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Summary10

1. Animals of many species demonstrate movement behaviour in which decisions are11

based on a variety of information. Effects of resources have been studied widely, often12

under the assumption that the environment is constant over the course of the study.13

Much less understood is the role of dynamic information about continuously changing14

resource availability and past experiences. Such information can be acquired during15

movement bouts and used for future decisions via memory.16

2. We present a new class of animal movement models that incorporates a dynamic17

interplay of movement and information gain processes. Information is contained in a18

dynamic cognitive map. As an example, we consider time since last visit to locations19

and how this interacts with environmental information to shape movement patterns.20

Our models can be fitted to empirical movement trajectories and are therefore amenable21

to statistical inference (parameter estimation and model selection).22

3. We tested the functionality of our method using simulated data. Parameter estimates23

were in accordance with true values used in the simulations, and model selection via24

Bayesian information criterion (BIC) was able to identify true underlying mechanisms25

of simulated trajectories. Thus, if time since last visit to locations influences movement26

decisions, our method is able to detect this mechanism.27

4. The use of dynamic information such as the one demonstrated in our example models28

likely requires cognitive abilities such as spatial memory. Therefore, our method can be29

used to reveal evidence of spatial memory in empirical movement data. Understanding30

the components of individual movement decisions and their interactions ultimately helps31

us to predict how population distribution patterns respond to environmental changes,32

such as landscape fragmentation and changing climate.33
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Introduction36

Animal movement serves important needs such as food acquisition, escape from preda-37

tors, and travel to reproduction sites. Consequently, many species have evolved capac-38

ities to move efficiently and purposefully by considering varying sources of information39

for their movement decisions (Janson & Byrne, 2007; Sulikowski & Burke, 2011). Ex-40

plaining the mechanisms that underly such informed movement behaviour will allow us41

to better understand animal space-use patterns and their responses to environmental42

changes (Dalziel et al., 2008; Nathan et al., 2008; Sutherland et al., 2013).43

Most animals live in heterogenous environments, and the link between movement44

and environment has received much attention. Using classical resource-selection analyses45

(Manly et al., 2002), a wide range of studies have demonstrated that animals selectively46

use the biotic and abiotic features that are available to them (Fortin et al., 2005; Gillies47

et al., 2011; Squires et al., 2013). Analyses of movement characteristics have shown that48

animals express different movement behaviours, e.g. encampment or travel, in different49

habitats (Morales et al., 2004; Forester et al., 2007).50

Most mechanistic models have concentrated on incorporating relationships between51

environmental factors and movement behaviour within a static environment (but see Av-52

gar et al., 2013); however, observations show that animals also take into account dynam-53

ically changing information and respond with their movements to temporal availability54

or unavailability of resources (Martin-Ordas et al., 2009). For instance, fruit-eating pri-55

mates express goal-oriented travel towards those trees in their home range that carry56

ripe fruit (Asensio et al., 2011), and it has been suggested that monkeys use their daily57
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travels to monitor fruiting histories of trees (Janmaat et al., 2013; Janson & Byrne,58

2007). On the other hand, many resources, once depleted, need some time before they59

become available again, providing reason for animals to avoid depleted food patches60

(Davies & Houston, 1981; Owen-Smith et al., 2010; Bar-Shai et al., 2011). Avoidance61

behaviour may be a response not only to depletion of resources, such as plant biomass62

or prey, but also to behavioural depression. Behavioural depression refers to a reduction63

in prey availability that is caused by behavioural changes of the prey in response to64

predation (Charnov et al., 1976). For example, prey may show greater alertness or seek65

shelter. This reduces capture rates, to which predators may respond in turn by changing66

their hunting areas (Jedrzejewski et al., 2001; Amano & Katayama, 2009). Temporal67

considerations also become important for movement decisions if territorial defence mech-68

anisms require animals to visit certain locations regularly, e.g. to scent-mark territory69

boundaries (Moorcroft & Barnett, 2008; Giuggioli et al., 2011).70

As the above examples highlight, spatio-temporal information drives movement deci-71

sions and at the same time movement allows animals to update this information. Exper-72

imental findings additionally support that animals make decisions based on information73

that they have obtained through previous experiences. Memory of information about74

the ‘what, where and when’ of events, obtained through subjective experience, is termed75

‘www-memory’ (Martin-Ordas et al., 2009) or ‘episodic-like memory’ (Griffiths et al.,76

1999). It is possible that animals acquire information about current environmental con-77

ditions through perceptual cues, even over large distances (Tsoar et al., 2011), and that78

information about the recent travel history is stored in externalized ‘memory’, such as79

pheromone trails or slime (Deneubourg et al., 1989; Reid et al., 2012). However, it is80

likely that many animals draw upon internal memory, especially for behaviours that81

require information about temporal distances (‘how long ago?’) (Griffiths et al., 1999;82
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Martin-Ordas et al., 2009; Janmaat et al., 2013). During recent years, movement models83

have started to incorporate influences of memorized information on movement decisions84

(for a review see Fagan et al., 2013). Most of these are simulation models that are used85

for theoretical considerations only (but see Avgar et al., 2013); however to test our un-86

derstanding of the feedbacks between movement and information acquisition, we must87

also interface memory-based models with data (Smouse et al., 2010).88

Here, we present a new model for animal movement that is amenable to likelihood-89

based inference, and in which we mechanistically incorporate the interplay of movement90

decisions, environmental information and dynamically changing temporal information.91

Our model is similar in its form to recent spatially explicit resource-selection models92

(e.g. Rhodes et al., 2005; Forester et al., 2009), in which movement steps are assigned93

probabilities based on general movement tendencies and resource preferences. In previous94

models, resource information enters as a static covariate, providing knowledge about95

features of the landscape, such as land cover type or topographical features. In our model,96

we add dynamic information obtained through experiences made during movement. To97

realize the interplay of movement and information acquisition in our model, we draw on98

the concept of a cognitive map (Tolman, 1948; Asensio et al., 2011). We use this concept99

here as a helpful mathematical construct that provides a map-like representation of the100

animal’s environment containing all relevant information. For an example of a dynamic101

information-gain process we introduce information about the time since last visit to102

locations. Time since last visit is useful information that can play a role, for example, in103

the process of patrolling in canids or food acquisition across species if food availability104

varies (Davies & Houston, 1981). With the inclusion of this information acquisition105

process, we present a practical model that incorporates both dynamic information and106

spatial memory.107

5



We place our model into a model selection framework that allows us to identify which108

types of information most likely shape the movement decision process. We first outline109

the general formulation of our model and how memory effects can be integrated. Subse-110

quently, we present the details of several candidate models that correspond to different111

underlying mechanisms of animal movement behaviour. Next, we show how the models112

can be fitted to empirical movement trajectories to perform statistical inference. Finally,113

using simulated data, we test the functionality of our framework and assess whether our114

method can correctly detect effects of static resource information and dynamically chang-115

ing temporal information and whether we can estimate model parameters reliably.116

Methods117

For several decades, the basis of many animal movement models have been random walks.118

In a classical random walk, movement is described as a series of discrete steps that have119

independent and identical probability distributions. This has been extended to include120

correlations between steps, biases towards specific locations, and step probabilities that121

depend on the behavioural state of the individual (Morales et al., 2004; McClintock et al.,122

2012; Breed et al., 2012; Langrock et al., 2013). Random walks and their extensions123

have been used both to analyze movement behaviour at an individual level (Lagrangian124

approach; e.g. Smouse et al., 2010) and to derive partial-differential equation models125

that describe spatio-temporal patterns at a population level or expected space-use of126

individuals (Eulerian approach; e.g. Codling et al., 2008).127

We are interested in understanding decision processes that underly movement be-128

haviour on the scale of individuals. We draw upon a modelling framework that bridges129

the gap between statistical resource-selection analysis and spatially explicit movement130

models (Rhodes et al., 2005; Moorcroft & Barnett, 2008; Forester et al., 2009). The131
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framework builds on a random walk and defines movement via step probabilities, which132

have two components. A resource-independent movement kernel assigns probabilities to133

steps based on the animal’s general movement tendencies. Given this, a weighting func-134

tion evaluates the attractiveness of steps according to resource availability and resource135

preferences. We extend this framework by generalizing the weighting function. In our136

generalization, the weighting function does not only describe the influence of resources137

but allows for the inclusion of any information relevant to the animal. Information can138

pertain to landscape features and resources, as in previous models, but also to memories139

of past events and timing aspects, which cannot be obtained externally but only through140

the movement process and the animal’s behaviour itself. We assume that information at141

a given time is either obtained through direct perception or retrieved from the animal’s142

cognitive map (i.e. memory) which itself is updated through experience. In our model,143

the cognitive map is a function that assigns values to locations according to their in-144

formation content at a given time. Thus, it serves as a mathematical tool without the145

claim that it truly represents the underlying cognitive mechanism. With the framework146

of the cognitive map we provide a general method for including an explicit information-147

acquisition process. The cognitive map itself can take many forms, depending on the148

species and behaviour of interest. In our candidate models, we demonstrate examples of149

types of information the cognitive map may contain.150

The modelling framework151

We consider movement paths of individual animals, and we assume that an individual’s152

trajectory consists of a series of locations (x1, . . . ,xN) at regular times T = {1, . . . , N}.153

Each location has an Easting and a Northing in two-dimensional space, which is dis-154

cretized into a regular grid of square cells. The resolution of the spatial discretization155
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depends on the available environmental data and should be fine enough compared to156

the animal’s movement such that steps generally range over multiple cells. We model157

movement as a stochastic process, where the probability of making a step to location xt158

depends on the location at time t − 1 and, if movement is persistent, on the previous159

step from xt−2 to xt−1. We define this step probability as160

p(xt|xt−1,xt−2,θ) =
k(xt;xt−1,xt−2,θ1)wt(xt;θ2)∑
y∈Ω k(y;xt−1,xt−2,θ1)wt(y;θ2)

, eqn 1

where k is an information-independent movement kernel, wt is an information-based161

weighting function, and θ = (θ1,θ2) is a collection of model parameters. The sum in162

the denominator ensures that p is an appropriately normalized probability mass function163

over space. The spatial domain Ω is the area within which the animal can choose to164

travel during the time relevant to the study.165

Using the conceptual framework of Nathan et al. (2008), we can interpret the kernel166

k as describing the animal’s motion capacity and wt as formulating the influence of167

external factors, to which we add memorized information. Both k and wt can be affected168

by the animal’s internal goal. For instance, if a herbivore is foraging it is likely that169

it moves slowly, changes its movement direction frequently and generally stays in an170

environment with suitable foraging material. It may additionally prefer to forage in an171

area with low predation risk. Such behaviour could be implemented by a kernel that172

assigns higher probabilities to locations in the animal’s close vicinity with the same173

values in all directions and a weighting function that has highest values in preferred174

foraging habitat. The weighting function could also include information about previously175

experienced presence of predators (Latombe et al., 2014).176

In general, the movement kernel k can be very simple, e.g. constant within the ani-177

mal’s maximum movement radius (Rhodes et al., 2005); however, we can also use a more178
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complex kernel that accounts for persistence in movement direction or biases towards179

specific locations (Moorcroft & Lewis, 2006). Directions can be measured by either180

turning angles (the angles between successive steps) or bearings (the angles of steps with181

respect to a fixed direction, e.g. North).182

We model the weighting function wt as a resource selection function (Manly et al.,183

2002; Lele & Keim, 2006). There are several forms available for resource selection func-184

tions, and here we present the logistic form,185

wt(x;α,β,γ) =
[
1 + exp

(−α− I t(x) · β − f(I t(x),γ)
)]−1

, eqn 2

where · denotes the dot product of two vectors. The vector I t(x) ∈ R
n is the cognitive186

map content at location x at time t containing the values of all information variables of187

location x at time t, and β ∈ R
n is a parameter vector describing the animal’s preference188

for a location of type I t(x). The intercept α ∈ R determines the baseline weight of a189

location when all information variables are zero. The function f and parameter vector γ190

account for possible interactions between different information variables. Locations with191

preferred features have high weights, thereby increasing the chance that an animal will192

visit those. The logistic form of the weighting function restricts weights to be between193

zero and one, and therefore the weighting function can in fact be viewed as a resource194

selection probability function (Lele & Keim, 2006).195

Because of the dependence structure of the step probabilities in eqn 1, they are196

only valid for times t ≥ 3. Here, we chose to define an initial probability for the first197

two locations, p(x1,x2|θ) = p(x2|x1,θ) p(x1|θ). A simple option is to assume that198

every location in the spatial domain has the same probability to be the first location,199
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p(x1|θ) = 1
|Ω| , and to let200

p(x1|x2,θ) =
k̃(x2;x1, κ, λ)wt(x2;α,β,γ)∑
y∈Ω k̃(y;x1, κ, λ)wt(y;α,β,γ)

, eqn 3

where k̃ is possibly a simplified form of k in case that k describes persistent movement.201

Candidate models202

We consider four different models that represent biological hypotheses about the types of203

information that an individual may consider for making movement decisions. In the sim-204

plest case, the null model, we assume that the animal considers no specific information.205

In the resource model, an individual considers static information about the environment,206

where ‘static’ means that the information content remains constant over the time span207

of the analysis. Information can be given about any resources pertaining to the animal,208

e.g. any variables as they are typical in resource-selection analyses. To include dynam-209

ically changing information, we allow information, and thereby the weighting function,210

to change through time. If information were only given externally, this would constitute211

a dynamic version of the resource model. However, our aim is to model a dynamic inter-212

play of movement decisions and information content. In the memory model, we therefore213

introduce time since last visit as new type of information. To account for the possibility214

that both resources and the dynamic variable time since last visit influence movement215

decisions simultaneously, we consider a combination model as the most complex model.216

We implement the different models by varying the information variable I t in the217

weighting function (eqn 2) while using the same movement kernel for all models. For218

example trajectories demonstrating the different movement patterns resulting from the219

four candidate models, see Fig. 1 and animations in Appendix C.220
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Null model221

In the null model, we assume that the information content of all locations is zero. There-222

fore, the weighting function is homogeneous across the landscape and constant over time,223

wt(x) = 1 for all x ∈ Ω, t ∈ T . This means that the animal moves only according to the224

kernel k.225

Resource model226

In the resource model, information is static and includes all resource variables of interest,227

I t(x) = I(x) = (r1(x), . . . , rn(x)) for every location x ∈ Ω. It is straightforward to228

extend this to dynamic resource information to include, e.g. seasonal changes in the229

landscape or disturbance events.230

Memory model231

In the memory model, we assume that while the animal moves through the environment,232

it monitors the time since last visit from locations and uses this information for movement233

decisions. For instance, recently visited areas may be avoided for a period of time,234

whereas locations with long absence may be attractive. In our model, we include this235

feature by defining the cognitive map as mt : Ω → N, which at any time assigns values236

to all locations in the spatial domain based on the map values at the previous time and237

the most recent movement step. If the animal moves from location xt−1 to xt between238

times t− 1 and t, we define for any location y in the spatial domain239

mt(y) =

⎧⎪⎪⎨
⎪⎪⎩
0, if d(y, z) ≤ δ for any z ∈ path(xt−1 → xt)

mt−1(y) + 1, otherwise.

eqn 4
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Because of our spatial discretization, we use d(y, z) = |yE−zE|+|yN−zN | as the distance240

between two locations y, z with Easting and Northing y = (yE, yN) and z = (zE, zN),241

such that all locations within a distance δ of a fixed location z form a diamond-shaped242

area around z. We assume that path(xt−1 → xt) is the straight line between xt−1243

and xt. Via eqn 4, an individual counts the number of steps it remains absent from244

locations, and therefore mt(x) is the time since last visit to location x at time t. A245

location is considered visited when the animal comes within a distance δ > 0. Because246

mt is obtained recursively, we have to define appropriate starting values. Here, we use247

movement data prior to the trajectory (x1, . . . ,xN) for initialization. If a location x was248

visited during the initialization phase, we calculate the time between the last visit to249

this location and the beginning of our actual trajectory and thus reconstruct time since250

last visit at time t = 1, m1(x). For all locations not visited during initialization, we251

set time since last visit as the length of the initialization phase. The dynamic variable252

time since last visit is used in the memory model to inform movement decisions via253

I t(x) = mt−1(x). Once xt is chosen according to the probability mass function in eqn 1,254

mt is updated via eqn 4. Here, we track time since last visit for the entire spatial domain255

Ω. If the selection coefficient with respect to mt(x) is positive, this leads to any location256

eventually becoming highly attractive after long enough absence. If this behaviour is257

not desired, one may adjust the definition of the cognitive map or weighting function258

appropriately. For example, if prior information about an animal’s behaviour is given,259

it is possible to track time since last visit only for certain locations of specific interest.260

Combination model261

In the combination model, we allow information types from both the resource and the262

memory model to influence movement simultaneously by letting the information vector263

be I t(x) = (r1(x), . . . , rn(x),mt−1(x)). In particular, this models allows for interactive264
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effects of time since last visit and resource variables, e.g. by incorporating multiplicative265

terms of the form γ r(x)mt−1(x) into the interaction term f(I t(x),γ) in the weighting266

function (eqn 2). This is important in situations where return times to locations matter267

depending on the resources at the location, e.g. average return times to preferred foraging268

areas may differ from those to locations used as shelter.269

Information-independent kernel270

We define the movement kernel k based on a step length distribution with density S and271

a distribution for movement directions with density Φ. For step length, we use a Weibull272

distribution with scale and shape parameter κ > 0 and λ > 0, respectively, because it273

has a flexible form and generally shows a good fit with empirical data (Morales et al.,274

2004). Thus,275

S(‖xt − xt−1‖;κ, λ) = κ

λ

(‖xt − xt−1‖
λ

)κ−1

exp

(
−
(‖xt − xt−1‖

λ

)κ)
. eqn 5

To measure movement directions, we use bearings, and we denote the bearing of the step276

from xt−1 to xt by ϕ(xt−1,xt) ∈ [−π, π). We include directional persistence by choosing277

a wrapped Cauchy distribution for bearings with scale parameter ρ > 0 and mode at the278

previous step’s bearing ϕ(xt−2,xt−1),279

Φ
(
ϕ(xt−1,xt);ϕ(xt−2,xt−1), ρ

)
=

1

2π

sinh ρ

cosh ρ− cos(ϕ(xt−1,xt)− ϕ(xt−2,xt−1))
. eqn 6

The wrapped Cauchy distribution is convenient for implementation, and it has been used280

commonly to model movement directions (Morales et al., 2004; Codling et al., 2008, note281

that eqn 6 is equivalent to their formula with parameter transformation r = exp(−ρ)).282

One could use alternative distributions, such as the von Mises distribution or wrapped283
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normal distribution (Codling et al., 2008). Assuming that the choices for step length284

and movement direction are independent, the kernel becomes the product of S and Φ,285

describing a correlated random walk,286

k(xt;xt−1,xt−2, κ, λ, ρ) = S(‖xt − xt−1‖;κ, λ) Φ
(
ϕ(xt−1,xt);ϕ(xt−2,xt−1), ρ

)
. eqn 7

Because the kernel formulates persistent movement and takes into account the bearing287

of the previous step, we define a simplified kernel for t = 2 as288

k̃(x2;x1, κ, λ) =
1

2π

κ

λ

(‖xt − xt−1‖
λ

)κ−1

exp

(
−
(‖xt − xt−1‖

λ

)κ)
. eqn 8

This means that we assume a uniform distribution for the first bearing.289

Note that this definition of the movement kernel from step length and bearing dis-290

tributions does not mean that we obtain the kernel from empirical step lengths and291

bearings in advance and then use this observed kernel to estimate the weighting func-292

tion parameters in a case-control study, as has been previously suggested for resource-293

selection analysis (Fortin et al., 2005; Forester et al., 2009). Because movement and294

resource selection are not independent processes, a decoupled treatment of the processes295

can lead to biased estimates. We circumvent this problem, and we use the formulation296

in terms of step length and bearing only to define the functional form of the information-297

independent movement kernel. During model fitting (see next section) we estimate all298

model parameters simultaneously from the data.299
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Statistical inference300

If information I t is known, the likelihood function for the collection of parameters θ =301

(κ, λ, ρ, α,β,γ) for the general model is302

L(θ) = p(x1,θ) p(x2|x1θ)×
N∏
t=3

p(xt|xt−1,xt−2,θ). eqn 9

In the memory and combination model, I includes the variable time since last visit303

m = (mt, t ∈ T ), which represents internal information of the animal that in general304

cannot be observed. However, because of the way we define and initialize m, we are able305

to iteratively calculate the time series (m1, . . . ,mN) based on the movement trajectory.306

Therefore, given the data (x1, . . . ,xN), time since last visit becomes a known covariate,307

and the likelihood function in eqn 9 is valid for all models.308

To obtain parameter estimates and their confidence intervals for all models we use309

data cloning (Lele et al., 2007). Data cloning uses Markov Chain Monte Carlo (MCMC)310

methods, which are usually employed in Bayesian statistical inference. However, data311

cloning provides approximations to maximum likelihood estimates (MLE), together with312

Wald-type confidence intervals, thus facilitating frequentist inference; see Appendix A.2.313

We use the approximate MLEs for the model parameters in eqn 9 to calculate the cor-314

responding approximate maximum likelihood values. From these, we obtain the Bayesian315

Information Criterion (BIC) for each of the four models (Burnham & Anderson, 2002).316

Alternatively, we could have used Akaike information criterion (AIC); however for large317

datasets, AIC tends to favour overly complex models (Link & Barker, 2006). For each318

trajectory, we select the model with smallest BIC as the one that explains the decision319

mechanism of the trajectory best. We use the BIC of this best model as a reference to320

calculate BIC differences for all alternative models (ΔBIC = BICalternative − BICbest).321
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A common problem in statistical inference are missed observations. Missed locations322

in an otherwise regular movement trajectory occur, for instance when GPS devices fail323

to acquire satellite signal due to closed canopy or otherwise limited available sky. In324

an autocorrelated trajectory, with each missed location we additionally lose associated325

information. Calculations of step lengths and bearings require two successive locations.326

In models with persistent movement, we require not only the current but also the pre-327

vious bearing for step probabilities. Therefore, in a correlated random walk, one missed328

location can effectively lead to a gap of two full steps. In MCMC-based data cloning,329

we can treat missed locations explicitly as unknown variables and account for this in the330

likelihood function,331

L(θ) =

∫
p(xavail,xmiss) dxmiss. eqn 10

This allows to preserve the entire dependency structure of the trajectory and avoids the332

need to discard any information. For more information on this, see Appendix A.3.333

Simulation study334

To verify the functionality of our method we applied the modelling framework and sta-335

tistical inference method to simulated data. Because eqn 1 defines probability mass336

functions for movement steps, we can sample from them to iteratively generate individ-337

ual movement trajectories according to the four candidate models. These data have the338

advantage that we know both a trajectory’s underlying mechanism and the parameter339

values that were used to generate the trajectory. By applying our inference procedure340

to these data, we investigated whether we were able to identify the true underlying341

mechanism of a trajectory and whether we were able to correctly estimate parameter342

values.343
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Simulation of landscapes344

Because movement decisions in the resource and combination model are based on envi-345

ronmental information, we first simulated landscapes of covariate values. We consider346

two resources (r1, r2), one having a continuous range of values, e.g. a biomass measure347

or elevation, and the other representing presence or absence of a feature, e.g. a preferred348

food source, via a binary variable that takes either value 1 or 0. To include biological349

realism, we accounted for spatial correlations in the covariate values. We simulated five350

pairs of landscapes with varying spatial structures. For more information see Appendix351

A.1.352

Simulation of movement trajectories353

We generated movement trajectories using the four candidate models presented above.354

When we used the null model, we called the resultant trajectory a null trajectory, and355

we named trajectories analogously for the other models.356

On each of the five landscape pairs, we simulated a null, resource, memory and357

combination trajectory, using the same movement parameter values on all landscapes358

and across all four models, as applicable (Fig. 3). The kernel parameters κ, λ, ρ appear359

in all models. The resource model has additional parameters αres, β1, β2, which are360

the intercept and the selection parameters with respect to the two resources (r1, r2)361

of the weighting function (eqn 2). In this model, we assumed there is no interaction362

between the two resources. The memory model instead has additional parameters αmen363

and βmem, which describe the animal’s preferences with respect to time since last visit364

m. In the combination model, the weighting function includes all effects, such that it365

has parameters αcom = αres + αmem, β1, β2, and βmem. In this model, we further allowed366

for interactions between resources and time since last visit by defining the interaction367
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term in the weighting function as f
(
(r1, r2,mt), γ1, γ2

)
= γ1 r1 mt + γ2 r2 mt, where γ1368

and γ2 are the interaction parameters. We chose the main set of parameter values to369

represent realistic movement behaviour. To account for scenarios for which parameter370

values were potentially more difficult to estimate from data, e.g. small values of selection371

parameters, we generated two supplemental data sets, comprising two additional sets of372

20 trajectories each generated from alternative sets of parameters; see Appendix B.1 and373

B.2.374

For all trajectories, we simulated 2600 time steps, of which we discarded the first375

1400 steps as initialization. This was particularly important for the memory model, in376

which we started with a cognitive map having value 0 everywhere. We used the last 400377

steps from the initialization phase to calculate m1. Each final trajectory consisted of378

1200 time steps, which we considered a length commonly available (e.g. 1200 time steps379

could represent 50 days of 1-hr data or 100 days of 2-hr data).380

For an example of how to handle missed observations, we simulated a combination381

trajectory with 90% fix rate by removing locations from a trajectory, 5% as single loca-382

tions and 5% as two successive locations. We chose a trajectory from the main data set,383

which allowed us to compare results for completely and incompletely observed trajectory;384

see Appendix B.2.2.385

Analysis of simulated data386

To every simulated trajectory, we fitted all four candidate models (Fig. 3) using data387

cloning. For details about the data cloning and MCMC procedures, such as number of388

clones and iterations used, see Appendix A.2. There were two basic types of model fits389

that we distinguished in our analyses. A model could be fitted to a matching trajectory,390

i.e. a trajectory that had been simulated using the same model’s mechanism (e.g. a391
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resource model fitted to a resource trajectory). Or, a model could be fitted to a non-392

matching trajectory (e.g. a resource model fitted to a null, memory or combination393

trajectory). Each model fit generated estimates of the model parameters, together with394

Wald-type confidence intervals. Here, we used 95% confidence intervals. Using the395

approximate maximum-likelihood parameter estimates from data cloning, we estimated396

the maximum value of the model likelihood, and BIC, for each model fit.397

For all parameter estimates, we examined whether their potential scale reduction398

factors R̂ were close to 1 (Gelman & Rubin, 1992). For an MCMC fit, in which parallel399

Markov chains are used to generate the posterior distribution of a parameter, the poten-400

tial scale reduction factor of a parameter indicates whether the chains have mixed well401

and converged. If this is not the case, the estimate that results from such an MCMC402

is not meaningful. We considered a potential scale reduction factor 0.9 ≤ R̂ ≤ 1 to be403

sufficiently close to 1 (Gelman & Rubin, 1992), and we excluded all parameter estimates404

that did not meet this condition from our analysis. Whenever such a non-convergent405

or non-mixing parameter occurred within a model fit, the resultant likelihood and BIC406

values of the fit were possibly inaccurate. Therefore, if a model fit included one or more407

parameters with R̂ < 0.9 or R̂ > 1.1, we excluded the BIC value from our model-selection408

analysis.409

For each trajectory, we compared whether the best model according to model se-410

lection via BIC coincided with the true underlying model of the trajectory. Under the411

assumption that our framework is functional, we expected the model that matched a tra-412

jectory’s underlying mechanism to have minimal BIC. Because both the resource model413

and the memory model are nested within the combination model, we further expected the414

combination model, when applied to a resource or memory trajectory, to perform better415

than the simple alternative (e.g. a memory model applied to a resource trajectory).416
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For matching model fits, we compared true parameter values that were used to gener-417

ate a trajectory to the parameter estimates obtained from applying the matching model,418

and we examined whether 95% confidence intervals of parameters included the true val-419

ues. This should be achieved 95% of the time if parameters are identifiable and our420

statistical methodology is functional.421

In resource-selection analysis, it is usual to use hypothesis testing to determine422

whether a covariate has an effect or not. We performed an equivalent analysis and423

examined confidence intervals of the selection parameters β1, β2, βmem, γ1, γ2 in those424

model fits, in which the combination model was fitted to a trajectory. The combination425

model includes all possible covariates, but not all covariates were simulated to have an426

effect in all trajectories, e.g. a resource trajectory includes effects of the resource variables427

but not time since last visit. Confidence intervals that corresponded to true underlying428

effects should exclude zero and vice versa. However, by definition, an α-level hypothesis429

test results in a Type I error of α, which we expected to observe approximately in this430

analysis. Additionally, we expected a Type II error to occur, where a confidence interval431

included zero, although the corresponding covariate had an effect. We compared the432

outcome of this method with the results from model selection via BIC.433

We performed all simulations of movement trajectories and statistical analyses in R434

(R Core team, 2013), using additionally package ‘dclone’ (Solymos, 2010). To generate435

MCMC samples, we used JAGS via the R package ‘rjags’ (Plummer, 2013).436

Simulation results437

Here, we present results for data generated with the main set of parameters θ1 (Fig. 3).438

Results for supplemental data generated by additional sets of parameters can be found439

in Appendix B.2.1.440
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Of all 80 model fits (four models fitted to 20 trajectories each), 80% had potential441

scale reduction factor 0.9 ≤ R̂ ≤ 1.1 for all model parameters. In the remaining model442

fits, at least one parameter had R̂ > 1.1 (Fig. 4). Convergence or mixing problems never443

occurred when the null model was fitted to a trajectory, even if the trajectory had a444

more complex underlying mechanism. Large R̂ values only occurred if the fitted model445

contained parameters that were inapplicable to the model that was used to generate the446

trajectory. This was the case when any of the more complex models was fitted to a null447

trajectory, when the combination model was fitted to a resource or memory trajectory,448

or when the memory model was fitted to a resource trajectory and vice versa. In these449

model fits, the non-convergent parameters were mainly those that did not correspond450

to true underlying covariate effects. However, when in a model fit problems occurred451

for multiple parameters, occasionally even applicable parameters failed to converge. In452

matching model fits, Markov chains always mixed well and converged. For more details453

on convergence, see Appendix B.3 and B.4.454

Our model selection framework was able to correctly identify the true underlying455

model for all trajectories (Fig. 4). When a trajectory had underlying resource or memory456

mechanism, the next best model was always the combination model with ΔBIC being457

a magnitude smaller than for the alternatives. This pattern was only disturbed if the458

combination model experienced convergence problems and was therefore excluded from459

further analysis.460

Parameter estimates in matching model fits agreed well with true underlying param-461

eter values. Parameter estimates generally were both close to and balanced around their462

true values (Fig. 5). 95% confidence intervals (n=115) included the true parameter value463

91% of the time. If we also considered results from the supplemental data, 94% of all464

confidence intervals (n=345) included the true value.465
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Our hypothesis test as to whether covariates had an effect agreed with our expec-466

tations. The combination model fitted to the 20 trajectories lead to 73 estimates of467

selection parameters, of which 39 corresponded to true underlying effects. Analyzing468

their confidence intervals, we obtained a false positive rate (Type I error rate) of 0.09469

and a false negative rate of zero, i.e. Type II errors did not occur. However, if we also470

considered the supplemental data and thereby increased the amount of resultant param-471

eter estimates with confidence intervals to a total of 217, we obtained a Type I error rate472

of 0.04 and again a Type II error rate of 0.09.473

Discussion474

In recent years, the link between animal movement and spatial memory has received in-475

creasing attention (Smouse et al., 2010; Fagan et al., 2013). Studies of animal behaviour476

and cognition have given useful insights into animals’ capacities to remember past expe-477

riences and use spatial memory. Most results have been obtained through experiments478

in confined and synthetic settings. However, to better understand how important eco-479

logical processes such as movement and dispersal are shaped by cognitive processes and480

memory, we also need to look at animals in their natural environments (Tsoar et al.,481

2011). Understanding the components of individual movement decisions and their inter-482

actions ultimately will help us to predict how population distribution patterns respond483

to environmental changes, such as landscape fragmentation and changing climate.484

We have presented a modelling framework that can be used to detect the influence of485

memorized information on movement decisions. We recognize that in many situations it486

is difficult to confirm that animals draw upon memorized information instead of momen-487

tarily perceived information; however, there is evidence that animals use information488

that they have obtained during past experiences (Martin-Ordas et al., 2009; Janmaat489
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et al., 2013). As an example of such information, we use time since last visit to locations.490

In our model, time since last visit is continuously updated during the movement process491

and at the same time influences movement decisions. We formulate our models in a492

way that makes them amenable to likelihood-based statistical inference. This allows us493

to fit our models to data to test whether the timing of events plays a role for move-494

ment decisions. Fitting the full model (eqn 1), encompassing both general movement495

tendencies and selective behaviour, to data via the likelihood function (eqn 9) enables496

simultaneous estimation of parameters of both the general movement kernel and weight-497

ing function. This distinguishes our method from step selection approaches that use an498

empirical movement kernel to estimate resource selection parameters in a case-control499

framework (Fortin et al., 2005; Forester et al., 2009).500

In our definition of the weighting function (eqn 1), we followed the classical for-501

mulation of resource-selection functions and evaluated a movement step based on the502

information at the endpoint of the step. In the memory model this means that an an-503

imal may cross recently visited locations on its path although these have low weights.504

Depending on the behaviour of the study species, it may be appropriate to change this505

so that cognitive map values along the entire path are considered, thus following the idea506

of step selection functions (Fortin et al., 2005; Potts et al., 2014). In our framework, it507

is straightforward to define the weighting function as a function not only of xt but also508

xt−1 and to include any information related to the step from xt−1 to xt. Endpoints are509

observed locations and therefore have certainly be used. To include information about510

entire steps, we must make an assumption about which locations were visited between511

observed locations. In the memory model, we assume this is a straight line, however one512

may use more sophisticated methods similar to Brownian Bridges (Horne et al., 2007).513

We used simulated landscapes and movement data to verify the functionality of our514
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modelling framework and statistical inference method. Adding the memory process515

to the modelling framework considerably increased model complexity and the amount516

of data that had to be processed. We were therefore interested in whether we could517

correctly detect memory effects in empirical movement patterns and whether parameters518

that describe the memory process and its interactions with other variables were possible519

to estimate reliably. To perform inference, we used data cloning, which uses MCMC520

techniques but facilitates frequentist inference. We used the software package JAGS,521

which allowed us to define models in an easily understandable language and provides522

a stable implementation of MCMC sampling. JAGS was able to adapt the sampling523

process successfully so that parameters of very different magnitude could be reliably524

estimated. However, this came at the cost of long computation times (ranging 0.5-5525

days per single chain for different models) and high memory needs (ranging 1-5 GB526

RAM). Alternatively, we could have used conventional numerical maximization of the527

likelihood function, which in this case may have been faster but at the same time more528

limited. Because data cloning is based on MCMC, it is amenable to extensions of our529

model to include partially observed and hidden processes. We have demonstrated this530

with our example on missed observations. Any Bayesian method would provide this531

option and it may be a matter of belief whether frequentist of Bayesian approaches are532

used. However, data cloning additionally provides tools to detect parameter estimability533

problems (Lele et al., 2010), which was relevant in our analysis; compare Appendix B.3.534

At this stage, data cloning via JAGS was computationally intense, and it may be worth535

to explore alternative options, e.g. a ‘home made’ MCMC sampler in a fast language536

such as C/C++. Still, with quickly increasing computational capacities and advances in537

statistical software, we believe that our method has a promising future.538

Verification of our method was successful. In matching model fits, almost all MCMC539
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runs mixed well and converged. Convergence and mixing problems occurred in non-540

matching model fits and especially for parameters that were not meaningful to the541

trajectory (e.g. a resource selection parameter for a memory trajectory). For further542

application of our method, we have given recommendations how to proceed in cases on543

non-convergent model fits (Appendix B.4). Model selection via BIC successfully iden-544

tified trajectories’ true underlying mechanisms, and if parameters in a model fit were545

applicable to the underlying trajectory, we were able to recover true parameter values.546

Simulated movement trajectories were samples of stochastic processes, and therefore re-547

alized parameter values were subject to stochasticity. Thus, parameter estimates could548

not be expected to exactly coincide with the true values. Verifying the functionality549

of our method was particularly important with respect to the newly introduced mem-550

ory process. We conclude that if time since last visit is a driver of observed movement551

trajectories, our framework is able to detect this.552

When we compared results from model selection to outcomes of hypothesis tests, we553

found that model selection was better able to distinguish true underlying mechanisms of554

trajectories. By definition, hypothesis tests allow for a Type I error, the size of which is555

influenced by the level of the test. However, decreasing the Type I error simultaneously556

decreases the power to correctly detect effects of covariates and increases the Type II557

error. The model selection framework is not based on this concept, and it proved to be558

more accurate in our analysis.559

We have built on the framework of spatially explicit resource-selection models and560

added the influence of a dynamic memory process on movement decisions by introduc-561

ing a dynamic cognitive map and linking it with the movement and resource-selection562

process. The existence of cognitive maps in animals is debated, and there is especially563

controversy about what form such maps may take, e.g. whether animals use topological564
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cognitive maps for landmark-based navigation or whether animals can create and use565

geometric cognitive maps that preserve angles and distances between locations (Bennett,566

1996; Asensio et al., 2011; Collett et al., 2013). This debate also includes the question567

whether spatial information in the brain is encoded with respect to the position of the568

viewer, i.e. egocentrically, or independently of the position of the viewer, i.e. allocen-569

trically (Yeap, 2014). In our models we do not focus on navigational mechanisms but570

decision making processes, and we use the cognitive map as a useful mathematical tool571

to model spatial information. Investigation of different navigational mechanisms within572

a model-selection framework similar to that presented here could be the goal of future573

research. With our model formulation in terms of a cognitive map, we have provided574

a general framework for linking movement with information use and acquisition. We575

emphasize that within this general formulation, a variety of more specific formulations576

of cognitive maps can be realized, tailored to the situations and behavioural processes577

of interest.578

In our candidate models, we have used time since last visit to locations as an example579

of a form of dynamic information that is mediated by the cognitive map. We have580

demonstrated how the time since last visit to a location can shape the movement process,581

either on their own or in interaction with environmental variables. Such behaviours582

can, for instance, occur when animals patrol their home ranges for defence purposes,583

when predators counteract behavioural depression, or when animals rely on resources584

that vary in their availability due to depletion. However, our modelling framework585

and its elements are flexible and can be extended to include other forms of dynamic586

information and experiences that animals collect during their movement. For instance,587

while animals travel they may gather information about seasonally available resources.588

Observations of Mangabeys show evidence that they remember fruiting statuses of fig589
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trees and use this information to predict the fruiting status of those trees at later times590

(Janmaat et al., 2013). Prey species can use their movement to collect information about591

the distribution of predators. Such information can enable prey to reduce costly anti-592

predatory behaviours and therefore outweigh attack risks connected to the information593

collection. This has been suggested to explain movement behaviour of caribou towards594

wolf paths (Latombe et al., 2014).595

Although our models describe movement behaviour of individual animals, the ideas596

we have presented can also apply to other systems. A specific feature of our models is597

the interaction between a movement process and an information, or memory, process.598

A similar dynamic interplay can arise on a larger scale when a species disperses and ex-599

pands its range. While moving into a new environment, the dispersing species might alter600

the environment and its species composition, which in turn could affect the dispersing601

species (Gilman et al., 2010). Such processes could be analyzed with the same mathe-602

matical ideas and modelling tools as we have presented here. Thus, we have presented603

a powerful modelling approach to identify spatial memory and dynamic information as604

drivers of movement decisions, and our framework and its elements promise a wide range605

of applications within movement ecology.606
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Fig. 1. Example trajectories from the four candidate models, 100 steps long, with
starting location marked by a green box and final location marked by a blue triangle.
All trajectories are plotted on top of an example resource selection function

w(x;α,β) =
[
1 + exp

(−α− β1 r1(x)− β2 r2(x)
)]−1

generated from two resources r1
and r2. The null model does not consider resource information and therefore the null
trajectory visits locations irrespective of the resource selection function. The memory
model does not consider resource information either, however, the animal avoids
recently visited locations and is attracted to locations with long time since last visit.
Therefore, the memory trajectory efficiently explores the spatial domain in a patrolling
fashion. In contrast, the resource trajectory mainly remains in areas where the resource
selection function has high values. The combination trajectory shows a mixture of
behaviours from the resource and the memory model. The trajectories were generated
using the first landscape pair and main parameter set from the simulation study;
compare Fig. 3 and Appendix A.1.
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Fig. 2. In the memory model, the weight wt(x) of a location x depends on time since

last visit mt−1(x) to that location. Locations that have been visited recently have low

weights and are thus avoided. A weight of 0.5 is attained when mt−1(x) = −α
β
(dotted

vertical line).
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Fig. 3. Overview of data simulation and model fitting. For a set of parameter values,

we generated trajectories using all four candidate models. Using each model, we

simulated trajectories on five different landscapes resulting in 20 trajectories. Each

trajectory was then fitted with all four models, leading to a total of 80 model fits.
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Fig. 4. Each column shows model selection results for one simulated trajectory when

fitted with the null (N), resource (R), memory (M) and combination(C) model. For

each trajectory, we calculated BIC values for the four fitted models, and the figure

shows differences in BIC with respect to the minimal BIC value, i.e. the model with

minimal BIC has ΔBIC = 0. We excluded model fits with non-convergent MCMC.

Triangles indicate trajectories for which we calculated estimability diagnostics;

Appendix B.3.
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Fig. 5. Parameter estimates and their 95% confidence intervals for matching model

fits (each trajectory fitted with the same model that was used to generate the

trajectory). Both parameter estimates and Wald-type confidence intervals are scaled by

the true parameter values (TV): κ = 5.5, λ = 1.6, ρ = 1, αres = −1, αmem = −4,

αcom = −5, β1 = 1, β2 = 2, βmem = 0.03, γ1 = 0.01, γ2=0.05.
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