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Abstract 

Background 

Craniosynostosis is a condition that occurs in about one in 1000 infants. Unicoronal 

craniosynostosis (UCS) is a common subtype of craniosynostosis that results in an abnormal 

head shape, and can lead to brain growth impairment, visual problems, and psychosocial 

disturbance. Surgery is the mainstay of treatment for UCS and involves removing the abnormal 

skull bones and reshaping them. Cranial vault remodeling (CVR) is an invasive and often 

lengthy procedure that can result in significant blood loss. It also involves surgeon guesswork in 

an effort to create a normal appearing skull. Virtual surgical planning (VSP) is becoming popular 

as a method to reduce the subjectivity of these procedures and potentially improve outcomes for 

patients. There is limited data comparing conventionally planned and virtually planned CVR 

surgeries. The lack of a reliable, easy to use, and objective method to measure the deformity in 

UCS may contribute to this paucity.  

Objectives  

 The goal of the research presented in this thesis was to improve surgical planning for 

UCS by developing a deformity index measure, investigating perceptions of the deformity in 

UCS, and developing a virtual surgical procedure that could be used to develop an automated 

VSP algorithm for CVR in UCS. These goals were addressed in three studies.  

Methods 

 3D Slicer, Geomagic FreeformPlus, Geomagic Control, and KeyShot were the software 

programs used. The deformity index in the first study was assessed using test-retest reliability. 

Chi-squared analysis and mixed methods regression model were used to analyze the perceptual 
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data in the second study. Hausdorff surface distances were used to assess the virtual workflows 

in the third study.  

Results 

 A novel, user-friendly deformity index was developed that was highly reliable (ICC = 

0.93). Members of the general public were good at distinguishing between normal and abnormal 

skulls (χ2 (1) = 281.97, p < 0.001), and laypersons’ responses were predicted by the deformity 

index in the perception study (b = -0.10, z = -2.6, p = 0.010, CI: [-0.18, -0.02]). In the third study, 

two virtual fronto-orbital advancement workflows were developed that required varying degrees 

of surgeon participation. In both workflows, reconstruction skull models were created that were 

closer in shape to a normal skull than the preoperative skull.  

Conclusion 

 Several tools were developed that can be used by surgical teams to improve planning for 

CVR procedures for patients with UCS. A deformity index can be used to assess the severity of 

skull dysmorphology and quantify reconstruction outcomes. New data regarding the general 

public’s perception of UCS deformity assists in developing a meaningful reconstruction target 

for surgical planning. Finally, virtual workflows can be a useful tool for surgical teams to 

prepare for complex operations and introducing automation into the surgical planning can reduce 

the subjectivity of CVR even further. Future work in this area will focus on using the partially 

automated surgical planning framework to develop a fully automatic computer algorithm to 

further enhance the planning procedure for this complex problem.  
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Chapter 1: Introduction 

1.1 Overview 

 The research in this thesis is presented in a study-based format. Chapter 1 is a general 

introduction to the topic of virtual surgical planning in craniosynostosis surgery. Subsequent 

chapters in this document outline the background, objectives, methods, results, discussions and 

summaries for the three studies. The first study is presented in Chapter 2, and outlines the 

development and validation of a deformity index to quantify frontal bone morphology in 

unicoronal synostosis (UCS). The second study is presented in Chapter 3, and outlines a public 

perception study, examining laypersons’ perceptions of UCS deformity. The third and final study 

is presented in Chapter 4, and outlines the preliminary work for the development of an automated 

virtual surgical workflow.  

1.1.1 Outline of Studies  

 

Table 1.1 An outline of the studies presented in this thesis.  

Chapter 2 – Study #1 

 Development of deformity index workflow 

 Using the novel workflow to quantify deformity in a 

series of UCS patients  

 Test-retest reliability testing 

 Case example: using workflow to quantify 

reconstruction success in pre and postoperative patient 

Chapter 3 – Study #2 
 Assessing general public’s perceptions of skull 

deformity  

Chapter 4 – Study #3 
 Manual and partially automated virtual workflow 

development for CVR surgery for UCS 
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1.2 Background    

1.2.1 Background of Condition  

Craniosynostosis is a relatively common condition that occurs in infants, affecting up to 1 

in 1000 live births (Tahiri et al., 2017). It occurs as a result of the premature fusion of the space 

that normally exists between the various bones that form an infant skull. Normally, these spaces 

do not start fusing until around six months of age. Left untreated, craniosynostosis can affect 

normal brain growth and development, cause visual impairment, and have a significant 

psychosocial impact on the child (Campbell & Derderian, 2014). Craniosynostosis can be 

divided into symmetric and asymmetric subtypes, the latter involving unilateral fusion of a 

cranial suture. The coronal suture separates the forehead from the rest of the skull (Figure 1). 

    

 

Figure 1.1 The coronal suture is shown in red. Fusion of the suture on either the left or the right side of the skull leads to anterior plagiocephaly.  

 Unilateral coronal craniosynostosis (UCS) is the most common asymmetric subtype of 

craniosynostosis and is a result of the unilateral premature fusion of the coronal suture. This 

leads to anterior plagiocephaly, which is a phenotype of craniosynostosis characterized in part by 

flattening of the forehead on the affected side and bossing of the forehead on the contralateral 

side. UCS is especially difficult to treat due to the asymmetrical nature of the deformity (Alford, 

Derderian, & Smartt, 2018). UCS affects the frontal bones, which determine the contour of the 



 

 3 

forehead, creating a deformity that is difficult to disguise and has a significant impact on 

aesthetic appearance (Collett et al., 2013). 

1.2.2 Involvement of Surgery  

The mainstay of treatment for UCS is surgery. There are minimally invasive and invasive 

surgical treatment options (Alford et al., 2018). Endoscopic strip craniectomy with helmet 

therapy, spring-assisted cranioplasty, and distraction osteogenesis are examples of minimally 

invasive procedures to treat UCS. However, these procedures lack the long-term data that 

supports their use universally over total cranial vault remodeling. Cranial vault remodeling 

(CVR) surgery has been the primary method of correcting the forehead deformity resulting from 

UCS (Alford et al., 2018). CVR involves removing components of the affected skull, reshaping 

the bones, and securing them back in place in a configuration that gives the skull a more normal 

shape. Fronto-orbital advancement (FOA) is the specific technique of CVR typically used in the 

treatment of UCS. FOA surgery involves two components: 1) shaping the supra-orbital bar 

(SOB), and b) re-contouring the forehead. Figure 2 depicts these areas. 

a) b) c)  

Figure 1.2 A) Three-dimensional (3D) model of an infant with right-sided UCS. The right coronal suture is fused as demonstrated by the 

presence of a bony ridge when compared to the left coronal suture that is patent and depicted as an open space. B) The supra-orbital bar region is 

highlighted in green. This is the area that is above the eye sockets. C) The supra-orbital bar is shown in grey, and the frontal bones that constitute 

the forehead region are highlighted in green.  

  In FOA surgery, the SOB and the frontal bones are removed from the anesthetized 

infant’s skull in the operating theatre. The SOB is reshaped to a normal contour and secured back 

on the infant with absorbable plates and screws. Next, the frontal bones are reshaped, rotated, 

interchanged, and/or bent in order to achieve a normal forehead appearance, and again secured 

back on the infant’s skull (Vander Sloten, Degryse, Gobin, Van der Perre, & Mommaerts, 1996). 
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One of the main goals of the surgery is to create a forehead appearance that is closer in shape to a 

normal skull when compared to the patient’s preoperative forehead appearance. CVR surgeries 

are lengthy procedures and the potential complications are significant, with massive blood loss 

being the most common cause of intra-operative morbidity and mortality (Lee et al., 2012). In 

addition, there are vital structures such as the dural sinuses that are at risk of injury (Fisher, 

Medina, Bojovic, Ahn, & Dorafshar, 2016). 

1.2.3 Surgical Challenges 

The goal of CVR surgery for patients with UCS is to transform a 3D shape (the patient’s 

preoperative skull) into a more symmetric 3D shape (postoperative skull) with the same material 

(bone). Therefore, the procedure relies on surgeon guesswork, experience, and trial and error, in 

an effort to create a normal-appearing skull. This subjective process is known as the “fitting and 

chipping” phenomenon, and definitive analysis of the bone shapes can only be made once the 

bones are irreversibly cut (Vander Sloten et al., 1996). The surgical steps in CVR can be difficult 

to visualize, and the benefits of surgical planning in complex craniofacial cases were realized 

many years ago.  

  The introduction of high-resolution computed tomography (CT) scanning with the ability 

to produce 3D skull surface models, improved the ability to visualize craniofacial deformities 

and the surgical steps to correct them (Vannier, 1983). Zonneveld summarizes the introduction 

of physical 3D models in the early 1980s to address challenging clinical scenarios (1994). 

Kobayashi, Fujino, Nakajima, and Chiyokura (1993) described pre-surgical planning for 

craniofacial surgery using such 3D printed skull models. The authors address the downsides of 

this method, which include the high cost of materials and the time-consuming planning process 

(Kobayashi et al., 1993). A recent study investigated the benefit of a physical 3D model in the 

CVR planning process and found it was a helpful adjunct for parent education, but did not reduce 

the operation length (van Nunen, Janssen, Stubenitsky, Han, & Muradin, 2014). Cutting, 

Grayson, Bookstein, Fellingham, and McCarthy (1986) compared the use of physical models and 

virtual, computer models for surgical planning of craniofacial surgery, and concluded that virtual 

simulation was a superior method for surgical planning due to the decreased cost and the ability 

to generate quantitative anthropometric value. This is consistent with the current trend of surgical 

planning for craniosynostosis, and the increasing use of virtual surgical planning for this 

application.  
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1.2.4 Virtual Surgical Planning for Craniosynostosis Surgery  

The use of virtual surgical planning (VSP) has been increasing for craniosynostosis 

reconstruction surgery. By allowing surgeons to pre-plan CVR operations virtually, VSP 

decreases intra-operative procedure length, reduces the subjectivity of the reconstructive 

planning process, and yields aesthetic reconstruction results. Vander Sloten et al. (1996) 

introduced the concept of virtually planning CVR surgery using a mathematical computer model. 

Since then, several centers have documented their positive experience with the use of computer-

assisted design and computer-assisted manufacturing (CAD/CAM) technologies to assist surgical 

planning, specifically as it pertains to CVR surgery.  

 Kechoyan et al. (2014) used a pre-fabricated SOB template, derived from normative skull 

data, to decrease operation length and increase reconstruction accuracy in their study looking at 

the treatment of metopic craniosynostosis. Chim et al. (2014) describe their experience using 

VSP to plan CVR surgery, as well as for distraction osteogenesis cases, claiming the advantages 

include more accurate surgical results, as well as a better understanding of the surgical procedure 

by the patients’ families. Queiros et al. (2017) used VSP to design custom cutting and plating 

guides to assist in craniofacial reconstruction for adult patients with secondary deformity after 

craniosynostosis surgery. They objectively demonstrated the high level of accuracy achieved 

using custom guides to execute the surgical plan (Queiros et al., 2017). Seruya, Borsuk, 

Khalifian, Carson, Dalesio, and Dorafshar (2013) describe their use of VSP for a series of CVR 

cases, highlighting additional advantages of this technology include the educational benefits to 

junior craniofacial surgeons and learners, and the potential to reduce the “fitting and chipping” 

phenomenon previously attributed to CVR surgery.  

1.2.5 Analyzing Deformity and Outcome Measurements  

 With the increased use of CAD/CAM technologies for VSP, the ability to measure 

surgical outcomes is an important component of assessing the benefit of using advanced 

technologies and comparing available software and hardware. However, the drawbacks of 

current methods used for outcome measurement in cranial vault remodeling are that they are 

subjective, inconsistently reported, require expert skills in image processing, or provide limited 

information.  
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 Whitaker, Pashayan, and Reichman (1981) made the first attempts to develop a grading 

system for craniosynostosis. The Whitaker scale is based on surgeons’ subjective perception of a 

patient’s deformity following a photographic assessment. Although this scale is still prevalent in 

recent publications (Taylor et al., 2015), its simplicity comes with limitations. Wes et al. (2017) 

recently studied the Whitaker scale’s utility and found that it does not consistently predict the 

need for treatment and that its inter-rater reliability is low (κ = 0.1567). In addition, surgeons are 

often rating their own patients, potentially biasing the outcome measurement. Regardless, in the 

absence of an objective, quantitative measurement scale, the Whitaker scale continues to be 

widely used to report outcome measures in craniosynostosis literature. For example, a recent 

large series review of over 200 cases of UCS reported outcomes using the Whitaker scale 

(Taylor et al., 2015). The authors of this study comment on the scale’s inherent subjectivity and 

its inability to produce results that can be meaningfully compared across institutions.    

Photographic assessment is another common tool used instead of an objective outcome 

measure. Chim et al. (2014) presented a case series of novel uses of VSP in CVR. They used 

preoperative and postoperative photos to present their results, without the use of a standardized 

measurement system. Soleman, Thieringer, Beinemann, Kunz, and Guzman (2015) presented a 

similar case series, again using patient photos to display outcomes with no standardized 

measurements used. Fisher et al. (2016) and Mardini, Alsubaei, Cayci, Chim, and Wetjen (2014) 

use the same method to report results. 

There have been several objective measuring techniques that have been developed. 

However, there is no one tool that is used consistently. A review of the craniosynostosis 

literature from the past 25 years revealed 24 articles using inconsistent measures of reporting 

outcomes (Alford et al., 2018). Only seven of the studies reported outcomes in a quantitative 

manner, the majority of which used cephalometric and volume measurements calculated from 

CT scan data. The authors highlight the need for consistent outcomes reporting in the 

craniosynostosis literature, pointing out that even among the studies that use standard anatomic 

measurements, rarely are the same measurements reported (Alford et al., 2018).  

A potential cause for the variability of reported objective outcome measures is their 

technical difficulty. Selber, Brooks, Kurichi, Temmen, Sonnad, and Whitaker (2008) comment 

on the measurement challenges associated with techniques such as cephalometrics and 
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morphometrics when quantifying craniofacial deformity, potentially lending to their limited use. 

Queiros et al. (2017) briefly mention their method of measuring outcomes in their series of 

patients undergoing revision surgery for craniosynostosis. The authors consulted a Ph.D. student 

studying medical image analysis, who measured the minimum distance between the planned 3D 

model and the postoperative CT scan. While this presented a novel way of quantitatively 

measuring outcomes in CVR, the measurements were outsourced to a specialist outside the field 

and required the use of several software programs. This raises concern about the user-

friendliness and reproducibility of this method by other centers.  

Khechoyan et al. (2014) introduced the concept of “area under the curve” (AUC) as a 

quantitative outcome measure in CVR surgeries. Again, this presented a novel method of 

quantifying postoperative results in comparison to the preoperative skeletal deformity. Unlike 

some of the procedures mentioned above, the AUC measurement is simple to calculate and 

intuitively demonstrates an improvement in skull shape. However, CVR involves reshaping the 

patients’ frontal bones and the SOB, the two skull components that make up the forehead. AUC 

is limited to measuring the difference between the pre and postoperative SOB only, and provides 

no information about the postoperative position of the frontal bones.  

 While there have been many advances in VSP technology for CVR, there is still a need 

for a reliable, user-friendly, objective outcome measurement procedure. Existing methods do not 

meet these criteria, and may explain the persistent inconsistency in how outcome measures are 

reported in this field. In the absence of a novel method, the ability to draw conclusions about the 

advantages of VSP, and to compare between different planning and surgical techniques, is 

limited.  

1.2.6 Barriers to VSP in CVR 

The technologies involved in VSP are expensive. One group recently quoted the cost of 

VSP in their study to be 4500 to 6000 American dollars per case, highlighting the potential 

expense associated with advanced technologies (Soleman et al., 2015). The costs associated with 

VSP include paid planning time between biomedical engineers and surgeons, computer software 

costs, and the cost of additive manufacturing of surgical guides (Chim et al., 2014; LoPresti, 

Daniels, Buchanan, Monson, & Lam, 2017; Mardini et al., 2014). The costs of employing 

CAD/CAM technology in CVR can be reduced by using locally manufactured cutting guides, for 
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example, as demonstrated by Burge et al. (2011). In their study, the SOB template was 

manufactured by the engineering department at the University of Toronto for a cost of 750 

Canadian dollars per template (Burge et al., 2011).  

Another barrier that may limit the use of VSP is the time associated with preoperative 

planning. Fisher et al. (2016) highlight that the use of VSP for CVR surgery is often a 

collaborative effort between surgeons and third party engineers. In their study, planning time 

ranged from 20 to 60 minutes per session, with some procedures requiring multiple sessions 

(Fisher et al., 2016). On the other hand, Soleman et al. (2015) did not outsource any VSP 

components, and their planning workflow took an estimated one to two days for completion. As 

such, there is a time conserving benefit of outsourcing the production of surgical guides and 

collaborating with engineers for surgical planning. Still, these may be outweighed by the cost 

associated with it.  

 Lopresti et al. (2017) highlight that the number of centers offering VSP for 

craniosynostosis is small, despite all of the potential advantages previously mentioned and 

reported in the literature. This suggests that the barriers to utilizing VSP for CVR may prevent its 

use. This may limit the use of this technology to patients who live near a tertiary center offering 

this technology (LoPresti et al., 2017). Introducing computer automation to VSP for CVR may 

present a novel solution to overcoming the time and cost barriers of employing advanced 

technology in surgical planning.  

1.2.7 Using Computer Automation to Assist in Virtual Surgical Planning  

  Porras, Zukic, Equobahrie, Rogers, and Linguraru (2016) introduced the concept of 

computer automation in VSP for CVR. They demonstrated that by registering a patient’s 

preoperative CT scan to a normative skull statistical model, and by defining a set of physical 

constraints, an algorithm could be developed to produce an automatic surgical plan that would 

approximate a normal skull shape in series of patients with metopic craniosynostosis. The 

automated plans derived in their study objectively reduced the degree of malformation in all 11 

patients (Porras et al., 2016). A computer-automated plan could reduce planning time, prevent 

the need for collaboration with third-party engineers, and as a result, reduce the overall cost of 

VSP for CVR.  
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 Automatically generated surgical plans have the added potential benefit of reducing the 

subjectivity of surgical decision making in CVR. The surgical correction of UCS is especially 

challenging due to the asymmetry in the orbits, cranial base, cranium, and face (Alford et al., 

2018). A computer algorithm has the ability to plan a reconstruction based on parameters that 

can be measured objectively and accurately. This reduces the need for manual human input in the 

planning process and reduces the subjectivity of the surgical decisions (Porras et al., 2016). The 

desire to reduce the subjectivity in surgical decision making for FOA procedures has been cited 

as the motivation behind using surgical guides and templates at various centers. Khechoyan et al. 

(2014) developed SOB templates based on normative skull data to treat patients with metopic 

and coronal craniosynostosis. Chim, Wetjen, and Mardini (2014) describe their use of 

CAD/CAM technology to virtually plan craniosynostosis surgeries and print custom cutting and 

plating guides to reduce the “highly subjective nature” of the procedures, and to reduce the 

variability in outcomes. Due to the subjective nature of freehand FOA surgical planning, there is 

a lot of variability in the orbit and forehead reconstruction results in patients with UCS, and a 

high relapse rate (Soleman et al., 2015). Virtual planning reduces surgical subjectivity with the 

availability of normal reference skulls to compare virtual plans. However, members of a surgical 

and engineering team are still guiding the decision-making process for the plan, maintaining a 

significant degree of subjectivity. Essentially, the “fitting and chipping” phenomenon is moved 

from the operating room to the virtual environment. Computer automation can reduce the human 

input in surgical planning and eliminate the guesswork that is attributed to CVR (Porras et al., 

2016).  

 While Porras et al. (2016) demonstrated the potential role of computer automation in VSP 

for CVR, there are some factors that limit the use of their proposed method to the metopic 

craniosynostosis population. For example, their algorithm does not allow for the exchange of 

frontal bones from one side to the other. Exchanging bone from one side to another is a common 

technique used at the study institution in CVR for UCS to achieve the desired shape. In addition, 

the algorithm has not yet been applied in a clinical setting, and at this stage represents a possible 

solution to overcoming barriers of VSP.   



 

 10 

1.2.8 Clinical Relevance  

 There are many benefits to using VSP and CAD/CAM technology in CVR for patients 

with craniosynostosis, including reducing the subjectivity of surgical decision making, decreased 

operation duration, and improved patient and parent education. These benefits may be especially 

relevant in cases of UCS where asymmetry increases the complexity of surgical reconstruction. 

Despite these advantages, the primary barriers to the use of VSP for CVR are cost and time 

consumption. In addition, the lack of a consistently used, objective, and user-friendly deformity 

measurement process limits the ability to make meaningful comparisons between different 

planning techniques, and to answer questions regarding the cost-benefit analyses of advanced 

technologies. Cost-effective and time-efficient methods to employ VSP in CVR might expand its 

use to multiple centers, allowing more patients with craniosynostosis to reap the benefits of 

virtual planning. The introduction of computer automation in the VSP process has recently 

shown to be a potential solution to overcoming barriers of VSP. In addition, automation can 

reduce the subjectivity of CVR and potentially improve the consistency of surgical outcomes. 

Ultimately, improved surgical planning techniques have the potential to reduce surgery length, 

improve surgical accuracy, and decrease surgical complications.   
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1.3 Thesis objectives  

Chapter 1 

 The first chapter provided an overview of UCS, the surgical treatment for UCS, and the 

role of VSP in CVR. Gaps in the literature are highlighted and addressed in subsequent chapters.   

Chapter 2 

Chapter two details the development of a novel deformity index workflow. The primary 

objective of this study was to develop a step-wise, user-friendly, and accessible workflow to 

enable clinicians to assess cranial vault morphology in UCS patients quantitatively. Secondary 

objectives were to assess the reliability of the index, and to demonstrate how the index could be 

used in an alternative way to quantify reconstruction outcomes.  

Chapter 3 

The goal of this study was to determine if there is a relationship between an objective 

value of skull deformity and laypersons’ perceptions of skull appearances. Additional objectives 

were to determine if there were other factors influencing peoples’ ratings of skull appearance, as 

well as to determine if there is a threshold value whereby members of the general public are 

unable to decipher the difference between a normal and a UCS skull. The primary interest in this 

study was to simulate and investigate a first impression scenario, thus mimicking a common 

situation where rapid judgments are made regarding peoples’ appearances.  

Chapter 4   

 The concept of automating surgical planning is introduced in Chapter four. The objective 

of the third study was to develop two virtual surgical planning workflows. The first workflow 

was developed as a virtual tool for surgeons to plan CVR surgeries prior to the operation. The 

second virtual workflow was developed with automatic steps introduced in order to create a 

conceptual framework for the future development of a fully automatic surgical planning 

algorithm.  
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Chapter 2: Validating a Novel Deformity Index 

2.1 Abstract 

Background 

Unilateral coronal craniosynostosis (UCS) affects many infants resulting in 

abnormalities of the forehead and orbits. As a result, the deformity caused by UCS is very 

noticeable and there are several surgical treatment options available to normalize the head 

shape. However, there is a lack of consistently used outcome measures, resulting in 

difficulty assessing surgical outcomes and on-going debate over optimal treatments. 

Current techniques to quantify deformity in UCS are cumbersome, provide limited 

information, or are based on subjective assessments.  

Methods 

In this study, a cranial deformity index was developed to quantify abnormality at 

the frontal bones for UCS that is accessible, user-friendly, and generates objective surface 

distance measurements. The cranial deformity index is defined as the Euclidean distance at 

the point of the largest deviation between a deformed skull and a normal reference skull. In 

addition, the index was successfully used to quantify postoperative changes in a single case 

of UCS that underwent corrective surgery.  

Results 

The reproducibility of the index was assessed using test-retest reliability and was 

demonstrated to be highly reproducible (ICC = 0.93).  

Conclusion  

A user-friendly measurement index that is based on open-source software may be a 

valuable tool for surgical teams. In addition, this information can augment the consultation 

experience for patients and their families.   
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2.2 Background   

Craniosynostosis is a relatively common condition affecting up to 1 in 1000 live births 

(Robins et al., 2020). It occurs as a result of the premature fusion of one or more cranial sutures, 

which are the spaces that normally exist between the bones that form an infant skull. The 

premature fusion of cranial sutures leads to abnormal skull growth. Infants with craniosynostosis 

are typically diagnosed with the condition in the first few months of life as a result of an 

abnormal head shape. If left untreated, craniosynostosis can affect normal brain growth and 

development, cause visual impairment, and have a significant psychosocial impact on the child 

(Tahiri et al., 2017). Unilateral coronal synostosis (UCS) is a common subtype of 

craniosynostosis that is especially difficult to treat due to the asymmetrical nature of the 

deformity (Alford et al., 2018). This subtype affects the frontal bones that comprise the forehead, 

creating a noticeable deformity that has a significant impact on aesthetic appearance. There are 

multiple different surgical interventions to correct UCS deformities, with on-going debate over 

the superior method (Alford et al., 2018; Fearon, 2014; Tahiri et al., 2017). Cranial vault 

remodeling (CVR) is one surgical option to correct craniosynostosis deformities. It involves 

removing portions of an infant’s skull, reshaping the abnormal bones, and fixating them back on 

using plates and screws, for example.  

One of the primary goals of treatment for UCS is to correct the noticeable head shape 

deformity by improving forehead symmetry. Therefore, quantifying the patient’s cranial vault 

shape is important. Geometrical outcomes are an important component of assessing the benefit 

and risk of surgical procedures. However, there is currently a lack of a consistent method to 

quantify cranial morphology in UCS, and therefore to measure outcomes for craniosynostosis 

corrective surgeries, contributing to the debate over surgery selection. The fact that many 

outcome measures rely on subjective assessments of deformity likely contributes to this 

variability. Whitaker et al. (1981) made the first attempts to develop a grading system for 

craniosynostosis. The purpose of this scale was to determine if the patients’ aesthetic results 

were satisfactory or if they would require another corrective procedure. The Whitaker scale is 

based on surgeons’ subjective perspective of a patient’s deformity. Although this scale is still 

prevalent in recent publications, its simplicity comes with limitations (Taylor et al., 2015). Wes 

et al. (2017) recently studied the Whitaker scale’s utility and found that it does not consistently 

predict the need for treatment and that its inter-rater reliability is low (κ = 0.16). Photographic 
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assessment is another standard tool used instead of an objective measure. Multiple centers report 

their experience with craniosynostosis surgery using preoperative and postoperative photos to 

demonstrate the improvement in head shape (Chim et al., 2014; Fisher et al., 2016; Mardini et al., 

2014; Soleman et al., 2015). 

Several objective measuring techniques have been described; however, no single 

approach to quantify cranial shape has been used consistently. A review of the craniosynostosis 

literature from the past 25 years revealed 24 articles using a variety of different measures of 

reporting outcomes (Alford et al., 2018). Only seven of the studies quantitatively reported 

outcomes, the majority of which used cephalometric and volume measurements calculated from 

computed tomography (CT) scan data. The authors highlight the need for consistent outcomes 

reporting in the craniosynostosis literature, pointing out that even among the studies that use 

standard anatomic measurements, rarely are the same measurements reported.  

A potential cause for the variability of reported objective, geometric measures is that they 

are time-consuming and/or require the assistance of computer software experts. Selber et al. 

(2008) comment on the measurement challenges associated with techniques such as 

cephalometrics and morphometrics when quantifying craniofacial deformity, potentially leading 

to their limited use. In addition, several methods have been described to quantify changes in 

specific components of a UCS skull. For example, Liu et al. (2019) describe their landmark-

based method to measure bandeau shape, craniofacial twist, and orbital morphology on CT scans. 

While their solution provides precise information regarding these parameters, it relies on a series 

of manual measurements. Other authors describe their method of obtaining craniometric 

measurements at the cranial base and forehead (Mazzaferro et al., 2017; Yang et al., 2018). 

Similarly, Masserano et al. (2017) describe their method of manually quantifying postoperative 

differences in the temporal region of postoperative UCS patients (2018). Other authors looking at 

postoperative changes in UCS again used manual, CT scan landmark-based measurements to 

quantify changes in the orbital region after UCS correction surgery (Beckett et al., 2013; Yu et 

al., 2020), nasal root deviation (Wes, Mazzaferro, et al., 2017), and brow position (Xu et al., 

2017). All of these methods rely on landmark-based measurements taken in single planes with 

unknown reliability. Visualizing the global cranial vault changes when measurements are 

reported this way can be more challenging. Queiros et al. (2017) briefly mention their method of 
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measuring outcomes in their series of patients undergoing revision surgery for craniosynostosis. 

This technique required expert consultation from a graduate student studying ‘Imaging’ as well 

as the use of several specialized software programs. This raises concerns about the user-

friendliness and reproducibility of this method by other centers with limited access to imaging 

specialists.  

The concept of “Area Under the Curve” (AUC) as a method to quantify forehead shape 

after metopic craniosynostosis surgery was introduced by Khechoyan et al. (2014). AUC was 

used to measure geometric outcomes following surgery by calculating the difference in shape 

between an abnormal skull and a normal reference skull at the inferior portion of the forehead. A 

skull with a small AUC had a more normal geometry compared to a skull with a large AUC, 

indicating a postoperative appearance that was more satisfactory. Again, this presented a novel 

method of quantifying postoperative results in comparison to the preoperative skeletal deformity. 

Unlike some of the techniques mentioned previously, the AUC measurement is simple to 

calculate and intuitively demonstrates an improvement in skull shape. However, CVR typically 

involves reshaping the patients’ frontal bones and supra-orbital bar (SOB), the two skull 

components that make up the forehead. AUC is limited to measuring the difference between the 

pre and postoperative SOB only, providing no information about the postoperative position of 

the frontal bones. 

Technological advancements in image analysis and computational methods have allowed 

for precise craniomorphometric techniques that are partially or fully automated, alleviating the 

need for tedious manual measurements. The use of statistical shape models as a comparison 

group for craniosynostosis skulls has allowed for very accurate and reliable head shape analysis 

(Mendoza et al., 2014; Porras et al., 2016, 2018, 2019; Tu et al., 2019; Wood et al., 2016). These 

methods rely on the availability or development of a statistical model, which requires an atlas of 

normative head shapes. The use of specialized technology is a potential deterrent for clinicians 

without established collaborations with imaging experts, resources to build a multi-atlas, and 

who may be unfamiliar with the necessary algorithms and image analysis software.  

Quantifying cranial vault morphology in craniosynostosis is challenging. The typical 

phenotype associated with UCS poses additional challenges due to the asymmetric nature of the 

deformity. As outlined by previous authors, multiple anatomic regions of the affected skull are 
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dysmorphic (Beckett et al., 2013; Liu et al., 2019; Masserano et al., 2018). What has remained a 

primary goal for CVR surgery is improvement of the contour of the frontal bones to create a less 

noticeable forehead deformity in affected patients. The forehead deformity in UCS is a visually 

salient feature (Robertson et al., 2020). Therefore, a method to quantify cranial vault morphology 

that focuses on the contour and position of the frontal bones is clinically important, and has been 

the focus of described methods (Porras et al., 2018, 2019; Wood et al., 2016; Yang et al., 2018). 

While there have been many advances in the measurement of craniosynostosis deformities, there 

is still a need for a reliable and user-friendly measurement procedure to quantify the frontal bone 

deformity in UCS. Existing methods do not meet all of these criteria, and may explain the 

persistent inconsistency in how outcome measures are reported in this field.   

2.3 Objectives 

The primary objective of this study was to develop a step-wise, user-friendly, and 

accessible measurement index workflow to enable clinicians to assess cranial vault morphology 

in UCS patients quantitatively. Secondary objectives were to assess the reliability of the index 

and to demonstrate how the index could be used in an alternative way to quantify reconstruction 

outcomes.  

2.4 Materials and Methods  

2.4.1 Participants  

After institutional review board approval (Pro85524), CT head and/or facial bone scans 

were retrieved from a provincial diagnostic imaging database. Two sets of data were 

retrospectively obtained. The experimental group consisted of CT scans from infants with UCS. 

The control group consisted of CT scans from age and sex-matched controls. All of the images 

used were from preoperative CT scans. Participants whose age at the time of the scan differed by 

no more than 30 days were considered age-matched. The search strategy was narrowed to the 

type of image (CT), anatomic location (facial bones/head), and age of the patient (≤ 24 months) 

to identify scans. For the experimental group, patients that had a single fused coronal suture 

visible on the 3D reconstruction image were identified, and the diagnosis of UCS was verified 

with the radiologist report. Participants were excluded if they had syndromic craniosynostosis, 

multisuture craniosynostosis, skull fractures, or other craniofacial skull abnormalities (i.e. fibrous 

dysplasia). Common dysmorphic features associated with syndromic UCS, specifically 
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hypertelorism and midface hypoplasia, were used to identify potential syndromic cases, and 

cross-referenced with the radiology report. There were no cases of syndromic UCS identified in 

this study. The control group consisted of infants with normal skull morphology. The average 

field of view for all scans was 183 mm (SD = 18.7). All of the CT scans used had been helically 

acquired and reconstructed to 0.6 mm contiguous slices, with the exception of one scan from an 

older patient (14 months) that was reconstructed to 1 mm slices.    

  A single case feasibility design was used to pilot the workflow. The workflow was 

designed using the open-access software 3D Slicer (Version 11.0) (Fedorov et al., 2012). CT 

scans from a three-month-old female with right-sided UCS and a three-month-old female with 

normal skull morphology were used. The control skull was the only manipulated image in the 

workflow to reduce the possibility of artificially exaggerating or muting the deformity in the 

experimental skull.  

2.4.2 Design Considerations  

Clearly defined design features with justifications are an essential component of 

computer-assisted design in the medical field to promote future improvements (Burton et al., 

2018). The three design criteria selected for the deformity index workflow were user-

friendliness, accessibility, and objectivity. Usability in this study was defined as a procedure that 

a clinician could reasonably execute without additional technical support. This criterion was 

deemed necessary in order to maximize surgeon engagement with the workflow. The second 

criterion was accessibility and is a critical component to consider especially when working 

within the constraints of a publicly funded healthcare system. Open-source software was used to 

meet the accessibility criterion, a practice that is growing in popularity (Barbero-García et al., 

2017; Salazar-Gamarra et al., 2016) . Objectivity was the third design element that was 

incorporated into the workflow. Quantitative values are important in order to draw conclusions 

about skull geometry and may be more sensitive to subtle changes when compared to qualitative 

assessment alone. Maximum Hausdorff surface distances in millimeters (mm) were used as the 

objective measurements in the workflow (Huttenlocher et al., 1993).  
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2.4.3 Deformity Index Workflow Design 

A five-step measurement index workflow was developed that met all of the design 

criteria. These steps included alignment, registration, segmentation, surface distance calculation, 

and confirmation, in that order. A combination of manual and automatic steps are involved, as 

well as qualitative and quantitative assessment. 

2.4.3.1 Alignment  

The UCS and matched control CT scans are imported into 3D Slicer. Using the 

transforms function, the images are manually aligned in all three dimensions of translation and 

rotation (anterior-posterior, superior-inferior, right-left). The control skull is assigned as the 

‘moving image’ for the alignment and the registration steps. Figure 1 shows the axial, sagittal, 

and coronal views of the UCS and normal CT scans as they import in 3D Slicer. In panel A, the 

two images are superimposed. The first step is to translate the skulls in the super-inferior plane, 

as demonstrated from panel A to panel B. Helpful landmarks for this alignment are the sella 

turcica and the orbital roof on the non-synostotic side. Next, the normal skull is translated in the 

anterior-posterior plane to align the contours of the frontal bones. The nasofrontal angle and sella 

turcica are useful landmarks in the sagittal view to align the cranial vault. Following this step, the 

normal skull is rotated in the horizontal plane to bring the metopic sutures, as viewed on the axial 

image, into a parallel relationship. In panels C and D, a dashed white line bisecting the frontal 

bone at the metopic suture on each skull demonstrates this improvement. After this, the normal 

skull is translated again in the right-left dimension to align the frontal bones at the metopic 

suture.  

The deformity index is a calculation derived from the discrepancy at the frontal bones 

between a UCS and a normal skull. For this reason, the goal of the manual alignment step is to 

have the non-synostotic frontal bones line up on the axial and sagittal views as best as possible. 

Additional rotational and translational adjustments in the dimensions mentioned above can be 

used as necessary to achieve this goal before progressing to the subsequent registration step. 
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Figure 2.1 CT scans are imported into 3D Slicer with axial, sagittal, and coronal views visible (top row). Panels A to E demonstrate the manual 

alignment process. The star indicates which view the described changes are best visualized. From A to B, the anterior cranial vault and the sella 

turcica are aligned with an inferior translation, as best viewed on the sagittal view. From B to C, the frontal bone contours are aligned with an 

anterior translation, again best viewed on the sagittal view. In panel C, a line that bisects the frontal bones of each skull is imagined at the 

metopic suture in the axial view. The goal from steps C to D is to rotate the normal skull image in an axial plane so that these lines assume a 

parallel relationship. Then, the normal skull is translated in the left-right dimension to align the metopic sutures (D to E). Panel E demonstrates 

the end result of the manual alignment step. Panel F demonstrates the end result after the registration step. It is clear here that the non-synostotic 

frontal bones (patient’s left in this case) align well (white arrow). A subjective assessment of good bony overlap of the non-synostotic frontal 

bones in the axial slices is the endpoint of the registration step in this workflow. Once registered, the discrepancy in the forehead region on the 

synostotic side between the two skulls is apparent.  

2.4.3.2 Registration  

The control skull is registered to the normal skull using the general BRAINS registration 

function. The alignment saved in the previous step is used as the initialization transform for the 

registration. A rigid registration with scaling function with seven degrees of freedom is selected 

in the drop-down list and executed. Affine registration was not used to avoid asymmetric 

deformation of the normal skull. Once registered, the discrepancy in the forehead region between 

the two skulls at the synostotic side is very apparent (Figure 1, panel F). If the frontal bones do 

not line up after this step, the initial alignment is repeated with the goal of improving the 
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alignment of the anterior cranial vault.  

2.4.3.3 Segmentation  

There are a number of features associated with the UCS deformity, one of which is the 

flattening of the forehead on the fused side. The goal of this step is to isolate the flattened area 

and automatically calculate the point of maximum deformity. This point will be located where 

there is the greatest distance between the UCS skull and the registered reference skull. On the 

side with the prematurely fused suture, the UCS forehead bone will appear flattened and 

positioned further back compared to the normal reference skull. If, based on a qualitative visual 

assessment, the two skulls line up well at the anterior cranial vault after the previous registration 

step, this point of maximum discrepancy between the two skulls at the forehead region will be 

apparent (Figure 2). First, bone is segmented from each scan using the thresholding function. 

Small bone irregularities and foreign objects such as endotracheal tubes and nasal prongs can be 

segmented out in this step using the ‘erase’ and ‘delete island’ functions.  Once the whole skull is 

segmented from each image, the frontal bone on the synostotic (fused) side and the 

corresponding frontal bone on the control skull are segmented (Figure 2).  

 

Figure 2.2 In this image, the frontal bones corresponding to the synostotic side of the UCS skull are segmented. The blue skull is the UCS skull 

and the beige skull is the age and sex matched control skull. Surface models are generated representing the segmented frontal bones. The point 
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where there is the largest distance between the segments is automatically identified and the distance is calculated in subsequent steps. This 

represents the area where there is the largest deviation in the UCS skull from a normal control skull.  

In this step of the workflow, there are two important constraints to consider when determining 

the margins of the segmented frontal bone. The superior, inferior, medial and lateral limits of the 

segment are a) areas that are restricted to the frontal bones, and/or b) areas with significant bony 

overlap between the two registered skulls. The degree of bony overlap is a visual, qualitative 

assessment by the user. Qualitative assessment of registration accuracy has been described to 

confirm registration accuracy (Dangi et al., 2017). It is possible, especially when defining the 

superior and inferior limits that the second constraint is not met. However, the size of the area 

that is segmented is only limited to portions of the skulls that are well aligned following the 

registration step. This is demonstrated in Figure 3 where the same index value is generated 

between two different sized segmentations (panels B and C). In panel C, the segmentation was 

expanded more laterally compared to the segmentation in panel A to highlight that if the skulls 

are a good size match and consequently well registered, the same deformity index will 

automatically be calculated despite the segment size. However, a downside of using age and sex-

matched skulls is that it is challenging to align all areas of the two skulls, hence why the 

segmentations are limited to areas that are well registered. Potential areas that may not be well 

aligned when using age and sex-matched controls are commonly the orbits and the skull vertex. 

Therefore, these regions are consistently omitted in the segmentation. Including these 

components may result in calculating an index value away from the area of interest (frontal 

bones), as demonstrated in Figure 3 (panel E). The location where the index value is derived is 

confirmed in the last step.  
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Figure 2.3 The goals and potential pitfalls of the segmentation step are outlined in this figure, as well as the use of color maps to verify the 

location where the deformity index is calculated. Panel A shows the worm’s eye view of the segment of frontal bone isolated from the CT scan 

(top left). Panel B is a color map of the segment of frontal bone taken from the synostotic side in the UCS patient (blue skull), with information 

regarding the surface distances to the corresponding segment of the normal frontal bone (beige). Warm hues denote a distance further away from 

the UCS skull, which correspond to areas on the UCS frontal bone that are flattened when compared to the normal skull. Cool hues denote areas 

between the two skull segments that are close together, corresponding to areas of less deformity. In panel B, it is clear that the deformity index 

value of 7.329 mm is calculated from within the frontal bone segment, confirming that the value is calculated in the region of interest. In panel C, 

the same value is derived from a larger segment of the frontal bone. This emphasizes that the deformity index value will be identical between 

segments that are limited to the constraints outlined in the workflow. In panel D, the segmentation did not include sufficient frontal bone 

inferiorly, resulting in a smaller deformity index that is not representative of the true deformity. This is confirmed by the color map, which has 

warm hues at the inferior edge of the segmentation, and disappears from the same edge when the maximum threshold for the color map is 

reduced. This confirms that the deformity index was calculated from the edge of the segmentation, is not representative of the region of interest, 

and the segmentation step would require revision. Finally, panel E demonstrates what may happen if the first constraint is violated and the 

segment includes areas outside of the region of interest. In this case, the superior orbit of the UCS skull was included in the segmentation, again 

resulting in an erroneous deformity index that is not representative of the deformity at the frontal bones. In the confirmation step, it is clear that 

the maximum surface distance of 14.638 mm is derived from the region of the orbit as the warm hues are restricted to the portion of the superior 

orbit.  
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2.4.3.4 Surface Distance Calculation  

In the SlicerRT Extension, the Segment Comparison module is used to automatically 

calculate the maximum Hausdorff surface distances between the two frontal bone segments 

(Pinter et al., 2012) (Figure 3). This automatically calculated distance represents the largest 

deviation on the UCS skull from a normal reference skull. A larger distance corresponds to more 

frontal bone flattening on the synostotic side of the UCS skull, and can be used to represent a 

more severe deformity. The deformity index is the maximum Hausdorff distance value 

calculated in this step between the segmentations created in the previous step.  

Maximum Hausdorff surface distances were used to calculate the deformity index. This 

technique is commonly used when comparing one shape to another and determining how much 

they differ from each other (Huttenlocher et al., 1993). When comparing the forehead region of 

two different skulls, this distance represents a linear measurement from a distinct point measured 

on the UCS skull to a corresponding point on the normal skull. A linear distance is calculated 

along every point along the UCS forehead to a corresponding point on the normal forehead. For 

example, for each set of linear distances calculated from point A, on the UCS skull, to point B on 

the normal skull, the shortest distance from the UCS to the normal skull is determined. These 

calculations are made for every point on the UCS skull, and the maximum Hausdorff distance is 

the largest of these minimum values. Therefore, the deformity index value is the longest possible 

distance travelled from a point on the UCS skull to closest point on the normal skull. This 

distinction is important when using the Hausdorff distance to quantify deformity as it avoids 

calculating an erroneously large number, which would represent a large degree of deformity, 

from a linear distance calculated at an oblique angle from one point on the UCS skull to a point 

on the normal skull, for example. While a single value is generated using this method, it is a 

representation of a global shape since it is calculated after an analysis of every point along the 

entire surface of the model in question, which is the UCS skull in this application. Therefore, it 

overcomes the pitfall of measurement techniques such as the AUC of being reliant on the 

accurate alignment of anatomic landmarks. The AUC is measured from a single axial CT scan 

slice (Khechoyan et al., 2014). Therefore, in order to make meaningful comparisons to other 

skulls, the landmarks that dictate where the slice is chosen have to be clearly identified and 

consistently used. A drawback of reporting a maximum Hausdorff distance is that it does not 

give information regarding the area of the abnormal skull that is involved. For example, a skull 
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that has a forehead that is not positioned significantly posterior when compared to a normal skull 

but where the deformity occurs over a large area would still be assigned a small deformity index 

value. This has the potential to erroneously categorize a UCS skull with significant deformity as 

having a mild deformity.   

2.4.3.5 Confirmation  

Finally, a color map model is generated using the Model-to-Model Distance module 

(Figure 3). On the ‘Models’ screen, the maximum surface distance threshold on the color map is 

decreased to confirm that the measurements are taken from within the segmentation, and not 

from a margin of the segment. If decreasing the upper limit of the threshold makes the model 

disappear from a margin, the previous steps are repeated. Disappearance from the center of the 

segmentation confirms that the measurement is taken from within the segment, and the point of 

maximum surface distance between the two skulls is captured. If, in the confirmation step, it 

appears that the maximum distance was calculated from a margin of the segmentation, it cannot 

be confirmed that the deformity index calculated is from the maximum point of deviation at the 

frontal bones. 

2.4.4 Reliability 

The reliability of the index was assessed using test-retest reliability. Fifteen pairs of UCS 

and age/sex-matched control CT scans were collected (Table 1). One study pair (#11) was not 

sex-matched due to unavailability of a suitable control. However, the size difference between the 

skulls was minimal, and registration was still possible. The sample size was chosen based on the 

predicted availability of UCS CT scans based on incidence values and recent birth rate data in 

Alberta (Alberta Health, Analytics and Performance Reporting Branch, 2018), as well as to 

sufficiently power a correlation analysis. Each skull pair was input into the workflow developed 

in part one and assigned an index value of deformity. Maximum Hausdorff surface distances 

were collected for each UCS skull. The reliability of the measurement index was assessed using 

an intra-class coefficient.  The same assessor ran each skull pair through the workflow twice, 

with each trial separated by at least four weeks to minimize observer bias (Delgado-Rodriguez, 

2004). The intra-class correlation was calculated in R Studio (Version 3.6.1) as the test-retest 

coefficient between the two data sets. A p-value of less than 0.05 and a correlation coefficient of 

≥ 0.7 was considered evidence of high test-retest reliability (Hinkle et al., 2003). Lastly, a single 
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case of UCS was used as an illustrative example to demonstrate a potential application of the 

measurement index workflow. The workflow was used to quantify deformity for one UCS 

patient’s pre and postoperative skull after a CVR procedure. The two values were compared to 

quantify the degree of advancement achieved and to determine if the measurement index can be 

used as an indication of reconstruction success. As it is not standard practice at the study 

institution to image patients postoperatively, a single case design was chosen due to the paucity 

of postoperative CT scan data. 

Table 2.1 Age and sex matched participants for the study pairs 

 

 

2.5 Results  

The workflow met the outlined design criteria. Also, there is a conceptual alignment 

between the generated values and the visual salience of the targeted UCS feature (frontal bone 

asymmetry). The index value is generated from the frontal bone on the fused side of a UCS skull, 

which is flattened and retruded when compared to a normal skull. Figure 4 depicts two different 

UCS skulls that demonstrate varying degrees of forehead asymmetry. The top picture shows the 

forehead region of a UCS skull with a subtle deformity, whereas the bottom picture highlights 

Pair 

# 

Experimental Skull Control Skull 

Age (mos) Sex Age (mos) Sex 

1 7  F 7 F 

2 3  M 3 M 

3 4 F 4 F 

4 5 F 5 F 

5 3 M 3 M 

6 4 F 4 F 

7 5 F 5 F 

8 3 F 3 F 

9 5 F 5 F 

10 15 F 14 F 

11 6 M 7 F 

12 5 F 5 F 

13 3 F 3 F 

14 5 F 5 F 

15 9 F 8 F 
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the same area of interest but from a UCS skull that has apparent asymmetry. The values 

generated for these skulls (A = 1.99 mm, B = 10.36 mm) seem to reflect the varying degree of 

deformity. This suggests that there is congruence with the amount of frontal bone flattening and 

the index value.  

  

Figure 2.4 Panel A) depicts the bird’s eye view of the skull assigned the smallest surface distance value (1.99 mm), and panel B) depicts the 

same view of the skull assigned the largest surface distance value (10.36 mm). Skull A has a more symmetrical appearing forehead than skull B, 

and therefore the assigned index value corresponds with a subjective assessment of frontal bone deformity, at least at the extremes of surface 

distances.  

The deformity index values for the 15 UCS cases ranged from 1.99 – 10.36 mm (Table 2). The 

intra-class coefficient for the test-retest reliability analysis was high (ICC = 0.93, p = <0.001, CI: 

0.82, 0.98) for the maximum Hausdorff surface distance (Figure 5).  

 

Table 2.2 Results for test-retest reliability assessment. 

Pair # 

Maximum Hausdorff Surface 

Distance (mm) 

Trial #1 Trial #2 

1 5.95 5.95 

2 6.92 7.26 

3 6.62 4.61 

4 4.97 3.82 

5 7.80 7.81 

6 5.85 6.11 

7 8.53 8.73 
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8 5.28 4.85 

9 1.99 2.43 

10 4.60 4.42 

11 4.28 4.75 

12 5.34 4.73 

13 10.36 10.22 

14 2.81 4.12 

15 5.32 5.83 
 

 

 

Figure 2.5 Correlation between the maximum surface distances between the workflow trial one and trial two was 0.93 demonstrating high 

reliability and a measure that is reproducible.  

This indicates that this measure is highly reproducible.  For the illustrative example, a deformity 

index of 7.43 mm was calculated between the preoperative and the postoperative reference skull. 

This value represents the maximum frontal bone advancement achieved with the operation. This 

degree of advancement of the affected frontal bone is apparent on an axial view of both CT scans 

post-registration and segmentation (Figure 6).  
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Figure 2.6 An axial slice of the preoperative (blue) and postoperative (purple) CT scan of the same patient in figure 7 are registered. Areas where 

the preoperative and postoperative skull register and align well are displayed in a purple-blue color. The discrepancy between the frontal bones on 

the synostotic side (patient’s right side, top left in the figure) is apparent. In this application, the measurement index corresponds to the largest 

distance between the blue and purple skulls on the synostotic side. 

2.6 Discussion  

A single, open-source software program was used to develop an objective deformity 

index workflow for the UCS population that was used for two purposes: 1) to quantify the degree 

of deformity at the frontal bones, and 2) to quantify the impact of surgical intervention. The 

workflow’s combination of manual and automated components, as well as qualitative and 

quantitative assessment, allow for a clinician-friendly workflow that does not sacrifice reliability. 

The high intra-class coefficient demonstrates that the workflow is highly reproducible, despite 

having manual and qualitative components. Automation allows for a time-efficient process, a 

feature that may be attractive to busy surgical teams. 3D Slicer is a valuable and widely 

accessible tool for craniomaxillofacial surgical teams.  

The use of age and sex-matched CT scans as the control group also adheres to the user-

friendliness and accessibility criteria outlined for the proposed workflow. More surgeons are 

likely to have access to a database containing normative skulls as opposed to more sophisticated 

tools like statistical shape models, for example. The reliance on specific multi-atlas’ is a 

recognized limitation of advanced quantification methods (Mendoza et al., 2014). Processes that 

can be carried out without the need for outsourcing or consultation are advantageous from a time 

and cost perspective. In addition, a user-friendly and inexpensive method to assess reconstruction 
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outcomes may increase clinician productivity in this field. Methods of morphometric 

quantification that require expert consultation or proprietary software may be a barrier to their 

regular use. In addition, the cost of using advanced technology is a recognized deterrent 

(Barbero-García et al., 2017; Fisher et al., 2016; LoPresti et al., 2017; Martelli et al., 2016; 

Seruya et al., 2013). As methods like statistical shape modeling become more commonplace in 

the clinical environment, this could replace the use of age and sex-matched CT scans for a more 

precise workflow.  

The deformity index can be used to compare surgical outcomes in UCS correction 

surgery. The benefit of this application is that registering a patient’s preoperative CT scan to his 

or her own postoperative scan does not require the use of a matched normal comparison. As a 

result, the values that are generated are more likely to be a very accurate representation of the 

surgical changes in skull morphology. When postoperative CT scans are available, this method 

could be used to help surgical teams assess the effectiveness of different surgical techniques 

available for craniosynostosis corrective surgery.  

Having a method to quantify morphology in craniosynostosis is important not only to 

compare different surgical procedures but also to assess the benefits of using advanced 

technology in the peri-operative environment. This is relevant as virtual surgical planning (VSP) 

is being increasingly utilized for CVR (Fisher et al., 2016; Khechoyan et al., 2014; Mazzaferro et 

al., 2017; Queiros et al., 2017; Soleman et al., 2015; Xu et al., 2017). Advanced surgical 

planning technologies are especially useful when treating unilateral deformities, such as UCS 

that are asymmetric and additionally complex (Alford et al., 2018). A reliable and user-friendly 

method to describe deformity in UCS is required to assess the potential advantages of using 

advanced technology for VSP, as well as evaluating different surgical techniques. In addition, the 

deformity index could be used in the preoperative planning environment as a method to compare 

preoperative imaging to virtual reconstructions. The MeshStats module in 3D Slicer can be used 

to calculate maximum surface distances between models derived from CT scans and virtually 

reconstructed models.  

The proposed workflow derives an objective value of deformity at the affected frontal 

bone in UCS skulls. UCS was chosen as the target population due to available data and the added 

treatment complexity for this craniosynostosis subtype. However, the workflow does not require 
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the delineation of specific bony or soft tissue landmarks and is therefore flexible enough that it 

could be applied to different types of craniosynostosis. Changing the region of interest by 

segmenting and isolating different areas of the skull could make the workflow suitable to other 

subtypes. For example, a deformity index could be calculated bilaterally in metopic synostosis 

by segmenting out right and left frontal bones individually. In lambdoid synostosis, the workflow 

could be modified to segment out the posterior vault as opposed to the frontal bones to derive a 

deformity index.  

Lastly, visual aids, such as three-dimensional (3D) printed skull models, have 

demonstrated a benefit for parents of patients undergoing CVR (van Nunen et al., 2014). 

Displaying images depicting the change in skull shape (Figure 7) with corresponding numerical 

values for the amount of operative advancement may be a cost-effective and valuable tool in 

consultation and follow-up evaluations with patients and their families.   

 

Figure 2.7 The preoperative (blue) and postoperative (transparent purple) CT scans in a patient with UCS treated with a unilateral FOA are 

registered in order to appreciate the degree of frontal bone advancement. The postoperative skull is transparent in order to visualize the forehead 

contour of the preoperative skull. In the left panel, the improved forehead symmetry of the postoperative skull is noticeable on the bird’s eye view. 

In the top right panel, the non-synostotic (left) and synostotic (right) sides of the forehead are outlined. This patient was treated with a unilateral 

advancement, meaning only the right-sided frontal bones were advanced. In the bottom right panel, the light purple curve outlines the new 

contour of the forehead in the postoperative skull, compared to the light blue curve, which outlines the preoperative contour. The yellow arrow 

highlights the degree of advancement visible from this view.   
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2.6.1 Limitations 

 One of the limitations of this study is the use of age and sex-matched skulls. This method 

has been used previously to describe and measure deformity in a craniosynostosis skull (Chim et 

al., 2014; Dangi et al., 2017; Soleman et al., 2015). However, using a composite skull or a 

statistical shape model would increase the skull registration accuracy (Mendoza et al., 2014; 

Saber et al., 2012). Downsides of the latter techniques are that they require large volumes of CT 

scan data, which were unavailable at the study institution. In addition, age and sex-matched skull 

data is readily available to most clinicians. In contrast, more precise tools such as statistical 

shape models are more likely to require expert consultation and the presence of a large database 

of images in order to create a suitable tool. Although less precise, the use of age and sex-matched 

skulls as control data supports the workflow criteria of usability and accessibility and allowed for 

a highly reproducible index.  

 Another limitation of the presented workflow is the use of CT scan data. While using CT 

scans allows for the accurate registration of high-resolution images, subjecting infants to ionizing 

radiation is a concern. This has prompted the creation of head shape and volume quantification 

workflows based on 3D photogrammetry (Barbero-García et al., 2017; de Jong et al., 2017; 

McKay et al., 2010; Porras et al., 2019; Tu et al., 2019; Wilbrand et al., 2012). These are 

excellent tools to quantify cranial vault morphology, especially for long-term follow-up in order 

to obviate the need for repeated exposure to radiation. However, virtual surgical planning for 

CVR is increasingly popular and is currently reliant on CT scan data. In addition, as Wood et al. 

(2016) highlight that there are pitfalls with relying on clinical exams to diagnose 

craniosynostosis. As a result, some surgeons may find that the benefit of a precisely planned 

operation on an accurate CT scan diagnosis outweighs the risk of radiation exposure. Therefore, 

the potential applications of the deformity index in the surgical planning and consultation 

environments would be feasible with one preoperative CT scan. Additionally, the described 

index does not rely on specific bony or soft tissue landmarks. Therefore, it is plausible that a 

similar stepwise approach could be applied to radiation-free imaging modalities such as 3D 

photogrammetry. In this study, the CT scans used to calculate measurements had been previously 

obtained for clinical indications, and no infants were prospectively scanned for data collection.  
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2.6.2 Future Direction  

Future work in this area would focus on implementing a similar stepwise approach using 

open-source software with 3D photogrammetry images.  

2.7 Conclusion  

Quantifying cranial vault morphology in craniosynostosis is challenging, and outcome 

measures are inconsistently reported in the literature. A highly reproducible deformity index 

workflow for UCS that is user-friendly, objective, and accessible was developed. A stepwise 

process that allows clinicians to assess gross morphological differences or postoperative changes 

at the frontal bones in UCS may be beneficial in surgical planning and consultation. 
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Chapter 3: Perception Study 

3.1 Abstract 

Background 

Cranial vault remodeling aims at improving the aesthetic appearance of infants with 

unicoronal synostosis (UCS) by reshaping the forehead and reducing the potential for 

psychosocial discrimination. Peoples’ perception of craniofacial deformity plays a role in the 

stigma of deformity. The purpose of this study is to examine the relationship between objective 

skull deformity in UCS patients and laypersons’ perception of skull normality.  

Methods 

Forty layperson skull raters were recruited from the general public. Skull raters were 

asked to categorize 45 infant skull images as normal or abnormal. Twenty-one of the images 

were UCS skulls, and 24 were normal skulls. Skulls were displayed briefly on a computer to 

simulate a first impression scenario and generate a perceptual response. Chi-squared analysis and 

mixed-effects regression model were used to analyze the response data.  

Results  

Members of the general public were good at distinguishing between skull groups (χ2 (1) = 

281.97, p < 0.001). In addition, skull raters’ responses were predicted by the severity of 

deformity in the UCS skulls (b = -0.10, z = -2.6, p = 0.010, CI: -0.18, -0.02). A skull with a 

deformity value of 2.8 mm (CI: 1.8, 4.1) was equally likely to be rated normal or abnormal.  

Conclusions  

This is the first study investigating the relationship between objective skull deformity in 

UCS and public perception. Laypersons were good at distinguishing between normal and UCS 

skulls, and their perceptions of normality were predicted by the amount of skull deformity. 
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3.2 Background 

Unilateral coronal craniosynostosis (UCS) is a common subtype of craniosynostosis that 

affects the shape of an infant’s skull resulting in anterior plagiocephaly, a phenotype 

characterized by an asymmetric forehead appearance (Campbell & Derderian, 2014). Facial 

attractiveness ratings of children with craniosynostosis by laypersons are lower than their age 

and sex-matched peers (Collett et al., 2013). As a result, children with untreated craniosynostosis 

may face psychosocial adjustment challenges (Snyder & Pope, 2010). Cranial vault remodeling 

(CVR) surgery aims at improving the aesthetic appearance of children with UCS by reshaping 

the bones that form the contour of the forehead (Alford et al., 2018). Specifically, fronto-orbital 

advancement (FOA) consists of reshaping the frontal bones and the superior orbital region and 

remains a first-line treatment for UCS (Tahiri et al., 2017).   

Reported outcomes in the literature regarding surgical treatment for UCS focus attention 

on the restoration of a normal head shape and an improved aesthetic appearance. Photographic 

assessment is frequently used to demonstrate an aesthetic improvement, as well as reports on the 

presence of common morphologic features associated with UCS (Chim et al., 2014; Fisher et al., 

2016; Hilling & Vaandrager, 2006; Mardini et al., 2014; Soleman et al., 2015; Taylor et al., 

2015). Similarly, the popular Whitaker scale, a tool used to assess the severity of deformity in 

patients with craniosynostosis, is based on surgeons’ subjective assessment of a patient’s 

appearance (Whitaker et al., 1981). All of these methods rely on perceptions of experts in 

craniofacial reconstruction. However, previous studies on facial attractiveness have shown that 

patients’ perceptions may not always correlate with experts’ perceptions (Cochrane, 1999; Vargo 

et al., 2003).  

A primary goal of CVR is to improve the appearance of an infant’s head to prevent 

psychosocial discrimination later in life. In general, psychosocial discrimination is a 

consequence of perceptions of the general public as opposed to assessments of craniofacial 

experts. However, there are no outcome measurements that correlate surgical outcomes with 

laypersons’ perception of skull normality.  

3.3 Objectives 

The goal of this study was to determine if there is a relationship between an objective 

value of skull deformity and laypersons’ perceptions of skull appearances. Additional objectives 
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were to determine if there were other factors influencing peoples’ ratings of skull appearance, as 

well as to determine if there is a threshold value whereby members of the general public are 

unable to decipher the difference between a normal and a UCS skull. The primary interest in this 

study was to simulate and investigate a first impression scenario, thus mimicking a common 

situation where rapid judgments are made regarding peoples’ appearances.  

3.4 Materials and Methods 

3.4.1 Participants 

After institutional ethics review board approval (Pro85714), layperson skull raters from 

the general public were recruited for this study. All raters were adults living in Edmonton with 

non-surgical backgrounds. After obtaining informed consent, 40 layperson skull raters were 

recruited. The average age of the raters was 33.6 years (SD = 12.4), consisting of 21 females and 

19 males. Most of the raters had a post-secondary level of education (92.5%).  

CT scans from infants whose skull images were rated by the first group were also 

obtained. A waiver of consent was granted to access the infant skull data. The second group was 

subdivided into two cohorts; the control cohort consisted of skull images from infants with 

normal skull morphology, and the other cohort consisted of skull images from infants diagnosed 

radiographically with UCS. The control cohort consisted of computed tomography (CT) scan 

data retrospectively collected from infants less than two years of age, had CT head scans with ≤ 

1 mm slices in coronal, axial, and sagittal planes, and had no skeletal craniofacial abnormalities, 

including skull bone fractures and congenital deformities (i.e., craniosynostosis). Two years was 

selected as the maximum age cut-off for the skull groups, as this corresponds with when most 

children with craniosynostosis would be diagnosed by in order to take advantage of optimum 

surgical timing (Tahiri et al., 2017). The UCS cohort consisted of infants with similar age and 

sex demographics to the control group, but who had single suture coronal synostosis in the 

absence of any additional skeletal abnormalities. Skull data were collected from 45 infants. 

There were 21 participants in the UCS cohort and 24 participants in the normal skull cohort. The 

majority of the skull participants were female with right-sided UCS. The two cohorts did not 

significantly differ statistically regarding age (Mann-Whitney U = 184, p = 0.12) and sex (χ2 = 

0.164, p = 0.69) variables. Demographic data for the skull raters and the skull groups are 

summarized in Table 1 and Table 2.  
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Table 3.1 Summary of demographic data for the layperson skull raters. 

Demographic Characteristic Layperson Skull Raters 

 Number Percent 

Total 40 100.0 

Sex   

     Female 21 52.5 

     Male 19 47.5 

Level of Education    

     High school  3 7.5 

     Post Secondary  37 92.5 

 Mean ± STD Range 

Age        33.6 ± 12.4 22 - 73 

 

Table 3.2 Summary of demographic data for the skull cohorts. 

Demographic 

Characteristic  

Normal Skulls UCS Skulls 

 Number Percent Number Percent 

Total (/45 skulls) 24 53.3 21 46.7 

Sex     

     Female 17 70.8 16 76.2 

     Male 7 29.2 5 23.8 

Affected suture     
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     Right -- -- 17 81.0 

     Left -- -- 4 19.0 

 Mean ± STD Range Mean ± STD Range 

     Age (months) 7.0 ± 4.3 2 - 16 4.9 ± 3.0 1 - 15 

 

Surface distance values were used to quantify deformity in the UCS cohort and ranged 

from 1.97 mm to 10.36 mm, with an average value of 6.06 mm and a standard deviation of 2.06 

mm. Figure 1 displays the distribution of surface distance values.  

 

 

Figure 3.1 Distribution of surface distance values among the UCS skull cohort.  

3.4.2 Experimental Design 

 Three-dimensional (3D) skull models were generated for all 45 infant participants using 

an identical protocol. The digital imaging and communications in medicine (DICOM) data from 

CT head and/or CT facial bone scans were imported into the open-access software 3D 

Slicer (Version 11.0) (Fedorov et al., 2012). In 3D Slicer, the facial skeleton was segmented and 
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a stereolithography (STL) file was generated. Mandibles were removed from the image files to 

isolate the cranial vault as the region of interest. STL files were imported into KeyShot (Version 

8.2.80), rendering software to standardize the display environment for all skull models, as 

demonstrated in Figure 2 (i.e., lighting, color, skull orientation, etc.).  

     

Figure 3.2 Examples of skull models as they appeared on the computer screen. The skull on the left is an example of a normal 3D skull model 

generated for this study. The skull on the right is an example of a UCS 3D skull model generated for this study.  

A two-alternative forced-choice design was used for this study. Images were displayed to 

each skull rater on a Microsoft PowerPoint (Microsoft PowerPoint for Mac 2011, version 14.7.7) 

presentation on the same laptop computer (Figure 3). Each skull model was displayed on the 

screen for 300 milliseconds in randomized order, followed by five seconds to record a response. 

Raters were given a recording sheet with the skull number and the letter “N” or “A” to circle, 

corresponding to “Normal” and “Abnormal.” Following a brief training session on the features of 

normal infant skulls, participants began the study and were asked to record whether they thought 

each displayed skull was normal or abnormal. The experimental design was piloted five times to 

optimize the simulation of a first impression scenario and ensure a smooth flow of events. For 

the pilot sessions, stimulus duration and inter-stimulus duration was varied from 0.1 – 3 seconds 

and 3 – 5.3 seconds, respectively. Based on participant feedback regarding task difficulty, 

stimulus, and inter-stimulus duration were adjusted. 
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Figure 3.3 Experimental setup. Skull raters viewed the skull images on a laptop computer screen and were asked to categorize each skull as 

‘normal’ or ‘abnormal’. Responses were recorded on an answer sheet. Each skull was displayed for 0.3 seconds, and raters had 5 seconds to 

record a response.  

 

3.4.3 Surface Distance Measurement 

 Frontal bone surface distances were calculated for the UCS cohort in order to assign a 

quantitative value for cranial vault deformity in each skull. The degree of the deformity was 

determined using the workflow outlined in Figure 4. In 3D Slicer, a CT scan from the UCS 

cohort was imported, along with an age and sex-matched normal CT scan (control skull). The 

control skull was the only manipulated image in the workflow in order to reduce the possibility 

of artificially exaggerating or muting the deformity in the UCS skull. The skulls were then 

manually aligned, followed by an automatic geometry-based rigid registration to obtain the best 

inter-skull comparison possible. Once registered, the skull bones were segmented from the CT 

scans, and then further segmented to isolate the frontal bones for each skull. Hausdorff surface 

distances are standard units in medical image software analysis and were used to quantify UCS 

deformity at the frontal bone region in this study. In 3D Slicer, distances were automatically 

calculated in millimeters between the UCS and normal CT frontal bones using the Segment 

Comparison module. Using this method, a larger surface distance corresponds to a forehead that 

is positioned more posteriorly on the synostotic side when compared to an age and sex-matched 

normal skull. Normal skulls are used as the control skulls, and are therefore assumed to have a 

deformity value of zero millimeters. The value generated using this method served as a surrogate 

marker for the severity of anterior plagiocephaly in a UCS skull. Frontal bones were selected as 

the target area to measure deformity since they constitute the forehead, and therefore represent 

an area of the facial skeleton that is noticeable to onlookers. In addition, the frontal bones are 
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manipulated in FOA procedures to correct anterior plagiocephaly and are therefore of particular 

interest. 

 

Figure 3.4 Overview of the workflow used to determine surface distance values. This workflow is outlined in detail in Chapter 2.  

3.4.4 Analysis  

A chi-square analysis was used to determine if skull raters were able to distinguish 

between abnormal (UCS) and normal skulls. A mixed-effects logistic regression model was 

fitted to the response data for the UCS skulls to determine if the objective values of skull 

deformity impacted raters’ responses. A similar model was used to solve for a threshold value of 

deformity and was fitted to all available data, including the normal skulls. The threshold value 

was defined as the point along the surface distance scale, where the statistically estimated 

psychometric response curve assumed a value of 50%. This number represents the objective 

value of deformity, whereby the responses from the skull raters were equally divided between 

normal and abnormal. Skull presentation order was analyzed to determine if this factor 

influenced rater responses. 
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3.5 Results  

The skull raters were able to accurately distinguish between normal skulls and UCS 

skulls the majority of the time (χ2 [1, N=40] = 281.97, p < 0.001). When shown a UCS skull, 

layperson raters correctly categorized the skull as ‘abnormal’ 71% of the time. Similarly, when 

shown a normal skull, the raters categorized the skull as ‘normal’ 69% of the time (Figure 5).  

 

Figure 3.5 Results of the chi-squared analysis of skull rater responses. 

A mixed-effects logistic regression model fitted to the response data for the UCS skulls 

revealed that objective values of skull deformity predicted raters’ categorization of the skulls. 

Larger surface distance values for the UCS skulls, corresponding to more a significant forehead 

deformity, resulted in layperson raters being more likely to rank a skull as abnormal versus 

normal (b = -0.10, z = -2.6, p = 0.010 [CI: -0.18, -0.02]). 

Based on a mixed-effects regression model that was fitted to all the available data 

including normal skulls, a threshold value of deformity of 2.8 mm [CI: 1.8, 4.1] was determined 

based on the degree to which the objective value of deformity impacted responses (b = -0.27, z= 

-15.6, p < 0.0001 [CI: -0.30, -0.23]). The steeper slope in this model, compared to the model 

containing only UCS skulls, reflects the homogeneity of the values assigned to the normal skulls 

(i.e., all zeroes). The skull presentation influenced the rater responses, so that skull raters were 

1.4% more likely to rank each subsequent skull as normal as they progressed, resulting in a 

relative increase of ‘normal’ responses towards the end of the experiment.  
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3.6 Discussion 

 In a simulated first impression scenario, members of the general public were able to 

differentiate between normal and abnormal skulls. This performance is impressive given the 

complex geometry of an infant craniofacial skeleton and the very rapid exposure time in this 

study. This highlights the sensitivity of human visual perception to changes in facial symmetry, 

particularly in the upper third of the face, which has been demonstrated previously (Hohman et 

al., 2014).  

 In addition, UCS skulls with more severe anterior plagiocephaly were visually more 

salient than the skulls with a more subtle deformity. The methods of quantifying deformity in 

this study strictly isolated the asymmetry in the frontal bones of the UCS skulls. These findings 

suggest that while there are a number of skeletal differences between normal infant and UCS 

skulls, the characteristic features of contralateral forehead bossing and ipsilateral flattening is a 

feature driving peoples’ responses. This is in keeping with findings by Hohman et al. (2014) and 

Kim et al. (2013) that report humans are more perceptive to changes in upper versus lower facial 

symmetry.  

 Another factor that influenced raters’ responses was the order of skull exposure. People 

were more likely to categorize a skull as normal if it appeared later in the presentation. Response 

fatigue in two-alternative forced-choice tasks may have contributed to the response pattern in 

this study.  

 The threshold value of 2.8 mm determined in this study suggests a degree of UCS 

deformity that would be difficult to detect by laypersons. This value is consistent with findings in 

the perception literature and is close to the range determined by previous studies (3-4 mm) 

looking at perceptions of facial asymmetry and detectable differences (Choi, 2015; Chu et al., 

2011). Therefore, a 2.8 mm frontal bone discrepancy may serve as a reasonable goal to aim for 

when planning FOA procedures. Virtual surgical planning (VSP) for CVR is becoming more 

popular among craniofacial surgeons (Burge et al., 2011; Chim et al., 2014; Fisher et al., 2016; 

Jans et al., 1999; Khechoyan et al., 2014; LoPresti et al., 2017; Mardini et al., 2014; Mommaerts 

et al., 2001; Queiros et al., 2017; Safran et al., 2018; Seruya et al., 2013; Soleman et al., 2015; 

Zhao et al., 2012). VSP has been shown to reduce the subjectivity of surgical decision making, 

reduce operating time, and yield aesthetic reconstruction results (Chim et al., 2014; Khechoyan 
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et al., 2014; Seruya et al., 2013). With the development and implementation of cost-effective 

ways to consistently utilize VSP, it is likely to become an increasingly ubiquitous tool in the 

surgical planning environment. With that said, a quantitative endpoint that is easily measured 

using cost-free software may be a valuable component in the planning armamentarium for FOA 

procedures.  

CVR procedures are lengthy and associated with several risks, such as significant 

bleeding (Lee et al., 2012). The threshold value in this study may be useful information for 

consultation appointments between surgeons and parents of infants with UCS when considering 

treatment options. While the mortality and morbidity of these surgeries have improved over the 

years, the process of considering one’s infant for an invasive procedure involving removal and 

reshaping of the skull can be considered daunting.  

3.6.1 Limitations 

 One of the limitations of this study is the lack of small surface distance values for the 

UCS skull cohort (Figure 1), preventing the ability to determine a threshold value based on UCS 

data alone. However, a craniosynostosis diagnosis requires clinical suspicion based on noticeable 

deformity, therefore making it unlikely to detect UCS in infants who may have very minimal 

frontal bone asymmetry. Therefore, UCS data may not, by definition, be available for small 

deformities.  

 Additional limitations of this study are the lack of naturalness in the stimuli and the use 

of CT scans as the imaging modality. Regarding the stimuli, layperson raters were shown 3D 

skull models as opposed to pictures of infants’ faces. The absence of soft tissue in the study 

stimuli takes away from the applicability of the findings to everyday life. However, the amount 

of soft tissue present in infants less than two years of age is minimal, and the deformity present 

in the facial skeleton is likely to be well reflected in the soft tissue. In addition, while the data for 

this study were collected retrospectively, it is important to note that there are concerns with 

exposing infants to the degree of ionizing radiation associated with CT scans. Researchers 

conducting future perception studies should consider the use of 3D photogrammetry. Of note, CT 

imaging allows for precise mapping of the craniofacial skeleton and accurate outcome 

measurements, making it a popular modality for virtual surgical planning. Therefore, the use of 

CT images in this study is consistent with commonly employed virtual planning practices, 
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allowing the threshold information gathered to be related directly to the current planning 

environment.  

3.6.2 Future Direction 

 Future direction with this research includes conducting a similar experiment using 

clinical photographs or 3D scanning images of infants with uncorrected UCS to increase the 

transferability of the findings to a real-life scenario. In addition, while social discrimination is 

generally viewed as a construct of general public perception, it can be more accurately described 

as a result of one’s peers’ perceptions. Futures studies will involve recruiting child peers as skull 

raters to perform a similar task, and determining if there are differences between adult and child 

raters when it comes to craniofacial morphology.  

3.7 Conclusions 

This study investigated the relationship between objective skull deformity in UCS and 

public perception. Layperson raters were effective at correctly categorizing normal and abnormal 

infant skulls when displayed very briefly, simulating a first impression scenario. Laypersons’ 

perceptions of abnormality were predicted by an objective value of skull deformity, which was 

determined by surface distance values measured at the forehead region. The perceptual threshold 

value of deformity identified in this study is in keeping with values determined in other studies 

investigating perceptual visual thresholds in facial differences. This information may be helpful 

when counseling parents and patients, and for preoperative surgical planning of CVR surgeries.  
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Chapter 4: Computer Automation in Surgical Planning 

4.1 Abstract 

Background  

 Craniosynostosis is a common condition affecting 1 in 1000 infants. Unicoronal 

craniosynostosis (UCS) is a common subtype and results in a misshapen forehead. Cranial vault 

remodeling (CVR) is the primary method of treating UCS, and involves removing the abnormal 

bones, reshaping them, and securing them in place. CVR for UCS is especially challenging due 

to the asymmetric nature of the deformity. Computer automated surgical planning has recently 

been shown to be a feasible option to reduce the subjectivity of surgical decision making for 

CVR and reduce planning time by allowing a computer algorithm to determine the optimal 

surgical steps. Computer automation has not been used in the setting of UCS. The objectives of 

this study are to develop a virtual surgical workflow for CVR in UCS using the resources at the 

study institution, as well as to introduce automated steps into the workflow to build a conceptual 

framework for a fully automated surgical planning algorithm.   

Methods  

 The virtual surgical workflows were developed using Geomagic FreeformPlus software. 

A CT scan from a three-month-old female with right-sided UCS was used as the index case. The 

reconstruction models built using the workflow steps were analyzed using Hausdorff surface 

distances, comparing them to preoperative skull models as well as normal control models. 

Boolean operations and model registration were two techniques used to introduce automation 

into the virtual workflow. Fifteen iterations of introducing automation into the workflow were 

carried out. 

Results 

 The root mean square error of the maximum Hausdorff surface distances for the 

reconstruction model (0.69 mm) was smaller than for the preoperative model (1.64 mm) using 

the virtual surgical workflow, indicating it was closer in shape to a normal skull. Boolean 

operations and registration were introduced into the workflow and demonstrated success in 

outlining surgical regions of interest and repositioning these areas. The amount of frontal bone 
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advancement ranged from 3.089 mm to 10.478 mm. The amount of supra-orbital bar 

advancement ranged from -1.752 mm to 7.779 mm. Iterations #12 and #7 were the most 

successful at achieving a frontal bone and supra-orbital bar that were closest in shape to a normal 

reference skull, respectively. The degree of human involvement in the surgical planning process 

was decreased for the partially automated workflows. 

Conclusion 

A virtual surgical workflow was developed using in-house software that allowed for a 

successful virtual reconstruction of a UCS case. Introducing automated steps into the workflow 

allowed for reconstructions that were closer in shape to a normal skull than the preoperative skull, 

as well as a reduction in subjectivity of surgical decision-making. The degree of surgeon 

involvement varied between the iterations. Boolean operations and image registration were 

automated techniques that successfully outlined key regions of interest and suggested surgical 

steps. The information gathered from the iterative process will serve as the conceptual 

framework from which to develop a fully automatic surgical planning algorithm.  
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4.2 Background 

 

  Craniosynostosis is a relatively common birth defect affecting up to 1 in 1000 live births. 

Left untreated, craniosynostosis can affect normal brain growth and development, can cause 

visual impairment, and can have a significant psychosocial impact on the child (Tahiri et al., 

2017). Unicoronal synostosis (UCS) is a common subtype of craniosynostosis that is especially 

difficult to treat due to the asymmetrical nature of the deformity. Cranial vault reconstruction 

(CVR) is a primary method to surgically correct UCS, where the goals of surgery are to expand 

the intracranial volume, reduce the risk of abnormal brain growth, and to normalize head shape 

and appearance (Alford et al., 2018). 

The use of virtual surgical planning (VSP) has been increasing for craniosynostosis 

reconstruction. VSP has been shown to reduce intra-operative procedure length (Khechoyan et 

al., 2014; Msallem et al., 2017; Xia et al., 2006). Virtual technologies have demonstrated 

particular utility for complex craniofacial cases (Fisher et al., 2016; LoPresti et al., 2017). Time 

spent by the craniofacial surgeon deciding where to make osteotomies (cuts in the bone) and in 

what configuration to plate bone segments, is shifted from the operating room to the pre-

planning virtual environment. VSP also reduces the subjectivity of craniosynostosis 

reconstruction. Conventionally, surgeons perform osteotomies and plate bone fragments to 

transform a dysmorphic skull into a ‘normal’ appearing skull based on experience, guesswork, 

and trial and error. CVR surgeries are lengthy procedures, and the potential complications are 

severe, with significant blood loss remaining the most common cause of intra-operative 

morbidity and mortality (Lee et al., 2012). This further highlights the importance of using 

methods that reduce intra-operative time for these procedures.  

Recent efforts using VSP in CVR are focused on using normal skulls as a template to 

guide surgical osteotomies and plating (Burge et al., 2011; Delye et al., 2015; Marcus et al., 

2009). While studies have produced aesthetic results using this technique, time spent in meetings 

with the surgical team and the biomedical engineering team is significant, as are the costs 

involved, limiting the use of this technology to only a few tertiary centers (LoPresti et al., 2017). 

One center published their preliminary experience with VSP, quoting planning times of up to six 

days, and costs up to 6000 American dollars (Soleman et al., 2015). Therefore, there is a 
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potential role for computer automation in VSP for CVR, particularly in cost reduction and time 

efficiency. Efforts to decrease costs have included the use of open-source software and low 

fidelity 3D printers (Gerstle et al., 2014), however, planning time remains a barrier.  

Preliminary attempts at automating this process have demonstrated success (Porras et al., 

2016, 2017, 2018). Porras et al. (2016) introduced a transformation model to automatically 

generate a surgical plan for fronto-orbital advancement in metopic craniosynostosis. They 

improved their method by integrating bone bending in their updated procedure, involving a novel 

surface registration framework allowing transformations of individual bone components. In 

addition, they individually segment the typical components of an FOA procedure: the supra-

orbital bar (SOB) and frontal bones (Porras et al., 2018). Their results were automated surgical 

plans for metopic craniosynostosis remodeling with varying numbers of bone segments, resulting 

in overall significant improvements in head shape. Expert surgeons agreed on the usefulness of 

the proposed automatic surgical plans. The computation time to generate the surgical plans in 

this model was an estimated four hours. However, this was unsupervised time and did not require 

any human involvement (Porras et al., 2018). In addition, automatic surgical planning could 

reduce costs in centers that currently outsource their surgical plan. Downsides of this method are 

the reliance on experts in medical image analysis and computer science, which may be a barrier 

for centers without this degree of collaboration. A more user-friendly method that provides 

automated surgical plans would be beneficial to surgical teams.  

Using computer algorithms to generate surgical plans has the potential to reduce the 

subjectivity of surgical decision-making, planning duration, and resources. While VSP has 

demonstrated a benefit in CVR by reducing procedure duration, decreasing the subjectivity of 

surgeon decision making, and producing aesthetic reconstruction results, the cost and time 

investment of using advanced technology is prohibitive to its widespread use. In addition, 

surgical plans developed in a virtual environment are still reliant on subjective decisions made by 

the surgical team. The guesswork is reduced to an extent with the ability to use normal skull 

models as a reference. However, the decisions on where to cut and reposition the bone are still 

inherently subjective and based on surgeon experience. Corrective surgery for UCS is primarily a 

complex geometric problem. Introducing computer algorithms into the surgical planning process 

to solve a geometric problem may reduce the guesswork, cost, and time associated with VSP. 
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Recent data on automatic surgical pans for craniosynostosis in metopic craniosynotosis are 

promising. Published methods are mathematically advanced, and have not been applied to 

asymmetric craniosynostosis. Ultimately, computer automation in CVR planning may increase 

the availability of VSP, allowing more patients to benefit from precise preoperative planning.  

Time and pressure constraints on surgeons, as well as costs involved with advanced 

technology, are important criteria to consider in the design process for virtual workflows (Burton 

et al., 2018). Objectivity and accessibility are key design criteria in the development of a CVR 

workflow. Minimizing surgeon involvement in the surgical decision making process was a 

design criteria for the workflow developed in this study in order to reduce the degree of 

guesswork. As the sophistication of automated surgical planning increases, the role of the 

surgeon in the design process could be directed towards ensuring the fidelity of the finished 

product as opposed to making multiple subjective decisions in a time-consuming and 

unpredictable process. The goal of this study was to achieve this by using in-house software to 

replace virtual planning steps that are currently dependent on surgeon involvement with 

automatic steps, thereby increasing the objectivity of the surgical planning process. A method for 

automatic CVR planning that meets these design elements may increase the availability of 

advanced technologies in the surgical planning environment, and decrease the guesswork 

associated with CVR. 

4.3 Objectives 

  The objective of this study was to develop a virtual surgical workflow for CVR in UCS 

at the study institution. Secondary objectives were to automate certain components of the 

workflow to reduce surgeon involvement in the planning process. The goal of this component 

was to create a workflow that had a combination of surgeon involvement and automated steps 

that could serve as a conceptual basis for the future development of an automated surgical 

planning computer algorithm.  

4.4 Materials and Methods  

 An iterative design process was used to develop virtual workflows in this study. The first 

step was creating a framework for a virtual fronto-orbital advancement (FOA) using the software 

available at the study institution. In-house workflow development adhered to the accessibility 

and cost-effective design criteria as the costs of outsourcing development were avoided. This 
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initial framework is referred to as the ‘manual workflow design’ in this chapter. This reflects the 

need for direct surgeon involvement for all steps of the workflow. The workflow is dependent on 

a surgeon making repeated subjective decisions on how to improve skull shape and guide the 

planning process. In subsequent iterations, categorized in this chapter under ‘partially automated 

workflow design,’ certain steps in the workflow were automated by introducing techniques such 

as Boolean operations and registration. These automated steps reduce the direct involvement of 

the surgeon and therefore reduce the amount of guesswork involved for surgical planning. All of 

the fifteen automated workflow iterations vary in the degree of surgeon involvement required. 

There are iterations that follow a rigid algorithm design requiring zero subjective input from the 

surgeon, and others that follow a semi-rigid paradigm and require a degree of surgeon guidance 

in the planning process. Reconstruction success was determined by comparing reconstruction 

models to preoperative skull models as well as normal control skull models. In general, a skull 

that is reconstructed to be closer in shape to a normal skull, and further in shape to the 

preoperative dysmorphic state, represents a successful reconstruction. 

4.4.1 Participants 

A single case feasibility design was used to pilot the manual and automated workflow 

development. Both workflows were designed using Geomagics FreeformPlus software (Version 

2017). The pilot case was a three-month-old female with right-sided UCS, and an age and sex-

matched normal skull was used for the comparison in the automated workflow. CT scans were 

identified using a local radiology database. The same steps previously described to generate 3D 

skull models were used in this study (Robertson et al., 2020). The skull models were exported as 

stereolithography (STL) files and imported into Geomagics Freeform.  

4.4.2 Manual Workflow Design  

4.4.2.1 Step 1: Importing Skull Models 

A registered normal and UCS skull is imported into FreeformPlus (Version 2017). In 

Figure 1, the calvariae of the UCS and the normal skull models are shown from an anterior view 

and a bird’s eye view. The flattened frontal bone on the synostotic side of the UCS skull is 

especially apparent in the bird’s eye view.  
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Figure 4.1  The UCS skull (left) is shown in the bird’s eye view and frontal view. The normal control skull (right) is shown in the same views. 

The frontal bone on the side with the fused suture in the UCS skull (pink star) is flattened when compared to the contralateral side and the normal 

control.  

4.4.2.2 Step 2: Isolating the SOB 

Next, the Select Clay tool is used to highlight the SOB, as shown in Figure 2. The lasso 

and square select tool are used. The Square tool easily allows for a horizontal plane at the 

superior margin of the SOB, and the Lasso select tool allows for precise adjustments to be made. 

For example, the osteotomies made at the superior orbital roof can be detailed with the Lasso 

select tool. The ruler is used to ensure the distance between the superior margin of the SOB and 

the superior margin of the orbit is approximately one centimeter.  

 

Figure 4.2 The SOB (green) is virtually selected using the Lasso and Square Select Clay tools.  

4.4.2.3 Step 3: Isolating the Frontal Bones  

The same tools in step two are used to isolate the frontal bones. The right and left frontal 

bones may be virtually osteotomized as one piece, or as separate pieces. The same is true for the 

SOB.  
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Figure 4.3 The right and left frontal bones (green) are selected using the lasso and square select clay tools.  

4.4.2.4 Step 4: Virtual Osteotomies 

Once the SOB and the frontal bones are isolated, they are virtually osteotomized by 

deleting them from the original skull model and copy/pasting them as new pieces. These pieces 

can be advanced, rotated, translated, switched from right to left, and bent as needed to 

approximate a normal head shape. The normal skull model can be made transparent to use as a 

guide. Figure 4 shows the SOB, and the frontal bones removed from the skull as a single piece, 

or separated into right and left pieces, and the resulting skull model. 

 

Figure 4.4 Bone pieces osteotomized in a FOA surgery are removed from the skull model. The resulting skull model is shown on the right. This 

model is used to build the final reconstruction model. Note - only the frontal bones are removed in the skull pictured on the right. In a FOA 

procedure, both the SOB and the FBs would be removed, reshaped, and fixated.  
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4.4.2.5 Step 5: Bone Manipulation  

In this step, the pieces that are osteotomized in step four are manipulated to approximate 

the shape of the normal control skull. The Bend Clay tool can be used to bend the bony pieces, 

and the Reposition Clay tool can be used to translate, rotate, and exchange pieces from the right 

side to the left side. In Figure 5, the bend tool is shown reshaping the SOB.  

 

Figure 4.5 The original SOB from the UCS skull is shown on the left. On the right, the Bend Clay tool is shown altering the shape of the SOB. 

The area in green is being manipulated virtually.  

An example of a possible reconstruction is shown in Figure 6. In this example, the SOB 

is bent and advanced anteriorly. The right and left frontal bones are osteotomized separately, and 

rotated each 180 degrees. In addition, they are exchanged from the right side to the left side and 

vice versa.  
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Figure 4.6 An example of a FOA procedure for UCS is shown. Panel A is the preoperative skull model, and Panel D is the reconstruction model. 

In Panel B, the SOB is shown being translated anteriorly. In Panel C, the right and left frontal bones are being rotated, and exchanged from right 

to left.  

 

A summary of the manual virtual workflow for an example of a FOA procedure is shown in 

Figure 7. 

 

Figure 4.7 The virtual workflow for a FOA procedure in a patient with UCS is shown. This is one example of how the bone components can be 

manipulated in order to approximate a normal head shape.  

4.4.3 Partially Automated Workflow Design 

The key concept behind introducing automation into the virtual workflow for FOA is the 

use of Boolean functions and registration of key regions of interest (ROIs) to reshape a UCS 

skull. The ROIs for an FOA are the SOB and the frontal bones (FBs). These pieces are mobilized 

using the manual workflow previously described. The ROIs are registered to the control skull in 

an effort to achieve a UCS reconstruction model that more closely approximates a normal head 

shape compared to the preoperative model. The registration function in FreeformPlus (Version 

2017) automatically positions an ROI in relation to the reference skull by minimizing the surface 

distances between each model. This eliminates the need for a surgeon to manually outline and 

advance the FB and SOB.  

Fifteen iterations of the automated workflow design were executed. Key components of 

the iterations involve Boolean functions to delineate the FB ROI, SOB ROI, and registration of 

the ROIs.  
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4.4.3.1 Frontal Bone Region of Interest  

When the UCS and the control skulls are registered, the region of the UCS skull that is 

more retruded compared to the control skull is apparent (Figure 8). On a bird’s eye view, this 

area of retrusion is also visible (Figure 9).  

 

Figure 4.8 In Panel A, the UCS skull model (grey) and the control skull model (beige) are shown registered to each other. The area at the frontal 

bones where the grey skull is posteriorly positioned compared to the beige skull is apparent. This region is outlined in blue in Panel B.  

 

 

Figure 4.9 In Panel A, a bird’s eye view of the UCS skull and the control skull registered to each other is shown. The red line outlines the 

contour of the normal skull forehead. In Panel B, a bird’s eye view of the UCS skull is shown. In Panel C, the area where the UCS forehead is 

retruded compared to the control skull is apparent. The white arrow highlights the anterior translation of the frontal bones that a surgeon aims to 

achieve in UCS with an FOA procedure.  

 

The Boolean Subtraction function is used in Freeform to remove the control skull from the UCS 

skull. This removes bone from the UCS skull where it was intersecting or overlapping with the 

control skull, highlighting the FB ROI, as shown in Figure 10.  
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Figure 4.10 In Panel A, the UCS skull is shown after the control skull is subtracted from it using the Freeform Boolean function. The gaps in the 

skull model are areas where the normal skull intersected or overlapped with the UCS skull. The FB ROI is highlighted in green in Panel B.  

 

 In the later iterations of the partially automated workflow, the SOB and FB ROIs were 

distinguished from each other. With that distinction, the automatically derived FB ROI is refined 

so that it does not cross the superior margin of the SOB (Figure 11). This margin is placed about 

one centimeter superior from the superior orbital rim on the affected side. In the case example, 

this is the right side.  

 

Figure 4.11 With the SOB ROI defined, the FB ROI (grey) is refined with an inferior margin that does not cross the superior margin of the SOB. 
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4.4.3.2 Supra-Orbital Bar Region of Interest  

The SOB ROI is outlined using the same method as described above in the manual 

workflow. The SOB ROI was separated into two components: the abnormal side, corresponding 

to the retruded portion of the SOB when compared to the normal SOB, and the normal side, 

corresponding to the well-registered portion of the SOB when compared to the normal SOB 

(Figure 12). This was done in an attempt to improve the registration of the SOB to the normal 

SOB. Because the normal component of the SOB was well registered to the normal SOB 

reference, there was limited movement of the SOB when attempting to automate the 

advancement. However, due to the increased irregularity of the SOB shape and differences in 

registration to the normal skull, this resulted in a SOB with various areas of missing bone, which 

does not simulate a realistic surgical scenario (Figure 13).  

 

Figure 4.12 The UCS SOB (beige) is registered to the control SOB (grey). On the patient’s left side, which corresponds to the non-synostotic 

side of the skull, the UCS SOB is registered well to the control SOB. Areas that are well registered have good bony overlap between the grey and 

the beige skulls. On the patient’s right side, corresponding to the synostotic side, the UCS SOB is clearly retruded compared to the control SOB 

and is not well registered. The distinction between the abnormal and normal components of the UCS SOB (red line) is the point where the UCS 

SOB transitions from being well registered to the control SOB, to where it is not well registered to the control SOB.  
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Figure 4.13 In A, the UCS SOB (beige) and the control SOB (grey) are registered and shown from a bird’s eye view. In B, the control SOB is 

subtracted from the UCS SOB via a Boolean function. Panel C demonstrates the problematic resulting UCS SOB with the various areas of 

missing bone.  

 

 To overcome this problem, a manual step is introduced. Boolean subtracting the normal 

component from the entire SOB automatically delineates the abnormal components of the UCS 

SOB. This resulted in a depression in the UCS SOB that identified the transition between the 

normal and abnormal SOB (Figure 14). This depression is used as the boundary when manually 

selecting and then deleting the normal component of the SOB to form a refined SOB ROI. In 

later iterations, the normal component was not removed from the UCS SOB, and this boundary 

was used to determine where to make the initial bend in the SOB. In this context, normal and 

abnormal components are referring to the UCS SOB. Therefore, the SOB is still from an 

abnormal UCS skull. Normal and abnormal refer to components of the SOB that are well 

registered and non-well registered to a control reference SOB, respectively. How well a ROI is 

registered is determined based on a three-dimensional, qualitative, visual assessment by the 

software user.   
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Figure 4.14 Panel A – the UCS SOB after the control SOB is subtracted from it results in excessive bone loss. The green portion is the abnormal 

component of the SOB, and the area of interest when recreating a normal SOB. Panel B – subtracting the normal component of the SOB from the 

abnormal component results in a depression. Panel C – the distinction between the normal and abnormal SOB components is identified and used 

as the boundary to select the normal component. Panel D – the abnormal SOB ROI remains and is used in multiple iterations to approximate a 

normal SOB.  

 

 In some iterations, a bend was introduced into the workflow to reshape the SOB. The 

method in Figure 14 to define the transition point between the normal and abnormal SOB 

components is used to identify where to make the first bend in the SOB (Figure 15).  
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Figure 4.15 Panel A – the intersection between the normal and abnormal SOB is used to define where to initially bend the SOB. Panel B – The 

SOB after the first bend. Panel C – the SOB after the second bend. Panel D – the SOB after the third bend. Panel E – the final reconstructed SOB 

after the fourth bend. 

4.4.3.3 Registration of Regions of Interest  

Once the FB and SOB ROIs are determined, the registration function in Freeform is used 

to optimize their position in relation to the control skull. The goal is to have the UCS FB and 

SOB automatically move to a position that most closely resembles a normal forehead contour. 

The stop criterion for the registration is when the ROI has stopped moving after two consecutive 

registration attempts. Movement is determined as a visually apparent change as determined by 

the workflow operator. The visually noticeable assessment was chosen because if the ROI does 

not move a degree that is clearly visualized, it is not likely to have made a clinically meaningful 

change in position. Figure 16 demonstrates the registration of the FB ROI in workflow iteration 

#3. In this example, the FB makes a very minimally noticeable advancement after registration. 

Conversely, in iteration #2, the FB ROI was a slightly different shape, and the degree of 

advancement after 30 registrations is very noticeable (Figure 17). As a result, the contour of the 

forehead in the reconstruction model for iteration #2 is similar to the contour of the control 

forehead. A summary of the 15 automated workflow iterations key features, pros, cons, and 

reconstruction models are outlined in Table 1. Reconstruction models were built using the union 

Boolean operation, combining the FBs, SOB, and remaining skull model. 
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Figure 4.16 In iteration #3 of the automated workflow, the FB ROI does not make a large visibly noticeable advancement. Panel A depicts the 

RB ROI. Panel B demonstrates the FB ROI (beige) after the first registration to the control skull (grey). Prior to registration, no part of the beige 

ROI was visible in front of the control skull. Panel C shows the FB ROI after the tenth and final registration. It is noticeable that the surface area 

of the beige FB ROI that is in front of the grey control skull has increased when compared to Panel B. This indicates that the FB ROI advanced 

further between registrations one and ten. Panel D shows the final reconstruction model.  
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Figure 4.17 In iteration #2 of the automated workflow, the FB ROI (beige) makes a visibly noticeable advancement, translation, and rotation to 

approximate the shape of the control skull (grey) forehead. The improved contour of the forehead is noticeable on the worm’s eye view of the 

skull models. In the top left image, the UCS FB ROI (beige) is seen completely posterior to the control skull forehead, which is transparent in 

these images in order to visualize the FB ROI throughout the registrations. There were no changes made to the SOB in this reconstruction model.  
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Table 4.1 Summary of the 15 iterations of the partially automated workflow. 
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4.4.4 Analysis 

The manual VSP workflow was analysed using Geomagic Control (Version 2015.3.1.0). 

Maximum Hausdorff surface distances were calculated at four points along the forehead in the 

reconstruction skull model compared to the control skull model. These points (Figure 18) are 

approximate points that represent four quadrants of the bony forehead. Points A and B are 

measured at the right and left SOB, and points C and D are measured at the right and left frontal 

bones, respectively. The root mean squared error (RMSE) of the maximum surface distances at 

each point was calculated using the equation below.  

 

xrmse = √ [(xA
2 + xB

2 + xC
2 + xD

2)/4] 

 

A smaller RMSE represents a model whose forehead quadrants are closer in shape to a normal 

reference skull than the preoperative UCS skull. Therefore, a smaller RMSE value represented a 

successful reconstruction and a surgical workflow that leads to a successful virtual operation. In 

addition, color maps were generated in Geomagics Control to qualitatively assess the 

improvement in skull morphology at the frontal bones and superior orbital bar. Lastly, input from 
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an expert surgeon was obtained to assess the fidelity of the virtual surgical workflow. Each 

workflow step was carefully reviewed to ensure they simulated real-life operative procedures as 

closely as possible.  

 

Figure 4.18 Points A and B represent the right and left SOB of the skull model, and points C and D represent the right and left frontal bones, 

respectively. These represent the four points where maximum Hausdorff surface distance measurements were taken to analyse the shape of the 

virtually reconstructed skull.  

 

Results for the automated workflow were analysed in 3D Slicer (Version 10.2). The 

Model To Model Distance and Mesh Stats modules were used to calculate the maximum 

Hausdorff surface distances between the reconstruction models and the preoperative UCS skull 

at the SOB and the frontal bones. This was done to assess the degree of advancement of the bony 

components. The same method was used to calculate distances between the reconstruction 

models and the normal control skull, to assess the similarity between the reconstruction model 

and normal skull morphology. Skulls that had a large surface distance value in comparison to the 

preoperative skull, and small surface distance values in comparison to the normal skull were 

considered successful reconstructions. In addition, color maps for all skull reconstruction models 

were generated using the Shape Population Viewer module to qualitatively assess the skull 

morphology.  
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4.5 Results 

4.5.1 Manual Workflow Design  

The RMSE of the maximum surface distance values for the preoperative UCS skull was 

3.28 mm, and the value for the model reconstructed using the manual virtual workflow was 

smaller at 1.38 mm (Table 2). The overall improvement in the forehead contour in the 

reconstruction model is appreciated by the color map comparison of the two models (Figure 19). 

In the surface distance comparison of the UCS skull and the control skull, there is a clear 

asymmetry in the distribution of color, with an orange/yellow area above the right orbit that is 

not present above the left orbit. Conversely, in the surface distance comparison of the 

reconstruction skull to the control skull, the distribution of warm and cool colors is more 

symmetrical, with warmer tones being central and cooler tones presenting laterally (Figure 19). 

The improvement in the RMSE values and the symmetry of the reconstruction model indicate 

that the manual virtual workflow produced a skull model that is closer in shape to a normal skull 

compared to the preoperative shape. The workflow steps were reviewed with a surgeon 

specializing in pediatric craniomaxillofacial reconstruction and were deemed to be a reasonable 

representation of real-life surgical steps.   

Table 4.2 Summary of maximum Hausdorff surface distances between the preoperative UCS 

skull model and a control skull, and the postoperative reconstruction UCS model and a control 

skull. The reconstruction skull was created using a manual VSP.  
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Figure 4.19 Color maps displaying surface distances values between the preoperative UCS skull model and the control skull (left), and the 

reconstruction UCS skull model and the control skull (right). Warmer tones represent larger distances between the skull model and a normal skull, 

representing areas that are less similar to a normal skull than cooler tones.  

4.5.2 Automated Workflow Design  

The results for the 15 reconstruction models compared to the preoperative UCS skull 

model are listed in Table 3. The model with the largest surface distance compared to the 

preoperative model at the FB was #14, with advancement of 10.478 mm. Models #15 and #12 

had the second and third largest values for the FB advancement at 10.407 mm and 8.427 mm, 

respectively. The model with the largest surface distance compared to the preoperative model at 

the SOB was #11, with a maximum advancement of 7.889 mm. Models #9 and #10 had the 

second largest value at the SOB with an advancement of 7.887 mm.  

 The models that achieved the smallest degree of advancement for the FB and SOB were 

#11 (3.089 mm) and #3 (-1.752 mm), respectively. The SOB in model #3 had a maximum 

surface distance value that was negative, indicating the SOB in the reconstruction model was 

even more retruded than in the preoperative scenario. The color maps displaying the maximum 

surface distance values are helpful in visualizing the virtual surgical changes (Figure 20).  
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Table 3. Maximum surface distance values between the FB and SOB of the reconstruction UCS 

model compared to the preoperative UCS model.  
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Figure 4.20 Color maps depicting the maximum surface distances calculated between the preoperative UCS skulls and the reconstruction models 

demonstrate the virtual surgical changes.   

 The results for the 15 reconstruction models compared to the control skull model are 

listed in Table 4. Color maps were created for the frontal bone ROI (Figure 21) and the SOB 

ROI (Figure 22) compared to the corresponding control skull ROIs using the same scale as the 

comparison in Figure 20. The color maps for the comparison to the normal skulls were limited to 

the specific ROIs because the skulls do not register perfectly in multiple areas of using the whole 

skull since they are from different people. This is in contrast to the preoperative and 

postoperative comparison where all areas of the skull that are not manipulated line up well since 

both skull models are from the same patient. For the normal skull comparison, the average 

surface distance values are also of interest. For the previous comparison, the maximum amount 

of surgical advancement is of interest, and therefore, the maximum surface distance values are 

reported. In contrast, when comparing the reconstruction model to the control skull, how close 

the overall shape approximates a normal skull is of interest. In addition, the maximum value may 
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represent a small area of local deformity or artifact at the edge of a model or bone piece. For 

these reasons, the location where the maximum values were obtained was confirmed using the 

same method in Chapter 2. Therefore, the maximum and mean surface distance values are 

reported for the SOB and FOB of each reconstruction model.  

Table 4.4 Maximum and mean surface distance values between the FB and SOB of the 

reconstruction UCS model compared to the control skull model.  
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Figure 4.21 Color maps for the FB ROI for the 15 reconstruction models are shown. Cooler tones indicate a small distance between skulls, and 

warmer tones indicate a larger distance. Frontal bones in this figure that are bluer are more similar to a normal reference skull, and frontal bones 

that have areas of green are les similar to a normal reference.  
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Figure 4.22 Color maps for the SOB ROI for the 13 reconstruction models that isolated the SOB are shown. Cooler tones indicate a small 

distance between skulls, and warmer tones indicate a larger distance. Cooler tones indicate similarity to a normal reference skull, and warm tones 

indicate areas where the SOB was not close in shape to the normal reference.  

 

The reconstruction models with the smallest mean surface distances compared to a 

control skull at the FB were #12 (0.015 mm), #14 (-0.089 mm), and #2 (0.103 mm). The 

reconstruction models with the smallest mean surface distances compared to a control skull at the 

SOB were #7 (0.421 mm), #9 (0.456 mm), and #12 (0.475 mm). These models achieved the 

closest FB and SOB shape to a control skull. On the other hand, reconstruction models that had 

the largest mean surface distances compared to a control skull and did not approximate a normal 

head shape very well were models #11 (0.852 mm), #10 (0.712 mm), and #5 (0.551 mm) for the 

FB, and models #5 (2.031 mm), #4 (1.778 mm) and #8 (1.027 mm) for the SOB.  

Model #12 was the highest overall performer, and models #5 and #8 were the lowest 

overall performers. Model #12 was the only model that achieved advancement and normality in 
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both ROIs, whereas models #5 and #8 achieved poor advancement and poor normality in both 

ROIs (Table 5). All other models’ successes were limited to either the frontal bone or the supra-

orbital bar.  

Table 4.5 The highest and the lowest performing models are presented. Overall high 

performance was determined by highest degree of advancement and/or high degree of normalcy 

in both ROIs. Overall low performance was determined by lowest degree of advancement and/or 

low degree of normalcy in both ROIs.  

 

4.6 Discussion 

An in-house manual VSP workflow was developed using Geomagics FreeformPlus 

(Version 2017) software. The workflow was used to simulate a FOA in a three-month-old female 

with UCS. The skull model reconstructed using the workflow had a forehead that was closer in 

shape to a normal skull and was more symmetrical based on a qualitative assessment. The benefit 

of the manual workflow is that a surgical team can simulate an operation multiple times virtually 

without any consequence to the patient. The downsides are that all of the steps are still dictated 

by subjective decisions made by a surgeon. This guesswork has been attributed to unreliable 

results and a large variation between surgeons regarding reconstruction outcomes in CVR 

(Soleman et al., 2015). To reduce this subjectivity, Boolean operations on polygons and 3D 

model registration were introduced to create a partially automated workflow for a FOA 

procedure that had a reduced need for surgeon involvement to guide the planning process.  
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 Boolean operations on polygons are very popular methods for designing solid objects. 

Typically primitive shapes are introduced, and new objects and 3D models can be created by 

using the three types of Boolean functions: union, difference, and intersection (Masuda, 1993). 

Boolean operations have been used previously in VSP, particularly for a surgical guide and splint 

design (Charton et al., 2017; Chen et al., 2016; Lin et al., 2006; Zhan & Chen, 2016). Similar to 

this study, Wang et al. (2014) used Boolean subtraction to outline the surgical region of interest 

to create an aesthetically pleasing toe-to-thumb transfer. This is the first study that uses Boolean 

operations to outline surgical ROIs in virtual cranial vault remodeling. Subtraction, or difference, 

was used in this study by taking advantage of the fact that a UCS skull and a normal skull that 

are registered to each other will overlap in areas of less deformity. Intuitively, areas of the UCS 

skull that are less dysmorphic, and therefore, more normal will line up well with a normal skull 

reference. On the other hand, in areas like the flattened frontal bone on the UCS skull, the skulls 

will only overlap in areas surrounding the dysmorphic bone, forming a perimeter around the area 

of flattening. This perimeter is used to highlight the area that requires surgical advancement 

automatically. Using this method to automatically derive the FB ROI and register it to the normal 

skull model resulted in minimal advancement and residual deformity, as seen in low performing 

models #5 and #8 (Figure 21). However, for iteration #12, the ROI formed by the Boolean 

operation was manually smoothed and then registered, resulting in far more advancement of the 

FB and improved skull morphology (Figure 22). This suggests that the workflow would benefit 

from a smoothing function to avoid the need for human intervention to uphold the goal of 

automation.  

 Another advantage of using this method to automatically outline a FB ROI is that 

information is provided regarding the surface area over with the deformity spans in a UCS skull. 

One of the pitfalls of using maximum Hausdorff surface distance measurements to quantify 

deformity is that is does not provide information on the size of the affected area on the abnormal 

forehead. Combining the deformity index in chapter two with the automatically derived ROIs 

provides more information regarding skull morphology.  
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Figure 4.23 Reconstruction models #5 (top row), and #8 (bottom row) were poor performers among the fifteen automated workflow iterations. 

The A panels show the reconstruction models, B panels show the comparison to the preoperative skull, and C panels show the comparison to the 

normal skulls. The FB ROIs when derived and registered fully automatically do not result in a much-improved forehead contour.  

 

Figure 4.24 Reconstruction model #12 is displayed (Panel A), along with the comparison between the preoperative skull (Panel B), and the 

normal skull (Panel C). The edges of the FB region in model #12 are manually smoothed based off the ROI defined by automation. The resultant 

skull was closer in shape to a normal skull, suggesting the edge smoothing is an important feature to consider in a final algorithm.  

The same Boolean subtraction approach was applied to the SOB, but results were less 

consistent and of limited utility. For example, skull models that had large maximum surface 

distance values when compared to preoperative models did not necessarily result in a SOB that 

was close to a normal shape. An example of this would be reconstruction model #8 that had a 

larger surface distance value compared to model #7 but resulted in a less normal SOB shape 
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(Figure 23). Conversely, model #7 had one of the smallest advancements but resembled more 

closely a normal SOB. The superior and inferior rotation was not controlled in the automated 

workflow when registering the SOB to a normal reference and likely contributed to this 

inconsistency. As a result, a large distance could refer to a large downward rotation, limited 

anterior translation, and, therefore not correlate to a clinically improved SOB. Limiting planes of 

motion for specific surgical maneuvers such as SOB advancement for an FOA would be an 

important component of an automated workflow. Unlike the FBs, the desired configuration and 

anticipated advancement for the SOB is more standard. Therefore, using Boolean operations to 

suggest surgical steps for the SOB may be too simplistic and may not provide the same value of 

information as for the FB ROI.   

 

Figure 4.25 Reconstruction model #7 on the left achieved 4.388 mm of advancement in the virtual FOA compared to reconstruction model #8 on 

the right (6.763 mm). However, model #7 was closer in shape to a normal model. The degree of downward rotation of the right SOB in model #8 

might account for this discrepancy.  

A CVR workflow for an FOA where the SOB and FB were outlined and repositioned 

using automatic functions, such as Boolean operations and registration, was achieved in some of 

the workflow iterations. However, several workflow iterations that resulted in successfully 

advanced ROIs and improved forehead shape had a combination of manual and automated steps. 

In iteration #15, for example, the FB ROI was automatically outlined using a Boolean operation. 

Then, the FB osteotomy was manually designed to incorporate this area but adhered to a 

triangular configuration that mimics how frontal bones are currently mobilized at the study 

institution. The result was a reconstruction model that had good advancement of the frontal 
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bones and had a mean surface distance value that was reasonably close to a normal skull (0.330 

mm) (Figure 24). The pieces of bone graft near the apex of reconstruction model #15 likely 

contributed to a higher than expected average surface distance value. This is in contrast to model 

#12, for example, where the reconstruction model is close in shape to a normal skull, but 

suggests a less conventional osteotomy pattern for the frontal bone. Critics may point out that 

having more osteotomies at the forehead and not hidden at the apex like in iteration #15 may 

have a higher risk of contour abnormality and bone resorption in an aesthetically critical area.  

The benefits of a procedure like the one described for iteration #15 are that the surgeon has 

additional control over the design of the osteotomy but still has automated suggestions on where 

to position the FB piece, including where to harvest the bone graft. This highlights the important 

concept that automated surgical planning can successfully reduce the subjectivity of surgical 

decision-making. However, clinician input is still crucial to refine a plan and ensure its feasibility. 

In that sense, computer automation can be viewed as a helpful adjunct to traditional surgeon 

based planning. Using automation to reduce the guesswork in surgical planning in conjunction 

with human input may increase the uptake of new technology, especially in initial phases. Even 

in highly sophisticated computation models, there are steps that require surgeon involvement 

(Porras et al., 2018).  



 

 78 

 

Figure 4.26 Panel A – A view reconstruction model for iteration #15. Panel B – right lateral view of reconstruction model #15. Panel C – Bird’s 

eye view of reconstruction model #15. Panel D – Comparison of reconstruction model to preoperative UCS model (top), and the reconstruction 

model ROIs to the normal skull ROIs (bottom). Panel E – comparison of reconstruction model (grey translucent) to normal skull (green). Panel F 

– comparison of reconstruction model (beige) to preoperative model (grey). The contour of the preoperative UCS forehead is outlined with the 

dotted white line.  

The presented workflows can be carried out using fundamental computing functions that 

are widely available in many software programs. In addition, these functions are easily 

automated, and the demonstration of their potential in surgical planning is optimistic for the 

development of a fully automated planning algorithm. Although there are downsides to a 

simplified approach to automating surgical planning, the information provided may still be 

valuable for surgical planning. Automatically outlining ROIs has the potential to reduce the 

guesswork associated with CVR. In addition, the advantage of 3D visual aids for preoperative 

planning has been long recognized (Vannier, 1983). Van Nunen et al. (2014) found a benefit 

from printing stereolithographic models when planning an FOA. While this simple aid did not 

reduce surgical times or decrease the blood transfusion rate, surgical trainees, and patients’ 

families benefitted from the models. Using the proposed workflow, surgeons could run through 

multiple operative options virtually, quickly, and in a cost-effective manner using in-house 
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resources. In addition, visual aids have been shown to benefit patient families when considering 

surgery (Care et al., 2018). Virtual surgical plans could augment the consultation experience with 

patients’ families regarding CVR operations, at a low cost and time expense to surgical teams.  

4.6.1 Limitations  

There are limitations of the presented workflows. Firstly, proprietary software was used 

and may be a deterrent to their widespread use. However, Boolean operations are common and 

available in open-source software programs, such as 3D Slicer (Version 4.10.2). It is possible 

that the concept can be applied in programs that are more accessible. 

In addition, there is no biomechanical information regarding the properties of infant bone 

in either the manual or automated workflow. The challenge of introducing bone bending in 

automated CVR algorithms has only recently been introduced (Porras et al., 2018). While a 

simplified approach to automated surgical planning may be more accessible to clinicians, the 

downside could be a less realistic approach. In the proposed workflow, the degree to which 

bones can bend before fracturing is based on visual judgment and surgeon experience.  

In addition, the automated workflow relies on a degree of bony overlap between the UCS 

and the reference skull model. It is possible to achieve this if a large and varied library of normal 

skulls is available at an institution, and the method of using an age and sex-matched skull for this 

comparison has been employed with success (Chim et al., 2014; Dangi et al., 2017; Soleman et 

al., 2015). However, some institutions may not have such a repository of CT information 

available, or some cases may be difficult to match for other reasons. In these circumstances, the 

presented workflow may be of limited use. One method to improve the registration accuracy in 

these scenarios would be to use statistical shape modeling as opposed to matched skulls 

(Mendoza et al., 2014; Saber et al., 2012). 

4.6.2 Future Work  

 This study presents a conceptual basis and pilot data for an alternative method to develop 

automated surgical workflow algorithms for CVR applied to UCS. Future work with this data 

would include developing an algorithm using the described Boolean and registration functions, 

as well as adding in features such as bone bending and edge smoothing.  
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 In addition, algorithm derived surgical plans have not been compared to expert surgeon 

plans. The goal of future studies would be to compare a UCS reconstruction model as planned by 

an experienced pediatric craniofacial surgeon using a manual workflow to a computer-derived 

reconstruction model. Variables such as planning duration and reconstruction success, as 

measured in this study, would be measured. 

4.7 Conclusion  

An in-house manual and partially automated workflow for FOA procedures was 

developed and piloted using a case of UCS. This is the first study to use Boolean operations on 

polygons and registration to suggest surgical steps for CVR. The automated workflow was 

successful in reducing the subjectivity of surgical decision making by highlighting key regions of 

interest in an infant skull and suggesting possible reconstruction models. A simple approach to 

automated surgical planning has limitations but may result in more clinician uptake than more 

sophisticated methods. Automation allows for the amount of trial and error in VSP to be 

decreased, which would likely result in a reduction in surgical planning time. These virtual tools 

may benefit surgical teams in the pre-planning environment.  
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Chapter 5: Conclusion  

 The three studies presented in this thesis document are unified by their application toward 

the field of surgical design and simulation, and their contribution toward virtual surgical 

planning, and their dedication toward a complex craniofacial condition. The general themes of 

“usability” and “accessibility” are maintained throughout. In a time when technological 

improvements in surgical design and technique are ample and exciting, it is important to 

maintain a sense of the advantages and disadvantages of using advanced technologies in the 

surgical setting. Developing techniques that are accessible to surgeons and people naïve to 

computer sciences may help these advantages and disadvantages remain the focus of further 

innovation and development.   

 The first study was generated out of a need to objectively measure cranial vault 

morphology, both as it compares to normal morphology, and as it compares to a preoperative 

shape. Previous studies tackling the same problem were difficult to replicate without a 

background in computing sciences, without a multi-disciplinary team, and without specialized 

software. In addition, previous studies were using methods such as manual measurements that 

are almost too primitive, and therefore time-consuming to be routinely applied. The deformity 

index was developed out of the desire for a practical measurement workflow that provided 

information about global head shape. The purpose of this was to have a method to compare 

surgeon-derived virtual surgical planning to partially automatic surgical planning in the last 

study.  

 From there, the desire to maintain clinical relevance as the focus of innovation in surgical 

design and simulation lead to the second study regarding perceptions of deformity in unicoronal 

synostosis. The ability to create a perfect reconstruction virtually may not always translate into 

the clinical setting when soft tissue, patient growth, and other surgical factors are involved. 

Therefore, determining an objective goal for surgical correction that corresponds to what is 

noticeable to the public may help set realistic parameters and expectations.  

 The motivating concept behind this thesis work is the desire for an automated computer 

algorithm that could take a UCS skull, compare it to a normal reference skull, and from those 

two inputs, generate an optimal surgical plan with steps for a successful reconstruction. While 

VSP takes the trial and error approach to CVR out of the operating room and into a safe virtual 
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environment, the degree of guesswork in surgical decision-making is largely maintained. An 

automated computer algorithm that can suggest osteotomy and fixation patterns based on 

objectively defined parameters may reduce this subjectivity. The third study presented a novel 

approach to laying the groundwork for such an algorithm. This groundwork was using Boolean 

operations and registration functions to replace components of surgeon input in the planning 

process, and to create a workflow that had the potential to be automated. This study presents 

promising results from one case where these steps were used to general a surgical plan that 

resulted in numerous iterations with varying reconstruction outcomes. This again demonstrates a 

simplified approach that is accessible and user-friendly, taking advantage of simple geometric 

principles.   

 Future work will involve refining parameters of the partially automated workflow and 

including features such as bone bending so that reconstruction models are optimal and more 

realistic. The workflow will be applied to more cases so that all potential pitfalls are recognized 

and factored into the development of an algorithm. Once all parameters are in place, 

collaboration with computer scientists will continue toward the development of an automatic 

computer algorithm that suggests optimal surgical steps for cranial vault remodeling. Results 

from the algorithm can be compared to results using traditional techniques to illicit the 

advantages and disadvantages of this technology. In addition, gathering feedback from surgeons 

regarding the feasibility of automatically derived reconstruction models will help outline the 

optimal balance of surgeon and computer input in the surgical planning process.    

 In summary, all three studies share the common goal of improving surgical planning for 

cranial vault remodeling, specifically in patients with unicoronal synostosis. They present the 

groundwork for continued studies in this field and for the development of computing science 

tools that may be advantageous in surgical planning.  
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Chapter 2 

Table 2.1 Age and sex matched participants for the study pairs. 

Pair 

# 

Experimental 

Skull 

Control Skull 
Age 

(mos) 
Sex Age 

(mos) 
Sex 

1 7  F 7 F 
2 3  M 3 M 
3 4 F 4 F 
4 5 F 5 F 
5 3 M 3 M 
6 4 F 4 F 
7 5 F 5 F 
8 3 F 3 F 
9 5 F 5 F 
10 15 F 14 F 
11 6 M 7 F 
12 5 F 5 F 
13 3 F 3 F 
14 5 F 5 F 
15 9 F 8 F 

 

Table 2.2 Results for test-retest reliability assessment.  

Pair # 

Maximum Hausdorff Surface 

Distance (mm) 

Trial #1 Trial #2 

1 5.95 5.95 

2 6.92 7.26 

3 6.62 4.61 

4 4.97 3.82 

5 7.80 7.81 

6 5.85 6.11 

7 8.53 8.73 

8 5.28 4.85 

9 1.99 2.43 

10 4.60 4.42 

11 4.28 4.75 

12 5.34 4.73 

13 10.36 10.22 

14 2.81 4.12 

15 5.32 5.83 
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Chapter 3 

Table 3.1 Summary of demographic data for the layperson skull raters.  

Demographic Characteristic Layperson Skull Raters 

 Number Percent 

Total 40 100.0 

Sex   

     Female 21 52.5 

     Male 19 47.5 

Level of Education    

     High school  3 7.5 

     Post Secondary  37 92.5 

 Mean ± STD Range 

Age        33.6 ± 12.4 22 - 73 
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Table 3.2 Summary of demographic data for the skull cohorts.  

Demographic 

Characteristic  

Normal Skulls UCS Skulls 

 Number Percent Number Percent 

Total (/45 skulls) 24 53.3 21 46.7 

Sex     

     Female 17 70.8 16 76.2 

     Male 7 29.2 5 23.8 

Affected suture     

     Right -- -- 17 81.0 

     Left -- -- 4 19.0 

 Mean ± STD Range Mean ± STD Range 

     Age (months) 7.0 ± 4.3 2 - 16 4.9 ± 3.0 1 - 15 
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Chapter 4 

Table 4.1 Summary of the 15 iterations of the partially automated workflow.  
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Table 4.2 Summary of maximum Hausdorff surface distances between the preoperative UCS 

skull model and a control skull, and the postoperative reconstruction UCS model and a control 

skull.  

 

Table 4.3 Maximum surface distance values between the FB and SOB of the reconstruction UCS 

model compared to the preoperative UCS model.  
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Table 4.4 Maximum and mean surface distance values between the FB and SOB of the 

reconstruction UCS model compared to the control skull model. 
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Table 4.5 The highest and the lowest performing models are presented. Overall high 

performance was determined by highest degree of advancement and/or high degree of normalcy 

in both ROIs. Overall low performance was determined by lowest degree of advancement and/or 

low degree of normalcy in both ROIs.  
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List of Figures 

Chapter 1  

Figure 1.1 The coronal suture is shown in red. Fusion of the suture on either the left or the right 

side of the skull leads to anterior plagiocephaly.  

 

Figure 1.2 A) Three-dimensional (3D) model of an infant with right-sided UCS. The right 

coronal suture is fused as demonstrated by the presence of a bony ridge, when compared to the 

left coronal suture that is patent and depicted as an open space. B) The supra-orbital bar region is 

highlighted in green. This is the area that is above the eye sockets. C) The supra-orbital bar is 

shown in grey, and the frontal bones that constitute the forehead region are highlighted in green.  
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Chapter 2 

Figure 2.1 CT scans are imported into 3D Slicer with axial, sagittal, and coronal views visible 

(top row). Panels A to E demonstrate the manual alignment process. The star indicates which 

view the described changes are best visualized. From A to B, the anterior cranial vault and the 

sella turcica are aligned with an inferior translation, as best viewed on the sagittal view. From B 

to C, the frontal bone contours are aligned with an anterior translation, again best viewed on the 

sagittal view. In panel C, a line that bisects the frontal bones of each skull is imagined at the 

metopic suture in the axial view. The goal from steps C to D is to rotate the normal skull image 

in an axial plane so that these lines assume a parallel relationship. Then, the normal skull is 

translated in the left-right dimension to align the metopic sutures (D to E). Panel E demonstrates 

the end result of the manual alignment step. Panel F demonstrates the end result after the 

registration step. It is clear here that the non-synostotic frontal bones (patient’s left in this case) 

align well (white arrow). A subjective assessment of good bony overlap of the non-synostotic 

frontal bones in the axial slices is the endpoint of the registration step in this workflow. Once 

registered, the discrepancy in the forehead region on the synostotic side between the two skulls is 

apparent.  
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Figure 2.2 In this image, the frontal bones corresponding to the synostotic side of the UCS skull 

are segmented. The blue skull is the UCS skull and the beige skull is the age and sex matched 

control skull. Surface models are generated representing the segmented frontal bones. The point 

where there is the largest distance between the segments is automatically identified and the 

distance is calculated in subsequent steps. This represents the area where there is the largest 

deviation in the UCS skull from a normal control skull.  

 

Figure 2.3 The goals and potential pitfalls of the segmentation step are outlined in this figure, as 

well as the use of color maps to verify the location where the deformity index is calculated. Panel 

A shows the worm’s eye view of the segment of frontal bone isolated from the CT scan (top left). 

Panel B is a color map of the segment of frontal bone taken from the synostotic side in the UCS 

patient (blue skull), with information regarding the surface distances to the corresponding 

segment of the normal frontal bone (beige). Warm hues denote a distance further away from the 

UCS skull, which correspond to areas on the UCS frontal bone that are flattened when compared 

to the normal skull. Cool hues denote areas between the two skull segments that are close 

together, corresponding to areas of less deformity. In panel B, it is clear that the deformity index 

value of 7.329 mm is calculated from within the frontal bone segment, confirming that the value 

is calculated in the region of interest. In panel C, the same value is derived from a larger segment 

of the frontal bone. This emphasizes that the deformity index value will be identical between 
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segments that are limited to the constraints outlined in the workflow. In panel D, the 

segmentation did not include sufficient frontal bone inferiorly, resulting in a smaller deformity 

index that is not representative of the true deformity. This is confirmed by the color map, which 

has warm hues at the inferior edge of the segmentation, and disappears from the same edge when 

the maximum threshold for the color map is reduced. This confirms that the deformity index was 

calculated from the edge of the segmentation, is not representative of the region of interest, and 

the segmentation step would require revision. Finally, panel E demonstrates what may happen if 

the first constraint is violated and the segment includes areas outside of the region of interest. In 

this case, the superior orbit of the UCS skull was included in the segmentation, again resulting in 

an erroneous deformity index that is not representative of the deformity at the frontal bones. In 

the confirmation step, it is clear that the maximum surface distance of 14.638 mm is derived 

from the region of the orbit as the warm hues are restricted to the portion of the superior orbit.  
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Figure 2.4 Panel A) depicts the bird’s eye view of the skull assigned the smallest surface 

distance value (1.99 mm), and panel B) depicts the same view of the skull assigned the largest 

surface distance value (10.36 mm). Skull A has a more symmetrical appearing forehead than 

skull B, and therefore the assigned index value corresponds with a subjective assessment of 

frontal bone deformity, at least at the extremes of surface distances.  

 

 

Figure 2.5 Correlation between the maximum surface distances between the workflow trial one 

and trial two was 0.93 demonstrating high reliability and a measure that is reproducible.  
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Figure 2.6 An axial slice of a preoperative (blue) and postoperative (purple) CT scan of a patient 

with UCS who underwent corrective surgery are registered. Areas where the preoperative and 

postoperative skull register and align well are displayed in a purple-blue color. The discrepancy 

between the frontal bones on the synostotic side (patient’s right side, top left in figure) is 

apparent. In this application, the measurement index corresponds to the largest distance between 

the blue and purple skulls on the synostotic side.  

 

 

Figure 2.7 The preoperative (blue) and postoperative (transparent purple) CT scans in a patient 

with UCS treated with a unilateral FOA are registered in order to appreciate the degree of frontal 

bone advancement. The postoperative skull is transparent in order to appreciate the forehead 

contour of the preoperative skull. In the left panel, the improved forehead symmetry of the 

postoperative skull is noticeable on the bird’s eye view. In the top right panel, the non-synostotic 

(left) and synostotic (right) sides of the forehead are outlined. This patient was treated with a 

unilateral advancement, meaning only the right sided frontal bones were advanced. In the bottom 

right panel, the light purple curve outlines the new contour of the forehead in the postoperative 

skull, compared to the light blue curve, which outlines the preoperative contour. The yellow 

arrow highlights the degree of advancement visible from this view.   
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Chapter 3  

Figure 3.1 Distribution of surface distance values among the UCS skull cohort.  

 

Figure 3.2 Examples of a skull models as they appeared on the computer screen. The skull on 

the left is an example of a normal 3D skull model generated for this study. The skull on the right 

is an example of a UCS 3D skull model generated for this study.  

  

Figure 3.3 Experimental setup. Skull raters viewed the skull images on a laptop computer screen 

and were asked to categorize each skull as ‘normal’ or ‘abnormal’. Responses were recorded on 
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an answer sheet. Each skull was displayed for 0.3 seconds, and raters had 5 seconds to record a 

response.  

 

Figure 3.4 Overview of workflow used to determine surface distance values. 
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Figure 3.5 Results of the chi-squared analysis of skull rater responses. 
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Chapter 4 

Figure 4.1 The UCS skull (left) is shown in the bird’s eye view and frontal view. The normal 

control skull (right) is shown in the same views. The frontal bone on the side with the fused 

suture in the UCS skull (pink star) is flattened when compared to the contralateral side and the 

normal control.  

 

Figure 4.2 The SOB (green) is virtually selected using the Lasso and Square Select Clay tools. 

 

Figure 4.3 The right and left frontal bones (green) are selected using the lasso and square select 

clay tools.  
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Figure 4.4 Bone pieces osteotomized in a FOA surgery are removed from the skull model. The 

resulting skull model is shown on the right. This model is used to build the final reconstruction 

model. Note - only the frontal bones are removed in the skull pictured on the right. In a FOA 

procedure, both the SOB and the FBs would be removed, reshaped, and fixated.  

 

Figure 4.5 The original SOB from the UCS skull is shown on the left. On the right, the Bend 

Clay tool is shown altering the shape of the SOB. The area in green is being manipulated 

virtually. 

 

Figure 4.6 An example of a FOA procedure for UCS is shown. A is the preoperative skull 

model, and D is the reconstruction model. In B, the SOB is shown being translated anteriorly. In 

C, the right and left frontal bones are being rotated, and exchanged from right to left.  
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Figure 4.7 The virtual workflow for a FOA procedure in a patient with UCS is shown. This is 

one example of how the bone components can be manipulated in order to approximate a normal 

head shape.  

 

 

Figure 4.8 In Panel A, the UCS skull model (grey) and the control skull model (beige) are 

shown registered to each other. The area at the frontal bones where the grey skull is posteriorly 

positioned compared to the beige skull is apparent. This region is outlined in Panel B.  
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Figure 4.9 In Panel A, a bird’s eye view of the UCS skull and the control skull registered to each 

other is shown. The red line outlines the contour of the normal skull forehead. In Panel B, a 

bird’s eye view of the UCS skull is shown. In Panel C, the area where the UCS forehead is 

retruded compared to the control skull is apparent. The white arrow highlights the anterior 

translation of the frontal bones that a surgeon aims to achieve in UCS with an FOA procedure.  

 

 

Figure 4.10 In Panel A, the UCS skull is shown after the control skull is subtracted from it using 

the Freeform Boolean function. The gaps in the skull model are areas where the normal skull 

intersected or overlapped with the UCS skull. The FB ROI is highlighted in green in Panel B.  
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Figure 4.11 With the SOB ROI defined, the FB ROI (grey) is refined with an inferior margin 

that does not cross the superior margin of the SOB. 

 

 

Figure 4.12 The UCS SOB (beige) is registered to the control SOB (grey). On the patient’s left 

side, which corresponds to the non-synostotic side of the skull, the UCS SOB is registered well 

to the control SOB. Areas that are well registered have good bony overlap between the grey and 

the beige skulls. On the patient’s right side, corresponding to the synostotic side, the UCS SOB 

is clearly retruded compared to the control SOB and is not well registered. The distinction 

between the abnormal and normal components of the UCS SOB (red line) is the point where the 

UCS SOB transitions from being well registered to the control SOB, to where it is not well 

registered to the control SOB.  



 

 120 

 

 

Figure 4.13 In A, the UCS SOB (beige) and the control SOB (grey) are registered and shown 

from a bird’s eye view. In B, the control SOB is subtracted from the UCS SOB via a Boolean 

function. Panel C demonstrates the problematic resulting UCS SOB with the various areas of 

missing bone.  

 

 

Figure 4.14 Panel A – the UCS SOB after the control SOB is subtracted from it results in 

excessive bone loss. The green portion is the abnormal component of the SOB, and the area of 

interest when recreating a normal SOB. Panel B – subtracting the normal component of the SOB 

from the abnormal component results in a depression. Panel C – the distinction between the 
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normal and abnormal SOB components is identified and used as the boundary to select the 

normal component. Panel D – the abnormal SOB ROI remains and is used in multiple iterations 

to approximate a normal SOB.  

 

 

Figure 4.15 Panel A – the intersection between the normal and abnormal SOB is used to define 

where to initially bend the SOB. Panel B – The SOB after the first bend. Panel C – the SOB after 

the second bend. Panel D – the SOB after the third bend. Panel E – the final reconstructed SOB 

after the fourth bend. 
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Figure 4.16 In iteration #3 of the automated workflow, the FB ROI does not make a large visibly 

noticeable advancement. Panel A depicts the RB ROI. Panel B demonstrates the FB ROI (beige) 

after the first registration to the control skull (grey). Prior to registration, no part of the beige 

ROI was visible in front of the control skull. Panel C shows the FB ROI after the tenth and final 

registration. It is noticeable that the surface area of the beige FB ROI that is in front of the grey 

control skull has increased when compared to Panel B. This indicates that the FB ROI advanced 

further between registrations one and ten. Panel D shows the final reconstruction model.  
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Figure 4.17 In iteration #2 of the automated workflow, the FB ROI (beige) makes a visibly 

noticeable advancement, translation, and rotation to approximate the shape of the control skull 

(grey) forehead. The improved contour of the forehead is noticeable on the worm’s eye view of 

the skull models. In the top left image, the UCS FB ROI (beige) is seen completely posterior to 

the control skull forehead, which is transparent in these images in order to visualize the FB ROI 

throughout the registrations. There were no changes made to the SOB in this reconstruction 

model.  
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Figure 4.18 Points A and B represent the right and left SOB of the skull model, and points C and 

D represent the right and left frontal bones, respectively. These represent the four points where 

maximum Hausdorff surface distance measurements were taken to analyse the shape of the 

virtually reconstructed skull.  

  

Figure 4.19 Color maps displaying surface distances values between the preoperative UCS skull 

model and the control skull (left), and the reconstruction UCS skull model and the control skull 

(right). Warmer tones represent larger distances between the skull model and a normal skull, 
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representing areas that are less similar to a normal skull than cooler tones. 

 

Figure 4.20 Color maps depicting the maximum surface distances calculated between the 

preoperative UCS skulls and the reconstruction models demonstrate the virtual surgical changes. 

Warm tones indicate models that have achieved a larger advancement.   

 

Figure 4.21 Color maps for the FB ROI for the 15 reconstruction models are shown. Cooler 

tones indicate a small distance between skulls, and warmer tones indicate a larger distance. 
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Frontal bones in this figure that are bluer are more similar to a normal reference skull, and frontal 

bones that have areas of green are les similar to a normal reference.  

 

Figure 4.22 Color maps for the SOB ROI for the 13 reconstruction models that isolated the SOB 

are shown. Cooler tones indicate a small distance between skulls, and warmer tones indicate a 

larger distance. Cooler tones indicate similarity to a normal reference skull, and warm tones 

indicate areas where the SOB was not close in shape to the normal reference.  
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Figure 4.23 Reconstruction models #5 (top row) and #8 (bottom row) were poor performers 

among the fifteen automated workflow iterations. The A panels show the reconstruction models, 

B panels show the comparison to the preoperative skull, and C panels show the comparison to 

the normal skulls. The FB ROIs when derived and registered fully automatically do not result in 

a much improved forehead contour.  
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Figure 4.24 Reconstruction model #12 is displayed (Panel A), along with the comparison 

between the preoperative skull (Panel B), and the normal skull (Panel C). The edges of the FB 

region in model #12 are manually smoothed based off the ROI defined by automation. The 

resultant skull was closer in shape to a normal skull, suggesting the edge smoothing is an 

important feature to consider in a final algorithm.  

 

Figure 4.25 Reconstruction model #7 on the left achieved 4.388 mm of advancement in the 

virtual FOA compared to Reconstruction model #8 on the right (6.763 mm). However, model #7 

was closer in shape to a normal model. The degree of downward rotation of the right SOB in 

model #8 might account for this discrepancy.  
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Figure 4.26 Panel A – A view reconstruction model for iteration #15. Panel B – right lateral 

view of reconstruction model #15. Panel C – Bird’s eye view of reconstruction model #15. Panel 

D – Comparison of reconstruction model to preoperative UCS model (top), and the 

reconstruction model ROIs to the normal skull ROIs (bottom). Panel E – comparison of 

reconstruction model (grey translucent) to normal skull (green). Panel F – comparison of 

reconstruction model (beige) to preoperative model (grey). The contour of the preoperative UCS 

forehead is outlined with the dotted white line.  
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Appendices 

Appendix A: Glossary of Terms  

AUC Area Under the Curve 

CAD Computer Assisted Design  

CAM Computer Assisted Manufacturing  

CT Computed Tomography 

CVR Cranial Vault Reconstruction  

ROI Region of Interest 

FB Frontal Bone 

FOA Fronto-Orbital Advancement  

SOB Supra-orbital Bar 

STL Stereolithography 

UCS Unilateral Coronal Craniosynostosis 

VAS Visual Analogue Scale  

VSP Virtual Surgical Planning  
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Appendix B: Hausdorff Surface Distance Explanation  

Hausdorff surface distances are used in chapters two, three, and four to quantify the 

difference between skull models. A common application is using Hausdorff surface distances to 

quantify the difference between a UCS skull and a normal skull at the frontal bones. The 

example below demonstrates a simplified explanation of calculating surface distances between 

two models.  

 In this demonstration, the two triangles represent two different models. The red triangle is 

the reference model, and the yellow triangle is the target model. In a comparison between an 

UCS skull and a control skull, the UCS skull is analogous to the red triangle, and the control 

skull is analogous to the yellow triangle.  

 

 The black circles represent points along the surface of each model. Point A and point B 

are examples of points along the surface of the reference model or the UCS skull in the analogy. 

While only a few points are shown in the diagram the maximum Hausdorff surface distance is 

calculated after analyzing every point along the entire UCS skull, and comparing each point to 

every point on the normal skull. Therefore, the calculation of a maximum Hausdorff surface 

distance represents a global analysis of the shapes.  
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 For every point along the surface of the red triangle, the distance to the yellow triangle is 

calculated. Point A is example of one of these points.  

 

 The shortest distance of all of the distances calculated is determined. In this example, that 

is the distance “x”.  
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 The same process is repeated for all points along the entire surface of the red triangle. 

Point B is example of another one of these points.  

 

 Distance “y” is determined to be the shortest distance from Point B to the yellow triangle.  
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 This is done for every point along the surface of the red triangle. Once all the distances 

from all the points along the red triangle are calculated, the maximum Hausdorff surface distance 

is the largest of the calculated distances. In this example, if distance “x” is greater than distance 

“y”, than distance “x” is the maximum Hausdorff surface distance.  

 

 

 This method allows for the automatic determination of a single point along the UCS skull 

that deviates the furthest from a normal reference skull. This also eliminates the need to 
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standardize where measurements are taken from in terms of exact slices when examining CT 

data, and the need for a landmark based measuring procedure.  

 


