The results for the current problem being investigated show that two equilibrium
configurations in the form of helices were obtained for the same specified initial
conditions of force, moment and pitch angle a. This ability of the segmental technique
to analyse multiple equilibrium configurations for a given problem by varying initial

conditions has been demonstrated by Tam [13] for planar elastica problems.

4.2 SHOOTING PROBLEM

In the previous sections the segmental technique was used to generate the
deformed shaped of the rod as well as the forces and moments which act along the rod.
The results obtained were compared to the exact analytical solution to test the validity
of the solution delivered by the segmental technique. The solutions thus obtained
showed excellent agreement with the analytical solutions provided a sufficient number
of segments were used. These results, however, wer: based on a compiete knowledge
of the conditions at the start of the rod. There were 1:0 boundary conditions at the end
of the rod which needed to be satisfied. This section presents the prablem as one which
has a single unknown at th start of the rod to demonstrate how the shooting procedure,

presented in Section 3.4, is used to solve such problems.

Consider the previous problem where the rod is to be twisted into a helical spiral
by a specified axial moment and force. This time, however, the pitch angle at the start
of the rod is not specified but rather the deformed helix is specified to have a known
axial length z). The major difference between this problem and the problem in the
previous section is that previously the initial pitch angle o was specified a priori. This

time, the pitch angle at the start of the rod is not known a priori, but must be chosen
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such that the resulting helix meets the specified boundary condition, namely z(L) = z,
This can be considered as a problem with one unknown parameter since in this case the
conditions (forces, moments and geometry) at the start of the rod are a function of the
pitch angle only (with M, and F, specified).

It should be noted here that an exact analytical solution for this problem is
available to calculate the appropriate pitch angle a (equations (4.2) and (4.5)). To
demonstrate the shooting procedure, however, it will be assumed that such analytical
information is not available, as would be the case in most practical problems. In what
follows, however, it will be assumed that the deformed configuration of the rod is in all
cases a helix with radius R and pitch angle a. The forces and moments at the start of
the rod, which are functions of a only (with M, and F, specified), will be chosen such
that the resulting shape is a helix in accordance with (2.81). In general, this a priori
knowledge will not be available. As a result there would be more unknowns at the start
of the rod since the helical deformed shaped would not be known beforehand and the
relationships between the moments, forcer, radius R and o would not be available. As
well, the boundary conditions at the end of the segment would become correspondingly
more complicated. However, for the purpose of demonstrating the shooting procedure,
it will be assumed that such analytical information is available so that the problem can
be presented as one with a single unknown variable (a) at the start of the rod and with
a single corresponding known boundary condition at the end of the rod (z(L) = z,). The
only exception to this assumption is that the solution relating the pitch angle o and the

axial length z is not known a priori.
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Consider the previous problem whete the same rod is to be twisted into a helix
by an axial moment of 200 Nm and an axial tension of 100 N. As well the axial length
of the deformed helix is specified to be 0.6m. To start the segmental procedure an initial
estimate of the unknown pitch angle must be made. This initial guess is then used to
calculate the conditions at the start of the rod as before. The segmental solution then
solves the entire rod exactly as before. The axial iength delivered by the segmental
solution will be a function (not analytical) of the initial estimate of a. To illustrate this
point, Figure 4.12 shows the axial length of the resulting helix as a function of the initial

pitch angle a for the segmental technique using 500 segments.
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Figure 4.12: Axial Length z as a Function of Initial Pitch Angle a
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This figure was generated by inputing initial values of a from 0 to 90° in increments
of 0.5° into the segmental technique and calculating the resultant axial length. At this
point no shooting has been involved. The purpose of this procedure is to demonstrate
the functional relationship between axial length z and initial pitch angle a. From this
figure it can be seen that the axial length is 0.6m when the initial pitch angle is
approximately 37°. Also, since a can only take on values from 0 to 90° from physical
considerations, this figure also shows that this is the only pitch angle which satisfies the
required boundary condition. This value will not be known a priori, however, and the
initial estimate may or may not be close to this value. For the purpose of illustration,
assume that the initial estimate of the pitch angle is 10°. The segmental technique
returns an axial length of 0.1664 m. This does not agree with the specified boundary
condition of 0.6m. Therefore the segmental technique calculates an approximate
derivative dz/da in order to use the Newton Raphson false position method. This
approximate derivative requires another initial guess close to the initial o to perform the
backward substitution process. Hence two estimates of the initial pitch angle are
required to start the technique. In general, if there are N unknowns at the start of the rod
then 2N initial estimates of the unknowns are required. To determine the partial
derivatives, N passes of the segmental approach are required. Thus each iteration
requires N+1 passes of the segmental approach. Based on the axial length returned by
the initial estimate of 10° and the approximated derivative at this point, the Newton
Raphson method returns an improved estimate of 35.06°. This new estimate of & then
returns an axial length of 0.5726 m. This procedure is repeated until the axial length

returned by the segmental technique converges to the required boundary condition within
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some set tolerance. Table 4.6 shows the convergence Yehavior for this problem.

1 10 0.16646864915426 | 4.335314 x 10"
2 35.062552337435 0.5726414‘:‘:33.‘::152:&:‘5; 1 2735857 x 10°
3 36.750690907168 | 0.59697891778%91 1 3.021082 x 10°
4 36.960244297435 | 0.59996424K:5 m 3.571172 x 10°
5 36.962751025467 | 0.5999995514"563 | 4.855431 x 10°

36.962754438301 0.59999999999922
o |

7.842615 x 10"

Table 4.6 shows that segmental shooting technique converges quickly and monotonically

for this problem. This is to be expected since Figure 4.12 shows that the function is well

behaved. In some problems, however, these functions may be quite complex with steep

gradients near the points of interest [13]. In such cases, especially for problems with two

or more unknowns at the start of the rod, initial estimates close to the actual values are

required. Relaxation factors may also be used to improve convergence.
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CHAPTER

FIVE

CONCLUSIONS

3.1 SUMMARY

The objective of the present study was to develop a numerical procedure to
analyse problems involving large three dimensional deflections of thin flexivle rods. The
equations that describe such deformations are highly nonlinear and difficult to solve
analytically. This difficulty is further compounded by the wide variety of boundary
conditions which may be involved. As a result, numerical procedures are usually
required to obtain approximate solutions to such problems. This thesis presents a new
approach to this problem.

The numerical procedure developed in the foregoing is based on the segmental
shooting technique, a numerical method previously found to be successful for planar
elastica problems. The major advantage of this technique is that the nonlinearity of the
problem is avoided by dividing the rod under consideration into a large number of
shorter segments, each of which undergoes only small deformations relative ..
neighboring segments. The equations describing the deformations of these individual
segments can therefore be linearized and solved by standard techniques. The individual
segments are assembled together, maintaining compatibility and continuity, to form the
complete rod. In this way, the nonlinearity of the problem is avoided by sclving a
sequence of linear problems. In doing so, the original boundary value problem is

converted into an initial value problem. A Newton Raphson false position technique is
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then used to ensure that the appropriate boundary conditions are satisfied.

The segmental shooting technique has several advantages over other techniques.
Since each segment of the rod is analyzed separately, large computer memory space is
not required as with the finite element method. As well, incremental loading is not
required to handle large deflections, resulting in a much faster solution. For example,
the solutions obtained in the previous chapter using 500 segments were all done on an
IBM 80486/48/ personal computer in under 5 seconds ea:h. The segmental technique,
as was noted previcusly [13], is well suited to finding multiple equilibrium configurations
when they exist.

The major drawback with this technique is that the false position iterat?ve
procedure which allows the boundary conditions to be satisfied is susceptible to
numerical problems due to the numerical differentiation involved in estimating partial
derivatives of complex functions. As well, initial estimates of the unknown parameters
close to the actual values are usually required to ensure convergence of the solution, It
has been previous experience that when three boundary conditions (the maximum number
for planar problems) were required for a given problem the convergence behavior of the
solution became much slower than for problems with one or two boundary conditions.
Three dimensional problems could easily have more than three boundary conditions
which need to be satisfied. The convergence behavior for such problems will likely
become worse. This requires further investigation.

The most significant difference between planar and three dimensional rod
problems is that the twist along the rod couples the two transverse bending components.

In planar problems no twisting occurs and one equation is sufficient to describe the
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deformation. For three dimensional problems, there are three differential equations,
coupled by the twist, which describe the deformation of a rod segment. For the special
case where the rod is initially straight and of circular cross section (the case investigated
in this thesis) the bending components may be uncoupled from the twist resulting in two
diffcrential equations to be solved for the transverse deflections. The third equation for
the twist can then be solved separately.

The computer program developed to implement this technique was used to solve
the problem of an initially straight rod with circular cross section twisted into a helical
spiral by axially applied end moments and forces. This problem has a well known
analytical solution and served to verify the results obtained using the segmental
technique. The resulting geometry, equilibrium results, a first integral of the equilibrium
equations and a condition imposed on the solution from constitutive assumptions were
all used to determine the validity of the numerical solution. In all cases it was found that
there was close agreement between the analytical and segmental solutions provided that
a sufficient number of segments were used. The possibility of obtaining multiple helices
for specified applied loadings was noted and these multiple equilibrium configurations

were found easily using the segmental technique.

3.2 FUTURE WORK

The present work considers only the special case of a rod with circular cross
section which is initially straight, inextensible, and has a quadratic strain energy function.

To allow this procedure to be applied to a wider variety of practical engineering
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problems the procedure should be modified to consider rods with different cross sections
as well as rods with initial curvatures and pre-twisted rods. Extensibitity should also be
considered since this may be an important consideration in some problems. Major
modifications to the technique may, in the future, allow it 10 be applied to materials with

different constitutive relationships as well as to a dynamical analysis of rod structures.
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APPENDIX

A

Dimensional Analysis of Equilibrium Equation

A dimensional analysis was performed on the equilibrium equation given in
(3.18). This was done to ensure that the proper terms are retained when the assumption
that only small deflections occur over a given segment was applied. The relevant terms
were expressed relative to some reference values and ratios of small to large values
(order €) were obtained. The analysis wa.. performed to determine which terms were

more than order one in € and these were subsequently neglected.
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GOVERNING EQUATIONS

The pertinent equations from Chapter 3 are repeated here for convenience.

Constitutive Relationship

M - Eltxt + Glxt

Differentiating (A.3) with respect to arc length gives

M = EItxt’ + GI¢'t + GIxt.

Now define

f-_t - —, p=— K"—a—-

M, L K,

(A.1)

(A2)

(A.3)

(A4)

(A.5)

Here F.y, M,; and K, are reference magnitudes of the force, moment and twist per unit

length respectively. These will be used later to determine which quantities are “small”.

s is the arc length parameter and L is the length of a segment. p is therefore the

dimensionless arc length parameter. Also, from equation (3.17),

x=-®, +k

(A.6)

(A7)



As well from (3.7),

1=+, (A-8)
so that
Y =-v', =0 (A.9)
Also define
u- -I-i-f, (A.10)

where U, is a reference deflection, then

g-Smy oYy g Vg A11)
L L? L3

where the dot notation indicates differentiation with respect to p, the dimensionless arc

length defined in (A.5).

Using the parameters defined above, (A.2) becomes

M | Exf + Exl, (A.12)
ds
or
_'Ll—d_p" - nffXIo + mefX—Lr'e—u,
S - Byl + Ts gy (13
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Equation (A.4) becomes

M
Tﬁf'm - El(to*'ll/)xn”/ + GJk’(:°+n’) + GJ(@O*'k)n”

- El(to-f %UJ xefu + GJ ktefn( xef U)

+ GJ(®, + nk,,,)——"ﬁu

2
El Uy El{ Upsl o = GIk . o
"o e za(—L' Uxll + —p= a7
G]'ktef Ut GJ Py Ur G]k“f rof
—0
L L L LI'1 L L U.

Equating (A.13) and (A.14) gives

F U .
Fofxt® + -—"fi-'iffxu -

2
E.Hllftoxﬁq..E_Iﬂeﬁ ﬂxﬁ.ﬁ%ﬂto
12 L 2L L
Glky Uy GI®, U, Glk U,

Q
T A st T 1 ol

and dividing through by F,; gives
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Bl Uy, -~ EH (Uule = G o
el e = Uk - k Lt

anLz L » 2l L FquZ (A.IS)
Ups s o Ups Up o
Ly Loy, oL, Sy 1 gy
F,L? L F,L? L F,L? L

Consider equation (A.3) evaluated at s=0 (the start of the segment),

M(@) = EItxt + Glxt. (A.16)

Ats=0,t =1 t' = u" and x = P, so (A.16) becomes
M(0) - EIt’xy" + GI®,1°

U (]
- EIf'x = + GIo,1°
L2

(A.17)
EIU ..
- —= 0 + GIo, 1.
L2
The magnitude of M(0) is then
EIU
IM©)! - ™ |+ (GI0,). (A-18)
L2 °
Defining the quantities
M, - EUy : (A.19)
1 LZ
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M, - GI®,, (A.20)

equation (A.15) becomes

M . M_.u . _ M )
O+ . -Tﬁ;k'—“;w (A21)
F,L F,L L L,L @,
b et Kot Uty Moty Uy Mot Ky U
F,L® L F,L L F.L ®, L
Now consider equation (A.2) evaluated at s=0 so that
M'©) - Ex?’
or
M
Tﬂfm = F fx{. (A.22)
The magnitude is then
M M
l—ds—l - ITrem' - IFMtho' (A-23)
and therefore,
M
—L"—'Iml ~ F_ Ifx(°l, (A.24)

1 is a unit vector specifying the tangent direction along the rod. f isa unit vector in the
direction of the internal contact force at arc length s=0. f can have any arientation (ie:
independent of ). The orientation of f, which determines the magnitude of fxt°, will

determine the magnitude of (m). Therefore we can say that
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M, = FL. (A25)

Using (A.25) and defining
M M
o - M"" - el : (A.26)
M) + M)
M
B - M"f’ = (A27)
ref \/(M,,,l)2 M, )
equation (A.21) becomes
fxg0 + U—:—f xU =
a®x{ + ag-“fﬁxﬁ+ pﬁ":(’w (A.28)
L @,

s g XU o, o Untir o g Kot Unt
B¢ Lfm ﬂLu p%Lou.

The terms (U JL) and (k./®,) are assumed to be small (of order € where e<<1) when
the segment being solved is sufficiently short. The other terms in (A.28) are
approximately of order 1. Any terms with two or more order € terms will be ignored

as being higher order terms. The terms remaining are those shown in equation (3.18).

This same dimensional analysis was performed on the moment equation (3.30)

to ensure the retention of the proper terms in equation (3.70). Again consider the
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constitutive relationship
M - Eltxt + GIxt (A.29)

and substituting for t, t' and x as befeore gives

M - E( +u')xu” + GJ(@y + Qk)(t° + ')

U,..| U_. U, .
' E‘["’*—L'*“]"T”'” + O, k- =y

ElU,, . EU,U,. . X
T xU + —Lz—-Tuxu + GI®,t

(A.30)

U, U, .
+ GJO,—=U + Gmo;kz'-fnp + Gmoﬁ—"‘nu.
L o, o, L

Using the results of (A.19) and (A.20) this becomes

. U, . .
M =M 0OxD + M,‘,,—iﬁuxu + M2 g0
(A.31)

U.,.. U .
« MLEY Mf,,%mo . M,’,,;ék'ff-—lt'—‘nu.
0 0

As before the quantities (U,4/L) and (k,/®,) are considered to be of order €. Any term
in (A.31) with two or more order ¢ terms will be neglected as being a higher order term.
Only the last term is therefore neglected and the remaining terms are those shown in

equation (3.70).
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APPENDIX

B

Alternate Bases At End Of Segment

An important consideration in using the segmental shooting technique is to be
able to determine a new orthonormal basis at the end of the current segment being
solved. This new basis will then be used as the local basis in which to solve the next
segment. There are several methods available to choose this new basis. This section

considers some of the alternate choices available.
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In determining the new basis at the end of the segment, the first item needed is
the tangent direction. This can be obtained by the method outlined in Section 3.2.3.
Afier the tangent direction, e,, has been determined, &, and ¢, which span the cross
section must be determined. There are an infinite number of possible sets of (e,, ¢,)
which satisfy this requirement. In Section 3.2.3, e, and &, were chosen to be the normal
and bino*zaal vectors of the Frenet basis. Other choices are possible, however. For
example, rather than using a Frenet basis, a material basis could be used. A material
basis is one in which the vectors are embedded in the material and deform along with
the rod. Thus the orientation of this basis at the end of the segment is not arbitrary. It
depends upon the orientation of the basis initially and also upon the deformation. Recall
that the kinematically admissible variations in the vectors ¢ are given from equation
(2.34) as y,(s) = afs) x ¢°, where &(s)=e’ + v(s). The vector a(s) determines how a
material basis {¢} changes orientation along the rod segment.

To determine the vector a, recall from equation (2.39) that u'=axt. Then with t

interpreted as t° and with u given by equation (3.12), this gives the result that

(B.1)
dv
- 2.,
5T &

where the components of g are expressed in terms of the basis { ¢’). To determine the
a, component consider the case of a straight rod undesgoing pure torsion. In such a case
the tangent direction remains unchanged so that v,=0. This implies that a, and a, are
zero. The vectors g,(s) and e,(s) change orientation by rotating around the axis of the

rod. The amount of this rotation is equal to the total angle of twist of the rod segment,
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v, between arc length 0 and s. Thus a, at the end of the rod can be determined in
several ways. One method is by integrating the twist per unit length of the rod, given

in equations (3.17) and (3.52), between arc lengths p=0 and p=1, which gives

El = Bk _ - By
Vet c;[ 2 X Ened % ©oed

2
R L)) Mxm,] ®2)

el _ gl

EI dd de
d
GJ dp dp) P

Here the last term involves a nontrivial integration of two power series multiplied
together which requires a significant computational effort. Also it was mentioned in
Section 3.2.3 that y as expressed in (B.2) does not represent the physical twist per unit
length but is a representation of the change in M, in the original ¢,° direction and does
not give an accurate indication of the actual total twist.

Another method is to assume that the exact result of twist per unit length along
the rod being constant applies and that the total twist is simply GL. However the results
of the exact solution may or may not be applicable to the approximate solution. Thus
this approach may not be justifiable although the errors introduce would be small and
would be expected to be negligible as the number of segments is increased.

With the vector a thus determined, the new material basis at the end of the
segment can be determined. However, the basis obtained will not be exactly
orthonormal. Each time a new vector is calculated, a small amount is added to the

original unit vector. Thus the resulting "unit” vectors become slightly larger in
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magnitude with each calculation and therefore do not remain unit vectors. The resulting
vectors could be made unit vectors by normalizing thera at the expense of increased
computation. Further, the basis obtained in this manner will not be exactly orthonormal.
There will be a slight deviation from orthonormality which could accumulate as the
solution progresses. The basis could be orthonormalized, possibly using the Gram-
Schmidt orthonormalization procedure for example, again at the further expense of
increased computation.

Therefore the Frenet basis was chosen as being the best choice because it met all
the requirements (orthonormality, ¢, along the tangent direction) and was the simplest to
compute. The instances when the Frenet basis is not uniquely defined (ie: rod remains
straight) do not present any difficulty as mentioned in Section 3.2.3. This basis also has
a further advantage in that the Frenet basis is used often in the literature and computing

this basis at each segment may facilitate comparison with other problems and solutions.
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