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Abstract—Lyme borreliosis (LB), also known as Lyme disease, is emerging as a serious tick-
borne illness across Canada. More than three decades of research on LB in North America and
Europe have provided a large, complex body of research involving well-documented difficulties
at several levels. However, entomologists are well situated to contribute to resolving some of
these challenges. The central pathogen in LB, the spirochete Borrelia burgdorferi Johnson et al.,
includes numerous genospecies and strains that are associated with different disease symptoms
and distributions. The primary vectors of LB are ticks of various Ixodes Latreille species
(Acari: Ixodida: Ixodidae), but questions linger concerning the status of a number of other
arthropods that may be infected with B. burgdorferi but do not transmit it biologically. A
variety of vertebrates may serve as reservoirs for LB, but differences in their ability to transmit
LB are not well understood at the community level. Persistent cystic forms of and immune-
system evasion by B. burgdorferi contribute to extraordinary challenges in diagnosing LB.
Multiple trade-offs constrain the effectiveness of assays like ELISA, Western blot, polymerase
chain reaction, and microscopic visualization of the spirochetes. Consequently, opportunities
abound for entomologists to contribute to documenting the diversity of the players and their
interactions in this devilishly complex disease.

Résumé—La borréliose de Lyme (LB), connue aussi sous le nom de maladie de Lyme, est en
train de devenir une importante maladie transmise par les tiques dans l’ensemble du Canada.
Les recherches au cours de plus de trois décennies sur LB en Amérique du Nord et en Europe
ont fourni un ensemble considérable et complexe de travaux qui comporte des problèmes bien
identifiés à différents niveaux. Les entomologistes sont, cependant, bien placés pour contribuer
à solutionner certains de ces défis. Le pathogène principal de LB, le spirochète Borrelia
burgdorferi Johnson et al., englobe plusieurs espèces génétiques et souches qui sont associées à
des symptômes et des répartitions différentes de la maladie. Les vecteurs principaux de LB sont
des tiques de différentes espèces d’Ixodes Latreille (Acari: Ixodida: Ixodidae), mais il reste des
questions concernant le statut de plusieurs autres arthropodes qui peuvent être infectés par B.
burgdorferi, mais qui ne le transmettent pas biologiquement. Divers vertébrés peuvent servir de
réservoirs pour LB, mais les différences relatives dans leur capacité à transmettre LB ne sont

Received 26 March 2009. Accepted 26 June 2009.

1This series is supported by a fund established in memory of the late Charles P. Alexander. The
Entomological Society of Canada uses the fund to support the publication of invited articles or reviews on
topics that broaden the scope of The Canadian Entomologist and (or) are of current significance to
entomology.
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pas bien comprises au niveau de la communauté. Les formes kystiques persistantes et l’évasion
du système immunitaire chez B. burgdorferi rendent le diagnostic de LB extraordinairement
compliqué. De nombreux compromis limitent l’efficacité de tests biologiques, tels que la
méthode ELISA, le buvardage western, l’amplification en chaı̂ne par polymérase et la
visualisation des spirochètes au microscope. En conséquence, il existe de multiples occasions
pour les entomologistes de contribuer à l’étude de la diversité des intervenants et de leurs
interactions dans cette maladie diablement complexe.

[Traduit par la Rédaction]

Introduction

Lyme borreliosis (LB) is a potentially

debilitating illness that is typically vectored by

ixodid ticks (Acari: Ixodida: Ixodidae) and

caused by infection by the spirochete Borrelia

burgdorferi Johnson et al. or other closely

related species of Borrelia Swellengrebel. While

the disease is also known as Lyme disease, the

term Lyme borreliosis is becoming increasingly

prominent internationally, to emphasize the

causative organism (Gray et al. 2002). It has

become the most common disease vectored by

arthropods in the United States of America

(USA), with the majority of cases occurring in

the northeastern and north-central regions. In

2005, a total of 12 914 cases were reported

among the 56 million inhabitants of the 10

states that border eastern and central Canadian

provinces, and the incidence of LB has more

than doubled since it became nationally noti-

fiable in the USA in 1991 (Centers for Disease

Control and Prevention (CDC) 2007). In

contrast, although most of the 32 million

inhabitants of Canada lived within 150 km of

the United States border in 2005, fewer than 50

cases of LB per year were diagnosed in humans

by Canadian laboratories and approximately

half of these were associated with travel to areas

outside Canada (Charron and Sockett 2005).

In Canada, accurate LB statistics have been

difficult to obtain because the disease is not

yet nationally notifiable (Ogden et al. 2008a;

Canadian Paediatric Society Infectious Dis-

eases and Immunization Committee (CPS)

2009). Nonetheless, B. burgdorferi has now

been recognized in every province (Table 1).

Recent passive surveillance from Manitoba

eastward has shown that 12.5% of sampled

specimens of the tick vector Ixodes scapularis

Say were infected with B. burgdorferi, including

10% of those collected on humans (Ogden et al.

2006). Infected ticks are not a new phenomenon

in Canada; soon after the original description of

B. burgdorferi, Lindsay et al. (1991) reported a

58% prevalence of B. burgdorferi in adult Ixodes

Latreille at Long Point, Ontario.

LB has been recognized by the Public

Health Agency of Canada as becoming

increasingly important for Canadians (Ogden

et al. 2008a, 2008d). Even so, some infectious-

diseases specialists disagree, noting that the

disease is rare and reports of endemic cases

have not increased in Canada during the past

two decades (CPS 2009). In the USA,

controversy over the diagnosis and treatment

of LB has resulted in an increasing polariza-

tion of views, with some doctors interpreting it

as a serious illness with long-term sequelae

(e.g., Fallon et al. 2008; Stricker and Johnson

2008; Cameron 2009) and others viewing it as

a faddish ailment used by patients to displace

the less socially palatable medical explanation

of psychiatric difficulties (Sigal and Hassett

2002; Hassett et al. 2008). Ballantyne (2008)

concluded that such controversies can only be

resolved with further research. Limitations in

the sensitivity and specificity of blood tests

across the genetic diversity of Borrelia species,

an incomplete understanding of their immune-

system evasion and persistence, variation in

the degree of human immunity, and complica-

tions due to co-infections by other disease-

causing microorganisms all contribute to the

complexity of the interactions between the

spirochetes, their vectors, and their vertebrate

hosts. Even in Connecticut, where LB was

first described and incidence is still very high,

treatment has been sufficiently controversial

that the Connecticut General Assembly

recently passed legislation protecting doctors

from disciplinary action for prescribing long-

term treatment with antibiotics (Connecticut

General Assembly 2009).
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Entomologists are no strangers to the

complexity that accompanies diversity, and

are well positioned to make positive contribu-

tions to resolving some of the controversies

that surround LB. In fact, entomologists have

a vested interest in LB because many are

potentially exposed to infection during field-

work (Piacentino and Schwartz 2002; Vázquez

et al. 2008) and yet are also aware of the

potential for entomophobic hysteria. Further-

more, entomologists in Canada have an

opportunity to make a fresh start, taking

advantage of the currently low profile of the

disease in Canada but building on the large

volume of recent scientific studies from the

USA and Europe. The purpose of this review

is to explore the scientific, peer-reviewed

research on LB that is relevant to Canada,

with particular focus on biological and dia-

gnostic factors that contribute to making this

disease so challenging.

The natural history and ecology of LB

Diversity of Borrelia species and delimitation of
B. burgdorferi

After investigating bacteria in ticks that

were implicated in a cluster of juvenile

arthritis cases from Old Lyme, Connecticut

(41 1̊99N, 72 2̊09W), Burgdorfer et al. (1982)

proposed that a spirochete was the etiologic

agent of this illness. European researchers

isolated a morphologically and immunologi-

cally similar spirochete from the skin and

cerebrospinal fluid of a patient suffering from

Bannwarth’s syndrome (Pfister et al. 1984).

The spirochete was formally named B. burg-

dorferi by Johnson et al. (1984) and later

shown to include three distinct phyletic groups

(Welsh et al. 1992). These three groups of

strains, referred to as B. burgdorferi sensu

stricto (s.s.), B. garinii Baranton et al., and

B. afzelii Canica et al., were associated with

differences in clinical symptoms within a

broad definition of LB (Lebech et al. 1994).

Borrelia burgdorferi tends to produce arthritic

symptoms, B. garinii tends to infect neural

tissue, and B. afzelii may persist in the skin

(Terekhova et al. 2006; Tilly et al. 2008;

Craig-Mylius et al. 2009; Hildenbrand et al.

2009; Kudryashev et al. 2009).

Rudenko et al. (2009) have now described

Borrelia carolinensis from the southeastern

USA as the 14th species of the B. burgdorferi

sensu lato (s.l.) complex. The members of

this species complex vary in host/vector

Table 1. Reports of Lyme borreliosis (LB) and Ixodes ticks in Canada.

First report of human

LB in Canada

Diseases Weekly

Report

First report of

I. scapularis or

I. pacificus

PCR (or IFA) positive

for Borrelia burgdorferi

in ticks

Positive cases

for dogs in

20071

Nova Scotia — 19842 19993 34

New Brunswick 19874 19902 19965 (IFA) 11

Newfoundland 19894 19946 20017 (B. burgdorferi);

20068 (B. garinii)

n/a

Prince Edward Island — 19892 19919 (IFA) 1

Quebec 198410 19892 199611 65

Ontario 197710 190412 198813 (IFA), 199314 395

Manitoba 19884 19892 200215 229

Saskatchewan 199916 199816 — 3

Alberta 19894 19983; 200215 199417 5

British Columbia 19884 191018 199319 4

Note: Sources are as follows: 1, IDEXX Laboratories, Inc. (2008); 2, Costero (1990); 3, Scott et al. (2001); 4,
Mackenzie (1990); 5, Bjerkelund (1997); 6, Artsob et al. (2000); 7, Whitney (2005); 8, Smith et al. (2006); 9, Artsob et al.
(1992); 10, Bollegraaf (1988); 11, Louise Trudel, Laboratoire de santé publique du Québec, Institut national de santé
publique du Québec, Sainte-Anne-de-Bellevue, personal communication, 26 March 2009; 12, Nuttall and Warburton
(1911); 13, Barker et al. (1988); 14, Banerjee et al. (1995b); 15, Morshed et al. (2005); 16, Lindsay et al. (1999c); 17,
Banerjee et al. (1995a); 18, Gregson (1956); 19, Banerjee (1993).
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associations, pathogenicity, and distribution,

and have now been recorded in many areas

where they were not previously thought to

occur (Rudenko et al. 2009). In North

America, Lyme-like borreliosis may also be
caused by B. lonestari Armstrong et al.

(Stromdahl et al. 2003) and B. bissettii Postic

et al. (Schneider et al. 2008), both of which

occur widely on the continent. A Colorado

isolate of B. bissettii has been shown to be

pathogenic to mice, but an isolate from British

Columbia was not (Schneider et al. 2008).

Another species, B. californiensis Postic et al.,
is of unknown pathogenicity and has so far

only been documented from California, where

it is primarily associated with the California

kangaroo rat, Dipodomys californicus Merriam

(Postic et al. 2007).

Outside the B. burgdorferi s.l. complex,

other Borrelia species can cause relapsing

fever, with B. hermsii (Davis) vectored by
argasid ticks (Ixodida: Argasidae) and occur-

ring in British Columbia, Montana, and south

through the Rocky Mountains (Schwan et al.

2007), and B. recurrentis (Lebert) vectored by

the human body louse, Pediculus humanus L.

(Anoplura: Pediculidae), in several widely

separated Third World countries (Cutler et al.

1997). Borrelia recurrentis infection may occur
either by crushing infected lice into broken

skin or by contact with infected louse feces

(Houhamdi and Raoult 2005). Difficulties in

diagnosing Borrelia spp. have been reviewed

by Exner (2004).

Unexpectedly large genetic diversity has

also been found within B. burgdorferi s.s.

For example, nine distinct clonal lineages were
found at one field site in the northeastern

USA (Bunikis et al. 2004). Differences in

fitness between two of these genotypes, one

isolated from blood and the other from skin,

were studied in mice by Hanincová et al.

(2008). The blood isolate retained its infectiv-

ity to xenodiagnostic ticks, whereas the skin

isolate did not, suggesting partial diversifica-
tion into more specialized subtypes in

North America. Additional research in North

America and Europe has shown further

diversity in B. burgdorferi s.s.; at least 12

distinct sequence types defined by DNA

sequence differences in outer-surface protein

C (OspC) coexist in the northeastern USA and

at least 17 OspC types are found across the

USA and Europe (Qiu et al. 2008). OspC-A

genotypes are associated with a highly virulent

clonal group that has a wide distribution,
suggesting recent migration of OspC-A genes

into North America from Europe within the

past few hundred years (Qiu et al. 2008).

Interestingly, the OspC-A sequence at the

OspC locus characterizes isolate B31, which

was explicitly identified as the ‘‘type strain’’ in

the original description of B. burgdorferi

(Johnson et al. 1984). Most of the genome of
B31 has subsequently been sequenced by

Casjens et al. (2000).

Based on multilocus sequences for several

slow-evolving housekeeping genes (MLSTs),

Margos et al. (2008) agreed with Qiu et al.

(2008) about the European origin of

B. burgdorferi; however, they contended

that B. burgdorferi has existed in North
American refugia for much longer, in the

order of millions of years. Although Margos

et al. (2008) documented substantial discord-

ance in topology as well as evolutionary

processes between their concatenated MLST

markers compared with the OspC locus, they

did not consider whether recent introgression

and hybridization of genes introduced from
Europe may have contributed to the virulence

of LB via hybridization. In other words,

differences between MLSTs and OspC topo-

logy may reflect legitimately distinct biological

processes in which housekeeping genes char-

acterize a portion of the genome that has

remained geographically stable, whereas OspC

genes show signs of strong selection and recent
trans-Atlantic gene flow. If so, this would

mean that MLSTs may not unambiguously

genotype B. burgdorferi samples or establish

their evolutionary relationships and popu-

lation structure at different levels, as was

maintained by Margos et al. (2008).

Although intellectually fascinating, the

complexity of B. burgdorferi s.l. has provoked
spirited disagreement. Even the delimitation of

LB is contentious. One school of thought is

represented by the Infectious Diseases Society

of America (Wormser et al. 2006, 2007) and

relies on narrowly focused serology that is

commonly applied in Canada using commercial
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diagnostic kits such as MarDx (Canadian

Public Health Laboratory Network (CPHLN)

2007), which were developed using the B31

strain of B. burgdorferi s.s. In contrast, the

International Lyme and Associated Diseases

Society defines LB more broadly as infection

with B. burgdorferi s.l., which may be confoun-

ded with associated co-infections (Cameron

et al. 2004). A small minority of practitioners

even prefer to describe LB as a disease that is

primarily a polymicrobial infection, emphas-

izing synergies of co-infections and host factors

rather than the diversity of Borrelia spp. to

explain the complex and notoriously variable

clinical presentations of LB (Owen 2006). In

common with other spirochetal diseases, LB

has a wide spectrum of clinical symptoms that

usually occur in successive stages (Miklossy

2008; Hildenbrand et al. 2009), and this

diversity of symptoms, whether they are con-

current or successive, certainly contribute to the

challenge of determining which of these symp-

toms are due to B. burgdorferi.

Vector incidence and distribution

Borrelia burgdorferi is almost exclusively

vectored by Ixodes ticks throughout its

temperate Northern Hemisphere distribution

(Eisen and Lane 2002). In British Columbia

the primary vector is I. pacificus Cooley and

Kohls, whereas across central and eastern

Canada it is I. scapularis; together these two

tick species are believed to be responsible for

almost all human LB infections in Canada

(Ogden et al. 2008d).

There are various methods of sampling ticks

for study. Probably the most common is

flagging (or dragging), which usually involves

dragging a flannel sheet about 1 m2 in area

lightly against vegetation for a specific

amount of time before inspecting it visually

for adhering ticks (e.g., Faulde and Robbins

2008; Ogden et al. 2008d; Scott et al. 2008).

Alternatively, humans wearing protective

clothing may be inspected for attached ticks

(Lane et al. 2004; Faulde and Robbins 2008).

These techniques suffer from the disadvan-

tages that sampling takes place over a

relatively short time period and is subject to

weather conditions (Gray 1985).

Longer term sampling may be accomplished

using caged sentinel animals (Burkot et al.

2001) or carbon dioxide traps (Gray 1985) but

is problematic because I. scapularis has very

limited horizontal movement (Falco and Fish

1991). Livetrapped animals can be inspected

visually for ticks (Ogden et al., 2008c; Salkeld

et al. 2008) or their cages can be suspended

over water into which the ticks fall (Ginsberg

et al. 2005). Lane and Loye (1991) reported

that visual inspection detected as few as 45%

of the number of I. pacificus that were found

using drop-off collection. Birds can be a

source of ticks during banding (Scott et al.

2001; Morshed et al. 2005; Smith et al. 2006),

as can deer killed by hunters (Lindsay et al.

1999b; Shariat et al. 2007). Passive surveil-

lance may involve taking advantage of ticks

removed in medical or veterinary clinics

(Ogden et al. 2006, 2008d). A flaw of passive

sampling is that the nymph is the tick life stage

most likely to transmit disease to humans

(Mather et al. 1996), but most ticks submitted

as a result of passive surveillance are adult

females, which are more easily detected

(Morshed et al. 2006; Ogden et al. 2006).

The basic phenology of Ixodes ticks in

Canada can be described relatively simply

(Fig. 1) but there is substantial variation in

the basic pattern within and between regions.

An established population at Long Point in

southern Ontario has received the best docu-

mentation to date (Lindsay et al. 1999a, 1999b).

Larval activity in this area was lengthy, with

weak peaks in mid to late June and mid-August

(Lindsay et al. 1999a). On the other hand,

nymphs were most abundant during a nar-

rower time range, in June and July (Lindsay

et al. 1999a), and adult activity was distinctly

bimodal, with peaks in April and October

(Lindsay et al. 1999b). The bimodal questing

activity of adult I. scapularis in Ontario has

been confirmed by Morshed et al. (2006), and

in Manitoba, peak activity of adult I. scapularis

occurs between September and November,

with a second peak from April to June (Gallo-

way 2002). Elsewhere in Canada the phenology

of Ixodes may vary depending on local condi-

tions; however, detailed studies are not gen-

erally available. In California, adult I. pacificus

have a bimodal activity pattern, with peak
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activity in both March and December and

nymphs occurring between April and August

(Clover and Lane 1995).

In agreement with Lindsay et al.’s (1999b)

findings for southern Ontario, long duration

and weak bimodality are also evident in the

activity of larval I. scapularis from both the

northeast and Upper Midwest of the USA

(Gatewood et al. 2009), although the authors

chose to fit a unimodal curve to their larval-

occurrence data. In contrast, the seasonal

activity of nymphs was explicitly recognized

as bimodal, and the variation in size of the

two nymphal-activity peaks was interpreted as

the result of variation in the number of larvae

that hatch in midsummer and then may or

may not be able to feed before overwintering

(Gatewood et al. 2009). However, it is

plausible that adult phenology also contri-

butes to the biomodality of both larval and

nymphal activity. Extended larval activity

may be due to the overlap of two cohorts:

larvae hatching from eggs laid early in spring

by females that had fed in the fall and

overwintered, and those resulting from

females that fed in spring and laid eggs

somewhat later. As Killilea et al. (2008) have

emphasized, there is a strong need for

standardized sampling of all life stages of

ticks across broad geographic regions.

Primary tick identification guides that are

likely to be useful in Canada include Gregson

(1956), Keirans and Clifford (1978), Furman

and Loomis (1984), Durden and Keirans

(1996), and Web sites such as Ticks of Canada

(Canadian Lyme Disease Foundation 2009)

and Anderson and Harrington (2009). Lind-

quist et al. (1999) produced couplets that
augment the keys of Gregson (1956), Keirans

and Clifford (1978), and Durden and Keirans

(1996).

Established populations of I. scapularis

have been well documented in localized

areas of Nova Scotia, Ontario, and Manitoba

Fig. 1. Typical life cycle of the blacklegged tick, Ixodes scapularis, and associated infection by Borrelia

burgdorferi in Canada, showing the succession of immunological and environmental challenges to

spirochetes (broken lines and ‘‘wiggles’’) as they cope with tick searches for hosts, successive tick life stages,

variation in blood-meal sources, and transmission to and from vertebrate hosts. Phenology is largely taken

from Lindsay et al. (1999a, 1999b) and Galloway (2002), although the cycle may be extended for 1 or more

years if ticks are unable to find food in any given year.
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(Ogden et al. 2008d). Populations of

I. pacificus have been established for at least

a century in southern British Columbia

(Gregson 1956). The dispersal and population

structure of I. pacificus are still poorly

understood, but work based on both allo-

zymes and mtDNA has shown patterns of

high local genetic diversity and locus-specific

isolation or selection in localities ranging from

West Vancouver, British Columbia, to south-

ern California and Utah (Kain et al. 1997,

1999). Ixodes vectors can be spread by

migratory birds across most of Canada (Scott

et al. 2001; Morshed et al. 2005; Ogden et al.

2008c), which means that sporadic cases of LB

can occur throughout Canada and transient

populations of Ixodes ticks could establish in

suitable localized habitats. Because I. scapu-

laris and I. pacificus commonly feed on deer

and other vertebrates that live in woodlands,

increases in tick numbers can result from

restoration of woodlands, especially in semi-

urban areas, where hunting of deer is dis-

couraged (Killilea et al. 2008). Changes in the

distribution of ticks as a result of climate

change are predicted to be disproportionately

serious in Canada, with consequent increases

in cases of LB (Ogden et al. 2006, 2008a,

2008c, 2008d).

Other confirmed vectors of B. burgdorferi

that are known to range into Canada include

Ixodes angustus Neumann, I. dentatus Marx,

I. jellisoni Cooley and Kohls, I. muris Bishopp

and Smith, and I. spinipalpis Hadwen and

Nuttall (Gregson 1956; Eisen and Lane 2002).

Older literature that lists I. dammini Spielman

et al. as a vector of B. burdorferi (e.g., Lindsay

et al. 1991) refers to I. scapularis; these two

species are now considered conspecific (Wes-

son et al. 1993). Ixodes cookei Packard is

not considered to be a competent vector

of B. burgdorferi (Barker et al. 1993), although

B. burgdorferi is documented from a specimen

of I. cookei and its dog host in central Alberta

(Fernando et al. 2008). Borrelia garinii, the

most neurotropic of the European forms of

LB, has been found in I. uriae White on

seabirds in Newfoundland (Smith et al. 2006).

In general, most Ixodes ticks in Canada

appear to be competent, although not neces-

sarily efficient, vectors of B. burgdorferi (Eisen

and Lane 2002). Ixodes gregsoni has been

newly described from mustelids in Canada

Lindquist et al. (1999), but is unlikely to

have much of an effect on transmission of

B. burgdorferi because mustelids are poor

reservoirs (LoGiudice et al. 2003). A number

of ticks can acquire B. burgdorferi infections

but are considered incompetent because they

are unable to pass the infection on to the next

host; these include Amblyomma americanum

(L.), Haemaphysalis leporispalustris Packard,

all species of Dermacentor C.L. Koch, and a

few species of Ixodes (Eisen and Lane 2002).

Vector competence is defined as the ability to

(i) acquire spirochetes when feeding on an

infected host, then (ii) pass them between tick

life stages, and subsequently (iii) pass the

infection to a susceptible host while feeding

(Eisen and Lane 2002). Transmission of

Borrelia from younger to older tick life stages

is well established and such trans-stadial

transmission is important because ticks gen-

erally feed on only one individual host per tick

life stage (Oliver 1989). Less is known about

the prevalence and importance of infection

passed to larvae from adult females via the egg

stage (Eisen and Lane 2002), although such

transovarial infection may be important in

Europe (Kurtenbach et al. 1995). For all

forms of transmission, however, it is difficult

to distinguish experimentally between com-

plete incompetence and rare vectoring because

of low tick infectivity (Kahl et al. 2002). The

B. burgdorferi-vectoring competence of ticks

is distinguished from mechanical transmis-

sion, where pathogens are not passed via the

normal tick salivary secretions but are intro-

duced past broken skin by a mechanism such

as pathogens clinging to the mouthparts (an

unlikely scenario considering the sensitivity of

Borrelia to oxygen; Barbour and Hayes 1986)

or, more plausibly, crushing a tick into a

wound in the course of attempted removal.

For a tick-borne proteobacterium, Anaplasma

Theiler, in cattle, mechanical vectoring via the

mouthparts of biting flies is approximately

two orders of magnitude less efficient than

biological vectoring (Scoles et al. 2005).

However, the efficiency of mechanical vector-

ing of Borrelia and its role in human illness are

not known. Until recently, autoinoculation by
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crushing lice into wounds was thought to be
the only way that B. recurrentis was transmit-

ted (Houhamdi and Raoult 2005).

In addition to tick species, mosquitoes

(Diptera: Culicidae), tabanid flies (Diptera:

Tabanidae), and fleas (Siphonaptera) are known

to harbor a competent vector B. burgdorferi

but none has been shown to be competent as

defined by Eisen and Lane (2002). In mosqui-
toes, for example, 7%–8% of adult female Aedes

Meigen in Connecticut (Magnarelli et al. 1986)

and 1.7% of Culex pipiens (L.) in Poland carried

B. burgdorferi (Kosik-Bogacka et al. 2007).

Furthermore, transmission between mosquito

life stages is suggested by the occurrence of

Borrelia in 1.6% of larval Culex L. in the Czech

Republic (Zákovská et al. 2002) and 3.2% of
larval and 1.6% of pupal C. pipiens in Poland

(Kosik-Bogacka et al. 2007). Mites may also

contain B. burgdorferi (Zakovska et al. 2008),

but no surveyed spiders have been found to

harbor Borrelia (Suffridge et al. 1999).

There are anecdotal reports of LB trans-

mitted by vectors other than ticks in Canada

(Doby et al. 1987) and the USA (e.g., Luger
1990). These are unsupported by any of the

evidence normally required to demonstrate

competence or even mechanical vectoring.

Nonetheless, although statements such as

‘‘fleas, flies, and mosquitoes are not vectors

for Lyme disease’’ (Bratton et al. 2008) are

common in the medical literature, it is

conceivable that the detailed documentation
of transmission by tick vectors has over-

shadowed occasional mechanical transmission

by secondary vectors. Eisen and Lane (2002)

state, ‘‘Although insects may prove incompet-

ent to serve as vectors for B. burgdorferi s.l.,

the possibility of occasional mechanical trans-

mission should not be discounted’’. Further

study is clearly needed.

Diversity and dynamics of reservoir hosts

The primary reservoir host of LB in North

America has long been assumed to be white-

footed mice (Levine et al. 1985), although
recent research in the northeastern USA

shows that two shrew species are each at least

as likely as white-footed mice to be a potential

source of infection for humans in some

locations (Brisson et al. 2008). On the west

coast of North America, infection rates

demonstrate that squirrels are highly compet-

ent reservoirs and their infection rates correl-

ate closely with rates of human infection

(Salkeld et al. 2008). Major described hosts
of B. burgdorferi that interact with humans

include white-footed mice, chipmunks, squir-

rels, wood rats, and shrews (Killilea et al.

2008).

Some animals that act as common hosts for

tick vectors, most notably deer in Europe and

North America (Kurtenbach et al. 1998;

Ullmann et al. 2003) and lizards in California
(Lane 1990; Giery and Ostfeld 2007), are able

to clear infection by B. burgdorferi and

thereby may actively contribute to reducing

rates of infection with B. burgdorferi. Thus,

high deer densities could have both a positive

and a negative influence on the zoonotic cycle

of LB by allowing tick populations to be high

while reducing rates of Borrelia infection in
ticks if deer are the primary intermediate host

between rodents, such as shrews, and humans.

However, a recent report from Tennessee

shows that 33% of winter ticks, Dermacentor

albipictus (Packard), collected from white-

tailed deer were positive for B. burgdorferi or

B. lonestari (Shariat et al. 2007). The obser-

vation that Borrelia was not cleared from ticks
feeding on these deer suggests that in some

areas deer may still be significant reservoir

hosts. The report by Shariat et al. (2007),

however, is anomalous and it remains to be

shown that D. albipictus could vector Borrelia.

Lizards are also variable in their ability to

clear B. burgdorferi infection (Clark et al.

2005) and are not universal in their incompet-
ence as reservoir hosts (Giery and Ostfeld

2007).

Since birds, including migratory song birds

that nest in urban habitats, are important for

long-distance dispersal of ticks (Morshed et al.

2005; Ogden et al. 2008c; Scott et al. 2001) and

some are important reservoirs for B. burgdor-

feri (Ginsberg et al. 2005), they can play an
important role in peridomestic exposure to LB

(Ginsberg et al. 2005).

In addition to variation in the strains of

Borrelia that they tend to carry, reservoir

animals exhibit differing symptoms of infec-

tion. For example, mice, commonly used as
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models for human infection, do not develop
the characteristic bull’s-eye rash or exhibit

clear neurological manifestations of LB,

although they are excellent models for the

arthritis form of LB (Yrjänäinen et al. 2007).

This may explain the greater attention paid to

the arthritis form of LB, for which an

excellent animal model exists, than to the

neurological form, where animal models are
more problematic (Nardelli et al. 2008;

Rupprecht et al. 2008).

Rates of infection of I. pacificus by B.

burgdorferi are considered low in British

Columbia (Ogden et al. 2008d) and reported

as being less than 1% across the province

(British Columbia Ministry of Health 2008).

Charron and Sockett (2005) have speculated
that this is due to the preference for lizard

hosts shown by I. pacificus in the nymphal

stage, presumably based on the borreliacidal

properties of lizard blood demonstrated in

California (Lane 1990; Slowik and Lane

2009). However the significance of such an

interaction remains to be demonstrated in

British Columbia, where lizards, being at the
extreme northern edge of their ranges, are at

much lower density. In British Columbia, the

effect of climate change and the importance of

patchiness in the distribution of B. burgdorferi

and infected hosts are currently unpredictable

(Ogden et al. 2008d).

Risk of human exposure to LB

The risk of human exposure to LB is related

to numerous factors, such as the identity of

ticks, the particular Borrelia strain, previous

hosts, local ecological interactions, or human

behavior (Horobik et al. 2006). Human
behaviors that bring people into contact with

ticks include sitting on logs, gathering wood,

leaning against trees, walking in natural areas,

and stirring or sitting on leaf litter (Lane et al.

2004). Even when considerable personal pro-

tection measures are taken by highly moti-

vated entomologists, potentially infected ticks

have been removed up to 2 days later,
demonstrating that the risk of exposure to

LB is still significant (Lane et al. 2004;

Vázquez et al. 2008). Forest fragmentation

may increase the risk of LB through loss

of predators from smaller patches and a

consequent increase in the abundance of

small rodents, leading to higher densities of

infected nymphal ticks (Allan et al. 2003).

Also, highly diverse communities of verte-

brates are less likely to bring infected nymphs
into contact with humans, owing to ‘‘dilution

effects’’ (LoGiudice et al. 2003). The dilution

effect hypothesis states that when there are

multiple vertebrate hosts for ticks, and these

hosts differ in how well they clear infection

but do not differ in resistance to ticks, then

B. burgdorferi will no longer be transmitted as

efficiently as when only the most susceptible
hosts are infected. A number of other factors

are also likely to influence the distribution and

infection rates of ticks and there is a clear need

for tick occurrence to be documented in a

more standardized manner at multiple spatial

and temporal scales (Killilea et al. 2008).

In the USA, the number of infected nymphs

of I. scapularis and I. pacificus correlates with
reported human disease more than does the

incidence of adult ticks, and therefore nymphs

are the life stage most commonly associated

with disease transmission (Clover and Lane

1995; Mather et al. 1996; CDC 2007). The

small size of Ixodes tick nymphs and their

rapid feeding rate compared with that of

adults are considered to be factors in increas-
ing spirochete transmission to humans by

nymphs (Clover and Lane 1995). Moreover,

if nymphs are more likely than larvae to feed

on hosts with borreliacidal blood, such as

lizards or potentially even deer, this may also

contribute to reducing rates of disease trans-

mission by adult ticks relative to earlier life

stages. Regardless of the underlying mech-
anism, it is important to survey nymphal ticks

as well as adults to accurately assess disease

incidence.

In regions of Canada where ticks are not

endemic, however, the role of adults in

vectoring should be clarified because, in such

regions, a relatively high proportion of adults

may have fed on migratory birds rather than
on mammals when they were in the nymphal

stage (Morshed et al. 2006). Birds from near

Long Island, New York, have been demon-

strated to be competent reservoirs for Borre-

lia, with wild-caught robins infecting 16% of

larval ticks placed on them, whereas robins
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that were previously infected by nymphal ticks

in the laboratory passed that infection on to

82% of larvae that subsequently fed on them

(Ginsberg et al. 2005). Although it is unclear

whether similar infection rates apply to adult

ticks that fed on birds as nymphs, it remains

to be seen whether the adult stage of ticks may

have greater importance in disease transmis-

sion in regions of Canada where Ixodes spp.

are primarily derived from birds.

Physiological processes

Gene regulation and transmission dynamics

For B. burgdorferi to be transmitted from a

cold-blooded tick vector to a warm-blooded
host, it must regulate its gene expression in a

complex and as yet incompletely understood

manner. Models of gene regulation range

from simple ones based solely on temperature

and pH (Schwan et al. 1995) to a new

paradigm suggested by Stevenson et al.

(2006), who cautioned that the effects of

temperature and pH may not predict the in

vivo expression of genes. The synthesis of each

of five different lipoproteins is controlled in a

distinct manner, in some cases opposite to that

predicted from temperature and pH effects in

vitro (Stevenson et al. 2006).

Studies of the transmission dynamics of

B. burgdorferi in I. scapularis indicate that the

risk of transmission of strain B31 by a single

bite from an infected tick is about 2% and that

the risk increases with the length of time that

the tick is attached (Hojgaard et al. 2008).

When a tick first attaches, spirochetes are still

found in the midgut and are producing outer-
surface protein A (OspA), which helps spiro-

chetes adhere to a midgut protein, TROPSA.

When feeding begins, the spirochetes are

exposed to warm mammalian blood and

lowered pH, and OspA is downregulated

while OspC is upregulated. Spirochetes then

migrate from the midgut to the salivary gland

and transmission to the vertebrate host can be

achieved (e.g., Hojgaard et al. 2008). This

delay in transmission explains why transmis-

sion is reduced when ticks are removed within

24 h of attachment (Hojgaard et al. 2008). In

Europe, transmission of B. burgdorferi s.s. and

B. afzelii by I. ricinus occurs in less than 24 h,

but the risk of transmission still increases over

time (Kahl et al. 1998; Crippa et al. 2002). In a

further complication of the host2tick2patho-

gen interaction, B. burgdorferi s.l. is able to

increase expression of an Ixodes salivary pro-

tein, Salp15, to protect against complement-

mediated killing of Borrelia by the host’s

innate immune system (Ramamoorthi et al.

2005). This protective effect was greater

when the vector was I. ricinus rather than

I. scapularis (Schuijt et al. 2008). The early

expression of ospC appears to be essential for

B. burgdorferi to escape innate immunity and

disseminate in the host (Gilbert et al. 2007),

and yet persistent infection of the host is only

possible when ospC is downregulated after

infection because acquired antibodies to OspC

allow the spirochetes to be cleared (Tilly et al.

2007). Current understanding of the interac-

tions of tick saliva and B. burgdorferi is

discussed in Anderson and Valenzuela (2007).

Even though vectoring by ticks is the most

likely way to contract LB (and gene regulation

of outer-surface proteins on Borrelia as well as

increased expression of Salp15 in the tick

vector will increase the probability of infection

of the vertebrate host), there is nonetheless

some evidence that contact transmission of

B. burgdorferi can also occur without a vector.

Burgess and Patrican (1987) have shown that

deer mice can be infected orally by ingesting

saline containing B. burgdorferi and that these

mice can in turn infect ticks that feed on them.

Despite an explicit search of the LB literature,

it is not apparent that any studies have

addressed whether Borrelia can be transmitted

to vertebrate hosts that eat infected ticks or,

for that matter, by contact between hosts via

body fluids such as urine or sperm. However,

Kurtenbach et al. (1994) have demonstrated

differences in the antibody responses of

various mouse species infected by needle

inoculation versus tick bites. Tick-infected

mice did not express antibodies to OspA or

outer-surface protein B (OspB) early in the

infection, whereas intradermally injected

mice did (Kurtenbach et al. 1994). However,

infection proceeded in both groups; in fact,

intradermal inoculation is commonly used

to ensure that a controlled quantity of

pathogen is transferred in studies of LB
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(e.g., Hodzic et al. 2008). Recent research has
shown that both OspA and OspB are involved

in binding to the tick gut, so the results of

Kurtenbach et al.’s (1994) study are counter

to what would be expected. OspB-deficient

B. burgdorferi is infectious and pathogenic in

mice but is unable to survive in Ixodes

(Neelakanta et al. 2007).

Careful and prompt removal of attached
ticks is nonetheless important in reducing the

probability of transmission of B. burgdorferi

(Hojgaard et al. 2008). The preferred method

is to grasp the mouthparts firmly with fine-

pointed forceps and pull them straight out in a

single action without twisting. This should

reduce the risk of regurgitation of gut contents

(Gammons and Salam 2002). An alternative
method for removing attached ticks is the

‘‘straw and knot method’’ of Murakami

(2009): a drinking straw is used to guide a

thread to the base of the mouthparts, allowing

the tick be pulled out in a single motion. Any

remaining mouthparts should be excised and

the area cleaned with antiseptic solution.

Removal of the cement plug attaching the
mouthparts to the wound may be important

because B. burgdorferi can be present in it

(Alekseev et al. 1995).

Persistent infection
Borrelia spp. are capable of persistent

infection, and such persistence is the norm in

mice, rats, hamsters, dogs, and monkeys

(Barthold 2000; Straubinger 2000; Summers

et al. 2005; Hodzic et al. 2008). Persistence in

reservoir hosts can be interpreted as an

evolutionarily shaped survival strategy linked

to the asynchronous phenology of the tick
vectors (Kurtenbach et al. 2006). Although

natural infections are less controlled and

defined, there is strong evidence that they

persist in humans also (Oksi et al. 1999; Breier

et al. 2001; Miklossy et al. 2004, 2008;

Hunfeld et al. 2005). Immune evasion has

been extensively documented in Borrelia

(Liang et al. 2002; Bankhead and Chaconas
2007; Rupprecht et al. 2008; Xu et al. 2008a;

Yang et al. 2009). Although B. burgdorferi is

generally considered to be an extracellular

pathogen, localization has been demonstrated

within endothelial cells (Ma et al. 1991;

Thomas et al. 1994), synovial cells (Girschick
et al. 1996), and neuronal and glial cells

(Livengood and Gilmore 2006; Miklossy

et al. 2006). Infiltration of blood vessels,

cardiac myocytes, and collagen tissues has

also been demonstrated (Pachner et al. 1995),

and adherence and escape of Borrelia from

vasculature has recently been visualized

directly by Moriarty et al. (2008). Sequest-
ration and physical protection from the

immune system in the extracellular matrix

have been reviewed by Cabello et al. (2007)

and Rupprecht et al. (2008).

When exposed to unfavorable conditions

such as osmotic and heat shock, B. burgdorferi

produces atypical forms (e.g., Brorson and

Brorson 1998, 2004; Singh and Girschick
2004; Miklossy et al. 2008; Margulis et al.

2009). The extracellular and intracellular

presence of these atypical forms has been

demonstrated in brain tissue of humans with

confirmed neuroborreliosis, and atypical

forms can exist in the absence of spirochetal

forms (Miklossy et al. 2008). A thickened

external membrane, observed by Miklossy
et al. (2008) to surround cystic forms, was

reactive to anti-OspA antibody and a full

characterization of other immunogenic pro-

teins was not attempted. Thus, a full under-

standing of the serology of LB must include

the atypical forms as well as the typical spiral

forms (Miklossy et al. 2008).

Borrelia has a unique, flexible genome

Borrelia burgdorferi contains both circular

and linear DNA molecules in roughly equal

numbers (Rosa et al. 2005). Most replicons are

linear molecules that are terminated by
hairpin turns, which are unusual in bacteria

and of much interest to molecular biologists

(Chaconas 2005; Tourand et al. 2009). In

addition to one large linear chromosome,

B. burgdorferi has over 20 plasmids, the

largest number so far described in any living

organism (Chaconas 2005; Rosa et al. 2005) .

Some of these plasmids carry crucial informa-
tion for survival in tick vectors or mammalian

hosts. The linear plasmid Ip28–1 is required

for persistent infection with B. burgdorferi and

the presence of the vls locus on this plasmid

appears to be an absolute requirement for
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persisting infection. Antigenic variation at
vlsE by recombination of cassette fragments

allows a large number of antigenically distinct

variants to be produced, thus facilitating

avoidance of the host’s immune system (Bank-

head and Chaconas 2007). The genetics of

B. burgdorferi has been reviewed by Rosa et al.

(2005) and Tilly et al. (2008). Furthermore,

Borrelia spp. are unusual in having evaded the
usual limiting factor of iron availability in the

host cells by using manganese for electron

transport (Posey and Gherardini 2000;

Ouyang et al. 2009). Typically, at the onset

of infection, humans secrete lactoferrin to

limit available iron and inhibit bacterial

growth (Arnold et al. 1982). Borrelia burgdor-

feri has eliminated most of the genes that
encode proteins that require iron as a cofac-

tor, and a manganese transporter is required

for virulence in B. burgdorferi (Posey and

Gherardini 2000; Ouyang et al. 2009).

Immune-system selection

Antigenic variation is a common mech-

anism whereby pathogenic bacteria can evade

the immune system. Borrelia species are the

subject of intense study that has revealed at

least two different ways in which they achieve

such antigenic variation. For B. hermsii,

recombination of vlp and vsp sequences is
responsible for antigenic variation, whereas in

B. burgdorferi, recombination occurs at vlsE

(Norris 2006). Furthermore, variation in VlsE

of B. burgdorferi is not, by itself, sufficient to

achieve resistance to reinfection, and is only

part of a complex system that may confine the

adaptive response of the host (Bankhead and

Chaconas 2007).
Immune-system selection on B. burgdorferi

has received extensive study and host special-

ization is thought to result from negative

selection mediated by the complement system

of the host’s innate immune system (Schroeder

et al. 2009). Spirochetes that are susceptible to

destruction by the complement system of a

given species are lysed early in the midgut of
the tick (Kurtenbach et al. 2002a). This has

led to the hypothesis that the host range of a

spirochete strain is restricted by the genes that

encode ligands that bind to complement

inhibitors (Kurtenbach et al. 2002b).

The second main component of the mam-

malian immune system is the adaptive

immune system, which introduces nonlinear

frequency-dependent fitness, leading to fluc-

tuations in the abundance of spirochete

genotypes. Balancing selection by the adaptive

immune system on the ospC gene maintains

spirochete diversity within local tick popula-

tions (Schroeder et al. 2009), with persistent

B. burgdorferi strains being favored over

‘‘boom and bust’’ ones (Kurtenbach et al.

2006). In a further refinement by Gatewood

et al. (2009), persistent B. burgdorferi strains
were interpreted as being favored when tick

seasonality is asynchronous because of cli-

matic conditions such as the relatively small

difference between summer- and winter-

temperature extremes in the northeastern USA.

In the Upper Midwest of the USA, in contrast,

less-persistent strains are favored because

greater seasonal temperature disparities are

associated with more overlap in the durations

of larval and nymphal activity, allowing easier

transmission of B. burgdorferi strains from

infected nymphs to uninfected larvae (Gate-

wood et al. 2009). Modeling of tick phenology

has been expanded to include synchronicity

with reservoir hosts and photoperiod (Ogden

et al. 2006, 2008b), and it is clear that further

complexity remains to be modeled.

Diagnosis and serology of LB

Initial diagnostic steps

Although all evidence indicates that ticks

are necessary for infection with B. burgdorferi,

the ticks themselves are often not noticed.

Steere (1989) reported that only 50%–70% of
people report a tick bite before being diag-

nosed with LB. Tick saliva is well documented

as containing an anaesthetic that reduces the

probability of tick detection (Ribeiro and

Francischetti 2003) and, considering their

small size, immature ticks are likely to have

an even lower rate of detection than adults.

On the other hand, knowledge of the

presence of Ixodes ticks in an area can

contribute to a diagnosis of LB. For example,

an erythema migrans (EM) rash is considered

sufficient by itself for a diagnosis of LB, but

only in geographic areas where I. scapularis or
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I. pacificus is established (CPS 2009). The

presence of an EM rash, with its characteristic

bull’s-eye appearance, is not enough to justify

treatment in areas of Canada where these

Ixodes species are not believed to be endemic;

in such cases confirmatory serology is advised

before the diagnosis is given (CPS 2009).

Variability in the presence and appearance of

the EM rash has been extensively documented

(Tibbles and Edlow 2007; Egberts et al. 2008).

About 80% of confirmed LB patients are

reported to show the rash (Aguero-Rosenfeld

et al. 2005; Bratton et al. 2008), and American

researchers often explicitly require the EM

rash to be present for a patient to be

considered for enrollment in a study (e.g.,

Wormser et al. 2008). Of 95 children present-

ing with facial palsy in an area of the USA

where LB is endemic who later received

serological confirmation of LB, only 35

reported the rash (Nigrovic et al. 2008). In

Europe, only 18% of Swedish children with

confirmed neuroborreliosis reported the rash

(Skogman et al. 2008).

For a serological diagnosis of LB world-

wide, either an enzyme-linked immunosorbent

assay (ELISA) or an immunofluorescent assay

(IFA) is expected to constitute the first step of

a two-step diagnosis (Aguero-Rosenfeld et al.

2005). If the ELISA or IFA is positive, the

second step is a Western blot immunoassay.

Both the ELISA and the IFA are designed to

detect serum antibodies produced by the host

against proteins of B. burgdorferi. In Canada,

only a positive or equivocal ELISA is cur-

rently accepted before a Western blot, which is

more specific but more expensive, can be

requested (CPHLN 2007). In the USA and

Europe, either an ELISA or an IFA will fulfill

the first step (CDC 1995; Brouqui et al. 2004).

Like an ELISA, an IFA can use antibodies to

whole-cell lysates or purified antigens such as

flagellin, OspC, or P39. However, interpreta-

tion of an IFA requires well-trained person-

nel, whereas the more frequently used ELISA

is more easily automated (Aguero-Rosenfeld

et al. 2005). In Canada, the sensitivity of

ELISA is considered to be close to 100% for

tests performed 4 weeks post tick bite

(Barker and Lindsay 2000; Forward 2005;

Zaretsky 2006; CPHLN 2007; CPS 2009). This

contrasts with Aguero-Rosenfeld et al. (2005),

whose Table 4 reports that ELISA sensitivity

is always less than 50% in the acute phase of

an EM rash and only about 80% in the

convalescent phase after antimicrobial treat-
ment for an EM rash or a diagnosis of LB has

been obtained because of neurological

involvement. Only the arthritis form of LB

was associated with higher ELISA sensitivity.

There is considerable debate over the sensitiv-

ity of ELISA, especially in late stages of the

disease (e.g., Donta 2007; Wilson 2007;

Stricker and Johnson 2008).

In laboratory diagnoses, sensitivity is

defined as the percentage of people truly

suffering from a disease who are identified as

positive by means of an assay (Saah and

Hoover 1997). This is not the same as the

more commonly understood use of the term

sensitivity for analyses, which refers to an

assay’s ability to detect a low concentration or
signal in a sample (e.g., the ability of an

ELISA to detect low quantities of antibodies

to B. burgdorferi). Diagnostic specificity, on

the other hand, is defined as the percentage of

people who do not have a disease and who are

identified as negative by means of an assay

(Saah and Hoover 1997). High diagnostic

sensitivity means that an assay produces a
high rate of true positives and a low rate of

false negatives. Furthermore, high diagnostic

specificity means a high rate of true negatives

and a low rate of false positives. Laboratory

diagnosis of LB has tended to emphasize

diagnostic specificity and the need to eliminate

false positives, rather than high sensitivity and

the elimination of false negatives (CPHLN
2007; CPS 2009). Thus, a patient may

eventually be diagnosed as having LB on the

basis of PCR tests, observations of spirochetes

in tissue, or clinical symptoms, in spite of an

earlier ELISA test that returned a negative

result. Clinicians, however, are often not

aware of the potential for such false negatives,

especially in late disease (Donta 2002, 2003,
2007; Wilson 2007).

Because ELISA is used as a screening

method in Canada (CPHLN 2007), a negative

ELISA may be taken as evidence that there is

no infection with Borrelia. This interpretation

of ELISA has resulted in the claim that there
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is no valid support for the idea that LB is
underdiagnosed in Canada (CPS 2009). This

viewpoint contrasts with Ogden et al. (2008d),

who stated that underreporting is more

biologically plausible. The documented gen-

etic diversity and biological complexity of

B. burgdorferi s.l. cannot help but contribute

to difficulties in detecting Borrelia with both

high sensitivity and high specificity, especially
when the spirochetes enter tissues, such as

collagen, to which the host’s immune system

has limited access (Cabello et al. 2007;

Miklossy et al. 2008).

Effectiveness of specific ELISA tests

Commercial ELISA kits can be based on

whole-cell sonicates or more specific antigens

like flagellin and C6 peptide. Currently,

whole-cell sonicates of strain B31 are used in

Canada for humans (CPHLN 2007), whereas

C6 peptide kits (IDEXX Laboratories, Inc.

2008) are favored for dogs. The C6 peptide
ELISA relies on a single peptide from the VlsE

protein, a lipoprotein with an invariable

region, C6, which is highly antigenic. Because

the assay based on C6 peptide is different

from the standard ELISA used for the same

organisms, dogs may serve as sentinels for

some B. burgdorferi s.l. strains that are not

detected using the whole cell sonicate ELISA
kits used for humans.

The use of dogs as sentinels for LB is

controversial and has recently been reviewed

by Fritz (2009). The C6 peptide assay is

considered to allow greater specificity than

earlier assays, since it is only expressed in

actively infected animals (Liang et al. 1999,

2002). Although treatment of seropositive
dogs is discouraged unless clinical signs are

present, the use of domestic dogs to dem-

onstrate the presence of B. burgdorferi in areas

where ticks are localized may lead to an

underestimate rather than an overestimate of

the presence of B. burgdorferi (Fritz 2009).

Some researchers use an in-house sonicate

derived from strain B31 (e.g., Steere et al.
2008), whereas others use whole-cell sonicates

of N40 (e.g., Pachner et al. 2002). Wormser

et al. (2008) maintained that the diversity of

LB strains is unlikely to be relevant to the

diagnosis of human disease provided a

whole-cell sonicate is used in the ELISA.
However, use of whole-cell sonicates produces

a high level of background absorbance,

necessitating correction for false positives

and potentially reducing the detection of true

positives (Lawrenz et al. 1999; Donta 2002). It

has been suggested that this effect explains

the low sensitivity in a serological survey of

deer in Ontario (Gallivan et al. 1998). Wilske
et al. (2007) recommend that because of the

heterogeneity of causative agents of LB in

Europe, ELISAs should be based on OspC as

well as DbpA, VlsE, or C6 peptide to improve

sensitivity.

Commercial ELISA kits licensed for use in

the USA vary substantially in sensitivity.

Aguero-Rosenfeld et al. (2005) reported
ranges from 33% (EM rash) to 79% (neuro-

borreliosis) and 100% (Lyme arthritis). Such

an ascertainment bias in favor of the arthritis

form of LB may account for statements that

Lyme arthritis, the original name of the

disease, is the most common form of late

LB in North America (Wormser et al. 2006,

2007). Furthermore, the B31 strain has
been shown to cause arthritic symptoms

disproportionately relative to other members

of B. burgdorferi s.l. (Terekhova et al. 2006;

Tilly et al. 2008; Craig-Mylius et al. 2009;

Hildenbrand et al. 2009; Kudryashev et al.

2009), so it is not unexpected that serological

testing based on B31 is particularly effective in

detecting the arthritis form of LB.

Western blots

Western blots, also called immunoblots, use

gel electrophoresis to separate proteins by size

or shape, after which they are visualized by
staining with antibodies specific to the target

proteins and scored for presence and intensity

of the banding pattern. They are generally

more expensive to run than an ELISA because

they are more labor-intensive and require

highly trained personnel to interpret the band-

ing patterns (Bjerrum and Heegaard 2001).

A Western blot of patient serum antibodies
to LB antigens is required as the second step

in a serological diagnosis of LB. In Canada,

the Western blot must have at least 2 of 3

bands for immunoglobulin M (IgM) as well as

at least 5 of 10 bands for immunoglobulin G
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(IgG) (CPHLN 2007). These criteria were

established for active or previous infection

and were designed to identify a banding

pattern that gave high statistical specificity.

Bands for IgM antibodies to both OspA and

OspB and for IgG antibodies to OspB were

explicitly excluded (Dressler et al. 1993), even

though these bands are highly diagnostic.

Because these proteins were intended as

candidates for vaccine development (Fikrig

et al. 1992), assays based on these bands

would have been unable to distinguish

between active LB and vaccination. An OspA

vaccine was eventually released but withdrawn

in 2002, ostensibly for economic reasons but

there were suggestions that it had autoimmune

effects (Rosé et al. 2001; Nigrovic and

Thompson 2007; Nardelli et al. 2008).

It is generally accepted that OspC is the

immunodominant protein involved in the IgM

response, while decorin-binding protein A

(DbpA) is the immunodominant protein in

the IgG response (Jovicić et al. 2003; Wilske

et al. 2007). However, Fingerle et al. (1998)

demonstrated that 31% of B. burgdorferi from

ticks that had been feeding on humans in

southern Germany expressed OspA rather

than OspC and that these B. burgdorferi were

capable of causing disease in humans. Some

current Western blot kits used in Canada,

such as MarDx (CPHLN 2007), are based

on a sonicate of strain B31. False-negative

serology is considered a significant risk in

neuroborreliosis unless multiple Borrelia

strains are tested for (Kaiser 2000; Jovicić

et al. 2003). In Europe, multiple Borrelia

species are acknowledged and Western blots

are interpreted differently than in North

America, where B. burgdorferi s.s. is often

assumed to be responsible for all human LB

(CDC 1995; Robertson et al. 2000; Wormser

et al. 2006, 2007; Vanousová and Hercogová

2008).

To confirm a LB diagnosis, it may be

considered necessary to document conversion

from IgM to IgG about 4 weeks or more after

infection (Aguero-Rosenfeld et al. 2005;

Wormser et al. 2006, 2007). In some people,

however, seronegativity with only a cell-

mediated immune response is possible (Singh

and Girschick 2004). In addition, detection of

antibodies that are tied up in complexes would

be missed by standard tests that rely on free

antibodies (Singh and Girschick 2004; Holl-

Wieden et al. 2007).

Antigenic variation

Preferential expression of proteins by

B. burgdorferi in both the tick vector and the

mammalian host results in differential

expression of antibodies that can be detected

by immunoblots. For example, OspA/B is

expressed in ticks (Neelakanta et al. 2007),

whereas dmpA/B and bmpA/B are expressed

in the mammalian host (Pal et al. 2008; Shi

et al. 2008). The serological response in early

LB would be expected to include proteins that

may be downgraded in later disease while the

antibody response to later disease would be

expected to show different proteins. As with

vlsE, antigenic variation within a single

immunogenic protein allows B. burgdorferi

to evade the host response and so immunblots

would be expected to allow only variable

detection of some proteins. Fortunately,

multiple immunogenic proteins have been

described and in recent work a genome-wide

proteome array and protein microassay have

been used to expand the number of diagnostic

antigenic proteins that are useful in serological

diagnosis (Barbour et al. 2008; Xu et al.

2008b).

PCR assays

North American practitioners have been

reluctant to accept PCR tests as the primary

basis for a diagnosis of LB (e.g., Halperin and

Wormser 2001). Such tests can show a large

variation in specificity among studies, tissue

categories, and geographic regions. Meta-

analysis of PCR assays carried out in North

America and Europe generally show moderate

median sensitivity for skin biopsy (69%) and

synovial fluid (78%) but low median sensitiv-

ity for cerebrospinal fluid (38%) and blood/

plasma/serum (14%) (Aguero-Rosenfeld et al.

2005). The ranges of these values were at least

50% among individual studies, and when the

studies were grouped by continent the differ-

ence in median sensitivity between North
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America and Europe ranged from 8% (blood/

plasma/serum) to 50% (cerebrospinal fluid).

However, specificity rates for these categories

are much higher, usually 100%, with the

lowest being 93% (Aguero-Rosenfeld et al.

2005), which means that there are very few

false positives. Thus, in spite of extensive

documented variation in specificity and high

rates of false negatives, PCR tests can be

useful for confirming clinical diagnoses in

individual cases. For example, a case of

seronegative Lyme arthritis has been

described where PCR-positive synovial fluid

allowed a diagnosis to be made in the absence

of a serological response (Holl-Wieden et al.

2007).

Although PCR-based diagnosis of LB in

humans is problematic, presumably because

spirochetes can be sequestered in tissues that

were not tested, this is not such an impediment

to the detection of Borrelia in ticks. Numerous

studies have consistently demonstrated that

whole or partial ticks can be homogenized to

give sufficient DNA for identifying a substan-

tial variety of bacterial symbionts (e.g., van

Overbeek et al. 2008). Furthermore, DNA-

based identification of the ticks themselves is

feasible via DNA barcoding or other DNA-

based techniques (Sperling and Roe 2009),

which should be especially useful for identify-

ing immature stages, where diagnostic char-

acters visible in their morphology are limited.

Future directions

Human cases of LB in Canada can be

devastating to affected individuals, not only

because of increasingly debilitating health

effects over time, but because of the psycho-

logically draining process of obtaining a

formal diagnosis that allows treatment via

the Canadian health system. It is easy to

understand why a diagnosis of LB can be

difficult to obtain in the face of its ecological

complexity, genetic diversity, and immunolo-

gical heterogeneity. With so much specialized

information to assimilate and comprehend, it

can be equally difficult to know where efforts

to improve the situation can make a signifi-

cant difference. Fortunately, it is likely that

entomologists can contribute in a number of

ways to a positive resolution of the challenges

presented by LB.

First, there is a strong need for better means

of identifying tick species and for detailed

documentation of their distributions across
Canada. Morphology-based keys that require

only the use of a good microscope have been

available for many decades, but relatively

little new work on publicly accessible iden-

tification guides for ticks in Canada has been

done since Gregson (1956). However, a

handbook to the ticks of Canada is nearing

completion (T. Galloway, University of
Manitoba, Winnipeg, personal communica-

tion) and should fill an urgent need. Further-

more, there is good potential for DNA-based

identification and delimitation of tick species

(Sperling and Roe 2009), and internet-

accessible guides can supplement these efforts.

Such efforts should facilitate localized surveys

of tick distributions, which are essential to
more effective modeling and prediction of

changes in tick and LB distributions in the

context of climate change (Ogden et al. 2008a,

2008c, 2008d). The patchy distributions of

B. burgdorferi-infected hosts and ticks means

that using average numbers of infected ticks

across a large area may underestimate the

prevalence of LB. Efforts to identify patches
should focus on areas where exposure of

humans or their companion animals has been

reported, because large-scale inventories of

ticks are unlikely to pick up infrequent

patches. The dispersal and population struc-

ture of ticks can be studied using molecular

markers such as microsatellites, and the

field is ripe for further work of this kind
(e.g., Kain et al. 1999).

The second way in which entomologists can

contribute, in conjunction with microbiolo-

gists, is through more effective identification

of Borrelia species and other symbionts in

ticks. This will allow more effective study of

the factors that regulate the behavior and

interaction of ticks with their vertebrate hosts
and bacterial symbionts. PCR-based diagnost-

ics of Borrelia species and surveys of the

diversity of bacterial strains in ticks are now

commonplace. These should enable more

comprehensive documentation of the distri-

bution and evolution of these symbionts in
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spite of the challenges of growing them in

culture (Aguero-Rosenfeld et al. 2005). Fur-

thermore, new techniques for in vivo visualiza-

tion of Borrelia are providing insights into the

behavior of spirochetes (Moriarty et al. 2008).
Round bodies of B. burgdorferi have also been

visualized post mortem in confirmed cases of

LB (Miklossy et al. 2008); this method may

therefore assist in confirming previously

inconclusive cases.

Consistent identification of Borrelia cannot

help but increase our understanding of the

transmission dynamics of these bacteria in
specific ecological or behavioral circum-

stances. For example, Faulde and Robbins

(2008) recently demonstrated that fewer

infected ticks were picked up by dragging for

the main European vector of LB, I. ricinus,

than by collecting from exposed human

volunteers, which suggests that Borrelia burg-

dorferi s.l. may increase the host-finding
efficacy of female I. ricinus under natural

conditions. Such an effect may explain why

some of the low numbers of ticks collected in

Canada by dragging or flagging test positive.

It also supports the use of passive surveillance,

because a higher percentage of positive ticks

would be expected from ticks collected on

hosts. Furthermore, Borrelia incidence and
vector competence should be addressed more

comprehensively in tick species other than

those of Ixodes. An example is the competence

of deer and other ungulates as reservoirs for

B. burgdorferi. Even for Ixodes ticks, little is

published that gives deer infection rates in

Canada beyond the studies done in Ontario by

Gallivan et al. (1998). Although the finding
obviously needs to be confirmed, the Tennes-

see study by Shariat et al. (2007) opens up the

possibility that deer are effective reservoir

species in some areas, and Dermacentor ticks

may even be involved as vectors.

A third major research gap in Canada is the

synergistic effect of co-infections in vectors or

alternative reservoirs, which opens up oppor-
tunities for entomological collaboration with

public health researchers as well as with

microbiologists. The diversity of species and

strains of Borrelia is still incompletely under-

stood and the most important combinations

involved in these co-infections are largely

unknown. Simultaneous infection by B. burg-

dorferi and Babesia microti Franca increases

the severity of arthritis in mice (Moro et al.

2002). Human infection with both B. burgdor-

feri and Babesia microti was described in

Ontario in 1997, with the recognition that

more serious disease symptoms are associated

with co-infection (dosSantos and Kain 1998).

More severe symptoms continue to be re-

ported for LB cases with co-infections (Rawl-

ing et al. 2009). For vectors, Zhong et al.

(2007) have demonstrated that in Amblyomma

C.L. Koch ticks treated with antibiotics,

reproductive fitness is reduced. In their study

system, Coxiella sp. Philip was the identified

endosymbiont. Because I. scapularis also has

an endosymbiont, a Rickettsia-like bacterium

(Noda et al. 1997), this information may have

relevance to the LB system. Not only would

treating the ticks with antibiotics potentially

reduce the incidence of B. burgdorferi, it might

also reduce the population of the tick vector.

The effectiveness of antibiotic-baited traps

that target mice (Dolan et al. 2008) may have

further advantages for integrated pest man-

agement strategies for controlling LB by

lowering populations of Ixodes in subsequent

years.

Practitioners of integrated pest management

and other aspects of economic entomology will

recognize a fourth research need: a long-term

and broad-scale analysis of the costs and

challenges of LB to humans, which is essential

to a more effective deployment of resources to

combat this disease. Recognizing that human

cases are possible across the geographic

expanse of Canada is vital to reducing the

burden on the public health care system.

Furthermore, recognizing and monitoring the

changing effects of LB over time will pay

dividends on a human scale. In Scotland the

cost of treating a case of early LB is estimated

to be one-third that of treating late LB (Joss et

al. 2003), and early and effective treatment is

viewed as a cost-saving measure. In Scotland,

regular audits of the interpretation of Western

blots that are tailored to local areas has been

emphasized. This has resulted in improved

management of patients, and it is now recog-

nized that the 58-kilodalton protein is a highly

specific indicator of infection by B. burgdorferi
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(Evans et al. 2005). A revised antigen for IgG

Western blotting has been produced and has

increased sensitivity for Scottish patients

(Mavin et al. 2009). Canadians might do well

to follow this example and conduct an audit of

the proteins used to establish a positive

Western blot. The various ELISA tests are

also in need of renewed scrutiny.

Variability and recurrence of symptoms are

hallmarks of LB (Cameron et al. 2004; Holl-

Wieden et al. 2007; Nardelli et al. 2008).

Establishment of the initial infection, its

dissemination, and the development of patho-

logy are all stages in this complex disease.

Debate is ongoing concerning the severity of

symptoms and the role of persistent infection

and immunological dysfunction in continued

symptoms. The ecology of LB is challenging:

at every spatial scale studied so far, the risk is

unevenly distributed (Killilea et al. 2008). A

coordinated, multidisciplinary, and flexible

approach to understanding LB is needed to

reduce the burden of this disease in Canada

and abroad. Entomologists are in an ideal

position to achieve rapprochement between

the highly divergent groups of people con-

cerned with LB and to contribute to a better

understanding of its practical and intellectual

challenges.
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Hanincová, K., Ogden, N.H., Diuk-Wasser, M.,
Pappas, C.J., Iyer, R., Fish, D., Schwartz, I., and
Kurtenbach, K. 2008. Fitness variation of
Borrelia burgdorferi sensu stricto strains in mice.

Sperling and Sperling 541

E 2009 Entomological Society of Canada



Applied and Environmental Microbiology,
74(1): 153–157. PMID:17981941 doi:10.1128/
AEM.01567-07.

Hassett, A.L., Radvanski, D.C., Buyske, S., Sav-
age, S.V., Gara, M., Escobar, J.I., and Sigal,
L.H. 2008. Role of psychiatric comorbidity in
chronic Lyme disease. Arthritis and Rheum-
atism, 59(12): 1742–1749. PMID:19035409
doi:10.1002/art.24314.

Hildenbrand, P., Craven, D.E., Jones, R., and
Nemeskal, P. 2009. Lyme neuroborreliosis:
manifestations of a rapidly emerging zoonosis.
American Journal of Neuroradiology, 30(6):
1079–1087. PMID:19346313 doi:10.3174/ajnr.
A1579.

Hodzic, E., Feng, S., Holden, K., Freet, K.J., and
Barthold, S.W. 2008. Persistence of Borrelia
burgdorferi following antibiotic treatment in
mice. Antimicrobial Agents and Chemotherapy,
52(5): 1728–1736. PMID:18316520 doi:10.1128/
AAC.01050-07.

Hojgaard, A., Eisen, R.J., and Piesman, J. 2008.
Transmission dynamics of Borrelia burgdorferi
s.s. during the key third day of feeding by
nymphal Ixodes scapularis (Acari: Ixodidae).
Journal of Medical Entomology, 45(4): 732–
736. PMID:18714875 doi:10.1603/0022-2585
(2008)45[732:TDOBBS]2.0.CO;2.

Holl-Wieden, A., Suerbaum, S., and Girschick,
H.J. 2007. Seronegative Lyme arthritis. Rheum-
atology International, 27(11): 1091–1093.
doi:10.1007/s00296-007-0333-6.

Horobik, V., Keesing, F., and Ostfeld, R.S. 2006.
Abundance and Borrelia burgdorferi-infection
prevalence of nymphal Ixodes scapularis ticks
along forest–field edges. EcoHealth, 3(4): 262–
268. doi:10.1007/s10393-006-0065-1.

Houhamdi, L., and Raoult, D. 2005. Excretion of
living Borrelia recurrentis in feces of infected
human body lice. The Journal of Infectious
Diseases, 191(11): 1898–1906. PMID:15871124
doi:10.1086/429920.

Hunfeld, K.P., Ruzic-Sabljic, E., Norris, D.E.,
Kraiczy, P., and Strle, F. 2005. In vitro
susceptibility testing of Borrelia burgdorferi
sensu lato isolates cultured from patients with
erythema migrans before and after antimicrobial
chemotherapy. Antimicrobial Agents and
Chemotherapy, 49(4): 1294–1301. PMID:1579
3100 doi:10.1128/AAC.49.4.1294-1301.2005.

IDEXX Laboratories, Inc. 2008. Incidence of
heartworm, Ehrlichia canis, Lyme disease, and
anplasmosis in dogs across Canada as deter-
mined by the IDEXX SNAPH 3DxH and 4DxH
tests. 2007 national incidence study results.
IDEXX Laboratories, Inc., Markham, Ontario.
pp. 1–13.

Johnson, R.C., Schmid, G.P., Hyde, F.W., Stei-
gerwalt, A.G., and Brenner, D.J. 1984. Borrelia
burgdorferi sp. nov.: etiologic agent of Lyme

disease. International Journal of Systematic
Bacteriology, 34: 496–497.

Joss, A.W.L., Davidson, M.M., Ho-Yen, D.O., and
Ludbrook, A. 2003. Lyme disease — what is the
cost for Scotland? Public Health, 117(4): 264–273
PMID:12966749 doi:10.1016/S0033-3506(03)000
67-2.
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Jaborowska, M. 2007. Ticks and mosquitoes as
vectors of Borrelia burgdorferi s. l. in the forested
areas of Szczecin. Folia Biologica, 55(3-4): 143–
146. PMID:18274258 doi:10.3409/173491607781
492542.

Kudryashev, M., Cyrklaff, M., Baumeister, W.,
Simon, M.M., Wallich, R., and Frischknecht, F.

542 Can. Entomol. Vol. 141, 2009

E 2009 Entomological Society of Canada



2009. Comparative cryo-electron tomography of
pathogenic Lyme disease spirochetes. Molecular
Microbiology, 71(6): 1415–1434. PMID:1921
0619 doi:10.1111/j.1365-2958.2009.06613.x.

Kurtenbach, K., Dizij, A., Seitz, H.M., Margos, G.,
Moter, S.E., Kramer, M.D., et al. 1994. Differ-
ential immune responses to Borrelia burgdorferi
in European wild rodent species influence
spirochete transmission to Ixodes ricinus L.
(Acari: Ixodidae). Infection and Immunity,
62(12): 5344–5352 PMID:7960113.

Kurtenbach, K., Kampen, H., Dizij, A., Arndt, S.,
Seitz, H.M., Schaible, U.E., and Simon, M.M.
1995. Infestation of rodents with larval
Ixodes ricinus (Acari: Ixodidae) is an important
factor in the transmission cycle of Borrelia
burgdorferi s.l. in German woodlands. Journal
of Medical Entomology, 32(6): 807–817 PMID:
8551503.

Kurtenbach, K., Sewell, H.-S., Ogden, N.H.,
Randolph, S.E., and Nuttall, P.A. 1998. Serum
complement sensitivity as a key factor in Lyme
disease ecology. Infection and Immunity, 66(3):
1248–1251 PMID:9488421.

Kurtenbach, K., De Michelis, S., Etti, S., Schäfer,
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Maarouf, A., O’Callaghan, C.J., and Kurten-
bach, K. 2008b. Projected effects of climate
change on tick phenology and fitness of patho-
gens transmitted by the North American tick
Ixodes scapularis. Journal of Theoretical Bio-
logy, 254(3): 621–632. PMID:18634803 doi:10.
1016/j.jtbi.2008.06.020.

Ogden, N.H., Lindsay, L.R., Hanincová, K.,
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