34 1.56 2.98
ISGW 0.237 0.396 0.538 1.67 2.35
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Figure 5.1: Allowed region (bounded by the two curves) of {r as a function of
FBP(m2) defined by Bt — K*y. The dots show the model predictions of the
formfactors; from left to right: AW, ISGW, BSW I, CDDFGN, BSW II.
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Figure 5.2: Branching ratios as functions of £r, in each model. Horizontal lines define

the branching ratio bounds to one standard deviation. Data from [10] for B — v K

and [16] for B — ¥(2S)K
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Figure 5.3: Branching ratios as a function of {z, in each model. In CDDFGXN model,

n stands for ng and there is no prediction for n’. See Fig. 3.2 for legend.

5.2.2 B, — ¥ (¥(25))n,n7' Decays

The analysis of the branching ratio data for B — ©(x(2S)K decays can be used to
predict the branching ratios for B, decays into ¥ or ©(25) and 7 or 7/ if we assume
that the amount of nonfactorized contribution is approximately independent of the
light flavor. The calculation proceeds in a straight forward manner. We show the
results in Fig. 5.3 where the branching ratios for B, — (wn), (¥(2S)7n),(vn') or
(w(2S)1') are plotted as functions of £, for the five models we have considered.

For a given £r,, BSW II model produces the largest branching ratios for B, —
w(¥(25))n. For B, — w(w(2S))n decays, the largest branching ratios for a given &g,
are generated in the AW model followed by those in BSW II scheme. In order to get
some feel for the predicted branching ratios, we have presented the model-averaged

branching ratios in Table 5.3 for { = 1 (factorization), £, = 2 and &g = 3.
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Table 5.3: Average branching ratios predicted by the theoretical models for three

choices of &p, .

(Factorization) (§p, =2) (&€r = 3)

x10~3 x10-3 x10~3
B(B, — vn) 0.037 0.15 0.33
B(B, — v(25)7) 0.017 0.07 0.16
B(B, — vn') 0.084 0.34 0.76
B(B, — w(25)n') 0.032 0.13 0.28

5.3 (B, B;s) — ¢¥(¥(2S)V Decays

The decay amplitude for B — ¥V in the notation of 3] is

AB = wV) = LV Viamef, (5.18)

V2

. C .
X {(mg + my)(€]-€3) (_4fV(mi)+A(11)nf+ 0_21‘4(18) f)

(55-(.173 —pv))(e1.(ps + pv)) 4BV 2 g(Lnf C . (B)nf)
(mp + my) (-42 (my)+ 427 + - )

C

2 - - ' ) ] \
e,,,,ugel“e{’pf,pg (VB" (mi) + Vnf 4 _1V(8)nf)} .

(m B+ mv) as
In (5.18), €; and e are the ¥ and V polarization vectors respectively. A8V, A8V and
VBV are the formfactors defined in [12] which contribute to the factorized part of the

AR 48" and VBInf are the nonfactorized contributions arising

decay amplitude.
from the color-octet current products (€c)(sb), the analogues of F; fs)"f in (3.11). And
AW 4D and VWIS are the analogues of F{P™ in (5.8).

The following definitions [5], in analogy with Eq. (5.14), facilitate shorter forms

for the equations that follow.

o= 1l 2 = 14 Dy, 1=1,2)
¢ 27 m2) ¥ o APV (2 ‘
vnf C, V@nf Cy
= lteogrrm—rt— 55— = 1+ —Xxv. 2.19
& T ) T e V) = Lt X (519)
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B — 3V decays can be discussed in three equivalent basis-amplitudes: Helicity
basis (Ho, H,, H.), Trasversity basis (Ao, Aj. AL), and Partial-wave basis (S, P, D).
They are related through the following definitions [17, 18],

1 2
Hy = ——\/?S‘l‘ §D
H, = Ys+1pilp (5.20)
v = BTAR T >

1 1 1
H = -—=S——P+—D,

V3 V2 V6

Ao = Ho - —-\%3:5'*' \/%D
1 2 1 =

4 = —\/——2-(H+ +H.)= 55 + %D (5.21)
1

.44_ = ﬁ(H-‘.—H_):P

All amplitudes in (5.20) and (5.21) are, in principle, complex, their phases defined
by the following (total angular momentum J = 0, uniquely determines the spin

angular momentum once the orbital angular momentum is specified):

S = |Sle”s
P = |P|e®P (5.22)
D = |D|e?n.

The process of generating complex amplitudes in terms of és. 6p and ép is as
follows: Helicity amplitudes are evaluated directly from (3.18) before final-state in-
teraction (fsi) phases are put in. This allows us to determine the real partial wave

amplitudes. before fsi, through

1 2 1
S = —=(Hy+H_—Hy) = (34— —F=4
\/g( ++ 0) 3 fl \/5 0
1 -
P = 7§(H+-H.) = AJ_ (023)
D = —(H,+H_+2H) = —=4y+ /24
- \/6 + - 0] — \/5. ] 3° 0-
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Once the real S. P and D amplitudes are determined. their phase are put in by hand
as in (5.22), and with these complex S, P and D wave amplitudesone can write down
complex (Hy, Hy, H.) from (3.20) or complex (Ag, Ay, A1) from (5.21).

With these definitions, the following expressions for the decay rate are obtained

k
[(B— V) = ghor(lFo +|H. P +[H-P)
= Ikl2 (14 + |4y * + 4.1
8xmy
Ik! 2 2 2 -
= (ISP + PP + D). 5.24)
Sz (ISP + PP+ |D] (

where k is the momentum in B rest-frame.
The longitudinal and transverse polarizations are defined as.
I'p |Hol?

T ~ [Hol? + [He [P+ H_]2

P, = (5.25)

We note from (5.20) that both P, and Pr depend on the relative phase between the
S and D waves, (6sp = és — ép). through cosésp in a compensatory manner such
that P, + Pr = 1. Alternatively. one can define in term of transversity amplitudes
[17. 7].

Oy _ | Ay

P, = = - 3.27

I T~ [AP+[4 P +]ALP (527)
Iy |4, )2 .

p, = Lr_ A 28

O SR e (5:28)

P, = 1-P-P,. (5.29)

From (5.21), one notes that while P depends on ésp. P, is independent of the
strong phases, és, 6p and 6p. Eq. (5.20) also shows that the only way information
on P wave phase can be obtained is via 'y oc |[Hy|?orT_ < |H_ 2 It =T +T_is
independent of the P-wave phase. With these definitions, we now consider the specific

case of B — vK™.
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5.3.1 B — ¢¥K* Decays

With the definitions introduced in the preceding section, the helicity amplitudes for

B — vK™ decays are (before fsi phases are introduced),

G . c .
Ho = _'\/_chch_,fwmw(mB + mg-)as AP R (m? )(a€y — bEex) (5.30)
G . - .
H: = —-\/—chch,fwmw(mB + mp)a APR (M2 )(& F cbvy) (5.31)
where [1],
m% — m2 — mi..
a =
2mymy:-
2|k|?m%
b = ,
memp-(mp + mg.)?
2[k|m3 -
= , .32
¢ = nptma) (5:32)
B ABK"(m?2)
I — ‘4181\'. (m?w) -
_ VEBET (m2)
YT AR (mIy

With these helicity amplitudes, we can write the transversity amplitudes or the partial
wave amplitudes via (5.21) and (5.23).

We start with an amplitude analysis using the latest CLEO data [7]. Working in
the transversity basis, they [7] determined the following branching ratio, dimensionless

amplitudes (denoted by A, A, and .—i”) and their phases.

B(B — vK") = (1.35+0.18) x 107°

|Aof? = “FLP = 0.52+0.08
A2 = %2- = 0.16 £+ 0.09 (5.33)
|4yl? = IALL'P = 1—[A?—[Ag]? = 0.324+0.12

@) = 3.00+£0.37 radians

¢, = —0.11+£ 0.46 radians,
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where ¢ and ¢, are the phases of the amplitudes Ay and A, respectively, with the
choice ¢9 = 0 [7]. The important feature is that the amplitudes are relatively real.
Using the relation between the helicity, transversity and partial wave phases, the

CLEO analysis (5.33) can then be restated in the following equivalent forms,

Helicity basis:

. 2

|H0|2=|£F°-|— = 0.5240.08

7 po el o
A |*==F— = 0.014£0.034 (5.34)
w2 [H-|? T2 A2 -
IH_I =—I;— = I—IHOI —|H+| = 0.47 £ 0.08

¢+ = 2.92+£1.70 radians
o = 3.01 £0.29 radians.

Partial-wave basis:

. 2

[5|2=|—5f'— = 0.7740.12

L il - s
|P?="F- = 0.16£0.09 (5.35)
“2_..I_D_|_2_ = —1S12 - P2 = T
IDPP = ==— = 1-|S]"=|P]* = 0.073+0.044

os = 3.07x£0.19 radians
op = —0.11+£0.46 radians

op = 0.17+£0.44 radians,

The phases in (5.34) and (3.33) are evaluated relative to ¢g as in the CLEO analysis
[7]. From (5.35) we note that [S| > |P| > |D| as one might intuitively anticipate.
Next, having determined the helicity amplitudes, we are in a position to extract
information on the parameters &;, & and €y in a given model for the formfactors. We
summarize our method below.
The helicity amplitudes in terms of £;, &, and &y are given in Egs. (5.30) and (5.31).

The parameters &;, & and £y, representing nonfactorization, are then obtained from
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the constraints.

o2 (a — bz€a1)? - =

= - = 0.2 £ 0.08. .
| Hol S0+ 8. + (a — b7 ) 5 8 (5.36)

o2 (1 — cyév1)? -

= =0.014 £ 0.034. .
|4 ST 2FE) + (a = b’ 4 (5.37)

and
- GZlK| ..
B(B — vK") = m_;ln_lBlvch[Vc,l?fﬁmﬁ,(mB + mg-)?a3| Ay (m3) 2}
X {(a — bz ) +2(1 + c2y2£‘2,1)}

= (1.35+0.18) x 1073 (5.38)

where we have defined the ratios,

& = % and dvi = %/- (5.39)

The regions in £»; and €y space that explain the experimental value of polarization
(|Ho|?) are shown by the two vertical bands in Fig. 5.4, while the region between the
two horizontal curves corresponds to non-negative values for |A.[? within the error.
The boxes in Fig. 5.4 show the four solutions we get by solving (5.36) and (5.37) for
& and &y;. The errors in &; and &y, are correlated as parts of the boxes lie outside
the overlap of the horizontal and vertical bands.

Clearly, in BSW I model, within errors, there are solutions with £ = 1 and
Evi =1ie & = & = & . This is the class of solutions discussed in [6]. The value of
£ is then obtained from (5.38) and does not allow & =1 solution. We repeated this
procedure for other models of the formfactors. the results are tabulated in Table 5.4.

From Table 5.4 it is evident that only BSW I model permits solutions with § =
& = & (but & # 1); other models do not allow solutions with & = & = &v.
There are no solutions to the latest CLEO data [7] consistent with factorization i.e.,
& = & = & =1 in any of the models we have considered.

We chose to work with CLEO data only rather than use the world average for

the longitududinal polarization because it is only the CLEO data which allow a
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Figure 5.4: The region in &; and &v; plane allowed by the latest CLEO II measur-
ments of |Ho|? (vertical bands) and |H,[? (horizontal band) for B — wK™ in BSW I

model.
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Table 5.4: Solutions of &, &) and &y, using the latest CLEO II measurements of
branching ratio, polarization and |H,|? for the process B — wK™. In the table only

positive solutions for &, are shown since for every solution of &; there is another which

is its nggative.

Model Solution 1  Solution 2  Solution 3  Solution 4
& 1.79+062 1.79+0.62 1.26+0.55 1.26+0.35
BSW I En 1.03+029 3.77+0.29 046+0.68 4.34 +0.68
&1 1.36+£0.61 1.36+0.61 2.74+1.20 2.74+1.20
& 1.79+062 1.79+0.62 1.26+0.55 1.264+0.55
BSW II £ 0.74+021 2.70+£0.21 0.33+049 3.11+£0.49
vy 0.92+041 0.92+041 1.84+083 1.84+0.83
& 294+1.00 294+£1.00 2.07+£091 2.07+0.91
CDDFGN §&;; 1.04£0.29 3.80+£0.29 046+0.68 4.38+0.68
&y 050+0.22 050+£0.22 1.01+045 1.01 045
& 193+067 193+067 1.36+£0.60 1.36=+0.60
AW £y 0.58+0.16 2.11+£0.16 0.26+0.38 2.43+0.38
&1 0.58+0.26 0.58+0.26 1.16+0.52 1.16+0.52
& 2.60%x0.90 260+090 1.83%+0.80 1.83+0.80
ISGW £ 0.52+£0.15 1.90+0.15 023+0.34 219+0.34
&1 0.63+0.28 0.63+£0.28 1.27+£0.57 1.27+0.57
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complete determination of the decay amplitude. For the record , the world average
(our estimate) of all measurements [19, 20, 21, 7] of the longitududinal polarization
in B— yK~is

P = 0.66 £ 0.05. (5.40)
To one standard deviation there is no overlap of the world average and the CLEO
data. However. within errors there are values of £, and &1, shown in Table 5.4 that

fit the world-averaged P..

5.3.2 B — ¢¢ Decays

If it is assumed that nonfactorization contributions are independent of the flavor of
the light degree of freedom we can use the values of . &, and &y, in Table 5.4
to predict the branching ratio. polarization and transversity for B, — ¥¢. Indeed,
the branching ratio. longitudinal polarization and trasverse polarization (|H_|?) for
B, — wo can be related directly to the those for B — @K™ by eliminating &, £2; and
év1. The result is shown in Table 5.5. The following experimental data for B; — wo

are now available [21, 22]

B(B, — ve) = (0.93%£0.33)x107*
P =[Hy*> = 0.56+0.21. (5.41)

By studying the results presented in Table 5.3, we note the following: (i) Most
of the predictions (those given by BSW I model, BSW II model, CDDFGN model
and both first and third solutions of the ISGW model) are consistent with available
experimental results. () The predictions of the BSW I. BSW II and CDDFGN
models show very little sensitivity to the solution-type. (i) |H.|? (which is equal to

1 — |Ho|? — |H-|?) has a very small value in all the formfactor models considered.
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Table 5.5: The branching ratios, |Ho|? and |H_|? for the process B, — 16 using for

€1. €21 and &y the values in Table 5.4 calculated for B — wA™.

Model Solution 1  Solution 2  Solution 3  Solution 4
BR x10~3 091+£0.14 0.75+£0.12 0.884+0.14 0.77+£0.12
BSW I | Ho|? 0.50£0.07 0.39+0.08 048+0.07 0.40%+0.08
IIEI_I2 0.49+0.08 0.60%£0.09 0.50+0.08 0.38+0.10
BR x10™% 091+£0.14 0.75+£0.12 0.89+0.14 0.78+0.12
BSWII  |Hof? 0.49+0.07 0.39+008 048+0.08 0.41 =+ 0.08
|H_[? 0.49+£0.08 0.59+0.09 0.51+0.08 0.38+0.10
BR x10™% 1.20£0.19 120+0.19 1.20+0.19 1.20+£0.19
CDDFGYN |H,[? 0.47+0.08 0.47+008 046+0.08 0.46+ 0.08
II;T_[2 0.52+0.09 0.52+0.09 0.52+0.09 0.52+0.09
BR x10™% 1.70£0.28 0.96+0.17 1.50+0.27 1.00+0.18
AW | Ho|? 0.53+£0.06 0.19+4£0.08 0.49+0.07 0.24+0.09
|I-1I_|2 0.45+0.08 0.79+0.08 0.50%+0.06 0.73+£0.13
BR x1073 0.82+£0.15 0.42+007 0.71+0.14 0.43£0.07
ISGW |Hol? 0.57+£0.06 0.15+£0.08 0.54+£0.06 0.23+0.11
|H_|2 0.41+0.07 0.80+0.08 046+0.06 0.76+0.13

Experiment [21, 22]

B(B, — wé) = (0.93 £ 0.33) x 10~3

P = |Hp|? = 0.56+0.21
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5.3.3 B — ¢(2S)K* Decays

The branching ratio, longitudinal polarization and transverse polarization (|H_|?) for
B — ¥(2S)K™ can also be related directly to those for B — ¥K™ by eliminating &,
&, and &y;. The result is shown in Table 5.6. To the best of our knowledge, only the

branching ratio for this process is available [16},

B(B — w(2S)K™) = (0.9 +£0.29) x 1073, (5.42)

From Table 5.6 we notice that the predictions of the branching ratio, |Hy|? and
|H_|? are almost model independent. The predictions of solutions 1 and 3 are the
closest to available experimental data. The other two solutions yield low branching

ratios and close to zero longitudinal polarization.

5.4 Results in Factorization Approximation

For the sake of completeness, we present in this section the factorization approxima-
tion (£; = £a1 = &1 = 1) prediction for branching ratio, |Ho|? and |H_|? using the five
theoretical models considered for the formfactors. These predictions are presented in
Table 5.7.

From Table 5.7. we see that the factorization approximation predicts low values
for the branching ratios compared to experiment. For the processes B — wA™ and
B, — ©o, with the exception of BSW I model, the factorization approximation also
underestimates the longitudinal polarization.

If we scale the branching ratio by a factor of 3.5, we find that the BSW I model
predictions agree, within error, with the available experimental data. This could be

achieved by giving the nonfactorization parameters the values,

& =V33 &a=6&1=1 (5.43)
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Table 5.6: The branching ratios, [Ho[? and |H_|? for the process B — w(2S)K " using

for &, &; and £y the values in Table 5.4 calculated for B — ¥K™.

Model Solution 1  Solution 2 Solution 3  Solution 4
BR x10~% 0.80+0.19 0.43+0.11 0.62+0.17 0.37£0.09
BSWI | Hol? 0.46 £0.04 0.001+0.006 0.43+0.05 0.03+0.05
|H_|? 0.49+0.08 0.91+0.10 0.57+0.05 0.97+0.06
BR x10~3 0.80+0.17 0.52+0.12 0.71+£0.16 0.52%0.11
BSW II [Ho|? 0.39 £0.06 0.07+0.04 0.36 £0.06 0.11 £0.06
|H_|2 0.58+0.08 0.89+007 063+0.06 0.87+0.10
BR x1073 0.794+0.19 0.43%0.11 0.62+0.17 0.36 £0.09
CDDFGN  |Hy|? 0.46 £0.04 0.001+0.006 0.43+0.05 0.031+0.05
|H_f? 0.49+0.08 091+010  0.57%0.05 0.97+0.06
BR x10~% 0.79+0.19 0.43%+0.11 0.62+0.17 0.36 £0.09
AW |Hol2 0.46 £0.04 0.001+£0.006 0.43+£0.05 0.031£0.05
|H_|? 0.49+£0.08 0.91+0.10 0.57£0.05 0.97+0.06
BR x10~3 1.104+0.25 0.56+0.15 0.81 +£0.23 0.47+0.12
ISGW | Hol2 0.46+0.04 0.001+0.006 0.44+0.05 0.03 % 0.05
|H_J? 0.48 £0.08 0.90+0.10 0.56 £0.05 0.97+0.05

Experiment [16]

B(B — %(25)K") = (0.9 £ 0.29) x 10~°
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or

=&=E& =V35. (5.44)

This is what has been referred to as new factorization in [6].

5.5 Discussion

We have shown that B — ¥ K and ¥(2S)K data require nonfactorized contributions
in all of the five formfactor models we have considered. The smallest amount of
nonfactorized contribution is needed for the BSW II model while the AW model
requires the largest. We have calculated the branching ratios for B, — wn, w7,
w(2S)n, and ©w(2S)7 in each model as functions of £, and displayed the result in
Fig. 5.3. These branching ratios averaged over the five models are tabulated in Table
5.3 for a few values of the parameter £f,.

We have used the latest CLEO data on B(B — ©K™) and the transversity am-
plitudes to determine the three nonfactorization parameters §;, &, and £y defined in
(5.19). There are four solutions which are expressed in terms of £, and the ratios
£ = &/, and &y = &y /& . These solutions are displayed in Fig. 5.4 for BSW I
model and in Table 5.4 for all the five models. We find that solutions exist for £} =1
and &v; = 1 only in BSW I model but then & # 1, i.e. there are no solutions where
& = & = & = 1 which would signal factorization.

Assuming that the parameters &, and &y, determined from B — wK™ are the
same in B, — ©o¢ decay, we calculated the branching ratio, longitudinal and trans-
verse polarizations of B, — ¥¢ decay in all five models. Present data are consistent
with model predictions but for a few exceptions as is seen from Table 3.5.

The branching ratio, longitudinal and transverse polarizations of B — ©¥(2S)K™~
decay were also calculated assuming that the parameters £2; and &y determined from
B — ¥K" are the same in B — ¥(25)K™ decay. The results are shown in Table 5.6.

Finally, we find that in the factorization approximation none of the formfactor
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Table 5.7: Predictions of branching ratios, |Hy|? and |H_[? for the processes B —
vwK~, B, = ¥¢ and B — ¥(2S)K™ using the factorization approximation & = &; =
&v1 = 1. The errors in branching ratios are due to the errors in Wilson coefficients,

decay constants and B meson life times.

BR x 1073 | Ho|? |H_|?
BSW I 0.40 +£0.24 0.57 0.39
BSW II 0.33+£0.20 0.35 0.64
B — vK~ CDDFGN 0.24+£0.14 0.37 0.62
AW 0.33+0.19 0.12 0.87
ISGW 0.15+0.09 0.06 0.93
Experiment [7] 1.35+0.18 0.52+0.08 0.47 % 0.08
BSW I 0.27 £ 0.16 0.3 0.41
BSW II 0.23+£0.14 0.35 0.64
B; — vo CDDFGN 0.22+0.13 0.32 0.66
AW 0.44+0.26 0.20 0.79
ISGW 0.09 £ 0.06 0.20 0.80
Experiment [21.22] 0.93+0.33 0.56 £0.21 -
BSW I 0.24+0.14 0.49 0.43
BSW II 0.23+0.13 0.29 0.69
B — ¥(2S)K~ CDDFGN 0.13+0.07 0.35 0.65
AW 0.22+0.13 0.23 0.76
ISGW 0.14+0.08 0.22 0.77
Experiment [16] 0.90£0.29 - -




models predict correctly the branching ratios for for B — wK", B, — wo and
B — ©(2S)K™~. As for the longitudinal polarizations, |Hof?, in B — wK™ and
B, — vo, only the BSW I model predicts them correctly. BSW I also predicts IFI_I2

correctly for B — vK~.
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Chapter 6

Nonfactorization in

Cabibbo-Favored B-Decays

6.1 Introduction

The idea of nonfactorization in D and B decays was introduced in the last few yvears
by several authors [1. 2, 3]. There are two equivalent ways of introducing nonfactor-
ized contributions in a calculation: Either, use the number of colors, N, equal to 3
and explicitly add a nonfactorized contribution to each Lorentz scalar in the decay
amplitude as in [2. 3]. Or. introduce an effective number of colors, Neff. The later
approach has been adopted in several papers [4, 5, 6] dealing with B decays into light
mesons.

Though the nonfactorized amplitude remains incalculable, a few statements about
it can be made. First, what is estimated to be the nonfactorized contribution depends
on the model of formfactors used to calculate the factorized contribution. Second,
within a chosen model for the formfactors, the nonfactorized contributions are process
dependent. Third, if nonfactorization is characterized through an effective number of
colors, N¢ff | is it the same (as assumed in [4] and [3]) for the tree and the penguin

generated processes or different (as in [6])? Ref. [6] goes so far as to suggest that
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Neff, is different for the (V' — A)(V — A) and (V — A)(V + A) type of penguin
terms. In the language of [2]. where N, = 3 is assumed. different N¢//, for the tree
and penguin driven processes imply that the nonfactorized contributions for the tree
and penguin driven processes are different. This is not unlikely as the calculation
of the penguin driven amplitudes in the factorization assumption involves additional
assumptions, an effective value of ¢ for example.

Unlike the papers listed in [4, 3, 6], in this chapter we study B decays into a heavy
and a light meson. As such they are all Cabibbo-favored b — c transitions. Following,
[7] we use N. = 3 and introduce nonfactorized contributions explicitly. To calculate
the factorized contributions we use Bauer, Stech and Wirbel (BSW) model [8]. Our
work is related to that in [3] whose methods are made use of here.

To achieve simplicity of description, we assume that the nonfactorized effects as-
sociated with the three Lorentz-scalar structures in B — V'V decays are the same.
Using experimental data. we then calculate the average nonfactorization factors for
color-favored b — ciid and b — cés processes. We repeat this for color-suppressed
b — cés processes. We relate these nonfactorization factors to the scale dependent
parameters £;(¢) and cg(u) of [9] and determine them at py = 4.6 GeV'. The details
are explained in the text of this paper. Finally, having isolated the parameters ;(xo)
and eg(yg), we make predictions for the decay rates of Cabibbo-favored modes mea-
sured and as vet unmeasured. The measured rates are shown to agree well with the

predictions with few exceptions.



6.2 Formalism

6.2.1 Effective Hamiltonian

In the absence of strong interactions, the effective Hamiltonian for the process b —

cud is given by

Gro. oo - -
Heg = TZVqud (¢b)L (du)r. (6.1)
where
(eb)L = cv*(1 — ¥s)bi, (6.2)

and { is the color index.

When QCD effects are included, the effective Hamiltonian is generalized to {10, 11]

Hog = %L@bv;-d [C1 (2b) (du). + Ca(Eu)s (db)e] . (6.3)

where (éb). (du); and (Zu); (db), are current x current local operators.
The Wilson coefficients, C; and C,. include the short-distance QCD corrections.

Their values depend on the renormalization scale u through the following RGE

dCi Qg
K I I Cx. (6.4)
where
1
C = —= Co + C y 6.-
+ \/5( 2 1) ( 0)
and
(k) = (6.6)
T B n(u2/ N '
In the leading order the coefficient 3, is given by
1 . . -
,30 = 5(11 ."\'c—2.-?\’f), (6()

where A, is the number of colors and Ny the number of flavors. The eigenvalues of

the anomalous dimension matrix are
Y- = -87 T+ = 4. (6'8)
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When (6.4) is solved it gives

A\ 12/200
Ce(p) = (a;(r(nﬁ:; )) Ci(mw). (6.9)

At a particular scale (g = 4.6 GeV ~ m;) and taking (A = A= = 225 £ 85 MeV
[11]) for the QCD scale, we have

C, = 1.128+0.016
C, = —0.288+0.029. (6.10)

The errors in C; and C, are due to the errors in \\15'

Similarly. the other Cabibbo-favored process (b — ¢ &) occurs through the Hamil-
tonian

%vd,v“ (C (@)L (5¢)s, + Ca (ec)y, (3b)c] . (6.11)

with the same values for the Wilson coefficients as in (6.10).

Heﬁ' =

6.2.2 Factorization and Nonfactorization

Consider the color-favored decay B’ — D*x~. The decay amplitude for this process
is given by

Gr
V2 °

[al(D+ ~|(eb) (du) IB)+CQ(D+7."|%Z(E/\“b dx’u) |BY| (6.12)

A(B® — D*7~) = (D*7~ [He|BY) = ZEVa V3

where Fierz transformation and color-algebra have been used to rearrange the quark

flavors. In (6.12)

ar() = (a(m + Cf\(f‘)) , (6.13)

where A?® are the Gell-Mann matrices.
The second term on the right hand side of (6.12) is nonfactorizable, while the

first term receives both factorizable and nonfactorizable contributions. So we write
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1.3, 9

.A(_B_o — D*nr7) = Gr Vcbludal [(D+|(Eb)|§0)(ﬁ'|(zi-u)|0)

V2
+ (D*n~|(eb) (du)|B )"f+ (D+r|-Z(a“b)((fxau)ﬁ;")"f .(6.14)

Following the conventions in [9], we define the following color-singlet and color-octet

nonfactorization parameters:

(D) _ (DF7|(Eb) (du)[ B i
T DA@E @) o)
80T (D*77| § Ta(EXD) (dAu) [B)"S. (6.16)

(D*|(b)|B")(m~|(dw)|0)

These are named Y and X, respectively, in [3]. The decay amplitude then takes the

form
Gr x _ = -
AB’ — D*rx ->——f§ VoV €22 (D*|(2b)[B°) (=~ |(du)|0). (6.17)
where
iBD.rr)( ) = (1_*_:(130 -r)( )+ -(BD 'r)( ) (6.18)
a)

If we consider the color-suppressed decay B® — D0, the effective Hamiltonian

(6.3) is rewritten, using Fierz transformations, as

G - 1 ]
Heg = —=VaViu a2 (Gu) (db) + C1 5 D (E1°u) (dA°D)| (6.19)
V2 24
where
C
az(p) = (Cz(#) 1\(,“)) . (6.20)
The decay amplitude, then, takes the form
AB® — D% = ﬁvd,vd a2 £8P (z%(2u)|B°) (D°|(db)|0), (6.21)
where
T T, C T
270 = (1472 + 2T ). (6.22)
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In this work, we will assume that €; and g are universal constants for all Cabibbo-
favored B decays. For this reason, their superscripts will be dropped from now on.

The decay amplitudes for the other processes of class I (color-favored) and pro-
cesses of class II (color-suppressed) considered in this work, are derived from (6.17)
and (6.21), respectively, by making appropriate replacements. However, for processes
of class III. which receive contributions from both a; and a;, we use a suitable com-
bination of the above mentioned equations to derive their amplitude. For example,

the decay amplitude for the process B~ — D%~ is given by
- ~_G -
AB~ — D°x7) = -‘/—gvd,vud
(1 & (DY) B)(x"|(du)|0) + a2 & (x~|(db)| B~)(D°|(u)j0) ] . (6.23)
Equations (6.17) and (6.21) suggest the following definitions for the effective a;

and a9
ail = e =al+a]+Cocs (6.24)
o/ = w&=a[l+e]+Ces. (6.25)
The coefficients at/f and a5/’ are independent of the renormalization scale since

the u dependence of the Wilson coefficients is compensated by the i dependence of

nonfactorization parameters. So, the RGE in (6.4) leads to [9]

1+/230
El(l-‘) = % [(]_ + .Tl_c-) [1 + 51(/.10)] +58(/—10)] [:S((l/l-‘o))]
! y ) ag(p) 1777
+ 35 [(1 - \—c) [1 4+ &1(po)] — 68(#0)] [as(#o)] -1 (6.26)
and
1+/230
es(k) = [(1 - 712-) 1+entun)] + (1= ) al )] [Cis((:o))]

NI~ N -

1-/280
[(1 - {—2) [1 +e1(po)] - (1 + \i) Es(#o)] [ L) ] ,(6.27)

[4

where pg is arbitrary.
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From 1/N, expansion [9. 12, 13] it is found that
ei(p) = O(1/N7).
es(n) = O(1/Ne). (6.28)
A simple way to see this is to realize that whereas only one gluon exchange is needed

to cause color-octet current to couple to color-singlet hadrons, two gluons are needed

in the case of color-singlet currents.

6.2.3 Current Matrix Elements

Let |I} and | P) be pseudoscalar mesons and [V') be a vector meson. The hadronic cur-
rent matrix elements can be decomposed in terms of formfactors and decay constants
using Lorentz invariance. We define [8]:
(P|Jul0) = fp(Pp)u (6.29)
(VIJ#IO) = mvaf;;. (630)

m —m‘) .
(PlJulI) = <P1+PP——I—Q2—QQ) Fi(¢%)
u

+ TR, ), (631)
(VIGID) = e P25 V()
+ (4 my e An(e?) = = (s + ), Anl?)
- 2my g, (42(0%) = 40(a?) (6.32)
with
o = (p—prw),. (6.33)
Af) = LI A () - T An(e?), (6:34)
and
F(0) = Fy(0), (6.35)
A1(0) = Aj3(0). (6.36)



The factorized current x current matrix elements, needed to calculate the decay

amplitudes, are evaluated using the above decomposition to be

(P Ju|I) (Pa|J#[0) = (m] — mb)fr, Folq®), (6.37)
(P|J I (VIJ#|0) = 2my fy(€.pr) Fi(d®). (6.38)
(VL) (P|J#0) = 2my fp(€ .p1) Ao(g?), (6.39)
and
(AT (Val 7#[0) = -ml’i—v:n% Fou (2 Cpvpo€d € B, 0T, V()

— (mp+ my, )?(€1-63) Ai()
+ 2(€1.pv )(€5.v;) A2(2)] - (6.40)
where ¢; and e, are the polarization vectors of Vj and V5 respectively.

For the formfactors. we use the original BSW model [8] where the formfactors are
calculated at zero momentum transfer and extrapolated to the desired momentum
transfer using a monopole form for all the formfactors.

Regarding the decay constants we adopt the following values: [9, 14, 15. 16]

fr = 130.7£0.37 MeV
fo = 2071 MeV
fa, = 228+£10 MeV
fipe = 405+£14 MeV
fees)y = 282+ 14 MeV (6.41)
fo = 200+£10% MeV
fp- = 230+ 10% MeV
fo, = 250+£27 MeV
fp: = 275+ 10% MeV
Now, from (6.17), (6.21), (6.23) and (6.37 - 6.40) we can calculate the two-body

decay amplitudes A(B — M) M) where M; and M are the two mesons (pseudoscalar
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or vector) in the final state. As a result, the branching ratios are given by

||

e |A(B — My Mp)|? 73, (6.42)
! B

B(B — M M,) =

where
2 1/2

lkl — [(sz — my — m§)2 - 4m%m%]

Smg (6.43)

is the momentum of the decay products in the B rest-frame.
For the case when both M) and M, are vector mesons, the decay amplitude can be
written in terms of the three helicity amplitudes (Ao, A4 and A_). The longitudinal

(Pp) and transverse (P, and P_) polarizations are then defined as

P, [Aol* (6.44)
’ | Aol + [A+|> + [A-]2 ’

A 2
Py, = A . (6.45)

[ Aof? + | A+ [* + [ A-J?

6.3 Evaluation of Nonfactorization Contribution

Equations (6.26) and (6.27) give the explicit dependence of €; and €3 on the renor-
malization scale if the values of these parameters are known at a particular point
(e.g. po).- However. the i dependence is cancelled by the i dependence of the Wilson
coefficients such that the decay amplitude is y independent. Our goal in this section
is to deduce the values of £;(1) and eg(pg) using available experimental data on
color-favored and color-suppressed channels.

Let us first consider the color-favored processes of the tvpe b — cud. By cal-
culating the branching ratios of these decays using the factorization assumption
(e; = €5 = 0) and then by comparing it with experimental measurements we cal-
culate £? in each decay channel using the simple relation:

_ B(Experiment)
~ B(Factorization)

62

(6.46)
The results are shown in Table 6.1 and displayed in Fig. 6.1.
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We can see from these results that £ is almost channel independent except when
the a; meson is present in the final state. By averaging the amount of nonfactorization
in these channels we get the value, £2(ug) = 0.80 & 0.06. This corresponds to a 20%
deviation from the factorization assumption.

The second set of processes considered, are the color-favored decays of the type
b — cés. The experimental value used for each decay mode were taken to be a
weighted average over the charged and neutral decay channels. The resulting amount
of nonfactorization in these decays are shown in Table 6.2 and displayed in Fig. 6.2.
The weighted average of the amount of nonfactorization in these processes, £¥(uo) =
0.86 £ 0.13, is in good agreement with that found in the decay processes of kind
b — cud.

Finally, we considered the color-suppressed processes of the type b — c¢s. These
processes give predictions regarding the nonfactorization parameter E2(up) using (6.46).
In Table 6.3 and in Fig. 6.3 we show the results of these calculations. On the average,
a value of £3(uo) = 6.6 & 2.4 is calculated.

Figure 6.4, shows the regions in €;-¢g space that correspond to the average values
of £ and &2 as predicted in Tables 6.1, 6.2 and 6.3. In this figure. the two parallel
regions bounded by thin solid lines correspond to the value, £ = 0.80+£0.06. calculated
from the color-favored processes of the type b — ciid. The regions bounded by the
dotted lines correspond to the value, £ = 0.86 £ 0.14, calculated from the color-
favored processes of the type b — cCs. The value, f% = 6.6 £+ 2.4, calculated from
the color-suppressed processes of the type b — cCs corresponds to the two horizontal
bands bounded by dashed lines.

In Fig. 6.4, we also show two intersecting solid lines. These have been drawn in
light of (6.28) and correspond to the equation

&1 1

We realize that this relation need not be exact, nevertheless we use it to restrict our

solutions.
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Asseen in Fig. 6.4, these regions intersect in four areas labelled 1, 2, 3 and 4. Areas
1 and 2 are excluded due to the severe violation of (6.47). Area 4 is also excluded
because it produces negative a§f f which is not supported by the mainstream data on
B-decays. So. we are left with area 3. From the size and location of this area in
the £,-¢g space, we get the following predictions for the color-singlet and color-octet

nonfactorization parameters at pyg,

er(to) = —0.07+0.03,
es(pg) = 0.13+£0.05. (6.48)

These values correspond to

&(po) =089+£0.03 — afff =092+0.03,
Ealpo) =2.539+0.79 — o571 =0.23+0.06, (6.49)

and in the language of [3], they correspond to

a1(mo) = af/f —ai(mo) = —0.11£0.03.
da(po) = aff —as(pe) = 0.14£0.06 . (6.50)

The predicted value of eg is in agreement with that predicted in [9] using a more

limited set of processes.

6.4 Predictions of Branching Ratios and Polariza-
tion

Assuming universality of the nonfactorization parameters, €; and ¢z, we calculated
the branching ratios for a large number of Cabibbo-favored decay channels which are
shown in Tables 6.4 - 6.11. The errors that appear in the theoretical calculations are
due to the uncertainties in the Wilson coefficients, the decay constants, the B-meson

lifetime and (where applicable) the mass of a; meson.
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Table 6.1: The values of the nonfactorization parameter &2 calculated for six color-
favored processes of the tvpe b — cid. Column 3 represents the factorization model

estimate of the branching ratios.
Branching Ratio x10~3

Process Experiment [14] Factorization £

B’ - D& 3.0+0.4 40+£01  0.74+0.10
B® — D*p- 7.9+1.4 95403 083+0.15
B’ — D+ay 6.0+ 3.3 103+1.0 0.58+0.32
B’ = D*a- 2.6 +0.4 31401  0.84+0.13
B’ - D*+p- 73+£1.5 9.0+03  0.81+0.17
B® - D**ay 13.0 £2.7 13.1+1.2 099+0.23

Weighted Average 0.80+%0.06

Table 6.2: The values of the nonfactorization parameter &7 calculated for four color-
favored processes of the tvpe b — cés. Column 3 represents the factorization model

estimate of the branching ratios.

Branching Ratio x10~3

Process Experiment [14] Factorization £

B — DD, 98+24 13.8 £ 3.0 0.70 £ 0.23
B — DD; 94+3.1 96%£1.9 0.98 £ 0.38
B — DD, 104+238 6.3+14 1.64 +0.57
B — DD; 22.3+5.7 26.0+£34 0.84 +0.28

Weighted Average 0.86+ 0.15




Table 6.3: The values of the nonfactorization parameter &2 calculated for four color-
suppressed processes of the type b — c¢¢s. Column 3 represents the factorization

model estimate of the branching ratios.
Branching Ratio x10~*

Process Experiment [14] Factorization &2

B — KJ[v 96+£1.1 0.73+£0.40 13.1%+73
B — Kv(25) 6.9+3.1 025+0.14 28.1+20
B — K~J/v 154+1.9 3.10+£1.70 35.0+28
B — K~uv(2S) 14.0x9.0 164+ 090 85+£7.2

Weighted Average 6.6 2.4

SR BY ~ D*ray
——e- B® = D*p~

IRt

—_— ; ' BY - D™=

- _— - BY = Dvay
R BY = D*p-
——0—-— BY o D*x~
0.4 0.6 0.8 1 1.2

E(po)

Figure 6.1: The values of the nonfactorization parameter £ calculated for six color-

favored processes of the tyvpe b — ciid. The shaded area represents the statistical

average.
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B - D°D;

B - DD,

B - DD;

1.5 1.75 2  2.25
I

Figure 6.2: The values of the nonfactorization parameter &; calculated for four color-
favored processes of the type b — c¢Cs. The shaded area represents the statistical

average.

B = R-J/v

B = Ku(25)

B RJfv

20 30 40
E(1r0)

Figure 6.3: The values of the nonfactorization parameter £ calculated for four color-
suppressed processes of the type b — c¢s. The shaded area represents the statistical

average.
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0.4}

0.2

ss(pa) 0

zi{pro)

Figure 6.4: (a) The regions in &;-¢g space that correspond to the amount of nonfactor-
izations estimated for £2 and £2. The two parallel regions bounded by thin solid lines
correspond to the value &2 = 0.80 £ 0.06 calculated from the color-favored processes
of the type b — ciid. The regions bounded by the dotted lines correspond to the value
€2 = 0.86 £ 0.14 calculated from the color-favored processes of the type b — c¢s. The
regions bounded by the dashed lines correspond to the value £2 = 6.6 +2.4 calculated
from the color-suppressed processes of the type b — ¢¢s. The two intersecting solid
lines correspond to the equation &;/eg = 1/N.. (b) A magnification of the interesting

region in £;-€g space.
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We start by studying six color-favored processes of the type 6 — ciid shown in
Table 6.4. From this table, it can be seen that the inclusion of nonfactorization
improves the predictions of the factorization assumption and produces a much better
fit to experimental measurements. In Table 6.5, we show the predicted branching
ratios for ten color-suppressed processes of the type b — ciid. As the results show,
the inclusion of nonfactorization in these decays enhances their decay rates, pushing
them closer to the present upper bounds.

Tables 6.6 and 6.7 show the predictions of the branching ratios for the color-favored
and color-suppressed decays of the type b — cCs. By comparing these results with
experimental data we find a significant improvement in the theoretical predictions,
specially for the color-suppressed modes. The experimental value shown for each
decay mode is a weighted average over the charged and neutral decay channels which
differ in the flavor of their spectator quark.

The four decay channels of B~ meson shown in Table 6.8 receive contributions
from two diagrams. As a result the decay amplitudes contain interference between
af/ and agf f. Using the values of the nonfactorization parameters in (6.48) results in
a constructive interference between the two diagrams and small modifications to the
predictions of the factorization assumption. The predictions are in good agreement
with experiments. However, if we used for the nonfactorization parameters the values
€1(pg) = —0.18 and eg(po) = —0.26, which are taken from area 4 in Fig. 6.4, the
interference between the two diagrams becomes destructive. This results in lower
values for the branching ratios and poor agreement with experiment supporting our
choice of the solution in area 3 as discussed in the previous section.

Finally, we calculated the effect of nonfactorization contribution on the branching
ratios of three sets of B,-decays. The results of these calculations are shown in
Tables 6.9 - 6.11. Even though, experimental data on B,-decays are very limited, the
measured branching ratio of B, — ¢J/v [17] shows encouraging agreement with our

predictions.

131



Table 6.4: The predicted branching ratios for the color-favored processes of the type
b — ciid calculated, in column 2, by taking € (o) = €3(t0) = 0 and. in column 3, by
taking &;(po) = —0.07 £0.03, eg(po) = 0.13 £0.05. The last column represents the

available experimental measurements

Branching Ratio x1073
Process Fac. Nonfac.  Exp. [14]
B® - D*r~ 4.0+01 32403 3.0+04
B Dtp~ 95403 764+06 79414
B® — D*af 103+10 82410 6.0+£3.3
B’ - Dz~ 31+01 25402 26+04
B - D*tp- 90+03 72406 73%15

B® - D**af 13.1+12 105+13 13.0+27

The predictions of longitudinal (F) and transverse (P.) polarizations of pro-
cesses of the form B — VV are shown in Table 6.12. The available experimental
measurements show good agreement with the predicted values. Notice that in doing
polarization calculations of color-favored and color-suppressed decays . the nonfactor-
ization parameters cancel out. This is due to the assumed universality of £; and &;.
As a result, the polarization predictions are the same as in the factorization model

though the branching ratios are scaled by an overall factor.

6.5 Discussion and Conclusion

Strictly speaking, we know that the factorization assumption can not be correct. This
is because it produces a scale dependent transition amplitude. However, quoting

authors of ref. [9],

" what one may hope for is that it provides a useful approximation if the

Wilson coefficients (or equivalently the QCD coefficients a, and a;) are
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Table 6.5: The predicted branching ratios for the color-suppressed processes of the
tvpe b — ciid calculated, in column 2, by taking €;(po) = €s(¢o) = 0 and, in column
3. by taking £;(uo) = —0.07 £0.03, e5(uo) = 0.13£0.05. The last column represents

the available experimental upper bounds.
Branching Ratio x10~*

Process Fac. Nonfac.  Exp. [14]
B® — DOr° 0.13+0.08 0.88+050 <48
B’ - Dz 0144008 092+051 <9.7
B’ — D% 0074004 049+028 <68
B~ D 0074004 0350+028 <6.9
B’ - D% 0.024+001 015+008 <386
B’ — D% 0.02+001 015+008 <27
B - D%° 0.07+004 0444025 <353
B - D0 026+0.15 1.74+098 <11.7
B~ D% 0.06+004 043+024 <63
B' - D% 0264015 1724097 <21

Table 6.6: The predicted branching ratios for the color-favored processes of the type
b — cCs calculated, in column 2, by taking &;(uo) = €3(10) = 0 and, in column 3. by
taking =,(uo) = —0.07 £0.03, eg{po) = 0.13 £0.05. The last column represents the

available experimental measurements.

Branching Ratio x1073
Exp. [14]
9.8+ 24

Fac. Nonfac.

13.8+£3.0 11.1+£25
96+19 T76x17 94+3.1
6.3+14 50+12 104+%28

26.0+£34 21.2+46 223+5.7

Process

B — DD,

B — DD;

B — D™D,
B — D"D;
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Table 6.7: The predicted branching ratios for the color-suppressed processes of the
type b — c€s calculated, in column 2, by taking €;(uo) = €s(pt9) = 0 and, in column
3, by taking £;(uo) = —0.07£0.03, e3(o) = 0.13+0.05. The last column represents

the available experimental measurements.

Branching Ratio x10~4
Process Fac. Nonfac.  Exp. [14]
B — KJ[v 0.73+040 490+26 9.6=%1.1
B — Kv¥(25) 0.25+£0.14 165088 69+3.1
B — R™J[v 3.10£1.70 20.8+110 154+£1.9
B — K"¥(2S) 1.64+090 11.0+59 14.04+9.0

Table 6.8: The predicted branching ratios for the decays of B~ meson of the type
b — cid calculated. in column 2, by taking €;(uo) = €s(io) = 0 and. in column 3. by
taking £1(ug) = —0.07 £ 0.03, e3(uo) = 0.13 £0.05. The last column represents the

available experimental measurements.

Branching Ratio x1073

Process Fac. Nonfac.  Exp. [14]
B~ —= D%~ 51%02 53%+06 53+0.5
B~ —= D% 105+04 9.6+07 13.4%1.8
B~ — D%~ 42+£02 45+05 352£08
B~ —= D% 11.0+05 11.3+1.2 15.5+3.1
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Table 6.9: The predicted branching ratios for the color-favored B, decays of the type
b — ciid calculated, in column 2, by taking ¢;(ug) = €s(t0) = 0 and, in column 3, by
taking €;(uo) = —0.07 % 0.03, ez(po) = 0.13 £ 0.05. The last column represents the

available experimental limits.

Branching Ratio x10™3

Process Fac. Nonfac. Exp. [14]
,— Dz~ 36+£02 29+03 <120
,—Dfp~ 86404 68+06 -
,— Dfa; 9.3+10 7.4+09 -
s— Difg~ 27%£01 21+£0.2 -

s— Di*p~ 78+04 6.2+06 -
B, — D;tay 11.3+12 9.0%1.1 -

o)

&)

| &

W o

Table 6.10: The predicted branching ratios for the color-suppressed B, decays of the
tvpe b — ciid calculated, in column 2, by taking &;(¢o) = €8(st0) = 0 and. in column
3. by taking £;(uo) = —0.07£0.03, e3(uo) =0.13 £0.05.

Branching Ratio x10~*

Process Fac. Nonfac. Exp. [14]
s— D'K®  0.18£0.10 12407 -
s — DOK® 0.1840.10 1.2+0.7 -

, — DK™ 0.10+0.06 0.6+0.4 -
B, — D9K=0 0.344+0.20 2.3+1.3 -

o]

W W
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Table 6.11: The predicted branching ratios for the color-suppressed B, decays of the
tvpe b — c€s calculated, in column 2, by taking €;(uo) = €8(t0) = 0 and, in column
3. by taking &(uo) = —0.07£0.03, e3(uo) = 0.13+£0.05. The last column represents

the available experimental measurements.

Branching Ratio x10~4

Process Fac. Nonfac. Exp.
,—nJ/v  020£011 1.3+0.7 -
B, — nv(2S) 0.07+0.04 0.5%0.2 -
s —nJ/v 023+£013 1.6+0.8 -

s — 7w(2S) 007+£004 04402 -
B, —-o¢J/v  205+£1.10 13.8%+7.3 9.3+3.3[17]
B, — ow(25) 1.26+0.70 8.5+4.5 —

evaluated at a suitable scale 1y, the factorization point . ™

In B decays, the Wilson coefficients are usually evaluated at (u ~ my). If this is
the factorization scale, then we should expect the nonfactorization parameters (¢;(ms)
and cg(myp)) to vanish. However, since the predictions of the factorization assumption
are generally not in agreement with data, specially for color-suppressed decays. this
could indicate that the nonfactorizable parts of the decay amplitude are not negligible
at the B-mass scale.

In this chapter. we tried to answer the following question: Is it possible via the
introduction of a minimum number of new parameters to improve the predictions of
the factorization assumption and explain the bulk of available experimental data on
Cabibbo-favored B-decays?

In answering this question, we assumed universality of the color-singlet (1) and
the color-octet (¢g) nonfactorization parameters. Two sets of color-favored processes
(Tables 6.1 and 6.2) and one set of color-suppressed processes (Tables 6.3) were used

to give quantitative estimates of these parameters. It has been found (by calculating
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Table 6.12: Predictions of longitudinal (P) and transverse (P-) polarizations for

Cabibbo-favored decays of the form B — V'V where V is a vector meson.

P, P.

Process Fac. Exp. Fac. Exp.
B’ — D*p~ 087 090+0.08[18  0.l1 ~
B’ - D*a;  0.74 - 0.23 -
B = D90 072 - 0.28 -
B > D% 072 - 0.28 -
B — D D: 0.52 - 0.39 -
B— K-J/v 057 052+£008[19]  0.39 0.47£0.08 [19, 7]
B — K™¥(2S) 0.49 — 0.42 -
B~ — D%~ (.86 — 0.12 -
B, — D**p~ 0.88 - 0.11 -
B, — D**ay 0.74 - 0.22 -
B, - D°K*® 0.70 - 0.29 -
B, — oJ/v 0.55 0.56+0.21[20] 0.41 -
B, — ow(2S) 0.48 - 0.42 -
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the branching ratios for a large number of Cabibbo-favored B-decays) that the values
e1(po) = —0.07 £ 0.03 and eg(o) = 0.13 £ 0.05 improve significantly the predictions
of the factorization assumption even though the Wilson coefficients were evaluated at
LL and only the tree diagrams were considered. These results support the argument

that nonfactorization is an important contributer to the decay amplitude of B-decays.
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Chapter 7

NLL and Penguin Effects on

Nonfactorization in B-Decays

7.1 Introduction

So far in our calculations. we used the Wilson coefficients (C; and Cs) evaluated in
leading logarithms (LL) and neglected all contributions from the penguin diagrams.
In here. we extend the work of the previous chapter and investigate the effects caused
by working in next-to-leading logarithms (NLL) and by including the contributions
from the QCD penguin diagrams.

Also, toward the end of this chapter we investigate the effect of nonfactorization

on a set of Cabibbo-suppressed processes of type b — ccd.

7.2 Wilson Coefficients in NLL

As mentioned in section 2.3, the Wilson coefficients in NLL are renormalization scale
and scheme dependent. Working in the naive dimensional regularization (NDR)
scheme, the Wilson coefficients at different scales (u = 4.4, 4.6 and 4.8 GeV) are
listed in Table 2.2.
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Consider process of the type b — ¢és which receive contributions from both tree
and penguin diagrams. For the purposes of this chapter, we rewrite the effective
Hamiltonian introduced in (2.59) as {3, 6]

Gr
V2
+ (VVg, + Vcch;)zs:CiQi . (7.1)

=3

Hee = — |VioVi (CLQY + C2Q8) + VisVia (C1Q5 + C2Q5)

where

Qr = (@bi)L (55u5)L

Qs = (@bj)(5u)e

Q1 = (@bi)L(5c5).

Q3 = (Cibj)e (5je)e

Qs = (5L Y (395 (7.2)
Qs = (Sibj)e qZ(q_jQi)L

Qs = (5ibi)e Zi.(fl'jq]')n

Qs = (5ibj)e Zq:(éjq.-)n.

q

Even though, the local operators Q} and Q3 don’t contribute to process of the type
b — cés through tree diagrams, they do contribute through penguin diagrams. In
writing (7.1), we have made use of the following unitarity condition of the CKM

matrix elements

VisViy + VoV + ViV = 0, (7.3)

From (2.35), we see that the decay amplitude in the effective theory is given by

-Aeﬂ' X Cx(/-t) (Qt(lu)) s (74)

where the matrix elements (Q;(u)) are evaluated at the same scale and in the same

scheme as the Wilson coefficients C;(u). If these matrix elements are related to the
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tree matrix elements by

=~}
o
Nt

(Qi(p)) = gij(1) (Q;)"<. (

then we can write the effective amplitude as

Ag < Cilp) gii(1) (Q5)",
o« CF (Q)™. (7.6)

At the quark level, the scale and scheme dependence of (Q:(x)). which is carried by
g(u), cancel the scale and scheme dependence of the Wilson coefficients (3, 4. 3, 6].
So, both C&T and (Q;)"™* are scale and scheme independent.

From above, we can write the decay amplitude as

<Heff) = 3% [ va- (Ceﬁ(Q )tree+ Ce E(Qﬁ)tm)
+ 26:( Vas Vi, C&F + V5 €F) (Q: )“ee]. (7.7)
=3

where the penguin contributions from (QX%,,) and (Qf.;,) are included in ce&sf

and CQ5 ;. respectively. Using the conventions of [5]. the explicit forms of C¢T are

given by
a, m
Ci" = G+ (r$ +7v1n —”) Cj
47 K/
eff e _91 T A;Tl ﬂ .
Cs C'2+4ﬂ_ (Tv+/vn 7 2jCJ
Pt = (mq)+C)+E(r$+v$ln—") C;
3j
Qg (84 -
COF = Cat+ =(Clmy) +Co) + = (i + W In 22 C; (7.8)
8w 4r H ] 4
. a
Cgbﬂ. = (mq)+Cp)+4—: (T‘T/+’7’$1ﬂ%> Cj
[ 5j

of _ Qs G (T T ™ .
COf = C4+8W(Ct(mq)+Cp)+4ﬂ_<rv+/Vln#) Cj,

65
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where ¢ = u,c. In (7.8), the quantities C¢(m,) and C, arise from the penguin-
like diagrams of the operators Q7,, and Qi=3_6. respectively, whereas the ma-
trix (rv +vn ﬂp") is due to the vertex and self-energy corrections to the operators

Qi=1...6- These quantities are given by [3]

(2 =T 0 0 0 0)
-7 I 0 0 0 o0
0o 0 £ -7 0 0
ry = ) (7.9)
0 0 -7 I 0 0
0 0 0 0 -i 1
\0 0 0 0 -3 ¥
/—2 6 0 0 0 O \
6 -2 0 0 0 O
0 0 -2 6 0 O )
wo= (7.10)
0 0 6 -2 0 O
0 0 0 0 2 -6
\0 0 0 0 0 =16/
2 2 m? k2
Ci(mg) = Ci(p) 3 gln?—ﬁﬁ E-g . (7.11)
(4 2. m?2 2 mi k? k?
Cp = C3(#) -§+-3-1n #2 +§ln?—'_\Fl (mg —AFl m—‘b,,_ .
2. m? k2 _
+(Ca(p) +Cs(p)) Y, |zhh—-AFR (=], (7.12)
izudech 3 H m;
and
1 .
AF(z) = —4/0 dr z(1 — z)In[l — z z(1 — x)]. (7.13)

Here, k is the momentum carried by the gluon of Fig. 2.6.
The calculation of the penguin driven amplitudes in the factorization assumption

involves additional assumptions, an effective value of k? for example. In a complete
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calculation [7] k? would not be a variable; it would be integrated over the wave
functions of the hadrons with its own uncertainties. In the absence of a complete
knowledge of the hadronic wave functions, the choice is either to select k? judiciously
or to admit new unknowns through the hadronic wave functions. In penguin cal-
culations, one generally opts for the first alternative and chooses k2 in the range:
m2/4 < k? < mZ/2. In the calculations presented here we have chosen k? = m}/2.

Using the definitions in (7.8) we calculate in Table 7.1 the values of the effective
Wilson coefficients C£f. For C§¥—Cgf, which include the contributions from the QCD
penguin diagrams, we list two sets of values, depending on which quark is in the loop
(see Fig. 2.6). For quark masses, we used the constituent masses [5] m, = mq = 0.2
GeV,m, = 0.5 GeV, m. = 1.5 GeV and m; = 4.88 GeV. We also show (in brackets in
Table 7.1) the values of the Wilson coefficients evaluated using the following running
quark masses at the b-quark mass scale [8]: m, = 3.17 MeV, my = 6.37 MeV,
m, = 0.127 GeV', m. = 0.949 GeV and mp = 4.34 GeV. For the t-quark mass. we
always used m, = 170 GeV'.

The values of the effective Wilson coeficients calculated using the constituent
quark masses and those calculated using the running quark masses are numerically
close, and using either set of values does not produce major changes in the results of
this chapter. So, for the purposes of this chapter, we use the set of values calculated

from the constituent masses, which is also the choice adopted in [3].

7.3 Effect on the Results of Factorization Approx-
imation

7.3.1 Type b — ciid Decays (B — D=, Dp...etc.)

In processes of this type, there are no contributions from the penguin diagrams. So,

the effective Hamiltonian relevant to these processes is similar to the one in (3.24),
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Table 7.1: Effective Wilson Coefficients in NLL, evaluated using A‘:ﬁ = 225 MeV and

constituent quark masses. The values in brackets were evaluated using the running

quark masses at the b-quark mass scale.

ol 1.138 (1.145)
Cst —0.310 (-0.324)
gq=1u gqg==¢c

C9®  0.0175+0.0050i  0.0209 + 0.0029 i
(0.0184 + 0.0049 ) (0.0199 + 0.0044 i)

CP@f _0.0394 —0.0149 —0.0498 — 0.0087 i
(—0.0410 — 0.0146¢) (—=0.0457 — 0.01331)

Cc@f  0.0126+0.0050i 0.0161 + 0.0029i
(0.0131 + 0.0049 {) (0.0146 + 0.0044 i)

Cc@f  _0.0502—0.0149; —0.0606 — 0.0087 i
(—0.0527 — 0.0146 1) (—0.0573 - 0.0133:)

except that for C, and C; we use the values in Table 7.1. As we saw before, processes
of this type are divided into three classes, I. IT and III.

In processes of class I (examples are B - D¥w=, D*p~...etc.), the factorizable
part of the decay amplitude is proportional to a; = C; + C2/3 (see section 3.2.1).
From Tables 2.1 and 7.1, we see that the values of this parameter in LL and NLL are

almost the same

all = 1.032
o't = 1.035. (7.14)

Since the branching ratios are proportional to |a;|?, the above values for a; gives a
difference (ABs) between the branching ratios calculated using the Wilson coefficients
in LL and the branching ratios calculated using the Wilson coefficients in NLL of less
than 1 % (see Table 7.2).

In processes of class IT (examples are B° — D90, DP0°.. . etc.), the factorizable
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part of the decay amplitude is proportional to a2 = C /3 + C,. The values of this
parameter in LL and NLL are given by

otk = 0.088
ay't = 0.069. (7.13)

As a result, the predicted branching ratios (see Table 7.2 for listing) in the factoriza-
tion approximation. drop by about 38 % when working in NLL.

The third class (for example, B~ — D%, D% ...etc.) of processes considered
here is a little different from the other two. This is because the decay amplitudes
receive contributions from two tree diagrams (see Fig. 3.3) which causes both a;
and a, to contribute to the amplitudes (see (6.23) for an explicit example). As a
result, AB; is different for each process of this class. However, as can be seen from
Table 7.2 these changes are small and are less that 3 %. This is because, the part
of the amplitude containing a; (which almost has the same value in LL and NLL)

dominates over that containing as.

7.3.2 Type b — ccs Decays (B — DD,,KJ/{ ...etc.)

Processes of this type, receive contributions from both tree and penguin diagrams
(see Fig 7.1). The relevant effective Hamiltonian is shown in (7.1).

Consider first, the four processes of class I shown in Fig 7.1. The contributions
to the decay amplitude from Q; and Q» were already derived in section 3.2.4. The
contributions from Q3 and Q4 are evaluated in a similar way. Regarding @5, we first

use Fierz transformation and color algebra (see Appendix B) to rewrite it as [3]
Qs = (8b)L(Cc)r
= [Sivu(l — 1) [E7* (1 + 75)ey]
= —2[5(1 — 75)b) [5:(1 + 15)c5]

- “§ [6(1 — 75)8] [5(1 + 7s)e] — [EA*(1 — ¥5)b] [5A®(1 +35)d] . (7.16)
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Figure 7.1: The flavor flow diagram for Class I processes of the type b — cius.

For Og. we just use Fierz transformation to rewrite it as
Qs = (8ibj)L(cjci)r
= [57u(1 — ¥3)bs] [E7*(1 + 75)ei]
= —2061 — ) 5L+ )] (7.17)

However, from the Dirac equation we can easily derive the following relations

between (S + P) and (S — P) Dirac bilinears, and V' and A bilinears

< e = e} | —_——_— OH(T —_  OH(T~ - 7

Bl +7vs) = —i [mc e 9 (5vuc) + pp— 0" (3 ,,nac)] (7.18)
1

(1l — s = K (T~ —_  OH*(T. e i

[€(1 — )] i [mb e a*(Tyub) + e O* (T, /ob)] . (7.19)

Using the relations developed above, we can write, assuming factorization. the

decay amplitude for the processes B - D*D7, B - D*D;~, B - D *D; and

B’ - D**D;~ as

A{B° — D*D;)
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GF - @ ITZ% )
VoV, a1 + VoV, + 2a 2
\/5 [ * ' qgﬂ:c *e ( ° (mb - mc)(mc + ma)

x (D*|(2b)|B") (D7 |(3¢)Ll0), (7.20)

AyB’ — D*D;)

_ Gr [V Voiai+ Y. VaVoy (a + 209 mb; )
\/i cb 1 qb¥gq 4 6 m,)

g=u.c (mp — mc)(me —

x (D*|(eb)|B°) (D;™|(3¢).|0). (7.21)

A;B° - D D;)
G m2
\/g [vc,,v a + z Vo Vs ( - —2a6@ D, )]

(mg + mc)(me + m,)

q=u,c
x (D™*|(2b)L|B°) (D7 |(c).|0) (7.22)
and
Af(B’ — D**D;7)
GF = ® m2D.
= V1" s
\/5 [VCb‘ “t qgﬂ:f whas (a4 * 206 (mb - mc)(mc - ms)
x (D™*[ey,b[B") (D7 |(3¢).|0)
G[‘ @ m2D.
4 VoV - :
\/5 [‘ Ve o +q§c * e ( 206 (mb + ’nc)(mc - ms))]
x (D"*[ev,v5b|B") (D7 |(3¢).10), (7.23)
where

@=CcP+1c®, d@=0c@+1icP, (7.2
=C@+1ic®, d@=C@+LiC®: g=uc.
Note that the factorization approximation has been used to evaluate the penguin
contributions.
If we do not include the penguins, the effect of working in NLL instead of LL is
very small. Actually, AB;is less than 1 %, the same as that calculated in section 7.3.1

for the color-favored decays of type b — ciid. However, if the contributions from the
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penguin diagrams are included we get relatively large effects. The branching ratios
for the processes B — D*D; and B — D*D;~ get reduced by 28 % and 38 %,
respectively, while the branching ratios for B — D™D, and B — D" D7 are increased
bv 8 % and 13 %, respectively (see Table 7.2).

To demonstrate the cause of these large changes, let us look at the decay B —
D*D7. In a rough calculation, we substitute the following approximations in (7.20):
a; ~ 1. a@ ~ —04.d® ~ —0.6, ViV, ~ 0 and m%, [(my — mc)(me + m,) ~ 1. The
change in the amplitude due to penguins is, then, about 1-(1-0.4—2x0.6) = —16 %
and the change in the branching ratiois 1 — (1 — 0.4 — 2 x 0.6)%? ~ —29 %.

The decay amplitude for class II processes (like B — KJ/v, Kv(2S)...etc.) is
simpler to derive than that for class I processes. For example, the factorized decay

amplitude for the process B K /v is given by

- G .
AfB' - KJjv) = —Jg [vcbt;: s+ Y ViV (af + a?)]

x (K°|(30)2|B") (J/v|(zc)|0). (7.25)

Other processes of this class, considered in the previous chapter. have similar decay
amplitudes.

When the Wilson coefficients generated by the penguin diagrams are set to zero,
the change in the branching ratio (ABf) as a result of working in NLL is the same
as that calculated for class II decays of type b — ciud (about -38 %). The penguin
effects, however, turns out to be very small (< 0.5 %). This is because the values
for a; and aj are very close in magnitude and have opposite signs which results in a

destructive interference between the two.

7.3.3 Type b — ccd Decays

The effective Hamiltonian for this type of processes is similar to (7.1) except that the

s flavor is replaced by the d flavor. The Wilson coefficients are calculated from (7.8),
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using the following form for C,

4 2 mi 2 m} k2 k2
Cp = Cs(ﬂ)[g'*‘gln?--i-gln;g—AFl = — AR, m_g)

2 2
rew G ¥ [Fnli-an ()] (7.26)

t=u.d,s,c.b 1

without noticeable changes.

In this section we are interested in class II processes of this type (for example.
B~ — n~J/vw, p~J[¢...etc.). The amplitudes for these decays, have the same form
as the amplitudes for class II processes of type b — cCs (see (7.25)). As a result, the
effect of penguin diagrams on the branching ratios is also very small for the same

reason mentioned above for class II processes of tvpe b — cCs. The results are shown

in Table 7.2.

7.4 Effect on the Estimates of the Nonfactoriza-

tion Parameters

In the previous chapter, nonfactorization was introduced through the two parameters
€, and &g defined in (6.15) and (6.16). These two parameters represent the size of the
color-singlet and color-octet nonfactorizable parts in the decay amplitude. Assuming
universality of €; and &g, their values were estimated from two sets of class I processes
(Tables 6.1 and 6.2) and one set of class II processes (Tables 6.3).

In the light of new features (Wilson coefficients in NLL and penguin effects), we
re-estimate the values of the nonfactorization parameters €; and ¢g using a x? fit
to the experimental branching ratios of the same set of processes mentioned above.
We use the Wilson coefficients calculated up to NLL and include, in the color-singlet
part of the amplitude, the contributions from the penguin diagrams. Regarding the

color-octet part, we only include the contributions from the operators @, and Qa.
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Table 7.2: AB; represents the difference, assuming factorization, between the branch-
ing ratios calculated using the Wilson coefficients in LL (without penguin contribu-
tion), and the branching ratios calculated using the Wilson coefficients in NLL and
NLL + Penguins. ABy; is the difference between the branching ratios calculated using
the Wilson coefficients in LL (including nonfactorization as in the previous chapter),
and the branching ratios calculated using the Wilson coefficients in NLL (including
penguins and nonfactorization as in this chapter). Explicitly, entries in column 4 rep-
resent AB; = (B, — Buri)ac, those in column 5 represent ABs = (B, — Bxrstpengun Jfac

and those in column 6 represent ABys = (Brrinontec = BriL+Penguinsnonfac)-

AB; due to ABy¢

Type Class Processes NLL NLL & Penguin
b—cid 1 B — D¥z=...etc. 1% 3%
b—cid I B’ — D%°.. . etc. -38 % penguins -10 %
b—ctid III B~ -— D%~ 3% do not 2 %
B~ — D%~ -1 % contribute 2 %
B~ — DC%j7 1% to processes 3 %
B~ — D%~ -3 % of type 2%
B~ — D0y~ 3% b—cid 2%
B~ — D%y 1% 2%
b — ccCs I B — DD, 1% 28% 2T %
B — DD: 1% 38 % -37 %
B — D=D, 1% 8% 12%
B — D"D: 1% 13% 16 %
b — ccs I B— KJ/v...etc. -379% -376 % -6%
b—céd II B —#aJ/v...etc. -379% -376 % -6%
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For example. the decay amplitude for the process B K7 [w. after including the

nonfactorization parameters, is given by

G Vs Vo
AR = FIf) = GVt |+ 3 (@ +8)) e+ Cusi
x (K°|(3b)|B") (J/ vl (Tc).]0). (7.27)

In Fig. 7.2 we show a contour plot of the value of x? in €;-¢5 space. In this figure,
we see four minima of x2, labeled 1, 2. 3 and 4, which can be compared with the
corresponding regions in Fig. 6.4. The value of x? per degree of freedom for these
minima is 2.9. By using the same arguments as in section 6.3, we exclude solutions

1.2 and 4 and take solution 3 as the estimate of the nonfactorization parameters. The

result is

e, = —0.053+0.030.
gs = 0.13740.009. (7.28)

The uncertainties in ¢; and &g correspond to Ax2 = 1.
So, we notice that the value of £g. estimated from the above fit, is about 5 %
higher than that estimated in the previous chapter. The value of ||, on the other

hand, is reduced by about 24 % and gets closer to zero.

7.5 Nonfactorization Effects on Branching Ratios

Using the values in (7.28) for the nonfactorization parameters, in a scheme with NLL
Wilson coefficients and penguins contributions, we can calculate the branching ratios
for all the processes considered in the previous chapter. The resulting branching
ratios, are then compared with those listed in column 3 of Tables 6.4-6.11 (which
represent the branching ratios without the the penguin contributions, evaluated in
LL and include nonfactorization as in (6.48)). The differences between the two, called

ABg, are summarized in Table 7.2.
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Figure 7.2: (a) A contour plot of the value of x? in ;-¢g space. The bullets represent
minima of x?; (b) A magnification of the region containing minima 3 of x2. The inner

closed curve represent Ax2 = 1 while the outer closed curve represent Ax? = 2.
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Table 7.3: The predicted branching ratios, in the NLL scheme with penguin contri-
bution, for class II processes of the type b — c¢d. Branching ratios in column 2 are
calculated taking &) = g = 0 and those in column 3 with £; = —0.053 £0.030. & =
0.137 + 0.009. The last column represents the available experimental measurements.

Branching Ratio x107°

Process Fac. Nonfac. Exp. [2]
B~ =z~ J/¢ 022+0.02 22+£03 5.0%+1.5
B~ —p~J/v 091+0.07 93+£1.1 <77
B-—alJ/v  033+003 33+04 <120
B~ — #~u(2S) 0.08+001 08+01 -
B~ — pw(25) 0.514+£005 52407 -
B~ —a;w(25) 015+002 15+02 -

By assuming that the universality of £; and &3 extends to include Cabibbo-
suppressed processes, we evaluate the branching ratios (in the NLL scheme for Wilson
coefficients with the inclusion of penguin processes) in the factorization approxima-
tion, and with the nonfactorization contribution included for six color-suppressed
processes of type b — céd. The results are shown in Table 7.3. This set of processes
was not considered in the previous chapter.

The available experimental value for B(B~ — =~ J/v) [2], shows that the inclusion

of nonfactorization has improved significantly the predicted branching ratio.

7.6 Discussion and Conclusion

In chapter 6, it was demonstrated that the factorization approximation. in LL and
with no penguins, gives reasonable predictions (as compared with experimental mea-
surements) for the branching ratios of class I and class III processes. However, for
class II processes the predicted branching ratios are very low. Also, it was demon-
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strated that, including nonfactorization through the parameters ¢; and &g, improves
considerably the predicted branching ratios for class II (also called color-suppressed)
processes while preserving the reasonable predictions for the other two classes.

In this chapter, we saw that by working in NLL (with no penguins) the predicted
branching ratios of class I and class III processes are very close to the LL predictions
and to the experimental values (see Table 7.2). For class II processes, on the other
hand, the predicted branching ratios are considerably lower (by about 38%) than
the LL predictions making the fit with experimental values even worse than in the
LL case. However, this problem is greatly remedied by including nonfactorization
contribution.

From Table 7.2 we can see that, for class II processes of type b — cud the change
(Brr — Bxy.) in the predicted branching ratios. when nonfactorization is included, is
considerably smaller than that when factorization is assumed. So, for color-suppressed
processes, the inclusion of nonfactorization reduces the sensitivity of the predicted
branching ratios on whether the Wilson coefficients are evaluated in LL or NLL. For
class I and class III processes, the small values of (B, — Byrr) in the factorization
approximation is maintained after including nonfactorization contribution. So. the
inclusion of nonfactorization contribution (but not the penguin processes) results in
low sensitivity on whether LL or NLL Wilson coefficients are used. for all the three
classes of decays.

Contributions from the penguin diagrams appear in processes of types b — cCs
and b — céd. In both of these types, class II processes are affected only slightly
by the penguin contributions. This is due to the destructive interference between
the different terms, in the amplitude, generated by the penguins. On the other
hand, for class I processes of type b — cCs this cancellation does not happen and
the decay amplitudes receive significant contribution from the penguin diagrams (see
Table 7.2). Also, we note that nonfactorization does not have a large effect on the

penguin contribution for this later class of processes.
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Finally, it is interesting to note that the values of the nonfactorization parameters.
€1 and €g. estimated in chapter 6 in LL and without penguin contributions, are close

to the values estimated in this chapter using NLL and penguin contributions.
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Chapter 8

Conclusion

Since every chapter (other than the first three introductory chapters) has its own
summary and discussion, this concluding chapter is not intended to be a repetition
of what has already been said. Instead, it is an overall look at the collective results
of the previous chapters.

Our aim at the beginning of this work, was to investigate the importance of the
nonfactorizable parts of the decay amplitudes in two-body hadronic B-decays. The
anticipation (which was borne to be correct) was that the effects of nonfactorization
would be most important in color-suppressed processes. This is because. in this kind
of processes, the part of the amplitude generated by the color-octet current has a large
coefficient (C)/as ~ 10) as compared to the factorizable part. So. color-suppressed
processes (also called class II processes) were given considerable amount of attention
in this work.

In chapters 4 and 5, we concentrated our study on the color-suppressed decays
B — K*J/v¥ and B, — ¢J/v¥. In both chapters, nonfactorization was introduced
such that it contributed differently to the three Lorentz-scalar structures in the decay
amplitudes. Explicitly, three factors £4, = (1 + Ci/a2 xa1), €4, = (1 + C1/a2 xa2)
and &y = (1 + C1/aa xv) were included in the factorized amplitudes as coefficients to

the form factors A;, A; and V, respectively. In the factorization assumption, these
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three factors are equal to unity.

The study of chapter 4 made use of the available world averages of decay rates
and longitudinal polarization. i.e., two data points were available while the theory
had three parameters £4,, 4, and &v. In contrast, in chapter 5, we used the first
extraction of the full set of decay amplitudes for the process B — K™.J/% made by
the CLEO II collaboration which measured, in addition to the decay and longitu-
dinal polarization, the transverse polarization. In both studies, it was found that
the amount of nonfactorization needed to explain the experimental data is model
dependent. However, it was interesting to observe that BSW I model, in factoriza-
tion approximation, could predict the available measurements of the longitudinal and
transverse polarizations but underestimated the branching ratios (see section 5.4).
This implied that the problem was that of an overall scale factor. i.e. the three pa-
rameters 4,, £4, and & were approximately equal. Hence, these three parameters
were replaced by one (£) which acts as a multiplicative factor for the factorized decay
amplitude. The other interesting observation is that in BSW I model this factor seems
to be process independent, at least for the three processes B — K~J/w. B, — oJ[v
and B — K~"¢¥(2S) (see Table 5.7).

The above observations encouraged us to do the following: First, we separated
the nonfactorization contributions due to the color-singlet (¢,) and the color-octet
(eg) currents. Second, by assuming that nonfactorization contributes equally to the
three Lorentz-scalar structures in B — V'V decays, the values of £; and &g were
estimated using available experimental measurements of branching ratios for two sets
of color-favored processes and one set of color-suppressed processes in BSW I model.
Finally. the estimated values of £; and g were used to calculate the branching ratios
for a large number of Cabibbo-favored B-decays. The results obtained showed good
support to the above assumptions (see chapter 6).

In the three studies that preceded chapter 7, we used Wilson coefficients evalu-

ated in LL and ignored penguin diagram contributions. In chapter 7, however, we
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investigated the effects of (i) using the NLL values for the Wilson coefficients and (i7)
including the penguin contributions to the color-singet part of the decay amplitude.
The new estimates of €; and g turned out to be very close to the estimates of chap-
ter 6. For the case of color-suppressed processes, it was found that the penguins had
only a small effect (< 10%) on the predicted branching ratios. Also, when nonfac-
torization was included, the predicted branching ratios of most processes considered
had small dependence the set of values (i.e. LL or NLL values) used for the Wilson
coefficients. The exception was the set of color-favored processes B — D)D{*) which
receives considerable penguin contributions. However, the predicted branching ratios

are still reasonably close to the available experimental measurements.
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Appendix A

Polarization Vectors

A.1 Free Massive Vector Field

Assume that we have a vector field A#(x) with a Lagrangian density given by

L(z) = —%F,‘,,F“” + %mzA,,A“, (A1)
where
Fov = (BRAY — & 4¥). (A.2)

Using the least action principle, we find that this field satisfies the following equation

of motion:
9,F" + m2A4* = 0. (A.3)

Since F#" is antisymmetric under the exchange of 1 and v, then
0,0, F* = 0. (A.4)
So, taking the four divergence of (A.3) leads to

m2g,A* = 0. (A.3)
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Since (m # 0). then the vector field must satisfy the Lorentz condition 1
J, A% = 0. (A.6)
The equation of motion (A.3) can be written as
8,0” A¥ — 3*9,A" + m?A* = 0. (A.7)

Since all solutions of the above equation satisfy the Lorentz condition (A.6). then the

equations of motion for the massive vector field can be written as

(8,8 + m®)A* = 0. (A.8)
A" = 0. (A.9)

A.2 Solutions of Equations of Motion

Our aim here is to find all vector fields that satisfy (A.8) and (A.9) simultaneously.
From (A.8), we see that everv component of A* satisfies the Klein-Gordon equation.
So. knowing that A* is a 4-vector we can write the following general solution satisfying
(A.8)

A# = Netetikr, (A.10)

where
k* = (k°.k). (A.11)

€* is called the polarization vector and XV is a normalization constant.
The next step is to choose those A* that satisfy the Lorentz condition. By sub-
stituting (A.10) into (A.9) we get
k.e=0, (A.12)

which reduces the degrees of freedom of € from four to three.

1F. Gross, Relativistic Quantum Mechanics and Field Theory, (John Wiley & Sons, New York,
1993).

163



A.3 Polarization Vectors
If the coordinate system is chosen such that k is along the z-axis, then we have
k* = (k%,0,0,k|). (A.13)

By substitution in (A.12) we find that €* has the following general form
kO

0 ,
-lk—lé ) (:\14)

e = (0 ¢, 2.

Since ¢# has three degrees of freedom, then the set of all polarization vectors can
be spanned by three basis vectors. For example, the following three independent

polarization vectors

#(0) = -r%(uc[,o,o,k“), (A.15)
(1) = (0.1.0,0), (A.16)
¢(2) = (0,0.1,0), (A.17)

can be chosen as a basis.

A.3.1 Helicity Eigenstates

For a vector particle, the wave function transforms as a 4-vector under the Lorentz
group. In particular, rotations about the z-axis form a subgroup whose elements are

represented by

1 0 0 0
0 cosf@ -—siné O
R(0) = (A.18)
0 sin@ «cosfé O
0 0 0 1
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The generator of this group is the third component of the spin operator. S.. It is

given by
00 0 0
. 00 —i 0
s.=i (9 . R (A.19)
4 /oo |0 i 0O O
00 0 0

Helicity. measures the spin of the particle along its direction of motion 2. So, for
a vector particle moving in the positive direction of the z-axis the helicity operator is

the third component of the spin operator,

k-S _
[k

So, the helicity eigenvalues (A) and eigenvectors (¢(A)) are defined such that

S.. (A.20)

S.e(A) = Ae(N). (A.21)

From (A.19) we see that S. has three distinct eigenvalues. These are shown below

with the corresponding eigenvectors:

A=0 €(0) = (a,0,0,b),
A=+1 e(+) = (0,c.ic,0),
A=-1 e(—) = (0.d. —id.0).

where a. b, ¢ and d are arbitrary constants. However, the Lorentz condition (A.12)

restricts €(0) to have the form

0

€(0) = (a,0,0, % (A.22)

—a).
k|
By choosing appropriate normalization we end up with the following three inde-

pendent polarization vectors representing the three possible helicity states:

1
«(0) = —(Ikl,0.0,°),

2B. De Wit and J. Smith, Field Theory in Particle Physics, (North Elsevier Science Publishers
B. V., Amsterdam 1986).
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Figure A.1: P — V{14 in the center-of-mass frame

+) = \"/—;(0. 1.i.0). (A.23)

(=) = 71_2.(0,1.—1'.0).

A.4 P — VV Decays

For the process P — V1V, we define €] and €5 to be the polarization vectors of the V;
and V, particles respectively. If we work in the center-of-mass frame (P rest frame).
and take the three momentum of the first vector meson (p;) to be in the positive

direction of the z-axis, then, we have

pi = (£1.0.0.]p1).
py = (E»0.0.—|pa|). (A.24)
p» = (mp,0.0,0).

From conservation of momentum, we have
E,+ E; =mp, (.‘\.25)

and
Ip1| = Ip2| = |pI- (A.26)

From the Lorentz condition (A.9), the polarization vectors for the two vector

mesons satisfy the following relations:

b€ = 09 (.{.27)
pres = O. (A.28)
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Since p; is pointing in the positive direction of the z-axis, we can write the three

polarization vectors for V; directly from (A.23) as:

1
61(0) = -n-l—l(lpllv 07 Ov El)~

ald) = T2(0,1,44,0). (A.29)

V2

P2, however. is pointing in the negative direction of the z-axis. So, we have from

(A.24 ) and (A.28)

pre2 = Exed +|pled = 0, (A.30)
which leads to
E
3 20
€ = ——¢,. A3l
2 Ipl 2 ( i )

So, the longitudinal polarization vector takes the form
1
€2(0) = —(—[p|.0.0, E3). (A.32)
ma

Also, the eigenstates of S, with eigenvalues +1 will be the eigenstates of helicity with

eigenvalues F1 respectively. So, the two transverse polarization vectors become

e(£) = F(0, —1.%4,0). (A.33)

V2

A.4.1 Useful Calculations

By contracting the polarization vectors defined above we get the following results:

2 _ .2 .2
(e1(0).62(0)) = -""’2m"1’;12 M (A.34)
(a(£)e(x) = L (A.35)

Also the following combinations are useful:

2
(€2(0).p2) (e2(0).p1) = ‘:nﬂlf;—zlp'z’ (A.36)
(e1(£).p2) (e2(£).p1) = O, (A.37)
Epvpe €(0)&(0) 05 = O, (A.38)
Euvoo €L(£) 5(£) iP5 = Limplp|, (A.39)
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where, from (A.23) and (A.26) we can derive

1
2 2 2)2 2,277
(m% — mi{ —m3$)* —4dmims |?

lpl = [ (A.40)

2
dm?p
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Appendix B

Fierz Transformation

B.1 The Complete Set of 4 x 4 Matrices

Consider the following set of 4 x 4 matrices (to be named r+ :A=1....,16)1!

= 1,

F0. UT1, Y2, 173,
15273, 1¥371, Y172, Y170, Y270. Y370

T17273, 17250, 737170, 1727370-

M7 - (B.1)

Note that ['!6 = +3.

1References used are
o A. N. Kamal, lecture notes (unpublished), University of Alberta (1995).
o W. Greiner, Relativistic Quantum Mechanics, (Springer-Verlag, Berlin, 1990).

e Marshak, Riazuddin and C. P. Ryan. Theory of Weak Interactions in Particle Physics. (Wiley-
Interscience, New York, 1969).
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B.1.1 Properties

For these matrices, several properties can deduced.

e All I'4 above satisfy
(r4)*=1.
e For each ['* (except I'!) there exists a 'Z such that

réraré = —r4.

(B.2)

(B.3)

As can be verified easily by explicit calculations, the values of A and the corre-

sponding values of B that satisfy the above equation are

Al2 3456789 10 11 12 13 14 15 16

9 4334532 2 2 2 6 6

{

2

(B.4)

e Each I'* (except I'!) is traceless. This can be proved easily using the above two

properties as follows:
tr(T4) = —tr (TO04T%)
= —tr (0°r°r)
= —tr (F") i
So, we have
tr(f1*)=0  :A=2....16
e It can be proved by explicit calculations that
AT = A=5
xIC(C#1) ;A#B
So, from (B.3) and (B.6) we have
4 ;A=1B
tr (T47%) = '
0 :A#B
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The I'* matrices are linearly independent.

Proof:

Let us assume the existence of the following linear combination of ¥4’s:

16
Y a4 =0, (B.8)
A=l
which can be rewritten as
apT?+ Y asT4=0. (B.9)
A#B

If we multiplying the above equation by I'Z we get

ag + Z a T4T8 = 0. (B.10)
A#B

By taking the trace and using (B.7) we conclude that

ag =0 :B=1..... 16. (B.11)

Each 4 x 4 matrix can be expanded in terms of the I'*’s. This is evident since

the ['*’s are 16 linearly-independent 4 x 4 matrices.

So, if X is 4 X 4 matrix. then it can be written as

16
X =3 a4 (B.12)

A=1

Multiplving both sides by I'* and then taking the trace we get

as = itr (r*x). (B.13)

By substituting (B.13) into (B.12) we get

16
X = % S tr (T4X) I, (B.14)
A=1
So, the elements of X satisfy
i 1 16 i 4 4 }
A-a,s = Z Z _X.,g (P )5., (I‘ )a_.g. (B.la)
A=1 4,6=1
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For the special case

Xaos = 600’6[15

we have

4

8aclps =
7,8=1

VO e Y

£
lL

M= ?r[v)m

If F and G are two 4 x 4 matrices, then we can write

4

FaaGpﬂ = Z 6766p6 Fa-,Gé.’i

—

o

4

A
1

14.8

Ll Rl
=]

kS
0
—

where the relation (B.17) has been used in the above calculations.

B.1.2 Useful Relations

It can be proven by direct calculations that

2
®
—
E
-
®
il

where

Ca={ 0 :4A=6,

172

Z 70695 (FA)ﬁ‘r (FA)aB

(FA)QB (PA )pa-

(FA)16 (rA)pa
=1

(FrG) o5 Mo

CaT4,

,751".4,73 - C:l FA,

-2 :A=23.4,5
7,8,9,10,11
2 :A=1213,14,15

—4 :A =16,

(B.16)

(B.17)

(B.18)

(B.19)
(B.20)

(B.21)



, 1 :4=1:6,7,8,9,10,11:16

Ca= (B.22)

-1 :4=2,3,4,5:12,13,14, 15.

From above we can easily derive the following relations:

o* 40, = (C3-4)TA (B.23)
T4 97° = —CuCL T, (B.24)
PL=P) T (1 -7") = Ca(l-Ch)(L+~°)T% (B.25)
A=) T2 (1 +4°) = Ca(1+CL)(1L+4°)T4. (B.26)

B.2 Fierz Transformation

If F and G are 4 x 4 matrices. and !?3# are 4 Dirac spinors then, relation (B.18)

can be used to rearrange the spinors as follows:

(Ul F U2) (53 G U4) = Ui UE ;Z U?; Faa’GP:3

= —5}1 Ug Uz Ug FaaGpB

- LIS E e @), @
A=l

As a special case we have

(@' (1 =) 8?) (2" 71 — %) )

16
= —;ll- ;-“1 (@ (1= P4 7(1 - %) ut) (B T4 0?)
= —% f: Cal=Cy) (¥ A+ et) (3°T"w?)
A=1

=3 (3" (1 +7°) T4 w*) (¥ 14 ?)
A=2
A=12

= (@ (1 -)¢") (B -+ v?), (B.28)
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where we have made use of (B.25).

Similarly, we can show that

(@' 71 -9 ) (B +77)et) = =2 (5 1+ w!) (3 (1 =) ).

(B.29)
B.3 Fierz transformation and Color Algebra
The eight generators (\®)of the SU(3) group satisfy the following relation
8
a a 2
; /\,-]- = —géijékl + 26;10x;. (B.30)
Below we will make use of this relation in order to evaluate
(T 20 (1 = 7)) (T2 A w1 £ 7)) (B.31)
where the summations over a and u are understood.
We first start by writing
(' A2 (1 = 2%) v?) (87 A7l £9°) ')
— (il A3\ ,02Y (73 A ~3V,,4) 12 ya
= ('f‘"i (1 — 7 )l"’j) (Uk u(l £ 7 )U,) AL Ak (B.32)

where the indices above represent color. By substituting from (B.30) into (B.32) we

get

@' At rt1 - 1) %) (7 A1 £7°) )

= - 2@ ra-7e) @wa ) u)
+2(8 (1 =) 0f) (Ben(t £7°) uf) (B.33)

Using the Fierz transformations (B.28) and (B.29) we end up with the following

results

(@' A2 94(1 = 4% v?) (B° A% (1 = 7°) )
=- % (@ (1 =) ¥?) (570 - 2°) ¥)
+2 (% (1 =) ) (B w1 -+ vd) (B.34)
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and

(2" 2271 = %) v?) (" A 7(1 + ) w)
=- % (@1 =) 4?) (B % + 7))

— 4 (@ L+ ef) (G (1= 82).
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Appendix C

Two-Body Decay Rate

C.1 Normalization of Wave Functions

C.1.1 Klein-Gordon Field

The Lagrangian for a complex scalar field is given by
Lug = 8,0 8%0 — m?eé 0. (C.1)

Using the least action principle. we can derive the equation of motion for the scalar

field. This is called the Klein-Gordon Equation and it is given by
9,6+ m?é = 0. (C.2)

The above Lagrangian is invariant under the phase transformation ¢ — e~*®¢.
Therefore, from Noethers Theorem, the following conserved current is associated with
this symmetry:

Tt =ilo" (3%0) — (96" d] . (C3)

Assume that we are interested in the solutions of the Klein-Gordon Equation
inside a box of volume V = L3 centered about the origin. Since the behavior of ¢
outside the box is not important, it can be taken to be a periodic continuation of

oinside the box. So, o(t,z,y,2) = é(t,z + L,y, z), and so on.
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As a result, the solutions of the Klein-Gordon Equation are

¢Lﬁ:) — .'\..—e;ikn..t’ (C4)
where
k, = 2L—7rn
n = (nl,ng, Tl3); n; =0,:i:1.:£:2. (C5)
and
k2 = y/|kq|? + m2 (C.6)

The normalization constant (V) is chosen such that the integral of the temporal
component of the conserved current is unity. In other words, we are normalizing to
one particle in the volume V. So, the normalized complete set of solutions of the

Klein-Gordon Equation are

1

o\F) =
' v/ 2KV

¢ eFikn-r, (C.7)

C.1.2 Dirac Field
The Lagrangian for a free Dirac field is given by
Lp = B(z) (v*3, — m) ¥(z). (C.8)

Using the least action principle, we can derive the equation of motion for this field.

This is called the Dirac Equation and it is given by
(iv*9, —m)w(z) = 0. (C.9)

Similar to scalar field, the above Lagrangian is invariant under the global phase
transformation ¥ — e™'®¥. So, form Noethers Theorem, the following conserved

current is associated with this symmetry:

Jp = vy (C.10)



Also here, we will find solutions inside a box of volume V' = L3 centered about the
origin and normalize the wave functions to one particle in this volume. As a result,

we see that the following solutions of the Dirac Equation for a complete set:

1
2OV
1

2KV

where ky, is defined in (C.3) and (C.6). u(ky,s) and v(ky, s), called the Dirac spinors,

u(kp, s)e*n-=, (C.11)

v(kn,s)eik“", s =1,2 (C.12)

are given by

u(ky,s) = ,/kg+m( “’: ) (C.13)

3
k,“,-i-mx

(k;r.k Xs
v(ka,s) = kQ+m| B : (C.14)

\ X
C.2 Decay Rate

If P is a pseudoscalar particle and P; and P, are two particles at particular spin states
then, the decay amplitude for the process P — P, P takes the following form

e—ip.:: eipl .z eipz.:

2p0V)1/2 (209V)1/2 (2p3V)1/2 M(P — P P), (C.15)

A(P—>P1P2)=/Tvd“x(

where p, p; and p, are the 4-momenta of P, P, and P, respectively. V is the volume
of the space. T is the interaction time and M is the Feynman amplitude.

From (C.15) we see that the transition probability to one definite final state is
given by

1 1 1

_ 2 _ 2
AP = B BT = 1ol vy oiv) v

HMwﬁﬂﬂf, (C.16)

where
by = / diz e~iP-P1=P2)T (C.17)
TV
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Since the momenta of the initial and final state particles are discrete ( see (C.3) ). we

can write

0 p#p+
by ={ _ TTRTR (C.18)
TV p=pi+p

which leads to

oty orv

= TV érv. (C.19)

[6rv 2

In the limit T — oo and V — oo we end up with a continuum of momenta. So,
it is more convenient to introduce the transition probability to a group of final states
with momenta in the intervals p; £ dp; and ps £dps. To do this, we multiply (C.16)

by the number of states in these intervals. So, the decay probability is written as

) ) i 1 1 1 Vdp, Vd®p,
P P) = lim TVé
AP =B PIE = m TVorv o) o) V) (2n) (27)
X |[M(P — P, B)*. (C.20)
However, from (C.17)
Alim_érv = (27)'6%(p — p1 - p2)- (C.21)

So. the transition probability per unit time (or decay rate) is given by

1 dpy dpy
2p° 2p{(27)® 2p§(2n)

dl’ = (27)*6*(p — p1 — p2) = |[M(P — P, P)*. (C.22)

In order to complete the calculation of the decay rate we need to integrate dI’ over

the final state momenta. To do this let us first rewrite (C.22) as

1 5(p° — p? — 8
dT = = 6" — P = P2) @ T 2) #p,dpy [M(P — P, By, (C.23)

The energies of the particles involved are

P (Ipl? + m*)'? = m,
i = (pf>+m})'72, (C.24)

Py = (Ip2l* +m3)'?
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where p = 0 since we are working in the centre-of-mass frame. So,

6 (m = (Ipaf? + m2)2 — (pof? + m3)1/2)

6 . 3. 3
Y N ) e PN T
x |[M(P — P, ). (C.25)
By performing the integration over p; and ps we get
r= L[ (= (o 4 m2) 2 = (a4 m) )
~ 8wm Jo (Ip1]2 + m?)1/2 (|py |2 + m3)1/2 [p1/“d|px|
X |[M(P — P, P)J. (C.26)
To simplify this integral let us define
g = ([p1[* + m)'? + (|p1f* + md)*72, (C.27)
and substitute back into (C.26). The result is
_ L s (¢ — m} — m3)? — 4mim)'/*
I = 87m </ml+m2 6(m —q) 2q? dg
x |[M(P — P, B)}?.
_ L [(m?~m}— m}? — 4mim3)'/? 2
= Sam? 5 IM(P — P, P,)|
_ |p1] 2
- 87|'m2 |M(P Pl PQ)I s (C.28)
where s
m?2 — m? — m2)?2 — 4m32m3
paf = & L my) el _ by (C.29)

2m

is the momentum of the decay products in the P rest-frame (see A.40).
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Appendix D

n and n’ Systems

In describing the physical staes n and 7/, we use the conventions !

In) = |ms)cosfp — |n)sinbp.
|n) = |[ns)sin@p + |m)cosbp. (D.1)

where the flavor-singlet and flavor-octet states are defined as

1 -
I?h) = ﬁ qu-l -+ dd + 85)

) = 71_6|uﬁ+dc7—'255). (D.2)

Op is the mixing angle taken to be

0p ~ —20°. (D.3)

From (D.1) and (D.2) we get 2
In) = Cplug)+Cildd) + C|s3), (D.4)
In') = Cyluz)+ C3|dd) + C3 |s5), (D.5)

IR. M. Barnett et al. (Particle Data Group), Phys. Rev. D 54, 1 (1996).
2A. N. Kamal, Q. P. Xu and A. Czarnecki, Phys. Rev. D 49, 1330 (1994).
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where

5 cosfp — sinﬂp) ,

N

7

|
Wl N
N

1
cosfp + —sinfp |,
P \/-2- P)

3 (cosﬂp + %sinep) ,

(

1

win Sl
-

cosfp — sin6p) .
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Appendix E

Particle Properties

Particle Quark I(J%?) Mass Mean Life
Composition (MeV) 10712 (sec)

7t w ud. ©d 1(0™) 139.56995 + 0.00035

70 (uz —dd)/v/2 1(0) 134.9764 % 0.0006

o) See Appendix D 0(0~) 547.30 £ 0.12

pt.o” ud, ud 1(17) 770.0 £ 0.8

o° (v@ —dd)/vV2 1(17) 770.0 £ 0.8

0 (v +dd)/V2 1(17) 781.94 + 0.12

4 See Appendix D 0(07) 957.78 + 0.14

o 53 0(1-)  1019.413 + 0.008

af.af ud 1(1%) 1230 % 40

K+ K- U, Us 1(0-)  493.677 £ 0.016

K. K’ ds,ds 1(0-)  497.672 % 0.031

K-+ K™~ us, s 3(17) 891.66 + 0.26

K0 F° d3.ds 1(17) 896.10 + 0.28
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Particle Quark I(J?) Mass Mean Life
Composition (MeV) 10712 (sec)

D*,D- cd,ed 3(07) 18693 £0.5

D°,D° T, Tu 1(0-) 1864.6 0.5

Dt D=~ cd.cd (1) 20101+0.5

D°.D° cu.Tu 1(17) 2006.7 + 0.5

Bt.B- ub. b 3(07) 52789+ 1.8 1.65+0.04
B B° db, db 1(0-) 52792+18 1.56+0.04
BY. B! sb,5b 0(0~) 5369.3+£20 1.5440.07
J/v T 0(17) 3096.88 + 0.04
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