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ABSTRACT

The convergence of sets is the key ingredient in defining the generalized deriva-
tives of functions and multifunctions. Two sach potions of set. convergenees are
studied and ave used to define proto-derivatives and epi-devivatives.  Amenable
functions. a central class of functions in finite dimensional optimization theory
and applications. are further studied. The definition and caleulus vesults of fully
amenable functions are extended to Banach spaces. A eriteria is given to derive
the relationship between sccond-order epi-derivatives of fully anenable funetions
and the proto-derivatives of their associated subgradient mappings. In particular.
a formula of the proto-derivatives of subgradient mappings of a mee-function s

extended.
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CHAPTER 1

INTRODUCTION

Optimization theory has changed immensely, during the last four decades,
and generated new kinds of mathematics with far reaching consequences. not only
for practical applications but for the very foundations of analysis. The origins of
analytic optimization lie in the classical calculus which deals with smooth (con-
tinnously differentiable) functions. Recently, attempts were taken to weaken these
smoothness requirements and develop a general theory of nonsmooth (not nece-
ssartily smooth) analysis.  As nonsmoothness occurs naturally and frequently in
mathematics and optimization, we are led to study differential properties of nen

differentiable functions (subdifferential properties).

In this thesis, we discuss two such notions of generalized differentiation:
namely the proto-differentiation of set-valued mappings (rnultifunctions) and the
cpi-differentiation of extended-real-valued functions (they may take +o0). We
define these generalized derivatives by replacing the traditional pointwise conver-
genee of difference quotients by more general notions of set convergence. specifi-
cally. for multifunctions we replace the pointwise convergence of “difference quo-
tient”™ multifunctions by the convergence of sets of their graphs and for functions
by the sets of corresponding epigraphs; which consists of all the points lying on or

above the graph.

[t turns out that some of the most important muitifunctions in optimization
theory. such as multifunctions expressing feasibility or optimality, are actually
differentiable in such a generalized sense. Moreover, a large class of functions used
in optimization is epi-differentiable and the epi-derivatives can be used to obtain

the optimality conditions of nonsmooth problems as in the classical case.

In this thesis, an attempt is made to present most of the results in a real



Banach space setting and the functions are assumed to be extended-real-valued

unless otherwise specified.
1.1. OutPFne of the Thesis.

In Chapter 2. we review two notions of set convergence: namnely Paimlevd-
Kuratowski (PK) and Attouch-Wets (AW) convergences. We use these notions to
define the proto-derivatives of multifunction.:.

A family of subscts { 8¢}, of a Banach space X' (or more generaily any topolo-
gical space) paramecterized by ¢ > 0 is said to Painlevé-Kuratowski converge(PK)
to asct S C A if

s-limsup Sy = § = « Hminf S,.
ti0 tio

Here s-limsup Sy is the set of all accumulation points of sequences from the sets
tlo
St and s-liminf Sy is the set of limit points of such sequences. I follows that the
tio

limit set 8 is closed. In finite dimensions, this convergence of sets {8, Viop s the

>0
pointwise convergence of the distance functions € = d(£.5¢) (Proposition 2.1.5).
This convergence was first. introduced by Painlevé in 1902 and later popubivized

by Kuratowski in his famnous book TOPOLOGIE.

Of course, one obtains different kinds of PK-convergences with respeet to
various topologics (e.g. weak, weak-star, ete.). An important convergence was
introduced by Mosco [16]. this convergence amounts to the sets {9, b converg-
ing to S in PK-sense in both weak and strong topologies. It iurns ont. however
that the good properties of Mosco convergence are limited inherently to reflexive

Banach spaces (Beer and Borwein [7]).

On the other hand. set convergence in the Attoneh-Wets (AW) sense [3) refers
to the uniform convergence of the distance functions & — d(€.57) on all bonnded
sets of A (Proposition 2.2.2). When X is finite dimensional. the three notions
are cquivalent. In general AW-convergence implies PK-convergence and Moseo
convergence is really appropriate for convex sets (since the closed convex sets are

weakly closed) where it lies between the other two types of convergences.
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The sets to which we want to apply such convergence in order to define proto-

differentiability are the graphs of difference quotient multifunctions :

Let X and Y be Banach spaces. A multifunction T : X =3 Y is (PK) proto-
differentiable at a point = and for a particular element v € I'(xr) if the difference

quotient mualtifunctions

£33 [F(:I:Jf-tf) - v]/t

regarded as a family index by ¢ > 0, graph-converge (PK sense) as $10. If so. the
limit. mapping is denoted by F.[,,(_;,',".) and called the (PK) proto-derivative of T' at «
and o, It assigns to cach £ € X a subset. I“I,(I,',k)(f) of Y. which could be empty for

some choice of €.

This notion of proto-differeutiation was introduced by Rockafellar in [27]. al-
though the idea of differentiating a set-valued mapping by constructing an appro-
priate tangent cone to its graph was first. developed in detail in the book of Aubin
and Ekeland [4]. When the mapping happens to be single-valued and (Fréchet)
differentiable, its proto-derivative reduces to the usual derivative. In general. the
proto-derivitive is a positively homogencous multifunction having a closed graph

(Proposition 2.3.9) i.e., a set-valued analog of a continuous linear operator.

It is often said that ihe best way to grasp a mathematical idea is through a
geometric interpretation. so it is appropriate to desceribe the proto-derivative as
a certain tangent cone to the graph of multifunction. It turns out that. the dis-
tinguishing feature of proto-differentiability is its requirement that the contingent
cone and derivable cone coincide (Proposition 2.3.7). We discuss these analytic

and geometrie properties of proto-derivatives in the last section of the chapter.

Chapter 3 introduces a more appropriate notion for the convergence of se-
quence of extended-real-valued functions: the epi-convergenee which corresponds
geometrically to set convergence of the epigraphs of the functions. Specifically.

one obtains (strong) epi-. Mosco epi-. AW epi- convergences with respect to the

3



PK. Mosco and AW convergences of sets. However. in finite dimensions all these

notions of convergences coincide as all forms of set convergences agrec,

Historically. the notion of epi-convergence arose as a property that guarant ees
the continuity of Legendre-Fenehel transform (f —» ). Epi-convergenee was first
considered by Wijsman [34] in 1966. He proved that for convex functions in a
finite dimensional setting epi-convergence makes the Legendre-Feanchel transtorm
continuous. Later. this property was extended to reflexive Bnach spaces by Mosco
[16] (w.r.t. Mosco epi-convergence) and more recently to non vetlexive spaces by

Attouch and Wets (3] (w.r.t. AW epi-convergence).

For our purposes we study the Mosco epi-convergence (M-convergence) in
reflexive Banach spaces. The following characterization of Ni-convergence is duae

to Mosco [16]. which makes verifying M-convergence casier,

A family of functions ¢, : X = RU {4~} is M-converges to 0 :.¥ > R U AN

wiien for all £ € A the following hold,

)

(a) (V& — &) liminf ¢, (&) = p(&).
tdo
5 N ., . -
(b) (31, 10) and (&, = &) with limsup g, (&) < o(€).
n—~x
Our notation @ indicates the weak convergence and s for the strong one,

Now the natural question is to investigate the connections hetween (Mosco)
epi-convergence and poeintwise (p) convergence.  Simple examnples can he cons.
tructed even in the finite dimensional setting. to show thed M-convergence and
p-convergence do not imply each other (Exaunple 3.1.5). However, for a subelass
of closed convex functions (equi-lower semicontinnons) these convergenees arree,

in finite dimensions as shown by Salinetti and Wets [31].

This notion of convergence has recently heen suceessful in overconiing the fudl-
ures of pointwise convergence in many problems of Calenlus of Viwiations. Opti-
mization. Stochastic Progranuming. cte. (sce. for instance the hook [1]).

Next. we define the Mosco epi-derivatives by replacing the usnal pointwise

convergence of difference guotients by Mosco epi-convergence, The strong featnre

4



of (Mosco) epi-derivative is that it corresponds to a geometric concept of approxi-
mation mnch like the one nsed in classical differential analysis. In Chapter 4 we

identify a central class of functions for which such derivatives do always exist.

Chapter 4 presents a general class of functions very useful in optimization
theory yet enjoys a sharper form of subdifferential calculus. The class of functions
which can be written as a composition of convex function (extended valued) and a
stnooth mapping has heen recognized as a model of greater promise in optimization
theory and applications. Recently. Rockafellar introduced amenable functions (in
finite dimensional setting) as a well chosen class of convexly composite functions.
Here we introdnce amenable functions in a Banach space setting:

A function f X - R U {+x} is fully amenable at T. a point of the effective
domain of f (ie. 7€ dom f := {:r ] flr) < +x }). if in a neighbourhood of F. we
have f = go F where g 1 Y — R U {+2c} is a piccewise linear-quadratic convex
function (Definition 4.1.2) and F : X — Y is a C? (Fréchet) mapping. In addition

the following constraint qualification is satisfied at z:

Hl+((10111_(1—-F(.77)) — DF(5)X = ). (1.1.1)
where DF(7) is the Fréchet differential of F oat 7.

Fully amenability is the refinement of amenability (Definition 4.1.1) that sup-
ports second-order as well as first-order subdifferential theory. It turns out that. in
finite dimensional case, fully amenable functions are (twice) epi-differentiable and
the basic caleulus rules apply (see [21]. for an exposition). Problems that can be
written nsing fully amenable functions include standard nonlinear programming
problems. convex problems, nonsmooth (and nonconvex) problems in which the
objective is the maximum of a finite collection of smooth functions. and much

more (sece Examples in Section 1).

The constraint qualification (1.1.1) is devised to haudle the case where F(z) is
a boundary point of dom g. In the finite dimensional case. our definition of amena-

bility reduces to the one introduced by Rockafellar as the condition (1.1.1) is equiv-

)



alent to the basic constraint qualification Niom _,,(F(J')) N ker (I)F(.r)’) = {() }
One sees that the amenability is a local property. this is because the constraint

qualification (1.1.1j is a local condition. as shown in the Theorem 4.1.9.

The next task is to investigate the subdifferential properties of amenable
functions. The situation is quite settled in the finite dimensional case. In fivet.,
Rockafellar established in {26] that when f is fully amenable at - it is twice epi-
differentiable at = for every v € 9f(x) and the epi-derivatives can be given by
usable formulas (as in 4.2.20). Here 8f (i) is the set of subgradients (replacement
for the gradient. sce Definition 4.2.2). which can be taken in any sense sinee all
formns of subgradients agree as far as fully amenable functions are concerned. This

is even true in the infinite dimensional case.

In Section 2. we prove several new results (extensions). The first one in our
agenda is to show that all forins of subgradients agree in the case of fully antenable
functions. This is addressed through Theoremn 4.2.7 and Theorem 1.2.5. Indecd.
Theorem 4.2.7 shows that fully amenable functions are Clarke regular while Theo-
rem 4.2.5 shows that if a Clarke regular function is Mosco epi-ditferentiable then all
forms of subgradients agree. Hence it follows that all forms of subgradients agree

from the known result that fully amenable functions are Mosco epi-differentiable.

Next we turn to the second-order analysis. A relationship of fundamental
importance in determining the proto-derivatives of the subgradient, mapping Jf :

A 3 X" of a convex function f is the following:
Jis twice Mosco epi-differentiable at o for a functional o € Of ()
—

Jf is (PK) proto-defferentiable at = for o,

and then
(05)275 (€)= D(3 £10) (&) for all €. (1.1.2)

This result was obtained in finite dimensions in Rockafellar [30] and gener-

alized to reflexive Banach spaces by Do [12]. However. Poliquin [18] proved that

6



for any fully amenable function f on IR™, the proto-dorivatives of 9f exists and
can be determined throngh (1.1.2) from the formulas known for second-order epi-
derivatives of f. Since the subgradients provide first-order information, this result

can be viewed as giving second-order information on fully amenable functions.

Our aim here is to extend second-order results of fully amenable functions
and establish the relation (1.1.2) in a reflexive Banach space setting. We must
begin with the underline properties of functions g appearing in the definition
of fully amenable functions.  We prove in Theoremn 4.2.12 that any piccewise
linear-quadratic function ¢ is twice Mosco epi-differentiable. and that first- and
second-order Mosco epi-derivatives are given by simple formulas (as a directional
derivative). This was first established by Rockafellar in finite dimensions ([26],
Theorem 3.1). Extending these results to reflexive spaces one has to replace the

epi-convergence by the slightly more complicated notion of Mosco epi-convergence.

Mosco epi-differentiability of f is addressed next. However, one cannot expect
the relation (1.1.2) to hold in its full strength (as it does in finite dimensional case).
This is hecause one has to impose conditions over F (f = go F) to guarantee the
Mosco epi-convergence of second-order difference quotients of f. In particular.
from a recent result of Cominetti [11] it follows that if F(z) € int(domg) and
the mapping £ = (D?F(x)£.€) from X to Y is weakly continuous then f is twice

Mosco epi-differentiable at .

Assuming some additional smoothness assumptions on the Banach space X,
we prove in Theorem 4.2.13 that the mapping 8f is (PK) proto-differentiable at
x and the relation (1.1.2) is satisfied as well. An explicit. formula for the proto-

derivative is also given in Theorem 4.2.13.

In Chapter 5. we consider a subclass of fully amenable functions which
can be written as the pointwise maximum of finitely many €2 functions. This
subclass is sufficient to cover standard problems of mathematical programming
with finitely many constraints (Example 4.1.8). Subdifferential properties of these

max-functions have been studied by several authors Auslender and Cominetti 6]
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Penot [17]. Poliquin and Rockafellar [22] to name a few.

Here we extend the work of Poliquin and Rockafellar [22] to Banach spaces.
In fact, Theorem 5.1.1 establishes the first- and second-order subdifferentinl re-
sults of max-functions through the extended results of fully amenable functions
in Chapter 4. Specifically. proto-derivatives of subgradient mappings of max-
functions are determined through (1.1.2). In later half of the chapter we compare
our proto-derivative formula of the subgradient. mapping of max-function with an-
other approach [6] that used the direct definition of proto-derivative. Even in the
finite dimensional case. it is hard to sce whether these formulas agree. However., in
the special case of maxinmm of finitely many lincar functions we show that these
formulas agree (Theorem 5.2.2). We conclude our work deriving the subdifferential

propertics of the absolute value function from Theorem 5.2.2.



CHAPTER 2

SET CONVERGENCE AND PROTO-DIFFERENTIABILITY

The convergence of sets is the key ingredient in the definition of generalized
differentiability of set-valued mappings (multifunctions). Various forms of con-
vergence have been studied for this matter and among them Painlevé-Kuratowski
(PK) and Attouch-Wets (AW) convergence are extensively used in this area. For

PK and AW convergences see [5],[27] and [2].[3] respectively.

2.1. PK-Convergence

Definition 2.1.1. A fanuily of subsets { S, },5, of a Banach space X parameter-
ized by t > 0 is said to PK-converge to a set S C X in the strong (norm) topology

R ok R
as 40, written S, 55 S if

s-limsup 8¢ = .5 = s-liminf S,.
tio ti0

where

s-himsup Sy := {£ e X , 34,40, and &, 5 & with &, € St., }
tlo

is the outer limit set of {8y}, . and

S- limlinf S = {E c X i\?’ t, 40, 3, > € with & €5y, for n sufficiently large }
tio

is the mmner limit set of { S, }eso-

Analogously. we can also define, with the obvious modifications. w- lim: sup,
w-liminf, w*-limsup ete... and obtain different kinds of PK-convergences. In
Chapter 3, we introduced one of such called Mosco convergence which guarantees
the convergence in both strong and weak topologies. In finite dimensions. all these

notions of convergences coincide.



. hd )k v - .
Proposition 2.1.2. Assume S¢ 5 S. We have the following properties for set
limits:

(a) The set S is unique and closed.,

(b) s- liuiinf S¢ C s-limsup 8y and these sets are closed,
ti0

tlo
(¢) The inner limit s- limlinf St consists of all limit points of sequences €, se-
tio
lected with &, € S,, while the outer limit s-limsup S, consists of all cluster points
tio

of such sequences.
Proof. Follows casily from the definitions of set limit. O

Example 2.1.3. Let Sy := {(w.y) | a2 + y® — (2/8)y <0 1t >0} C R Then S,

forms an increasing family of sets as t L0 that PK-converge to S 1= { (. y) | 4> 0},
Example 2.1.4. Consider the famnily of scts defined for t > 0 by

S, = Dy if t rational,
U7V Dy iftirrational.

where Dy and Do are closed sets in X,

Then s-limsup S;=D;UDy and s- liniinfS,, =DiND,. So {5}
£40 t4o
as 110 unless Dy = Ds.

¢ w0 fails to converge

According to the definitions, all types of limit. sets are closed and consideration
of scts that are not closed are really unnecessary.  For instance, the constant,
sequence Sy = Q" C R™ (where @ is the set of rational numibers) converges Lo
R™, not Q™, since “il(; Sy =clQ@Q" =R".

t

Let { S, Feso be a family of sets and S he a closed set. in a finite dimensional

space X. Then we have the following distance function characterization for the

set limit.(cf. Salinetti & Wets [32] )

Proposition 2.1.5. Let X be « finite ditmensional space.
S8 S = S closed and d(€.S,) — d(£.5) for all £ in X,

where d(£, D) is the distance (generated by the norm) from € to the set 1.

10



Proof. First suppose that for all £ € X, liin d(§,Se) = d(€,S). If £ € S then
tio
(&€, S) = 0 and hence by the hypothesis w2 have that liin d(&,Sy) = 0. This means
t40
that for all t,, 10, there exists &, in Sy, with &, = €. Hence € € lim inf, o S:. This

is true for every € in S and consequently

S C liminf S,. (2.1.1)
tio

ok . . . .
To prove S; I3 § it remains to show that lim sup S, C S. Let & € limsup S;.
t40 tio

Then there must exist ¢, 10, and &, in St, with &, — £ and hence by the assump-
tion we have d(€.5) = ]ilJl'l d(£,S:,) = 0. Which implies ¢ € S, since S closed.
£, 40

This is true for every € € limsup S, and thus
tlo

limsup S, C S. (2.1.2)
ti0

Inclusions (2.1.1) and (2.1.2) yield S, g S.( Note that this part of the proof is
valid in any space)

Now we suppose that we have S, e S. Recall that by definition S is closed. For
any £ € X, there exists £, 10, z,, € el(S,, ) and z € S such that d(€, S, ) = €=z, ||
and d(€,S) = ||§ — z||. By hypothesis z € § implies that z € lhtlii(}lf Sy and for
all £, 40, there exists y,, € S, with 3, = 2. Clearly for all & € X, we have that
“_l)llﬁ d(& ) = d(€.z) = d(£,8). On the other hand. we have also that for all
:,1 GxIN A& yn) = d(€, z,). Therefore, limsupd(€,8,, ) < d(£,8) and also note

. L= 00 B
that the {z,} is bounded. So we have

limsup d(€.5,) < d(&, S). (2.1.3)
tlo

Since {z,} is bounded it has at least one cluster point, say y. Then y =

Thus, y € limsup S, = §. We have that for all &,
tdo
d(€. 2, ) 2 d(& y) — d(y. 2, ) and conseqiently

lim 2, . where &, € &

ko "k

likm inf d(&. z,,, ) > d(& y) > d(£.S)
b oc

11



This implies
liminf d(£, S¢) > d(£.S). (2.1.-1)
tio '

Relations (2.1.3) and (2.1.4) yicld the result. O

Remark 1. The pointwise cenvergence of distance functions implies the PK-
convergence of { §¢ },,, in any infinite dimensional Banach spaces.

Remark 2. The proof of only if part is based on the pointwise convergence of
distance functions. Actually . these functions converge uniformly on all bounded
scts in the finite dimensional space X', by the fact that the distance functions

€ — d(&,S;) are uniformly Lipschitz (with modulus 1).

The following characterization enable us to approximate the sets Sy using the set.

limit S. For instance, sce Proposition 2.3.2.

ey . .. . . S T S . .
Proposition 2.1.6. Let X' be a finite dimensional space. Sp 23 8§ <= S isa
closed set and such that for arbitrary large p > 0 and arbitrary small ¢ > 0, there

exists T > 0 for which
StNpB CS+eB and SNpBC S, +eB when e (0,71).

Proof. Suppose S, 23 S. Then S is a closed set( by definition ).

If the first inclusion does not hold, there nnist exists p > 0,¢ > 0, and
sequence t, 40 such that &, € S;, NpB ¢ S+ £B. The sequence {&,} is bounded
and therefore has at least one cluster point €. So there exists a subsequence {&,, )

of {&,} such that &, € St,,, with &, — £ By definition then £ € linsup S, but
rio

it cannot be in S, because d(&,,,8) > € for all n. This contradicts limmsup &, = 8,
tlo

thus Sy N pB C S+ ¢eB for all ¢ in (0, 7).

If the second inclusion does not hold, there must exist p > 0,r > 0 and
a sequence t, L0 such that &, € SN pB ¢ Sy, + 3. By compactuess of the
sct (S N pB), there exists a subsequence {&,, } of {£,} such that &, — £ in S,

Thus, by the hypothesis £ € limsup Sy but d(€,,,S,,) > . So & € linsup Sy, a
tio tdlo
contradiction. Thus we have SN pB C S, + D for all t € (0, 7).

12



Now suppose we have that S, N pB C S+ eB and SNpB C S +

3 for all t in (0,7). To verify that S, Py S it is enough to show limsup §; C
tio
S and § C liminf S,. If limsup S, ¢ S, there must exist ¢, $0. £, € S;, with
ti0 tio
& = £ € S. Pick p big enongh to have ||€,]] < p for all n. Thus, &, € (S,, N pB)

and by the firs: hypothesis &, € (S +¢eB) for all € > 0. Since S is closed and € > 0

wiws arbitrary, we conclude that £ € S. This is a contradiction, thus lim sup S; C S.
tlo

IfsS ¢ lixtuii‘:xf S, there is a € in S but not in liltxii(;lf S¢. Take p > ||€] and by
the hypothesis for all £ > 0. there exists 7 > 0 such that £ € SN pB C S, + B
when t € (0,7). This implies £ € Sy + B for all ¢ > 0 and ¢t € (0,7). Hence,
for all £, 10, there exists &, € S,, such that d(€, S:,) < e for all € > 0. Thus,
£ € “lt,lii(:lfSt. a contradiction. We have that § C lil,liiglf Se and completes the

proof. a
Note. We always have <= in any space.
Y

For a sequence of sets in a separable metric space we have the following version
of Bolzano-Weierstrass property to the set-valued framework {cf. [5], Theorem

1.1.7).

Theorem 2.1.7. (Zarankiewicz) Every scquence of subscts S, of a separable

metric space X contains a subsequence which has a (possibly empty) limit.

Proof.  Since A is separable, there exists a countable family of open subsets U,

satisfying the following property:
Y open subset U, Vo € U.3 U, such that = e U, C U.

Let us consider a sequence of subsets S,,. We shall construct a scquence of
subsequences {S,(,"')}”>“ by induction.

For m = 0. we seot S,(,O) = §,,. Assume that the o — 1 first subsequences
{S,(,") Vaso- 0 < p < — 1 have been constructed. Consider the mth open subset,

{4, Then cither for every subsequence nj, U,, N (lirnsup S,(L’J"'_l)) # 0 in which
j—oo

. —1 .
case we set S}"') = SE"' ). or there exists a subscquence n; such that U, N

13



(limsup S,(l')"_l)) = @ in which case we set S;"') = S,(.';'_l).( The choice of such a
e

subsequence does not matter.) These sequences {S,(,'"’ } s being constructed, we

extract the diagonal subsequence D, := S,(,"). We claim that it has a set limit.
If not. there would exist xg € limsup D,, and xry & liminf D,,. The later con-
n—oe =N
dition means that there exists an open neighbourhood U of xy and a subsequence
D,,, such that U N D,, = @ for any j. Let us fix an open subset 4, such that

Ty € Up, CU. We thus deduce that I, 0 (limsup D, ) = 0.

oo
. T m—1
Since for n; > m. D,, = 8. = ,(,, ) for some p;. we observe that D,,
s . e y an R (m—1) ETINE R T
is a subsequence of the sequence{Sy, Fasos the upper limit of which is disjoint

from U,,,. By the very construction of {.9,(,,1")} we infer that, Sf-"') = .S',(,’I"#”

n>0"
and consequently. that

U, N (lil.nsup S;."')) =U,, N (limsup S(,;""”) = §.

. n m .
Since D,, := S,(,, ) = S,(," ) for some Pu. we dednee that the sequence {D), )5, 1s a

subscquence of the the sequence {S;T")} 5o+ Thus
J

xy € limsup D,, C limsup.S'j-"') c X\ U,

=20 Wi el

which contradicts the fact that zg belongs to U,,. a

2.2. Attouch-Wets Ceonvergence

Let ¢(C. D) denotes the one-sided Hausdorff distance from the set ¢ to the set. D

in A it is defined as follows:

0 if C =0,
«(C. D)= { * ifC£D,D =0

sup d(ie, D) otherwise,

reC

For any p > 0, the p-Hausdorff distance between C and D is given by

haus,(C. D) := max{c(C,, D). (D, . C)}

14



where for any set H C X, H, := Hn pB, B denotes the closed unit ball in X'.

The p-Hansdorff distance also given as :
hans,(C. D) = inf {¢ >0|C, C(D+¢eB) and D, C (C +£DB) }.

Definition 2.2.1. A sequence of sets { Sy}, is said to Attouch-Wets(AW) con-

@i

verge to S, denoted Sy — S, if for all p big enough liinhaus,,(S,, S)=0.
tio

We already seen (Proposition 2.1.5 and Remark 2) that in finite dimensional
spaces PK-convergence of sets Sy refers to the (uniform) convergence of distance
functions x — d(r, S¢) (on all bounded sets). AW-convergence is much stronger
than PK-convergence in the sense that it is equivalent to the uniform convergence

of the distance fimetions on all bounded sets in any space.

Proposition 2.2.2. Let X' be any normed space.
S¢S < forall  in any bounded set E of X and for all € >0 there
exists T > 0 such that |d(x,S¢) — d(z.S)| < e. whenever t in (0, 7).

Lemma 2.2.3. For C. D C X and p > 0, let
3p(C. D) := sup |d(y.C) — d(y. D)|
flull<e

where 8,(C. D) := oo if at least one of the scts is empty. Then for any p > 0.
3,(C, D) > haus,(C, D) (2.2.1)

and for all p > d(0.C),
d,(C, D) < hauss,(C. D) (2.2.2)

Proof of Lemma 2.2.3. Since pB > C, for any p > 0.
Sp(C.D) = sup d(y.D) = ¢(C,. D) and hence §,(C, D) > haus,(C, D).
yeCp
Now fix p > d(0.C'). Since the distance functions y — d(y, C) are Lipschitz
iy we have d(y.C) < d(0.C) + |ly]| for y € X. For all y € & such that ||y]] < p
we have that d(y. C) < 2p and thus d(y. C) = d(y, Cs,). It follows that
sup {d(y. D) — d(y.C)} < sup{d(y.D) — d(y.C3,)} < ¢(Cs,. D).

Hyll<p



With the symmetric inecuality. obtained when interchanging the roles ¢ and D,

this becomes 6,(C. D) < hausy,(C. D). O

Proof of Proposition 2.2.2. Let E be any bounded set in V. We first suppose
S 2 S. e for any given € > (. there exists 7 > 0 such that haus (S, 8) <+,

for all t € (0.7) and p > /5 for some p. Now pick o' such that
o =sup {p. ||lzf|. d(0.S) lr e}

Fix p > p'.e > 0. then by inequality (2.2.2). and the AW-convergence of sets

{ St }450- there exists 7/ > 0 such that
3,(S. St) < hausg,(S..5;) = hausg,(S,. S) < ¢ for all + € (0. 1)

This implies sup |d(x, S¢) — d(x.5)] < € for all t € (0.7') and have the desired
result. rer

Converscly. suppose for any bounded set. E and given ¢ > 0. there exists 7 > ()
such that |d(z, 8,) — d(x,S)| < e for all x € E. and { € (0.7). Take any p > ()
and put E = pB. Then by the hypothesis we have sup |d(r, S;) — A, S)| =
5,(5¢.8) < e, for all t € (0,7). Combining this with t,l!xlfl;ﬁvqlmlil.y (2.2.1) of the
lemma, we have haus,($;,5) < 3,(8:.8) < € for all £ € (0.7), which completes

the proof. O

In finite dimensional case, the notions of PK-convergence and the AW-convergence

coincide. To be more precise we have:
Proposition 2.2.4. Let {S,, S:t > 0} be a family of sets in a finite dimensionad
space X.
ok . v
(a) If S, 5 S then lliulmns,,(S,,. S)y=0 forall p>0
t40

(b) For all p big enough liillll&llls,,(st.S) = 0 and S be closed then we have
tdo
5. % s.
Proof.
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() Suppose S, 2§ S, It suffices to show that. for all p > 0.

lime((Sy) , limsup S,) = 0. (2.2.3)
tio AP

and
lime((liminf S,),, S¢) = 0. (2.2.4)
tio tio

Let LS = limsup Sy, and LI = limlinf S,. There is nothing to prove if LS = ().
tin te0
since then, for any p > 0. there always exists a sequence ¢, 10 with (Si,)p = 0.

Let us thus assume that LS # (0. If (2.2.3) does not hold, there exist e > 0, for all
L, 10 with ¢((S,, ), LS) > =. or equivalently for all ¢,, 10. there exists &, € (S, )p
such that d(&,,. LS) > ¢. The sequence {£,} is bounded by p and hence admits at
least one cluster point, say € € pB. which also belongs to LS. For this £. we have
that

lim A(&,.LS) = d(¢.LS) > ¢ > 0.

£n—

which contradicts the fact that € € (LS),).
Again if (L[)/, = (). there is nothing to prove because (:((LI)’).S,) = 0 for
whiatever Sy, Otherwise, simply observe that (LI), C L1. that ¢(C,. D) < ¢(C. D),
and }iil(: c((L1),,.5¢) = 0 as follows from the definition of the liminf of a family of

sets,

(b) Suppose that limhaus,(Se. S) = 0 for all p > 5 for some 5 > 0. This implies

tlo
that
lime((Sy) . 8) =0 and lime(S,. S¢) =0, ic.,
140 ! tdo
lim sup  d(r.S)=0=1lim sup d(x.S;)
ti0 res,npB tl0resnpn

Therefore, any given ¢ > 0 one can find 7 > 0 satisfying

sup d(e.§) <e and  sap  d(z.S) < e for all ¢ € (0. 7).
reSINpB reSNpB

So we have
SiNpBCS+eB and SNpB C Si+eB forall € >0, p > p and t € (0.7).
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Since S is closed and above relations with Proposition 2.1.6 yiceld S, "y s, a

Note. Part(h) is valid in any space.

2.3. Proto-differentiability of a Set-valued mapping

A wide class of multifunctions important in optimization cnjovs a ditferential
property that we call proto-differentiability. We define the proto-differentiability
of a sct-valued mapping in terms of graphical convergenee (t.e. set cotvergence
of graphs) of associated difference quotient multifunctions. This notion wis first

introduced by Rockafellar in [27).
Definition 2.3.1. Let X and Y be Banach spaces. U2 X3 Y be a set-vadied

mapping. x € dom T (i.c. () # W) and v a vector in V(). The first order
difference quotients Ty : X 3 Y are defined by

L&) = [Pz +1&) — o] /t: t > 0.

We say that T is (PK) proto-differentiable at o relative to o with proto-derivatioe
, r [ 1
Flf(l:zk) if gphly (PK)converge to ;;'])111"[,,(",',‘”') (where gply stands for graph) as t tends

to 0.

As the derivative of a function is used to approximate the function the sane

can be said of the proto-derivative in a finite dimensional space.

Proposition 2.3.2. Let X and Y be finite dimensional spaces and 1" v LY
be a set valued mapping with « € domlU, v € (). In order that | s proto-
differentiable at @ relative to v, it is necessary and suflicient that there exists
closed graph multifunction D : X 3 Y(i.e. {(£.D(&)): € € XY} is closed in X~ Vi,
which will be F',(I:,U for which the following holds. For any p - O(arbitrary larse)

and any € > O(arbitrary small). there exits 7 > O such that for all 1 ¢ (0.1)
gphl'e N p(Bx x By) CgphD ++ (By 7 BBy)

sphD N p( By x By) C gphl'y + +(By # Hy)

18



where By and BBy arve closed unit balls in X and Y respectively.
Proof. Set S, :=gphl’, and S :=gphD and use Proposition 2.1.6. .|
Note.  We always have <= in any space.

Even if a given nmltifunction happens to be a single-valned mapping its proto-
derivative might not be single-valued as we seen by the following example.
Example 2.3.3. Consider I'(x) = \/|lx] : R — IR. Let Ty be the first order

difference quotionts of T at 0 relative to 0 = T'(0). Then Ty(€) = \/lfl/! converges

graphically to

0 ifE#0.

and is mltivalued at & = 0. Here T is the proto-derivative of T at 0 (relative

[ho(€) = { 0.2) ifé=0.

to ().

From a geometric point of view, proto-differentiation of a multifunction corre-

sponds to looking at certain tangent cones to the graph of the multifunction.

Definition 2.3.4. Let C C & be a subset of X and ¢ € C.

(a) The contingent cone to C at . denoted by Ke(x). is defined by
Ke(r) = {E] 31,40, and 3¢, 5 € with = +1,£, € C for all n }

(b) The antermediate or adjacent(derivable) cone to C at @, denoted by Ae(x).
is defined by

Ac(r) = { £ [VI,, 10.3€, 5 & with o + 1,6, € C forn sufficientely large }

(¢) The Clarke tangent cone to C at w.denoted by Te(x). is defined by

Te(r) = { |V, 40V, D 0 with @, € C.3¢, 5 ¢

such that ., +t,&, € C for n svf” qe itely large }

We see at once that

KNe(r) = s-limsup [C — .r]/f.. Ac(r) = s-liminf [C — :1:]/!. and
tdo tlo
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Tc(xr) = s- iminf [C - 1"]/!
ot Sy

tdo

so that they are clos~1 cones and we have the obvious inclusions
To(x) C Ac(xr) C Ke(r).

Definition 2.3.5. The sct C is said to be devivable at a provided Ae(r) = Ne(a).
In this case s-im[C — ]/t exists and is known as “the approrination cone™ to €
at x. In a(I(Ii(;itoln(f if Te(x) = Ke(r) we say that C is Clarke veqular at r.

In particular, if © € int C we have the Clarke regularity since Te(r) = Ke(ir) = .Y,

A different link can be forged through the notion of epigraphs.

Definition 2.3.6. The function f is Clarke (subdifferentially) veqular at @ if the
set epif is Clarke regular at (x. f(x)).
This property is of strong interest in nonsmootl analysis hecanse of its sitmplifying

effect on various formulac for “generalized gradients™; see Clarke (8].

Setting C :=gphl' in definition 2.3.5 since gphl’y = [g‘phl‘ — (o, 'u)] [t we have

the following geometric characterization for proto-differentiability.

Proposition 2.3.7. The multifunction T : X’ 3 Y is proto-differentiable at a
point v € T(x) if and only if the set gphl' is derivable at (o, 0). The praph of
the proto-derivative multifunction F’,”,',” then equals the approximating cone to
gphT™ at (w.v). In particular. if gphT is Clarke regular at (e.o) then U ds proto-
differentiable at « relative to o.

The following fornnila enable us to caleulate the proto-derivative.,

Proposition 2.3.8. Assume that the proto-derivative I exists. Then for every

£ € X one has

PR () = s-lim sup [+ 1&') — u] /t. (2.3.1)
e
tdo

Proof. It can be casily verified that a point w belongs to the right side of (2.3.1)

if and only if (£.w) € s-limsup[gph T’ — (2. 0)]/t. Then the result follows at once
tio
from the Proposition 2.3.7. O
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The next proposition contains the basic features of proto-derivatives.

Proposition 2.3.9. Let T : X 3 Y be proto-differentiable at x relative to v €
I’'(«). Then the proto-derivative Ff("k) : X 3 Y has closed graph and satisfies
0 € IP900) and T (A¢) = '("k)(f) for all ¢ € X and A > 0. Morcover
I’,“,',k (0} is a closed cone which includes the contingent cone to I'(z) at v.

IfY = X* and T is a monotone operator (i.c. ¥(z,p) € gphl’, V(y.q) € gphTl’,
(p—q.x—y) >0), then for every £ € (IomFi-(,’.',k) and for every ny, 12 € F;(,’Lk)(f),
one has (11.€) = (12, &).

Proof. The verification of first part follows from Propositions 2.3.7 and 2.3.8
atl the proof of sccond part we refer to C.Do [12]. Proposition 3.2. ||

The following caleulus of proto-derivative also follows from the Proposition 2.3.8.
Suppose I' = T'+ g where T @ X 3 Y is proto-differentiable at z relative to
o€ () and g: X = Yis a function (single-valued) that is Fréchet differentiable

at. . Then T is proto-differentiable at « relative to v = o + g(ir) with
> Ik
L9 (€) = T75(€) + Dy()e.
where Dg{a) 1s the Fréchet differential of g at .

The notion of proto-differentiability is appropriate for the derivation of some
of the most important set-valued maps involved in optimization. Specifically, set-
valued mappings expressing feasibility or optimality, are proto-differentiable, as

scen next.,

Example 2.3.10. (Proto-differentiability of feasible set)
Let G : RT3 R" have the form

G {uEIR"If,ru) 0.2=1.....: s
(2.3.2)
filz,u) =0.i=s4+1.....,m. }
where f, IR xR" 9 R isC fori = 1..... m. Suppose for a particular x and

clement u € G(x) that the constrained system in (2.3.2) satisfies the Mangasarian-

Fromovitz constraint qualification. i.e.



the only multipliers y; >0, i =1...... s satisfying
{ Z;’;lyivuf,_(m.'u.) =0 are y; =0..... Y = 0.
It is verified that(sce [27]. Example 5.5) then G is proto-differentiable at r
relative to u and the proto-derivative is given hy
Go (&) :={w e R" |V, fi(w,u)é + Vo fi(z.u)w < 0. for all i€ I{a. u):
Vefilz, )l + Vyfile w)w =0, for i =s+1,..., m}.

where I(z. u) denotes the indices of the inequality constraints in (2.3.2) that are

active at wu, i.e. the indices ¢ = {1...., s} such that f;(x.u) = 0.
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CHAPTER 3
EPI-CONVERGENCE AND EPI-DIFFERENTIATION

3.1. Epi-Convergence

The traditional concept of convergence of functions—the pointwise convergence—
relates poorly to many important operations in optimization like, “max”™, “min”.

“argmin”, “argmax”.

For instance, asequence of functions f,, : X — RU{+o0} converging pointwise
to a fumction f: X - RU {+oc} (i.e. fu(x) = f(z) Vz, denote f,, B f) does not
generally imply that inf f,, B inf f. Therefore, a different concept of convergence is
required. The natural notion turns out to be the one corresponding geometrically
to set convergence of the epigraphs of the functions.

The terminology and notation we used here is the standard one of Conver
Analysis. For a function f from a Banach space X to R U {+0oc} we define the

following. The effective domain of f is denoted by
domf:={reX|f(x) <4}

and its epigraph

epif = {(:17.(!) EAX x IRIf(r) < (1}.

The function f is said to be convex if epif is convex in X x R and further it is
said to be closed if f is lower semicontinuous (samne as epif closed) and proper

(i.e. dom f is nonempty).

Definition 3.1.1. Let & be a finite dimensional space. A family of functions
{we tiso from X to RU {+oc} parameterized by t > 0 is said to epi-converge to a

. 4 . . ok .
function ¢ : X = RU {+oc} as t tends to 0, denoted by o, 5 w, If epi gy = cpi p,
1o,

linmi sup epiypy = epip = liminf epip;.
td0 tlo
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In infinite dimensional case. depending on the topology of the space, we obtain

different kinds of e-convergences.

Definition 3.1.2.
(a) A family of functions { v },, from a Banach space X' to IRU{+o0} s said to
Mosco-epi(M) converge to a function ¢ : X - R U {+oc) as 110, denoted by
m . . . . . .
we = @, if epip, converge to epiy in both weak and strong topologies, ie.,
w-limsup epipy C epip C s-liminf epi .
tlo tlo
Since we always have

s-liminf Sy C w-liminf Sy, s-limsup S, C w-limsup S,
tl() ll() fi“ 'l”

. . m . g
for any family of sets { 8¢ },5. in other words, @, =5 @ if all four sets above
are equal:
s-liminf epi g, = w-liminf ept gy = s- imsup epi @, = w- limsup epi @,
tio t40 tio tlo

where

(1]

w-limsup epipy 1= {(E.(.x) € A x IR| 34,40, F (&) > (E.v)

tlo
W“:h P, (£1l,) S Xy, }7

w-lim inf epi p; 1= {(E,a) € X x IR.th,,_l(), (&, vn) 5 (€. 0v)

tio
with ¢, (&.) < o, for n sufliciently large },

s-limsup epi gy 1= {(f,(z) € X x IR,| Ft,40, I (& orn) S (€, 0r)
tlo

Wlfh (Pt,, (En) S (ry, }-,
s- limiinfepi Py 1= {(f.(v.) € X x IR.|\7’I,1.,“), I (&vorn) 53 (€Y
tdo

with ¢, (&) <« for n sufficiently large }

(b) We shall say { @y}, Attouch-Wets(AW) converge to o as £L0, denoted by

wai . . @i - .
e — . if epi, = epl, ie.,

liiu haus,,(epi .. epi ) = 0 for all p sufficiently large.
ti0
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When X' is finite dimensional these notions are equivalent to the c-convergence
as defined in 3.1.1. (¢f. Proposition 2.2.4. and the fact that weak and strong
topologies coincide when the space is finite dimensional) and in general AW-

convergence implies M-convergence: see Attouch-Wets [3]. Proposition 4.5.
Mosco obtained the following important characterization of M-convergence.

Lemma 3.1.3. (Mosco [16], Lemima 1.10)

wr 5 @ if and only if each point £ belongs to the reflexive Banach space X one

has
(V& = &) lim inf @, (&) > (¢) (3.1.1)
(3t,10) (3¢, 5 &) limsupe, (£,) < (&) (3.1.2)
TL—) ™

Squality then holds in (3.1.2) and lim,, o~ @r, (€,) = @(€). Note that we strongly
epi-converges Lo @ if the inequality (3.1.1) holds for every &, converging strongly
tol.

Proof. It is straightforward to verify that (3.1.1) is equivalent. to w- lim sup(epip,)

tio
C epip and that (3.1.2) is equivalent to s- limlinf(cpi we) D epip which, in view of
tdo

w-lim sup(epiy, ) C epip C s- limliuf((spicpt)
tin ti0

and the definition of M-convergence. yield the desived result. a
Note.  See Mosco [16] for a detailed proof.

The following result is about Mosco convergence of monotone sequences of convex

functions.

Proposition 3.1.4. Let { o4 Veso Pe a family of closed proper convex functions.

() if ¢ increases as t10, then op M-converges to SUDy~0 Pt

(b} if ¢y decreases as 10, then wr M-converges to cl[infyg wt]. where ‘¢l denotes
the lower semicontimous closure (weak or strong since infsso @ Is convex).

Proof.  First recall that ¢, 3 ¢ if and only if
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(1)
(ii)
(a)

epiy C s- lil:“li(ilfvpi Pe-

w-limsup epip, C epig .

tio
Let ¢ = supy5q ¢r. Then epip = Ny5o epi . hence (i) holds. If w-lim sup epi
tlo
we = B the inclusion is trivial. Suppose (r.a) € w- limsupepiyy. Then thiere

tdo
exist $, 10 and (x,.q0,) = {x.a) with (2,.q,) € epi Wr, . Since epigy, s

decreasing. then for & > 0 we have (x,.0,) € epigy, for all v > A, henee,
since epi gy, is weakly closed. (i, ) € epiyy,. Therefore (r.a) € Ny sq epiyy,

which implies iz, ) € epi . Thus w-limsup epi g, C epig. that is (ii) holds.
tlo

Now let ¢ = elfinfesq @] then epip = cl[Uyso epigy] is a closed convex set.,
henee epig is weakly closed. Therefore (ii) holds. Moreover. (i) holds, for
(l((:l:.(r).cpi <p¢) —= 0 as 110 for cach (.«) € epip. becanse {epigy ). is

increasing. O

Recall that the family of (extended) real valned functions { ¢ ) is said to

t>0

. . . . . 1 AP
converge pointwise (p-converges) to the function ¢ as £ 10, written ¢ > i, i for

all £ € X, (&) = liincpt(f), or in other words
tio

limsup o, (§) < (&) < liminf g, (&).
td0 tdo

Even in the finite dimensional setting neither type of convergence implies the

other :

Example 3.1.5. Consider the sequence of closed convex functions on I3 :

Forn=1.2....

IR B cn € [(). l].
fole) = {+

o otherwise.

It is casy to verify that

and

0 s € f0.1).
f.,,—£>f1:—‘ 1 ,’.‘I::].
+~  ; otherwise,

0 ca e 001,
+  otherwise.

g g
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It turns out that ¢ and p convergences agree on a subclass of closed convex func-

tions.

Theorem 3.1.6. (Salinetti-Wets [31])

Let X be finite dimensional and suppose ¢y, @ are closed convex functions. Then
(a) if int(domep) # 0 and o, B ¢ then o, 5 o,
(b) ifpr 5 @ then o B ¢ on int(dom p).

Proof. Sce Salinetti and Wets [31], Corollary 2C and 3B.
Salinetti and Wets also showed that two types of convergences are equivalent
for the class of convex functions which are “equi-lower semicontimious” and is the

maximal class of convex functions which the equivalence can be obtained.

3.2. Epi-differentiation

We define the epi-derivatives replacing the pointwise limit of difference quotients
of the classical directional derivative by the epi-limit. These epi-derivaiives cnjoy
a rich and exhaustive calenlus for a large class of functious used in optimization
and we can even obtain optimality conditions. These optimality conditions are
quite simple in nature; see Theorem 3.2.6. These calculus result can be found in
the recent paper by Poliquin and Rockafellar [21].

Definition 3.2.1. Let f be a function defined on a reflexive Banach space X,
and . € X a point at which f is finite.

() We say that [ is (Mosco) epi-differentiable at @ if the first order difference

quotients o, X - R U {+oc} defined by

Pra(€) = [flx+1E) = f(=)]/t: E€ X (t >0)

(Mosco) epi-converge(as t10) to some function ¢ having o(0) # —oo. We
then write f;("') instead of @ and is the first order (Mosco) epi-derivative of
[ at .

(b) Let v e X*(where X* is the dual to X') and consider the second order differ-

cnce quotient functions

Vo€ = ([ +18) = f(x) = t(0.6)]/(1/2)1? : €€ X (t>0)
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where (v.&) := v(§). If these functions (Mosco) epi-converge(as t 0) (o some
function 3 having {(0) # —oco. then we say that f is twice (Mosco) epi-
differentiable at x relative to v, and ¥ is called the second order (Mosco)

. . . . . 14 . -
epi-derivative of f at x relative to v. We then write f79") instead of 4.

When & is finite dimensional, one may characterized the epigraph of i as
the approximating cone (see Section 2.3) to epigraph of f at (. f()). that is to
say,

epif, = liil(: [cpif — (ur, f(Jt))]/f.

This is immediate from the relation
epip, = [(:])if - (;lt,f(:n))]/f,

( Pz as defined in 3.2.1) and the deiinition of epi-convergence. Therefore, Jis
epi-differentiable at x if and only if the epigraph epif of f is derivabie at (ur, Sr)).
In particular, if f is Clarke regular at z in the sense that the contingent cone to
epif at (i, f(x)) equals the Clarke tangent cone there, then f is epi-differentiable
at x.

The epi-differentiation of f is related to the proto-ditferentiation of a multi-
function in the following way: Given f: X = R U {4}, we associate to it the

multifuncrion I' : X 3 R, where

Then gph ' = ¢pi £, and the above characterization with Proposition 2.3.7. give
us:

[ is proto-differentiable at (, f(x)) if and only if f is epi-differentiable at .

The following proposition contains the basic features of second-order epi-derivatives.

., e . . . 11 g . .
Proposition 3.2.2. The sccond-order Mosco epi-derivative fh (,f"), if it exists,
| & i .

is sequentially weakly lower semicontinuous, proper, positively homogencons of

1(mn)

degree 2 and f;, 7 (0) = 0.
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Proof. Any function 3 expressible as a Mosco epi-limit is sequentially weakly
lower semicontinmous, because the limit set epiy is necessarily (sequentially)
weakly closed by the definition of the M-convergence. Next we prove that f"(m)

is positively homogencous of degree 2, i.c.,

/I(1u)(/\£) — /\2.,_:-,,(1:")(5) for all { € X and A > 0.

Take € € X and choose ¢, 40 and &, 5 € with
[f(x + 1) = f(2) = ta (v, &)] /(1/2)12 — f20™(¢).
It. follows that

lim [f( 4 (8 N)A6) = () = (tn /A0, A0)] /(1/2) (8 A) = N2 F2GM (),

00

and using (3.1.2) we deduce that f"("')(/\f) < /\Zf"(m)(f) This inequality applied
to AL and 1/X instead of € and A give us the converse inequality /\zf”(m)(ﬁ) <
2 (A8).
Now we prove f,’,/(,f") is proper. Suppose not, i.e., there must exists £ € X
such that f;,_(.,Z")(f) —oo. Then for all n € IN we have f"(m) (£/n) = —oo by the
homogeneity of the M-limit. We deduce from the already established semiconti-

nuity that f}’(,:")( 0) = —oc. which contradicts the epi—(liff(‘rontiabi]ity of f at x.

Finally, we have x,(,:"')(()) = 0 as a result of homogencity and ff v )(O) > —o00. [

Definition 3.2.3. A vector v € X* is a (Mosco) epi-gradient for f at z if for
every £ € X one has (v, €) < f;("l)(f). We simply say that f is twice (Mosco)
cpi-differentiable at @ (without reference to a particular v) if f is (Mosco) epi-
differentiable at . has at least one (Mosco ) epi-gradient there, and with respect
to every (Mosco) epi-gradient v, is twice (Mosco) epi-differentiable at x relative to

v.
Proposition 3.2.4. If f happens to be of class C2 (Frécliet), one has

1) = (Df(x).€) for all €
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and the unique Mosco epi-gradient at x is v = Df(:r). and

;’,(J")(.f) = (D?f(x)£.€) forall & when v = Df(r). and the mapping € —»
(D2 f(x)E. &) is weakly lower semicontinuous.

Where D f(x) and D? f(x) are the first and second order Fréchet differentials of f

respectively.

Proof. Since f is C!, for any £ € & and tn+0 there mmst exists &, S5 & such
that

[f(.’I? +t.8n) — f(I‘)] /"n - (I)f(’) £>

This also holds for any & 5 €. Indeed, for any & 5 €, using the Mean Value
Theorem, we may find for cach t > 0 an o, € (0.1) such that with @, = &+t &

one has
fl# + &) — f(a)
t

= D f(x)&.
. . . ) .
Now. since & are norm bounded implies @z, 5 2 and f is C' we have

[l +1&) — fx)

llll& . = iill(l) D f(x4)&
= D f(r)E.

the last equality by the fact that continuous linear functionals are weakly contin-
uous. Thus we conclude that f;(m)({) = (D f(x).£).

Now let v be any Mosco epi-gradient. of f at x| i.c., fl':("')(f) > (0, &) for all
£ € X. So we have Df(x)(€) > v(€) for all € and replacing ¢ by —€ we get the

hELd

converse inequality since the Df and o are lincar functionals in Y%, Then for all
& Df(x)(€) = v(§) so that the Mosco epi-gradient D f () is unique. The proof of

the second part follows from a similar argument to the first. 0

Proposition 3.2.5. Suppose that f is twice Mosco epi-differential at x. Lot 17
be any C? function with the mapping € -. (D?g(x)€, &) is weakly lower semicon-
tinuous. Then the function h = f + g is twice Mosco epi-differentiable at . ‘The
Mosco epi-gradient of h at x are the vectors of the form o = o -+ D) snch that

v is a Mosco epi-gradient of f at x. and for any such u one has

Ry (&) = fFUUm(€) + (D2 g(x)E £).
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Proof. Clearly

Wz + 1) — Ix) —t(w. &) _ flz+t8) — f(x) — t(v. €>+
(1/2)12 (1/2)t2
glz + t€) — g(x) — t(Dgy(x).£)
(1/2)2

We denote these quotients respectively by @,(€). T'p(€) and A, (€).

Since g is C2, for £ € X and t,, 10 there must exists S ¢ such that

limsup @, (&,) < limsupy, (&,) + limsup Ay, (&)

TN~y C n—oC n—rox

= fIG0(€) + (D%g(x)€. €). (3.2.1)
On the other hand, for any ¢, 10 and &, 5 ¢ we have

liminf @, (&,) > lim iuf Ly, (&) + limiuf A¢, (&)
H— ¥
> f”‘.’" (&) + (D?g(x).€). (3.2.2)

by the second part of Proposition 3.2.4. Relations (3.2.1) and (3.2.2) implies b is

twice Mosco epi-differentiable at o and have that
W) = FI5M(E) 4 (D)€ €).
a

We conclude this section. illustrating how epi-derivatives can be used to obtain

the optimality conditions for a wide class of functions involved in optimization.

Theorem 3.2.6. (Optimality Conditions)

Let f: X - R U {42} be a strongly lower semicontinuous function and x 1o a

point where f is finite and twice Mosco epi-differentiable.

(4) (Necessary Condition) If f has a local minimum at ¢, then 0 is a Mosco
epi-gradient of f at x and f)' ")y > 0 for all Ee .

(b) (Sufticient Condition) If X is finite dimensional and 0 is a epi-gradient of f
ab a and fI' (&) > 0 for all € 3% 0. then f has a local mininmum at z in the

strong sense, 1.e.,
Ja >0 with f(2') > f(e) + oflx’ —&}|* for all 2" near = (3.2.3).
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Proof.

(a)

Because f;(m)(f) exists at o, then for any € € .U there exists ¢, £ 0 and S D¢
such that ’
f(JT + ’{'nfn) - f(‘l)

f )
‘T

If f has a local minimum at = then [f(.zr +t,8,) — f(.r)]/l,, > 0 for »n suaf-
ficiently large and going to the limit we deduce that Fi(&) > 0. "This im-
plies that 0 is a Mosco epi-gradient of f at r. Since [ is twice Moseo epi-
differentiable at x, we also have

f(.‘lf +tnén) — f(“') nim), -
o e

n

Hence we deduce that f;'.(,(m)(f) > 0.

¥
1

Suppose this is not the case. Then for all « > 0 there exist 2y snch that
ay o and f(e)) < f(x)+ of[x — 2|2 Take &, = WJ'JL;AZTI which converges

or

(w.lLo.g.) to some & with [|€]] = 1. so that setting 1, = || ol we get

f(.‘l? + ”nfn) - ./(1) <9

" L
. < liminf = < e,
£20(€) < timjur ZE S0
This is true for all o positive. and henee S8 < 00w contradiction. (]
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CHAPTER 4

AMENABLE FUNCTIONS

4.1. Introduction

In the previous chapters. we introduced two concepts of generalized differentiation.
under the designations of epi-differentiation and proto-differentiation for functions
and nmltifunetions. However. the calenlus we have develope:d has been for smooth
functions: it is natural to ask to what extent it would be possible to treat more
general functions. Recently. significant progress on this issue has been made by
Rockafellar introducing a special class of functions. termed as  amenable”™. See
[26].[28].[29].

This class is general enough to handle most applications in optimization
yet well-behaved enough to carry out a sharper form of subdifferential caleulus.
Amenable functions enjoy above properties because their inherent nature ensure
the wide applicability and capture the local aspects of convexity and smoothness

as we see by the definitions and examples below. See also [20] — [22].

Definition 4.1.1. Let X and Y be Banach spaces. A function f : X - RU{+x}
is amenable at © € dom f.if on some (strong)open neighbourhood of V of T there
is a CH{(Fréchet) mapping F : V — Y and a proper. lower semicontinuous(lsc).
convex function g @ Y — R U {+2c} such that f(x) = g(F(x)) for v € V aad the
following constraint qualification is satisfied at 7:

R4 (domg— F(T)) —DF(z)X =Y (4.1.1)
whoere DF (1) is the Frécehet differential of Fat .
To study the second-order differential properties the following refinemer t of amena-
bility is useful. First we need to introduce the piecewise linear-quadratic functions:
Definition 4.1.2. A function g : Y = R U {+x} with effective domain D =

Ll alu) < +xc} will be called piccewise linear-quadratic if D can be expressed
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as the union of finitely many sets D (for j € J. a finite index set), such that D,

is a convex (polyhedral) sct given by
k j ' ; j ;
Dj =02 E]. where Bl = {ye Y|{((u])*.y) <l (y))* € Y*. o) e R }.
and the restriction of g to D; is a polynomial function Q; :
Qj(u) = %Bj('u.. w) + (I u) + ¢; where ¢; € R, ey and Bj: Y x)Y - R
is a continuous symmetric bhilinear function.

Definition 4.1.3. A function f : X = RU{+2c} is fully ainenable at ¢ € dowm f.
if the conditions in definition 4.1.1 can be satisfied with extra stipulation that I7

is a C?(Fréchet) mapping and g is piecewise linear-qoadratic convex function.

In the finite dimensional case. we see that the constraint. qualification (4.1.1)
is equivalent to

N,

Where Ny, , (F(E)) = {£ | (£.2 = F(2)) <0 for all z in dom g} is the normal
cone to domg at F(Z) and DF(£)* denote the transpose of the matrix DI ().

In other words. there i1s no € # 0 in Ndm””(F(;Tr)) with DI (a)*¢ = 0. This is

lom y(F(-T:)) M ker (DF(T)‘) = (). ("2)

known as the basic constraint qualification used by Rockafellar in [26] defining
amenable functions in finite dimensions.

To sce that (4.1.1) is equivalent to (4.1.2). first notice that the condition
(4.1.1) is equivalent to (IR.+((10mg — F(:Tr)))o N (1)1’(:’1’:)2&')0 = 0. Then one can
casily identify that (IR,+((101ny — F(:T:)))o = Ny, (F(2)) and (DF(r)X)° =
ker (DF(:T:)").

Here C° denotes the polar of a cone C of X:

C° = {J:*«’:‘X‘

(@*. gy <0 forall yin C'}.
In general (4.1.1) implies (4.1.2) and (4.1.2) implies
cl [IR,+((lomg — F(#)) — D["(:l:)X] = ).

The closure operation is not needed in finite dimensions (¢f. [23], Convex Analy-

sis).
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Example 4.1.4. Any proper, lower semicontinuous, convex function f over a
Banach space X is amenable at all points in domn f. Any convex. piccewise linear-
quadratic function f is fully amenable at all points in dom f.

Here the mapping F in definitions 4.1.1 and 4.1.3 can be taken to be the
identity. Note that the condition (4.1.1) is satisfied at % € dom f since DF(z) =
identity operator and X = Y gives DF(2)X = Y.

Example 4.1.5. Any C! function f is everywhere amenable, whereas any C?
function [ is everywhere fully amenabie.

TakeY = R and g(w) = w in the definitions 4.1.1 and 4.1.3. Then dom g = R.
so that condition (4.1 .1) is trivially satisfiecl.

Example 4.1.6. The class of functions which can be written as the maxinnm
of finitely many smooth functions is amenable and we focus on subdifferential

properties of these max-functions in Chapter 5.

If f = max{f1.....fx} for a family of C! functions f; : X — R. Then fis
everywhere amenable. If cach f; is C?. f is everywhere fully amenable.
Set Y = R* and F(x) = (filx)..... filx)) along with g(uwy, . ... wy) = max{wy. ...,

wy.}. Then g is piccewise linear and dom g = R* so that the condition (4.1.1) is

auntomatically satisfied.

Example 4.1.7. Consider the mathematical programning problemn

(Pu) minimize fy(x) over all x € E satisfying fi(x) € I; for i=1.... k.
where the functions f; :IR" = R fori =0.1.... k. are of class C2. the nonempty

set B is polyhedral (implying convex), and each nonempty set I; is a closed (but
not. necessarily bounded) interval in R.

The problem (Py) can be refornmmilated as
(P}) minimize f(x) over all © € R".
where f(a) = g(F(x)) for
F(r) = (f(,(.zf). Filooo., fk(:z:).;zt). glug.uy.. ... g, xr) =ug+dp(uy,... up, )
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withD=1 x...x I, x E.
Let C := {.r € E|f,-(:n) €l i=1,....k } Then fis fully amenable at any

point & € C at which the following basic constraint qualification is satistied:

{ there is no (y;..... yi) # (0., .., 0) with .
yi € N1, (fi(®)) and — 5 4,V fi(E) € Ny(r).

To sce that f is fully amenable at Z. observe that D is a polyhedral set. g is picce-
wise lincar and the condition (4.1.2) is reduced to the one above since Np(F(r)) =
Np, (fl(i')) X... XNy, (fk(i)) XNg(Z) and VF(x) = (V fo(). Vi (x)..... Y fila) ).
whereuw = (1..... 1) e R™.

Example 4.1.8. Consider the constrained nonlinear programming problem

(P) minimize fo(x)
filw) <0, i=1..... 5.
filte) =0, i =s+1,.... k.
e F.

and a penalty representation of (P):

B k
(Ppen) minimize fo(z) + Z"'i [fi(:::)]+ + Z ""'If'(""')l
=1 1= g4

where r; > 0 for all 4. [f(:l:)]+ = max { 0, f(x) } fiand IY as in Example 1.1.7.
The objective of the problem (P,,,,) can be easily reformmlated as maximnum of

finitely many C? functions, and hence by Exaunple 4.1.6. it is fully amenable.

Although amenability may scemn to be a condition focussed on a single point,
at a time, it is truly a local condition on a neighbourhood of a point. This is
because the constraint qualification (4.1.1) holds not just. for =, but for all « in

sowme neighbourhood of Z relative to dom f: this is shown in the following theoren.

Theorem 4.1.9. If the constraint qualification (4.1.1) holds at a point, o € dom f

then it holds at all points & € dowm f in some (strong)ncighbourhood of .
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This can be proved using a result of S.Kurcyusz and J.Zowe ( [15]. Theo-
rem 5.2). In that paper they studied a © reguiarity condition” for the following

mathematical programnming problem in Banach spaces:

(P) © minimize f(z) subject to x € C and h(z) € K

where f: X — R is differentiable and h: X — Y is CL, C is closed convex subset
of X and K is a closed convex cone in Y with vertex at 0. The set of all feasible
solutions for (P) is denoted by M, ie., M = C N h=Y(K).

A point Z € M is said to be regular it
Di(z)C(z) — K(W(E) =Y (4.1.3)

Where C(&) := {AMe—Z)c € CLA >0}, K(z):={k=Xz|ke K \A> 0} (z € Y).

They proved that the condition (4.1.3) is a local condition:

Theorem 4.1.10. (Kurcyusz & Zowe)

Suppose 1. is a regular point for problem (P). If || Dh(z) — Dh(z)]. haus((C - z),,
(C — F),) and Imus((K — /L(:Z'))l, (R — fz(:?‘.))l) arc small cnough, then T is a
regular point for (P),

where & is a feasible point for the perturbed problem:

(P): minimize f(x) subject to z € C and h(z) € K.

haus denote the Hausdorff distance as defined in Section 2.2, and

Il

(C—&),:=(C~&) NBy. (K~—17),:=(K—%)NnDy

where By and By are closed unit balls in X and Y respectively.

Proof of Theorem 4.1.9. Let & € dom f at which f is amenable. Thus f
has a local representation f = go F for all z in a neighbourhood V of Z and the

constraint qualification (4.1.1) is satisfied at Z. i.c.,

R4 ( dom g — F(;F)) — DF(®)X = ).
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To sce amenability is a local condition. it <uffices to show that the constraint
qualification (4.1.1) is satisfied in a neighbourhood of # relative to dom fnv.
This easily follows from Theorem 4.1.10. once we established:

(1) regularity condition (4.1.3) is equivalent to the constraint. qualification (4.1.1)

for some choice of h, C and K.

(i) assumptions in Theorem 4.1.10. are satisfied.

To sce (i), simply take h:= F, C := X, K := Ry domg and = € dom fnv.
With this also set h:= F. C 1= X. K := R4 domyg in Theorem 4.1.10. Then we
have ||DF(Z) — DF(#)|| < K||# — &|| for some K > 0 and for all # in dom f N
Vv, hans((X —Z) . (X - 7‘)1) = 0 and the quantity lmus((ll{+(lumg — I"(.':.'))l.
(IR+ domg — F(:Tr))l) is small.  The latter is true because, by the definition of
Hausdorff distance for any y € R4 dom g— F(Z), one can find ¢ € IRy dom g—1{i)
such that d(y.§) = |F(&) ~ F(Z)||. Since F is centinuous we can make d(y. 1)
arbitrary small by choosing a suitable neighbourhood of . The above argumeents
imply that the existence of a neighbourhood V oof & relative to dom f, salisfying

(ii) and then by the theorem we have

IR+((lmug — F(£)) ~ DF(E)X =Y for all & € V.

4.2. Epi-differentiability of Amenable functions

Amenable functions are not in general differentiable (not even convex) in the
usnal sense. It turns out that epi-differentiation is more appropriate for this clss
of functions. In fact. fully amenable functions, in finite dimensional space, are
twice epi-differentiable; see Rockafellar [26]. Morcover, proto-differentiability of
the subgradient mapping (sce definition below) is equivalent. to the second-order
epi-differentiability; sece Theorem 4.2.9.

First, we need to introduce the subdifferential of a function which is analogous
to the differential in case of differentiable functions. There are several ways of
defining the subdifferential of a nonconvex functions, bhut they all coincide as far

as fully amenable functions are concerned. See Corollary 4.2.8.
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Definition 4.2.1. Let C C X and z in C. The Clarke normal cone to C at z.

denoted Ne(x), is the cone polar to Te(x):

Ne(x) = (Te(r) = {v e X* | (v,€) <0 forall £ in Te(z) }
we recall that T, () is the Clarke tangent cone to C at = (Definition 2.3.4).
Definition 4.2.2. Let f : X — R U {+oc} be finite at a point x. Then the
(generalized) subdifferential df(«x) of f at x is given by

df(z) = {'u € X* I (v,—1) € Nepif(m,f(m)) }

A functional v of Of is termed a subgradient,

The above definition, which of course is analogous to the fact that (F'(x), —~1)
is normal to the graph of the smooth function f: R — R and one can easily see
that the subgradient set reduces to the gradient f'(x) when f is smooth.

The following Lenuma gives another useful characterization.
Lemma 4.2.3. Let f: X - IRU {400} be a Clarke regular function (Definition

2.3.6) and x be a point in dom f. Then

Of(x)={ve X | fli(x:6)> (v,€) for all £ in X} (4.2.1)

where fli(a:€) = lim_inf [f(:lr +t,&,) — f(:r,)]/t”.

.
Proof. Suppose first that v € 9f (). We wish to prove that f/(x;£) > {(v,&) for
all & By the definition of 9f and the regularity of f, we have

o

o
(0.=1) € N s(a, f()) = (T(.Pif(:lr,f(:n))) = (I\’(,I)U(:I:,f(:z:))) i
By the definition of fi(x;€). for any £. there exists t, 40 and £, & with

(-17 + fnfn- f(-'r + tufn )) - (Ilf. f("l'-))
1

3 ({ f;(lf))
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which implies (€. f{(z:€)) in T, ; (2. f(2)). by the regularity of f. Since (v.—1)
belongs to the polar of this set we have ((v.-1). (& fi(r: ) <0 for all € and

hence the result.

Converscly, assume that v € X* with folwz€) = (v.&) for all £, It is enough
to show that (v, ~1) € Ncpif(m,](z)), or equivalently ((v, —1).(£.)) < 0 (i.e.,
(v.€) < a) for all (£, a) in T(,pif(zr. f(x)). For each (€. <) there must. exist (rn.ory)

(In~(ln) [_ (KI?, f(‘T)) _')

fz) — flx) — <'U~-77n — J')

len — ||

ay, — f(x) — (v, oz, —x)
' |
to the limit we deduce that «a — (v,£) > 0, which completes the proof. O

in epi f such that (€. ). Now, by our assumption we have

>0 for t,, = ||&, — x|

which also implies 2 0, since iy, 0, in epi f and going

When f happens to be Mosco epi-differentiable and Clarke regular, all above forms

of subdifferentials coincide as we see next.

Lemma 4.2.4. Assume f is Mosco epi-differentiable at a. Then
JANE) = fulw: &) for all €.

Proof. Let f! (x;€) := liminf [f(:l: + t,.6,) — f(:l:)]/t,,. Then by the characteri-
€~ &
thdo

zation of Mosco epi-limit (¢f. Lemma 3.1.3) we deduce that

Ay < fl (&) < fiei€) < f10(g)

and hence the result. O

Theorem 4.2.5. Let X be a reflexive Banach space and [ be Clarke regular at

a point x in dom f. If f is Mosco epi-differentiable at ., then

af(r) = {'UEX‘
= {1) e X lf(y) > fle)+ (v.y—x)+ ol|ly — =) } (4.2.3)

FAE) = (0, €) forall € in X'} (4.2.2)

40



oly—z)

To==1 — 0 as

Here of|ly — z|f) refers to an expression having the property that
(y —x) - 0.

Proof. The first equality is obvious from Lemmas 4.2.3 and 4.2.4 . To see the
second equality it is enough to show that the right side of (4.2.3) agrees with the
same in (4.2.2). Suppose v satisfies (4.2.3) and choose € in X, £,10, and &, 5 ¢
such that, [f(u: + t.€) — f(:n)]/tn — f;("')(f). Then from (4.2.3) we have
ollltnall) _ flo+ tut) — f(x)

”71 - tﬂ

<’”s &n) +

and going to the limit we deduce (v, €) < f;(m)(f). This is true for any £ we
conchude that » belongs to the right side of (4.2.2).

Conversely, suppose v in X'* with f,’;(m)(f) > (0,&) for all & If v does not
belong to the right side of (4.2.3) one can tind « < 0 and y,, = & such that

f(;'/n) - f(-’) — ('U, Yo — .'If)

I':‘/vt - .l‘”

< «.

Since X is reflexive we may extract a subsequence. still denote w,, such that
Y, — T w . .

£ 1= Hu=m Woe oy some £ in X, and setting t,, = |y, — x| we get

Yn —lf
f((lf + f’nfn) — f(:I:)
tn

< A{v.&,) + a.

Letting 1 = o and the characterization of Mosco epi-limit (ef. Lenuna 3.1.3) we
et
f;(m)(f) S (v &) +a < (v.£),

a contradiction. a

We shall begin the further study of epi-differentiability of fully amenable functions

by first. stating the following known result of the first-order epi-derivatives.

Theorem 4.2.6. Let X and Y be reflexive Banach spaces. f be fully amenable

as in definition -.1.3. and f = go F is a local representation around & € dom fin

the sense required in that definition. Then f is Mosco epi-differentiable at  with
() Hn - — — —

e (&) = _(lp(w(;,)) (DF(:I:)£) and 3f(z) = DF(:n)*Og(F(:,))

T
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where DF(Z)* represents the adjoint operator of DF (7).

Proof.  This result was obtained in finite dimensions in Rockafellar [26] and

generalized to infinite dimensions by Cominetti [11]. a

The following theorem shows that fully amenability is much stronger condition

than Clarke regularity.

Theorem 4.2.7. Let f be fully amenable at & € dom f. Then f is Clarke regular
at r.
Proof.  We first show that the set C := dom f is Clarke regular. The set
C = {:1: I F(r)e (l()my} can be represented in the form
C={rex [l F(e)) <a, for i=1,..., P
Wi Flr)) =a; for i=p+1,....q}.

for some choice of y¥ € Y*. This can be viewed as
C = {:17 € th,,:(a:) <O0fori=1,....p: hi(e)=0for i=p+1,....4 }.

where hi(z) = (y>. F(x)) — a;.
Now let b= (hy,... . hy): X - RY and

M = {('11,1,...,'41,,l)|u,¢ <Ofori=1.....p; wu, =0 "for i=p+ L....q}.

Then C = h™Y(M). Note that the set M is convex and hence Ty (h.(:l:))
Ky (h(:l:)). Then the Clarke regularity of €' follows by a result. of Anbin and
Frankowska ([5], Corollary 4.3.4) :

It says that if a continnously differentiable map b from a Banach space X to a
finite dimensional space Y and a closed convex set M © Y satisfying the constraint,
condition

Dh(z)X + Ty (/l,(:i:)) =Y
then at any T € h=1 (M), the set h=1{M) is Clarke regular.
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In our case the ahove constraint condition is equivalent to
Dhi(z)X + Ty, (h(:i:)) =R" or cqivalently
ker (Dh*(2)) N Ny (R(2)) = {0} for any Z € C.
Where
Nuy (h(2)) = {(Ay..... AJ|Ai=0fori=1..... p active
Ai=0 for i =1,....p inactive }.
This means that the constraint condition is satisfied if the only multipliers \; >
(0, «=1,...,p such that
i AiDhi(F)=0is A =...= ), =0,
ie., DF(:T:)*( ;I:l/\,':l/:) =0is Ay =...=X,=0.

Because 7:1’\411'/: € Naom ¢ (F(:?r)) and our constraint qualification it follows
that 377, Aiy? = 0. So the constraint condition is satisfied if the only (A, ... . Aq)
such that 357 Ay = 0is A = (A\,.... A¢) = 0. This can always be assumed
without lose of generality because of the following claim. Ry [5]. Corollary 4.3.4
C is Clarke regular.

Claim. Without lose of generality we may assume that 4} are chosen such that
if Z,_l Aiy! =0 with A; >0 for e =1,....p ;X =0 for i =1..... p inactive,
implies that Ay = Ay = --. = Aq = 0.

Proof of Claim. For y € Y, consider the systemn

(yf.y) <a; for i=1...., P
(%) .
(viy) =a;for i=p+1.....q

Assume 39 Ay? = 0 with say Ay > 0 then
= —L”__q (Ni/ A1)y — Z, 1ﬂ+l (Ni/A)yr.
Which gives

(.1/1‘« 1?(1)> = - 1—-3 \ //\ <I/1“F(7‘)> - 21 p—{-l /\ //\ <7/:*F(j)>‘
ayp = (/\ //\ (l; — i= ’,+1 /\ //\ a@j. (**)

=2
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Choose any y in (*). Then we have —(Xi/ M Nwroy) = —(N, /A, and henee
(yi-w) = = 22022 (/A ) = T (/N D u).
> =3P A/ A)a; — PN p1 (A An)a,.
= qa,. ( by (**))

Thus. not only do we have (y%, y) < a; but also (yf.4) > a; which implies (y}.y) =

Assume 370 Ayl = 0 with say Ay # 0 then Upar = = i praN N )ur
So that any y that satisfy (y>.y) = a; for i = p+2,... ¢ has

(Upg1-4) = — 27 2N A )ty = =300 2N/ A )y =y

Thus. the equality (y5,1.9) = a,41 can be dropped from the systenn. a

Now, we proceed to show that f is Clarke reguliv at @ € (.

Since f is fully amenable at Z, it has the local representation f(r) = g(I(x)).
The function g. being piccewise linénr-qu:ulrnti(:. is locally Lipschitzian relative
to its effective domain D. Let ;1 > 0 be a Lipschitz constant that works for a

neighbourhiood of w = F(#). and define
g(u'y = uelf;v { glw) + fllu’ — wll }. where ji > p.
w

Le.. g is the infimal convolution of ¢ and 7i]| - ||. since ¢ is convex so is . By the

choice of ji one will have
glu') = g(u') for all «' in some neighbourhood of .

(namely any neighbourlivod where g1 acts as a Lipschitz constant) In particolar,

g is finite at certain points, but also
glu') < glu) + i)l —ull <~ for all ',

and by convexity § is finite everywhere on Y. Hence ¢ is locally Lipschitz and

everywhere Clarke regular. Thas, we have
fle') = f(F(:l:/)) + de(z') for all 2’ near .
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The function f(z') = g(F(x")) is Clarke regular. because composition of Clarke
regular locally Lipschitz function with a smooth mapping preserves Clarke reg-
ularity ([9]. Theorem 2.3.10). The Clarke regularity of C at # implies indicator
function 4¢ is Clarke regular at £. Applying Rockafellar ([24]. Corollary 2 of
Theorem 2) we are able to conelude that the sum function is Clarke regular at z

and consequently f is Clarke regular at z. (=]

Corollary 4.2.8. Let § be fully amenable at . Then the various forms of sub-

gradient. sets O f{x) agree.

Proof.  Since fis fully amenable at «. it is Clarke regular (Theorem 4.2.7) and
Mosco epi-differential at 2 (‘Theorem 4.2.6). Then the result follows from Theorem

4.2.5. O

The next theorem., which links the proto-derivative of the subgradient map-
ping to the subgradient of the second order epi-derivative, enables us to calculate

proto-derivatives of the subgradient mapping of fully amenable functions easily.

Theorem 4.2.9. Let X be a finite dimensional space. If f is fully amenable at
it s in fact twice epi-differentiable there relative to every v € O f(%). Moreover,
the subgradient mapping Of is then proto-differentiable at & relative to every
n € Jf(x) with

(Of)e (€)= (5 FLNE) for all € in X. (4.2.4)

)

Proof.  Sce Poliguin and Rockafellar [21] Theorem 2.9. and references therein.d

This formula stems from a classical result of C? functions. When f happens
to bhe a €2 function on IR™. the subgradient mapping 8 reduces then to the usual
gradient mapping Vf: IR" — R, and proto-differentiation of 9f comes down to

ordinary differentiation of V f:

DV = fn TTEXENZVIE) _ Gapze (4 2.5)
{l‘()

R4 - . . . . —
Where V= f(r) is the matrix of second dervivatives of f at T.
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The matrix V< f(F) can also be obtained as a limit of second-order difference

quotients:
(2 418 = fIF) = HE T 1)
)12

lim
€ e (:
tdo

= (EN7f(r)8) (1.2.6)

lvl-—

If we denote the function & = (€. V2 £(F)€) in (£.2.6) by D? f(). then the pradient
mapping associated with it is twice the mapping € — V"f(.r){ i ((£.2.9) so that
symbolically we have V(Dgf(;ir)) =2D(V f) () for all .

It is natural to wonder whether one can extend the results of Theorem 4.2.9
to the infinite dimensional case. In this regard. more recently, RO Comsinetti |11,
proved that for a general class of functions (on a retlexive space) which consist of
composition of C* mapping with a locally Lipschitz, convex onter funection with
extra regularity assmwmptions (this class of functions inchide the fully amenable
functions) is twice Mosco epi-differentiable. However. he neither establishied 1he
proto-differentiability of the subgradient mapping nor the velation (1.2.4). Onr
aim here is to establish these properties to some extent in o reflexive space which
admits a C? function with its second Fréchet derivative is bigger than aomliiple
of the norm square.

We will need the following well known results for convex funetions. Here is i

sitailar version of Theorent 4.2.9 for the convex case:

Theorem 4.2.10. Let X be a reflexive Banach space. and [0 5 B My s} be
lower semicontinuous. proper and convex. Let o € Of (). Then [ is twice Moseo
epi-differentiable at & relative to o if and only if Of is (PK)proto-differentizble at

Z relative to v, In which case the formmla (1.2.4) holds.

This result was obtained in finite ditmensions in Rockafellu [30] and peneral-

ized to infinite dimensions by Do [12]. 0

The following lemma is a classic result of convex finetions which relates the

directional derivative of a convex function to its subgradient set.

Lemma 4.2.11. Let f be a eonvex function and = he o point in dom f. Then o
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is a subgradient of f at x if and only if
fia &) > (0.&) for all €
r+tE)— flr
where f'(2:€) = lim flo+18) = flr)

tly l
tive of f at x in the direction €. In fact. the lower semicontinuons closure of f'{x: )

is the usual (one-sided) directional deriva-

(weak or strong since it is convex ) is the support function of the closed convex set
dflr).
Proof. It is weil known from convex analysis. that a functional ¢ belongs to
If(x)if and only if f(y) > fle)+ (v.y—x) for all y. Setting y = x +t£€ the above
£+ tE) — f(r .
£ §) = Jlr) > {(v0.&) for every £ and + > 0. Since the

4
different. quotients decrease (ef. Convex Analysis [23]. Theorem 23.1) to f/(i: &)

inequality becomes

as 1100 this inequality is equivalent to the one in the theoremn.

o 1Y — xr
Sl +18) — f(r) > (v.&) for all €.

Conversely. take any » in A with lii“ ”

tlo :

. . . xr+tE) — flr .

Since f is convex. we get mg A ff) ACY > (v.&). Setting y = v + £ and
> ,

t = 1 in the above inequality we deduce f(y) > f(r) + (v.y = ) for all y. which

completes the first part of the proof.

One can also infer that
df(r) = { ul el fllr: &) > (0. &) for all E}

Since ¢l f'(ir: &) < f'(w:€). we only need to verify that any o satisfies f/(r. €) >

<

(p.&) for all € belongs to the above set. This follows as

(0.&) = liminf(e. &) < liylilcxf filr &y =cl f/(a:6).

—€
Now. we proceed to prove the well known subgradient characterization.
First consider.
(el f'(r: l’))‘ = sup { (1. &) —cl fi(r: €) }
14

where = represent the conjugate of a function. which ix given by

Vote Xt ot (at) i=sap {(etu) =) b for any function p X — RU{+x}.
re
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Ifvin 0f(x) then (v.€) —cl f/(r.€) <0 for all £ and we have that (el f/as l'))’
= 0. But. by the positively homogeneity of f/(.r:-) we get (clf'(rie))’ = x when
(v.&) —cl f/(x:£) > 0 for some & Thus (el f'(rie))" = Yosrn(v). where d s the
indicator function.

On the other hand. (55““(_1/) = Slll,p{<[" Yy — eiof“)(zv)} = sup (o) =

vENf(r)
To5ir)(¥). Connecting above results through the fact that

cl firrv) = (el f'a: 1r))“.

for convex functions we conclude ¢l f'(ur:0) = Tarn (). Where «x represent the

biconjugate of a function. which is given by

Ve e X, " ()= sup { {e*. 1)Y= (&*) } for any function 0V -5 RU{+~
re€AX’

—

a

A prerequisite to the study of epi-derivatives of fully amcenable functions is an
understanding of such derivatives in case of the proper convex functions g : Y -

R U {+x} which are piccewise linear-quadratic in the sense of Definition 4.1.2.

Theorem 4.2.12. Let g be piccewise linear-quadratic convex function. At any
point w € D = domn. the function g is twice Mosco epi-differentiable. Its first
1)

. . . . 1 . - . . .
Mosco epi-derivative function g,f is expressed simply by taking limits along rays:

glu+tw) = glu)

g () = lim (1.2.7)
ti0 4
, . ] . . . . . . .
The function _(1.,“") is convex and piccewise lincar with effective domain
I(yn) o
dom g, = Tp(u).

It is the support function of Og(u). which is nonempty convex polyhedron and

coincides with the set of all Mosco epi-gradients y of g at u. For any 4 & dg(u) the

1

. . . . 1" . . . . .
second Mosco epi-derivative function g, Vs likewise expressed sitnply by taking

limiits along rays:

Tre)

i .oglu+tw) — glu) — tly. w)
Gy (w) = lim .

(1.2.%
110 212 )
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The function ,(]u.(;") is convex and piccewise lincar-quadratic with effective domain

domg! ={wey | g™ (w) = (y.w) } = Noguy (#)- (4.2.9)

u.y

Thus for y € dg{(u) one has

, : w) = o)
{1:‘,.(,;")("”) = Yu (W) ‘f (y.w) = .(/:t(m)(w)' (4.2.10)
' +0o0 if (y,w) < g {(w),

(1 .
where for w € dom {/u( ") one defines

(m)
. glu+tw) — g(u) —tge ™ (w)
L) = lim < 400
Yulw) tio %1,2 (4.2.11)

[ =0 if g is actually piccewise-linear ).

Proof. Consider a representation of g as in Definition 4.1.2 in terms of (polyhe-
dral) sets Dy(j € J). Fix u € D and let J, = {_} €.J l uw € Dj } For cach j € .J,

write
glu') = glu) + 1B, (0 —u,u' —u) + (13, (u" —u)) for v’ € D,

for some l: € Y* and B : Y x Y — IR a continuous symmetric bilinear function.
Claim 1. For cach j € .J, there cxists €5 > 0 such that
[D; —u]Ne; B =Tp (u)Ne;B.

Proof of Claim 1. First notice that the tangent cone Tp, (w) has a particularly

simple form because Dj s polyhiedral, namely
TI), () = { w ey | 37 > 0 with w4 tw € D; for all t € (0,7) }
For notational convenience, let D; = Dy and write
Dy =0} E, and E; = {u|{Fu) <a; i}

Suppose w € T, (u)Ne B with e > 0. Then there exists 7 > 0 such that u+tw € Dy
for all t € (0. 7). whicli implies that (I7.u + tw) < a; for all i and t € (0, 7). Thus,
we got

(17 ) + {7 wd < a; for all i and t € (0.7) (4.2.12)
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If {If.u) = a; for some i then (4.2.12) implies that (17, ) < 0. Therefore we have
(If.u + w) < a; which implies that u + w € E,;. Otherwise. i.e.. (17, u) < a, . take

i — ()
2 i(w) if (I7.u) <a,;. Then

el

€:= luink}g,-. where g; =

(7w +w) = (7 uy + {7 w).
< (7o) + W el
< {Fow) + 1 e
= a,.
and hence u + w € E;. Therefore we have w + w € E, for all i, which implies
u 4w € Dy.
On the other hand, suppose w € {(Dy —u)NeB. Then w = y — u for some
y € D;. Now consider,
(UF w4+ tw) = (17 u) + {07 w)., (t > 0)
= (L) + (= ).

<a; if{lfu)=a; (forall 1)
<a; if {F.u) <a; (for small cnough f)

which nnplies that w4 tw € E; for all i and small enough £, Thus we have

u+tw € Dy and hence w € Tp (u) NeD. a

We also have
Tp(u) =Ujey,Tp, ()
The inclusion D is obvious. Now take w € T'5(u), te. there is 7 > 0 such that
w+tw € D for all t € (0,7). Since u € D; for all j € .J,, there exists 7/(< 1) such
that « + tw € Dj for all t € (0,7') and for some j € J,. Thus w € ’l',)l(u.) and

hence the result.
By Claim 1, for cach j € J, there exists 5 > 0 such that
[D; —u]e;B="Tp (u)Ne; 3.
Let € :=min{e; | j € J,}. Then for arbitrary p > 0 one has for all w ¢ ph and

te (0./p):

glu +tw) — glu) _ <l;,711‘) + %f,Bj('m, w) ifw e ’1',)1('//,), g e d,, (4.2.13)
1 4+ if w e Tru), -




Let @y, o (w) and g, ¢ (w) denote the left and right sides of (4.2.13). respectively;

(4.2.13) asserts that ¢, , and o, , agree on the ball pB when t € (0.¢/p).

Claim 2.
Bi(w,w) >0 when w € Tp, (). j € Jy.

Proof of Claim 2. By the representation of g, B; is convex on Dj for j in .J,.
This is equivalent to the convexity of the restriction of B; to cach line segment in
Dj. This is the same as the convexity of the function (t) = Bj(u+tw,u + tw)
on the openinterval {t | w+tw € D;} for cach w € D; and w € Y. For any w € Y

we have

(1) = DQB]'(’IL +tw, u+tw)(w, w) = B, (w,w).
Since p(t) is convex we have Bi(w.w) > 0. In particular, this is truc when
e TD, (), j € J,. a

We see from (4.2.13) that o, (w) is a closed, convex, proper function and by
Claim 2 it deereases as ¢ 40. Then by Theorem 3.1.4 (part (b)) the Mosco epi-limit

exists and equals to o = ¢l [in(f) Uu't:'. i.c.,
t>

o {wy ifwe TD, (uw), j € .J,.
7(w) = { +]c>o if we¢ Tp(u). (4.2.14)

. t(rn . . . . .
This means that ¢, " " exists and equals to the usual directional derivative at u:

I(n)

g (w) = o(w) for all w. (4.2.15)
By Lenima 4.2.11 we have

Gy = sup  (y.,w).
y€Dg(u)

Therefore dg(u) consists of the vectors y satisfying g:,("")('u;) > (y.w) for all w,
which are by definition the Mosco epi-gradients of g at u. One can also character-
ized the Jg(u) by way of the piecewise linear-quadratic nature of g:

For j € .J,. we write

g(u) = Qj(u) + dp(u). where Q;(u) = %Bj(u,,‘u,) + (7 u) + ¢;.
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Thus.
dg(u) = co { DQj(u) lj € .J, } + Np(u). where DQj(u) := By(u.-) + 1.

The convex sets in the above sum are finitely generated so that they are polyhedral
(as in [23]). Thus. dg(u) is a convex polyhedron as being the sum of polyhedral

convex sets.

To sce the second-order results. we transform (4.2.13) into the assertion that
glu+tw) — g(u) — (y,w) _ J Bj(w.w) + %(l; —yow) fwe Tl), (1), j € J,.
%tz +o0 if wr ¢ Ty,

(-1.2.16)
This being true for all w € pB when t € (0.¢/p). Let

ol — Bij(w.w) ifwel)y (u), jeE.J,. -
Plw) = { +00 if w ¢ TDJ('u,). (4.2.17)
and observe that

gl + tw) — g(u) — tgff”"(m)

Plw) = ltiil(g %”2 for all w ey (1.2.18)
by virtue of (4.2.13)-(4.2.15). Denote the difference quotients in (4.2.16) by

Cuyt(w). Recalling that (4.2.14) gives gfl("")(-/u), we can write (4.2.16) as

Cuyelw) = plw) + %[_{1:‘("")(11)) — (y.w)]. (4.2.19)
an cquation that holds for all w € pB and t € (0,7/p). Under the assumption
that ¥ is a Mosco epi-gradient of ¢ at «, we have ¢ () — (y,w) = 0 for adl w.
The closed, convex, proper functions Gyt IMerease as £10 and henee by Theorem

3.1.4 (part (a)) the Mosco epi-limit exists and equals to i (w) = sup, o u. e (m),

ie.,
P(w) if g:l(m)('m) — (y,w) =0,
Y/’”("“) = . (1)
+x i gu (w) = (yw) >0 .
Thus gfff;") exists and equals 4y, a

Remark. This result was first established by Rockafellar in finite dimensions;

sce [26] Theorem 3.1.

Next we state our main theorem. It extends known results of second-order epi-

derivatives of fully amenable functions. to reflexive spaces.
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Theorem 4.2.13. Let X and Y be reflexive Banach spaces, [ be fully amenable as
in definition 4.1.3., and f = go F is a local representation around T € dom f in the
sense required in that definition. Assume also that the mapping £ — DZF(:T:) (&,€)
from X to Y is weakly continnous (in particular when X' is finite dimensional).

Assume F(z) € int(dom g). then f is twice Mosco epi-differentiable at T relative

to all v € 9f(7) and the Mosco second epi-derivative is given by

7y = {yé'y'?.},‘,,,) {405, (DF@8) + (. DPF(ENE O} ifE €250,

+ if€ ¢ =(z,v)
(4 2. 20)
where Y (2, v) = { Yy € Oq(F( I DF(z)*y=wv } is a nonempty bounded polyle-

dral convex set and Z(#,v) = Nagzy(v) = { € I f'(m) = (v.&) }.

Moreover. if X admits a C? function ¢ with (D2?p(F)€,€) > K||€]|? for all € and
some K > 0, and the mapping € = (D?p(F)£.£) is weakly lower semicontinuous,

then df is (PK) proto-differentiable at # relative to every v € 9f(#) and the

. . 1{pk .
proto-derivative ((')f);(',', ) satisfies

(‘)f)l(llk ( ;“JH)) f()l' ?lll 6’ (4.221)

and is given by
(00)"(€) = co { DF ()" (99) sy (DF(@)€)+0 (5. DXF(2)(- - N)(E) -

y € extY (T, 'u)}. (4.2.22)
where ext Y (i, v) is the set of extrenie points of Y(Z. v) and co denotes the closed
convex hull.

The following lenmuma will be needed.

Lemma 4.2.14. Let f : C - IR be a C? function and C be a convex set in a
Banach space X, If for cach x in C, Dgf(.’lf)(f,f) >0 for all £ in X. then f is

comvex over O,

Proof of Lemma. The convexity of f on C is equivalent to the convexity of

the restriction of f to each line segment in C. This is the same as the convexity
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of the function ¥(t) := f(x + t€) on the open interval {t|x+1t&e€C} for each »
in C and £ in X. Then ¢"(t) = D?f(x + t£)(£.€) > 0 by our assumyption, which

implies ¢ is convex for cach = in C and € in X ]

Proof of Theorem 4.2.13. The first part of the proof is due to Cominetti: see for
instance [11], Theorem 4.4. In it he proved for a elass of functions on a reflexive
space, which consist of composition of C2 mapping F with a locally Lipschitz
(relative to dom g). convex outer function g with extra regularity assumptions, is
twice Mosco epi-differentiable, and the formula (4.2.20) holds.

Cominetti used the following regularity condition:
0€ (:(‘)rc[dmug - F(z) - DI"(:’:’:)A‘].

where for a set € C X, core C:={neC|Vu' € X, 3¢ >0, Ve[ el o+
A’ € C}.

This condition is obviously satisficd in or case, since always we have, dom g
F(z) Cdomg — F(x) — DF(2)X and F(&) is an interior point. of dom g. He also
asstuned that the outer function g is twice Mosco epi-differentiable and the cpi-
derivative coincides with the usual directional derivative. This is of course true for
the fully amenable case sinee g is piccewise lincar-quadratic (¢f. Theorem 4.2.12).

The proof of the sccond result is based on a recent. paper by R. Poliguin;
[18], Proposition 4.2. In [18] he proved thar a fully amenable function on IR™
is lower-C2 (i.c. locally the sum of the function and a nonnegative multiple of a
norm square is convex ) at & where F(&) € int(domg), 9f is proto-differentiable
at T relative to v € 9f () and the relation (4.2.21) is satisficd as well. We proceed
to establish the relation (4.2.21) extending the above results to reflexive Banach

spaces.

Take 7 € X with F(&) € int(domg). Then there exists + > 0 sueh that
B(F(:T:),'I') C dom g. Now counsider U* = U dgly).
!/EB(F(’I)J')

Claim 1. U* is a norm bounded set in Y*.



Proof of Claim 1. Take any u* € U*. Then u* € 9g(§) for some § in
DB(F(7), 7). Since 4 belongs to interior of dom g and ¢ is piccewi. 2 linear-quadratic
convex, it is locally Lipschitz at 4. Then there must exist M > 0 and a neigh-

bourhood V of 4 such that
lg(y) = g(z)] < Mlly — z|| whenever y,z € V.
Since u* € 2a(q), then for all y in V we have
(w*.y =) < g(y) — 9(§) < Mlly — 3|

which implies that [Ju*]] < M and concludes the proof of Ciaim 1. a

Claim 2. There exists A > 0 and p > 0 such that the function f(z) + pp(x) +
deran(x) is convex, where ¢ is C? function such that (D?p(r)E.&) > K||€||? for
all £ and some K positive and the mapping € — (D2%p(x)E, &) is weakly lower

semicontinnuons.

Proof of Claim 2. Let W = F"I(B(F(:E),'r)). We wish to prove that for
some p > 0, f(x)+pe(e)+dz4ap(x) is convex, where A > 0 such that 7+AB C W.
Since g is convex and continuous on dom g, for any x in W, we have (¢f. Convex

Analysis, [23])

flx) = g(F(;l:)) = g** (F(:l:))

= sup {(u*.F(x)) —g* ('u,') }, (U* is strongly bounded)
uel-

where g* and ¢** denotes the conjugate and biconjugate of ¢ respectively.

Then for any p > 0, we have

fle) + pp(e) = sup { (u* F(x)) — g* (u*) + po(r) }
wrel-

Now consider for a fixed v*. and any @ in W,

I () = (u* F(2)) — g* (") + op(z).
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and differentiating twice with respect to x we get

D2l () (€. £) = (u*. D F(2)(£.€)) + pD?(a)(£.€). (4.2.23)
where
[(u*. D2F(x)(£.6))] < |lu*]| | D*F () (€. €)]|
< M||D2F(x)|| 1€ ( by Claim 1)
Since F is C?, there exists L > 0 such that ||D?F(u I < L for all o in W,
Therefore, |(w®*, (E)EEN] < K'||EI2 for all = in W, where K = ML > (.

By our assumption and (4.2.23) we have, D2l («)(€.€) > —RK'||¢])? + pRIE*.
Taking p = K'/K we have that D21« ()(€.€) > 0 for all 2 in W and £in Y. Then
by Lemma 4.2.14, h,-(x) is convex on B(#.A) and the fact that the suprenim
of convex functions is convex give us f(x) + pe(e) + 0, an(r) is convex, which

completes the proof of claim 2. O

Now let hiz) := f(x) + pe(a) + dzpapn(e). We know from Claim 2, that / is

convex and we deduce
Oh(x) = 0f(x) + pDe(x) on int(x + \I3).

We denote by x* the Fréchet differential of ¢ at 2. Here 9f can be taken in any

sense of the characterization of Theorem 4.2.5 since f s fully wunenable at .

Now for any v in Of(z). from the first part of the proof, [ is twice Mosco epi-

differentiable at & and by the Proposition 3.2.5 we have
W7 e (€) = FI(6) + pDPepla) (e €). (4.2.24)

Since b is convex. lower semicontinuons, and twice Mosco epi-differentiable at .,
then by Theoremn 4.2.10. 91 is proto-differentiable at x relative to » -+ pr* and for

all £ we have

(0/ )/f(l:r}\-iilu (E) 0( ]:'(L”L),lf )(6) (4225)



We now show that (4.2.24) and (4.2.25) imply that 9f is proto-differentiable at z

relative to v and that

(01317 12- (€) = (D){TF (€) + pD(2 )¢

To see this, let
phdf — (T,
(&, 1) € s-limsup gph 0f — (z,v) ’
t10 l

Le., there exists £, 10 and v,, € df(z,,) with (1/t2) (U —v) S5 wand (1/t,)(xn—T) 5
£. But,
xry — It _ Dy(x,) — Dp(T)
”'”. tTl

S D2p(5)¢ = 17 (say) .

Thus (1/6.)[(v, + pz}) — (v + pZ*)] S w+ py and eventually, (v, + pry) € Oh(z,).
This implies
xph Oh — (F. T*
(£, 1+ py) € s-limsup gph Oh — (&. v + pz*)
tio t
sph Oh — (I, T*
= s lim inf 222270 (#,v + pz7)
tdo t

feg (w4 ) € (Oh)iwk) N (f)

T, etpr”
Henee, for all ji,, 10 there exists w!, € Oh(z!,), such that

/(i — F) S € and (1 /p)[w!, — (v + PE)] S u+ pay.

1% et

. x)f — T

Eventually, w;, = v}, + px!l?, where o), € 0f(x!)). Since _"/1—
i3

= D*p(2)€ =

and hence
(1) (), — ) 3¢ and (1/,;,,)(7);1 —u) S u,
sph O f — (&, v)

(£.u) € s-liminf &
td0 ¢

We conclude that Jf is proto-differentiable at z, relative to v.
To establish the relation (4.2.21), notice that
’(I'U 1(pk) — 1 m -
(01);57(8) = [(0m) ;75 (&) = pD20(#)€] = (5 1L,5-) (€) — pD? ()
=0(z£737)(©).



Finally. to obtain the proto-derivative formula (4.2.22) all we need to do, according
to (4.2.21). is evaluate the subgradient of the second order Mosco epi-derivative.
First. notice that the formula (4.2.20) can be written as, for any g € Y (. 0},
o (€)= ;‘((7;'))J(Dp(f)f) + e uax {(u D?>F(#)(¢. ))} (-1.2.20")
where ext Y (2, v) is the set of extreme points of Y (i, v) in (1.2.20).
These formulas are of course equal because for any y € Jg(u) one actually

has (by Theoremn 4.2.12)

7 lim [( wtw) — glu) —ty (w } 20 (yow) = ().
’]:t(y”)(”’) — 10 7l ) /( ) Hu ( ) /}_‘ <./ > i )
+o0 if (yow) < ¢! (),

where w = F(&), w = DF(z)¢, and for any y € Y (z, )
(y.w) = {y, DF(E)E) = (DF(&)*y, &) = (0. £).

Notice also that. the set Y (Z. ) is (nonempty) polyhedron by its definition, inas-
much as the set 0_(;(17'(;7:)) = Jdg(u) is a polyhedron (Theorem 4.2.12). It is norm
bounded as from Claim 1. Thus, the maximum in the second order formula (4.2.20)
can be taken over ext Y (&, v) (which is a finite sct).

According to fornmla (4.2.20') and the subgradient of maximum of finitely
many quadratic functions (sce Clarke [9]) we only need to show that for any

Y € Y{(Z,v) we have

0(_(1;;((’;))‘_!!oDF(;?:))(g) = DF(i)* 09y (DF()E). (4.2.:

b
o
=
~

To show (4.2.26). first notice that

Il("') T //(1”)
Gpiny o © DF(E)) (€ +1€") — , 0 PEG)) (L)
((12(7:)),/ 0 DF(T'))E(G') = lim ( B2y ) ( At ’____ B ‘w_)“.’

tlo t
() e n(m) .
i Griey(DE)E + tDF(2)E) — g} (D ()¢)
tdo t ’
- () 1] o f L
- (/F(f) 1/)[)]4( )E(DI (’)gl) (4237)
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Since the sets in (4.2.26) are closed convex, to show that they are equal. it suffices
to show that they have the same support functions.

To see this. we start with the support function of DF(:?:)‘O{/;Q(&'))#(DF'(:T?)&):

sup (DF(z)*w,£') = sup (w.DF(%)¢'),
11/60_1/’,_/.((',",’_!’ (l)l"(j){) wan;'.((;"))vy (DF(I‘){)
=cl [(g;‘((,:)),y)IDF(f)e (DF('I:)&’)] (Lemma 4.2.11)

nim) N/ "{mn)

= (gF(i),y)DF‘(i)f (DF(z)¢') (gF(a_:),y lse )

= (g o DF(;?:));(f’) (by 4.2.27)

= sup (n.&"

ned ()i oDF())(€)

thus we have the equality in (4.2.26). Therefore, the proto-derivative formula for

the subgradient. mapping is

(0107 = co { DF@E 095, (DF@)€)+0 (9. D*F(2)(-. 1) (&) -
¥y E€extY (T, v) }

a



CHAPTER 5

POINTWISE MAXIMA

3.1. Subdifferential Properties of Max-Functions

Now we turn to the study of the subdifferential properties of a useful class of fune-
tions in optimization: the maximum f = max £, of finitely many C? functions. 'Uhis
t

class is of special interest because it is the simplest elass of nonsmooth funetions
and also of its wide applicability in optimization. For instance. Approxiwion
and penalization procedures for mathematical progranming problems can be ex-
pressed as the pointwise maximum of certain other functions which are themselves
smooth (Example 4.1.8).

Even though, the max-functions are the stimplest kind of nonsmooth funections.
direct derivation of proto-derivative formulas of its subgradient mappings becones
highly complex (for instance, sce [6] Proposition 12). Fortunately. we awe able to
take advantage of this class being a subelass of fully amenable funetions {(Iixaanple
4.1.6) and hence the derivation of subdifferentiad caleulus hecornes much easier,

Here is a more detailed deseription.

Theorem 5.1.1. Let f(x) = max{fi(x).. ... fala)} defined on a refloxive Banach
space X where eacl function f, : X = R is C? (Ivéchet). Then [ is everywhere
fully amenable as in the Definition 1.1.3. and f = go I is a local representidion
around x in X' in the sense required in that defimtion.  Assue also that the

mapping & — (D*F()£.&) from X to R is weakly continnons. Then

{)f(;l:):(t(){Df,,(:lr)l'iG 1(_;/:)}. f}(”')(f) = max (Df, (). &} (5.1.1)

el

where [{x) denotes the set of all indices @ sucly that f(x) = f(r) and co denotes
the closed convex hull.

For any v € 9f(:r). the second-order Mosco epi-derivative of [ al x for o exists
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and given by

—_
e
—
o

~—

yeY (r.v)

[ () = { max Zle (D2 fi(r)E. &) if€E € E(x.v).
o 4+ if€ ¢ Z(x.v).

where Y (. v) is a polyhedral set and Z(x.v) is a polyhedral cone. namely
Y (. 0) = {yly, >0 ifi€l(z). yi =0 if i ¢ I(z).
Siwi =1 i wiDfi@) = v }. (5.1.3)
E(s.v) = Nosia)(v) = {5 { (Dfi(x) = v.€) <0 for all i € I(x) }
Farthermore, if X admits 2 C? function  with (D@(x)€.€) > K||€||? for all € and

some K > 0. and the mapping € = (D?@(x)€.€) is weakly lower semicontinuous .

then Of is (PK) proto-differentiable at « for v with

97 (5):{{}:f;1y/,0’-’fi(m>£ 1€ Vuuax(.0.6) } + Naep(€) if € € Sz ),
" =

where Yy (e, 0. £) is the closed face of Y (ir. v) consisting of the multiplier vectors

y that achieve the maxinnn in (5.1.2).

Proof. To see that f is everywhere fully amenable. simply observe that f(z) =

_q(l’(;r)) for
Fa) = (frlx)..... falx)). glwy..... wig) = max{w;y..... Wi} (5.1.5)

and g is piccewise linear (polyhedral). Condition (4.1.1) is automatically satisfied
since don g is all of RY.

Applying Theorem 4.2.6 to the case of F and g in (5.1.5). we have
Of(x) = DF (&) 0g(F()).  f")(€) = g4 (DF(2)¢).

where
DF(r) = (Dfi(r).....Dfel)).

Ag(u) = {y ' v = 0w =glw). y, =0 if w; < glw). Zley,- =1 }
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Therefore

of(@) = {mDf (@) + ... + ymDfiw)
= (‘.(){Df,‘(;lf)|i€ I(’I‘)}

i > 0. Zle ye=1. 4y, =0 for i ¢ I(x) }

. . . . . . . . . / .
Since g is piccewise-linear. its Mosco epi-derivative {1.,("')(11r) agrees with the usual

directional derivative (e¢f. Theorem 4.2.12) and hence

glu+ tw) — g(u
g:,(",)(“]) = lim 1( + “) (1(”)
tlo t
. {e; + tw;} — glu)
= limmax : .

tdo 1 t
(Since for t small enough.  any index ¢ not satisfying w«, = g(«) can be ignored
in the maximum.)

(u; + tw; — u;)
t

= max { w,; | ¢ such that w, = ¢g(u) t.
q

Thus. £,7")(€) = g}t (DF(x)¢).

= limumx{ ‘1 such that w, = g(u) }

tio

= max (D f.(z).£&).
1€l(x)
Also note that f;("')(f) is also equals to its directional derivative.
Indced.
ar+ 1) — fr
fi(w: &) = lim flo +18) f(,).
tdo 1

~ i ~ file +t8) — fr)
= L max .
tdo 7 14

1 L+ 1E) = filx)
= lim max .
tiniclir) 14

= max (D f,(x).£).

1€1(r)
= f"(8).

The second-order epi-differentiability of f follows from the Theorent 4.2.13, since

g is piccewise linear the term g;l,((’;;.y(DF(::;)f) in (4.2.20) vanishes and also the

multiplier sct Y (z.v) has particunlarly siinple forimn:
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Y(z,v) = {y € Og(F(:l:)) | DF(z)'y=v },
={y|w20ifielw), p=0ifi¢I(z).

Shw=1 Shwbfis) =},

Also,
E(r,v) = {&] £ < (v,6) },

= {¢] max(Dfi(e},6) < (n.0) }, (hy 5.1.1)
= {£](Dfi(x) = ,€) <0 for all i € I(z) }.

Finally, we obtain the proto-derivative formula using (5.1.2),

k

fw,.’,(J") (6) = max 7/1<D2f1(.1')£ £> + 5E(I,1))(£)ﬂ
yEeY (x,v) =1

and the relation (f?f)lf(l,',k) (f) = 0(%f;’§(5"))(€).
Thus,
(Of)_ll‘,t'(f) = {Ef=11/1D2fl(T)£ yE€ }/lllax(ma'l}-,f)} + 8((5;‘_(;1:,1}))(‘5)*
— { {Z,k:lI/lDz.ﬂ(‘r){ Yy € )/lnax(msv-f)} + A’E(z,v)(f) if & € E(‘T'-, ’U),

) if £ ¢ Z(x,v).
a

Remark. These results were first established in finite dimensions by Poliquin

and Rockafellar [22]. The assummptions on Banach space X' are redundant in finite

dimensions.
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5.2. Comparison of Proto-derivative Formulas

Several authors have worked on the proto-differentiation of the subgradicnt map-
ping 8f of the max-function f. Among them Poliquin and Rockafellar [22].
Auslender and Cominetti [6]. and Penot [17] work is significant. They used
two different approaches to calculate proto-derivatives. Poliquin and Rockafel-
lar utilized their favourable amenable setting. on the other hand. Auslender and
Comiinetti used the direct definition to calculate proto-derivative. All these work
were confined to finite dimensions.

As a result of the max-function is fully amenable, the proto-derivative formnla
given in [22], that we extend in Theorem 5.1.1.. is nmch simpler than others
and does not need extra assumptions in finite dimensions. However, the direct,
approach of Auslender and Cominetti gave only a formula for the outer graphical
limit of the proto-derivative of f and the usage of formula is limited to the special
situations because of the complexity of the formula. Later, Penot [17] extended
Auslender and Cominetti formula to infinite dimensions and established the proto-
differentiability under sharper restrictions.

The major difficulty still remains is to sce whether these formulas agree when
the proto-derivative exists. Even in the finite dimensions, the reconciliation of
these formulas is not a simple task.

First of all we need to introduce the Auslender and Cominetti formula:
Recall that 9f : R™ 3 IR" is proto-differentiable at = for v € Of(x) (sune as
gph Of is derivable at (x,v) ) if

lim sup [gph(')f — (:lr,v)]/f, = linninf [gph(’)f - (;::.u)]/t,
tion tlo

and note that

(€.u) € imsup [gphOf — (. 'u)]/l, = wu € limsup [(’)f(:/: + 1Ly — 'n]/l,.
ti0 € vk
ll()

The following fornmla is given by Auslender and Cominetti for the outer graphical

limit of the difference quotients, denote as 92 £, ,(€): For any v € afr),

0 f+.0(€) = limsup [0f (x4 1€') — v] /1,
¢h-—g
tlo
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= U U [Ef:l?/iv2fi($)f+E(I‘,,1/)], (5.2.1)

I-€S(x,v.8) yeY(I*,v)

where
Y(I*,v):= {;l/ €Y(x. v) l yi=0for i g I* },
Sz, 0,€):= {l‘ C I(z) I Y({I*,v) # @ and 31,10, &, - &,
with I* = I(x + t,£,) for all n}.
E(I*y) = { Ti_, 0V file) | Simy 70 =0, 0, =0 if i ¢ I*, 0,20 if y; =0},
Notice that I* of S(x, v, £) is the set of “infinitly repeated index sets” at x
i a given direction € with I* = I(z + t,,£,). One of the main reasons of the
complexity of the formula (5.2.1) is to identify which index scts I* belong to the
collection S(ir v, €).
[t was observed by Auslender and Cominetti that each set I* of S(x. v, €) is in-
cluded in I(x. &) = {z € I(x) | Vfi(x) = fl(x:§) } the set of indices achieving
the maximum in (5.1.1).
Indeed, if I* € S(x, 0. €). ie.,, Y(I*,v) # ) and 3t,10,¢, — & with I* =
I(a+t,E,) for all n. then for i € I*

Sl +1,8) — f([‘)

f(e: &) = lim

=0+ et ff )= It locally Lipschits)
= lim_ file + tnfn) . f,'(:r,)’
—Vine

which implies I* C I(x.€).
With this observation we shall show that the effective domain of the formula (5.2.1)
is always contained in (5.1.4).

Proposition 5.2.1.



First assume that y € Y (I(x.€).v). Then

Proof.
v= Y Vi) 5y =1 with y, =0 for i ¢ I(r.€)

and hence .
(0.8) =Dy Vfi(x).£).
i=1
Do ud Vi) €).
i€l(x,£)

= > wif(x:8),

i€l(r.§)

= f'(x:8).
(v,&). We wish to prove the set Y (1(;:7,{) v)

Conversely, assume that f/(x: )
is noncmpty, i.c.. there exists y of Y(a, v) with y, =0 for i ¢ (. &).

Since v = Ziel(m) y:V fi () with Ziel(z) y; = 1, we have

f’(:nlf) = Z ’]/,j(‘?f.,'(;1:)_5)g
1cl(x)
Z yi{V [ (). £),

= Z yi(V fi(x), &) +
i€l(w)\I(x.£)

i€1(x,€)
< D wfEO)+ Y wif(#:0),
el (e )\ 1(x.£)

1€l(r,£)

= f'(x3€).

which is impossible. Thus, y; = 0 for all < in I(x) \ (. &). and hence 3y, = 0 for
i ¢ I(x;&). a

It follows from the above discussion and the proposition, that whenever

0% f, (€) is nonempty, there exists I* € S, v.€), henee I* < (. £), such that
Y(I*.v) is non void. From this we have Y(I(:l:.{).'u) # ¢ and by Proposition
5.2.1. (0,&) = f'(:€). and henee (Of ), (&) # 0.

The first step of comparison of formulas (5.1.4) and (5.2.1) was carried ont,
by Poliquin and Rockafellar in [22]. They observed that. in the special case of
{Vf.,;(:lr) IL = I(:l::f)} lincarly independent the above formulas agree. They also
showed that for a fixed £ € Z(x, v) and for any y € Y (i, v),

Nz(oay(&) = E(F(x.€).y),
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and illustrated another difficulty by giving an example to the case that E(I*,y)
can be a proper subsct of Nz, ,,)(€)
Here we consider a very special case, the maximum of finitely many linecar

functionals on R, and we shall show that the various formulas agree.

Theorem 5.2.2. Consider, for any « € R, f(z) = ?lmxk} fi(z); where fi(z) =
1€ J

agz + by Then the set of subgradients of f at  is a closed interval in R, namely
Of(x) = [a,b], where a = min a;, b= max a;.

i€l(x) i€l(x)

For each v € 0f(x), Of is proto-differentiable at x, explicitly
(i) If Of(x) is a singleton, ic., a = b =v = 0f(x), then

(Of ), (&) =0 for all €.

(ii) If v € (a.b), where a # b, then

' R if€ =0,
(iii) If v = a and a # b, then
{0} if £ <0,
(01),.0(6) = { Ry U{0} ifé =0,
0 if£€>0.
(iv) If v = b and a # b, then
¢} if € <0,
(0)0(6) = { R_U {0} ifé =0,
{0} if &> 0.

Morcover. the proto-derivative formulas (5.1.4) and (5.2.1) agree and equals (i)-
(iv) in cach case.

Proof. It is plain that 0 f () = [a,b]. since V f;(x) = a; for each 7. We first show
that the proto-derivative formula (5.1.4) reduced to (i)-(iv) in each case.

(1) Of(x)y=w
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First note that Nz(; ,)(£) = 0 for all § since Z(x.v) = Npsy(#) = R. Then by
(5.1.4),
(8f);.(€) =0 for all &.

(ii) v € (a,b)
In this case Z(x,v) = Nojs()(v) = {0} and hence N=z(r.ny(&§) = R for £ = 0. Thus

by (5.1.4),

(DFY, (€)= {3} Iy

(iii) v=oua

If v = a then notice that Z(x,v) = Nyg(,)(v) = R_ U {0} and

_J {0} if & <0,
Natem (&) = {IR,+ u {0} ifé=o.

Hence by (5.1.4),

{0} if & <0,
(D)o (&) =& Ry U{0} ifé=0,
? if £€>0.

(iv) v=10

Here, we have Z(z,v) = Nogioy(v) = Ry U {0} and

_J {0} ir e <0,
Netam) (&) = {IR._ ufo} ife=o.

Thus by (5.1.4),

? if £ <),
Of )y (€)= R_U{0} if€=0,
{0} if € 0.

Next we show that the formula (5.2.1) agrees with (1)-(iv) in cach case. First
note that the formula (5.2.1) has a particularly simple form, since the functions

involved in the formula are linear, namely

0N = U U EUw,

I-€S(c.v,l) yeY (I~ 1)
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and the infinitely repeated index set I* is always a singleton for € # 0. Therefore.

any x € IR . I* can be written as

{7y ifE>o0,
I" = ¢ {m} if £ <0,
{f,m} f&=0, where ¢,me {1,....k}.

(i) Of(x) =
Since df(x) is a singleton, I* is also a singleton for all £, say I'* = {p}, and the
condition Zleyin,v(u:) = v in Y(x,v) is trivially satisfied. Hence, Y ({p -,'u) =

(0,...,0,1,0,....,0), here the p** coordinate is 1.
I'/’({I'}a“) = {Z:;]Uzivfi(-"’) I Zf;l(fi =0, 0, =0 for all i # [)} = {0}.
"Therefore.
(OF), (&) =0 for all €.
(it) v € (a,b)
When £ >0, I* = {#}. and

Y({l.’}.‘u) = {y I v, =0 forall ¢ #£#, yeb=v with y, =1 }

Since v # b the set Y({#}, v} is empty. Similarly, for £ < 0 we have Y ({m),v) = 0.
When £ =0, I* = {£,m}. and

Y({/’. m}, 'n) = {;1/ I i =0 for all ¢ # om, ueh + yopa = v,
with Ye+ ym =1 and Yes Y = 0 }

Sinee v € (a.b). the gquantities yp and y,, has to Le (strictly) positive and hence

E({f.m} o) = {n,nb + o0 | op+ 0, =0 and g0, € R },
= {(Tg(()—(l,)i(f[ S IR,},
= R.

Thus.
oo R if £ = 0.
(()f);.n(f) = { 0 if £ £ 0.
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(i) v=a

When € > 0. I* = {¢}, and

Y ({¢}.v) = {v | i =0 forall i # 6 yob=a with y, =1},
Since b # a the set Y ({#},v) is empty.
When £ < 0,1* = {m}. and

Y({m},u) = {y I i =0 for all i # m, ya =a with 4, = 1},

=(0,....0,1,0,....0); here m'™ coordinate is 1 .

Then
E({m},'u) = {Elen,Vf,:(:l:) | Ef':I(r,; =0, 0; =0 for all i #n} = {0}

When £ =0, I* = {#,m}, and

Y ({€.m}, v) = {y I e =0 for all @ #€om, yeb + 4,0 = «a,

with ye + 40 = 1 and yp y,, > 0},

={0,...,0,1,0,...,0): here ™ coordinate is | .
Hence,
E({ﬂ. 'm,},.u) = {m;b + o0 I Or+ 3, =0, ap >0 since yp =0 },
={ab—a)|arz0},
Thus,
{0} if &€ <0,
(OF). (& =< ML u{0} ifre =0,
] if &> 0.
(iv) v=1b

When £ > 0, I" = {¢} and

Y({ﬂ},'u) = {y I yi =0 for all ¢ £ 2, yob = b with vy, = | },
=(0,....0.1,0,...,0); here " coordinate is 1.

70



E({ey,v) ={ X 10V Sfi(a) | 00=0. 0, =0 forall i #¢} = {0}.

When £ < 0.1* = {m}, and
Y({m},u) = {;1/ ' y, =0 forall ¢t #m, ypa =50 with v, =1 }

Since b # a the set Y ({m}.v) is cmpty.
When £ =0, 1" = {#,m}, and

Y({l’, m},v) = { ¥ ’ yi =0 for all i # 4.m, yeb + ya = b,
with ye + 4, = 1 and ye vy, > 0 }

=(0....,0.1,0,....0); here M coordinate is 1 .

Henee

]41'({// ’III,}.‘U) = { (Tp]) + 0,0 I O+ 04, = 0. T _>_ 0 since Y — 0 }-
= { Tl — D) I Oy 20 },

=R_U{0}. ( since a—5b<0)

Thus
] if € < 0.
(DY, ,(6) = { R U{0} if € =0.
{0} if £ > 0.

a

One can casily derive the subdifferential properties of the absoliute value function,

Corollary 5.2.3. Let f(a) = x| for 2 € R. Then

1 ifx >0,
af(x) = { [-1.1] ifez =0,
—1 if 0 <0,
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and the subgradient mapping 0f : R 3 R is everywhere proto-ditferentiable with

(af)lf>o.1(f) =1 for all &.
(Of);<0.—1(‘f) =0 for all &£,

R ifE=0,
(OFsmwe (1 (E) = {w ire=o.
{0} if& <0,
(Of);,lfz().l':—](f) = IR+ U {()} lf{ = {),
h if & >0,
¢ if& <0,
({)f)fr:(),nzl(f) = [R— U {()} l[‘( = ().
{0} ife >o.
Proof. Apply Theorem 5.2.2 observing that |} = max{., —ur). O
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