
Detecting effects of spatial memory and dynamic

information on animal movement decisions
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Appendix A Supplemental methods

A.1 Simulation of landscapes

We modelled the continuous valued environmental covariate as a Gaussian random field
(Haran, 2011). A Gaussian random field is a multivariate Gaussian random variable, indexed
by space. In our case, the random variable is the resource r1 for each location in the spatial
domain, {r1(x)}x∈Ω. The covariance between resource values at any two locations x and y
is a function of the distance between the locations, so that values of nearby locations are
stronger correlated than values of locations that are far apart. We chose the exponential
form for the covariance function, cov

(
r1(x), r1(y)

)
= exp(−‖x−y‖

σ
), where σ determines the

rate at which locations cease to be correlated. We varied σ among different landscapes. To
simulate such landscapes, we used the R package ‘RandomFields’ (Schlather et al., 2013).

To generate correlated landscapes of binary variables we use the method and C code
provided by Hiebeler (2000). Each landscape is represented by two quantities: p0, the
overall proportion of type 0 cells, and q00, the probability that a neighbour of a type 0 cell
is also of type 0. If q00 is high, the landscape is strongly clustered, and vice versa. For our
landscapes, we varied both p0, and their degree of clustering, q00.

The five landscape pairs we used for our simulations are depicted in Fig. 1
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Fig. 1. Pairs of simulated landscapes (row-wise). The left side shows the continuous
valued resource r1, the left side shows the binary variable r2. Parameter values used to
simulate the landscapes are given for every landscape pair.
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A.2 Data cloning and MCMC in simulation analysis

For all model fits, we used data cloning. Data cloning uses Markov Chain Monte Carlo
(MCMC) methods, which calculate a posterior distribution for the model parameters, given
the data. This technique is usually employed in Bayesian statistical inference, however, the
resulting parameter estimates from data cloning approximate the corresponding maximum
likelihood estimates (MLE). This is achieved by applying the Bayesian framework toK copies
of the data, which are referred to as clones. Alternatively, the procedure can be viewed
as a series of Bayesian updates applied to the same data, each time using the posterior
distribution from the previous update as new prior distribution (Robert, 1993). After a
movement trajectory has been cloned K times, Bayesian parameter estimation, here MCMC,
is performed on this augmented data. The results of this procedure lead to parameter
estimates in the more conventional style of frequentist inference, namely maximum likelihood
estimates. However, an important factor to achieve this is a sufficiently large number of
clones. If K is large enough, the posterior distribution for the parameters is approximately
Normal with mean at the maximum likelihood estimate θ̂MLE of the original (i.e. uncloned)
data and with variance 1

K
I−1(θ̂MLE), where I is the Fisher information of the original data

(Lele et al., 2010). This means that if we choose K large enough, the sample mean of the
MCMC is approximately the MLE of the original uncloned trajectory and if we multiply the
sample variance by K, we obtain an approximation of the inverse Fisher information (also
termed ‘information number’; Casella & Berger, 2001). The inverse of the Fisher information
is the asymptotic variance of a maximum likelihood estimate and it can be used to calculate
Wald-type confidence intervals.

In our analysis, we used K = 15 clones. To confirm that this number of clones was
sufficient to obtain a good Normal approximation of the posterior distributions and good
approximations of the maximum likelihood estimates, we performed test runs with the most
complex combination model. We selected a combination trajectory both from the main data
set and the supplemental data and iteratively fitted the combination model with increasing
number of clones. For each run, we inspected the three diagnostic measures described in Lele
et al. (2010) and Solymos (2010) (lambda.max, ms.error, r.squared). These diagnostics
assess whether the Normal approximation of the posterior distributions and the approxi-
mation of the sample mean to the MLE are adequate, which is the case if the diagnostics
converge to zero. We found that all three diagnostics converged to zero for our test fits, and
that they were all close to zero (< 0.05) for K = 15.

For the MCMC, we used two parallel chains, each running for 7500 iterations, of which
we discarded an initialization and burn-in period of 3500 iterations. To assess whether
this was sufficient to obtain good mixing properties of the chains and convergence to the
stationary distribution, we inspected the Markov chains visually and calculated the potential
scale reduction factor R̂ (Brooks & Gelman, 1998) for each parameter. Using these amounts
of MCMC iterations, we obtained good mixing and convergence in matching model fits. In
non-matching model fits (model and simulated trajectory mechanism did not match), mixing
and convergence problems occurred. To ensure that these problems did not simply occur
because we did not use sufficiently many MCMC iterations, we continued to run some of the
non-mixing/non-converging MCMCs for up to 8000 additional iterations. In none of these
cases we found that more iterations improved mixing or convergence.
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For further analysis, we calculated data cloning estimability diagnostic for selected tra-
jectories. This requires a series of model fits with increasing number of clones, for which
we used the functions dc.fit and dc.parfit from the R data cloning package (Solymos,
2010). We chose number of clones K = 1, 5, 10, 15. Because of the high computational needs
of the model fits, especially for the most complex combination model, we refrained from
increasing the number of clones further. However, as additional test we also examined one-
and two-dimensional slices of the corresponding likelihood functions and found that these
tests always lead to the same conclusions; see section B.3. If in a model fit parameters are
estimable, their variances should decrease with increasing number of clones. In particular,
the largest eigenvalue of the posterior variance, lambda.max, should decrease with rate 1

K

(Lele et al., 2010; Solymos, 2010). Standardized by its value for the uncloned data, it should
converge to zero as 1

K
.

A.3 Missed observations

In general, there are several approaches how to deal with missed observations in a trajectory
statistically. The easiest case is when locations, or steps, are modelled as being independent
from each other. However, for models that include autocorrelation, we cannot simply ignore
the dependency structure. A possibility is to use some technique of interpolation. Alterna-
tively, we can divide the trajectory into chunks of available data and condition the likelihood
function on the first available observation in each chunk. In a correlated random walk, we
need three consecutive locations to define one step probability. Therefore, missed locations
effectively lead to even larger gaps in the likelihood function.

To avoid any loss of data, we can use the full likelihood based on the entire trajectory
(x1, . . . ,xn) = (xobserved,xmissed) and integrate over all missed observations,

L(θ|(x1, . . . ,xn)) = L(θ|(xobserved,xmissed)) =

∫
p(xobserved,xmiss|θ) dxmiss. eqn 1

This has the advantage that all original dependencies between locations can be preserved and
no information is lost. Calculation of the possibly high-dimensional integral is problematic in
common frequentist methods that require optimization of the likelihood function. However,
MCMC techniques (and therefore data cloning) circumvent this problem and at the same
time provide estimates for the missed variables.

Our model is formulated based entirely on locations (intermediate quantities such as step
length and bearing are calculated within the model formulation), and therefore implemen-
tation of this method is, in principle, straightforward: in the MCMC, missed locations are
treated as parameters and their step probabilities serve as priors. We used JAGS for model
fitting, which was capable to perform this and to produce converging posterior distributions
for missed locations. However, this came at the cost of very high computational needs (both
memory requirements and computation time).

The memory model requires reconstruction of time since last visit m. For a missed
location at time t, we accordingly miss mt. Because mt is a function of xt and xt−1, just as
step length and bearing, we could estimate mt within the model fitting procedure. However,
mt is a high-dimensional variable for each time step and due to computational restrictions
we treat m as known covariate. Therefore, if the location xt is missing, we do not update
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mt for this time step and set mt = mt−1. At the next time step, we update mt+1 via the
usual formula, but based on mt−1 and xt−1. To account for the longer time, we increase the
distance δ from the straight line path(xt−1 → xt+1), in which locations are considered as
visited. If more than one location is missed in a row, we proceed similar, starting to update
time since last visit at the next available location.

To perform model selection for a completely observed trajectory, it is possible with our
models to calculated the likelihood functions and thus BIC. With missed locations, this
becomes computationally much more complex due to the integration. To avoid this, we can,
as an approximation, instead use estimates of missed locations. Because we treat missed
locations as parameters, we obtain posterior distributions and estimates for them. We can
simply use these estimates to calculate the likelihood function. A more sophisticated method
has been proposed by Ponciano et al. (2009). Their method circumvents the problem of
integration and uses data cloning itself to obtain estimates of likelihood ratios, which can
then be used for AIC or BIC.
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Appendix B Supplemental results

B.1 Supplemental data

In the main text of the paper, we analyzed a simulated data set of 20 trajectories. This
data set was generated using realistic parameter values. However, to test our method in
even more scenarios, we generated two additional sets of 20 trajectories, which we refer to as
‘data set 2’ and ‘data set 3’ to separate them easier from the main data set. For these data,
we used parameter sets in which we included values that we considered to be potentially
more difficult to estimate from data.

For data set 2, we chose relatively small resource selection parameters αres β1, β2 and
very small interaction parameters γ1, γ2, which means that we simulated weak effects of the
resources. The parameters αmem and βmem that regulate the influence of time since last visit
were chosen so that returns to locations were possible again after short durations of absence.
This means that the effect of time since last visit is relatively weak. The parameter values
were

parameter set 2: κ = 4 αres = −0.2 β1 = 0.5 γ1 = 0.008

λ = 0.9 αmem = −3 β2 = 0.8 γ2 = 0.005

ρ = 1.2 αcom = −3.2 βmem = 0.04

For data set 3, we set one of the interaction parameters in the combination model to zero,
so that an interaction between resource values and time since last visit was only present for
the binary variable r2. To distinguish this data set further from the main set, we chose
β1 < 0, so that resource variable r1 has an opposite effect compared to the other data sets.
All other parameters are again chosen to be realistic, but different from previous values.

parameter set 3: κ = 4.5 αres = 0.8 β1 = −1.5 γ1 = 0

λ = 1.3 αmem = −5 β2 = 2.5 γ2 = 0.01

ρ = 1.5 αcom = −5.8 βmem = 0.05

The simulated resource landscapes were the same as for the main data set. We performed
the same analysis on the supplemental data as on the main data and we obtained 160 model
fits.

B.2 Results

B.2.1 Results on supplemental data sets

Considering the 160 model fits, 82% had potential scale reduction factor 0.9 ≤ R̂ ≤ 1.1 for
all parameters, which means that for those model fits, MCMC runs for all parameters mixed
well and converged. If convergence and mixing problems occurred, these were cases where
parameters were inapplicable to the analyzed trajectory (Fig. 2).

In contrast to the main data set, there was one instance in the supplemental data where
R̂ > 1.1 for several parameters in a matching model fit in data set 2. This was a combination
trajectory fitted with the matching combination model. We continued to run the Markov
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chains for more iterations, however, the chains’ behaviour remained the same. We therefore
looked closer into this model fit, and ultimately ran an entirely new MCMC for this trajectory
to calculate estimability diagnostics. In this second run, the parallel chains mixed and
converged well and no estimability issues were found. For more details and discussion about
this, see section B.3.

Model selection via BIC was able to correctly identify true underlying models for all but
one trajectory (Fig. 2). For the fourth resource trajectory of data set 3, BIC was lowest
for the null model, followed by the resource model. When we looked closer at the results
of the fit with the resource model, we found that selection parameters αres and β1 had very
large confidence intervals, and the estimate of the intercept αres was high. High values of
the intercept effectively result in a constant weighting function, thereby mimicking the null
model. We discuss this model fit further in section B.3. Additionally, there was one matching
combination model fit that did not mix properly in the first MCMC run (compare previous
paragraph), and for which we therefore did not calculate BIC. This lead to the memory
model being selected as best model for a combination trajectory. However, when we ran a
new MCMC with the combination model, the chains converged and BIC was lowest, followed
in order by the memory model (ΔBIC = 178), the resource model (ΔBIC = 676) and the
null model (ΔBIC = 800).

In the following, we used results from the second MCMC run for the fourth combination
trajectory in data set 2.

For our hypothesis test, we obtained 139 estimates of selection parameters (we only
considered estimates from convergent and well mixing Markov chains). Of these, 69 corre-
sponded to true underlying effects. When we analyzed confidence intervals as to whether
they excluded zero and thus suggested covariate effects, we obtained a Type I error rate of
0.01 (a trajectory was simulated without effect, but confidence intervals detect an effect)
and a Type II error rate of 0.14 (a trajectory was simulated with an effect, which was not
detected). When we pooled supplemental and main data, we obtained a Type I error rate
of 0.04, which is close to the expected amount if we use 95% confidence intervals (which
corresponds to a 5%-level hypothesis test). For the pooled data, the Type II error rate was
0.09. Hence, overall the hypothesis test gives expected results that include errors, while the
model selection via BIC performs better and reliably identifies trajectories’ true underlying
mechanisms.

Most parameter estimates of matching model fits agreed well with true underlying values.
As expected, 95% confidence intervals (n=230) included the true value 0.95% of the time.
In data set 2, there was one resource trajectory, for which the estimate of αres was far away
from the true value (α̂res = −9.7, true value was -0.2) and the standard error was very large
(sd=21.7). We looked into this further and calculated likelihood slices and data cloning
estimability diagnostics. From these, we concluded that there is an estimability problem for
αres, while the other parameters are well behaved; for details see section B.3. Therefore,
we excluded this estimate of αres. All remaining estimates in dats set 2 were balanced
around and generally close to their true values (Fig. 3, panel (a)). In Fig. 3, panel (a), we
plotted estimates for αres and γ2 separately, using the original unscaled values, because their
standardized confidence intervals were larger than for the other parameters. Standardization
is sensitive to the size of the standardization constant and may be problematic here, because
the true values of αres and γ2 are small, and division by values close to zero results in large
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Fig. 2. Each column in the two subfigures shows model selection results for one simulated
trajectory when it was fitted with the four candidate models (null, resource, memory,
combination). For each trajectory, we calculated BIC values for the four fitted models, and
the figure shows differences in BIC with respect to the minimal BIC value, i.e., the model
with minimal BIC has ΔBIC = 0. We excluded model fits with non-convergent MCMC.
For coherence, the figures depict the results from the first MCMC run for each trajectory.
Triangle indicate those trajectories for which we calculated estimability diagnostics.
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Fig. 3. Parameter estimates and their 95% confidence intervals for matching model fits. In
large panels, both parameter estimates and Wald-type confidence intervals are scaled by
the true parameter values (TV): κ = 4, λ = 0.9, ρ = 1.2, αres = −0.2, αmem = −3,
αcom = −3.2, β1 = 0.5, β2 = 0.8, βmem = 0.04, γ1 = 0.008, γ2=0.005. Smaller panels have
unscaled values. In all plots, dotted lines mark true values.

values. The unscaled results for αres and γ2 look reasonable (Fig. 3, smaller panels).
In data set 3, there were a few more estimates with large confidence intervals (Fig. 4,

panel (b)), particularly for β2 and γ2, which we have therefore plotted in separate panels in
their original scale. We suspect that these large confidence intervals are due to estimability
problems; see also discussion in section B.3. We also plotted γ1 separately, because its true
value was zero and therefore could not be standardized. All estimates of γ1 are close to zero
and all confidence intervals overlap zero. Therefore, the model was able to correctly identify
the lacking effect of the interaction parameter.

B.2.2 Missed observations

For the combination trajectory with missed locations, we performed a matching model fit.
We compared parameter estimates and their 95% confidence intervals for the trajectory with
missed locations and the corresponding complete trajectory. Parameter estimates for the
combination trajectory with missed locations agreed well with true values and were similar
to results for the complete trajectory (Fig. 5). Estimates of selection parameters tended to
be slightly lower for the incomplete trajectory, but standardized values never deviated more
than 0.15. Parameters κ, λ of the movement kernel describing step lengths (shape and scale
of Weibull distribution) are slightly higher for the incomplete trajectory, resulting in a mean
step length of 5.29 compared to 5.0 for the complete trajectory.
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Fig. 4. Parameter estimates and their 95% confidence intervals for matching model fits. In
large panels, both parameter estimates and Wald-type confidence intervals are scaled by
the true parameter values (TV): κ = 4.5, λ = 1.3, ρ = 1.5, αres = 0.8, αmem = −5,
αcom = −5.8, β1 = −1.5, β2 = 2.5, βmem = 0.05, γ1 = 0, γ2=0.01. Smaller panels have
unscaled values. In all plots, dotted lines mark true values. Estimates from the matching
resource model fit in data set 3 that was not selected as best model are excluded.
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Fig. 5. Parameter estimates and their 95% confidence intervals for the combination
trajectory on landscape 2, fitted with the combination model. Results for the complete
trajectory (dark grey) compared to results for the same trajectory with 10% missing
locations (light grey). Parameter estimates and confidence intervals are scaled by the true
parameter values (TV): κ = 5.5, λ = 1.6, ρ = 1, αres = −1, αmem = −4, αcom = −5, β1 = 1,
β2 = 2, βmem = 0.03, γ1 = 0.01, γ2=0.05.

B.3 Convergence and estimability issues

B.3.1 Estimability in cases of non-convergence

In each data set, about 18-20% of model fits contained one or more parameters, for which
R̂ was larger than 1.1, indicating non-convergence or non-mixing of the parallel chains. In
many cases, we continued to run these chains for the double or triple amount of iterations,
without ever seeing a major change in the chains’ behaviour. Of course, we cannot exclude
the possibility that after many more iterations (tens of thousands) the Markov chains would
have finally reached convergence, or in case of non-mixing parallel chains would have switched
their behaviour. However, the model fits, especially for the combination model, were both
time-consuming (MCMC runs with two parallel chains could take 1-10 days, depending
on model) and memory-intense (using approximately 1-5 GB RAM, depending on model).
Considering that processing the three presented data sets required in total 240 model fits,
we tried to reduce MCMC iterations to a reasonable amount, which in most cases lead to
convergent and well-behaved Markov chains.

To understand convergence problems, we calculated data cloning estimability diagnostics
and likelihood slices for selected trajectories. To obtain estimability diagnostics for a trajec-
tory, we had to run the data cloning algorithm several times for increasing number of clones.
This was even more computationally demanding than running data cloning for a single fixed
number of clones. Therefore, we did not calculate estimability diagnostics for all model fits.
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We performed estimability analysis on selected trajectories across all three data sets to
understand a variety of phenomena.
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Fig. 6. Comparison of
lambda.max (points and
solid line) and the line 1

k
(dotted) for a matching
combination model fit that
had mixing problems at first
but converged in a second
MCMC run. No estimability
problems found.

In data set 2, large R̂ values occurred in a matching model
fit (fourth combination trajectory; see previous section). We
inspected MCMC traces and posterior distributions. The two
parallel chains in the MCMC did not mix, but each chain ap-
peared to converge on its own (Fig. 7). This resulted in bi-
modal posterior distributions of the parameters. We calcu-
lated estimates from each of the chains separately and calcu-
lated their likelihood values. The estimates from one chain
(red chain in Fig. 7), say θ̂1, were close to the true underlying
values of the trajectory with logL(θ̂1) = −6783.94. In com-
parison, true parameter values had slightly lower log-likelihood
logL(θtrue) = −6788.582. The estimates from the other chain
(black chain in Fig. 7), say θ̂2, had a lower log-likelihood value
of logL(θ̂2) = −7121.017. It appears that the likelihood func-
tion has a local maximum at θ̂2. While the first chain found
the higher peak, the second chain found the second, lower, peak
and failed to move away from it. Because L(θ̂2) was distinctly
lower than L(θ̂1), it did not appear that the chains’ behaviour
was due to an estimability problem. To confirm this, we calcu-
lated estimability diagnostics. This required a new model fit
with varying number of clones. In this fit, all Markov chains
converged and mixed well. All posterior variances decreased
with increasing number of clones and lambda.max converged
to zero with rate 1

K
, where K is the number of clones (Fig. 6).

We looked into estimability for three more model fits that did not converge the first time.
We analyzed a non-convergent model fit in data set 1, in which the combination model

was fitted to a memory trajectory. When we calculated estimability diagnostics, all Markov
chains converged and lambda.max behaved well and did not indicate any estimability prob-
lems.

We further analyzed estimability for a non-convergent fit in data set 1, where a memory
model was fitted to a resource trajectory. Here, variances of parameter estimates decreased
properly for the kernel parameters, however not for selection parameters, αmem and βmem,
indicating estimability issues (Fig. 8). This means that the selection parameters of the
memory model with respect to time since last visit could not be determined for the resource
trajectory, which indeed did not truly contain an effect of this dynamic variable.

Because most convergence problems occurred when a more complex model was fitted to
a null trajectory, we also examined a non-convergent fit of the combination model to a null
trajectory in data set 2. Inspection of the non-convergent Markov chains showed that for
most parameters, parallel chains did not mix but sampled different regions of the parameter
space, resulting in bimodal posterior distributions. We separately calculated estimates and
their likelihood values for the two chains, and the likelihood difference was smaller than 1.
Posterior variances indicated estimability problems for all selection parameters, which are
the parameters that were not relevant to the null trajectory (Fig. 9).
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Fig. 7. MCMC results for the combination trajectory that had mixing problems when
fitted with the matching combination model. Trace plots of MCMC iterations and density
plots are shown for all parameters of the weighting function. The two parallel chains do
not mix, but each appear to converge on their own. Estimates derived only from the red
chain have higher likelihood value and than estimates derived from only the black chain.
Estimates from the red chain are close to the true underlying values of the trajectory.
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Fig. 8. Estimability diagnostics for a memory model fitted to a resource trajectory that
did not converge in data set 1. The plots show variances of the posterior distributions for
increasing number of clones. Non-decreasing variances of αres and βmem indicate
estimability issues.
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Fig. 9. Estimability diagnostics for a combination model fitted to a null trajectory that
did not converge in data set 2. The plots show variances of the posterior distributions of
selection parameters for increasing number of clones, which all indicate estimability
problems.
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B.3.2 Estimability in cases of large confidence intervals
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Fig. 10. Posterior variance
of αres for a matching
resource model fit in data set
2, which shows estimability
problems. The dotted line
indicates the ideal line 1

k .

In our analysis of parameter estimates and their confidence
intervals in matching model fits, we found that even though
MCMC runs converged, parameters of the weighting function
occasionally had very large confidence intervals. One example
is the matching fit of the fourth resource trajectory in data set
2, in which the estimate of αres had an unusually high value,
together with a large confidence interval. Estimability diagnos-
tics showed decreasing posterior variances for all parameters
except αres (Fig. 10). We suspected that these results were
caused by a ridge in the likelihood along αres. We therefore
calculated two-dimensional likelihood slices to confirm this.
Fig. 11 shows two example slices, in which αres and β2 vary,
whereas all remaining parameters are fixed. First, we fixed re-
maining parameters at their true values. The resulting surface
over αres and β2 has a local maximum with log-likelihood value
-7099.697 (panels (a-i) and (a-ii)). However, when we fixed
the other parameters at their MLE values obtained from the
model fit, the surface shows a ridge (panels (b-i) and (b-ii)).
This ridge has a log-likelihood value of -7098.876, which is slightly higher than the local
maximum of the other slice. The MCMC explores this area and moves along the ridge. It
appears that the ridge has a very subtle maximum between -10 and -9, but it is so subtle
that the MCMC extensively moves along the entire ridge.

In our model selection analysis, there was one matching model fit that converged but did
not result in lowest BIC. This was a resource trajectory, for which the null model had lower
BIC. In the matching fit with the resource model, estimates of selection parameters had high
absolute values and large confidence intervals. When we calculated estimability diagnostics
for a series of clones K = 1, 5, 10, 15, lambda.max showed signs of estimability problems
(Fig. 12(a)). Estimates were very similar to the first MCMC run (α̂res = 10.4, β̂1 = −24,
β2 = −3.6). However, because lambda.max generally decreased, we considered the possibility
that we had not used enough clones. We therefore calculated estimability diagnostics for
K = 1, 8, 15, 22, 30. In this run, αres and β1 showed good behaviour, however β2 had high
value and large confidence interval (α̂res = 1.3, β̂1 = −1.3, β2 = 8.9). Estimability diagnostics
showed potential issues with β2 (Fig. 12(b),(d)). To understand this further, we also looked at
the likelihood function. We calculated log-likelihood values for the true underlying parameter
values (Ltrue = −6920), the estimates from the first estimability run for K = 15 (L1,k15 =
−6915), and the estimates from the second estimability run for K = 30 (L2,k30 = −6918).
We compared these with the log-likelihood value for the model fit in which we fitted the
null model to the trajectory (Lnull = −6921). It appears that estimates from the first run
approximate the MLE, whereas estimates from the last run with 30 clones arise from a local
maximum with only slightly lower likelihood. When we plotted a likelihood slice for this
model fit (fixing all parameters but β2 at their estimates), we found a potential ridge in the
likelihood for positive large values of β2 (Fig. 12(c)). On the other hand, in the region of
the estimates from the first run, we did not see any signs of ridges, however log-likelihood
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Fig. 11. Slices of the log-likelihood function for resource trajectory with estimability
issues. Panels (a-i) and (a-ii) show the log-likelihood surface when all parameters are fixed
at their true values except αres and β2. The surface shows a local peak. Panels (b-i) and
(vii) show the log-likelihood surface when parameters instead are fixed at their MLE values.
This surface shows a ridge and the log-likelihood value of this ridge is slightly higher than
the local peak in panels (a-i) and (a-ii). Therefore, αres cannot be uniquely estimated.
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values did not vary much. From these tests, we concluded that the likelihood surface for
this resource trajectory has a difficult structure for optimization, but a maximum exists
in the region of selection parameters α̂res = 10.4, β̂1 = −24, β2 = −3.6. These parameter
values result in a weighting function that is almost constant (Fig. 13(b)) and therefore model
selection via BIC prefers the more parsimonious null model (Fig. 13(d)). Estimates from
our second estimability run for K = 30 are closest to the true values (Fig. 13(a) and (c)),
however, the likelihood is lower for these values.

B.4 Conclusions about model fitting

In general, the results for the supplemental data are similar to the results for the data set
presented in the main text of the paper. Although we designed the supplemental data set
to include potentially more difficult estimation scenarios, our framework was able to detect
effects of both resources and the dynamic variable time since last visit.

About 20% of data cloning MCMC runs did not converge the first time, and we did not
achieve improvement by increasing the number of MCMC iterations. However, when we
re-started certain model fits for estimability analysis, occasionally MCMC runs converged in
this second run. From this experience, we recommend to rather re-start MCMC sampling
completely instead of running more iterations, especially when traces show that parallel
chains sample distinct regions of the parameter space, leading to bimodal posteriors. We
recommend to additionally calculate estimability diagnostics for these model fits. If these
indicate estimability problems for certain parameters, this may be an indicator that a model
contains covariates that in fact did not influence the movement process. In this case, we
recommend fitting alternative models or sub-models and comparing them via model selection.

We can relate convergence problems to two different phenomena of the likelihood function.
First, the likelihood function had local maxima or ridges but still a unique global maximum.
In such cases, single chains could occasionally fail to find the global maximum. This could
be a potential difficulty with data cloning. In data cloning, every peak in the likelihood
function is enhanced, including local maxima. If a chain by chance, e.g. via a ridge-like
structure, reaches a local maximum, it may have difficulty moving away from it. This may
also depend on the MCMC algorithm used. Other methods such as standard maximization
of the likelihood function are not safe from this problem of local maxima either. It is thus for
any method important to use multiple starting points or parallel chains. As second reason
for non-convergent chains we found likelihood functions that had ridges or distinct multiple
maxima, i.e. global maxima with almost the same likelihood value. These were clear cases of
estimability problems, and were detected by data cloning estimability diagnostics. Any other
method will fail in these cases too, either through non-convergence or results that indicate
multiple possibilities for estimates (multiple maxima are found, bimodality of posteriors). If
no problems are detected in these cases, this is even worse, because wrong conclusions are
made.

Most convergence problems occurred when a more complex model was fitted to a null
trajectory. We suspect that this may be partly due to the form of the weighting function.

In the logistic function,
(
1 + exp(−α− βx)

)−1
, large values of the intercept α can cause the

exponential function to almost vanish, leading to a nearly constant logistic function. Large
selection parameters β can also have this effect. Therefore, if we fit a model that includes
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(d) Separate posterior variances for selection parameters for the second estimability
test with higher number of clones.

Fig. 12. Estimability diagnostics for the fourth matching resource model fit in data set 3.
Two different series of MCMC runs with varying number of clones suggested difficulties
with estimability. Region-wise calculation of the likelihood function confirmed a complex
likelihood surface with a potential ridge (panel (c)) but nonetheless a slightly higher
maximum far away from the true parameter values.
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(c) estimates, 30 clones, L=−6918
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(d) null model, L=−6921

Fig. 13. Weighting function for different parameter estimates obtained for the resource
trajectory on landscape four. For the matching fit with the resource model, we obtained
different estimates from different MCMC runs due to a complex likelihood surface with
local maxima. Panel (a): ‘True’ parameter values used in trajectory simulation. Panel (b):
Estimates from a model fit with 15 clones. Panel (c): Estimates from an alternative model
fit with 30 clones. Panel (d): Constant weighting function (null model). Gray dots are the
locations of the trajectory. Darker dots correspond to multiple visits to a location. Their
distribution across the entire home range also indicate a rather uniform use of space in
accordance with weighting functions (b) and (d).
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any kind of selection to a null trajectory, we can expect the likelihood function to have
multiple maxima, ridges or plateaus, especially in those regions of the parameter space where
parameters of the weighting function are large. Therefore, we are not alarmed that many of
these model fits did not converge in our analysis. Via estimability diagnostics, we have the
ability to detect such situations. As soon as trajectories contained at least one effect (either
resources or time since last visit), convergence problems occurred less frequently. However,
this phenomenon of the logistic function may give reason to also consider alternative forms
of the weighting function that do not experience this problem.

In matching model fits, we occasionally observed unusually large deviations of estimates
from true parameter values or large confidence intervals. From our experience, we suspect
that this is mainly due to estimability issues (e.g. ridges in the likelihood). These could
occur due to the stochasticity of our data simulation. Each trajectory is a realization of a
stochastic process. In most cases, we expect trajectories to realize a behaviour according to
the parameter values used for the simulations. Still, we expect to see also cases that are less
well behaved.

References

Brooks, S.P. & Gelman, A. (1998) General methods for monitoring convergence of iterative
simulations. Journal of Computational and Graphical Statistics, 7, 434–455.

Casella, G. & Berger, R. (2001) Statistical Inference. Cengage Learning, 2 edition.

Haran, M. (2011) Gaussian random field models for spatial data. Markov chain Monte Carlo
Handbook Eds Brooks, SP, Gelman, AE Jones, GL and Meng, XL, pp. 449–478. Chapman
and Hall/CRC.

Hiebeler, D. (2000) Populations on fragmented landscapes with spatially structured hetero-
geneities: landscape generation and local dispersal. Ecology, 81, 1629–1641.

Lele, S.R., Nadeem, K. & Schmuland, B. (2010) Estimability and likelihood inference for
generalized linear mixed models using data cloning. Journal of the American Statistical
Association, 105, 1617–1625.

Ponciano, J.M., Taper, M.L., Dennis, B. & Lele, S.R. (2009) Hierarchical models in ecology:
confidence intervals, hypothesis testing, and model selection using data cloning. Ecology,
90, 356–362.

Robert, C.P. (1993) Prior feedback: Bayesian tools for maximum likelihood estimation.
Computational Statistics, 8, 279–294.

Schlather, M., Menck, P., Singleton, R., Pfaff, B. & R Core team (2013) RandomFields:
Simulation and Analysis of Random Fields.

Solymos, P. (2010) dclone: Data Cloning in R. The R Journal, 2, 29–37.

21


