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Abstract 
 

High aspect ratio microelectromechanical structures have been found, in the 

literature, to collapse due to capillary forces of liquids. In this dissertation, 

mathematical models are developed to study (i) the collapse of a microstructure 

represented by a double cantilevered beam (DCB) with a free end liquid droplet, 

and (ii) post-collapse DCB adhesion. Formulations are presented using the 

classical Bernoulli-Euler beam theory as well as an analysis that accounts for 

geometrical nonlinearity. The models introduce rigorous coupling between the 

DCB deformation, the capillary forces and meniscus position, and have predicted 

interesting nonlinear behaviours that previous models could not. Parameters 

governing the capillary collapse and adhesion of the DCB are identified and their 

influence is discussed. A single dimensionless number that controls the condition 

for collapse is proposed. Comparison between the linear and nonlinear beam 

analyses shows that linear analysis generally suffices in description of capillary 

collapse and adhesion of microelectromechanical systems.  
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Table 1: List of symbols 

Symbol Description Dimension 
(F,L,T) 

SU  Surface energy FL 

LAγ , SAγ , SLγ  Surface tensions of Liquid-Air, Solid-Air, and 
Solid-Liquid Interfaces FL-1 

cθ  Equilibrium contact angle - 

lapPΔ  Laplace pressure difference FL-2 
R1, R2 Principal radii of curvature of meniscus L 

SSW ,  LLW Work of Cohesion between solid-solid and 
liquid-liquid interfaces respectively FL-1 

SLW  Work of Adhesion between solid-liquid 
interface  FL-1 

ε  strain - 
ρ  Beam radius of curvature L 
κ  curvature L-1 

s, y,ξ  
Position within beam coordinate system: arc 
length, binormal direction and transverse 
direction 

L 

σ  Stress FL-2 
E Young’s Modulus FL-2 
I Moment of inertia L4 
M Bending moment FL 
ν  Poisson’s ratio - 
E* Wide beam modified Young’s Modulus FL-2 

x, y, z Position within Cartesian coordinate system L 
φ  Deflection angle (positive x-axis to beam) - 

Q, T Beam internal shear and axial forces 
respectively F 

f, q Distributed transverse and axial loading FL-1 
m Distributed moment  F 

u, v, w Components of displacement vector (w 
corresponds to beam deflection) L 

SEU  Strain energy FL 
W  Strain Energy density FL-2 

1s ,  2s Location of base and free end menisci L 

1x ,  2x x-position of base and free end menisci L 

1w ,  2w z-deflection at base and free end menisci L 

1φ , 2φ  Deflection angle at base and free end menisci - 
D Depth of beam  L 
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(F,L,T) 

RM  Reaction moment at base FL 

RQ , RT  Shear and axial reactions at base F 

R1 = = ∞ R, R2 
Principal radii of curvature of meniscus for 2-
D model L 

l1  ometry factor (complementary to , l2
Meniscus ge
cap height) L 

h Half width (between beams) L 
2θ  Angle between free end meniscus and beam - 

θm1 m2 ectively , θ Angle from positive x-axis to base and free 
end menisci at beam intersection resp - 

V Drop volume L3 
2Q  Contact force at crack tip F 

SSLSLASA AAAA ,,,  d 2Areas of solid-air, liquid-air, liquid-solid, an
solid-solid interfaces respectively L  

)(sM ST  Portion of beam internal moment caused by 
surface tension forces FL 

)(sM P  Portion of beam internal moment caused by 
Laplace Pressure FL 

STM  Net moment  on entire beam about base due 
to surface tension forces FL 

PM  Net moment  on entire beam about base due 
re sure to Laplace P s FL 

2M  Moment at FL 2s  
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Table 2: List of normalized quantities 
Normalized Quantity  
and Definition Description 

L
ss =*  Normalized position along beam 

L
xx =*  Normalized position  

h
ww =*  Normalized deflection  

EI
MLM =*  Normalized moment 

EI
LQ

Q
2

* =  Normalized shear force 

EI
LT

T
2

* =  Normalized axial force 

L
h

=β  Ratio of beam half spacing to length 

h
R

=α  Normalized meniscus radius 

R
ll i

i =
*  Normalized meniscus geometry factor 

LDh
VV

2
* =  Normalized drop volume 

EI
DLLA

2γ
=Λ  Normalized surface tension force 

EI
DLSL

SL

2γ
=Λ  Normalized interfacial energy of cohesive solid-solid 

bond in liquid 

EI
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U =*  Normalized potential energy 
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Chapter 1 Introduction 
Capillary forces result from the presence of a liquid surface or a meniscus. 

There are familiar examples of these forces at work in our every day lives from 

capillary forces causing water to form droplets to drawing wet hair together to 

form clumps.  Most scientists are likely familiar with the capillary rise experiment 

where capillary forces draw water up a tube against gravity. While these 

phenomena are all visible at the macroscopic scale, at microscopic and lower 

length scales capillary forces become increasingly important and even dominant. 

The reason for this is that capillary forces scale linearly with the length scale 

whereas body forces, such as gravity, scale with volume or the cube of the length 

scale.  As a result at the length scales of many micro-electromechanical systems 

(MEMS) and nano-electromechanical systems (NEMS) capillary forces are 

sufficient to deform solid structures  [1].  Examples include capillary forces 

creating cellular or ‘tepee’ structures from an array of ZnO or Si nanowires, or 

capillary forces collapsing carbon nanotubes partially filled with liquid  [1].   

MEMS devices are widely used in data transduction applications as sensors, 

and actuators  [2], such as pressure and acceleration sensors  [3], ultrafine 

lithographic photoresist patterns  [4], and Radio frequency (RF) switches  [5].  

Often to obtain high performance these devices are designed to be tightly spaced 

and have large surface areas  [3]. In lithographic photoresist patterns, for example, 

there is a constant drive towards narrower resist patterns1 while at the same time 

device performance requires the resist to have some thickness which results in 

                                                 
1 Consider for example the new line of INTEL® processors released in 2011 have 32nm 
lithography.  Two years prior INTEL® first released processors with 45nm lithography. 
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high aspect ratio patterns, for example a pattern of 1000nm thickness and 200nm 

spacing was investigated by Kotera et al  [6].  Furthermore, these patterns are often 

made of polymers with relatively low stiffness  [12]. These characteristics result in 

low device stiffness and make MEMS devices susceptible to capillary forces.  In 

fact many surface micromachined and lithographic structures are formed using 

wet etching of sacrificial layers  [3]. When the rinse liquid is gradually removed 

strong capillary forces are created which may bring patterns into contact at the 

tips  [4].  Similarly the same process can cause a MEMS structure to adhere to a 

substrate  [7],  [8].  Furthermore, capillary forces may cause suspended or moving 

structures to adhere to a substrate during operation  [9].  Once these structures 

come into contact they will often permanently adhere; this type of device failure is 

known as “stiction”  [2].  Although, ordinarily capillary forces and stiction cause 

manufacturing problems, they have been used in advantageous ways to self 

assemble microstructures that are locked in place to a substrate by stiction  [10].   

Basic theory for predicting collapse of microstructures due to capillary 

forces has been developed by Mastrangelo and Hsu  [3]. This formulation looked 

at energy and developed approximate conditions for collapse, involving the so-

called elastocapillary number and the associated pull-in length defined as the 

maximum length beyond which the beam will contact the substrate  [3]. This 

analysis was performed for a doubly clamped beam using both linear and non 

linear beam theories, and was extended to plates; in each case the Ritz method 

was used with approximate test function for the beams deflection  [3]. Capillary 

forces have been experimentally identified as the mechanism of resist pattern 

2 
 



collapse in the work of Tanaka et al.  [4]. This phenomenon was subsequently 

modeled  [4] by a double cantilevered beam (DCB) with fluid completely filling 

the gap between the two beams; using this model the critical values of Young’s 

modulus that would lead to collapse, as well as the critical aspect ratios 

(length/spacing) were determined for limiting values of contact angle.  

Subsequent studies used this model to visualize collapsed configurations for 

larger 2-D and 3-D patterns of beams, and compared these with existing 

experimental images  [11],  [6].  Extensions have been made to different materials 

by incorporating an elastic-perfectly plastic constitutive model  [12], as well as to 

collapse of resist patterns with alternating smaller and larger spacing  [13]. 

Tanaka’s model has also been modified to include surface tension forces  [43]. 

Abe et al. studied the drying process and observed that for long beams a droplet 

can be formed which moves to the free end of the beam  [7]. Simulations for a 

cantilever beam partially filled with liquid do exist with linear  [9] and nonlinear 

beam models  [8].  Numerous procedures for preventing contact have been 

proposed, examples include freeze drying, supercritical drying, dry etching, liquid 

bridge cleavage, hydrophobic coatings, external force release  [2], antistiction tabs 

 [7], and specialized rinse processes  [17].   

As mentioned above, there are typically two aspects of capillary force 

induced MEMS failure: capillary forces cause the collapse of the structures but 

stiction keeps them in that position. In the hope of determining the work of 

adhesion Mastrangelo et al. devised an experiment in which an array of cantilever 

beams of increasing length were brought into contact with a substrate using 
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capillary forces and the detachment lengths, length of longest beam that remains 

detached after the liquid dries, were measured  [14]. These experiments were 

accompanied by a theoretical model which related the strain energy of the 

cantilever beam to the adhesion energy  [14].  This analysis was subsequently 

extended using linear and nonlinear theories to doubly clamped beams and plates 

by the same authors  [15]. In the extension the analysis initially included liquid in 

the derivation however it was later removed in a limiting process to obtain the 

peel number that predicts whether the microstructure will remain attached  [15].  

The problem of the doubly clamped beam differs from that of the cantilever in 

that the doubly clamped beam has additional elongation requirements and the 

cantilever may experience a shear deformation at the tip if the adhered length is 

short  [14]¸  [15].  The doubly clamped formulation was subsequently used by Wu 

et al. to estimate the detachment length for a micro-stereolithography application 

 [16].  O Raccurt et al. again used the approach of  [15] to estimate the work of 

adhesion however it was shown that the existing model was deficient in that the 

obtained value was greatly dependent on the last liquid used before drying  [17].  

The previous techniques measuring the detachment length of an array of 

cantilevers assumed an arc shaped beam in which only the tip makes contact, de 

Boer et al. argues that for such a configuration it is difficult to know the area of 

contact which can lead to error in the measurement of work of adhesion  [18]. 

Furthermore, in the same work the argument is made that an s-shaped 

configuration, in which the adhered portion of the beam is parallel to the 

substrate, would be preferable due to larger contact area and well of energy; 

4 
 



fracture mechanics methods can be applied to this case  [18].  Some analysis into 

the length required for arc and s-shaped configurations has been done  [18], and 

the transition from arc to s-shaped collapse has been modelled  [8].  Subsequently 

the strain energy release rate from both arc and s-shaped stiction failed cantilevers 

was measured by Leseman et al. and used to obtain adhesion energies  [19].   

Naturally there has also been significant accompanying research interest into 

adhesion mechanisms responsible for stiction, one particular study attributed 

stiction of hydrophobic surfaces to van der Waals forces, and stiction of 

hydrophilic surfaces to hydrogen bridging  [20].  Tas et al. discussed four potential 

sources of adhesion, namely hydrogen bridging, van der Waals forces, 

electrostatic forces, and capillary forces with added attention given to the effect of 

capillary condensation  [21].  Because contact and subsequent stiction of devices 

during operation was a concern anti stiction devices such as bumps, spacers, 

increasing surface roughness, and weakly adhesive coatings used to decrease 

adhesion energy have been discussed  [21].  Furthermore the influence of surface 

roughness and environmental conditions, such as temperature and relative 

humidity, on stiction has been investigated  [22].  Delrio et al. used electrostatic 

forces to bring a microcantilever into an s-shaped stiction failure thus eliminating 

capillary forces at the interface. The resulting measurements indicated that 

adhesion was due primarily to van der Waals forces  [23].  Additional methods for 

reducing intersolid adhesion include, textured surfaces and posts, low-energy 

monolayer coatings, and fluorinated coatings  [2].   
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Another active area of research involving capillary forces and adhesion is 

the capillary adhesion of “hairs”.  Here “hairs” are a model consisting of lamella 

of wetted slender cantilever beams used to represent things such as MEMS 

devices, nanotube carpets, and bundles of hair  [24]. These investigations illustrate 

the interplay between elasticity and surface tension forces and often define a 

length scale, the elastocapillary length, which compares bending stiffness and 

surface tension  [1].  Bico et al. performed an experimental investigation and 

scaling analysis of elastocapillary coalescence in wet hair (why wet hair clumps 

into bundles)  [24]. The analysis of Bico includes both a pair of hairs, and multiple 

pairs. A more detailed analysis of this problem at the microcantilever level has 

been performed in which the energy method is used to analyze 2, 3, 4 and even a 

hierarchy of hairs  [25].  Nonlinear geometrical effects in the beam model were 

subsequently investigated in the problem of two hairs  [26].  Typically these 

investigations look to find the length of the beam that is adhered.   

There are numerous deficiencies in the works that study the collapse of 

microstructures due to capillary forces. Most notably there are two forms of 

loading created by the presence of liquid, the Laplace pressure and the direct 

surface tension force applied at the contact line. Of works previously cited only 

 [43] accounted for the surface tension force at the contact line in beam loading; all 

of the partial drop works neglected this force.  Roman et al. discussed this force 

but only in the context of deforming a solid surface but not the bending of a 

microstructure  [1]. It is apparent from a force balance of interfacial tensions 

normal to a solid surface that unless the liquid is perfectly wetting it will exert a 
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force on the solid. Numerous works  [4],  [6],  [7],  [11],  [12],  [13] obtained the 

beam deflection from equilibrium differential equations using known formula for 

the capillary or Laplace pressure; in each case no consideration was given to the 

surface tension force applied at the contact line. These works may have assumed 

it to be negligible but no work was done to support such an assumption. 

Furthermore, those who used energy methods to obtain beam loading simplified 

or neglected the contribution of the liquid-air interface to the total surface energy 

without performing any work to support this simplification  [3],  [5],  [8],  [9].  Often 

these areas are neglected because they are typically smaller, however doing so 

removes some of the physics of the problem because the phenomena of wetting is 

driven by minimizing the surface energy of a drop by adjusting the amount of 

surface area involved in air-liquid interfaces and solid-liquid interfaces (for 

example a drop of water wets glass however a drop of mercury placed on glass 

forms a bead because the energy of the mercury-glass interface is higher than the 

mercury-air interface). As will be shown in this work by means of a simple 

example retaining these energy terms allows the energy method to give surface 

tension forces as well as capillary pressure. The discussion in [43] compares 

deflections given from the model of Tanaka et al.  [4] which only considers 

capillary pressure with their model that also considers surface tension. The 

comparisons were made when the beam was nearly undeflected and significant 

discrepancies were reported. However, in these models the capillary pressure 

increases with deflection so if the comparison were made closer to collapse there 

would be a smaller discrepancy. In the model to be presented here the change in 
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capillary pressure with deflection is nonmonotonic which creates greater potential 

for surface tension forces to impact collapse.   

Several works consider liquid for the entire length of the beam  [4],  [6],  [11], 

 [12],  [13]; however it has also been observed experimentally that during the 

drying process isolated droplets may form which move to the free end of a 

cantilever  [7]. Because it adds additional complication modeling of these partial 

drops seems to lead to considerably more confusion. The first common modelling 

error encountered pertains to the pressure within the drop. Several works  [5],  [8], 

 [9] propose mathematical models in which the capillary pressure is obtained at 

each point along the beam and thus varies within the drop. These models are all 

flawed since they all look for an equilibrium solution however basic fluid 

mechanics tells us that a pressure gradient is a driving force for fluid motion  [27]; 

thus the drop must be isobaric as has been expressed by Abe et al.  [7]. So the 

Laplace pressure must be determined only using the deflection at the meniscus.  

However, for the partial drops there is more than one meniscus which requires a 

constraint to ensure the same pressure is obtained from each.  In addition several 

works  [8],  [9] performed their formulation for an arbitrary drop position along the 

beam and then proceeded to conduct analysis only for specialized cases, without 

justification for why they were chosen.  In fact the physical justification for these 

cases should come from requiring the Laplace pressure calculated from each 

meniscus to be equal, as will be elucidated later in this work.   

Further issues in the literature exist regarding the use of test functions and 

approximate analytical solutions.  Mastrangelo et al. used simple polynomial test 
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functions  [3] however there was no convergence analysis in which different forms 

or higher order polynomials were used.  The work of Mastrangelo was scrutinised 

for these reasons by Ouakad et al.  [8], who subsequently used multiple forms and 

studied convergence.  However, because there are areas on the beam with and 

without liquid the form of the test function physically should have been piecewise 

continuous as used in the solution presented by Peng et al.  [9].  Probably the 

biggest shortcoming of many of the prior works is the over simplification of 

discussion on collapse.  For the works which considered the microstructure 

completely filled with liquid  [4],  [6],  [11],  [12],  [13], the discussion is relatively 

straight forward since there are less governing parameters.  However, for works 

that considered the microstructure only partially filled with liquid the existing 

discussion available in the literature does not allow one to understand how each 

parameter influences collapse.  Some works avoided having to discuss multiple 

parameters by restricting the discussion to a perfectly wetting liquid, or not 

allowing the meniscus to move during beam deflection  [8], or avoided discussion 

of results almost entirely  [9].  In other works the focus of the discussion is often 

centered on the elastocapillary number and the associated pull-in length  [3]. The 

approximate elastocapillary number brings together geometry, contact angle and 

surface tension to describe if there is an entrapped volume of liquid that will cause 

the structure to collapse  [3].  In reality this problem depends on many variables 

(the gap between beams, beam length, moment of inertia, surface tension, contact 

angle, drop volume, Young’s modulus for the beam etc.) and detailed discussion 

on how each parameter can influence collapse is nonexistent. Furthermore, 
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although some models do account for larger strain  [3] only one model explores 

nonlinear geometrical effects  [8] on the deflection of a cantilever; in addition, the 

discussion in  [8] is limited to the collapse of a cantilever 80 times longer than the 

distance from the beam to the substrate so it is not surprising that nonlinear 

geometry was found to be negligible.  On the other hand, it has been documented 

in the literature that collapse can be a problem when the length of a double 

cantilever beam is five times the spacing between beams  [4],  [6]; such geometry 

would result in larger beam slopes and make geometric nonlinearity more 

important.   

There are also issues with previous works studying adhesion of beams.  

Several works presented formulations for the adhered beam deflection with the 

presence of liquid  [15],  [16],  [17].  Each of these works then proceeded to take the 

limit as the liquid disappears and used the result to evaluate the work of adhesion.  

However, in each case before the limit is taken the adhered portion of beam is 

surrounded by water.  As a result if a small area of the adhered solid surfaces 

separates, the interface will be filled with liquid rather than be exposed to air. In 

other words, the energy to “fracture” a unit area of the adhered solid surfaces is 

not the standard solid-solid work of adhesion  [28].  Furthermore, as previously 

noted the experimental values were found to depend on the last liquid used  [17] 

indicating that the adhesion energy depends on more than the solid-solid work of 

adhesion. The likely reason is the presence of liquid in the pores or other 

imperfections between the solid surfaces in contact, adding capillary adhesion 

 [21].  This type of adhesion has been modeled as thin layer of liquid between the 
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two adhered solid surfaces in an s-shaped beam  [21].  This same approach was 

taken in the adhesion of hairs models  [24],  [25].  The obvious question with these 

models is whether or not it is appropriate to neglect the solid-solid adhesion, and 

model the problem as though liquid completely fills the space between the beams.  

Finally, in the study of adhesion of beams, there also exist problems of neglecting 

surface tension force, allowing for pressure gradients in the liquid droplet  [20], 

neglecting geometrical nonlinearity  [14],  [16]- [22], and lack of exact solution for 

the beam deflection (assumed form of deflection)  [15],  [16],  [20],  [24],  [26]. 

In this work, the above deficiencies are removed by formulating the 

capillary collapse and adhesion of a system in a rigorous manner and obtaining 

the exact solution for the deformation. In particular, the following effects not 

consistently incorporated in previous partial drop works are considered: (1) 

loading due to both the Laplace pressure and the surface tension force; (2) 

consistent coupling between the deformation of the DCB and the capillary forces 

(3) possible movement of the menisci as the DCB deflect. In addition the need to 

consider geometrical nonlinearity will be investigated. Finally, how each 

governing parameter influences collapse will be thoroughly discussed.   

Two specific problems are studied in this work, the first being the collapse 

of a DCB partially filled with a liquid droplet at the free end. Figure  1.1 is a 

schematic of the DCB shown from the side. Here L is the length of each beam, h 

is the half spacing between the beams, and the depth of the beams in to the page 

will be denoted as D. For this analysis D is assumed to be much greater than the 

spacing between the beams, 2h. The base of each beam at x = 0 is clamped so that 
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it will have zero slope and deflection. x1 is the location of the meniscus closer to 

the base, which will be referred to as the base meniscus. The second meniscus is 

located at the free end or x = x2 = L. The liquid will form contact angle θc with the 

solid surface and liquid-air and have surface tension of γLA. The system is 

assumed to be symmetrical about line O1O2 so only half needs to be considered. 

Unlike in  [8], we allow one of the menisci to move in order to maintain a constant 

liquid volume. The isobaric drop condition from  [7] will be rigorously enforced 

which provides a constraint equation that can be used to explain why one 

meniscus pinned at the free end is under consideration. In addition, we consider 

both Laplace pressure and surface tension force from the liquid as functions of 

beam deformation and solve the coupled problem consistently. Both linear and 

nonlinear beam models will be used to evaluate the need for using a nonlinear 

analysis. Through this work, we identify four dimensionless parameters that 

govern the collapse of the DCB and discuss in detail how each parameter 

contributes to collapse.  

 
Figure  1.1: Schematic of the DCB to be studied in this work (shown from side). 
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The second problem studied in this work is the adhesion of the two beams in 

the DCB in an s-shaped configuration. The schematic for this problem is shown in 

Figure  1.2; here the beams come into contact at point B where x = x2. This 

investigation will differ from those in the past in several ways. Most notably we 

will consider liquid in the unadhered space between the beams.  This allows the 

study of behaviour the previous models could not.  For example it has been 

documented in the literature that beams are often pulled in to contact by 

evaporating a liquid drop  [19]. This model will be able to predict how the adhered 

length of the DCB changes as the liquid volume decreases.  As before this model 

will account for both Laplace pressure and surface tension loading, and will allow 

for the meniscus position to change with beam defection.  Finally the analysis will 

be performed using both linear and nonlinear beam models to evaluate the 

necessity of using a nonlinear analysis.   

 

Figure  1.2: Schematic of the s-shaped adhered DCB to be studied in this work (shown from 
side). 

 
The structure of the dissertation is as follows. In  Chapter 2 the basic theory 

needed will be presented.  Chapter 3 and  Chapter 4 present the formulation of the 
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linear and nonlinear models respectively, the latter accounts for geometric 

nonlinearity. DCB collapse results from the linear theory are presented and 

discussed in  Chapter 5. These discussions will be primarily qualitative and will 

focus on how each governing parameter influences collapse. In  Chapter 6, the 

results of the nonlinear theory are compared with those obtained from the linear 

theory. This chapter also compares results with those from existing models in the 

literature, as well as proposes an empirical relationship to predict collapse.  The 

results of both the linear and nonlinear theories for the adhered case are presented 

in  Chapter 7.  Finally, conclusions and future work are discussed in  Chapter 8.   
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Chapter 2 Theoretical Background 
In this chapter, the background theories describing capillary forces and 

beam deformation pertinent to this work will be presented.   

2.1 Quantities describing capillary forces  
This section will introduce some quantities that are commonly used to 

describe liquid-air and liquid-solid interfaces. It will also be discussed how 

capillary forces arise and why they are significant at small length scales.   

2.1.1 Surface Tension 
To cause an increase  in the surface area of a liquid drop, work has to be 

done and this work increases the potential energy of the surface by  as 

follows 

SdA

SdU

 [29] 

SS dAdU γ=  ( 2.1) 

where the proportionality constant γ  is called the surface tension.  The surface 

tension depends on the properties of the liquid and the vapour as well as 

temperature and pressure.  Some representative values of surface tension are 

shown in Table 3.  The dimension of γ  is force per unit length or equivalently 

energy per unit area.  The potential energy Us of a surface can be defined by 

integrating Eq. ( 2.1) and letting Us be zero when As  = 0, to give  

SS AU γ= . ( 2.2) 

 
Table 3: Selected Surface tension values for 20-25º C  [30] 

Liquid Surface Tension (mN/m) Liquid Surface Tension (mN/m) 
Water 72 Benzene 28 

Mercury 484 n-Propanol 23 
Formamide 58   
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2.1.2 Contact Angle and Wetting 
The wetting phenomenon is of interest when a small amount of liquid is 

placed on a solid surface; the liquid may establish a contact angle, cθ  as shown in 

Figure  2.1, or spread on the surface completely ( °= 0cθ ).  The former case is 

shown in Figure  2.1 where the three phases form a contact line, here the contact 

line is perpendicular to the plane and goes through the intersection point of the 

three vectors representing the three interfacial tensions LAγ , SAγ  and SLγ . 

Equilibrium of the three tensions acting on the contact line gives Young’s 

Equation  [29]  

cLALSSA θγγγ cos+= . ( 2.3) 

A liquid is said to be completely wetting if °= 0cθ , partially wetting if 

°<<° 900 cθ  and non wetting if °> 90cθ . If the liquid is water then a surface is 

hydrophilic if °< 90cθ  and hydrophobic if °90>cθ . The value of the contact 

angle depends on the energetics of forming solid-air, liquid-air, and solid-liquid 

interfaces. For example if solid-liquid interface has a high energy then larger 

contact angles °> 90cθ  are favourable in order to minimize the total energy. The 

contact angle also depends on ambient temperature and pressure, and surface 

geometry such as roughness.  Finally, because the solid surfaces are never 

perfectly smooth if the drop is in motion the contact angle can show hysteresis 

depending on whether the drop is advancing or receding; for this reason, 

advancing and receding contact angles are typically tabulated, and some 

representative advancing contact angles are shown in Table 4. Because contact 
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angle hysteresis is not the focus of this work, the contact angle considered here 

should be interpreted as the equilibrium or static contact angle.  

 
Figure  2.1: Equilibrium of 3-phase contact line 

 
In light of Figure  2.1, Young’s equation represents equilibrium in the 

direction tangential to the solid surface. However, a portion of the liquid-air 

interface surface tension acts in the direction normal to the solid surface and this 

force must be balanced by a reaction from the solid.  This resultant force, when 

applied on a flexible structure such as on a micro cantilever beam, can cause 

deformation of the structure.  

Table 4: Selected Advancing contact angles (deg) for 20-25º C  [30] 
Liquids Solids 

Water Mercury Formamide Benzene n-Propanol 
Paraffin 110     0 22 

n-Hexatriacontane 111     42   

Teflon 108-
112 150   46 43 

Polyethylene 103   75   7 
Graphite 86     0   
Platinum 40         

Glass small 128-
148       

Polytetrafluoroethylene- 
co-hexafluoropropylene 108   92     

Polyethylene 
terephthalate 79.1   61     

Polymethylmethacrylate 59.3   50     
Talc 78.3   67.1     
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2.1.3 Capillary Pressure 
If an equilibrium liquid surface is curved there is a pressure difference 

across it, which is given by the Young-Laplace equation  [29] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Δ

21

11
RR

P LAlap γ , ( 2.4) 

where R1 and R2 are the principal radii of curvature of the meniscus. This work 

will consider liquid drop in air and will use the following sign convention for the 

pressure change across the meniscus  

LgALlap PPPP =−=Δ , ( 2.5) 

where PL, PA, PLg are respectively the absolute pressure in the liquid, the 

atmospheric pressure and the gage pressure in the liquid.  

A dimensionless quantity often used for liquids is the bond number defined 

by  [27],  

( )
LA

AL LgBo
γ
ρρ 2−

=  ( 2.6) 

which represents the ratio of gravitational forces to surface tension forces. Here 

g , Lρ , Aρ  and  are gravitational acceleration, density of the liquid, density of 

the gas, and a length scale respectively. Clearly when L is small gravitational 

effects can be neglected. In the case of water and air the Bond number is less than 

1 for length scales smaller than about 2cm, which is much larger than the length 

scales in MEMS and NEMS applications. Therefore it is reasonable to neglect 

gravitational effects. Neglecting gravitational effects implies that there is 

negligible variation in both atmospheric and hydrostatic pressures within a liquid 

droplet; therefore, the jump in Laplace pressure across a meniscus, given by Eq. 

L

( 2.4), must be constant at all locations along the meniscus. In addition, if a liquid 
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drop is in equilibrium it must be isobaric (i.e., constant pressure everywhere in the 

liquid), since pressure gradients are a driving force for fluid motion  [27]. As a 

result if a liquid droplet possesses multiple menisci lapPΔ  must be the same across 

each meniscus. As previously mentioned several works had models in which the 

capillary pressure varied within the droplet since lapPΔ  was calculated based on 

local beam deflection  [5],  [8],  [9],  [20], rather than only at each meniscus with a 

constraint on their equality. This is a violation of the isobaric condition.  

The Laplace pressure exerts a load on the solid surface in contact with the 

liquid.  Since gravitational forces have been neglected PA is constant and acts on 

all sides of the solid; therefore, if PA is subtracted a uniform pressure load of 

magnitude   pushes on the solid surface. This can be seen in Lglap PP =Δ Figure  2.2, 

where the absolute pressures are shown on the left, and the net pressure loading is 

shown on the right.   

AP

lapAL PPP Δ+=

ALlapLg PPPP −=Δ=

Air

Liquid

Air

Liquid

 
Figure  2.2: Equilibrium of a solid plate subjected to pressure forces 

 

2.1.4 An Example 
To help link the previous sections together and tie the results to mechanics 

consider the example of an incompressible liquid droplet sandwiched 
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symmetrically between two identical plates. For simplicity assume that the system 

is 2-dimensional (one radius of meniscus curvature is infinite). A quarter of the 

system is shown in Figure  2.3.  The objective of the analysis is to determine the 

force F required to hold the plates separated by a distance 2z. A similar analysis 

has been conducted in several works  [3],  [5].   

R

 
Figure  2.3: Schematic for plate drop example 

 
Using Eq. ( 2.2) the potential energy of all the surfaces is given by 

SLSLSASALALAS AAAU γγγ ++=  ( 2.7) 

where , ,  are the areas of the liquid-air, solid-air and solid-liquid 

interfaces respectively. Using Young’s Equation, Eq. 

LAA SAA SLA

( 2.3), to eliminate SLγ , Us 

can be expressed as  

( ) ( )SLSASAcSLLALAS AAAAU ++−= γθγ cos . ( 2.8) 

Note that  is a constant (surface area of the plate) thus the second term is 

a constant, denote . From the geometry shown in 

SLSA AA +

SoU Figure  2.3, the following 

relationships can be obtained 

aDASL = , mLA DRA θ= , 
( )Rzm /sin 1−=θ , czR θcos/= , 

( 2.9) 

where a, z, R, and mθ  are geometric quantities shown in Figure  2.3 and D is the 

depth of the plate into the page. Substituting Eq. ( 2.9) into Eq. ( 2.8) gives 
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( ) ⎟⎟
⎠
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⎝

⎛
−+= −
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c

LASoS azDUU θθ
θ

γ coscossin
cos

1 . ( 2.10)

Since the liquid is assumed to be incompressible and not leaking we require 

the volume of the drop given by  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= − 221

2

2
/sin

2
zRzRzRDaDzV  ( 2.11)

to be constant. Here the second term represents the liquid displaced by the 

meniscus (circular cap). This term along with  are neglected in previous 

formulations 

LAA

 [3],  [5].  Using Eq. ( 2.9) to simplify Eq. ( 2.11) gives 

( )
ς

θ
θ

θ
θ

θ c
c

c

c

c

DzaDzDzaDzV
cos2

sin
cos

cossin
cos2

212

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

−

 ( 2.12)

where the term in the brackets has been denoted by )( cθς  for simplicity. If the 

position of the plate z changes so will the wetted length of the plate, a, therefore 

applying the constant volume constraint gives 

DzdadzzaDda
a
Vdz

z
VdV

c

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

∂
∂

+
∂
∂

=
θ
ς

cos
0 , ( 2.13)

which can be rearranged to give a relationship between the liquid spreading width 

2a and the plate spacing 2z 

cz
a

dz
da

θ
ς

cos
+−= . ( 2.14)

The force acting on the 1/2 of one plate can be obtained by differentiating 

the potential energy with respect to z as follows  

dz
da

a
U

z
U

dz
dUF SSS

∂
∂

+
∂
∂

== . ( 2.15)

Introducing Eq. ( 2.10) and Eq. ( 2.14) gives, after simplification 
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cLA
cLA DDa

z
F θγθγ sincos

+= . ( 2.16)

Finally using the definition of R in Eq. ( 2.9) gives  

cLA
LA DDa
R

F θγγ sin+= . ( 2.17)

The first term in Eq. ( 2.17) is the Laplace pressure, given by Eq. ( 2.4) with one 

radius being infinite since the meniscus was assumed to be 2-D, multiplied by the 

area on which it acts. The second term is the portion of the liquid-air surface 

tension that acts normal to the plate.  This result could have been obtained directly 

by applying the results of sections  2.1.2 and  2.1.3.  However, in the literature 

when the energetic approach is taken for similar problems the area of the 

meniscus and the liquid displaced by the meniscus are often assumed to be small 

and hence neglected  [3],  [5]. As a result the second term in Eq. ( 2.17), owing to 

the surface tension force, is not obtained.  When this is a good assumption will be 

addressed in the discussion by looking at the contributions from each component.   

In the analysis above, the half contact width a is a variable that depends on 

the plate separation z through the constant volume condition. In other words, the 

meniscus is allowed to adjust its location. We note that some previous studies 

apply the Laplace pressure ( 2.4) but force the meniscus locations to be fixed to 

simplify the analysis  [8].  Following the approach of this section but constraining 

the meniscus in such a way would not give rise to the desired Laplace pressure 

loads in Eq. ( 2.17).   

Let us expand this example by attaching a linear spring of stiffness k to each 

plates as is done in  [2],  [3].  Assume that the spring is unstretched when z = h, 

then after eliminating a using Eq. ( 2.12) the energy of the system is 
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Differentiating Eq. ( 2.18) with respect to z gives the net force on the system 

which must be zero for equilibrium, i.e.,  

( )
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2
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1

2 . ( 2.19)

It is convenient to introduce the following normalized parameters  

h
zz =* ,

LDh
VVL =* ,

D
kh

LAγ
η = ,

L
h

=β , 
cLA

T
T DL

UU
θγ cos

* = , ( 2.20)

which are respectively normalized plate position, normalized liquid volume, ratio 

of spring forces to capillary forces, the ratio of plate length to spacing, and 

normalized energy. Introducing these parameters into Eq. ( 2.19) and rearranging 

the terms gives 
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Similarly introducing the normalized parameters into Eq. ( 2.18) gives 
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Figure  2.4: Total energy of spring-plate-liquid system for a range of liquid drop sizes.   
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The total energy given by Eq. ( 2.22) is plotted against z* in Figure  2.4.  The 

solid black curves represent  at various values of , and the dashed line 

represents  when a = L or when the liquid completely fills the gap between the 

plates.  The system attains z* that minimizes , which may occur either at a = L 

or at a local minimum of U  given by a solution of Eq. 

*
TU

*
T

*
LV

*
TU

LV

*
TU

( 2.21).  Note that for 

larger drops ,  has no local minimums while for smaller drops there is 

both a local minimum and a local maximum. The maximum separates a minimum 

at a = L from the local minimum; it may act as an energy barrier and prevent the 

solution from attaining a global minimum energy. As a result there may be 

multiple solutions to this problem for smaller drops in which case the solution will 

depend on the initial condition. To see this consider the branching and energy 

diagrams showing in 

4.0* > *
TU

Figure  2.5 for three increasing values of η , which could 

correspond to a soft, moderate and stiff spring respectively.  We consider a quasi-

static process in which the liquid initially fills the entire gap (a = L), and is very 

slowly evaporated till → 0. The path that the system will follow as the drop 

evaporates is represented by the red arrows in 

*
LV

Figure  2.5. In the branching 

diagrams Figure  2.5a), c), e), is plotted against z*.  In each of these subfigures, 

the dashed line represents the system in the configuration where a = L. To focus 

on demonstrating the concept and simplify the analysis, the liquid volume 

displaced by the menisci has been neglected, which results in the approximation 

of  when the gap is filled with the liquid. The solid line in each of these 

subfigures represents the system in a configuration given by a solution to Eq. 

*
LV

** zVL ≈
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( 2.21).  Note that for larger drops there is no solution to Eq. ( 2.21) which was also 

observed in the energy graph Figure  2.4 in that there are no local minima or 

maxima.  In addition if Figure  2.5a), c), e) are compared with their associated 

energy diagrams Figure  2.5b), d), f) it is clear that the portion of the solid line in 

Figure  2.5a), c), e) (solution to Eq. ( 2.21)) to the left of its maxima corresponds to 

a maximum in  whereas the portion of the line to the right of the maxima 

corresponds to a minimum in . Physically the system can only stably exist in a 

configuration that minimizes energy , so in 

*
TU

*
TU

*
TU Figure  2.5a), c), e) the system will 

never follow a path on the portion of the solid line to the left of its maxima.  Now 

consider what happens for a soft spring shown in Figure  2.5a), as the drop volume 

decreases. Initially,  the space between plates is completely filled with 

liquid, the spring is undeformed and the system is at point A. As the drop volume 

decreases the plates move closer together and the system moves to point B. After 

this point there also exist local minima in , however as can be seen in 

1* =LV

*
TU Figure 

 2.5b), this minima is not reachable due to the energy barrier. Therefore, as the 

liquid volume continues to decrease the system proceeds to point H.  Physically, 

this means that the contact lines are pinned at the edges of the plates during the 

entire evaporation process. The two plates approach each other during the 

evaporation and eventually the gap between them reduces to zero.  What happens 

for a spring of moderate stiffness, shown in Figure  2.5c), as the drop volume 

decreases is different.  Again the system cannot move to the local minimum at 

point B due to the energy barrier, however as the liquid volume decreases to point 

D the energy maximum becomes extraneous because it occurs at z* less than that 
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of the a = L configuration; thus from Figure  2.5d) the system comes to an 

equilibrium at the local energy minimum point E.  This transition corresponds to 

an abrupt jump in plate position z*. As the drop volume continues to decrease to 

point F a local maximum appears again making the energy of the a = L 

configuration, at point G, a local minimum; however, point G is not reachable due 

to the energy barrier so the system instead proceeds to point H as the volume of 

the liquid droplet is further increased. Physically, the jump in z* separates the 

motion of the liquid/plates system into two regimes. Before the jump, the contact 

lines are pinned at the edges of the plates, and the plates move closer as the liquid 

is evaporated. At the jump, the plates experience a sudden increase in separation. 

After the jump, the contact lines move inward during the evaporation and 

continue to increase the separation between the two plates. The third case, for a 

stiff spring, is shown in Figure  2.5e), where as the drop volume is decreased the 

system proceeds following A-D-H.  The difference in this case is that the local 

maxima which makes the energy of the a = L configuration (Point G again not 

reachable due to energy barrier) a minimum does not occur until the system is at 

point F.  Therefore when a local minimum first occurs at point D, it coincides 

with the a = L configuration and there is no jump in the separation z*.   

If the above quasi-static evaporation process does not start will a gap-filling 

liquid volume, but rather with a small drop, then the system may attain a different 

solution.  For example in Figure  2.5a), if the initial state was instead  and 

z* = 1, when released the system would come to equilibrium on the curve CI, 

representing a solution to Eq. 

3.0* =LV

( 2.21), and would instead proceed to point I rather 
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than point H (as previously described for initial state of  and z* = 1) as 

→0. Mastrangelo et al. 

1* =LV

*
LV  [3] presented this analysis for the spring plate system 

as well as for a doubly clamped beam and it was found that the behaviour of the 

beam system shared many of the same characteristics as the simpler spring plate 

system.   
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Figure  2.5: Branching and energy diagrams for spring-plate-liquid system for 3 values of η 
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2.1.5 Dupré Equation 
Since one of the objectives of this work is to study s-shaped adhesion of a 

DCB we also need to look at adhesion energies. Consider the process of 

separating two solid surfaces joined cohesively within a liquid, shown in Figure 

 2.6, to create two liquid-solid interfaces. The energetics can be understood by 

considering the two-step process: (I) separating ½ unit area of the solid-solid 

interface, the result of which is a unit area of the solid in contact with vacuum and 

a unit area of the liquid in contact with vacuum, and (II) bringing the solid and the 

liquid into contact to form a unit area of solid-liquid interface. This is captured by 

the Dupré equation [28] 

SLLSSLLLSSSL WWWW −+=−+= γγγ 2
1

2
1 . ( 2.23) 

where Sγ , Lγ , are the equivalent of SAγ , LAγ  in vacuum,  and  are works 

of cohesion of the solid and liquid respectively and  is the  work of adhesion 

between the solid and the liquid. In the literature the work of cohesion (

SSW LLW

SLW

Sγ ) 

between solid and solid has been mistakenly used in place of SLγ  for situation 

shown in Figure  2.6  [15], [17].  

LLSS WW 2
1

2
1 + SLW−

SLLLSSSL WWW −+= 2
1

2
1γ  

Figure  2.6: Separating a cohesively bonded solid in a liquid  [28] 
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2.2 Bernoulli-Euler Beam Theory 
The linear Bernoulli-Euler beam theory should be well known to most 

mechanical engineers.  However, the many assumptions used to obtain the theory 

are not as commonly known. Essential elements in the derivation of the theory 

will be presented following the flowchart shown in Figure  2.7.  The key purpose 

will be to identify the assumptions associated with this theory.  A nonlinear 

version of the theory will also be presented that removes some of the assumptions 

by allowing for nonlinear geometrical effects.   

 
Figure  2.7: Bernoulli-Euler beam theory derivation path 

 

2.2.1 Bernoulli-Euler Kinematic Assumption  
Bernoulli-Euler beam theory makes the following kinematic assumption 

about the deflected shape of the beam: plane sections remain plane and normal to 

the axis of the beam. This assumption requires that the beam’s deformation be 

caused solely by internal bending moments. Deformation caused by internal shear 

or axial forces are neglected. If the beam length is much greater than its height 

deformations caused by bending will be much greater than deformations caused 

by shear forces  [31], hence the Bernoulli-Euler assumption is valid for thin 

beams. Typically beam loading is transverse so neglecting deformation caused by 

axial forces is reasonable and the beams behave as though they are inextensible. 

The Bernoulli-Euler kinematic assumption can be used to obtain a relationship for 
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the beam’s strain. Figure  2.8a) shows an infinitesimal section of a beam that has 

been deformed by an internal moment M.  Both cross sections remain planes and 

the extensions of these planes intersect at the center of curvature, point O. The 

radius of curvature ρ represents the distance from the center of curvature to the 

neutral axis (NA) of the beam.  The NA is defined as the location on the cross 

section where there is no strain; any point on the cross section at a distance ξ  

from the NA is subjected to a normal strain given by  [31]  

κξρξε −=−= /  ( 2.24) 

where κ  is the beam curvature at this section. The strain expressed in Eq. ( 2.24) 

is the infinitesimal strain because it neglects second order terms that occur in the 

finite strain theory  [41].  

ρ ρ

MM

O

ds

ξ

0 x

z

s
x(s)

z(
s)

P

a) b) 

 
Figure  2.8: Bernoulli-Euler beam theory kinematic assumption 

 

Relationships for curvature κ are readily available in calculus texts  [32]. Let 

φ be the angle of inclination of the tangent line at a point P of a curve, the 

curvature κ at P is the rate of change of φ with respect to arc length s, and is 

defined as 
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ds
dφκ =  ( 2.25) 

If the curve is given parametrically by x = x(s), z = z(s), as shown in Figure  2.8b), 

an alternate form of Eq. ( 2.25) can be derived by noting that  and 

applying the chain rule to obtain 

( )dxdz /tan 1−=φ

( ) ( )[ ] 2/322

2

2

2

2

// dsdzdsdx
ds
dz

ds
xd

ds
zd

ds
dx

+

−
=κ . 

( 2.26) 

Although Eq. ( 2.26) is difficult to use, for parametric curves of the form x = x, z = 

z(x) it reduces to  

( )[ ] 2/32

2

2

/1 dxdz
dx

zd

+
=κ . 

( 2.27) 

Finally if the higher order term ( )2/ dxdz in Eq. ( 2.27) is neglected the following 

approximate relationship for curvature is obtained 

2

2

dx
zd

≈κ . ( 2.28) 

Neglecting the higher order term in Eq. ( 2.27) requires slopes to be small.  For 

large slopes, it is more appropriate to consider the geometrical nonlinearity and 

use Eq. ( 2.25) coupled with the following two relationships,  

φcos=
ds
dx , 

φsin=
ds
dz . 

( 2.29) 

Eq. ( 2.25) and Eq. ( 2.29) have previously been used to model larger deflections of 

carbon nanotubes  [33],  [34]. It should be noted that if 1φ << , then cos 1φ ≈ , 

sinφ φ≈ , i.e., s and x coincide, and Eq. ( 2.26) reduces to the linear relation, Eq. 

( 2.28). Using these curvature relationships together with moment-curvature 

relationships allow the location of the beam’s neutral-axis to be determined.  
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2.2.2 Constitutive Assumption 
If the material is homogeneous, isotropic, and behaves in a linear elastic 

manner then 1-D Hooke’s law can be used to give normal stress σ from the 

assumed strain  

εσ E= , ( 2.30) 

where E is Young’s Modulus.  The internal moment, M shown in Figure  2.8, can 

be obtained from the stress distribution 

EIdAEdAM
AA

κσξκξσ ==−= ∫∫ 2 . ( 2.31) 

where I is the area moment of inertia of the cross section. Rearranging Eq. ( 2.31) 

gives a relationship between internal moment and beam curvature 

EI
M

==
ρ

κ 1 . ( 2.32) 

Eq. ( 2.32) can be used to determine the beam’s deflected shape based on the  

internal moment and flexural rigidity, once an appropriate curvature equation is 

adopted. Finally, Eqs. ( 2.24)-( 2.32) can be combined to give the flexure formula 

for the stress distribution on the beam’s cross section due to pure bending 

IM /ξσ −= . ( 2.33) 

Because the Bernoulli-Euler kinematic assumption assumes only one component 

of strain, only a one dimensional constitutive law, Eq. ( 2.30), is used.  There are 

several repercussions of this simplification that should be discussed.  First the 

Bernoulli-Euler theory neglects transverse normal stress that would accompany 

any transverse load.  However, this stress will generally be negligible if the 

beam’s length is much greater than its height  [35]. Secondly, the theory neglects 

the Poisson effect which would cause the vertical sides of the beam’s cross 

section to rotate due to the distribution of stress shown in Eq. ( 2.33).  Physically 
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the top and bottom surfaces of the beam would become saddle-shaped or 

anticlastic [36]; this effect is small when the beam height is comparable with its 

depth [36]. But, for wide beams the following substitution is recommended [36] 

)1/( 2* ν−= EE  ( 2.34) 

Where ν  is Poisson’s Ratio. Eq. ( 2.34) is a usual swap of material constants used 

in elasticity to transform plane stress solutions into plane strain solutions.  

2.2.3 Reference Coordinate System and Infinitesimal Strain 
The main body of the Bernoulli-Euler beam theory is in place however it is 

prudent to introduce some definitions. For instance to determine the displacement 

of a point on the beam requires that a coordinate system and a reference 

configuration be defined. In section  2.2.1 we discussed infinitesimal strain, 

however, this was only one component of the infinitesimal strain tensor which can 

be defined in terms of the displacement.  

First to define positions of points on the beam two coordinate systems are 

utilized. The regular Cartesian coordinate system (x, y, z), where x and z are 

shown in Figure  1.1 and y is directed perpendicular to the page, and a curvilinear 

coordinate system (s, y, ξ). In the latter s is the arc length along the neutral axis 

(NA) from the base of the beam and ξ is directed transverse to the NA (Figure 

 2.8); since the beam is assumed to be inextensible the coordinates of points on the 

beam in this coordinate system do not change with deflection.  Now consider a 

point on a beam that before deflection is located at position (xo, yo, zo). If after 

deflection this point is located a position (xf, yf, zf) the displacement vector is  

33 
 



( ) ( ) ( )kzzjyyixxkwjviuu ofofof −+−+−=++=  ( 2.35) 

where i ¸ j , k  are unit vectors.  In general the displacement is measured against a 

known reference state.  In this work the undeflected state where the beam is 

unstrained will be taken as the reference configuration.  In this configuration 

Cartesian and curvilinear coordinate systems coincide and the beam’s neutral axis 

coincides with the positive x-axis.   

With the displacement vector we can now define the infinitesimal strain 

tensor as follows 

( )( )Tuu ∇+∇=
2
1ε . ( 2.36) 

As mentioned in section  2.2.1 the infinitesimal strain omits the higher order terms 

so it is valid for small strains. However only one component of the strain tensor, 

xεε = , was previously discussed since the kinematics of the theory assume that 

all other components are zero. It then follows from Eqs. ( 2.24) and ( 2.32) that [35] 

0
2
10

2
10

2
1

00

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

==⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=

=
∂
∂

==
∂
∂

=−=
∂
∂

=

y
w

z
v

z
u

x
w

y
u

x
v

z
w

y
v

EI
M

x
u

yzxzxy

zyx

εεε

εεξε
. ( 2.37)

Note that transverse shear would cause xzε  to be non-zero and transverse normal 

stress would cause zε  to be non-zero. Both have been assumed to be negligible in 

the Bernoulli-Euler theory.  

The moment-curvature relationship Eq. ( 2.32) combined with an appropriate 

definition of curvature allow for solution of the position of the NA after 

deflection. Points not on the NA can then be located using the kinematic 
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assumption Eq. ( 2.24). If after deflection a point on the NA (s, y, 0) is located at 

position (x, y, z), then the components of its displacement vector are  

sxu −= ,        0=v ,         zw = , ( 2.38) 

since before deformation x and s coincide. Furthermore in the linearized version 

of the theory x is assumed to coincide with s even after deflection.  In this case u 

= 0.  Throughout the rest of the dissertation, unless otherwise specified, w will be 

used to denote the z-component of the displacement, or the deflection, of the NA.  

2.2.4 Equilibrium  
In the following, equations describing equilibrium are first presented with 

full consideration of geometrical nonlinearity, based on the formulation presented 

in Love et al.  [36]. These equations are then linearized for the case of small 

deflection to give the relationships typically presented in undergraduate 

mechanics of materials textbooks such as  [31].  

Consider an infinitesimal section of length ds from a deflected beam shown 

in Figure  2.9. This figure shows the internal shear Q, axial force T, and bending 

moment M in their positive directions for this work. To maintain generality 

assume that this section is also subjected to the following distributed loading: a 

transverse traction q per unit length in the direction of ξ, an axial traction f per 

unit length in the direction of ds, and a clockwise bending moment m, per unit 

length.  Since the section is infinitesimal the following simplifications apply.  

ds
dφ

ρ
κ ==

1 ,     1)cos( =φd ,    φφ dd =)sin(  ( 2.39) 
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Figure  2.9: Equilibrium of an infinitesimal beam section showing internal reactions in 

positive sense for sign convention for this work 
 

Force equilibrium in the x and z directions as well as moment equilibrium 

can be used to obtain three differential equations. Applying force equilibrium in 

the x-direction gives, after cancelation, division by ds and substitution of Eq. 

( 2.25) 

0=+− fQ
ds
dT κ . ( 2.40) 

Similarly, force equilibrium in z direction gives  

0=++ qT
ds
dQ κ . ( 2.41) 

Finally, making use of Eq. ( 2.40), moment equilibrium about center of curvature 

O gives  

0=++ mQ
ds

dM . ( 2.42) 

These three differential equations can be rearranged to isolate each internal force 

for use in applying natural boundary conditions. For the internal moment 

combining Eq. ( 2.32) and Eq. ( 2.25) gives 
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ds
dEIM φ

=  ( 2.43) 

which is the primary differential equation that will be used to obtain the deflection 

in the nonlinear case. For the internal shear Q combining Eq. ( 2.42) with Eq. 

( 2.43) gives 

m
ds
dEIQ −−= 2

2φ . ( 2.44) 

Finally for the internal axial force combining Eq. ( 2.41) and Eq. ( 2.44) gives 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= q

ds
dm

ds
dEI

dsd
T 3

3

/
1 φ

φ
, ( 2.45) 

Due to its complexity Eq. ( 2.45) is difficult to implement and alternatives will be 

discussed in  Chapter 4 when the nonlinear mathematical model is formulated.   

The preceding results can be linearized for small slopes as follows.  

Applying the small slope approximation (x→s from Eq. ( 2.29)) to the differential 

equations ( 2.40) ( 2.41) and ( 2.42), and substituting in Eq. ( 2.28), recognizing that 

w = z(x) for the NA, gives 

02

2

=+− f
dx

wdQ
dx
dT  

02

2

=++ q
dx

wdT
dx
dQ . 

0=++ mQ
dx

dM  

( 2.46) 

It then follows from Eqs. ( 2.32), ( 2.28) and ( 2.46) that each internal force is 

related to the deflection w(x) by  
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wdEI
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wd

T 4

4

2

2
1  

( 2.47) 

Finally, if T = 0 and m =constant, combining the last two equations in ( 2.46) gives 

q
dx

Md
=2

2

, ( 2.48) 

which can be combined with the first equation in ( 2.47) to give, for the case of 

constant flexural rigidity EI, 

q
dx

wdEI =4

4

. ( 2.49) 

This equation is commonly associated with Bernoulli-Euler beam theory.  

However, it will not be used in this work because the internal moment can easily 

be obtained by summation; hence the first equation in Eq. ( 2.47) would be 

preferred as it is only of second order. Furthermore, Eq. ( 2.49) requires the 

additional assumption of T = 0, which is not necessarily true in presence of the 

surface tension force.   

 

2.2.5 Discontinuity Functions 
If there are discontinuities in the beam’s loading it is necessary to first solve 

the beam equations in multiple domains and subsequently determine the 

integration constants by matching the beam slope and deflection at the domain 

boundaries. This procedure can be tedious so it is desirable to express the loads, 

beam slopes and deflections using a single function.  This can be accomplished 

using Macaulay Functions which are defined as follows  [31] 
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         . 0≥n ( 2.50) 

With the exception of n = 0 or 0x a−  which corresponds to the Heavyside unit 

step function, these Macaulay Functions are continuous.  For n > 0 these functions 

are  continuous and their derivatives are as follows 1−nC

( ) 1−−=− nn axnax
dx
d          . 0>n ( 2.51) 

These functions also integrate like polynomials 

C
n

ax
dxax

n
n +

+
−

=−
+

∫ 1

1

        . 0≥n ( 2.52) 

Note that a similar class of “singularity functions” can be defined to accommodate 

point forces and moments for use with Eq. ( 2.49).  However, since Eq. ( 2.49) will 

be avoided these “functions” will not be needed.   

2.2.6 Strain Energy 
Since considerable attention has been given to surface energy it is necessary 

to define the potential energy of strain or strain energy as follows 

dVU
V

SE εσ :
2
1
∫= . ( 2.53) 

Here the term within the integration is the strain energy per unit volume 

calculated by 

ijijW εσεσ
2
1:

2
1

== , ( 2.54) 

where summation is implied over repeated indices.  In the Bernoulli-Euler beam 

theory, the strain components are given in Eq. ( 2.37).  From Eq. ( 2.33), and Eq. 

( 2.30), the strain energy can be obtained as  

2 2
2

2 2SE
l A l

E M MU z dAds ds
EI EI

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫ ∫ . ( 2.55) 
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2.2.7 Bernoulli- Euler Derivation Summary  
Although most of the results of this section are well known, they were 

explained in considerable detail to highlight the numerous assumptions that were 

made in obtaining Bernoulli-Euler beam theory. In particular the version of the 

theory that accounts for nonlinear deflection (large displacement) makes the 

following assumptions: 

1.Neglect effect of traverse shear on strains 

2.Neglect effect of axial normal stress (caused by axial forces) on strains 

(inextensible) 

3.Neglect effect of transverse normal stress on strains 

4.Small strain 

5.Require homogenous, linear elastic, isotropic material 

6.Neglect anticlastic curvature caused by Poisson effect 

The linearized version makes several additional assumptions.  Firstly, the 

expression for curvature was linearized by assuming small slopes.  Secondly, as 

will be seen in a later section the geometrically nonlinear effects of beam 

deflection are ignored when obtaining an expression for the internal moment M.  
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Chapter 3 Linear Beam Formulation 
The preceding theory will be applied to obtain a mathematical model for the 

capillary collapse and adhesion of the DCB.  This chapter will focus on using the 

linear beam theory, and the formulation with nonlinear beam theory will be 

presented in  Chapter 4.  For each case the governing parameters and a system of 

equations to be solved will be identified, as well as the numerical algorithm used 

to solve these equations.   

Two different cases will be presented in this chapter: one where the beams 

are separated (Figure  1.1) and we wish to predict contact at the free ends; and the 

other where the beams are in s-shaped adhesion (Figure  1.2). Formulation 

applicable to both cases is presented first below and the differences will be 

addressed in separate subsections later. Note that due to symmetry the formulation 

will focus only on the upper beam.  For the linear theory the moment-curvature 

relationship is given by the first equation in Eq. ( 2.47) 

2

2

dx
wdEIM = . ( 3.1) 

Here the moment M(x) can be determined by considering equilibrium of a section 

shown in Figure  3.1.  The loadings that contribute to M(x) are MR the reaction 

moment at the base, QR the shear moment at the base, the surface tension force 

which acts at the meniscus (described in section  2.1.2), and the Laplace pressure 

force which acts on the section of the beam in contact with the drop (described in 

section  2.1.3).  Note that in the linear case the beam’s deflection is assumed to be 

so small that it does not affect the evaluation of M(x). In reality the deflection will 

change the moment and this effect will be addressed in the nonlinear formulation. 
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Using Macaulay Functions (Eq. ( 2.50)) the internal moment M(x) determined 

from moment equilibrium of Figure  3.1 can be written as follows 

1
1

2
1 sin

2
xxDxx

DP
xQMM

cLA
lap

RR −+−
Δ

−−= θγ      ,    20 xx <≤  ( 3.2) 

where x1, and D are respectively the location of the base meniscus, and the depth 

of the beam into the page shown in Figure  3.1. The third term in Eq. ( 3.2) 

represents the moment due to the Laplace pressure, and the fourth term represents 

the moment due to the surface tension force. x2 should be interpreted as the free 

end (x2 = L) in the uncollapsed case and the point of contact of the two beams 

(Figure  1.2) in the adhesion case. Note that in deriving Eq. ( 3.2) the couple 

moments associated with transferring the surface tension forces to the beam’s NA 

have been neglected. This is a good assumption for thin beams where height is 

considerably smaller than length. Also, attractive forces between the beams, such 

as the Casimir effect, are ignored which is a generally a good assumption when 

capillary forces are present  [37]. The reactions MR and QR can be obtained from 

global beam equilibrium or boundary conditions; however they will differ for the 

two scenarios we are considering and therefore will be presented separately in 

sections  3.1 and  3.2.  

θ cγLAD

 
Figure  3.1: FBD of a section of a linear beam for obtaining internal reactions M(x) and Q(x) 
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Several assumptions about the meniscus geometry have been made in 

formulating Eq. ( 3.2). Recall lapPΔ  is given by the Young-Laplace equation, Eq. 

( 2.4), and can be related to the principal radii of curvature of the meniscus. 

Because D, the out of plane dimension of the beam, is much greater than the 

spacing between the beams, 2h (see Figure  1.1) the meniscus can be treated as 

two-dimensional  [18], i.e., one of the principal radii R2 = ∞.  In addition since the 

droplet must be isobaric the menisci have a constant radius of curvature at all 

locations. In other words, each meniscus is part of a circular cylinder, as shown in 

Figure  1.1. In the following, we denote this radius as R, which leads to  

RP LAlap /γ=Δ  ( 3.3) 

Furthermore, the sign convention ( 2.5) combined with the Young-Laplace 

equation ( 2.4) establish a sign convention for R; negative R corresponds to a 

concave meniscus as is shown in Figure  1.1 whereas a positive R corresponds to a 

convex meniscus with contact angle greater than 90º.  It should be noted that R is 

not a known quantity and needs to be determined from the equilibrium of the 

beam and of the liquid.  

Combining Eqs. ( 3.1), ( 3.2) and ( 3.3) gives a 2nd order differential equation 

for the deflected curve 

⎟
⎠
⎞

⎜
⎝
⎛ −+−−−= 1

1
2

12

2

sin
2

1 xxDxx
R
DxQM

EIdx
wd

cLA
LA

RR θγ
γ . ( 3.4) 

This equation can be integrated to give the slope and the deflection of the beam.  

To eliminate the constants of integration the boundary conditions corresponding 

to zero deflection and slope at the clamped end are used, i.e., 
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dx
dw . ( 3.5) 

The expressions for the slope and the deflection are respectively given by  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−−−== 2

1
3

1
2

2
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62
1tan xx

D
xx
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DxQxM
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dw cLALAR

R
θγγ

φ  ( 3.6) 
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⎝
⎛ −+−−−= 3

1
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1
32

6
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2462
1 xx

D
xx

R
DxQxM

EI
w cLALARR θγγ  ( 3.7) 

where ϕ is the angle the deflected curve makes with the positive x-axis. 

The preceding equations can be normalized by introducing the following 

nondimensional parameters 

L
xx =* , 

h
ww =* ,

EI
DLLA

2γ
=Λ , 

L
h

=β , 
h
R

=α , 
EI
MLM =* ,

EI
LQ

Q
2

* = . ( 3.8) 

These parameters correspond to normalized position, deflection, surface tension, 

spacing, meniscus radius, moment, and shear force.  Introducing these parameters 

into the Eq. ( 3.4) gives 

1*
1

*2*
1

****
2*

*2

sin
2

xxxxxQM
dx

wd
cRR −Λ+−

Λ
−−= θ

αβ
β . ( 3.9) 

Similarly, introducing the parameters into the Eqs. ( 3.6) and Eq. ( 3.7) gives 

expressions for normalized slope and deflection 

( ) 2*
1

*3*
1

*2*
*

**
*

*

2
sin

62
tan xxxxxQxM

dx
dw cR

R −
Λ

+−
Λ

−−==
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βφ , ( 3.10)
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1

*4*
1

*3*
*

2*
*

*

6
sin

2462
xxxxxQxMw cRR −

Λ
+−

Λ
−−=

θ
αβ

β . ( 3.11)

Note that for the portion of the formulation presented thus far, once the geometry 

of the DCB and the material properties of the liquid and the solid are specified, 

, Λ β  and cθ  are known governing parameters while α  and  need to be 

determined along with the deflected curve.   

*
1x
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3.1 Uncollapsed configuration 
In the first case the two beams in the DCB are separated, a schematic is 

shown in Figure  3.2. Here the lines AB and OC represent the undeflected beams 

and the lines AB’, and OC’ represent the deflected beams. Since the droplet is at 

the free end x2 = L. As mentioned above each meniscus is part of a circular 

cylinder with radius R, represented by the dashed circles in Figure  3.2. l1, l2 

measure the distance from x1 and x2 to the center of each respective circle; these 

parameters are defined to have the same sign as R; the negative direction is shown 

in Figure  3.2. Finally, as will be explained in detail later, without contact angle 

hysteresis, a droplet sandwiched between the deflected DCB can only be in 

equilibrium if one of its menisci is pinned at the free end, resulting in the angle 2θ  

differing from the contact angle. This is also physical as the corner of the beam at 

the free end cannot be perfectly sharp. In total, there are five unknown parameters 

that have been introduced: R, l1, l2, 2θ , and x1, which must be determined as part 

of the solution.  
h

h θ c

θ 2

 

Figure  3.2: Schematic of the uncollapsed DCB problem to be solved 
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In Eq. ( 3.10) and ( 3.11), the reactions  and  must be obtained to 

determine the beam deflection. A free body diagram (FBD) of the beam is shown 

in 

*
RM *

RQ

Figure  3.3.  To obtain the reactions utilize Eq. ( 2.47) and note the following 

natural boundary conditions at the free end of the beam 

23

3

sin)( θγ D
dx

LwdEI LA=− ,           0)(
2

2

=
dx

LwdEI . ( 3.12) 

The first equation corresponds to the shear force due to the surface tension force 

at the free end.  The second equation states that there is no applied moment at the 

free end. Either utilization of the boundary conditions Eq. ( 3.12) (with Eq. ( 3.4), 

and the derivative of this equation) or direct application of force balance in the z-

direction and moment balance to Figure  3.3 gives 
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2
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2
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( 3.13) 

Using the parameters from Eq. ( 3.8), Eq. ( 3.13) can be normalized to give 
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Figure  3.3: FBD of a linear beam in the uncollapsed case for obtaining base reactions from 
equilibrium. 
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Recall that five unknown parameters have been introduced in Figure  3.2: R, 

l1, l2, 2θ , and x1. These parameters must be obtained as part of the solution and 

will require five additional constraint equations to be solved coupled with the 

beam’s deflection Eq. ( 3.11). In addition, Figure  3.2 also raises several questions: 

why consider only the droplet pinned at the free end and why is it necessary to 

introduce the angle 2θ  at the free end? The answers to these questions will be 

addressed when the constraint equations are formulated.  

Starting with the equations of the circles shown in Figure  3.2 
22

22
22

11
2 )()()()( hzlxxhzlxxR −++−=−+−−= . ( 3.15) 

To ensure that the isobaric droplet condition is satisfied the two menisci have 

been constrained to have the same radius of curvature. The first two constraint 

equations arise by requiring the contact points between the menisci and the beams 

to lie on the meniscus circle. For the base meniscus the condition is 

2
1

2
1

2 ))(( hxwlR −+= , ( 3.16) 

where  is the beam deflection at the base meniscus. The equivalent 

condition for the free end meniscus is  

)( 1xw

2
2

2
2

2 ))(( hxwlR −+=  ( 3.17) 

where  is the beam deflection at the free end.  )( 2xw

A third constraint equation can be derived by requiring the angle between 

the deflected beam and the left meniscus curve to be the contact angle. The angle 

from the positive x-axis to the upper deflected beam at the left meniscus measured 

clockwise is . Similarly the clockwise angle from the 

positive x-axis to the base meniscus is given by 

( dxxdw /)(tan 1
1

1
−=φ )
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In Eq. ( 3.18) two expressions are given in two regimes separated by contact angle 

=90cθ ° . Different expressions are needed because R can take positive and 

negative signs. Before the deflection, it is clear that °< 90cθ  corresponds to 

, and 0<R °> 90cθ  corresponds to . However, when 0>R cθ  is near , 

deflection could cause the sign of R to change. Therefore strictly speaking, 

90°

=90cθ °  may not be the exact boundary to separate the 0<R  and  regimes.  0>R

However, Eq. ( 3.18) only becomes invalid for cases in which the magnitude of the 

meniscus radius is very large. In these cases, from Eq. ( 3.3), the Laplace pressure 

becomes negligible making it difficult for the DCB to collapse; hence these 

limiting cases will not be of interest to the current discussion. In addition, a 

change in the sign of R corresponds to a change between the meniscus being 

concave and convex. During this change the meniscus becomes linear or R = ∞, 

which is difficult to handle numerically. For these reasons Eq. ( 3.18) suffices in 

describing the angle associated with the base meniscus in this discussion. To 

express the third constraint equation consider the angle diagrams shown in Figure 

 3.4. This figure shows the 4 combinations of signs of the beam deflection and 

meniscus radius. In each case enforcing the angle constraint results in the 

following relationship 

11 φθθ += cm . ( 3.19) 
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a) w>0, R>0 b) w>0, R<0

c) w<0, R>0 d) w<0, R<0 (Impossible)
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Figure  3.4: Angle diagrams at the base meniscus.  
 

One may wonder whether a similar constraint should be placed for the right 

meniscus. Mathematically, such a constraint combined with the requirement for 

the two menisci radius to be equal would over constrain the problem and prohibit 

an equilibrium solution. This may seem troubling since physically Young’s 

equation requires such a constraint. However, Consider the case of a drop of 

wetting liquid ( °< 90cθ ) placed somewhere in the middle of the beam.  In this 

case enforce a constraint similar to Eq. ( 3.19) for the right meniscus and consider 

what happens when the beam deflects. Because the contact angle is the same at 
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the two menisci, higher deflection at the right meniscus would lead to a smaller 

radius of curvature and thus a lower absolute pressure on the right side of the 

droplet—violating the isobaric condition. Because of the resulting pressure 

gradient the liquid droplet is no longer in equilibrium and will be driven towards 

the free end.  This behaviour has been observed experimentally  [7] and is a 

motivating factor for choosing to study the case of a drop pinned at the free end 

, as shown in Lx =2 Figure  3.2.  Physically, the corners of the free ends cannot be 

perfectly sharp.  This allows the angles θ2 between the beams’ longitudinal axes 

and the right meniscus to differ from the contact angle once the drop reaches the 

free end. As before let the angle from the positive x-axis to the deflected beam at 

the free end, measured clockwise, be ( )dxxdw /)(tan 2
1

2
−=φ . The clockwise angle 

from the positive x-axis to the free end meniscus is given by 
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The angle diagrams in Figure  3.5 show the four combinations of signs of the beam 

slope and meniscus radius.  In each case enforcing the angle constraint results in 

the fourth constraint equation  

222180 φθθ −=−° m . ( 3.21) 
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a) w>0, R>0 b) w>0, R<0

c) w<0, R>0 d) w<0, R<0 (Impossible)
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Figure  3.5: Angle diagrams at the free end meniscus. 
 

The final constraint equation is the assumption that the incompressible 

liquid does not leak during beam deflection, i.e.,  
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where the term in the summation represent the area of each meniscus cap 

(negative).  Eqs.( 3.16), ( 3.17), ( 3.19), ( 3.21), and ( 3.22) are five equations for the 

five additional unknowns R, l1, l2, x1¸and θ2, which allows the complete 

determination of the beam deflection.   
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As before it is desirable to normalize these equations and it is necessary to 

introduce additional normalized parameters as follows  

LDh
VV

2
* = , 

R
ll i

i =
* , ( 3.23) 

where V* is the normalized drop volume, and  will be referred to as the 

meniscus geometry factors. Introducing these parameters along with existing 

parameters from Eq. 

*
il

( 3.8) into Eqs. ( 3.16) and ( 3.17) gives 
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where .  Combining Eq. 1*
2 =x ( 3.18) with Eq. ( 3.19) gives, after normalization 
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Note that normalized slopes are transformed to physical slopes through  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

*

*
1* tan)(

dx
dwx βφ . ( 3.27) 

Combining Eq. ( 3.20) with Eq. ( 3.21) gives after normalization 

( ))(sin *
22

*
2 xl φθ −= . ( 3.28) 

Finally Eq. ( 3.22) is normalized to be  

( ) ( )∑∫
=

− ⎟
⎠
⎞⎜

⎝
⎛ −−+−=

2

1

2***1
2

**** 1cos)(
2

)(1
*
2

*
1

i
iii

x

x

lllsigndxxwV αβα . ( 3.29) 

After normalization, the dimensionless parameters governing the 

deformation of the DCB are V*, β, Λ, θc, which are respectively normalized liquid 

volume, normalized spacing, normalized surface tension, and contact angle.  The 

objective of the analysis will be to study what combinations of the governing 

parameters result in DCB collapse defined as . This represents 

contact between the free ends of the beams.  The deflected curve and slope are 

1)1(**
2 == ww
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given by Eq. ( 3.11) and Eq. ( 3.10) respectively where , and  are given by 

Eq. 

*
RM *

RQ

( 3.14).  However in these equations α, , *
1x 2θ  are not known a priori and must 

be guessed. The calculated beam deflection is then substituted into the five 

constraint equations, ( 3.24), ( 3.25), ( 3.26), ( 3.28), and ( 3.29) to obtain α, , *
1x 2θ  

as well as the two intermediate variables , and  in an iterative fashion. The 

constraint equations are solved primarily using the Newton-Raphson method 

*
1l

*
2l

 [42] 

with relaxation. Because all of the variables have physical bounds and the 

Newton-Raphson method often converges in an oscillatory fashion, a slight 

modification was necessary, as an unphysical value during the iteration (e.g. l  > 

1) can cause the solution to fail.  The modifications are as follows. If a Newton-

Raphson iteration gives an unphysical value for a variable, that variable would be 

recalculated using the Gauss-Seidel method 

*
1

 [42]. Newton-Raphson typically 

converges faster, whereas the Gauss-Seidel method tends to be more stable. A 

brief overview of the algorithm and convergence criteria used is given in 

 Appendix A.   

At this point it is prudent to discuss what may seem to be an inconsistency 

in the preceding formulation. In the beam theory the effects of slope and angle 

were neglected both in the definition of curvature (see derivation of Eq. ( 2.28)) 

and in the determination of the internal moment from equilibrium (see derivation 

of Eq. ( 3.4)). However, these effects are included in the constraint equations. 

There are several reasons for this. First the effect of slope was of second order  

when neglected to obtain curvature relationship Eq. ( 2.28) but may not be 

negligible in other places. Secondly, in the discussion of  Chapter 5 it will be 
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shown that the influence of angles in the constraint equations can be important 

and even dominant in certain situations; whereas, the effect of nonlinear geometry 

in the beam equations (formulation to be presented in  Chapter 4 and results in 

 Chapter 6) will be shown to be negligible for the range of governing parameters 

of interest. Therefore, by neglecting nonlinear geometrical effects in the beam 

equations we can obtain an analytic expression for the deflection (Eq. ( 3.11)), 

which in turn allows us to investigate the effect of the governing parameters in a 

clear way with the added benefit of less computational time. Although, for any 

given V*, β, Λ, θc  a solution can be obtained quickly with either Eq. ( 3.11) or 

evaluating the beam deflection numerically as is needed in the nonlinear beam 

theory, we wish to study many different combinations of the four governing 

parameters so the significantly decreased computational time offered by the linear 

model is an advantage.   

 

3.2 Adhered configuration 
In the second case the DCB beams are joined at the free end, as shown in 

Figure  3.6. The objective is to predict when this configuration is possible i.e. 

satisfying x2 < L. In Figure  3.6, the lines AB and OB represent the deflected 

beams while the line BC represents the portion of the beams that are adhered. 

Because of the similarity of the adhered configuration to a crack, we shall from 

now on refer to the point of contact (B) as the crack tip with the area ABO 

representing the “crack”. Because the adhered beam length is not known a priori, 

x2 is an unknown to be determined by the solution. Furthermore there may be a 

contact force between the beams. Due to assumption of DCB symmetry about line 
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O1O2 the contact force can only be in the transverse direction, so there is no need 

to consider midplane stretching of the DCB as was done by Ouakad et al. when 

studying adhesion of a cantilever to a substrate  [8].  

Rh
h

θ c

 

Figure  3.6: Schematic of the adhered DCB problem to be solved 
 

  
Figure  3.7: FBD of a linear beam in the adhered case for obtaining base reactions from 
equilibrium 
 

To obtain the reactions  and  in the beam deflection equation, a 

FBD of the beam is shown in 

*
RM *

RQ

Figure  3.7. First the contact force between the two 

beams can be used to obtain a natural boundary condition on the beam’s shear 

force at x2 as follows 

23
2

3 )( Q
dx

xwdEI = . ( 3.30) 

The moment natural boundary condition is not as easy. Glassmaker et al. obtained 

a moment boundary condition using the “J-integral” when they studied self-
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adhesion of nanotubes  [33]. This approach can be repeated but with two 

modifications. Firstly, in the current work, there are two deforming beams that 

must be accounted for. Secondly, the current problem involves the interfacial 

energy, SLγ , of two solids joined cohesively that when separated will be bridged 

by liquid (Eq. ( 2.23)), rather than the solid-solid work of adhesion. In the 

literature there have been issues with determining work of adhesion for 

microbeam structures because the rinse liquid often remains in the pores of the 

solid and contributes capillary adhesion  [17], [21].  In such situation, SLγ  should 

be interpreted as an effective interfacial energy that accounts for partially wetted 

solid-solid interface prior to separation. The “J-integral” is defined as  [38]  

1
i

ij j
duJ Wn n d
dx

σ
Γ

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ Γ ,     21, K=ji . ( 3.31) 

where W is the strain energy given by Eq. ( 2.54), ui are displacement components 

(see Eq. ( 2.35)), and ni are components of the normal to path Γ which is shown in 

Figure  3.8. For quasi-static crack propagation in a linear elastic solid, J has been 

shown to be equal to 2γSL, the energy required to advance a unit area of crack.  

 
Figure  3.8: Integration path for “J-integral” 

 
Table 5: Quantities required for the “J Integral” 

 1n  2n  ijσ  ijε  jijnσ  

1Γ  0 -1 N/A N/A 0 

2Γ  1 0 0 0 0 

3Γ  0 1 N/A N/A 0 

4 -1 0 Eq. X( 2.33) Eq. X( 2.30) 0 Γ  
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Som  of the quantities for the integral in Eq. ( 3 able 5 

which reveals that the only nonzero cont

Note that on this path 

e .31) are given in T

ributions will come from the path . 4Γ

111 / ε=dxdu , so if Eq. ( 3.31) is simplified and rewritten f

opening a crack of length dx between the beams of width D the result is 

or 

dx
EI

MdxdWDdxdDnnDdx ijijSL ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Γ=Γ⎟

⎠
⎞

⎜
⎝
⎛ −−= ∫∫

ΓΓ 2
2

2
12

2

111111

44

εσεσγ  ( 3.32) 

where M is the moment in the beam at the tip of the crack. Eq. ( 3.32) implies that 

2

the energy required to separate a length dx of the adhered beams and allow the 

liquid to fill the opening is equal to the strain energies of the two beams for length 

dx at the clamped end (see Eq. ( 2.55)).  Rearranging Eq. ( 3.32) gives an equation 

for the moment at x  in the direction shown in Figure  3.7 

DEIM SLγ22 −= . ( 3.33) 

Now the following boundary condition can be written at x2 

22
2

2 )( M
dx

xwdEI = . ( 3.34) 

Either utilizing the boundary conditions Eqs. ( 3.30) and ( 3.34) in Eq. ( 3.4) or 

direct application of force balance in the z-direction and moment balance to 

Figure  3.7 gives 

( ) 212 sin QDxxDPQ cLAlapR −+−Δ−= θγ

( ) 2221
2
1

2
2 sin

2
xQMxDxx

DP
M cLA

lap
R −++−

Δ
−= θγ  

( 3.35) 

Again it is desirable to normalize these relationships using Eq ( 3.8) however it is 

, ( 3.36) 

which has the same form as Λ except that it uses a different interfacial energy.  

Now the normalized moment at x2 becomes 

. 

necessary to introduce the following additional dimensionless parameter 

EIDLSLSL /2γ=Λ
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( 3.37) 
SLEILMM Λ−== 2/2

*
2 , 

and the normalized reactions are 

( ) *
2

*
1

*
2

* xx
EI

Q R
R −−==

αβ

2

sin QLQ
c−Λ+

Λ θ  

( ) ( ) *
2

*
2

*
1

2*
1

2*
2

* 2sin
2

xQxxx
EI

LMM SLc
R

R −Λ−Λ+−
Λ

−== θ
αβ

. 

( 3.38) 

, , and  are unknown and have to be 

obtained from the solution. To determine these unknowns, two additional 

essential boundary conditions can be written at x = x2. They are  

*
1x *

2x *
2QIn the above equations, α, 

hxw =)( 2 ,       0)( 2 =
dx

x ( 3.39) 

The first condition requires deformation symmetry about the line O1O2 in Figure 

 3.6. The second condition is that the slope of the beam at x2 is

dw . 

 zero; this would 

typically be true unless the lengt rt in ich case there may be  h AB is sho wh a shear

deformation  [14]. With the normalization introduced earlier, Eq. ( 3.39) becomes 

1)( ** =xw ,             2 0)( *
2

*

=
dx

xdw . ( 3.40) 

Additional constraint equations can be obtained from the uncollapsed case. 

Meniscus and beam deflection compatibility Eq. 

*

. 

( 3.26) for the base meniscus are still valid here. So is the constant incompressible 

( 3.24) and angle matching Eq

liquid volume constraint Eq. ( 3.22). However, since there is only one meniscus in 

this case this equation is modified to  

( ) ( ) ⎟
⎠
⎞

⎝
⎛ − 2*

1
*
1

*
1

1
2

****

2

*
2

*
1

x

x

βα ( 3.41) 
⎜ −−+−= ∫ 1cos)()(1 lllsigndxxwV α .  

These five constraint equations will be solved simultaneously with the beam 

equation to obtain α, , and , which are respectively the normalized 

meniscus radius, base meniscus location, length of the non-contact part of the 

*
1x , *

2x , *
1l

*
2Q
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beam, base meniscus geometry factor, and the contact force between th

beams.  

After normalization, the dimensionless parameters governing the 

deformation of the adhered DCB are V*, β, Λ, θc, and ΛSL. The objective of the 

the adhered configuration being possible, i.e. < 1. Of particular interest is the 

influence of the interfacial energy ΛSL on the solution.  The solution procedure is 

similar to the uncollapsed case. The deflection and slope are given by Eq. ( 3.11) 

and Eq. ( 3.10) respectively where , and are given by Eq. ( 3.38).  In these 

always start with parameters that give a small beam defection and gradually 

change them to the desired level.  This is not possible in the adhered case because 

if the load is too low such a configuration does not exist in equilibrium, which 

Although energy methods are not used to obtain the solutions looking at 

energy can often help with interpreting the results.  For these reasons expressions 

for strain energy and surface energy will be developed for the problem under 

e two 

analysis will be to study what combinations of the governing parameters result in 

*
2x  

*Q  *M

 num

R R

equations α, 1x , 2x , 2Q  are not known a priori and must be guessed. The 

resulting beam deflection is then substituted into the five constraint equations, 

* * *

( 3.24), ( 3.26), ( 3.38), and ( 3.41) to iteratively solve for α, *
1x , *

2x , *
2Q  as well as 

the intermediate variable *
1l . The erical procedure is the same as for the 

uncollapsed case. However, in the adhered case it can be much more difficult for 

the solution to converge, the reason being that in the uncollapsed case one can 

makes the numerical solution very sensitive to the initial guess.   

3.3 Energy Considerations 
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consideration.  To be consistent with the rest of the formulation symmetry will be 

used to only focus on the top half of the system. Strain energy is given by Eq. 

( 2.55) which can be normalized using the parameters from Eq. ( 3.8) as follows 

∫==
*
2

0

*
2*

*

2

x
SE dxM
EI

LU
U .  ( 3.42) 

SE

The moment is given by Eq. ( 3.9) and the result of the integration is 

3*
2

*
2*

2
***

2
2**

3
2 xQxQMxMU R

RRRSE +−=  
2

( ) ( )( ) ( )
4

sin
52

4*
1

*
2*

5*
1

*
2

2
xxQxx −

Λ−
Λ

+
−

⎟
⎠

⎞
⎜
⎝

⎛ Λ
+ θ  cR⎟⎜ αβαβ ( 3.43) 

( ) ( )( ) ( ) ( )
3

2sinsin 12**
1

** MxQQ RRRcc ⎟⎟
⎠

⎜⎜
⎝

−+−ΛΛ+
αβ

θθ  
3** xx −⎞⎛ Λ

( )( )( )
2

sin2
2*x1

*
2*

1
** xxQM RRc

−
−Λ+ θ . 

Using Eq. ( 2.2) the surface energy of the system is 

SLSLSASALALAS AAAU γγγ ++= .  ( 3.44) 

Since , and SLγ  are both parame rs used in the solutionte  SAγLAγ  will be eliminated 

using Young’s Equation Eq. ( 2.3) to give 

( ) ( )SASLSLcSALALAS AAAAU +++= γθγ cos . ( 3.45) 

The total area of the beam, defined as SASLSST AAAA ++= , when introduced into 

Eq. ( 3.45) gives the following result  

( ) SScSALALASoS AAAUU ( 3.46) θγ −++= cos ,  SLγ

TSLSo AUwhere γ=  is a constant. The remaining areas can be calculated as follows 
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DxASA 1= , 

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛+⎟

⎞
⎜
⎛= −− llDRA 2111 sinsin , ( 3.47) 

⎠⎝ ⎠⎝⎠⎝ RRLA

( )xASS 21 D−=  

Substituting Eq. ( 3.47) into Eq. ( 3.46) gives  

( )21
2111 cossinsin xLDx
R
l

R
lRDUU SLcLASoS −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+= −− γθγ . ( 3.48) 

 strain energy gives Normalizing this equation in the same way as

( ) ( )( )( ) ( )*
2

*
1

*
2

1*
1

1** 1cossinsin xxllU
EI

LUU SLcSo
S

S −Λ−++−Λ+== −− θαβ . ( 3.49) 

Note that the last term is the interfacial energy of separating the two adhered solid 

surfaces and filling the space with liquid and is also given by 

( ) ( )*
2*

2** 11 xMxU −=−Λ= . ( 3.50) 
22 2SLIE

The above energy formulation is valid for both uncollapsed and adhered cases. 

The former corresponds to  whereas the latter corresponds to .  

m 

some tion .  

1*
2 =x 0*

2 =l

The above energy expressions will be used, together with the example fro

section  2.1.4, to understand  of the results to be presented in Sec  5.6
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Chapter 4 Nonlinear Formulation 
In this chapter formulation will be provided for the deformation of the beam 

considering geometrical nonlinearity. Again two scenarios will be considered: the 

non-collapsed configuration and the adhered configuration. For each case, the set 

of governing equations, boundary conditions and constraint equations will be 

specified, as well as the numerical procedure used to solve these equations.  

 

Figure  4.1: FBD of a section of a nonlinear beam for obtaining internal reaction M(s) 
 

As in  Chapter 3, equations applicable to both scenarios are first presented. In 

the nonlinear analysis, the moment curvature relationship is given by the first 

equation in Eq. ( 2.43) whereas positions of points on the parametric curve 

defining the NA are given by Eq. ( 2.29). Combining these relationships gives 

ds
dIEM φ*= , 

φcos=
ds
dx , 

φsin=
ds
dw ,  

( 4.1) 

where x(s) and w(s) are respectively the horizontal and vertical positions of an 

arbitrary point s on the NA, and φ(s) is the angle between x-axis and tangent of the 
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deflected NA (see Figure  4.1). These three equations are accompanied by the 

boundary conditions related to the clamped end at s = 0  

0)0( =φ ,          0)0( =x ,          0)0( =w . ( 4.2) 

In Eq. ( 4.1) the moment M(s) can be determined by considering equilibrium of a 

section shown in Figure  4.1. Unlike in the linear case the effect of beam 

deflection on moment will now be considered i.e. ( ) ( , ( ), ( ), ( ))M s M s x s w s sφ= . 

Using Macaulay Functions (Eq. ( 2.50)) a single function for the internal moment 

can be written as follows 

)()()()()( sMsMswTsxQMsM PSTRRR +++−=  ( 4.3) 

where MR, QR, and TR are the reactions at the base shown in Figure  4.1.  MST is the 

moment due to the surface tension force given by 

( ) ( )( ))()()(cos)()()(sin)( 1111 swswssxsxsDsM ccLAST −+−−+= θφθφγ . ( 4.4) 

Finally MP, is the moment caused by the Laplace pressure.  This moment is the 

most difficult to evaluate since the Laplace pressure acts normally to the deflected 

beam surface as shown in Figure  4.1. Nevertheless, there are two ways to evaluate 

it: directly integrating from s1 to s, or using methods for determining hydrostatic 

forces on curved surfaces by considering equilibrium of the liquid  [27].  Either 

approach gives the following result 

( )2
1

2
1 )()()()(

2
)( swswsxsx

R
DsM LA

P −+−−=
γ

. ( 4.5) 

The preceding equations can be normalized by introducing the following 

nondimensional parameters 

L
ss =* , 

L
xx =* , 

h
ww =* , 

EI
MLM =* , 

EI
LT

T
2

* = , 
EI

QLQ
2

* = , ( 4.6) 
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EI
DLLA

2γ
=Λ , 

h
R

=α , 
L
h

=β . 

The above normalized parameters are the same as in Eq. ( 3.8) with the addition of 

normalized arc length s*, and axial force T*.  Introducing these parameters into 

the first equation in Eq. ( 4.1) as well as Eqs. ( 4.3), ( 4.4) and ( 4.5) gives 

)()( *********
* sMsMwTxQM

ds
d

PSTRRR +++−= βφ  

( ) ( )( )()()(cos)()()(sin)( *
1

****
1

*
1

****
1

** swswssxsxssM ccST −+−−+Λ= θφβθφ

⎟
⎠
⎞⎜

⎝
⎛ −+−

Λ−
=

2*
1

***22*
1

***** )()()()(
2

)( swswsxsxsM P β
αβ

. 

( 4.7) 

Similarly the last two equations in Eq. ( 4.1) after normalization become 

φcos*

*

=
ds
dx , 

β
φsin

*

*

=
ds
dw . 

( 4.8) 

Finally the normalized base boundary conditions Eq. ( 4.2) are  
0)0( =φ ,      ,      . 0)0(* =x 0)0(* =w ( 4.9) 

In the nonlinear case the deflection cannot be expressed analytically and 

must be obtained numerically. It is expected that in the case of small deflection, 

the above equations should reduce to those presented in the linear formulation 

( Chapter 3). This can be confirmed by making the following approximations: 

, 0* ≈w 0≈φ , φφ ≈sin  and 1cos ≈φ  which lead to  and . 

Furthermore, combining Eqs. 

1/ ** =dsdx

φtan=

** sx =

( 4.8) gives . Introducing these 

simplifications reduces Eq. 

β / ** dxdw

( 4.7) to the linear version Eq. ( 3.9).  

 

4.1 Uncollapsed configuration 
The schematic is the same as in the linear case Figure  3.2, but when 

formulating the constraint equations and reactions nonlinear geometry must be 
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considered. To evaluate the reactions consider the beam FBD shown in Figure  4.2 

and note that internal reactions take on the following values at the free end 

22 sin)( θγ DLsQ LA==  

22 cos)( θγ DLsT LA−==  

0)( 2 == LsM . 

( 4.10) 

In the nonlinear case directly applying the boundary conditions using Eqs. ( 2.43), 

( 2.44), and ( 2.45) to obtain QR, TR and MR is undesirable for several reasons. 

First, the deflection will be obtained numerically at discrete points so its 

derivatives would need to be evaluated numerically. Since as high as a 3rd 

derivative is needed for the axial force, applying boundary conditions in such a 

way would require a dense mesh along the beam to accurately approximate the 

derivatives. The second reason is that Eq. ( 2.45) is also nonlinear which makes it 

more difficult to apply. For these reasons the reactions will be obtained through 

application of global equilibrium to the beam shown in Figure  4.2.  

z
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M
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γ
LA D θ c

ϕ 2γ LA
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w
2 
=

w
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ϕ 1

 

Figure  4.2: FBD of a nonlinear beam in the uncollapsed case for obtaining base reactions.   
 

Equilibrium of forces in the x-direction gives, after using Eq. ( 3.3) to replace 

the Laplace pressure, the reaction tension at the base 
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[ ] ( ) (( ))(cos)(cos)()( 22112 ssDswsw
R

DT cLA
LA

R φθφθγ )γ
−−++−= . ( 4.11) 

In the linear case this tension does not appear in Eq. ( 3.2) because the effect of 

beam deflection on the calculation of moment is neglected. It however must be 

considered with the inclusion of geometrical nonlinearity. Similarly equilibrium 

in the z-direction and substitution of Eq. ( 3.3) gives the reaction shear force 

[ ] ( ) (( ))(sin)(sin)()( 22112 ssDsxsx
R

DQ cLA
LA

R φθφθγ )γ
−+++−−= . ( 4.12) 

Finally moment equilibrium about the base and substitution of Eq. ( 3.3) gives the 

reaction moment 

( ))())(cos()())(sin( 1111 swssxsDM ccLAR φθφθγ +−+=  
 ( ))())(cos()())(sin( 222222 swssxsDLA φθφθγ −+−+   

 ( ) ( )( )2
1

2
2

2
1

2
2 )()()()(

2
sxsxswsw

R
DLA −+−−

γ . 

( 4.13) 

Again it is desirable to normalize these equations using the parameters in Eq. 

( 4.6).  After normalization Eqs. ( 4.11), ( 4.12) and ( 4.13) become 

[ ] ( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ −−++−Λ= )1(cos)(cos)()1(1

2
*
1

*
1

*** φθφθ
α

sswwT cR . ( 4.14) 

[ ] ( ) ( )( )⎥
⎦

⎤
⎢
⎣
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−+++−−Λ= )1(sin)(sin)()1(1

2
*
1

*
1

*** φθφθ
αβ

ssxxQ cR  ( 4.15) 

( ))())(cos()())(sin( *
1

**
1

*
1

**
1

* swssxsM ccR φθβφθ +−+Λ=

( ))1())1(cos()1())1(sin( *
2

*
2 wx φθβφθ −+−Λ+

( ) ( )( )2*
1

*2*2*
1

*2*2 )()1()()1(
2

sxxsww −+−
Λ

− β
αβ

. 

( 4.16) 

Now compare Eqs. ( 4.15) and ( 4.16) with their counterparts in the linear case, Eq. 

( 3.14). Clearly if the terms involving φ and w due to the nonlinear consideration 

are removed the equations coalesce.  Furthermore, it can be shown that the even 

with nonlinear geometry the reaction  is zero; specifically, substituting Eq. *
RT
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( 3.26) into Eq. ( 3.24), and Eq. ( 3.28) into Eq. ( 3.25) gives, after rearrangement 

and application of trigonometric identities 

( ) )1)((cos *
1

*1
1 −=+ − swc αφθ  ( 4.17) 

( ) )1)((cos *
2

*1
22 −=− − swαφθ . ( 4.18) 

Subtracting Eq. ( 4.17) from Eq. ( 4.18) gives 

( ) ( )( )122
*
1

**
2

* coscos)()( φθφθα +−−=− cswsw  ( 4.19) 

Finally substituting Eq. ( 4.19) into Eq. ( 4.14) results in .   0* =RT

The influence of the beam’s deflection and slope on the meniscus geometry 

has been accurately captured in Figure  3.2, so the constraint equations pertaining 

to meniscus geometry Eqs. ( 3.24), ( 3.25), ( 3.26) and ( 3.28) also apply to the 

nonlinear case. However in the nonlinear case arc length s* is the independent 

variable rather than x* so values at each meniscus should be evaluated in terms of 

s*. For example  would become  etc. Furthermore, it is desirable to 

change the integration in the last constraint equation Eq. 

)( *
1

* xw )( *
1

* sw

( 3.29) to 
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2
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dssswds
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dxswdxxw
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s

s

x

x

φ∫∫∫ −=−=− ) , ( 4.20) 

where the condition of the drop being at the end of the beam is now .  

Substituting this result into Eq. 

1*
2 =s

( 3.29) gives  

( ) ( ) ( )∑∫
=

−
=

⎥⎦
⎤

⎢⎣
⎡ −−+−=

2

1

2***1
2

**
1

*** 1cos)(
2

)(cos)(1
*
2

*
1

i
iii

s

s

lllsigndssswV αβαφ . ( 4.21)

Eq. ( 4.21) completes the set of constraint equations. 

As in the linear case it is necessary to guess  and  then 

iteratively solve for the final values using the modified Newton-Raphson method 

previously described. However in this case the beam equations cannot be 

,,,, *
1

*
2

*
1 llsα 2θ
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integrated explicitly so the procedure will use a shooting method as follows.  

Guess   and calculate the beam deflection using the 4th order Runge-Kutta 

method (RK4) for Eqs. 

,*
RM

M

*
RQ

,*
R

( 4.7) and ( 4.8) with the initial condition Eq. ( 4.9).  The 

obtained solution is checked against Eq. ( 4.15) and Eq. ( 4.16).  If these two 

equations are not satisfied, then secant interpolation is used to calculate a new 

guess for  . The procedure is repeated until Eq. *
RQ ( 4.15) and Eq. ( 4.16) are 

satisfied to a desired accuracy. Having obtained  and 

evaluating numerically the integration needed for Eq. 

21
*
2

*
1

*
2

*
1 ,,,,, φφwwxx

( 4.21) from the RK4 

solution these values can be substituted into the constraint equations which are 

iteratively solved for ,  and 2 . For each iteration of Newton-Raphson 

it is necessary to repeat the iterative RK4 shooting method calculation. The 

algorithm followed is also shown schematically in 

,,, *
1

*
2

*
1 llsα θ

Figure  4.3. Basic details of the 

RK4 scheme used for this problem such as convergence criteria and mesh 

sensitivity analysis are given in  Appendix B.   
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Figure  4.3: Solution algorithm 
 

Some analytical results can be obtained from the governing equations that 

will be useful to our understanding of collapse.  As can be seen in  Appendix C at 

collapse ( ) the following result can be obtained  1)( *
2

* =sw

( ) ( )( ) ( ) ( ) ( ) ( )[ ]ccRR sssQMM θφθφφ cos)(sin)(sin)(sin
2
1 *

2
*
1

*
2

*2*2*
2 −+Λ+−=−

 ( ) ( ))(sin)()( *
2

*
1

**
2

* ssxsx φ
αβ

−
Λ

− ,(at collapse) 

( 4.22) 

where  is the reaction at .  Eq. *
2M *

2
* ss = ( 4.22) can be simplified by noting that 

there is no moment at the free end, i.e., . Furthermore , given by Eq. 0*
2 =M

w

*
RQ

( 4.15), can also be simplified when considering .  From Eq. 1)( *
2

* =s ( 3.28) the 

last term in Eq. ( 4.15) is ( ))1(sin 2 φθ −/2
*
2 = ll

R

=R

=

 but from Figure  3.2 it is 

apparent that at collapse l  or 2
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1*
2 =l  (at collapse). ( 4.23) 

Substituting the simplified Eq. ( 4.15) into Eq. ( 4.22) gives  

( )( )cR sM θφ cos)(sin2 *
2

* +Λ=  (at collapse). ( 4.24) 

Eq. ( 4.24) is exact however,  is unknown without solving the problem. If we 

estimate  then we obtain an approximate analytical result for collapse . 

Since most of the beams of interest are slender it is possible to obtain an good 

estimate for . As will be shown in 

)( *
2sφ

)( *
2sφ

(φ

*
RM

)*
2s  Chapter 5 and  Chapter 6 there is a strong 

correlation between  and collapse, as a result Eq. *
RM ( 4.24), which can be thought 

of as the moment available to the beam at collapse, is invaluable for 

understanding how the governing parameters affect collapse which is a primary 

objective of this study.  

4.2 Adhered configuration 
The schematic is the same as in the linear case (Figure  3.6) but when 

formulating the constraint equations and reactions nonlinear geometry must be 

considered.  

 
Figure  4.4: FBD of a nonlinear beam in the adhered case for obtaining base reactions. 
 

To evaluate the reactions consider the beam FBD shown in Figure  4.4 and 

note the following natural boundary conditions at  from Eqs. *
2s ( 3.37) and ( 3.30) 
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( ) SLMsM Λ−== 2*
2

*
2

*  

( ) *
2

*
2

* QsQ −= . 
( 4.25) 

As in Section  4.1 it is undesirable to apply the boundary conditions directly, rather 

global equilibrium of the beam shown in Figure  4.4 will be used as follows.  

Because of symmetry there cannot be a reaction force in the x-direction at the 

contact point. Equilibrium of forces in the x-direction gives, after using Eq. ( 3.3) 

to replace the Laplace pressure 

[ ] ( ))(cos)()( 112 sDswsw
R

DT cLA
LA

R φθγγ
++−= . ( 4.26) 

Equilibrium in the z-direction and substitution of Eq. ( 3.3) gives 

[ ] ( ) 2112 )(sin)()( QsDsxsx
R

DQ cLA
LA

R −++−−= φθγγ  ( 4.27) 

Finally, moment equilibrium about the base and substitution of Eq. ( 3.3) gives 
( ))())(cos()())(sin( 1111 swssxsDM ccLAR φθφθγ +−+=  

( ) ( )( ) 222
2

1
2

2
2

1
2

2 )()()()()(
2

MsxQsxsxswsw
R
DLA +−−+−−

γ  
( 4.28)

After normalization using Eq. ( 4.6), Eqs. ( 4.26), ( 4.27) and ( 4.28) become 

[ ] ( )⎥⎦
⎤

⎢⎣
⎡ ++−Λ= )(cos)()(1 *

1
*
1

**
2

** sswswT cR φθ
α

 ( 4.29) 

[ ] ( ) *
2

*
1

*
1

**
2

** )(sin)()(1 QssxsxQ cR −⎥
⎦

⎤
⎢
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⎡
++−−Λ= φθ

αβ
 ( 4.30) 

( ))())(cos()())(sin( *
1

**
1
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1

**
1

* swssxsM ccR φθβφθ +−+Λ=  

( ) ( )( ) SLsxQsxsxswsw Λ−−−+−
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− 2)()()()()(
2

*
2
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1
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2

*2*
1

*2*
2

*2β
αβ

 
( 4.31)

As in Section  4.1, these results will coalesce with the linear case if the nonlinear 

terms involving φ, and w are removed. Furthermore, it can be shown, by 

substituting Eq. ( 4.17) into ( 4.29), that since  the reaction  in the 

adhered configuration as well.  

1)( *
2

* =sw 0* =RT

In Section  4.1 we were able to obtain an expression that can be used to 

estimate  at collapse. Interestingly, for the adhered configuration, similar *
RM

71 
 



analysis yields an explicit formula  that only depends on *
RM SLΛ , Λ and θc. 

Specifically, Eq. ( 4.22) is also valid for the adhered case. Substituting in 

SLM Λ−= 2*
2 ,  and  yields1)( *

2
* =sw 0) =( *

2sφ 2 

(  ( 4.32) )cSL Λ+RM *

( )

θcos= 2 Λ

)

The constraint equations pertaining to meniscus geometry, Eqs. ( 3.24) and 

( 3.26), and the essential boundary conditions at , Eq. *
2s ( 3.39) apply to the 

nonlinear case. However, as in Section  4.1 functions will be evaluated in terms of 

s*. The final constraint equation is given by introducing Eq. ( 4.20) into Eq. ( 3.41), 

resulting in 

( ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−= −∫ *

1
*
1

1*** 1cos)()(1
*
2

*
1

llsigndswV
s

s

α

                                        

2

2
βα** (cos) ss φ

        

. ( 4.33) −
2*

1l

, *
2

*
1 ss

M

Eq. ( 4.33) completes the set of constraint equations for this case.   

To numerically solve the problem, it is necessary to guess  and  

then iteratively solve for the final values using the modified Newton-Raphson 

method previously described.  Eq. 

,,, *
1lα

*
R

*
2Q

( 4.32) can be used to prescribe , whereas 

 will be guessed for use with the RK4 shooting method to calculate the 

deflected curve. It should be noted that there are four conditions at , the 

essential boundary conditions Eq. 

*
RQ

*
2s

( 3.39) and the equilibrium equations ( 4.30) and 

( 4.31). It is necessary to choose two conditions to use as boundary conditions in 

the shooting method to obtain the deflection, and the other two equations are used 

as constraint equations to be solved with the Newton-Raphson method. Here the 

 
2 Note that using Young’s Equation ( , Eq.  can be rewritten as 2.3) ( 4.32)

SRM =* Λ2 , where 
.   EIDLSAS /2γ=Λ
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equilibrium relationships Eqs. ( 4.30) and ( 4.31) can be easily applied in either 

case; however the essential boundary conditions ( 3.39) do not work well in the 

Newton-Raphson method. This is because ( )*
2sφ  and ( )*

2
* sw  are numerical values 

returned by the RK4 shooting method, the derivatives of Eq. ( 3.39) with respect to 

each variable  and , needed for the Newton-Raphson Jacobian, 

have to be approximated numerically (where possible). On the other hand, the 

variables  and  appear in the equilibrium relationships Eqs. 

,,,, *
1

*
2

*
1 lssα

,, *
2s *

2Q

*
2Q

, *
1sα ( 4.30) and 

( 4.31) so derivatives of these two equations may be evaluated analytically if these 

relationships are used within the Newton-Raphson scheme, which results in less 

zeroes in the Jacobian and better conditioned numerics. Therefore, the essential 

boundary conditions, Eq. ( 3.39) will be used in the shooting method and the 

equilibrium relationships Eqs. ( 4.30) and ( 4.31) will be used in the Newton 

Raphson iteration.  

4.3 Energy Considerations 
The energy results from Section  3.3 can be replicated for the nonlinear case 

as follows. The normalized strain energy Eq. ( 3.42) becomes 

∫==
*
2

0

*
2*

ds*

2

s

SE
M

EI
SE LUU , ( 4.34) 

where the integration must be performed numerically using the RK4 results. The 

normalized surface energy Eq. ( 3.49) becomes 

( ) ( )( )( ) ( )*
2

*
1

*
2

1*
1

1** 1cossinsin ssllU
EI

LUU SLcSo
S

S −Λ−++Λ+== −− θβα  ( 4.35) 

This energy formulation is valid for both uncollapsed and adhered configurations. 

The former corresponds to  whereas the latter corresponds to .  1*
2 =s 0*

2 =l
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Chapter 5 Results from Linear Beam 

Formulation 

In this chapter, results obtained from the linear beam formulation ( Chapter 

3) pertaining to collapse are presented. The normalization of the governing 

equations revealed four governing parameters for DCB collapse: β, θc, V*, and Λ. 

The condition governing the collapse of the DCB ( =1) is of the general form 

, where f is a function of the four governing parameters. A 

parametric study was completed by holding two of the governing parameters fixed 

and varying the other two to create contour plots of the variables of interest. For 

example, by fixing the normalized gap β and the contact angle θc, a contour plot 

can be generated for the normalized maximum deflection  as a function of V* 

and Λ. This will further allow us to determine what combination of V* and Λ will 

cause collapse of the DCB, for this choice of β and θc. The discussion below will 

seek to describe and explain the trends observed in these contour plots, the 

physical interpretation of the results and the impact of each governing parameter 

on the solution. Note that the primary objective here is to study the condition for 

collapse ( =1) so we will not consider x* as an independent variable, unless 

otherwise specified.   

*
2w

*( , , , ) 0cf Vβ θ Λ =

*
2w

*
2w

5.1 Range of Governing Parameters 
Before proceeding to discuss any numerical results we must first establish 

the range of each governing parameter relevant to the study. The DCB structure 
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will be more prone to collapse when the beam length is long compared to the gap. 

In fact, 1.0=β  is the highest value for which collapse is usually a problem  [4], 

so as previously mentioned 1.0≤β  will be the focus. Furthermore, when the 

menisci of the beam are concave both surface tension forces and the Laplace 

pressure work to collapse the beam; since this case will be of the greatest 

relevance to collapse the contact angle will be limited to °< 90cθ .  The range of 

normalized drop volume V* is more complicated.  First the minimum value of V* 

will be such that when there is no deflection the two menisci are touching. This 

constraint can be expressed as , where the minimum V* 

factor (MVF) is a function of contact angle:  

MVFV ×= β)*min(

( ) ( )( )ccc
c

c
c

MVF θθθ
θ

θ
θ

cossinsincos
cos

1sin1
cos

2 1
2 −−−= − . ( 5.1) 

A plot of MVF is shown in Figure  5.1. Here smaller contact angles require larger 

volume of liquid to prevent the two menisci from intersecting. Practically due to 

liquid bridge instability  [39] the drop would need to be larger, so  is 

a necessary but not sufficient condition for the stability of the liquid drop. 

Furthermore, the 2-D meniscus assumption breaks down for very small drops 

* *min( )V V>

 [43].  The maximum value of V* is such that the base meniscus makes contact 

with the base at collapse. From our numerical calculations to be presented later, 

this typically occurs between V* = 0.5 and V* = 0.6 depending on the values of β 

and θc. The final governing parameter Λ, which is a ratio of surface tension forces 

to the beam’s restoring forces, does not have similar bounds only Λ > 0; using the 

data from Kotera et al. Λ ≈ 0.02 however scaling down the resist size results in 
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significantly larger Λ values . Therefore Λ in our numerical calculations will be 

adjusted to ensure that the plots display a meaningful range of deflection. The 

range of governing parameters pertinent to this study are summarized in Table 6.  

 
Figure  5.1: MVF minimum V* factor for a range of contact angles 

 
Table 6: Range for governing parameters 
Governing Parameter β θc V* Λ 

Maximum 0.1 <90º 0.5-0.55 
Minimum >0 0 MVF×β  

(>0) adjust 
accordingly  

 

5.2 Preliminary Considerations on the Role of the 4 

Governing Parameters  

To begin to understand how each governing parameter influences the 

solution, the system of governing equations for DCB deformation are revisited. 

Since our interest is in collapse the discussion will be limited to negative α which 

corresponds to concave menisci.  When α is negative both the Laplace pressure 

and surface tension forces work to collapse the DCB.  Due to numerical 

limitations described in  Chapter 3 to obtain α < 0 the contact angle range will be 
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limited to °< 90cθ . The normalized equations from  Chapter 3 pertinent to the 

discussion are listed below.   

Dimensionless ODE relating moment and curvature:  

***1*
1

*

2*
1

*
*
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)sin(
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β . ( 5.2) 

Dimensionless shear force and moment at the clamped end:  
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2* xxM P  (moment due to Laplace pressure), 

( )*
22

*
1

* )sin()sin( xxM cST θθ +Λ=  (moment due to surface tension force). 

( 5.3) 

Deflection and slope at an arbitrary position *x  along the beam: 

2*
*

3*
*

3*
1

*4*
1

*
**

266
)sin(

24
)( xMxQxxxx

xw RR
c +−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
+

−
−Λ= θ

αβ
β , 

( ) **2*
*

2*
1

*3*
1

*

*

*

22
)sin(

6
tan xMxQxxxx

dx
dw

R
R

c +−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
+

−
−Λ== θ

αβ
βφ . 

( 5.4) 

Constant liquid volume constraint: 

( ) ( )∑∫
=

− ⎟
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⎝
⎛ −−−−=

2

1

2***1
2

**** 1cos
2

)(1
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iii

x
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llldxxwV βα . ( 5.5) 

Deflection conditions at the menisci:  
2*

1
*22*

1 )1)((1 −+= − xwl α , 
( 5.6) 

2*
2

*22*
2 )1)((1 −+= − xwl α . 

( 5.7) 

Conditions for the slopes at the locations of the menisci:  
( ))(sin *

1
*
1 xl c φθ += , 

( ))(sin *
22

*
2 xl φθ −= . 

( 5.8) 

In the following we conduct a preliminary discussion on how the 

governing parameters β, θc, V*, and Λ might affect the maximum deflection based 

on the above system of equations. As demonstrated earlier in the formulation, the 
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loads on the beam (See Eq. ( 5.3)) depend on α, , and θ2. However, these 

variables depend on the deflection of the beam and the subsequent displacement 

of the liquid, which introduces a nonlinear coupling. Specifically, the deflections 

of the beam can change the curvature or even the location of the menisci, which in 

turn can change the loading on the beam. Such effects will be subsequently 

referred to as the “nonlinear deflection coupling effects”. With every governing 

equation depending nonlinearly on the deflection of the beam it is easy to become 

lost in the minutiae when trying to determine how the governing parameters will 

influence the beam’s deflection. To elucidate this nonlinear coupling, the 

discussion will be carried out in two steps. First in section 

*
1x

 5.2.1 the role of each 

governing parameter will be investigated using the governing equations; however, 

nonlinear coupling will be temporarily neglected, i.e., terms in the governing 

equations that involve , )( *
1

* xw 2φ  etc. will be ignored.  Afterwards in section 

 5.2.2 a brief discussion will be provided demonstrating how these terms play an 

important role on the behaviour of the beam’s deflection. With this foundation we 

will then proceed to discuss the numerical results from several parametric studies.   

5.2.1 Discussion Neglecting Nonlinear Deflection Coupling 
Effects 

Based upon the equations in section  5.2, a flow chart, shown in Figure  5.2, 

can be constructed illustrating how changing each governing parameter will 

influence the maximum deflection, if the nonlinear effects of deflection (w*, φ) on 

the constraint equations (Eq. ( 5.5) - Eq. ( 5.8)) are neglected. Discussions will be 

given in the subsections below in accordance to Figure  5.2. In Figure  5.2, the 
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leftmost column shows the four governing parameters. The second column shows 

the five normalized variables that must be obtained from the constraint equations 

as part of the solution, from top to bottom, the magnitude of the meniscus radius, 

the base meniscus geometry factor, the free end meniscus geometry factor, angle 

between free end meniscus and positive x-axis, and the position of the base 

meniscus.  and  in the third column are respectively the total moments on 

the beam in Eq. 

*
STM

x

*
PM

*
2w

( 5.3) due to surface tension forces and Laplace pressure. The 

rightmost column shows the output, the resulting beam deflection; if the 

maximum deflection  exceeds one, collapse occurs. Each solid blue arrow in 

Figure  5.2 indicates an increase in the variable it point towards and each dashed 

red arrow indicates a decrease. Since variables can often have competing inputs, 

all output arrows are for an increase in that variable. For example, consider : 

increasing α and β both decrease  while increasing  and  both increase . 

An increase in  both decreases  and increases .  

*
1x

*
1x*

1x

*
PM

*
1l

*
ST

*
2l

*
1 M
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Figure  5.2: Dependency of deflection on the Governing Parameters neglecting nonlinear 
effects of deflection (w, φ) in constraint equations.   
 

5.2.1.1 β 
β is defined as Lh /=β , the ratio of the gap at the clamped ends to the 

beam length.  In Eq. ( 5.3), β appears in the denominator of , which represents 

the total moment due to the Laplace Pressure. Therefore, increasing β decreases 

 and causes the beam deflection to decrease. Furthermore, the second term on 

the RHS of Eq. 

*
PM

*
PM

( 5.5), which represents the volume of liquid displaced by the 

meniscus geometry, is directly proportional to β. This implies that increasing β 

will increase the amount of liquid displaced by the menisci, hence to compensate 

for this effect and satisfy the constant volume constraint the base meniscus must 

move closer to the base, i.e.,  will be decreased. Both of these trends are *
1x
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reflected in Figure  5.2. Because in terms of collapse, the range of 1.0≤β  is of 

greatest practical interest  [4], the influence of β on  tends to be more 

significant than on . This is because  while the volume displaced by 

the menisci 

*
PM

*
1x 1* −∝ βPM

β∝

1l

. Clearly the former is more sensitive to variations in β for β <<1.  

5.2.1.2 θc  
The contact angle, θc, is the angle between the liquid meniscus and the 

beam. It affects the deflection of the beam in several ways. Following Figure  5.2, 

θc affects the deflection by directly influencing  and indirectly influencing 

 through α, , and . As θc is increased from 0º to 90º the surface tension 

force changes from axial to transverse resulting in larger . To see the 

influence of contact angle on the curvature of the meniscus, α substitution of Eq. 

*
STM

*
PM * *

2l

*
STM

( 5.8) in to Eq. ( 5.6) yields 

( )1

1
φ+

−*
1

cos θ
α =

c

w . ( 5.9) 

From this relation larger contact angles are expected to result in larger meniscus 

radii and thus smaller Laplace pressure and smaller .  In fact as θc approaches 

90º, α approaches negative infinity and the pressure load disappears ( ).   

*
PM

0* =PM
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Figure  5.3: Effect of θc on meniscus geometry factor and the appearance of the meniscus 
 

From Figure  5.2 the contact angle also influences  directly and  

indirectly through θ2.  These parameters ( ) are meniscus geometry factors as 

shown in 

*
1l

*
il

*
2l

*
1l

*
il

* =ilFigure  3.2.  In particular, when  the corresponding meniscus is a 

semicircle, for  the meniscus is a circular cap and as  increases the cap 

height decreases. The case of  corresponds to zero cap height which can 

only be accomplished by a meniscus with an infinite radius of curvature; i.e., a 

straight line. Clearly from Eq. 

0

*
1l

0* >il

1* =il

( 5.8), θc affects , which consequently affects the 

amount of liquid displaced by the meniscus, as shown in the second term on the 

RHS of Eq. ( 5.5). It can be seen from Figure  5.3 that smaller θc gives smaller  

and larger cap height, which should displace more liquid. Since the volume of 

liquid is required to be constant, smaller θc results in the left meniscus being 

closer to the base. To see this relationship more directly consider the constant 

volume constraint Eq. ( 5.5), and define the term within the summation as the 

meniscus displacement factor (MDF) 

( ) 2***1 1cos iii lllMDF −−= − . 
( 5.10) 
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The value of MDF is plotted in Figure  5.4, which is a monotonically decreasing 

function of . Hence, higher  which can result from larger contact angles 

displace less liquid, and result in larger . Following 

*
il

*
il

*
1x Figure  5.2 this increase in 

 decreases  and increases , which in turn influences the beam’s 

deflection.  

*
1x *

PM *
STM

 

Figure  5.4: Meniscus displacement factor (MDF) for complete range of l* 
 

5.2.1.3 V* 
LDhVV 2/* =

*
1x

*
PM x

 is the fraction of the volume between the two beams 

occupied by the liquid.  A first glance at Eq. ( 5.5) seems to indicate that for higher 

V*,  will need to be smaller and as a result the Laplace pressure acts over a 

larger area; it would then be expected that the DCB would have a higher 

deflection for higher V*. On the other hand, since the Laplace pressure acts over a 

smaller area for smaller V* it would be expected that the surface tension force 

would play a more important role for the smaller drops. This behaviour is 

represented in Figure  5.2, through the relationship between V* and the moments 

(  and ) via .  *
STM *

1
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5.2.1.4 Λ 
Λ defined as , is a ratio of surface tension force to elastic 

restoring force. Using Eq. 

EIDLLA /2γ=Λ

( 5.3), it is clear from Eq. ( 5.2) that the internal moment 

is directly proportional to Λ; as a result so is the beam deflection shown in Eq. 

( 5.4). Therefore, increasing Λ is expected to increase the deflection, as shown in 

Figure  5.2. Furthermore, Figure  5.2 shows that unlike the other governing 

parameters, Λ’s influence bypasses the intermediate variables (α, , , and 

θ2) and directly applies to the moments. For this reason increasing Λ creates a 

predictable increase in the maximum deflection.  

*
1x *

1l
*
2l

5.2.2 Importance of Nonlinear Deflection Coupling 
In Section  5.2.1 we began to discuss how each of the governing parameters 

would affect the solution of the problem. However, nonlinear deflection coupling 

effects were ignored, if they are added the new flow chart is shown in Figure  5.5.  

Here the results of the deflection discussed in  5.2.1 feedback into intermediate 

variables α, , , θ2, which describe the geometry of the deformed liquid drop.  

Among the four governing parameters, Λ and to a lesser degree β, skip past these 

intermediate variables and directly influence the moments.  For this reason, the 

influences of the contact angle (θc) and normalized drop volume (V*) are more 

intimately coupled with the beam deflection, and have the greatest potential to 

cause behaviour that may not conform to our expectations based on section 

*
il

*
1x

 5.2.1. 

Coupling to the degree shown in Figure  5.5 is absent from previous works. 

Specifically, the influence of deflection w* on Laplace pressure was taken into 

account whereas the effect of slope φ was often neglected  [3],  [8],  [9] or 
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approximated in terms of w*  [4],  [6],  [11].  In addition the analysis of Ouakad et 

al.  [8] held the meniscus position fixed, which essentially removed all of the 

output arrows from  shown in *
1x Figure  5.5; furthermore, existing models which 

allow the meniscus position to move  [3],  [9] neglected the liquid displaced by the 

meniscus curvature (second term of RHS of Eq. ( 5.5)) in which case φ does not 

influence the meniscus position .  *
1x

 
Figure  5.5: Solution dependence on governing parameters, including nonlinear coupling 

 
Let us discuss some of the effects shown in Figure  5.5 to get a sense of the 

importance of the nonlinear deflection coupling. Recall that when this coupling is 

neglected in section  5.2.1, it was reasoned that for larger V* the Laplace pressure 

acts over a larger area so larger deflections were expected for larger V*, especially 
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for low contact angles where the surface tension force acts nearly axially.  

However, in Figure  5.5 it is shown that an increase in the deflection at the base 

meniscus causes |α| to decrease. To explain, consider Eq. 

*
1w

( 5.9). Here the 

normalized meniscus radius α, which directly influences the Laplace pressure, 

depends on . If for example the deflection causes  to increase from 0 to 0.5 

then the magnitude of the Laplace pressure would double. For small V*, the base 

meniscus is located closer to the free end so given the same free end deflection 

( ),  will be larger for smaller V*. As a result smaller drops may have a 

larger Laplace pressure magnitude. Furthermore, for drop sizes close to the 

maximum indicated in 

*
1w *

1w

*
2w *

1w

Table 6, the base meniscus will be located very close to the 

clamped end where both slope and deflection are zero. In this case the nonlinear 

deflection coupling effects are negligible and the Laplace pressure hardly 

increases with the beam’s deflection. From these discussions, it is not apparent for 

what drop size collapse will occur more easily.   

Next it is shown in Figure  5.5 that deflection causes a decrease in *
1x . This 

is clear from the constant volume constraint Eq. 

 

( 5.5), which requires the base 

meniscus to move towards the base as liquid is displaced by the deflected beam.  

As a result the total area on which the Laplace pressure acts will increase upon 

deflection.   

Finally it is shown in Figure  5.5 that increases in φ1, the angle at the base 

meniscus, cause an increase in  and in |α|.  The increase in |α| is evident from 

Eq. 

*
1l

( 5.9); for slender beams, where slopes are small, the influence of  in this *
1w
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equation would in general overshadow that of φ1. However, if the contact angle θc 

is close to 90°, then φ1 will play an important role since the denominator of Eq. 

( 5.9) is close to zero and the magnitude of α can increase drastically from a small 

increase in φ1. This effect is amplified by the fact that the cosine function, which 

appears in the denominator of Eq. ( 5.9), has its largest rate of change when its 

argument is close to 90°. The increase in  caused by an increase in φ1 can be 

seen from Eq. 

*
1l

( 5.8).  As a result the MDF (Figure  5.4) decreases and by Eq. ( 5.5) 

the meniscus moves away from the base because less liquid is displaced by 

meniscus curvature. This is shown in Figure  5.5 by an increase in . This effect 

is augmented when contact angle θc is close to 0° due to the rapid change of the 

sine function with its argument near zero (see Eq. 

*
1x

( 5.8)).  

Clearly, the above preliminary discussion on only a few of the nonlinear 

deflection coupling effects shows that these effects are crucial to the collapse of 

the DCB. Furthermore, these effects can vary considerably based upon drop size 

and contact angle. In fact there are several regimes of contact angle where the 

solution will take on significantly different behaviour, some of which cannot be 

explained using the simple analysis presented in  5.2.1. For this reason the ensuing 

discussion will be separated into three regimes: low, moderate and high contact 

angles. Note that these regimes cannot be defined precisely in terms of exact 

contact angle values, but rather they are based on the behaviour of the solution to 

the system of governing equations. The key characteristics of the high contact 

angle regime are significant influence of φ1 on the Laplace pressure, and 

maximum importance of surface tension forces. The key characteristics of the low 
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contact angle regime are increased influence of φ1 and φ2 on the base meniscus 

position, and minimal importance of surface tension forces. The moderate contact 

angle regime encompasses everything between these two extremes. The range of 

θc for each regime also depends on β (low β will extend the moderate range).  

Although Figure  5.5 summarizes the influences of the governing parameters 

on DCB collapse and the nonlinear deflection coupling effects, it gives no 

indication of the relative importance of each effect. In addition, these effects form 

a feedback loop and therefore interact with each other, further convoluting the 

situation. Whether these effects contribute significantly to collapse must also be 

addressed. In order to address these issues we will now proceed to a more detailed 

analysis for each of the above mentioned contact angle regimes, using numerical 

solutions to the governing equations. Although there are also different behavioural 

regimes for V*, these will be addressed within each θc section.  

 

5.3 Moderate Contact Angle 

The moderate contact angle regime includes contact angles for most wetting 

liquids (representative values shown in Table 4). Within this regime both surface 

tension and Laplace pressure forces contribute to the deflection of the DCB. The 

goal is to study how the governing parameters influence collapse so our interest 

will be focused on analysing contours plots of the free end deflection. From the 

discussion of Figure  5.5 V* was deemed to have a significant effect on the 

nonlinear deflection coupling, it is desirable to have V* as one of the parameters 

to be varied to create the contour plots. Increasing Λ causes a controllable 

increase in deflection; hence Λ will be used as the other variable to generate each 
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contour plot. Throughout this section θc will be fixed at 45°, which represents a 

moderate contact angle. From Table 4 this angle is close to that of benzene on 

Teflon. However the characteristics to be discussed should be applicable to other 

moderate contact angles.  

Now the only governing parameter that needs to be specified is β. Recall 

that the relationship between the angle φ  the deflected beam makes with the x-

axis and the dimensionless slope is given by , i.e.,  the range of 

possible deflection angles is scaled with β. Thus if β is small then 

** /tan dxdwβφ =

φ  is small at all 

positions, and the effects in Figure  5.5 pertaining to 1φ  and 2φ may be ignored. In 

other words, for this case the nonlinear deflection coupling will be due primarily 

to w*. Therefore, first choosing a “low β” allows us to separate the coupling effect 

of w* from that of φ . For this purpose, the first part of the discussion will be 

conducted with β = 0.025. Afterwards β will be increased to the maximum value 

(0.1) shown in Table 6 to study the complete effect of the nonlinear deflection 

coupling, especially from angle φ . Because β is a governing parameter and 

influences the Laplace pressure and the amount of liquid displaced by the 

meniscus, as mentioned in section  5.2.1.1, by changing its value we are also 

studying its influence on collapse.   

 

5.3.1 Collapse at moderate contact angles and low β 

Having a low value of β, in this case β = 0.025, provides numerous 

simplifications. As previously mentioned, from Eq. ( 5.4), normalized slopes are 
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transformed into physical slopes by multiplication with β. As a result if β<<1 all 

deflection angles ϕ will be small and have a negligible impact on the problem. 

This allows for ϕ to be ignored when analyzing the constraint equations.  For 

example Eq. ( 5.8) simplifies to , which for this analysis is nearly a 

constant. Physically this means that the “shape” (see 

cl θsin*
1 ≈

Figure  5.3) and hence MDF 

of the left meniscus remains approximately constant as the beam deflects but the 

meniscus radius α will change.  Furthermore, as ϕ→0 the expression for the 

dimensionless menisci radius simplifies to ( ) cw θα cos/1*
1 −≈ , which no longer 

depends on the slope at the left meniscus φ1.  

For these parameters (  and β = 0.025) the resulting contour plot of 

the free end deflection  is shown in 

45o
cθ =

*
2w Figure  5.6, as a function of V* and Λ. At a 

given V*, deflection increases gradually as Λ is increased until collapse ( ) 

which occurs at the top of the figure. At the bottom of 

*
2 1w =

Figure  5.6, where 

deflections are small, the contours have negative slope as V* increases; this means 

that for a given Λ the beam deflection increases for a larger drop (V*). This is the 

behaviour that was expected in section  5.2.1 since larger liquid volume was 

expected to result in larger capillary forces as the Laplace pressure would be 

acting over a greater area. At higher values of Λ (near the middle of Figure  5.6, Λ 

= 0.0035-0.0045) the deflection pattern changes. In particular, with respect to V*, 

the deflection contours first slope down, attain a minimum, and then slope up; this 

indicates that in this area there is a value of V* that maximizes the deflection for 

each value of Λ. As Λ is further increased the contours slope up with respect to 

V* indicating the DCB collapses more easily for smaller V*.  Furthermore, the 
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contours appear to converge for small V*, whereas they remain somewhat parallel 

and equally spaced for larger V*.  

 
Figure  5.6: Contours for the free end deflection ).  The contours are plotted with varying 
Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.025.   

s: from 

defle

( *
2w

 

Clearly from Figure  5.6, there exists a reversal in the deflection trend

cting more for larger drops at small deflections to deflecting more for smaller 

drops near collapse. Such reversal associated with increasing deflection must be 

caused by the nonlinear deflection coupling effects described in Section  5.2.2. To 

understand this trend consider Figure  5.7 which shows the deflection of two 

identical beams deformed by drops of different volume, one with V* = 0.15 (red 

dashed curve) and the other with V* = 0.55 (black solid curve). The location and 

shape of their base menisci are shown by blue solid curves. Note that for β < 1 the 

length scale is stretched in the vertical direction. The intersection of each 
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meniscus with its associated deflected beam gives the values of *
1x  on the 

horizontal axis and *
1w  on the vertical axis. Note that for the larger d p (solid 

black curve) the men us is closer to the base than for the smaller drop (dashed 

red curve). In 

ro

isc

Figure  5.7 Λ = 0.003 is shown on the left and Λ = 0.0045 is shown 

on the right. For Λ = 0.003  the beam with the larger drop has a higher deflection 

due to increased Laplace pressure area. However, the deflection at the base 

meniscus is less for the larger drop ( 05.0*
1 ≈w ) than for the smaller drop 

( 2.0*
1 ≈w ). Recall that Eq. ( 5.9), the relationship between the dimensionless 

m adius α and deflection at the base menisci *
1w , simplified for small β, is eniscus r

( ) cw θα cos/1*
1 −≈ . Since *

PM , the net moment on the beam due to Laplace 

ely prop ional to α (Eq. pressure, is invers ort ( 5.3)), greater base meniscus 

deflection for smaller drop leads to smaller α magnitude and larger *
PM . For Λ = 

0.0045, the deflection contours in Figure  5.6 show the reversed trend because the 

increase in base meniscus deflection ( 025.0*
1 ≈w  for larger drop and 4.0*

1 ≈w  the 

smaller drop) causes enough of an incr place pressure to cause the beam 

with the smaller drop to have a higher deflection. This explains why smaller drops 

were observed to collapse the DCB more easily in 

ease in La

Figure  5.6.   
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Figure  5.7: Elastic curve and meniscus location for V* = 0.15 and V* = 0.55. The other three 
governing parameters are fixed at β = 0.025, Λ = 0.0045, θc = 45º 

 

 
Figure  5.8: Contours for the normalized meniscus radius (α).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.025.   
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To systematically study how α changes with deflection, the corresponding 

contour plot for α is shown in Figure  5.8. In this figure contours of  are also 

plotted as black thin curves to allow comparison along lines of constant free end 

deflection. For example, following any line of constant  from V* = 0.1 to V* = 

0.55 shows that |α| increases with V*. This reinforces the prediction based on 

*
2w

*
2w

*
2w

Figure  5.7 that for smaller drops, if  is similar, the base meniscus will be closer 

to the free end, causing larger w , smaller |α|, and larger Laplace pressure. 

Another observation from 

*
2w

*
1

Figure  5.8 is that the change of |α| with increasing Λ 

(and deflection) is greater at smaller V*. As a result with increasing Λ, smaller 

drops experience a greater increase in , and hence a greater increase in . 

This gives rise to the converging behaviour of the  contours at small V* 

observed in 

*
PM *

2w

Figure  5.6. On the other hand, for very large V*, it is expected that the 

final meniscus position is close to the base where deflection is zero. As a result |α| 

increases nearly to its undeflected value. Therefore, the free end deflection will be 

insensitive to the exact value of V* when it is large, resulting in the levelling off 

of the contour lines for large V* shown in Figure  5.6.  

There is another interesting trend in Figure  5.8.  Reading the plot at constant 

V* (V* = 0.25 for example), the same contour (α = -1.1 in this case) is passed 

twice as deflection is increased to collapse; for larger drops such behaviour will 

also be seen in Figure  5.8 covers a broader range of . This means that |α| first 

decreases with increasing , attains a minimum and eventually begins to 

increase. The contours for the base meniscus deflection  shown in 

*
2w

*
2w

*
1w Figure  5.9 
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display the same non-monotonic pattern. Which is not surprising since for low 

values of β, α is determined primarily by  (see Eq. *
1w

w

( 5.9)). As the beam deflects, 

 first increases. However, deflection displaces liquid and because V* is 

constant causes the base meniscus to move towards the clamped end where 

deflection is less. The associated contour plot for the base meniscus position is 

shown in 

*
1w

Figure  5.10. Reading this plot along a curve of constant  from small 

V* to large V*,  is found to decrease as expected. Similarly reading the plot at a 

constant value of V*,  again decreases as  is increased. Clearly as Λ is 

increased to cause more deformation there is a competition between two effects 

on the value of : increased overall beam deflection, and meniscus movement 

towards the base where deflection is lower. Eventually the meniscus movement 

overtakes the increase in beam deflection,  attains a maximum and begins to 

decrease. This creates the non-monotonic changes in  with increasing 

deformation; an example is shown in 

*
2w

*
2w

*
1x

*
1w

1w

*
1x

*
1w

*
2w

*
1

*
1w

Figure  5.11 for V* = 0.15. Before the 

maximum when  increases, |α| decreases and the Laplace pressure increases, as 

a result the free end deflection  increases rapidly with increasing Λ.  However, 

once the maxima is attained the Laplace pressure decreases with , as a result 

much larger increases in Λ are required to increase  to collapse. This is 

reflected in the increased contour spacing after the maxima (easily seen in 

*

*
2w

*
2w

Figure 

 5.9 for V* = 0.175). Contour spacing continues to increase with further 

deformation because  and hence the Laplace pressure continues to decrease. 
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From Figure  5.9 it can be seen the maximum occurs at higher deflections for 

smaller V*. Because for small V* this maxima of  occurs at deflections close to 

collapse, the DCB collapses before a significant decrease in Laplace pressure is 

able to occur; hence the free end deflection contours near collapse are more 

closely spaced for smaller drops. To summarize, all drop sizes initially experience 

an increase in Laplace pressure due to the increase in  caused by deflection. 

However,  peaks due to meniscus movement towards the base. For larger 

drops this peak occurs at lower deflections allowing for most of the increase in 

Laplace pressure to be removed by the time the DCB reaches deflections near 

collapse. This a contributing factor to why smaller drops are able to collapse the 

DCB more easily.  

*
1w

w*
1

*
1w

*
1w

 

Figure  5.9: Contours for the Base meniscus deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.025.   

*
1w
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Figure  5.10: Contours for the Base meniscus location ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.025.   

*
1x

 

 
Figure  5.11: Changes in x1*, w1*, α with increases in free end deflection (w2*) for V* = 0.15. 
Λ is increased to create the increase in w2*.  The other two governing parameters are fixed at 
β = 0.025 and θc = 45º.   
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Having addressed the behaviour of α and hence the magnitude of the 

Laplace pressure we can return to the base meniscus position ( ) contour plot, *
1x

*
1

*
2w

(*

Figure  5.10, for further discussion.  Besides the clear trend of  decreasing with 

increasing deflection and V*, if 

x

Figure  5.10 is read carefully there is another 

important trend. Examining the contours at a constant value of , it can be seen 

that they are closer together for smaller drops. For example at = 0.5 the 

spacing between the  = 0.7 and  = 0.6 contours is 0.07 (measured in V*) 

while the spacing between the  = 0.4 and  = 0.3 contours is approximately 

0.09. To explain this, first note that the liquid volume displaced by beam 

deflection, , receives its largest contribution from liquid near the 

free end where deflection is largest. Consider a given curve w  with two 

liquid drops of different volumes so that x  and  are smaller for the larger 

drop.  Now imagine adding liquid to each drop to cause a given decrease in . 

Because  is less for the larger drop more space needs to be filled in order for 

 to decrease by a given amount; hence more liquid needs to be added. Now 

imagine the deflection-caused reduction in  for the two drops. Although, more 

liquid is displaced for the larger drop there is more room to fill so the decrease in 

 may actually be smaller for larger drops. This behaviour has an important 

repercussion on the area on which the Laplace pressure acts. Consider a numerical 

example where two drops having volumes of V* = 0.25 and V* = 0.5. Before 

deflection the Laplace pressure area for the larger drop nearly double that of the 

*
2w

)*x

*
1x

*dx

*
1x

*
1x *

1x

*
1

*
1

∫
*
2

*
1
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x
xw
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1w

*
1x

w

*
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smaller drop. However, at collapse  = 0.4 for the smaller drop, and  = 0.1 for 

the larger drop. Recognizing that the normalized area on which the Laplace 

pressure acts is 1-  (0.6 for the smaller drop and 0.9 for the larger drop), after 

deflection the Laplace pressure only acts on an area that is 50% larger for the V* 

= 0.5 drop. That is, the beam’s deflection causes a larger increase in the Laplace 

pressure area relative to the initial area for smaller drops, and further facilitates 

the collapse.  

*
1x *

1x

*
1x

To summarize the results so far, for moderate contact angles and low β , 

small drops are observed to more easily collapse the DCB. Physically, this implies 

that if a pre-existing liquid drop is to be eliminated from a MEMS/NEMS 

structure through evaporation, collapse can occur during the evaporation process, 

which in turn facilitates stiction. Such an observation can be attributed to two 

mechanisms: (1) for smaller drops, beam deflection at the base meniscus is larger, 

resulting in larger Laplace pressure; and (2) beam deflection causes the base 

meniscus to move towards the clamped end, increasing the acting area of the 

Laplace pressure, and such increase is more pronounced for smaller drops. The 

first mechanism will not be revealed without considering coupling between the 

deformation of the beam and meniscus geometry, and the second mechanism will 

not be revealed if the meniscus is assumed to be pinned, as in the work of Ouakad 

et al.  [8]. Assuming a pinned meniscus allows the liquid to leak, which is 

unphysical. Overall, our results demonstrate the necessity of modeling the 

detailed geometry of the liquid drop, and coupling it with the beam deflection.  
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The preceding discussion focussed primarily on the Laplace pressure, and in 

particular how it is coupled to the beam’s deformation. However, this model also 

accounts for surface tension forces which have been neglected by prior models.  

Therefore, it is desirable to examine how important these forces are to collapse. 

Figure  5.12 plots the fraction of the total reaction moment due to surface tension 

forces, ( )* * * * */ /ST R ST ST PM M M M M= +

*
RM

; here the thick curves are contours for 

 whereas the black thin curves are contours for . For small V* and 

deflections (lower left corner of the plot), surface tension forces contribute to 

more than 22% of the total moment on the beam. However, at collapse (upper part 

of the plot) this contribution drops to less than 10%. Such drop is caused by an 

increase in the Laplace pressure moment  with deflection; although the 

change in Laplace pressure was with Λ non-monotonic there is an overall increase 

in Laplace pressure at collapse compared with no deflection. Furthermore, for 

larger drops (large V*) surface tension plays an even smaller role, both because 

the Laplace pressure acts over a larger area and because the surface tension force 

at the base meniscus contributes a smaller moment as it acts closer to the base. 

Due to the small contribution of the surface tension force to collapse, the  

behaviour seen in 

* /STM *
2w

*
PM

*
2w

Figure  5.6 can be attributed primarily to Laplace pressure.  

Finally, the normalized volume of liquid displaced by the two menisci, 

corresponding to the second term on the RHS of Eq. ( 5.5), is shown in Figure 

 5.13. For moderate contact angle and low β considered here, these values are more 

than one order of magnitude smaller than V* so it is not a significant contributing 
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factor to . That is, changes in  are determined primarily by liquid 

displacement due to beam deflection (first term on the RHS of Eq. 

*
1x *

1x

( 5.5)).   

 
Figure  5.12: Contours for the fraction of reaction moment due to the surface tension forces.  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 45º and β = 0.025 
 

 
Figure  5.13: Contours for the normalized volume of liquid displaced by menisci (MDISP).  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 45º and β = 0.025.  
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5.3.2 DCB Collapse at moderate contact angles and high β 

Having the highest value of β of practical interest, 0.1, allows for maximum 

values of the deflection angle ϕ. As a result ϕ can play a larger role in the 

constraint equations Eq. ( 5.5)-( 5.8).  Specifically, from Figure  5.5, increases in 1φ  

may counteract changes in α  caused by increases in , which can be seen in Eq. *
1w

( 5.9). Furthermore, 1φ  may now influence  (from Eq. *
1l ( 5.8)) and hence the 

meniscus position to a greater degree (Eq. ( 5.5)). In fact, as shown in Figure  5.5 

and Eq. ( 5.5), this effect is amplified at higher β. Finally, from Figure  5.5 and Eq. 

( 5.3), increasing β reduces the Laplace pressure moment, meaning the surface 

tension force can play a more important role compared with the low β case.  

To begin, a free end deflection ( ) contour plot as a function of Λ and V* 

is again generated, but with β = 0.1. This is shown in 

*
2w

Figure  5.14 which looks 

similar to Figure  5.6 for β = 0.025, but there are several noticeable differences. 

Firstly, at the same V*, larger values of β require much larger Λ to collapse the 

DCB which is explained by the Laplace pressure in Eq. ( 5.2) being inversely 

proportional to β. Secondly, compared with Figure  5.6, the contours in Figure 

 5.14 are more spaced out in the vertical direction (note the difference in scale 

along the Λ axis). Thirdly, the curves at small V* are flatter than in the small β 

case. Finally, in the high β plot as V* is increased the contour for collapse 

( ) first shows the same pattern as in *
2 1w = Figure  5.6, i.e., easier collapse for 

smaller V*; however, as V* is further increased the contour shows a more drastic 

levelling off pattern than in the low β case. In fact the trend even reverses and the 

DCB becomes easier to collapse again as V* approaches 0.55. As was seen in the 
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low β case, changes in |α| caused by beam deflection played an important role on 

collapse, so to explain the differences observed in the  contours it is natural to 

first look at α.  

*
2w

 
Figure  5.14: Contours for the free end deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1. 

*
2w

 
Comparing a contour plot of α shown in Figure  5.15 with the α contours 

from the low β case shown in Figure  5.8; there are several noticeable differences. 

First, the high β contours show higher |α| values throughout the entire plot. This 

increase in |α| is significant because it corresponds to a decrease in Laplace 

pressure. To understand why |α| was observed to be higher in Figure  5.15, recall 

the relationship for α in Eq. ( 5.9), ( ) ( )1
*
1 cos/1 φα −= w θ +c . An increase in |α| 

could be caused by either a decrease in  or an increase in φ1. In the low β case, 

φ1 was close to zero irrespective of the loading conditions, and hence the value of 

*
1w
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the base meniscus deflection  determined |α|. However, larger values of β lead 

to larger values of φ (see Eq. 

*
1w

( 5.4), **tan dxdwβφ = ). As a result the cosine 

term in the denominator of Eq. ( 5.9), will have a smaller value and |α| will be 

larger. The other difference between Figure  5.8 and Figure  5.15 is that the high β 

contours appear to be stretched vertically which would imply less dependence on 

Λ. This stretching behaviour is consistent with the  contours being more 

spaced out (especially for low V*), which are the black thin curves shown in 

*
2w

*
2w

Figure  5.15. To see whether  or φ1 is the dominating contributor to the above 

observed differences, consider the  contours for the high β case shown in 

*
1w

*
1w

Figure  5.16. If read carefully at constant values of  and V*, there are no 

significant differences in  for the high β case compared with the low β case 

(

*
1w

Figure  5.9), so the differences in α (and ) must be explained by φ1.  *
2w

 
Figure  5.15: Contours for the normalized meniscus radius (α).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1.  
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Figure  5.16: Contours for the base meniscus deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1.  

*
1w

 

Consulting Eq. ( 5.8), ( )1
*
1 sin φθ += cl

*
1l

*
1w

,  provides a measure of the angle 

φ1. Contours of  are shown in 

*
1l

*
1l

*
1l

*
2w

Figure  5.17. It can be seen that as is increased 

at a fixed V* > 0.3,  (therefore φ1) first increases, attains a maximum and then 

begins to decrease with further deflection. Increasing deflection causes the base 

meniscus can move closer to the base where the slope is less. Competition 

between increased beam deformation and the relocation of the base meniscus 

cause the non-monotonic behaviour of  seen in 

Λ

*
1

*
1l

Figure  5.17. Such non-

monotonic behaviour is also seen for  in Figure  5.9 and Figure  5.16. However, 

for  this maxima occurs at deflection well before collapse which differs from 

the situation of . It is clear from 

*
1w

Figure  5.17 that for large V* (>0.45) the  

maximum occurs significantly before collapse; so near collapse l  is decreasing 

with increasing . On the contrary, for smaller V*,  increases monotonically 

*
1l

*
1l
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with increasing . With the knowledge of how the angle at the left meniscus 

changes with deflection we can now address the differences observed in the  

contours with high β.  

*
2w

*
2w

 
Figure  5.17: Contours for base meniscus geometry factor ( ).  The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1.  

*
1l

 

Recall that in the high β case the  contours, *
2w Figure  5.14, were flatter and 

more spaced at low V*, and the collapse line levelled off and even reversed its 

trend for high V*. The first observation can be explained by Figure  5.17 where at 

a fixed but small V*,  increases monotonically with Λ, i.e., with deflection. This 

increase in  causes the denominator of Eq. 

*
1l

*
1l ( 5.9) to decrease resulting in an 

increase in |α|. On the other hand, nonmonotonic changes in  with deflection 

were the only driving force for |α| in the low β case. Therefore, in the high β case 

*
1w
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the increase in φ1 with deflection partly counteracts the increase in  with 

deflection resulting in increased contour spacing.  

*
1w

Levelling off and even reversal of the collapse curve trend for high V* is due 

to a similar effect. Returning to the α contour plot, Figure  5.15, and focussing on 

0.4 < V* < 0.55, α is restrained to a small range: -1.45 < α < -1.4 and there exist 

subtle non monotonic changes in α within this range. The small variation in α and 

hence Laplace pressure is the main reason why the collapse curve levels off in the 

large V* region. As a comparison, in the small β case, shown in Figure  5.8, a 

steady increase in |α| with increasing V* occurred in this region. To explain why 

the variation in α is small for large V* in the high β case, studying the  

contours 

*
1w

Figure  5.16, and the  contours *
1l

*
1l

Figure  5.17 in this range of V* show 

that near collapse both  and  decrease with increasing deflection for constant 

V*. Recall that from Eq. 

*
1w

w

( 5.9), decreasing  tends to increase |α|, whereas 

decreasing  corresponds to decreasing φ1 which tends to decrease |α|. The 

competing effects of deflection and slope at the base meniscus results in the 

relatively small variation in α shown in 

*
1w

*
1l

Figure  5.15. However for larger drops 

near collapse both  and φ1 become very small due to meniscus proximity to the 

clamped base; when this happens the decrease in φ1 which occurs as the base 

meniscus moves closer to the base with beam deflection overpowers the 

simultaneous decrease in ; this causes a slight decrease in |α| and in turn the 

trend reversal in the collapse line.   

*
1w

*
1
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This trend reversal in α is shown more clearly for V* = 0.55 in Figure  5.18. 

Initially both  and φ1 increase as the beam deflects as described above, both 

eventually attain maximums and begin to decrease with further deflection; the  

maximum occurs significantly before the φ1 maximum. For  the 

behaviour of |α| mostly follows that of . There are some differences such as the 

minimum |α| occurring before the maximum of  which is caused by the 

simultaneous increase in φ1 (this was negligible for the low β case (

*
1w

*
1w

8.0*
2 <w

*
1w

*
1w

Figure  5.11) 

and the maxima of  and minima of |α| occurred simultaneously). However, for 

, when w  is small and decreases slowly, the decrease in φ1 creates a 

small decrease in |α|.  

*
1w

*
18.0*

2 >w

 
Figure  5.18: Changes in x1*, w1*, ϕ 1, α with increases in free end deflection (w2*) for V* = 
0.55. Λ is increased to create the increase in w2*.  The other two governing parameters are 
fixed at β = 0.1 and θc = 45º.   
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Referring to Figure  5.5 in the high β case slopes and angles may also 

influence  so it is desirable to see how this nonlinear deflection coupling 

influences collapse. Contours of base meniscus position are shown in 

*
1x

Figure  5.19. 

Compared with the corresponding low β contours Figure  5.10 there does not 

appear to be any difference in the contour patterns. If in the high β regime the 

nonlinear deflection coupling of φ and  were strong, then larger φ  associated 

with larger deflection would increase  and decrease the MDF (

*
1x

*
1l Figure  5.4) to 

cause an increase in , which was not observed.  Therefore, the nonlinear 

deflection coupling of φ  and  is not important even in the high β regime.  

There is one subtle difference between the  contours for high β (

*
1x

Fig

*
1x

*
1x Figure  5.19) 

and low β (Figure  5.10): at constant values of V* and ,  is slightly smaller in 

the high β case. For example at V* = 0.5 and collapse ( *
2w  =  *

1x  = 0.1 in 

*
2w *

1x

1),

 in 

Figure 

 5.10 and 08.0*
1 =x ure  5.19.  In the constant volume constraint, Eq. ( 5.5) 

the amount of liquid displaced by the meniscus is proportional to β so with higher 

β, *
1x  will be slightly closer to the base. Physically this means that for a larger gap 

between the DCB, the meniscus curvature is able to displace more liquid in terms 

of the fraction of the total volume between the undeflected beams. Thus in the 

higher β case there is a minor contribution to collapse in that the increased β 

causes a slight increase in the area that the Laplace pressure acts on.  
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Figure  5.19: Contours for the base meniscus location ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1.  

*
1x

 
To summarize, for moderate contact angles and high β , in general small 

drops are still observed to more easily collapse the DCB but it is less pronounced 

than in the low β  case. Furthermore, compared with the low β  case, the collapse 

condition becomes less sensitive to V* when V* exceeds 0.45. These changes are 

caused by the relatively large deflection angle φ  that needs to be considered in 

the constraint equations when β  is large. Essentially, φ  counteracts the influence 

of deflection on the meniscus geometry. While the deflection results in larger 

Laplace pressure in smaller drops, φ  reduces the difference. Because of the 

competition between deflection and angle, the characteristics for collapse differ 

from the low β  case where deflection is the only driving force.  

The preceding discussion has revolved around explaining differences in the 

low and high β deflection contours. Returning to Eq. ( 5.2) which governs the 
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beam’s deformation, β appears in the denominator of the pressure term. Therefore, 

for larger β surface tension forces can become comparable to the Laplace pressure 

forces and should be investigated. Figure  5.20 plots the fraction of the reaction 

moment due to the surface tension forces ( )***** // PSTSTRST MMMMM += . 

Comparing Figure  5.20 with Figure  5.12, the moment fraction contours exhibit 

similar characteristics for low and high β. However, quantitatively, the value of 

 is significantly larger in the high β case, being as much as 45% for 

small deflection and V* (lower left corner of 

** / RST MM

M

Figure  5.20), and 25% for large 

deflection and V* (upper right corner of Figure  5.20). Even along the collapse 

contour,  is between 20% and 30% for all values of V*, in contrast to 

less than 10% in the case of low β. Clearly, for high β, the surface tension force is 

a significant factor in determining collapse and cannot be ignored.   

** / RST M

With being a non-negligible part of , one may wonder whether 

 is a main contributing factor to the differences observed between the 

collapse contours in the low β and high β cases on which much of the discussion 

of this section has focused. It is unlikely because as in 

*
STM *

RM

*
STM

* /STM

Figure  5.12 the variation of 

 in *
RM Figure  5.20 with respect to V* is quite small along the collapse 

contour. Furthermore, increased  in the high β case opposes the changes 

in free end deflection contours, 

** / RST MM

Figure  5.14, observed for high β at collapse 

compared with low β, Figure  5.6. For example because  is larger for smaller 

V*, the increase in  in the high β case would be expected to cause the 

collapse line to be steeper for small drops in the high β case compared with the 

*
STM

*
STM
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low β case. However, as previously described the collapse contours are flattened 

as β increases, and this is due to the influence of deflection angles. In addition, 

 decreases as V* is increased which should not cause the collapse curve to 

level off (beam becoming easier to collapse) as was observed in the large V* 

regime. Again this trend can be attributed to the effect of angles on |α|. To 

summarize, for moderate contact angles and high β, the surface tension force 

generates a significant portion of the net moment at collapse and should not be 

neglected, although it was found that surface tension was not the main contributor 

to the dependence of the collapse condition on V*.  As will be shown later, in the 

high contact angle regime to be described in Section 

*
STM

 5.4 surface tension forces 

will be instrumental to determining the collapse condition and its dependence on 

V*.   

 
Figure  5.20: Contours for the fraction of reaction moment due to the surface tension forces.  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 45º and β = 0.1. 
 
 It is prudent to point out that the bending moment distribution along the 

length of the beam is a monotonically decreasing function from  at the base to 

zero at the free end.  This trend can bee seen in a bending moment diagram of the 

*
RM
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beam shown in Figure  5.21. Therefore, in light of Eq. ( 5.2), , 

the magnitude of  directly influences  and hence collapse. A contour plot 

of  is shown in 

*2**2 / Mdxwd =β

*
RM

M

*
2w

w

*
RM

*
R =

Figure  5.22. There is some variation with V* but there is a 

clear trend of higher  leading to higher . In each contact angle regime we 

will consult  contours to see what value is required for collapse. Consider for 

example V* = 0.2, for the given β, and θc,  is required to cause the 

DCB to collapse. In terms of the importance of the surface tension force, because 

, if  were to be neglected in the analysis higher Λ would be 

needed to provide sufficient  and hence  to cause collapse. This point 

reinforces the need to consider the surface tension force when predicting collapse.  

*
RM

*
ST

*
2

M

M

*
RM

*
PM+

35.0* ≈R

*
R

*
STMM

*
PM

 
Figure  5.21: Bending moment diagram with governing parameters V* and Λ chosen to give a 
free end deflections close to collapse.  The other two governing parameters are fixed at θc = 
45º, and β = 0.1. Arrows indicate location of meniscus.   
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Figure  5.22: Contours for the reaction moment ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1.  

*
RM

 
Before proceeding to discuss other contact angle regimes, an overall 

summary for the moderate contact angle regime results is provided below:  

1. For low β, the nonlinear deflection coupling effects due to *
1w  cause a 

significant increase in the Laplace pressure as the beam deflects. This increase 

is larger for smaller V* causing smaller drops to collapse the DCB more 

easily. In addition, upon deflection, the base meniscus moves closer to the 

base, i.e., *
1x  decreases. This effect creates a relative decrease in *

1w  which 

partially counteracts the increase in the Laplace pressure. However it also 

increases the area on which Laplace pressure applies. This increase is more 

pronounced for smaller drops, further facilitating the easier collapse of the 

DCB by smaller drops.  

2. Larger β values create a decrease in *
PM  resulting in a significant increase in 

the Λ required for DCB collapse. In addition larger values of β introduce 

nonlinear coupling with φ 1 (shown in Figure  5.5), which competes with that 

of *
1w  resulting in a flatter collapse contour, i.e., less dependence of collapse 
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on the liquid volume V*. However the dominant characteristics of the collapse 

contour still follow those observed in the low β case. In particular, the DCB 

still collapses more easily for smaller drops suggesting that in the moderate 

contact angle regime the nonlinear coupling effects of w* are more important 

than those of φ . At the same time, as shown in Figure  5.5, increasing β lead to 

a decrease in *
1x . However this decrease was small compared to the change in 

*
1x  due to liquid displacement by beam deflection.  

3. At low β, *
STM  at collapse makes only a small contribution to the total 

moment (< 10%); therefore, for this case neglecting the surface tension force 

as was done in previous works would be valid. For large β, however, *
STM  at 

collapse can be 30% of the total moment, it is significant for causing collapse, 

and hence strongly affects the dependence of collapse on Λ. However the V*-

dependence of the collapse condition is determined primarily by *
PM .  

5.4 High Contact Angle 

In the high contact angle regime where θc + ϕ1→ 90º, the magnitude of the 

menisci radii are expected to be large, and collapse is determined primarily by 

surface tension forces. Furthermore, since large menisci radii cause small Laplace 

pressure, much higher values of Λ will be needed for collapse. Although it was 

not shown, increasing the contact angle within the moderate contact angle range 

causes the low V* contours to be flatter and eventually the behaviour of the plot 

changes significantly once the high contact angle regime is reached. For β = 0.1, a 

contact angle of θc = 80º falls within this regime and will be used to demonstrate 
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high contact angle regime characteristics. In the moderate contact angle regime 

the discussion was divided into low and high β regimes.  This division will not be 

performed for the high contact angle regime because in order to satisfy θc+ϕ1→ 

90º, decreasing β (and hence φ1) is equivalent to increasing θc. Keeping with our 

goal of understanding how the governing parameters influence collapse, studying 

the high contact angle regime allows for a closer study of how surface tension 

forces influence collapse. As in the moderate contact angle case considerable 

discussion will be given to the behaviour of the nonlinear deflection coupling 

effects. In particular, as mentioned in section  5.2.2 it is expected that the 

deflection will be more sensitive to angles in this regime.   

Consider the deformation of the DCB with β = 0.1 and θc = 80º. Contours 

for this case are shown in Figure  5.23. Near the bottom of the plot the contours 

are nearly linear and at a specific Λ, the deflection is higher for smaller V*. This 

is different from the contours in the moderate contact angle regime (Figure  5.14) 

where for small Λ, larger V* is found to cause larger deflection. More 

interestingly, at the top of Figure  5.23, near collapse, the curves show non-

monotonic behaviour. In particular, at a specific Λ, the minimum deflection 

occurs between V* = 0.3 and V* = 0.4, and not at extremely low or high V* 

values. This is clearly different from Figure  5.14 in the moderate contact angle 

regime, where the collapse contour ( ) first experiences a sharp increase as 

V* increases, levels off for large V*, and eventually has a slight drop near the 

maximum V*. In the high contact angle case, 

1*
2 =w

Figure  5.23, the initial increase of 

the contour with V* is more gradual, whereas the decline is more pronounced and 
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occurs at smaller V*. Another two differences can be seen from comparing Figure 

 5.14 and Figure  5.23. First for a given V*, the values of Λ required to cause 

collapse are much higher in the high contact angle case. Secondly, the behaviour 

at small V* in the left part of the contour plot is also drastically different in the 

high contact angle case; no longer do the contours converge for small V*. Recall 

that the contours converged in Figure  5.14 due to the increase of  with  for 

small drops caused by the beam’s deflection.  

*
PM Λ

 
Figure  5.23: Contours for the free end deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1.  

*
2w

 
In section  5.3.1 nonlinear deflection coupling effects were observed to cause 

smaller drops to collapse the DCB more easily. One of the primary driving forces 

for this behaviour was changes in |α| caused by . Although in section *
1w  5.3.2 it 

was shown that the effect of ϕ1 counteracted the effect of , the behaviour was 

still largely driven by . Because α was observed to be sensitive to nonlinear 

deflection coupling and greatly influenced collapse, it is reasonable to investigate 

*
1w

*
1w
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α first for the high contact angle case. Contours for α are shown in Figure  5.24; 

the curve associated with highest |α| is in the top left corner and curves of 

decreasing magnitude expand outwards from this curve. This is in sharp contrast 

to the moderate θc regime (Figure  5.15), where the curve associated with lowest 

value of |α| was in the top left corner. This is an important observation because 

now at collapse the Laplace pressure is lower for smaller drops suggesting that 

collapse is no longer driven primarily by Laplace pressure. It also suggests that 

the behaviour of |α| is no longer driven primarily by  but rather by ϕ1. To verify 

this, consider the contour plot of  for the high contact angle case shown in 

*
1w

*
1w

*
2Figure  5.25. Reading at constant w  in Figure  5.25 shows the same patterns as in 

the moderate contact angle case (Figure  5.16). The important point is that the 

patterns in the contours of α (Figure  5.24) no longer follow from the contours of 

 (*
1w Figure  5.25) as Figure  5.15 did from Figure  5.16 in the moderate θc case. 

Based on this result the denominator in Eq. ( 5.9) must be driving the meniscus 

radius, and so it is necessary to look at ϕ1.  

 
Figure  5.24: Contours for the normalized meniscus radius (α).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1.  
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Figure  5.25: Contours for the base meniscus deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1.  

*
1w

 

To see the trends in φ1 we will look at  since they are related by Eq. *
1l ( 5.8). 

A contour plot of  is shown in *
1l Figure  5.26. Again comparing this plot with 

Figure  5.17 in the moderate contact angle case, we see the same basic patterns. 

However, the important difference is the magnitude of  in these curves. For the 

high contact angle regime  is close to 1. This is the fundamental characteristic 

of the high contact angle regime, since it was defined from θc + φ1 being close to 

90º. The significance of  approaching unity is that the denominator of Eq. 

*
1l

*
1l

*
1l ( 5.9) 

goes to 0, and |α| becomes infinite. Returning to the α contours Figure  5.24,  

makes several important contributions. Firstly, since the denominator of Eq. 

*
1l

( 5.9) 

is small for large contact angles, it gives rise to the larger |α| values observed in 

Figure  5.24 compared with Figure  5.15, implying lower Laplace pressure and 

hence . Secondly, the trends observed in α, *
PM Figure  5.24, follow the trends in 

 *
1l Figure  5.26. To explain this, note that at 90º the cosine function has the 
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greatest rate of change with respect to its argument. In addition the inverse 

function (1/x) has the greatest rate of change near zero.  For these reasons Eq. 

( 5.9) is most sensitive to changes in φ1 when *
1l  is close to 1, and as a result in the 

high contact angle regime φ1 ther than *
1w  drives the patterns observed in α and 

hence the Laplace p

ra

ressure.  

 
Figure  5.26: Contours for base meniscus geometry factor ( ).  The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1. 

*
1l

 
As previously discussed high contact angles result in large |α|. 

Consequently, the Laplace pressure drops and surface tension forces become more 

important. The fraction of the reaction moment caused by the surface tension 

forces, * /ST R
*M M , is shown in Figure  5.27. Comparing this plot with Figure  5.20 

in the moderate contact angle regime, there are several differences. Firstly, the 

contours are more vertical at small V*, indicating less dependency on V*, because 

the Laplace pressure is dropping rather than increasing as deflection increases. 

Secondly and most importantly, the range of  at collapse is now 60%-

85%, rather than 25%-30% indicating that in the high contact angle regime 

** / RST MM
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surface tension forces are the dominant cause of collapse. Because much higher 

values of Λ are required to cause collapse in the high contact angle regime (see 

Figure  5.14 and Figure  5.23), this implies that the surface tension forces are not as 

effective as the Laplace pressure in causing the collapse of the DCB since they do 

not increase with deflection as the Laplace pressure did in the moderate contact 

angle regime. This can be further verified by comparing the contour plots of the 

total reaction moment , shown in *
RM

.0* ≈R

Figure  5.28 for the high contact angle 

regime, and in Figure  5.22 for the moderate contact angle regime. The value of 

 at collapse appears to be nearly the same in both regimes. Consider for 

example V* = 0.2, M  is required to collapse the DCB in both cases. 

However, higher Λ is needed for the high contact angle case in order to reach this 

*
RM

*
R

35

M  and cause collapse. Note that *
RM  required to cause collapse is dependent on 

V* as seen in both Figure  5.22 and Figure  5.28. The reason is that the bending 

moment distribution such as Figure  5.20 depends on the location of the base 

meniscus and shear reaction ; M* decreases linearly (with slope ) from *
RQ *

RQ *
RM  

until  then decreases more slowly until M* = 0 at the free end. Since smaller 

drops generally have lower  and higher  they tend to collapse with lower 

*
1x

*
RQ *

1x

*
RM  as seen in Figure  5.22 and Figure  5.28 (also see Figure  6.5).   
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Figure  5.27: Contours for the fraction of reaction moment due to the surface tension forces.  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 80º and β = 0.1.   

 

 
Figure  5.28: Contours for the reaction moment ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1.  
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Till now, it remains to be a question why the collapse contour shown in 

Figure  5.23 exhibits non-monotonic changes with V*.  To answer this question, it 

is necessary to examine the two contributing moments  and  in detail.  

Start with , whose expression is given in Eq. 

*
STM *

PM

*
STM ( 5.3).  Removing the moment 
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arms from this equation gives the net force caused by surface tension forces, 

; within the linear beam formulation the first term is the 

transverse force at the base meniscus and the second term is the transverse force 

at the free end meniscus. Contours of  are shown in 

( )sin()sin( 2
* θθ +Λ= cSTF )

*
STF Figure  5.29, which are 

nearly horizontal, indicating that for this contact angle  depends almost 

exclusively on Λ.  Furthermore, because both 

*
STF

2θ  and cθ  are close to 90 , the 

difference between sin(

°

)cθ and 2sin( )θ is very small (less than 2%). As a result 

 is split nearly evenly between the two menisci. Because the normalized 

moment arm of the surface tension force at the free end meniscus is x , any 

variation of  with V* is essentially caused by the moment 

arm of the base meniscus, . Contour plots of  and  are respectively 

shown in 

*
STF

* *
1ST STM F≈

M

*
2 1=

*
PM

*( 1

*
1x

) / 2+

x

x

*
ST

*
1x *

STM

STFigure  5.30 and Figure  5.31. At a given Λ,  decreases with V*, 

which is attributed to the decrease in  with increasing V* shown in 

*M

*
1 Figure  5.30.  

The maximum value of  occurs in the top left corner of Figure  5.31 for small 

drops near collapse. This explains why the DCB collapsed more easily for very 

small drops in Figure  5.23. However, it cannot explain why collapse becomes 

easier again for very large drops suggesting it is also necessary to examine .  
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Figure  5.29: Contours for the Sum of the surface tension forces at the two menisci (FST*).  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 80º and β = 0.1.  

 

 
Figure  5.30: Contours for the base meniscus location ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1.   

*
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Figure  5.31: Contours for the moment about base due to surface tension forces (MST*).  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 80º and β = 0.1.  
 

Contours of the Laplace pressure force acting on the beam, 

( ) αβ/1 *
1

* xFP −Λ−=

*

, are shown in Figure  5.32. Unlike the surface tension forces 

shown in Figure  5.26 which depended primarily on Λ, there is significant 

variation in PF

*
PF *

1x

 with V*. In addition, the similarity in contour patterns between 

Figure  5.30 and Figure  5.32 indicates that there is a strong correlation between 

 and . This is due to the fact that  directly influences the area the Laplace 

pressure acts over. For large V*,  is small and the pressure acts over a larger 

area, which is consistent with the maximum 

*
1x

*
1x

*
PF  values occurring in the top right 

corner of Figure  5.32. Of course |α| also plays a role. In the high contact angle 

regime α is driven primarily by φ1. At low V*, the increase in φ1with increasing Λ 

causes an increase in |α| which partially counteracts the increase in  from Λ.  

Whereas at high V*, near collapse φ1 was observed to decrease as Λ increases, 

resulting in a decrease of |α| which contributes to the increase of  from Λ. 

Consequently, the increase of  with Λ is slower for small V* and faster for 

*
PF

*
PF

*
PF
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large V*, which results in the  contours being tightly spaced for high V*, in the 

top right corner of 

*
PF

Figure  5.32. With knowledge of  (*
PF Figure  5.32) and  

(

*
1x

*
ST

Figure  5.30), it is easy to understand the contour plot of  shown in *
PM Figure 

 5.33, as the moment arm is merely . Clearly the patterns are similar to 

that of .  In particular, at large V*, the combination of increased Laplace 

pressure area and increased Laplace pressure due to lower φ1 cause larger drops to 

have larger . 

2/)1( *
1 +x

M

*
PF

*
PM Figure  5.33, explains why in Figure  5.23 it was observed that 

increasing drop size beyond V* = 0.4 made collapse easier even though M  

would be smaller. In summary at collapse  is maximized at low V* while 

 is maximized at high V*.  These maxima result in the collapse curve in 

*
ST

*
PM

Figure  5.23 bending downwards (towards lower Λ) at extreme values of V*.  

 
Figure  5.32: Contours for the force due to pressure (FP*). The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1. 
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Figure  5.33: Contours for the Moment about base due to Laplace pressure (MP*). The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 80º and β = 0.1.  

 
To conclude, we summarize the important aspects of how the governing 

parameters influence collapse in the high contact angle regime. Unlike in the 

moderate contact regime, the nonlinear deflection coupling effects in the high 

contact angle regime are mainly controlled by φ1 instead of . Because of this, 

smaller drops have larger meniscus radius and smaller Laplace pressure. Surface 

tension forces were found to be a dominant contribution to collapse. This is 

especially true for small drops where not only is the Laplace pressure smaller but 

the moment arms for the surface tension forces are larger as well. Large  for 

small drops and large  for large drops result in the collapse contour having a 

non-monotonic change with V*: namely collapse is easiest for extremely large and 

extremely small drops.  

*
1w

*
STM

*
PM
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5.5 Low Contact Angle 

There are many combinations of liquids and solid surfaces that are perfectly 

wetting and belong to this regime.  One common example would be water on 

glass for which the contact angle is close to 0º (see Table 4). Furthermore in many 

MEMS applications the contact angle of the rinse liquid is considered to be close 

to 0º  [4],  [6],  [8]. For this reason we will use θc = 0º in this section to demonstrate 

the typical characteristics of the low contact angle regime. Again we want to 

understand how the governing parameters influence collapse in this regime and 

the relative importance of the nonlinear deflection coupling effects. Based on 

Figure  5.5 and Eq. ( 5.9) decreasing θc tends to decrease |α| and thus increase the 

Laplace pressure. Furthermore, for small contact angles the surface tension force 

at the base meniscus acts nearly axially and gives a negligible contribution to 

beam deflection. However, the direction of the free end surface tension force 

changes from nearly axial before deformation to nearly transverse at collapse. So 

surface tension forces can still play a role and are highly coupled with the beam’s 

deflection; this will be discussed in this section. Based on the discussion of Figure 

 5.5 and the governing equations in section  5.2.2, it was reasoned that for low 

contact angles the amount of liquid displaced by the menisci is more sensitive to 

changes in φ, which in turn can affect the location of the base meniscus. This will 

be another focus of the discussion in this section. These two features unique to the 

low contact angle regime have not been addressed in previous sections and it will 

be interesting to see the relative importance of these effects compared with those 

previously discussed.   
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5.5.1 General Low Contact Angle Collapse Behaviour 
As always the analysis for collapse starts with looking at the free end 

deflection contours, shown in Figure  5.34. Surprisingly, despite the large 

difference in θc (0º vs. 45º), the pattern of these contours appears almost identical 

to that of Figure  5.14 for the moderate contact regime. This implies that the 

nonlinear deflection coupling effects discussed for the moderate contact angle 

regime also apply to the low contact angle regime. One subtle difference, the 

tighter contour spacing for small V* in Figure  5.34 compared with Figure  5.14, 

can be explained by Eq. ( 5.9). For small contact angles the cosine function is less 

sensitive to changes in φ1 so the nonlinear coupling of angles on the Laplace 

pressure, which opposed that of deflection, is dampened in the low contact angle 

regime. On the other hand, there are some quantitative differences between Figure 

 5.34 and Figure  5.14. The first difference is that for the same V* collapse can be 

obtained at lower Λ in the low contact angle regime. This is due to the decrease of 

|α|, and hence increase of the Laplace pressure, with lowering θc, as shown in Eq. 

( 5.9). It is worth noting that the  required to cause collapse, shown in *
RM Figure 

 5.35, again appears to have the same value as the moderate contact angle regime 

(Figure  5.22). For example at V* = 0.2, for the given β,  is required to 

cause the DCB to collapse in both 

35.0* ≈RM

Figure  5.22 and Figure  5.35.  
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Figure  5.34: Contours for the free end deflection ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 0º and β = 0.1.  

*
2w

 

 
Figure  5.35: Contours for the Reaction moment ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 0º and β = 0.1.  

*
RM
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5.5.2 Influence of Liquid Displaced by Menisci  
Another quantitative difference between Figure  5.14 and Figure  5.34 is the 

range of V*. The range can not be extended to V* = 0.55 as it was in Figure  5.14 

since it resulted in the base meniscus contacting the clamped end. This suggests 

that  in the low contact angle regime is smaller which can be confirmed by the 

low contact angle *
1x  contours shown in 

*
1x

 Figure  5.36. Compared with the 

moderate contact angle case (Figure  5.19), for a given *
2w  d V*, *

1x  is lower in 

the low contact angle case. For example with V* = 0.3 and at collapse, in the 

moderate contact angle case 3.0*
1 =x  while in the low contact angle case 

26.0*
1 =x . This reduction in *

1x  results in larger acting area for the Laplace 

pressure and a relative decrease in Laplace pressure as described in sectio

an

n  5.3.1.  

 
Figure  5.36: Contours for the base meniscus location ( ).  The contours are plotted with 
varying Λ and V*. The other two governing parameters are fixed at θc = 0º and β = 0.1.  

*
1x

 
In the preliminary discussion (Section  5.2) it was noted that in the low 

contact angle regime meniscus the displacement factors (MDF) would be larger. 
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Therefore, more liquid would be displaced by the menisci. The liquid volume 

displaced by the menisci is quantified by the dimensionless function MDISP. 

Specifically, the constant volume constraint (Eq. ( 5.5)) can be rearranged to give 

the following  

( ) ⎟
⎠
⎞⎜

⎝
⎛ −−−−−= −∫

2*
1

*
1

*
1

1
2

*
1

****
1 1cos

2
)(1

*
1

llldxxwVx
x

βα  ( 5.11) 

where the integration represents the liquid displaced by the beams deflection and 

the last term represents MDISP. In the low β, moderate contact angle case, it has 

been shown that MDISP is considerably smaller than the liquid displaced by the 

beam’s deflection, and therefore has negligible effect on the determination of . 

Although |α| is larger in the moderate and high contact angle regimes, MDF is 

much smaller in these regimes, causing MDISP to have less impact on  than in 

the low contact angle regime. With a higher value of β and the contact angle 

closer to 0º MDISP has maximum impact on . This impact can be seen in 

*
1x

*
1x

*
1x

*
1x

Figure  5.37, which shows the fraction MDISP contributes to the total liquid 

displaced (sum of last two terms in Eq. ( 5.11)). At collapse MDISP contributes to 

10-20% of the liquid displaced; this contribution is larger for larger V* because 

these drops will have a larger |α|. Although the dominant influence on  is still 

due to liquid displaced by deflection MDISP is no longer negligible. This can also 

be seen in Figure  5.38, which plots the ratio of MDISP to the total liquid volume 

V*. At collapse MDISP represents 15-25% of V*. Based on Eq. ( 5.11), neglecting 

the liquid displaced by meniscus curvature as in  [3],  [9], results in a significant 

discrepancy in predicting .  *
1x
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Figure  5.37: Contours for fraction of displaced liquid due to meniscus curvature.  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 0º and β = 0.1.  
 

 
Figure  5.38: Contours for ratio of displaced liquid due to meniscus curvature to drop volume 
(MDISP/V*).  The contours are plotted with varying Λ and V*. The other two governing 
parameters are fixed at θc = 0º and β = 0.1.  
 

Changes in MDISP due to nonlinear deflection coupling may also impact 

. This effect can be seen in *
1x Figure  5.39 which shows changes in , MDISP, 

and the liquid displaced by the beams’ deflection for V* = 0.1 and V* = 0.5 as 

*
1x
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deflection is increased to collapse. In each case at small deflections there is a drop 

in MDISP which actually creates a slight increase in . However, by the time 

deflection nears collapse MDISP levels off (to a different value depending on V*) 

and changes in  are determined primarily by  which increases 

steadily for all levels of deflection. Although, the changes in MDISP from 

nonlinear deflection coupling can lead to some interesting behaviour these 

changes level off and are not important for deflections near collapse. Furthermore, 

the coupled behaviour is complicated so a discussion of what drives these changes 

in MDISP would detract from the objective of this section: collapse. Hence 

interested readers are directed to 

*
1x

* (w*
1x *1 *

*
2

*
1

)dxx
x

x∫
=

 Appendix D for more detailed discussion.  

 
Figure  5.39: Changes in x1*, MDISP, and liquid displaced by DCB deflection with increases 
in free end deflection (w2*) for V* = 0.1 and V* = 0.5. Λ is increased to create the increase in 
w2*. The other two governing parameters are fixed at β = 0.1 and θc = 0º.   
 

To conclude, in the low contact regime, MDISP is significant. It causes  

to be smaller than in the moderate/high θc regimes. This has the combined effect 

of increasing the Laplace pressure area and creating a relative decrease in Laplace 

*
1x
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pressure. In other words, MDISP influences the Λ-dependence of the collapse 

condition. However, this effect is not able to significantly change the V*-

dependence of the collapse behaviour and the qualitative characteristic of the 

collapse contour is similar to that the moderate θc case. 

5.5.3 Role of surface tension forces at low θc 
 

At low θc the surface tension force at the base meniscus acts axially and 

makes a negligible contribution to the moment . However, the surface 

tension force at the free end meniscus behaves differently. Before deflection this 

forces also acts axially, however θ2 increases with deflection causing this force to 

shift from axial to transverse as the beam deflects. The contours for  are 

shown in 

*
STM

*
PM

*
STM

Figure  5.40. These contours are nearly horizontal for high deflections, 

indicating dependence of  only on Λ near collapse. Overall, at any V*, there 

is a dependence of  on the deflection, which is caused by the transition of the 

surface tension force at the free end meniscus from axial to transverse; this 

dependency is stronger at lower deflections. To see whether  contributes 

significantly to the beams collapse it is necessary to compare its magnitude with 

that of the moment caused by the Laplace pressure, .  

*
STM

*
STM

*
STM
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Figure  5.40: Contours for the Moment about base due to surface tension forces (MST*).  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 0º and β = 0.1.   

 

The moment caused by the Laplace pressure, , is shown in *
PM

*
PM

Figure  5.41. 

In this figure at low deflections  is clearly higher for larger drops, which is 

due to the larger area on which the pressure acts. However, for smaller V* the 

contours are more tightly spaced, indicating that  rises much more rapidly 

with increasing Λ for smaller drops. This behaviour is due to nonlinear coupling 

between Laplace pressure and deflection as explained in section 

*
PM

 5.3.1. For V* at 

larger deflections, there is less nonlinear coupling and the contours become nearly 

horizontal, indicating that  depends primarily on Λ. To compare the relative 

significance of  and , contours of the fraction of the moment caused by 

surface tension forces are shown in 

*
PM

*
PM*

STM

Figure  5.42. Each corner of this figure appears 

to display a different behaviour. In the lower portion of the figure, * */ST RM M  

increases with deflection because in this region  increases both due to Λ and *
STM
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nonlinear deflection coupling (surface tension force at free end changes direction 

with deflection). However for small V* the  contours, *
PM Figure  5.41, become 

tightly spaced for , indicating a sharp increase in  with deflection. 

Because the magnitude of  is much greater than that of , this increase in 

 causes 

5.0*
2 >w

M

* */ R

*
PM

*
STM*

P

*
PM STM M  to begin to decrease with increasing deflection after 

passing , even though  continues to increase. In the upper portion of 

the plot there is a different pattern.  For larger V* both and  have become 

primarily proportional to Λ; therefore, in the top right corner the contours spacing 

is large which indicates only small changes in 

*
2w = 0.5 *

STM

*
STM

* / R

*
PM

*
STM M  with deflection. For 

smaller V* at high deflections  continues to increase with deflection at a faster 

rate compared with , resulting in the further decrease in 

*
PM

*
STM * / R

*
STM M . In the 

case of θc = 0° because the base meniscus generates no moment, at collapse 

* / *
RSTM M  is actually higher for the larger drop; this contrasts the behaviour that 

was seen in the moderate and high contact angle cases. From Figure  5.42 at 

collapse  contributes about 16% of the total moment, which is a much 

smaller percentage than in the moderate or high contact angle regimes. 

Furthermore, at collapse the variation in 

*
STM

* /ST
*
RM M  with V* is less than 2%, so 

 does not contribute to the V* collapse dependency.  However,  has still 

a non-negligible contribution to the 

*
STM *

STM

Λ -dependence of the collapse condition.  
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Figure  5.41: Contours for the moment about base due to pressure forces (MP*).  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 0º and β = 0.1.  

 

 
Figure  5.42: Contours for the fraction of reaction moment due to the surface tension forces.  
The contours are plotted with varying Λ and V*. The other two governing parameters are 
fixed at θc = 0º and β = 0.1.   
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With the discussions on low contact angle regime completed we seek to 

summarize the important findings as they pertain to understanding how the 

governing parameters influence collapse and the relative importance of the 

nonlinear deflection coupling effects. Qualitatively, the characteristics in the low 

contact angle regime mimic what has been obtained for the moderate contact 

angle regime. However, the much smaller contact angle results in larger Laplace 

pressure as well as larger area of its action. Because of this, for the same liquid 

volume and DCB spacing, liquid with smaller contact angle is found to be able to 

collapse the DCB at smaller Λ . Due to the nonlinear deflection coupling effects, 

as the beam deflects, the surface tension force at the free end shifts its direction 

from axial to transverse, and hence the moment due to the surface tension forces 

still constitutes a non-negligible part of the total moment. The liquid volume 

displaced by the menisci in the low contact angle regime is significant and 

contributes to the base meniscus position being closer to the clamped end.  

5.6 Discontinuity in Deflection Contours at Low V*  

In previous sections the free end deflection contours, for example in Figure 

 5.6, were observed to converge for very small V*. This decrease in contour 

spacing was attributed to the rapid increase of  with the beam’s deflection due 

to nonlinear coupling. It is desirable to look more closely at the region of 

converging contours because closely spaced contours imply that large changes in 

deflection can occur for small changes in a governing parameter ( here). This 

type of solution behaviour is unstable numerically in that small numerical errors 

can cause large changes in the solution. 

*
PM

Λ

Figure  5.43 shows the free end deflection 
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contours from Figure  5.6, zoomed in on the region of converging contours. This 

figure reveals some surprising behaviour: not only do the contours converge but 

there is also a discontinuity in free end deflection across which the behaviour of 

the contours completely changes. Within this narrow band of free end deflection 

discontinuity (dark black “line”) the solution will not converge numerically. 

Furthermore, across the discontinuity there are drastic changes in the solutions 

behaviour which can be seen more clearly in a plot of free end deflection  vs. 

Λ, shown in 

*
2w

10−×

Figure  5.44 for V* = 0.1.  Here  first increases as Λ is increased, 

but begins to increase more rapidly as the discontinuity is approached, which is 

located at about  = 0.6 or . This is followed by a very small 

window of Λ ( ) where a converged solution cannot be 

obtained numerically.  If Λ is increased slightly more to about  a 

convergent solution can be obtained with  = 0.9. In the region after the 

discontinuity the behaviour changes as the concavity of the curve is now negative.  

Note that the range of Λ for which converging numerical solutions do not exist 

( ) is very small. According to the definition 

, if 

*
2w

3

*
2w

*
2w

.4≈

.4−

1057.4 −×≈Λ

31058.4 −×−

310

31057 −×Λ

33 1058 −− ×

EI 4.58

358.4≈Λ

1057.4 ×≈Λ

2 /LAL DγΛ = −Λ =  corresponds to a beam with thickness of 200 

nm as in Kotera et al 

×

4.57 [6], then 310−Λ =  corresponds to a beam with 

thickness of 200.15 nm. That is, these two beams differ by at most one layer of 

atoms. In other words, physically, the values of Λ =  and 

 are indistinguishable and should be treated as one point. The 

×

3−4.57 10×

34.58 10−Λ = ×
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discontinuity separates the solution into two regimes and suggests the existence of 

two equilibrium configurations, one with a much larger deflection.  

 
Figure  5.43: Contours for the free end deflection ( ) focusing on a discontinuity.  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 45º and β = 0.025.  Generated by increasing Λ 

*
2w

 

 
Figure  5.44: Changes in free end deflection w2*, with increases in Λ for V* = 0.1. The other 
two governing parameters are fixed at β = 0.025 and θc = 45º.   

 
To visualize such a jump in , consider deflected beams from either side 

of the discontinuity, shown in 

*
2w

Figure  5.45. For at Λ = 0.0046 the discontinuity is 

approximately at V* = 0.1. The dashed red curve (V* = 0.975) is from the left side 
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of the discontinuity and the solid black curve (V* = 0.1025) is from the right side 

of the discontinuity. Ordinarily for such a small difference in V* it would be 

expected that these two curves would be nearly coincidental. However, because of 

the discontinuity the deflection of the solid black curve is much higher. As a result 

for the solid black curve more liquid is displaced by beam deflection and the base 

meniscus (blue solid lines) is closer to the clamped end. In other words, associated 

with the jump in , there is a jump in . In fact, as shown in *
2w

*
2w

*
1x Figure  5.46¸ the 

jump increase in  also results in a simultaneous jump increase in  and a 

jump decrease in |α| which causes a jump increase in . This increase in  

counteracts the increase in the restoring force from the beam as a result of the 

jump increase in deflection, and the beam is able to reach a new equilibrium 

configuration with the jump. This explains why the discontinuity in the  

contours is only observed for small V*, since for large V* if a jump increase in  

occurred, it would push the base meniscus so close to the base that  would 

decrease instead of increasing; as a result |α| would increase and the Laplace 

pressure would decrease, making it impossible to counteract the increased 

restoring force and reach a new equilibrium configuration.   

*
1w

*
1w

*
PM *

PM

*
2w

*
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Figure  5.45: Elastic curve and meniscus location for V* = 0.0975 and V* = 0.1025 (on either 
side of discontinuity). The other three governing parameters are fixed at β = 0.025, Λ = 
0.0046, θc = 45º.  

 

 
Figure  5.46: Changes in x1*, w1*, α with increases in Λ for V* = 0.1 (showing discontinuity). 
The other two governing parameters are fixed at β = 0.025 and θc = 45º.   

 
One may also consider the jump from an energy perspective. Energy has 

been given minimal attention in previous discussions since the governing 
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equations were derived from equilibrium rather than from the principle of 

minimum potential energy. If we consider the system that consists of the beams 

and the droplet then the total potential energy consists of the elastic strain energy 

of each beam, and the surface energy of the solid-gas, solid-liquid and liquid-gas 

interfaces. For this system there are no external forces, and hence no work of 

external forces. The potential energy is given by the sum of Eq. ( 3.42) and Eq. 

( 3.49). The system is at equilibrium when its potential energy is at a minimum. 

The beams deflect because it decreases the liquid-air, and solid-air interfaces 

while increasing the solid-liquid interface; for the case of wetting liquid (θc < 90º) 

this results in lower surface energy. However, as the beams deflect their elastic 

strain energy also increases and competes with the reduction in surface energy.  

These energies for given values of V*, β and cθ  are plotted against Λ in Figure 

 5.47. The dotted red curve is the strain energy, the dashed blue curve is the 

surface energy, and the solid black curve is the total potential energy. The 

reference values for these energies are from the undeflected configuration. In this 

figure the jump decrease in the surface energy is nearly equal to the jump increase 

in the strain energy and the total potential energy is nearly continuous across the 

jump in deflection.  
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Figure  5.47: Changes in total potential energy, surface energy, and strain energy of DCB 
system, with increases in Λ for V* = 0.1. The other two governing parameters are fixed at β = 
0.025 and θc = 45º.  
 

A similar jump in deflection was seen in Figure  2.5 c) and d), for the spring 

plate system where as the liquid volume decreased a local energy minimum 

appeared and eventually there was a discontinuous transition to this minimum. A 

similar branching diagram analysis exists in the literature for a doubly clamped 

beam [3]. The result of this analysis is the elastocapillary number NEC which 

predicts that when the volume of the liquid tends to zero collapse will occur if NEC 

< 1. For NEC = 1, a discontinuous decrease in deflection as liquid dries is predicted 

[3], which prevents collapse. NEC for a cantilever over a substrate was presented 

without formulation by Mastrangelo et al [3]. Here, to look at jump 

discontinuities that occur for a DCB, we adopted the same idea and carried out an 

energy formulation to obtain NEC for a DCB, details shown in  Appendix E. This 

analysis was simplified from the formulations in  Chapter 3 and  Chapter 4 by 

neglecting MDISP, surface tension forces and the influence of beam slopes on the 

Laplace pressure. These simplifying assumptions were shown in section  5.3.1 to 
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be reasonable in the low and moderate contact angle regimes when β << 1 which 

is the case demonstrated here. For comparison the governing equations for the 

simplified model are presented below: 

Dimensionless ODE relating moment and curvature:  

***

2*
1

*
*

2*

*2

2 RR MxQ
xx

M
dx

wd
+−

−
Λ−==

αβ
β . ( 5.12) 

Dimensionless shear force and moment at the clamped end:  
( ) αβ/*

1
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Constant liquid volume constraint: 
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Normalized meniscus radius:  
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w
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α
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1*
1 −= . ( 5.15) 

 Furthermore, the branching diagram analysis follows the energy approach 

of Mastrangelo et al. for the doubly clamped beam  [3] where the governing 

equations are approximately solved by assuming a 4th order polynomial test 

function to represent the deflection and using the Ritz method. From  Appendix E 

the associated branching diagrams for three values of the elastocapillary number 

NEC = 5.504β2/Λcos(θc) are shown in Figure  5.48. The detailed branching analysis 

for a quasi-static evaporation process of the liquid is presented in  Appendix E, 

similar to what is done for the spring-plate-liquid system presented in section 

 2.1.4. There is an important difference between the DCB solution in Figure  5.48 

and the spring plate solution in Figure  2.5, namely that there are two equilibrium 

solutions in Figure  5.48 (represented by solid black line and dash-dot line in 

Figure  5.48 a) c) e)); although neither gives physical results for the entire range of 

V*.  
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Figure  5.48: Branching (a,c,e) and energy (b,d,f) diagrams of DCB for different values of the 
elastocapillary number. Arrows indicate the path that the DCB would follow as a drop with 
initial volume of V* = 1 is evaporated.   

 
Although generated from a simplified model using an approximate energy 

approach, Figure  5.48 can be used to demonstrate the occurrence of the jump 

discontinuity observed in Figure  5.43. Clear from Figure  5.48 c), d) is the 

existence of multiple solutions for any given V* < 0.14. Here curves EGC and 
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DFI represent energy minima separated by an energy maxima curve EFH. Curve 

BD also represents an energy minimum however, for these drop sizes the solution 

is unique. Furthermore the behaviour of the two energy minimizing solution 

curves EGC and BDFI corresponds to what was seen on the two sides of the 

discontinuity in Figure  5.43. In the bottom left of Figure  5.43 the deflection 

increases with increasing V* as in curve EGC; in the top right of Figure  5.43 the 

deflection decreases with increasing V* as in curve BDFI. Note that in  Appendix 

E it was shown that when NEC = 1, the energy maximum curve EF and the energy 

minimum curve BDF intersect at point F. That is, at F, the energy maximum and 

hence the energy barrier disappears, which leads to the jump discontinuity from 

point F to point G as V* decreases. Here in curve HFDB, HF is an energy 

maximum and FDB is an energy minimum. Similarly for curve EFI, EF is an 

energy maximum and FI is an energy minimum. The existence of multiple closely 

spaced energy maxima and minima makes the energy contours shown in Figure 

 5.48 b) and d) very flat for drop sizes that result in multiple solutions which 

explains why energy appeared to be nearly continuous across the jump in Figure 

 5.47. Interestingly at point F, the deflection at the left meniscus is , 

which is close to the  for one of the equilibrium configurations seen in 

5.0*
1 =w

*
1w Figure 

 5.45, and Figure  5.46.   

Now that we have seen considerable similarities between the branching 

diagrams of the simplified model and the behaviours seen in the full model we 

can use the branching diagrams to explain the jump discontinuity. Let us choose 

V* = 0.1 and read the contour plot (Figure  5.43) as Λ is increased. First note that 
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unlike decreasing V* in the quasi-static evaporation process ( Appendix E), 

increasing Λ corresponds to decreasing NEC, not movement on any of the 

branching diagrams in Figure  5.48. Before the jump we have NEC > 1 and the 

DCB would be represented by the point associated with V* = 0.1 on line CD in 

Figure  5.48e) which represents an equilibrium configuration with low . In the 

bottom right corner of 

*
2w

Figure  5.48e) there is another high deflection equilibrium 

solution at a local energy minimum. This energy minimum is separated from the 

low deflection energy minimum by an energy barrier (maxima also in bottom 

right corner). As NEC gets closer to 1 (not shown) the higher deflection minima 

and maxima branch grows to exist at higher V* and moves closer to the lower 

deflection curve. When NEC = 1, Figure  5.48c), the high deflection energy minima 

and maxima coalesce to form an inflection point (point F); however, the low 

deflection minimum (point G) still exists, so the momentary disappearance of the 

energy maxima at NEC = 1 cannot cause jump from point G to F in Figure  5.48c) 

analogous to the jump observed with increasing Λ in the free end deflection 

contours (Figure  5.43). In addition the NEC = 1 jump described in the literature 

occurred only at one drop size (V*) whereas in Figure  5.43 the jump is observed 

for a range of drops sizes and Λ (hence NEC). Thus, the NEC = 1 jump explanation 

presented by Mastrangelo et al  [3] cannot explain the behaviour seen in Figure 

 5.43, however it has placed us on the right track as the behaviour can be explained 

by more closely studying how the branching diagrams evolve as NEC is changed.   

Shown in Figure  5.49 are branching diagrams for two intermediate NEC not 

shown in Figure  5.48. As NEC is decreased from Figure  5.48 e) a maxima forms in 
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line CDB which is shown by point E in Figure  5.49a) for NEC = 1.005. This 

maximum leads to the creation of multiple solutions separated by an energy 

barrier for a small range of V* (between parallel dashed lines V* = 0.1-0.13). In 

Figure  5.48e) the entire curve BDC is an energy minimum, however in Figure 

 5.49a) curve BDF is a minimum, FE is a maximum and EGC is a minimum.  

 

Figure  5.49: DCB branching diagrams for different values of the elastocapillary number.  
 
Now use Figure  5.49 to see how changes in these curves with NEC, can lead 

to the discontinuity observed when Λ is increased, by observing the position of 

point E as we increase Λ and move from Figure  5.49a), to Figure  5.48c), to Figure 

 5.49b) and finally to Figure  5.48a). Point E corresponds to the largest V* for 

which the low deflection solution exists. As NEC is decreased (with increasing Λ), 

point E moves to lower V*; this trend is subtle and most easily seen by comparing 

Figure  5.49b) to Figure  5.48a) where point E occurs at V* = 0.13 and V* = 0.1 

respectively.  Start with Figure  5.49a) and increase Λ to cause reduction in NEC. 

Equilibrium for small drops would initially be on curve CE in Figure  5.49a). 

However as previously described, as we increase Λ point E moves to lower V* 

resulting in a decrease in the maximum V* for which the low deflection solution 

exists. As a result there is a jump and the system settles at the high deflection 
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equilibrium, point D in Figure  5.49b) (or equivalent figure), and proceeds to 

collapse when Λ is further increased. This is the behaviour seen in Figure  5.43 for 

V* > 0.0925. For V* < 0.0925, it can be seen from Figure  5.43 that the jump is 

directly associated with collapse of the DCB. This is because for such small V*, 

once point E moves to a sufficiently low position, both the low deflection and 

high deflection solutions vanish for a range of V* larger than point E, as 

demonstrated in Figure  5.48a) where there are no equilibrium solutions for V* 

between points E and C (V* = 0.1 - 0.175). The energy contours in Figure  5.48b) 

for these V* (0.15 for example) slope down with increasing deflection. As a result 

the system proceeds to collapse directly from the low deflection solution. For 

smaller V*, NEC needs to be lower in order to cause the disappearance of the low 

deflection solution. This is why the value of Λ that corresponds to jump 

discontinuity (or direct collapse), shown in Figure  5.43, increases with decreasing 

V*.   

By demonstrating the existence of multiple solutions the branching diagram 

analysis illustrates the importance of the initial state on the equilibrium solution.  

It should be emphasized that Figure  5.43 was generated by increasing Λ and in the 

region of the discontinuity this figure can not be used to see how the solution 

would behave if Λ was instead decreased.  Similarly to look at how the solution 

would behave due to increasing or decreasing V* separate plots would again be 

needed. This point can be seen in Figure  5.50 where the contours were instead 

generated by decreasing V* rather than increasing Λ as in Figure  5.43.  

Comparison of Figure  5.43 and Figure  5.50 clearly illustrates the existence of 
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multiple solutions for small drop sizes as within the discontinuity region different 

 are seen for fixed values of V* and Λ.  In each figure the initial condition is 

different in 

*
2w

Figure  5.50 the initial state is the high deflection configuration 

whereas in Figure  5.43 the initial state is the low deflection configuration. Due to 

energy barriers the solution remains in its initial configuration until there is a 

reason for a jump to the other configuration to occur. Since the system of 

constraint equations is nonlinear the existence of multiple solutions is expected. 

However some of the solutions are not physical for example they may give  

(the modified Newton-Raphson method described in 

0*
1 <x

 Appendix A eliminates these 

possibilities). Compared with Figure  5.43 the slope of the band of discontinuity is 

different in Figure  5.50. In each case the cause of the discontinuity is different. 

Recall that in Figure  5.43 the jump is caused by the movement of point E (shown 

in Figure  5.49 b)) to lower V* as Λ increases. To understand the discontinuity in 

Figure  5.50 consider the example of liquid drying in Figure  5.49c). As the liquid 

dries it follows curve BDF. However when V* decreases below point F that 

equilibrium configuration ceases to exist and the solution will settle at the energy 

minimum point G. This transition represents a discontinuous jump in free end 

deflection from point F to G. Thus for decreasing V* the system in Figure  5.48c) 

will follow path ABDFGC conversely if we considered increasing V* in the same 

figure the system would follow CGEDBA (not CGFDAB). The result is for V* = 

0.12 we would have  for increasing V* and  for decreasing V* 

which is similar to the difference observed in 

4.0*
2 ≈w 9.0*

2 ≈w

Figure  5.43 and Figure  5.50 when 

the initial condition was changed. Furthermore, with decreasing NEC (> 1) point F 

152 
 



moves to lower V* (not shown) causing the jump to occur at smaller V* and larger 

Λ which is seen in Figure  5.50. 

 

 

Figure  5.50: Contours for the free end deflection ( ) focusing on a discontinuity.  The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc = 45º and β = 0.025. Generated by decreasing V*. 

*
2w

 
Branching diagram analysis predicts jump at a small V* for any combination 

of β and θc. However, due to the simplifying assumptions in the branching 

analysis the exact model does not always predict the presence of the jump. For 

example in the high contact angle regime it was observed that Laplace pressure 

decreased with deflection for small drops in which case it would be impossible for 

the jump to occur since there is no increase in the capillary force to compensate 

for the increased restoring force associated with the jump. Furthermore, as β was 

increased the low V* contour spacing was observed to increase (Figure  5.14 vs. 

Figure  5.6); this behaviour was due to the competition between the effects of 

increases in and φ1, which accompany deflection, on |α|. The jump 

discontinuity is associated with converging contours so it will disappear as β is 

*
1w
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increased. Increasing the contact angle and β both increase the degree of coupling 

between φ1 and α. This coupling, not considered in the simplified branching 

diagram model, can prevent the occurrence of a jump.  There are also quantitative 

differences between the jump predicted from the branching model and that 

observed from the exact model. Since the simplified model neglects MDISP, at a 

given Λ jumps were always observed at lower V* than predicted by the branching 

model. Furthermore, at a given V*, the jumps were always observed to occur for 

lower NEC values than the branching model predicted. This can be most easily 

seen for the direct jump from the low deflection configuration to collapse (Figure 

 5.43, V* < 0.925). Branching analysis only predicts this jump when NEC < 1 

( ) however it was observed in 310865.4 −×>Λ Figure  5.43 for NEC > 1. The 

reason for this discrepancy is the branching model neglects the surface tension 

force which increases DCB deflection allowing the jump to happen at higher NEC  

(lower Λ).   

 

5.7 Summary 
In this chapter, by presenting the numerical solutions to the governing 

equations formulated in  Chapter 3, we demonstrate how the governing parameters 

influence collapse and the role of nonlinear deflection coupling effects shown in 

Figure  5.5.   

One of the most important nonlinear deflection coupling effects is the 

dependence of the Laplace pressure on . This effect causes a significant 

increase in the Laplace pressure upon deflection, which enables smaller drops to 

*
1w
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collapse the DCB more easily than larger V* for small and moderate contact 

angles. The competing effect of ϕ1 on the Laplace pressure, shown in Figure  5.5, 

comes into play at higher values of β. However, in the moderate and low contact 

angle regimes the effect of ϕ1 is less important than that of . In the high contact 

angle regime the opposite is true and ϕ1 drives the deflection behaviour.  In this 

regime, the collapse condition shows a non-monotonic variation with V*; the 

DCB is most easily collapsed by very small and very large drops.  

*
1w

Another important nonlinear deflection coupling effect is the deflection 

pushing the base meniscus closer to the base, thus decreasing . This effect 

creates a relative decrease in both  and ϕ1 which counteracts changes in the 

Laplace pressure. However, it increases the area the Laplace pressure acts on, and 

still contributes to the result that smaller drops collapse the DCB more easily in 

the low/moderate contact angle regimes. In addition for very large V*, the final 

position of the base meniscus is so close to the base that it removes most of the 

nonlinear deflection coupling effects on the Laplace pressure. Changes in β, θc 

and ϕ1 can also affect  through the liquid displaced by the meniscus (MDISP).  

Although the influence of MDISP on  is generally less than those of beam 

deflection and liquid volume it is of the same order of magnitude and should not 

be neglected.   

*
1x

*
1w

*
1x

*
1x

The surface tension force, which has not been previously accounted for in 

the literature, was also found to contribute to collapse.  Depending on the contact 

angle, the moment of the surface tension forces constitutes 15%-85% (from low to 

high contact angles) of the total moment on the beam, and should not be 
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neglected. Its influence for the high contact angle regime is especially important. 

Not only does it affect the load (Λ) needed to collapse the DCB, it also causes the 

collapse pattern (dependence of the collapse condition on V*) to differ from the 

low/moderate contact angle regimes. In the low contact angle regime, as the 

beams deflect, the surface tension force at the free end shifts its direction from 

axial to transverse and has its maximum influence at collapse; however in this 

regime the solution is still largely driven by the Laplace pressure.   

The governing parameter Λ has the most straight forward influence on the 

DCB deformation, in that higher Λ leads to higher DCB deflections.  At a given 

V*, higher values of Λ are needed to collapse DCBs with larger β and contact 

angles.   

All the results so far are based on the linear beam formulation. The linear 

formulation allows us to obtain analytical expressions for the deflection and 

facilitates our understanding and interpretation of the numerical results. In the 

next chapter, the solutions for collapse based on the nonlinear formulation 

( Chapter 4) will be presented, which can be used to test the validity of the linear 

model. In addition, through the nonlinear model, a dimensionless number will be 

obtained which explicitly describes the condition for collapse in terms of the 

governing parameters.  
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Chapter 6 Results on Uncollapsed 
Configuration from Nonlinear Formulation 

In this chapter, the results obtained from the nonlinear beam formulation 

( Chapter 4) pertaining to collapse are presented. Considerable discussion of the 

four governing parameters for the collapse of the DCB: β, θc, V*, and Λ has been 

completed in  Chapter 5. There are several objectives in this chapter: (1) to tie up 

any lose end in the discussion of the governing parameters; (2) to evaluate the 

need to use a beam model that accounts for geometric nonlinearity (3) to compare 

the findings of the model with results previously published in the literature; and 

(4) to obtain correlation equations describing the numerical results of the model.   

6.1 Summary of Governing Equations 
To look at the impact of geometric nonlinearity on the solution, the system 

of equations governing the deformation of the DCB is revisited below. As in 

 Chapter 5 the discussion will be limited to negative α.  The normalized equations 

from  Chapter 4 pertinent to the discussion are listed below.   

Dimensionless ODE relating moment and curvature:  
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The shape of the deflected beam can be determined from : 
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Constant liquid volume constraint: 
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The meniscus constraint equations from the linear case Eqs. ( 5.6), ( 5.7) and ( 5.8), 

continue to be valid.  

6.2 Importance of nonlinear geometry 
In the discussion of  Chapter 5 considerable effort was spent addressing the 

nonlinear deflection coupling effects in the constraint equations. However, 

nonlinear geometrical effects in the beam equations were ignored which may 

seem contradictory. Therefore, it is desirable to solve the beam deformation using 

the nonlinear beam model coupled with the nonlinear constraint equations and 

compare the results with that of the linear model to gage the importance of the 

using a nonlinear beam model.  

Again for collapse, the most important quantity is the free end deflection. 

Therefore the following function describing the difference between the free end 

deflection given by the linear and nonlinear models will be examined:  

( )( ) ( )( )
( )( )nonlinear

linearnonlinear

sw

swsw
yDiscrepanc
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2

*

*
2

**
2

* −
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It was described in section  5.3.1 that if β → 0 then ϕ → 0.  In addition all of the 

nonlinear geometrical terms in the beam governing equations ( 6.1) and ( 6.2) are 

multiplied by β. So as β → 0 the linear and nonlinear beam theories should 

coalesce. It would then be necessary to consider a range of β. In addition, based 

on Eqs. ( 6.1) and ( 6.2) the discrepancy may also depend on the magnitude of the 

deflection. Therefore to study the discrepancy Λ will be increased at each β to 

cause the deflection to increase till collapse. A plot of the discrepancy as a 

function of Λ and β is shown in Figure  6.1. Here the same contact angle (θc = 45°) 

from the moderate contact angle regime discussion (section  5.3) is used, and V* = 

0.3 is used since it is close to the middle of the V* values discussed.  In Figure 

 6.1, the free end deflection contours (thin solid black curves) are also shown to 

allow for comparison at constant values of .  For example following any line of 

constant  from β = 0.025 to β = 0.25 the magnitude of the discrepancy 

increases as was expected. Furthermore, if β is held fixed and the plot is read as Λ 

increases from 0.01 to 0.4 causing the deflection to increase towards collapse the 

discrepancy again increases. The most important information from 

*
2w

*
2w

Figure  6.1 is 

that the maximum discrepancy is only about 1% which occurs near collapse at β = 

0.25. Furthermore, β = 0.25 is well above the maximum value (β = 0.1) deemed 

to be of practical importance for collapse  [4]; at β = 0.1 the discrepancy is only 

about 0.3%. This suggests that for most engineering applications the linear theory 

is sufficient.   
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Figure  6.1: Contours for the discrepancy between linear and nonlinear beam theories.  The 
contours are plotted with varying Λ and β. The other two governing parameters are fixed at 
θc = 45º and V* = 0.3.   
 
Table 7: Maximum discrepancy between linear and nonlinear beam theories.  For a range of 
θc and V*.  β is fixed at 0.1 to give maximum error. 

 V* = 0.1 V* = 0.3 V* = 0.5 
θc = 2.5º 0.15% 0.30% 0.30% 
θc = 45º 0.25% 0.30% 0.25% 
θc = 80º 0.25% 0.18% 0.05% 

 

6.3  Influence of β on collapse 
In the linear discussion little consideration was given to the governing 

parameter β. In light of Section  6.2 this section may seem better placed within the 

linear discussion in  Chapter 5 however the results of this section inspired an 

important analytical result Eq. ( 4.24) which is obtained from the nonlinear theory. 

For the moderate contact angle regime, there were separate discussions for 

low β and high β showing how the increase in β results in increased influence of 

the deflection angles. From Figure  5.5 and Eq. ( 6.4) increasing β can also cause 

the liquid volume displaced by the menisci to increase, and potentially lead to a 

decrease in . This was deemed to be a relatively unimportant effect when β was *
1x
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increased from 0.025 to 0.1. To re-examine this point, shown in Figure  6.2 are the 

contours of  as a function of Λ and β. For the most part in this figure the  

contours tend to follow the free end deflection contours, shown in black thin lines. 

This indicates that the influence of β on  is essentially through the deflection. 

The exception to this occurs at β > 0.125 and , where there is a drop in 

 with increasing β.  However, for w , the liquid volume displaced by the 

beam deflection, first term on RHS of Eq. 

*
1x *

1x

*
1x

*
1x

5.0>

5.0*
2 <w

*
2w

*
1x *

2

( 6.4), overpowers the effect of β on , 

resulting in the  contours nearly following the  contours. Since our interest 

is primarily in predicting collapse for β < 0.1, the effect of β on  through the 

liquid volume displaced by the menisci is not as significant as liquid displaced by 

beam deflection.  

*
1x

*
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Figure  6.2: Contours for the base meniscus position ( ). The contours are plotted with 
varying Λ and β. The other two governing parameters are fixed at θc = 45º and V* = 0.3.   
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Nevertheless, β does influence  through the deflection, and at a given Λ, 

the dependence of  on β can be clearly seen from 

*
1x

*
2w

w

Figure  6.2. Consider a 

contour plot showing  as a function of β and V* shown in *
2 Figure  6.3. The 

features of this plot resemble Figure  5.14 but the higher  contours are now 

located at the lower part of the figure, i.e., for smaller β. This is because according 

to Eqs. 

*
2w

( 6.1) and ( 6.2), decreasing β increases . Although *
PM Figure  6.3 and 

Figure  5.14 show similar characteristics for collapse, Figure  5.14 is more suitable 

for the initial discussion for several reasons. Firstly, since both the Laplace 

pressure and the surface tension force are directly proportional to Λ, changing Λ 

does not affect the relative importance of the two types of loading. On the 

contrary, changing β primarily influences the Laplace pressure which causes a 

change in the role of the Laplace pressure relative to the surface tension forces. 

Secondly, the normalization in β and V* both involve the beam length L and DCB 

gap h, so if β is to be varied at a constant V*, the physical volume of the liquid 

needs to be changed as well. Thirdly, as previously described the range of 

deflection angles scales with β. These features can make a plot such as Figure  6.3 

difficult to interpret, and prevent an elucidation on the nonlinear deflection 

coupling effects. Because of this, previous discussions have been based on 

contour plots using Λ and V* as the variables.  On the other hand, plots such as 

Figure  6.3 have practical significance because once the materials of the beam and 

the liquid are specified so are the surface tension and contact angle. As a result 

plots like Figure  6.3 allow for determination of whether the given DCB geometry 

will collapse. Furthermore, experimentally varying surface tension or the beam’s 
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flexural rigidity (EI) are more difficult than varying β which can be accomplished 

by varying the spacing or length of the beams (as in the experiments performed by 

Mastrangelo et al.  [15]). One should, however, exercise care when trying to use 

Figure  6.3 for interpreting experimental data. For example if a drop of known 

volume is placed at the end of a DCB and spacing was decreased to cause the 

DCB to collapse, the system would not follow vertical lines (constant V*) in 

Figure  6.3 since the normalized volume would increase as the spacing was 

decreased. As a result the system would follow a path such as the dashed black 

lines shown in Figure  6.3. In such situations, the experimental data should be 

normalized or the numerical result in Figure  6.3 should be converted into physical 

quantities before comparison.  

 
Figure  6.3: Contours for the free end deflection ( ).  The contours are plotted with varying 
β and V*. The other two governing parameters are fixed at θc = 45º and Λ = 0.05.   
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A particularly interesting observation is made when contours of the reaction 

moment  are plotted as a function of β and V*, shown in *
RM Figure  6.4.  It is clear 

from this figure that at collapse, the  contours are nearly parallel to the  

contours. This suggests that at collapse  may not depend, or have weak 

dependence, on V* or β. This is an extremely important observation because as 

was explained in the linear discussion  has a direct relationship with collapse; 

this is reinforced by 

*
RM

*
RM

*
2w

*
RM

*
RMFigure  6.4 where  greater than 0.28 is required for 

collapse.  In fact, based on the nonlinear formulation, the reaction moment can be 

shown to be in the following closed form (see Eq. ( 4.24))  

( ) ( )( )cRM θφ cossin2 2
* +Λ=  (at collapse  = 1) *

2w ( 6.6) 

where φ2 is the free end deflection angle. This is an important result for several 

reasons. It establishes a direct correspondence between two of the governing 

parameters Λ and θc, and the collapsing *
RM . It also shows that *

RM  depends on 

all other governing parameters through φ2. For most practical situations, φ2 only 

ranges between 1º and 12º (obtained by considering extreme values of β).  For the 

case of Figure  6.4 varying V* from 0.1 to 0.55 only changes dw*/dx* at the free 

end from 0.0236 to 0.02333; a difference of 2% indicating that φ2 at collapse has 

only a slight dependence on V*. Substituting Λ = 0.05 and θc = 45º used for 

Figure  6.4 into Eq. ( 6.6), *
RM  is found to be 0.269 for φ2 = 1º and 0.302 for φ2 = 

12º, consistent with the *
RM  at collapse found in Figure  6.4. Based on Eq. ( 6.6), in 

                                                 
3 In light of tan(φ) = βdw*/dx* for this example because β was varied to create collapse, dw*/dx* 
gives a better representation of the influence of V* on φ2 at collapse than directly looking at φ2. 
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Section  6.4 we will define a dimensionless number incorporating the four 

governing parameters to describe the condition for collapse in closed form. 

 
Figure  6.4: Contours for the reaction moment ( ).  The contours are plotted with varying 
β and V*. The other two governing parameters are fixed at θc = 45º and Λ = 0.05.  

*
RM

 

6.4 Collapse Correlation Equation 
At the beginning of  Chapter 5, we identified four governing parameters Λ, 

, *Vβ  and cθ  and expected that the collapse condition should be an equation in 

terms of these parameters. Detailed discussions were then performed to study the 

role of these governing parameters in causing deflection and collapse, and the 

collapse contour has been shown numerically for representative cases. Based on 

these studies, it is of interest to see whether a closed-form equation can be written 

explicitly for the condition of collapse.  

To start, recall that in  Chapter 5 when we studied collapse at several 

different contact angles it was noted that the reaction moment  at collapse had *
RM
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only slight variation with V* and appeared to be independent of contact angle θc. 

These observations suggest that it may be possible to fit a curve  to the 

numerical data, where it would be expected that the primary dependence would be 

on β. Contours of  at collapse for a wide range of V*, and β are shown in 

*),(* VM R β

*
RM

= 45cFigure  6.5; here °θ , and for each pair of ( , *)Vβ , Λ has been adjusted to  

cause collapse. The value of  at collapse is then calculated and plotted. *
RM Figure 

 6.5 gives several suggestion about the form of . First the contour 

spacing in the vertical direction is nearly constant which suggests that  

depends linearly on β or 

*),V(*M R β

*
RM

( )**) VfM β=,(* VR β .  In addition the  contours are 

curved so a 2nd order polynomial would be an appropriate first guess for .  

Performing a regression using this form for the numerical data from 

*
RM

f ( )*V

Figure  6.5 

gives the following relationship 

( ) ( )* *
2 1

1.0 ≤

*
R

*2V3.156

,5.0

2.3802Vβ +

≤ 1.001.0

2.2091−M w = =
*V

,  

for  . 
( 6.7) 

≤≤ β , °= 45cθ
Eq. ( 6.7) matches all of the data in Figure  6.5 with a maximum error of 4%.   

 
Figure  6.5: Contours for the reaction moment (MR*) at collapse. The contours are plotted 
with varying β and V* and increasing Λ to create collapse (w2* = 1). The contact angle is 
fixed at θc = 45º.   
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Eq. ( 6.7) can be interpreted as the moment required to cause collapse, 

whereas Eq. ( 6.6) is the moment available to the beam at collapse. If we 

approximate ( )2sin φ  we can create an empirical formula for predicting collapse.  

For a linear cantilever beam with a uniform load q over its entire length L, 

 and  EI8qLw /4
max = EIqL 6/tan 3

max =φ

tan

 [31]. Letting  these 

relationships can be combined to give 

hw =max

3/4max βφ = , which provides a good 

approximation for maxφ , i.e., 2φ . The error can be reduced by using the same form 

for 2φ  and performing a regression against numerical data, which after using a 

small angle approximation ( 2 2sin tanφ φ≈ ) gives 

βφ 382.1sin 2 ≈ . ( 6.8) 

For  1,5.01.0 * ≤≤V .001.0 ≤≤ β  the maximum error associated with Eq. ( 6.8) is 

less than 2%.  Therefore combining Eqs. ( 6.6), ( 6.7) and ( 6.8) allows us to define 

the following quantity 

( )
( )( )c

VVN
θβ

β
cos382.12

2091.23802.2156.3 2**

+Λ
−+

= . ( 6.9) 

If N ≤ 1 the DCB is expected to collapse otherwise it is expected to be free.  The 

contours of N are compared with the free end deflection contours from Figure 

 5.14 (black thin lines) in Figure  6.6.  Ideally the N = 1 contour should be 

coincident with the  contour. Despite some small discrepancies at large V*, 

N defined from 

1*
2 =w

( 6.9) does an excellent job in predicting collapse.  
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Figure  6.6: Contours for the nondimensional number N  for comparison with free end 
deflection ( ). Ideally the 1 contours of each would be coincident. The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc = 45º and β = 0.1. 

*
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As mentioned in Section  5.6 another normalized number exists in the 

literature, the so-called elastocapillary number NEC, which predicts collapse when 

NEC < 1  [3],  [40]. For a cantilever suspended above a substrate the elastocapillary 

number is given as follows  [3], [40] 

( ) ( )DtDtDL
EIhN

ccLA
EC /1cos3

8
/1cos3

8 2

4

2

+Λ
=

+
=

θ
β

θγ
. ( 6.10) 

where t is the thickness of the beam. Here the t/D term is a “suitable meniscus 

correction” [3] which is somehow related to the thickness of the beam4. This 

relationship is approximate and is obtained from energy considerations. There are 

two problems with the existing  (i) its approximate nature in that it neglects 

surface tension forces, liquid displaced by the menisci and uses simplified test 

functions, (ii) it provides no indication of what V* leads to collapse. As will be 

shown (see 

ECN

 Chapter 7) the latter is a significant deficiency because as drop size 
                                                 
4 NEC = 5.504β2/Λcos(θc) was obtained for a DCB in  Appendix E 
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decreases it can pull more of the DCB into s-shaped adhesion. This results in 

greater adhesion energy (Eq. ( 3.50)) which is important for determining stiction 

failure  [18]. Because of the similarities in the definitions of N and NEC it is of 

interest to compare the form of Eq. ( 6.9) and Eq. ( 6.10). If angles 

( βφ 382.1sin 2 ≈ ) are neglected Eq. ( 6.9) has the following form 

( )c

VfN
θ

β
cos2

)( *2
2

Λ
= , ( 6.11) 

which is similar to that of Eq. ( 6.10).  

Although Eq. ( 6.9) does a good job in Figure  6.6, the contact angle in the 

figure has been fixed at 45  and β has been fixed at 0.1. Additional numerical 

calculations show  has a slight nonlinear dependency on β and θc. As a result 

for a range of contact angles from 0º ≤ θc ≤ 80º the maximum error for Eq. 

°

1

*
RM

*
2w

*
RM

( 6.7) 

can be more than 10%. Particularly the N = 1 contour can show significant 

deviation from the  contour at both low β and high θc. At θc = 0º there is 

almost no deviation; however as the contact angle is increased N becomes too 

high. Similarly, as β is decreased N becomes too low.  In addition, as shown in 

=

Figure  6.6 the deviations increase with V*. Correction terms are added to the 

assumed form of  (Eq. ( 6.7)) to give the regression the freedom to correct 

these errors. The correction terms are assumed to be in the form of 

β(Aβ+(B+Cβ)/cos(θc))V*2, where A, B and C are to be determined from regression. 

To explain the choice of the correction terms, it is noted that because the deviation 

in Figure  6.6 appears to grow quadratically with V* the correction terms are 

assumed to be proportional to V*2. Introduction of β2 terms allows the regression 

to capture the slight nonlinear dependence in β. Finally, multiplication by 
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1/cos(θc) allows the solution to capture the variation in contact angle. 1/cos(θc) 

was chosen because it is one at low contact angles, in which case there is little 

deviation in the original curve fit, also it increases at higher contact angles which 

helps to reduce the increase in N in its original form. The result from regression is 

as follows.   

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++−+=

2***

cos
0870.11485.04924.63147.14041.21458.3 VVM
c

R θ
βββ ,  

1*
2 =w ,  ,5.0125.0 * ≤≤V 1.001.0 ≤≤ β , °≤≤° 800 cθ  

( 6.12) 

The maximum deviation of Eq. ( 6.12) from the numerical data in this range is 

about 2.5%. It is important to note that the most important term in Eq. ( 6.12) is 

the first one as it has the highest magnitude. Furthermore, the linear and quadratic 

V* terms have opposite signs and partially cancel each other out to fine tune the 

expression. Now a new expression for N can be obtained as follows 
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= .   
( 6.13) 

Note that improving our estimate of φ2 was found to have little effect on the N 

contours. Eq. ( 6.13) is compared with each case studied in  Chapter 5 in Figure  6.7 

- Figure  6.10. All together, these figures cover a broad range of the four governing 

parameters.  In each case the N = 1 contour closely matches the  contour. 

Therefore, Eq. 

1*
2 =w

( 6.13) provides an excellent measure for predicting collapse.   
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Figure  6.7 Contours for the nondimensional number N for comparison with free end 
deflection ( ). Ideally the 1 contours of each would be coincident.  The contours are 
plotted with varying Λ and V*. The other two governing parameters are fixed at θc = 45º and 
β = 0.1. 
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Figure  6.8: Contours for the nondimensional number N for comparison with free end 
deflection ( ). Ideally the 1 contours of each would be coincident. The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc=45º and β=0.025. 
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Figure  6.9 Contours for the nondimensional number N for comparison with free end 
deflection ( ). Ideally the 1 contours of each would be coincident. The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc = 0º and β=0.1. 
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Figure  6.10 Contours for the nondimensional number N for comparison with free end 
deflection ( ). Ideally the 1 contours of each would be coincident. The contours are plotted 
with varying Λ and V*. The other two governing parameters are fixed at θc = 80º and β = 0.1. 
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6.5 Comparison with Previous Works 
As previously mentioned the problem of collapse where the DCB is 

completely filled with liquid has been studied  [4], [6], [11], [12]. For this problem, 

Tanaka et al. proposed the following equation for free end deflection  [4] 

( )
h

EIDLEIDLhEIDLh
w cLAcLAcLA

4
/cos23/sin23/sin2 4233

*
2

θγθγθγ −−−−
= . ( 6.14) 
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This equation does not depend on the volume of the liquid because it was 

assumed that the liquid completely fill the gap between the DCB. Although the 

problem studied in this dissertation is for a liquid drop located at the free end, the 

volume of the liquid can be increased so that the base meniscus touches the base, 

which then resembles the situation of liquid-filled DCB. Kotera et al.  [6] applied 

the model of Tanaka et al. [4] to a system with, E = 5.9GPa, γLA = 72.28dyn/cm, L 

= 1000nm, h = 100nm, D = 500nm, I = 3.333x108nm4, and θc = 0º, using these 

data the result of Eq. ( 6.14) is shown in Figure  6.11. Normalizing this data for use 

with our model gives Λ = 0.0184 and β = 0.1 and from Figure  6.9 collapse is not 

expected for any V*. Also plotted in Figure  6.11 are the free end deflections 

obtained from our model for a range of V*. With increasing V*,  predicted 

from our models increases and ultimately reaches a plateau when the base 

meniscus approaches the clamped end. The plateau value obtained from our 

model and the value obtained from Eq. 

*
2w

( 6.14) are of the same order of magnitude; 

however the completely filled DCB model gives a higher deflection, even though 

in both cases the Laplace pressure acts over the entire area of the beam. The 

reason is that in the completely filled DCB model the Laplace pressure is 

controlled by the meniscus at the free end, whereas in our model there are two 

menisci, and the one closer to the base controls the Laplace pressure because the 

angle at the free end meniscus is allowed to adjust (isobaric drop condition).  

Since the meniscus at the free end has higher deflection it gives rise to higher 

Laplace pressure and thus higher defections in the completely filled DCB model.   
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It should also be pointed out that in Eq. ( 6.14), the surface tension forces are 

neglected, so it may not be appropriate at a high contact angles. A comparison of 

 for θc = 50º is shown in *
2w Figure  6.12. Clearly, at this contact angle surface 

tension forces are important, and our model which accounts for surface tension 

forces now predicts higher deflection.   

One final note about Eq. ( 6.14) is that it cannot predict deflections from zero 

to collapse. For example consider θc = 0º in Eq. ( 6.14); for any  the term 

in the square root becomes negative and not meaningful. The occurrence of 

negative term under the square root was interpreted as the criterion for collapse in 

previous works, 

5.0*
2 >w

 [4],  [6], which we find unconvincing.  

 

Figure  6.11: Comparison of free end deflection ( ) with completely filled DCB models *
2w

 [4], [6] using data from  [6].   
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Figure  6.12: Comparison of free end deflection ( ) with completely filled DCB models *
2w

 [4], [6] using data from  [6] with contact angle changed to 50º 
 

6.6 Summary 
For the range of governing parameters deemed to be of practical interest it 

was shown that it is acceptable to neglect geometrical nonlinearity in the beam 

equations. Doing so introduced an error of less than 1%. In the nonlinear 

discussion the influence of governing parameter β was focused on because it was 

given the least attention in the linear discussion. Decreasing β increases the 

Laplace pressure which may lead to DCB collapse much like increasing Λ, 

however varying β would be more practical experimentally. Changing β also 

influences the base meniscus position through the liquid displaced by the menisci, 

however for the range of β of interest this effect is relatively unimportant 

compared to the changes caused by liquid displaced by beam deflection. Finally, 

the nonlinear formulation allows the total moment on the beam to be written in a 

closed form. This further allows a dimensionless quantity to be defined, as a 

function of the four governing parameters, which accurately predicts collapse for 

a large range of governing parameter values.  

175 
 



Chapter 7 Results on Adhered Configuration 
In the discussion of the uncollapsed configuration it was shown how the 

governing parameters Λ, β, V*, and θc influenced the beam’s deflection. In the 

adhered case the free end meniscus and its associated constraint equations have 

been removed and replaced with two essential boundary conditions at the tip of 

the contact zone (crack tip) between the two beams. Because many of the 

governing equations remain the same the parameters Λ, β, V*, and θc will 

continue to impact the solution in a similar way. As these parameters were 

addressed in detail during the discussions in previous chapters, this chapter will 

focus on the effect of the new natural boundary conditions at the crack tip. These 

boundary conditions introduce an additional governing parameter ΛSL related to 

adhesion, and an additional unknown  related to the contact force. Results 

from both linear and nonlinear formulations on the adhered configuration will be 

discussed in this chapter. Since bending the DCB to form an s-shaped adhered 

configuration takes considerable energy, for this configuration to exist small 

values of β will typically be required; therefore there is expected to be little 

difference between the linear and nonlinear results. There are several objectives of 

this chapter. Firstly the discussion will partially mirror existing works which 

looked at the detachment beam length experimentally 

*
2Q

 [14]- [18], i.e., for what 

values of β it is possible to have the adhered configuration in equilibrium; for 

 the s-shaped adhered configuration is no longer possible. However, in past 

studies the detachment length was investigated only when the liquid had 

completely dried or equivalently by taking the limit as V*→ 0; in this work we 

1*
2 >s
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will look at how a decrease in V* influences the length of the DCB in adhesion. 

The second objective will be to look at how the adhesion energy ΛSL influences 

the solution; in particular its effect on the value of β required for detachment. 

Finally, we will compare the results of our model with similar models found in the 

literature.  

7.1 Summary of Governing Equations 
We wish to study how the new essential boundary conditions and the 

additional governing parameter ΛSL influence the problem as well as study the 

impact of geometric nonlinearity. The system of equations governing the 

deformation of the DCB with both linear and nonlinear beam models is revisited 

below. Keeping mind that these equations are nearly identical to the uncollapsed 

case it is helpful to focus on how the adhesion natural boundary conditions 

influence the moment. As in  Chapter 5 and  Chapter 6 the discussion will be 

limited to negative α. The normalized equations from  Chapter 3 and  Chapter 4 

pertinent to the discussion are listed below starting with the linear case.  

Dimensionless linear ODE relating moment and curvature Eq. ( 5.2):  
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Dimensionless clamped end reaction moment and shear force from Eq. ( 3.38):  
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The deflection and slope at an arbitrary position *x  along the beam Eq. ( 5.4): 
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Constant liquid volume constraint from Eq. ( 3.41): 
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Condition for the defections at the location of the base meniscus:  
2*

1
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1 )1)((1 −+= − xwl α  
( 7.5) 

Condition for the slope at the location of the base meniscus:  

( ) 1
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In the nonlinear case we have dimensionless ODE relating moment and curvature:  
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Dimensionless clamped end moment and shear force from Eqs. ( 4.30) and ( 4.31): 
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The deflected beam can be located as follows: 

φcos*

*

=
ds
dx  

β
φsin

*

*

=
ds
dw  

( 7.9) 

Constant liquid volume constraint: 
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 It will be shown that for the cases discussed there is negligible difference 

between the linear and nonlinear models. Therefore, unless otherwise stated the 

results and figures are from the nonlinear model.   
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7.2 Basic considerations 
In the uncollapsed case the discussion centered around  which 

determined whether the DCB would collapse; in the case of s-shaped adhesion the 

discussion will center around  which for the nonlinear model will show how 

much of the DCB length is in contact. If the solution finds  then this 

configuration is not possible. A representative s-shaped deflected curve is shown 

in 

*
2w

1

*
2s

*
2 >s

Figure  7.1. The meniscus location is indicated by the blue line.  

 
Figure  7.1: Elastic curve and meniscus location for V* = 0.2. The other four governing 
parameters are fixed at θc = 30º, Λ = 0.01, ΛSL = 0.01, β = 0.02.  
 

To begin the investigation consider a contour plot of  as a function of β 

and V* shown in 

*
2s

Figure  7.2. Because it takes considerable energy to bend the 

DCB to form a finite contact area, higher Λ and/or lower β are needed. As a result 

this configuration does not exist near the upper range of β (β ≈ 0.1) discussed in 

 Chapter 5, so β in this plot is in its low range (β < 0.025). To allow for 

comparisons the same contact angle θc = 45º is chosen. Although β in Figure  7.2 

is less than in Figure  5.6, Λ needed to be set to 0.02 to have s-shaped adhesion. 

This value of Λ is more than three times larger than what was required to cause 

collapse in Figure  5.6.  One reason for this is that ΛSL has been set to 0 for this 
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figure which means that it does not take any energy to separate the adhered 

surfaces. This observation shows that forming the s-shaped adhered configuration 

is considerably harder than just causing the two free ends of the DCB to touch 

(defined as collapse). Returning to Figure  7.2, the  contours are nearly parallel 

arcs with the top right portion of the plot representing detachment. Reading the 

plot at a constant value of V*,  increases as β is increased indicating a smaller 

adhered DCB length. Once β is increased so that  the s-shaped 

configuration is no longer possible. This behaviour is similar to what was seen in 

the detachment length experiments as the beam length decreased (β increased) the 

beams became detached.  

*
2s

*
2s

1*
2 >s

 

 
Figure  7.2: Contours for the normalized length of DCB not in contact ( ).  The contours 
are plotted with varying β and V*. The other three governing parameters are fixed at θc = 
45º Λ = 0.02, and ΛSL = 0.  

*
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As previously mentioned a number of papers  [14]- [17] sought to obtain the 

adhesion energy experimentally by creating an array of cantilevers with different 

length (hence different β), and measuring the detachment length or the longest 

cantilever that would not remain attached. However, for cantilevers detachment 
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length experiments use a shear deformation correction to estimate adhesion 

energy  [14] and are inherently associated with arc-shaped stiction failures  [18]. 

Later studies use interferometry to measure beam deflection and obtain the crack 

length for an s-shaped adhered configuration  [18],  [19]. The adhesion energy then 

follows from the crack length, strain energy and the strain energy release rate5 

 [18],  [19],  [38]. These studies let V* → 0 in their models and then used the 

detachment or crack length to estimate the adhesion energy. In Figure  7.2 V* is 

retained as a variable for two reasons. Firstly, for this figure ΛSL = 0, i.e., it takes 

zero energy to separate the adhered DCB, so if V* is set to zero from the 

beginning of the calculation there would be no force exerted on the DCB to form 

the adhered configuration. On the other hand, a non-trivial solution can be 

obtained by considering V* → 0 from Figure  7.2 however Laplace pressure 

becomes infinite at V* = 0. Secondly, retaining V* as a variable allows for a study 

of how V* influences the adhered beam length ( ). Consider reading *
21 s−

*
2s

*
2w

Figure 

 7.2 at a constant value of β, for example β = 0.0125 and imagine a drying process 

where V* decreases. As V* decreases so does , indicating that the adhered 

beam length ( ) increases during the drying process. This may seem odd at 

first, but can be explained by the nonlinear deflection coupling effects. Since there 

is a deflection boundary condition at the crack tip (

*
21 s−

1= ), decreasing V* causes 

the base meniscus to move closer to the crack tip or  increases as shown in *
1s

Figure  7.3; here  contours are also shown by the thin black curves so that *
2s

                                                 
5 If reformulated without liquid and for a cantilever over a substrate our linear model gives the 
same adhesion energy based on a measured crack length (x2*) 
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comparisons can be made at constant values of adhered beam length.  This 

increases the base meniscus deflection ( ) resulting in a decrease in |α| shown in *
1w

Figure  7.4 which promotes adhesion. This is consistent with experimental 

procedure of Leseman et al.  [19] where liquid was evaporated to pull cantilevers 

into s-shaped adhered configurations to study adhesion energy. This observation 

is valid at other contact angles as well since decreasing V* increases  and 

decreases ϕ1 (if V* is small enough) both increase the Laplace pressure and 

promote adhesion. In 

*
1w

Figure  7.4 the α contours are nearly vertical indicating 

dependence primarily on V*. Specifically, |α| decreases with decreasing V* which 

results in an increase in the Laplace pressure, consistent with the corresponding 

increase in adhered length. If Figure  7.4 is read at a constant V* there is a slight 

increase in |α| with decreasing β, which appears inconsistent with the increase in 

adhered length; however, the increase in Laplace pressure (see from  Eq. *
PM ( 7.7) 

by ignoring pressure area and moment arm) created by decreasing β is larger than 

the decrease in Laplace pressure caused by the slight increase in |α|. The slight 

increase in |α| as β is decreased is caused by meniscus movement towards the 

base. The nonlinear deflection coupling effect through  can be seen in its 

contour plot for  shown in 

*
1s

*
1s

*

Figure  7.3, where the contours display the same 

patterns as the α contours. At constant values of V*,  is smaller at lower values 

of β; lower β increases  resulting in a larger adhered length which displaces 

the meniscus towards the clamped end decreasing . As in 

*
1s

*

*
PM

1s  Chapter 5 this causes 

a reduction in  and larger |α|.  1w
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Figure  7.3: Contours for the normalized base meniscus position ( ).  The contours are 
plotted with varying β and V*. The other three governing parameters are fixed at θc = 45º Λ 
= 0.02, and ΛSL = 0.  
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Figure  7.4: Contours for the normalized meniscus radius (α) contours.  The contours are 
plotted with varying β and V*. The other three governing parameters are fixed at θc = 45º, Λ 
= 0.02, and ΛSL = 0.  
 

It should be noted that unlike in the discussion of  Chapter 5, the decrease in 

 as β is decreased does not create an increase in Laplace pressure area since the 

corresponding decrease in  is greater. This effect combined with the decreased 

moment arm associated with decreasing  and  result in a slight decrease in 

*
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 as β decreases, as seen in Figure  7.5, even though there is an increase in the 

Laplace pressure. To understand this behaviour it is important to note that the 

mechanic of adhesion is different from that of DCB collapse discussed in  Chapter 

5. For DCB collapse when the Laplace pressure was increased it led to an increase 

in , which increased  and caused increased deflection. However, in the 

adhered problem increasing Laplace pressure will not necessarily increase  

since, we derived a closed form equation for the reaction moment  in Eq. 
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*
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*
PM

*
RM

( 4.32) 

( )( )cSLRM θcos2* Λ+Λ= .  ( 7.11) 

In other words when we vary β and V*,  is fixed and the moments which 

contribute to  must be balanced; i.e. we must satisfy Eq. 

*
RM

*
RM ( 7.2) or 
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2Q−** 2cos xMM SLSTP Λ−+=Λ+2 SLΛ cθ . Here SLΛ2  is constant and 

for this range of β,  is small thus we must satisfy *
STM

*
2

*
2

* xQMC P −≈ .  ( 7.12) 

where C is a constant. Let’s consider the case of decreasing β, which as 

previously mentioned increases the Laplace pressure and would tend to increase 

both the capillary force and . To satisfy Eq. *
PM

*
2Q

( 7.12), the shear reaction at the 

crack tip  would have to increase. However it is not possible to balance Eq. *
2Q

( 7.12) by simply increasing . From force equilibrium, the increase in capillary 

force (first and second terms on RHS of first equation in ( 7.2)) would be carried 

not only by increased  but also by an increase in reaction shear Q . How the *
2Q *

R
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capillary force is divided between  and  cannot be determined from force 

equilibrium alone, rather it requires a compatible deflection which satisfies all 

essential boundary conditions. Hence  and  depend on how the load is 

distributed along the DCB and more of the capillary force will be carried by the 

support closer to where the load is applied. Since decreasing β increases the 

Laplace pressure which would tend to increase the capillary force but hardly 

change how it is distributed along the beam, the ratio /  will need to remain 

nearly constant in order to satisfy essential boundary conditions at both the base 

and the crack tip.  This can be seen in the G = /Q  contours shown in 
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Figure 

 7.6 where the contours are nearly vertical indicating the ratio changes little with 

decreases in β. Thus if the surface tension force is neglected the contact force can 

be expressed as  where **
2 pHFQ = += GGH  is a constant which depends on 

how the load is distributed. Substituting this relation into Eq. ( 7.12) and using 

( ) 2/*
1

*
2

** xxFM pp +=  gives 

⎟⎟
⎠

⎞*
2Hx⎜⎜

⎝

⎛
≈ *Fp −

+ *
1

2
x*

2xC

*
1x

.  ( 7.13) 

Decreasing β will increase the Laplace pressure and hence the Laplace pressure 

force  while from *
pF

*
pF

*
2x

Figure  7.6 G, and therefore H, remains nearly constant. 

Since C and H are fixed when changing β, Eq. ( 7.13) cannot be satisfied for 

different  without changing adhered length. Instead, to satisfy Eq. ( 7.12) when 

the Laplace pressure increases the expected increase in  is counteracted by a 

decrease in  (and ). Increasing the adhered DCB length or decreasing  

*
PM

*
2x
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reduces the moment arm thus decreasing . The behaviour explains why  

decreases as β is decreased in 

*
PM *

PM

Figure  7.5. Also as a result,  shown in *
2Q Figure 

 7.7, shows only a slight increase with decreasing β rather than a drastic increase in 

order to compensate for increases Laplace pressure.   

 

 
Figure  7.5: Contours for the pressure moment ( ) contours.  The contours are plotted with 
varying β and V*. The other three governing parameters are fixed at θc = 45º Λ = 0.02, and 
ΛSL = 0.  

*
PM

 

 
Figure  7.6: Contours for the ratio G of normalized shear reaction at adhered end to base 
( )**

2 / RQQ . The contours are plotted with varying β and V*. The other three governing 
parameters are fixed at θc = 45º Λ = 0.02, and ΛSL = 0.   
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It can also be observed in Figure  7.5 that when V* decreases  

increases. To understand why  still increases when V* is decreased we need to 

look at contours of  shown in 

*
PM

*
2x

*
PM

*
2s

*
RQ

*
2x

*
2Q Figure  7.7. Here  increases with decreasing 

V*. Decreasing V* causes the base meniscus to move closer to the crack tip 

simultaneously decreasing |α| and increasing the moment arm, both of which tend 

to increase . From 

*
2Q

*
2

x

*
PM

*
2x

Figure  7.7, the increase in Q  with decreasing V* is more 

pronounced. This can be explained by Eq. ( 7.12) since accompanying the increase 

in  there is a decrease in  and hence . Furthermore, for smaller drops the 

distribution of Laplace pressure and the surface tension force will be relatively 

closer to the crack tip as a result a greater fraction of the total capillary force will 

be balanced by  rather than . As a result Q  does not sharply increase with 

the increased capillary force and drastic reduction in  is not needed to satisfy 

Eq. 

*
PM *

2x

*
2Q *

R

*
2

( 7.12) for a given increase in Laplace pressure. To quantify the last statement 

consider the contours of normalized Laplace pressure ( ) shown in )/( *
1

*
2

* xxFP −

Figure  7.8. Consider V* = 0.075 when β is decreased from 0.0175 to 0.0125, the 

normalized Laplace pressure increases from 1.7 to 2.1, a 24% increase, while  

decreases from 0.985 to 0.845 a 14% reduction. While for β = 0.0135 as V* is 

decreased from 0.3 to 0.05 the normalized Laplace pressure increases from 1.1 to 

2.6, a 136% increase, while  decreases from 0.97 to 0.84, a 13% reduction.  

Clearly a much larger increase in Laplace pressure is required to cause a given 

change in  if the increase in Laplace pressure is caused by decreasing V* rather 

than by decreasing β.  
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Figure  7.7: Contours for the normalized shear reaction at adhered end of DCB ( )*

2Q . The 
contours are plotted with varying β and V*. The other three governing parameters are fixed 
at θc = 45º Λ = 0.02, and ΛSL = 0.   
 
 

 
Figure  7.8: Contours for the normalized Laplace pressure ( ))/( *

1
*
2

* xxFP − . The contours are 
plotted with varying β and V*. The other three governing parameters are fixed at θc = 45º Λ 
= 0.02, and ΛSL = 0.   

 
To summarize the results of this section, while free end deflection or  

was the focal point of discussion for the uncollapsed case, the point of contact or 

 is the focus of the adhesion discussion. Increasing β decreases the adhered 

*
2w

*
2s
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DCB length eventually leading to detachment ( ). Decreasing V* increases 

the Laplace pressure which causes more beam deformation, resulting in a larger 

adhered length. Unlike in the unadhered configuration; where a strong correlation 

between  and  is found,  in the adhered configuration is a constant 

once ΛSL, Λ and θc are specified. Changes that would tend to increase  such as 

decreasing V* or decreasing β must be balanced by an increase in contact shear 

 and/or an increase in adhered length. The increased capillary force cannot be 

balanced by increases in  alone since a compatible beam deformation would 

require the reaction shear  to increase as well; changing  influences the 

moment distribution which generates the deflected curve which must satisfy 

essential boundary conditions at the crack tip. As a result when Laplace pressure 

increases there must be a decrease in  to satisfy compatibility and equilibrium.   

1*
2 >s

*
RM *

2w *
RM

*
PM

*
2Q

*
2Q

Q*
R

*
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*
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7.3 Effect of ΛSL  
Results previously presented are for ΛSL = 0, this parameter (ΛSL) quantifies 

the adhesion strength of the solid-solid interface relative to the liquid-solid 

interface, and it is desirable to know how it impacts the adhered length. Ideally, 

we would have ΛSL as one of the variables for a contour plot. However, for each 

ΛSL there is only a narrow range of parameters (V*, Λ, β, θc) that will give rise to 

convergent equilibrium solutions. For a given range of the other four parameters 

increase ΛSL too much and the meniscus will be pushed to the base; decrease ΛSL 

too much and the adhered configuration does not exist. For this reason contour 

plots at different values of ΛSL, using β and V* as variables, will be compared.  
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It is expected that ΛSL will impact the  contours but what other quantities 

will be of interest? ΛSL only factors into the boundary conditions and not the 

governing equations; therefore, if comparing at constant values of  we would 

not expect to see any differences in solution parameters previously discussed such 

as  and α.  On the other hand from Eq. 

*
2s

*
2s

*
1s

*
R

( 7.11) increasing ΛSL also increases 

.  Also note that in Eq. M ( 7.2), *
2

*
2 x** 2 QM SLSTR −Λ−+= *M PM ,  and 

 are caused by the liquid and if 

*
PM

*
STM SLΛ  is increased they will only experience 

changes due to differences in deflection. Which implies that increasing  

would tend to decrease  which contradicts Eq. 

SLΛ

*
RM ( 7.11). The most logical 

explanation is that an increase in SLΛ  should be accompanied by a decrease in 

. This may be expected since without adhesion  must be a contact pressure 

(positive ); however with adhesion then  could pull the beams together 

(negative ).  Return to the plot for *
2Q  for the case previously discussed (

*
2Q *

2Q

*
2Q

*
2Q

*
2Q

Figure 

 7.7) in which SLΛ = 0, as expected *
2Q  is positive indicating a contact pressure 

between the DCB beams.  

Now consider what happens when ΛSL is increased to 0.01, the resulting  

contour plot is shown 

*
2Q

Figure  7.9. As hypothesized the increase in ΛSL results in a 

decrease in . In fact in most regions of this plot, is negative, corresponding 

to adhesive force between the two beams. Furthermore, the slope of the negative 

 contours in 

*
2Q *

2Q

*
2Q Figure  7.9 is opposite to those in Figure  7.7. Specifically, the 

magnitude of the adhesive force ( *
2Q ) increases with decreasing β and increasing 
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V* (same as adhered length). We again use Eq. ( 7.12) to explain the coupled 

response of  and  to changes in β and V*. As described before the decrease 

in  caused by increasing V* is primarily balanced by a decrease in , seen in 

both 

*
2Q *

2s

*
PM

*
P

*
2Q

*
P

*
2Q

*
P

*
2Q

Figure  7.7 and Figure  7.9. On the other hand, the increase in  that would 

be caused by a decrease in β cannot be balanced by an increase in  since it 

would lead to  causing the deflected curve to not satisfy crack tip essential 

boundary conditions. Thus a greater DCB length is pulled into adhesion to reduce 

 and satisfy equilibrium. The net result is actually a slight reduction in  

and  is adjusted by Eq. 

M

*
RQ

M

M

*
PM

( 7.12) so that the product  balances the change in 

. This behaviour tends to give higher 

*
2

*
2 xQ

*
2Q  when the length of DCB in contact 

 is larger. In *
2s−1 Figure  7.7 0  and  increases as β decreases while in *

2 >Q *
2Q

Figure  7.9 0  and  decreases as β decreases; in each case changes in  

are slight so the product  must remain nearly constant. Note that in 

*
2 <Q

0=

*
2Q

Q

*
PM

*
2

*
2 x Figure 

 7.9 the  contour appears jagged because the shooting method has difficulty 

converging to the desired residual when the sign of Q  is changing.  

*
2Q

*
2

Comparing the  contours in *
2s

*
2s

Figure  7.9 to those in Figure  7.7 also provides 

valuable information. Firstly the range of β in Figure  7.9 is much larger indicating 

that by adding adhesion the DCB can be adhered for shorter beams relative to the 

gap. Secondly, the  contours in Figure  7.9 are flatter indicating less dependence 

on the drop volume V*. In this case some of the moment required to hold the 

beam in this configuration is supplied by adhesion so the DCB is less sensitive to 
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the forces supplied by the drop. In fact, in some situations the adhesive force and 

moment may be sufficient to cause s-shaped adhesion without the presence of 

liquid on the beam’s free span (crack); this is the case for the adhesion energy 

measurement experiments  [18],  [19].  

If  is again increased this time to Λcosθc = 0.01414 (which is to 

approximate capillary adhesion to be discussed in section 

SLΛ

 7.5) the  contours are 

shown in 

*
2Q

Figure  7.10. Further increasing SLΛ  continues to create the same 

patterns:  decreases, the maximum β for which the configuration can exist 

increases, and the  contours become flatter.   

*
2Q

*
2s

 
Figure  7.9: Contours for the normalized shear reaction at adhered end of DCB ( )*

2Q . The 
contours are plotted with varying β and V*. The other three governing parameters are fixed 
at θc = 45º Λ = 0.02, and ΛSL = 0.01.   
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Figure  7.10: Contours for the normalized shear reaction at adhered end of DCB ( )*

2Q . The 
contours are plotted with varying β and V*. The other three governing parameters are fixed 
at θc = 45º Λ = 0.02, and ΛSL  = Λcosθc = 0.01414.  
 

The bending moment distribution along the DCB is shown in Figure  7.11. 

Here the thick red dashed line corresponds to SLΛ  = 0 and the thick solid black 

line corresponds to  = 0.01. SLΛ Figure  7.11 can be used to highlight several of the 

points made in this section. First the M* intercept is equal to  given by Eq. *
RM

( 7.11) which is higher for the SLΛ  = 0.01 case. Second, as previously described 

increasing  decreases , as a result to maintain force balance the reaction 

 must increase; This is represented by the 

SLΛ *
2Q

*
RQ SLΛ  = 0.01 curve having a more 

negative slope at s* =0.  Finally the SLΛ  = 0.01 curve does not end at M* = 0 

because there is a moment applied at the crack tip due to adhesion. In the adhered 

case M* may not monotonically decrease from  to zero as it did in the 

uncollapsed case; as a result  does not have the same impact on the beam 

deflection as it did in the uncollapsed case.   

*
RM

*
RM
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Figure  7.11: Comparing bending moment diagrams for ΛSL  = 0.01 β = 0.02, and for ΛSL  = 0, 
β = 0.01.  With governing parameters V* = 0.2, θc = 30º, and Λ  = 0.01.   
 

7.4 Discrepancy between the Linear and Nonlinear Models 
As in the uncollapsed case we would like to know the discrepancy between 

the results given by the linear and nonlinear theories to judge if the linear theory 

provides sufficient accuracy. In this case define the discrepancy between the 

models as follows 

( )( ) ( )linearnonlinear xsxyDiscrepanc *
2

*
2

* −= . ( 7.14) 

The discrepancy compares the x-coordinate of the crack tip predicted from both 

models. A contour plot for this variable is shown in Figure  7.12. This plot 

corresponds to SLΛ  = 0.01414 previously discussed, and it had a relatively large 

range of β for which adhered configuration exists. Therefore, this case is expected 

to have a relatively large discrepancy. In Figure  7.12 the largest error magnitude 

is 7 x 10-4 which is negligible considering that it is of the same order as the 

residuals used to determine convergence. Again for the range of β relevant to 

collapse and adhesion the linear model provides sufficient accuracy.   
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Figure  7.12: Contours for the discrepancy between linear and nonlinear beam theories. The 
contours are plotted with varying β and V*. The other three governing parameters are fixed 
at θc = 45º Λ = 0.02, and ΛSL  = Λcosθc = 0.01414.   
 

7.5 Comparison with Previous Works 
Several previous works studied the adhesion of beams or hairs dipped in 

liquid  [1],  [24],  [25]. The typical procedure was to submerge the free end of the 

beams in liquid causing the beams to clump together and measure the “dry” beam 

length. These works were each accompanied by an energy analysis comparing 

strain energy to adhesion energy. The result transformed to our normalized 

parameters6  

c

dry

L
L

θ
β
cos2

9 24

Λ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
. ( 7.15) 

In these works adhesion was modeled as capillary pressure caused by a thin film 

of interstitial liquid between the hairs; cohesion between the two solid beams in 

contact is ignored. The thickness of the film is on the order of the surface 

roughness of the beams. In addition, these works used dryLL −  as the length to 

                                                 
6 In  [1], [24] cosθc does not appear making the equations in these works only valid for perfectly 
wetting liquids 
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determine the adhesion energy and  as the length to determine the strain 

energy. That is, the transition zone from the dry part of the beams to adhered part 

of the beams was completely neglected. This may be appropriate if the transition 

zone is significantly smaller than the dry area and the adhered area. However, it is 

clear from the photographs shown in 

dryL

 [1],  [24] that there is a noticeable transition 

zone, occupying about 10% of the beam’s length, between the end of the dry area 

(  in this work) and the beginning of the adhered area (  in this work). It 

appears that experimentally 7

*
1s *

2s

*
1s

s

 was the quantity being measured for , which 

was used to calculate the adhesion energy, but the strain energy of the beam is 

obtained based on . In other words, to calculate the beams’ deflection, 

there is assumed to be no liquid in the transition zone, while to calculate the 

adhesion energy, the beams are assumed to be in contact in the transition zone. 

This is an apparent contradiction. Furthermore, from the results presented 

previously, the meniscus geometry in the transition zone can play an important 

role in determining the capillary forces on the beam and hence the adhered length, 

and should be considered carefully.  

dryL

*
2dryL =

LSince  given by Eq. /dryL ( 7.15) is neither  nor , we compare both  

and  predicted from our work to Eq. 

*
1s *

2s *
1s

*
2s ( 7.15) and the experimental results from 

Liu et al.  [25]. When determining what to use for the adhesion energy some care 

is needed because the other works used a different energy reference state without 

liquid between the hairs. As a result they obtained the following adhesion energy 

                                                 
7 There is some ambiguity as to whether the meniscus peak or point of contact with the beam was 
measured 
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( )( )*
21 sSLS −Λ−Λ . Physically this is the energy required to separate the solid-

liquid interface and then remove the area of liquid (cohesively join it with other 

liquid) that was created by separating the interface ( )*
21 s−  (See Dupree Equation 

Eq. ( 2.23)). Using Young’s Equation (Eq. ( 2.3)) this can be simplified to 

( )*
21cos sc −Λ θ

310083.2 mmI −×=

*
1s

. Therefore, to compare with Eq. ( 7.15), in the result of the “J-

integral”, Eq. ( 3.37), we should replace ΛSL with Λcosθc. Following the data from 

Liu et al.  [25] we set θc = 0º, E = 4.512 GPa, γSL = 20.6mN/m, D = 25mm, 

 and vary h from 2mm to 7mm. The total length of the hairs 

was not listed, however as long as the beams are adhered it is not a factor. So L = 

70mm, which is sufficient for the adhered configuration to form, was chosen.  

Furthermore, a small drop size V* = 0.02 was chosen to try to mirror the 

experiments. The comparison is shown in 

4

*
2s

Figure  7.13. The black circles represent 

the experimental measurement of Ldry from Liu et al.  [25] and the solid green 

curve represents Eq. ( 7.15); both have been normalized to be consistent with the 

results given by our model. The black dashed line represents  and the red dot-

dash line represents , both predicted by our model. Clearly Eq. 

*
2s

*
1s ( 7.15) is 

between  and  from our model which would be expected and provides 

verification for our model. As previously mentioned, the derivation of Eq. ( 7.15) 

involves an apparent contradiction. In addition, in its derivation, the limit of V* = 

0 has been taken whereas the photographs in [1]  

                                                

, [24] 8  clearly show non-

negligible V*, and are similar to the configuration from our simulation shown in 

 
8 Note that it is valid to compare the experimental data from Liu et al.  [25], with the photographs 
from Roman et al.  [1], Bico et al.  [24] since it was a duplication of this experiment. 
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Figure  7.14. Therefore it may have been reasonable to expect that Eq. ( 7.15) 

would not provide a good fit to the experimental data.  Nevertheless, with the 

exception of one point9 Eq. ( 7.15) fits the measured data well, which remains to 

be puzzle.   

 
Figure  7.13: Comparison of s1* and  s2* with results from Lui et al.  [25]. β  varied the other 
four governing parameters are fixed at θc = 0º, Λ = 0.2685, ΛSL = 0.2685, V* = 0.02.   
 

 
Figure  7.14: Elastic curve and meniscus location of s-shaped adhered hair for V* = 0.02. The 
other four governing parameters are fixed at θc = 0º, Λ = 0.2685, ΛSL = 0.2685, β = 0.06.   
 

                                                 
9 While it was not mentioned in  [25] this discrepancy could have been caused by increased 
capillary rise due to the decreased hair spacing in this case.   
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7.6 Summary 
Generating the s-shaped adhered configuration takes considerably more 

energy than initiating the collapse of the DCB. As a result its existence requires a 

combination of higher Λ and lower β. Decreases in β increase the adhered length 

of the DCB; the same can be said for decreases in V*. Increasing ΛSL has several 

effects. First it allows the configuration to exist at higher vales of β. Second it 

dampens the dependency of the adhered length on V*. Third, it alters the nature of 

the contact force from being a contact pressure at low ΛSL to eventually becoming 

adhesive at larger ΛSL. Similarly to the uncollapsed configuration it is deemed 

acceptable to neglect geometrical nonlinearity in the beam model.  
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Chapter 8 Conclusions and Future Work 
In this work, the collapse and adhesion of a double cantilever beam (DCB) 

with a free end liquid droplet are studied. Justification for only considering a free 

end droplet is based on pressure gradients within the drop driving it to the free 

end. Both Laplace pressure and surface tension forces are considered as beam 

loadings generated by the presence of liquid. The Laplace pressure is found to be 

extremely dependent on the beam’s deflection, which often results in smaller 

drops collapsing the DCB more easily. The surface tension force, which has been 

previously neglected in the literature, is found to be important unless both the 

contact angle and the ratio of beam gap to length are small. Allowing the base 

meniscus to move towards the base as the DCB deflects to maintain a constant 

liquid volume introduces an important nonlinear coupling effect. It changes the 

area on which the Laplace pressure acts and the moment created by one of the 

surface tension forces. There are a number of other coupled nonlinear effects due 

to the interrelationship between the constraint and beam equations, however 

variation of Laplace pressure and base meniscus movement due to deflection are 

found to be the most important. Four dimensionless parameters governing DCB 

collapse are identified Λ, β, θc, and V*, which are the ratio of surface tension to 

beam bending stiffness, ratio of beam length to half of the gap spacing, contact 

angle, and normalized liquid drop volume. How each parameter influences DCB 

collapse has been accurately described by the nondimensional number N. Collapse 

is predicted when N given by 
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is less than 1. Finally, comparison of the linear beam model with one accounting 

for nonlinear geometrical effects shows that within the practical range of 

governing parameters the linear model provided sufficient accuracy.  

DCB adhesion in an s-shaped configuration takes considerably more energy 

than merely DCB collapse. As a result this configuration is more likely to exist at 

small values of β where the discrepancy between the linear and nonlinear models 

is negligible. Within this configuration decreases in β increase the length of the 

DCB in contact; the same can be said for decreases in V*. In previous works the 

former behaviour had been widely studied experimentally whereas the latter 

behaviour has been experimentally observed but not analyzed. Decreasing V* also 

increases the crack tip contact force which lessens the increase in adhered length 

decreasing V* would otherwise cause. For this case the governing equations are 

similar to those in the uncollapsed case; however an importance difference is the 

adhesion natural boundary conditions which influence the beam’s internal 

moment by influencing the reaction shear and moment required for equilibrium. 

These boundary conditions introduce an additional governing parameter ΛSL 

representing the ratio of the energy to separate the adhered beams (and introduce 

the liquid to the interface) to the beam’s bending rigidity. Increasing ΛSL has 

several effects most importantly it allows the configuration to exist at higher 

values of β; furthermore, increasing ΛSL also causes the crack tip contact force to 

eventually become adhesive.  
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Future work could include, modelling the transition from collapse to s-

shaped adhesion, and extending the analysis to the situation where the liquid drop 

has 3-D geometry. Because of the limited symmetry (if any) and the presence of 

edge effects considering 3-D drop geometry present a considerable increase in the 

difficulty of the problem. As an example,  Appendix F illustrates a rigorous 

treatment for the case of an axisymmetric drop sandwiched between 

undeformable solids.  Experimental work could also be done to verify the collapse 

relation as well as use the adhesion model to measure adhesion energies.   
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Appendix A  Details of Modified Newton-Raphson Method 
 
Write the n constraint equations in the following form 

njixxfxf niji KK 1,,0),()( 1 ===  
Where each fi represent a constraint equation and each xj represents an unknown 

variable to be determined.  For the linear uncollapsed case fi  would consist of 

Eqs. ( 3.24), ( 3.25), ( 3.26), ( 3.28), and ( 3.29); xj would corresponds to α, , *
1x 2θ , 

, and .  The associated Jacobian is given by  *
1l

*
2l

j

i
ij x

fJ
∂
∂

= . 

To solve guess values for each xj then calculate the change in each xj as  
( ) iijj fJx 1−−=Δ , 

where Jij and fi are evaluated at the guess value xj.  The new guess is then  
( ) jjnewj xxx Δ+= ω , 

where ω  is a relaxation factor used to decrease fluctuation although it slows 

convergence. Next each ( )
newjx  would be checked for physicality; if the obtained 

value is outside of physical bounds it would be recalculated. Each constraint 

equation was assigned to one xj, rearranging the equation gives 

( ) ( ) ( )( )njnewjnewjnewj xxxxgx KK +++= −11  

where gi represents a constraint equation rearranged to have the jth unknown 

variable xj on the left side (Note: this variable may also appear on the right side). 

Convergence was measured using L2 norms of f as well as the absolute and 

relative changes in xj from iteration to iteration. The solution was considered 

converged when the L2 of f was less than  and the L2 norm of either the 

absolute or relative xj  residuals was less than . 

4105 −×

105 −× 4
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Appendix B  Details of Runge-Kutta Shooting Method  
From the beam governing Eqs. ( 4.7), ( 4.8) and ( 4.9) dropping the * from all 

variables for simplicity, to solve these equations using 4th order Runge-Kutta  [42] 

we can write the following  

),,,( wxsf
ds
d φφ

φ=  Mwxsf =),,,( φφ  0)0( =φ  

),,,( wxsf
ds
dx

x φ=  φφ cos),,,( =wxsf x  0)0( =x  

),,,( wxsf
ds
dw

w φ=  
β
φφ sin),,,( =wxsf w  0)0( =w . 

( B.1) 

where . The first values of x, w, φ are 

obtained from the s = 0 boundary conditions and the subsequent values are 

obtained using the following relationship 

)()(/ sMsMxQMdsdM PSTRR ++−== φ

( ) iii hKKKK 4,3,2,1,1 22
6
1

φφφφφφ ++++=+  

( ) ixxxxii hKKKKxx 4,3,2,1,1 22
6
1

++++=+  

( ) iwwwwii hKKKKww 4,3,2,1,1 22
6
1

++++=+ . 

( B.2) 

where  is the ith step width and the remaining quantities are determined as 
follows 

ih

),,,(1, iiii wxsfK φφφ =  
),,,(1, iiiix wxsfK φφ=  
),,,(1, iiiizw wxsfK φ=  

 

)
2
1,

2
1,

2
1,

2
1( 1,1,1,2, iwiixiiiii hKwhKxhKhsfK ++++= φφφ φ  

)
2
1,

2
1,

2
1,

2
1( 1,1,1,2, iwiixiiiiixx hKwhKxhKhsfK ++++= φφ  

)
2
1,

2
1,

2
1,

2
1( 1,1,1,2, iwiixiiiiizw hKwhKxhKhsfK ++++= φφ  

 

)
2
1,

2
1,

2
1,

2
1( 2,2,2,3, iwiixiiiii hKwhKxhKhsfK ++++= φφφ φ  

)
2
1,

2
1,

2
1,

2
1( 2,2,2,3, iwiixiiiiixx hKwhKxhKhsfK ++++= φφ  

( B.3) 
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)
2
1,

2
1,

2
1,

2
1( 2,2,2,3, iwiixiiiiizw hKwhKxhKhsfK ++++= φφ  

 

),,,( 3,3,3,4, iwiixiiiii hKwhKxhKhsfK ++++= φφφ φ  
),,,( 3,3,3,4, iwiixiiiiixx hKwhKxhKhsfK ++++= φφ  
),,,( 3,3,3,4, iwiixiiiiizw hKwhKxhKhsfK ++++= φφ  

 For this problem MR and QR are not known beforehand so it is necessary to 

om the

olution depends on the step spacing and 

use a shooting method where MR and QR are guessed then the solution is 

compared with boundary conditions at the end.  Note that even in the adhered case 

where we have an expression for MR, the derivation of the expression used end 

boundary conditions which we must force the Runge-Kutta solution to obey.  

Residuals measuring how well the Runge-Kutta solution satisfies the end 

conditions are calculated; if the L2 norm of these residuals is less than 4101 −×  

then the solution is considered converged. Note that since the values fr  

Runge-Kutta solution are used in the Newton-Raphson iteration it is necessary to 

use stricter convergence criteria for Runge-Kutta. If the convergence criteria are 

not met new estimates for MR and QR are obtained using secant interpolation and a 

new Runge-Kutta solution is obtained.   

 The quality of the Runge-Kutta s

hence the number of steps. A convergence study was conducted to determine what 

spacing was necessary to obtain the desired solution accuracy. Two variables 

were studied, the free end deflection and the strain energy, the latter requiring 

numerical integration of the Runge-Kutta solution. The free end deflection shown 

in Figure  B.1 converges within 5101 −×  if 4 or more steps are used, however the 

strain energy, Figure  B.2, requires 12 steps to converge to the third significant 

figure (strain energy is not used for subsequent calculations so it is not needed to a 
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high degree of accuracy). Because the method is 4th order it converges quickly as 

the point spacing is decreased. In the analysis the minimum number of steps used 

was 16. Note that there are some complications because we will force a point to 

be at the base meniscus and will adjust the divisions to give roughly uniform 

mesh on both sides. Generally similar mesh spacing would be used on each side 

of the meniscus; however, a minimum number of steps are enforced on both sides 

(4) for cases when the meniscus is close to either end.  

 
Figure  B.1: Free end deflection convergence 
 

 
Figure  B.2: Strain energy convergence 
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Appendix C  Analytical Result for Nonlinear Beam Theory 
 

The nonlinear beam governing equations can be manipulated with the 

objective of determining a simplified formula for  at collapse where 

. First differentiate Eq. ( 4.7) and apply Eq.  and trigonometric 

identities to give 

*
RM

( 4.8)1)( *
2

* =sw

{
*

*

*

*

cos

*

*
*

2*

2

ds
dM

ds
dM

ds
dxQ

ds
d PST

R ++−=

φ

φ  

( ) 0*
1

***
1*

*dM )()(sin ssss
ds c

ST −−+Λ= φθφ

( )φβφ
αβ

sin)()(cos)()( *
1

****
1

***
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swswsxsx
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dM P −+−
Λ−

= . 

( C.1) 

Now integrating Eq. ( C.1) with respect to φ over the length of the beam gives 

443442144 344 21444 3444 21
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++−= , ( C.2) 

where each integral will be evaluated separately.  The left side of Eq. ( C.2) can be 

integrated by changing the variable of integration as follows 
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2
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0 *2*

2)(
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φ
, ( C.3) 

where  is the moment at . The integral I1 is easily integrated giving 

( C.4) 

Similarly I2 can easily be integrated however recall that due to the definition of 

the Macaulay Function Eq. ( 2.50) the integration from 0 to  is zero, thus 
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2M *

2s
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*)(
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The final integral I3, 

( ) ( )[ ] φφβφ
αβ

φ
φ

φ

φ

φ
dswswsxsxd

ds
dM s
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****
1

***)(

0)0( *
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2 sin)()(cos)()( , ( C.6) 

is more difficult and integration by parts must be used as follows  
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( C.7)

Thus substituting Eq. ( C.7) into Eq. ( C.6) and applying Eq. ( 4.17) yields 
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Finally substituting all the evaluated integrals Eq. ( C.3), Eq. ( C.4), Eq. ( C.5), and 

Eq. ( C.8) back into Eq. ( C.2) gives  
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2 d
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( C.9)

this can be simplified by applying trigonometric identities as follows  
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Appendix D MDISP Nonlinear Deflection Coupling (θc = 0) 
Contours of MDISP are shown in Figure  D.1. Note that changes in MD

deflection may also in and this influence  most pronounced at 

anges to 

MDISP with deflection, whereas for small V* there are sharp changes 

deflection at first, however these c s become more gradual near collapse. 

This behaviour is shown for V* = 0.1 in Figure  D.2. Also shown as comparison is 

the change of with deflection. Her  the initial drop in MDISP with deflection 

with def ection.  However, once the MDISP c

 the trends 

observed in 5.36 all * regime. Specifically, for V*< 0.15, the 

ontours a ly vertica mall variation of with increasing deflection) at 

mall def ds horizont apid reduction of  with 

increasing deflection) near collapse.  

ISP 

due to fluence is *
1x  

hange

e

l

V

low contact angles and deflections.  For large V* there are only small ch

with 

*
1x  

slows down the decrease of 

Figure  

near

ection bu

*
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 in the sm

l (s

t bend towar

urve 

levels off 1x  decreases sharply. This behaviour explains some of*

re 

l

*
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al (r

c

 *
1x

 

s

Figure  D.1: Contours of normalized volume of liquid displaced by menisci (MDISP). The 
contours are plotted with varying Λ and V*. The other two governing parameters are fixed 
at θc=0º and β=0.1. 
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Figure  D.2: Influence of MDISP on x1*. V*= 0.1 with θc = 0º, β = 0.1 
 

Knowing that MDISP c le on the position of the base meniscus it 

*

*

an play a ro

is desirable to understand the relative importance of the factors that influence its 

value. As shown in Eq. ( 5.5), for a given β, MDISP depends on the meniscus 

curvature (α) and the two terms in the summation, referred to earlier as the 

meniscus displacement factor (MDF) and shown in Figure  5.4. MDF = π/2 at  = 

0 which corresponds to semicircular meniscus and decreases as  increases 

MDF = 0 at = 1 which corresponds to a cap height of zero.  Each me

ute to the determination of .   

The MDF for the base meniscus is a function of  which has been 

discussed in section  5.2.1.2. In particular, from Eq. ( 5.8)  depends on the 

contact angle and the deflected angle φ1 at the base me lope of 

the sine function is maximized when its argument is 0, in th all contact angle 

regime, the same change in φ1 will cause a larger change in than it would in the 

il

until 

niscus has 

il

*
il  

a MDF and both contrib  *
1x

*
1l

 *
1l

e sm

*  

niscus. Because the s

 l1

moderate contact angle regime.  Contours of * for the low contact angle case are 1l  
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shown in Figure  D.3. These contours display the same trends as the moderate 

contact angle contours (Figure  5.17) however as expected the change in the values 

of the contours with deflection are greater in the low contact angle case. This is 

clearer from the numerical example for V* = 0.1 shown in Table 8. In both cases 

( °= 45cθ  and °= 0cθ ), with increasing deflection, increases, which will cause 

Figure  5.4. This in turn tends to increase . 

er increase in with deflec or smaller 

*
1l  

tion f

a decrease in MDF, as shown in 

, the larg

*
1x

From Table 8 *
1l  cθ  i

 Neverthe

s expect

ore pronounced increases in  with lection. le  

ed 

ss the

*

to cause m

*

*
1

overall 1x  value is still smaller for smaller θc since at the same deflection 1l  is 

less in the low θc case which results in larger MDF and MDISP.  

x  def

 

β
Figure  D.3: Contours of base meniscus geometry factor *

1l ). The contours are plotted with 

 

Table 8: Change in *
1l  for V* = 0.1 as deflection increases from 6.0*

2 =w  to collapse 

 °

 
 V her two governi para at θc=0º and =0.1. 

(
varying Λ and *. The ot ng meters are fixed 

= 45cθ  °= 0cθ  
6.0* =w  765.0* ≈l  08.0* ≈l  2 1 1

1*
2 =w  79.0*

1 ≈l  12.0*
1l  ≈

Change 025.0*
1 ≈Δl  04.0*

1 ≈Δl  
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*
2l  and hence the MDF of the free end meniscus are extremely dependent on 

the deflection, which can be shown by considering the geometric relationships for 

each meniscus Eq. ( 5.6) and Eq. ( 5.7), rewritten as follows  

( ) ( )1

*

22

*

cos
1

cos
1

φθφθ +
−

−
−

c

ww ( D.1) 12α == . 

 This equation determines 2θ , the angle at the free end, needed to maintain 

equilibrium. At collaps e  while , this relationship requires 

that cos(θ2- 2) = 0, an

e, becaus

d therefore,

 12 =w

 

* *

φ

11 ≠w

( ) =−= φθ

MDF at the free end is zero; this is clearly tent with the physical situation.  

Furtherm re, before deformation 

12

is

sin 2

cons

*
2l , which implies that the 

o ( )ll θsin** ==  so in the θc = 0º case *l  varies 

from 0 before deformation to 1 at collapse; this may potentiall

c

collapse, repres

.  As a result the change in

.  This behaviour is due to

allest

21

niscus position. A contour plot of 

ly near 

s

( 5.8)

2

Figure  

t

y create a larger 

change in the base me  is shown in D.4. 

As expected   However, the rate 

of increase slows down considerab ented by the increased 

spacing in the contours for large due to this effect 

occurs primarily at low def act tha  the sine 

function that determines  slope then when its value 

approaches 1.  

*
2l

creasing deflection.

) has its sm

 the contours increase with in

lection

 (Eq. 

Λ  *
1x  

 the f

*
2l
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Figure  D.4: Contours of free end meniscu * ). Contours are plotted with 
varying Λ and V*. The other governing parameter θ =0º and β=0.1.  
 

Contour plots for the sum of the two meniscus displacement factors (SMDF) 

are shown in 

s geometry factor (
 s are fixed at c

e eflections. This is riving force for the MDISP contours at 

small V* (Figure  D.1), bending to become vertical as deflection increases. At 

higher V* and deflections the SMDF contours begin to show an increasing trend 

as deflection is increased which would tend to push the meniscus closer to the 

base.  

2l

Figure  D.5. This plot takes on the behaviour of *
2l  at low deflection, 

and that of *
1l  at high deflection once *

2l  has stabilized. First let us examine the 

contours in the low V* area. In this region, the drop in SMDF with increasing 

deflection at low deflection causes the drop in MDISP which was shown in Figure 

 D.2. The decrease in MDISP counteracts the decrease in *
1x  caused by beam 

deflection. Once deflection is near collapse the SMDF spacing increases; this 

indicates that the changes in SMDF, which had been driven in large part by the 

sharp increase in *
2l  at the free end meniscus, have stabilized due to the levelling 

off of *
2l  at high r d  a d
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Figure  D.5: Contours of sum of meniscus displacement fac ors (SMDF). Contours are 
plotted with varying Λ and V*. The other governing paramete  are fixed at θc=0º and β=0.1. 
 

The contours of SMDF do not fully explain the trends in M

t
rs

DISP for 

example MDISP (Figure  D.1) has much greater V* dependence than SMDF 

 

 noted that near collapse MDISP no longer changes significantly with 

deflection and changes in are driven primarily by the liquid displaced by the 

((Figure  D.5)); from Eq. ( 5.5) this suggests that the meniscus curvature α also 

plays a role. Contours of α are shown in Figure  D.6. Patterns of these contours are 

similar to the moderate contact angle contours Figure  5.15. A notable difference is 

the overall lower value of |α| for the small θc case, which can be easily explained 

by Eq. ( 5.9). Since from Eq. ( 5.5) MDISP ∝α2, changes in α with deflection may 

overpower the changes in SMDF with deflection. The behaviour of MDISP, 

(Figure  D.1), is influenced by α, Figure  D.6, and SMDF, (Figure  D.5), both of 

which vary with the deflection. By comparing these figures conclusions can be 

drawn about the relative importance of each factor on MDISP. First of all, in the 

low V* regime, at lower deflections where SMDF changes sharply with 

deflection, MDISP is strongly influenced by SMDF. However, near collapse 

SMDF levels off and MDISP is driven primarily by α rather than SMDF. It should 

also be

*
1x  
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beams deflection. Secondly, in the high V* regime, the magnitude of α is closer to 

1 and changes very little with deflection. As a result MDISP is driven primarily 

by SMDF. However, in this region the changes in MDISP with deflection are 

small and do not cause significant changes in .  *
1x

 
Figure  D.6: Contours for the normalized meniscus radius (α). The contours are plotted with 
varying Λ and V*. The other governing parameters are fixed at θc=0º and β=0.1.  
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Appendix E DCB Branching 

s  complex. Instead the analysis 

will be carried out to mirror the analysis of the doubly clamped beam presented 

by Mastrangelo and Hsu  [3]. The analysis makes several simplifications. Surface 

tension forces and the liquid displaced by the meniscus curvature are neglected; 

which was shown in this work to be a reasonable assumption if β << 1. 

Furthermore, we will use an approximate 4th order polynomial test function for the 

deflection, which is needed to account for a uniform pressure in the Bernoulli-

conditions at x = 0 gives the following form 

( E.1) 

Forcing this test function to satisfy the natural boundary conditions at the free 

end, i.e., zero moment (

 

We wish to generate branching diagrams for a DCB, like the ones shown for 

the spring-plate-drop system, to help understand the jump in deflection observed.  

However, doing so with the existing system i too

Euler beam theory. Forcing this test function to satisfy the essential boundary 

432 CxBxAxw ++= . 

) and zero shear ( ( ) 0=′′′ Lw( ) 0=′′ Lw ) gives the 

following form 

⎟
⎠
⎞

⎜
⎝
⎛ +−= 4

2
32

6
1

3
2 x

L
x

L
xAw . ( E.2) 

Neglecting liquid displaced by meniscus curvature the constant volume constraint, 

Eq. ( 5.5) simplifies to  

( ) *
1

***

*
1

)(1
2

dxxw
LDh
VV

x
∫ −== , ( E.3) 

where  and . The undetermined constant A can be obtained 

from Eq. ( E.2) and Eq. ( E.3) 

Lxx /1
*
1 = hww /* =
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( )
)(

1
*
1

**
1

2L
hA =

xP
Vx −− ; ( E.4) 

where )( *
1xP  is given by 

( ) ( ) ( )5*
1

4*
1

3*
1

*
1 1

30
11

6
11

3
1)( xxxxP −+−−−= . ( E.5) 

From Eq. ( E.2) and Eq. ( E.4) the normalized free end deflection can be obtained  

)(2 *
1

**

2 xPhh
w === . 

The normalized deflection can then be written as follows 

1)( 12* VxLww −− ( E.6) 

⎟
⎠
⎞

⎝
⎛ 4*3*2**

2
**

6
1

3
2

⎜ +−= 2)( xxxwxw . ( E.7) 

Using symmetry the strain energy of one of the beams in the DCB is given by  
( )( ) 2*12 wdxwdxU =⎟⎜=′′== . 

The surface energy is given by  

23

22

*
1

**

3

2

00

2

5
8

)(
1

5
2

22 L
EIh

xP
Vx

L
EIhEI

EI
M LL

SE ⎟
⎠

⎞
⎜
⎝

⎛ −−
∫∫

( E.8) 

AAAU SLSLLALASASAS γγγ ++= . ( E.9) 

Neglecting the area of the liquid meniscus (ALA) and using Young’s Equation (Eq. 

( 2.3)) to eliminate γSA gives 

cθLASoS LDxUU γ cos*
1+= , )

s the total energy of the system, UT =USE +US, measured relative 

to the respective reference, can be normalized to 

( E.10

where USo = γSLLD is a constant which we will denote as the reference surface 

energy. Similarly the reference state for strain energy is when the beam is 

undeflected. Thu

( ) *
1

2**
1* 12 xVxNUU C

LA

T
T +⎟⎟

⎞
⎜⎜
⎛ −−

== . ( E.11)

where CN  is a nondime

*
1 )(cos xPLD c ⎠⎝θγ

nsional number given by 

cLA
C DL

EIhN
θγ cos5 4

2

= . )

A necessary condition for equilibrium solutions is as follows 

( E.12
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0*
2

*
1

*
1

*

*
2

*

=
∂
∂

=
dw
dx

x
U

dw
dU TT . ( E.13)

q. ( E. 0  only when  (no liquid) so the following can be 

used in place of Eq. ( E.13) 

From E 6) / *
2

*
1 =dwdx 1*

1 =x

( ) ( ) 1
)*(

/)(1)(
)(

140
1

2

*
1

*
1

**
1

*
1

*
1

**
1

*
1

*

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
==

∂
∂

xP
dxxdPVxxP

xP
VxN

x
U

C
T , )( E.14

where  
4*

1
3*

1
2*

1*
1

*
1

6
1

3
2)( xxx

dx
xdP

−+−= . )( E.15

Applying the quadratic formula gives, after rearrangement  

( )*
1

*
1

*
1

1
*
1

*
1

* )(xP 1*
1

* /)()(11
/)(2

1 dxxdPxPN
dxxdP

xV C
−+±+−= . )

Solutions of Eq. ( E.16) may give a maximum or minimum energy whereas stable 

solutions only occur at energy minima.  Note that i

d on the value of  

. A plot of 

. ( E.17)

( E.16

f 0*
1 =/)()(1 *

1
*
1

1+ − dxxdPxPNC , 

 CN  and the maximum of

 in Figure  E.1. The 

Eq. ( E.16) gives a double root which corresponds to a bifurcation point  [3]. 

Attaining this condition will depen

**** /)()()( dxxdPxPxg −= 1111 1

maximum value of 0.036338 occurs at about 67632.01 =x . It is helpful to define 

the following nondimensional number  

0)/)()(max( *
1

*
1

*
1 ≈−= dxxdPxPNT

)( *xg

*

 is shown

036338.

 
Figure  E.1: Variation of the function g with . Maximum value gives NT.   
 

*
1x
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Thus the elastocapillary number can be obtained as follows 

cLAT DN θγ

behaviour will be elucidated when we 

C
EC L

EIhNN
cos

504.5
4== . ( E.18)

For NEC < 1 the DCB is expected to collapse as V* → 0. The reason for this 

subsequently discuss branching diagrams; 

however, note that for NEC < 1 imaginary (nonphysical) roots appear in Eq. 

e values. This behaviour prevents the transition from high deflection 

roots of Eq. ( E.16) to low deflection roots of Eq. ( E.16) as V* decreases. Note NEC 

 

a cantilever above a substrate. Note that Mastrangelo and Hsu only presented the 

final result for a cantilever unfortunately the intermediate results which we require 

were not presented.  

 It is desirable to place bounds on the solution. If , From Eq. ( E.6), 

2

( E.16) 

 *
1x  for som

in Eq. ( E.18) is roughly double the one presented by Mastrangelo and Hsu  [3] for

01 =x*

*
2

* 21 wV −= , ( E.19)

 local extreme value of energy. If equilibrium is to 

exist at 0*
1 =x  then from Eq. 

5
this may not correspond to a

atisfy  ( E.14), V* must s

CN
V

100
1* −=

1 . ( E.20)

The energy Eq. ( E.11) of the  configuration simplifies to 0*
1 =x

( )2** 150 VNU CTo −= . ( E.21)

Branching and energy diagrams are shown for the DCB in Figure  E.2. In the 

branching diagrams Figure  E.2a),c),e) the dashed line represent the limiting case 

and the other two lines represent the “roots” of Eq. ( E.16). The solid 

line corresponds to subtraction of the square root term, and the dash-dot line 

corresponds to addition of the square root term. We consult the energy curves 

of 0*
1 =x  
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Figure  E.2b),d),f) to see if the portion of the root of interest corresponds to a 

energy maximum or minimum.   

 a) which represents the root with subtraction of the square 

) 

Figure  E.2 

b), follow a path through the local minima. For this NEC there are no local energy 

minima for 0.1 < V* < 0.15, based on the slope of the energy contours these drops 

 

tem fo

minima appears and the system attains equilibrium at this point now following the 

Consider what happens to a DCB initially filled with liquid (V* = 1) as the 

liquid is evaporated. The response of the system will depend on NEC. For NEC < 1 

the DCB is expected to collapse during the evaporation process. As liquid is first 

evaporated *
2w  increases, however because there are no local energy minima the 

system follows the 0* =x  path in 

 

1 Figure  E.2 a) given by Eq. ( E.19) from A to B 

(similarly the energy path is the dashed red line in Figure  E.2 b) given by Eq. 

( E.21)). At point B, the volume V* is given by Eq. ( E.20), and a local energy 

minima appears. The system attains equilibrium at this point and begins to follow 

curve BC in Figure  E.2

root term in Eq. ( E.16); for NEC < 1 two curves appear for this root to Eq. ( E.16

since for some 1x  the roots are imaginary and unphysical. The solution follows 

curve BC until collapse at point C. At the same time the energy curves, 

*

sizes will all lead to collapse. 

For NEC = 1 the DCB is not expected to collapse. Again as liquid is first 

evaporated 2w  increases, however because there are no local energy minima the 

sys llows the 0*
1 =x  path in 

*

Figure  E.2 c) given by Eq. ( E.19) from A to B 

(similarly the energy path is the dashed red line in Figure  E.2 d) given by Eq. 

( E.21)). At point B, the volume V* is given by Eq. ( E.20), and a local energy 
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curve in Figure  E.2 c) given by Eq. ( E.16) with subtraction of the square root term 

in. The solution follows this curve until point F. Note that at point D a second 

local

ma

it

point I) rather than on curve GC.  

For N  > 1 the DCB is again not expected to collapse. Again as liquid is 

first evaporated increases, however because there are no local energy minima 

ath in Figure  E.2 e) given by Eq. ( E.19) from A to 

B (si

stem

the curve in Figure  E.2 e) given by Eq. ( E.16) with subtraction of the square root 

term in. The solution follows this curve until point C and finishes at a state of zero 

deflection.  Note that at point D there is a change in solution behaviour from 

 energy minima appears as represented by curve EC however it is not 

immediately obtainable due to the energy barrier represented by curve EF. At 

point F, the square root in Eq. ( E.16) is zero and the two roots coalesce, and the 

energy mini  that the system had previously been following (BF) changes into a 

maxima (FH). As a result the system experiences a jump decrease in deflection 

from point F to point G. As liquid continues to evaporate the system then follows 

curve GC and finishes at a state of zero deflection. Note that for this NEC there are 

multiple possible equilibrium solutions for some values of V*, for example the 

initial condition could cause the system to reach equilibrium on curve EG rather 

than DF. Furthermore, the in ial condition may also lead the system to reach 

equilibrium on curve FI or even collapse (anything above curve FH and below 

EC

2

the system follows the 01 =x  p

*w  

*

milarly the energy path is the dashed red line in Figure  E.2 f) given by Eq. 

( E.21)). At point B, the volume V* is given by Eq. ( E.20), and a local energy 

minima appears. The sy  attains equilibrium at this point and begins to follow 
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deflection increasing as drop size is decreased to deflection decreasing as drop 

size is decreased. Also note that for very small drop sizes with initial deflections 

near collapse the DCB may remain stable or collapse (bottom right corner of 

Figure  E.2 e)).  

From Figure  E.2 it can bee seen that collapse is not possible for V* > 0.6, 

which is close to the upper limit used in this study of V* = 0.5-0.55.   

 

Figure  E.2: DCB branch and energy diagrams showing equilibrium path of a quasistatic 
EC EC

diagram NEC = 1.1 d)Energy diagram NEC = 0.9 e) Energy diagram NEC = 1 f) Energy 
evaporation process a)Branch diagram N  = 0.9 b) Branch diagram  N  = 1 c) Branch 

diagram NEC = 1.1 
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Appendix F Axisymmetric Meniscus Calculation 

In this Appendix the influence of including both principal radii of 

curvature in the Young-Laplace equation is considered for the case of an 

axisymmetric drop. For simplicity the analysis is carried out for a drop 

sandwiched between two rigid circular plates.  The objective is to compare the 

Laplace pressures given from this more rigorous approach with the result of a 

simplified energy approach presented by Mastrangelo et al.  [3] and evaluate when 

the simplified approach can be used.   

 We will first use the simplifications adopted by Mastrangelo et al.  [3] for 

plate bending but look at the simplified problem of calculating the force an 

axisymmetric liquid drop exerts on two parallel rigid plates. The total surface 

energy of the system is first written as  

( F.1) 

Our system consists of a plate of radius R filled axisymmetrically with liquid of 

radius rlit.  In the work of Mastrangelo et al.  [3] the energy of the liquid-air area 

(ALA) is neglected.  Thus Eq. ( F.1) can be written as 

 

SASASLSLLALAS AAAU γγγ ++= . 

( )222
litSAlitSLS rRrU −+= πγπγ . ( F.2) 

Using Young’s equation Eq. ( 2.3), Eq. ( F.2) can be rewritten as 

( )22)cos( litcLASoS rRUU −+= πθγ . ( F.3) 

Mastrangelo et al.  [3] uses a simplified cylindrical representation for the liquid 

volume (VL) 

226 
 



hrV litL
2π= . ( F.4) 

here h is the spacing between plates.  Rearranging Eq. ( F.4) gives the liquid 

radius 

w

h
r L
lit π
= . 

The liquid force pulling the plates together can be calculated as follows 

V ( F.5) 

SLlaph
r

dh
dU 2)cos( πθγ ( F.6) 

2
lit litLAlap

equation (Eq. 

litcLAS APF Δ−=== . 

where , and . In the context of the Young-Laplace 

re of the meniscus from Eq. 

.6)

=SLA

lit

rπ qP γ=Δ

( 2.4)) litq  is twice the mean curvatu

( F  obtained using the energy approach of Mastrangelo et al.  q  [3] is  

h
q c

lit
θcos

−= . ( F.7) 

This result may seem odd since the drop is axisymmetric but the radius of the 

drop does not factor into the obtained curvature. So Eq. ( F.7) will only be valid if 

 is large enough to generate negligible curvatu . In addition, the curvature litr re

from Eq. ( F.7) is neglected in the volume representation Eq. ( F.4). For 

convenience introduce the following nondimensional parameters 

R
r*r = , 

h
z*z = , 

hR
V*

R
h

=ξ . V L
L 2π
= , qh*

c

q
θcos

= , ( F.8) 

The surface energy (Eq. ( F.3)) normalizes as follows 

( )2** SoS UU
2 1)cos( litc

LA
lit r

R
U −=

− . ( F.9) = θ
πγ

Wetted plate radius( Eq. ( F.5)) normalizes as follows 

**
Llit Vr = . ( F.10) 

Force (Eq. ( F.6)) normalizes as follows 

ξπθγ

2**
*

)cos(
litlit

cLA
lit

rq
R

FF −== . ( F.11) 

Thus curvature Eq. ( F.7) normalizes as follows.   
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1* −=litq . ) 

We will now more rigorously calculate the curvature of an axisymmetric 

drop using equilibrium requirements.  Starting with the Young-Laplace Equation 

(Eq. ( 2.4)) 

( F.12

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+==Δ

21

11
RR

qP LALAlap γγ . ( F.13) 

q is twice an curvature 

absence of gravity fluid equilibrium requires the drop to be isobaric.  Therefore, q 

must be constant and can be determined by evaluating principal radii of curvature 

from meniscus geometry shown in Figure  F   [44] 

where the me of the meniscus. At the length scales of 

MEMS devices the Bond number is small and gravity can be neglected.  In the 

.1

( )
ds
d

r
s

RR
q ββ

+=+= . ( F.14) )(sin11

21

 
Figure  F.1: Schematic of axisymme drop 

 
r the meniscus surface  

tric 

If we adopt the following parametric representation fo

( ))(βcos sdrr ==′ , 
ds

( ))(sin s
ds
dzz β==′ , 

( F.15) 

Eq. ( F.14) can be rewritten as follows 
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r
zq

ds
d ′

==′
β

−β . 

rom Figure  F.1 we have the following boundary conditions 

( F.16) 

F
0)0( =z , orr =)0( , 2/)0( πβ =  

hlz =)( , lrlr =)( , cl θβ =)( . 
( F.17) 

where ro is the drop radius at s = 0, l is the length of the meniscus from s = 0 to 

the plate, and rl is the drop radius at s = l. ro, rl, l, and q are unknown and must be 

determined from the solution.  Furthermore, the solution must enfor

In order to include the energy of the liquid-air surface neglected by Mastrangelo 

et al.  [3] we calculate the meniscus surface area as follows.   

ce the 

following liquid volume condition 

lh

0

2

0

2 ( F.18) dsrdzrVL ∫∫ == )sin(βππ . 

dsrdz
dz
drrA

lh

LA ∫∫ =⎟
⎠
⎞

⎜
⎝
⎛+=

00

2

212 ππ . ( F.19) 

Introduce the normalization Eq. ( F.8) with additional parameters 

h
ss =* ,  

Rh
AA LA

LA π2
* = , ( F.20) 

Eqs. ( F.15) and ( F.16) transform as follows 

( ))(cos*

*

s
ds
dr βξ= ,   

( ))(sin*

*

s
ds
dz β= , 

*
*

*
sincos

r
q

ds
d

c
βξθβ

−= . 

( F.21) 

The boundary conditions Eq. ( F.17) transform as follows 
0)0(* = , ** )0( orr = , 2/)0(z πβ =  
1)( , lrlr = , cl θβ =)(

The normalized liquid volume condition Eq. ( F.18) is  

** =lz *** )( * . 
( F.22) 

( F.23) 

The solution procedure will be the shooting m thod: guess q*, l* and  then use 

e for β, z* and r*. These results are 

*

0

2**

*

)sin( dsrV
l

L ∫= β . 

e *
or

the 4th order Runge-Kutta method (RK4) to solv
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compared with the l* boundary conditions  and in Eq. 

uracy a new 

guess is obtained using secant interpol  the proced  is 

an additional unknown which is determ

calculations.   

 The normalized meniscus surface area is calculated from the RK4 solution 

by numerically integrating the normaliz  Eq. 

The normalized energy for the axisymmetric cas en  

1)** =lz

ation and

ed version of

. 

e is th

( cl θβ =)( *

ired acc

ure is repeated.  

ined for use in force and energy 

( F.19) 

( F.22) 

and Eq. ( F.23); if these conditions are not satisfied to the des

*
lr

( F.24) ***

*

dsrA
l

LA ∫=
0

( )θ *2**** 21)cos(SoS ArUUUUU +−=+=
−
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lusion of

exa

 and *
litr  results

( F.23)

πγ 2 LALS
LA R

This expression differs from Eq. ( F.9)  the energy of 

ct mo

in the simplified model. A difference be  due to e 

more rigorous approach of the volum  as opposed to the 

cylindrical approximation Eq. ( F.10).   
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Our objective will be to compare the force exerted on the rom

( F.11) and Eq. ( F.26) for a range of governing parameters: 
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Comparison of these two forces will provide implified and 

much more convenient approach of Mastrangelo et al. 

 insight as to when the s

 a

Eq. ( F.26) that will enter into the discussion. Firstly, as mentioned earlier Eq. 

( F.26) accounts for the surface tension force. Secondly, the magnitude of the 

 

second principal 

 due to the more rigorous 

 net result on  is 

isymmetric case we have a smaller pres re which 

s are considered. A

representa ilibrium  Figure  F.2 e 

me  and the plate  red. Recall tha  in 

Mastrangelo  this surface is treated as a right circular cylinde  

re the axisym

t al rop radius decr  as 

distan

position along the meniscus s*; also shown in Figure  F.3a) is twice the mean 

 [3] can be used with 

sufficient accuracy. There are three important differences between Eq. ( F.11) nd 

curvature 1litqq  so the pressure pulling the plates together will be less in

the exact model; this is caused by the consideration of the 

** −=>

curvature which has opposite sign. Finally, 

unknown since in the ax

than would be encountered in m

tive axisymmetric equ

niscus is shown in blue

 et al.  [3]

constraining drop size however when 

*

ssumptions will no

**
litl rr >

 surface is shown in

 is shown in

calculating curvatu

ways be valid.  Here the d

*F

; here th

t

r when

eases

treatment of the constant liquid volume condition. The

su acts on 

a larger area plus the addition of the surface tension force.   

 Be aware that in order to make differences more visible values of ξ  larger 

ost MEMS application  

metric 

curvature ( 2 /sin rq βξ= ) is ignored and the other principal curvature 

**
1 / dsdq β=  is treated as a constant. The surface shown in 

*

Figure  F.2 illustrates 

that these a

ce form the plate is increased and the need to consider two curvatures is 

evident. Shown in Figure  F.3a) is the variation of each of these curvatures with 
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curvature q* and the curvature obtained using the assumptions of Mastrangelo et 

al. [3] qlit
*.  There are several important trends in this figure that should be 

discussed.  Firstly, because there liquid bridge has a smaller radius at s* = 0, *
2q  is 

highest at s* = 0 and decreases with increasing s*.  Since *** qqq +=  must be 

*

*

both principal curvature and these curvatures have opposite signs, we observe 

1** −=> qq  in 

21

ses with increas

*
1  is close to the

rs contribu

constant for the liquid bridge to be isobaric,  increa *; 

however, it is interesting to note that the average value of  

of qlit . In addition because the axisymmetric m del cons tions f om 

1q

o

ing s

 value

r

 q

ide

lit Figure  F.3a).   

 
Figure  F.2: An symmetric equilibrium surface.  Meniscus is shown in blue 
plate is shown

 
 in

 

example of an axi
 red.   
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a) b)

c) d)

C
ur
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Figure  F.3: a) Variation in each principal curvature with position along meniscus.  Also 
shown are the mean curvature and the value obtained using the method of Mastrangelo et al. 
 [3] b) Variation of equilibrium surface shape (z* vs. r*) with VL* c) Variation of equilibrium 
surface shape (z* vs. r*) with θc * d) Variation of equilibrium surface shape (z* vs. r*) with ξ.   
 

The curvature variations in Figure  F.3a) show how meniscus shape can 

impact the Laplace pressure.  Figure  F.3b)-d) shows how the meniscus shape (z* 

vs. r*) changes when one of the governing parameters (ξ, θc, VL
*) is varied. In 

Figure  F.3b) the meniscus shape is plotted for a range of VL
* ; it is interesting to 

note that the shape of the meniscus appears to be insensitive to drop volume; 

nonlinearly on VL
* ; in fact from Eq. ( F.23) r* is expected to be proportional to the 

square root of VL
* (which agrees with curve spacing Figure  F.3b)).  In Figure 

 F.3c) the meniscus shape is plotted for a range of θc in this case the shapes differ 

showing larger variation in r* at lower contact angles which is not surprising 

considering the geometry in Figure  F.1 and the boundary conditions Eq. ( F.22). 

however based on the spacing of the curves the magnitude of r* depends 
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Finally, in Figure  F.3d) the meniscus shape is plotted for a range of ξ ; in this case 

the shapes differ showing larger variation in r* at higher ξ.  ξ  is the ratio between 

the plate spacing to the plate radius thus based on the normalization Eq. ( F.8) the 

curves in Figure  F.3d) are stretched in the vertical direction by different amounts 

depending on ξ.  For ξ = 0.01 the curve has bee stretched in the vertical direction 

by a factor of 100 resulting in the nearly vertical appearance of the curve. One 

final interesting note is that in Figure  F.3c) and d) the curves intersect at 

**
Llit Vr = .   

 With knowledge of how the meniscus shapes vary with the three 

governing parameters we can now look at how the variables of interest vary.  A 

justification for the simplified model is often that the dimensions of the structure

*  

 

are much larger than the spacing [18]; with our normalization this assumption 

Ficorresponds to small ξ. In gure  F.4a) the curvature q* is plotted against ξ while 

keeping the other two parameters fixed. The relationship is linear and q* 

approaches qlit = -1 as ξ → 0. In Figure  F.4b) the wetted radius lr is plotted 

against ξ while keeping the other two parameters fixed; also shown in this plot is 

the minimum radius *
or . Again the relationship is linear and both *

lr  and *
or  

approach *
litr  as ξ → 0.  These results seem to suggest that for small ξ the 

simplified approach and the axisymmetric model coalesce; however it will be 

demonstrated in 

*

Figure  F.4c)-f) that small ξ is a necessary but not sufficient 

condition to use the simplified model.   

In Figure  F.4c) the curvature q* is plotted against VL* while keeping the 

other two parameters fixed. The relationship is nonlinear and the deviation of q* 
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from qlit
* = -1 grows sharply as drop size decreases. The reason for this is q* and 

hence the Laplace depend on the radius of the drop ( **
2 /sin rq βξ= ) not the 

radius of the plate so ξ →0 is not sufficient because the drop may not fully wet the 

plate area; the minimum ( *r ) and wetting ( *r ) liquid bridge radius are shown in 

Figure  F.4d) here we see essentially the same behaviour as in Figure  F.3b) the 

radius decreases nonlinearly with V * however the shape (hence the distance 

between curves in Figure  F.4d)) remains unchanged. Also shown is the radius 

sim

o

*
litr

l

L

from the plified model which is between the mi  

de

Fi

* l

two radii of curvature. If ξ →0 and VL* 

is sufficien

 nimum and wetting radii. 

These results are important because the classical analysis uses the simplified 

model to define the elastocapillary number NEC which predicts when two elastic 

structures will be brought into contact by Laplace pressure [3]. In this analysis 

NEC is defined such that contact occurs as the liquid dries or VL* decreases. Based 

on there result of Figure  F.4c) caution should be used when applying NEC results 

because the discrepancy in Laplace pressure grows as VL* decreases which may 

make the result invalid. Unfortunately NEC  provides no indication as to what VL* 

causes contact so based on the above observations it is impossible to know if the 

simplifications used in riving NEC will be valid.   

In gure  F.4e) the curvature q* is plotted against θc while keeping the 

other two parameters fixed. The relationship is nonlinear and the deviation of q* 

from qlit = -1 grows sharply as contact ang e increases. The reason for this 

behaviour is q* depends on the sum of the 

tly large then 2 /sin rq βξ=  will be small; however as the contact 

angle approaches 90º the liquid bridge approaches a right circular cylinder.  For a 

**
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right circular cylinder the other principal curvature ( **
1 / dsdq β= ) is zero.  Thus 

*
1q  becomes small as θc →90º so *

2q  will not be negligible nd VL* is 

sufficiently large.  In these cases the Laplace pressure can often be in the opposite 

direction to that predicted using qlit
*.  In 

 even if ξ

lr  and or

Figure  F.4e) and f

c →

 →0 a

fixed. The relationship oth  approach θc 

90º.  One interesting point from comparing ) e 

ure occurs as  90º however the largest 

c

Figure  F.4f) the wetted radius *
lr and 

minimum radius *r  are plotted against θc while keeping the other two parameters 

* * *  

discrepancy in Laplace pressure area occurs as θ  → 0º.   

o

t discrepancy in Laplace p

 is nearly linear and b

ress

litr as 

 is that th→

larges θ
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Figure  F.4:Dependency of q* and rl* on ξ, θc,  and VL*. ro* and rlit* are also shown in b),d), f).  
a) q* vs. ξ b) rl* vs. ξ c) q* vs. VL* d) rl* vs. VL* e) q* vs. θc f) rl* vs. θc  
 
 Shown in Figure  F.5 are some example plots for how the trends previously 

described can cause the energy U* and force F* as well as their components to 

deviate from the values obtained with the simplified model. The results of Figure 

 F.5 are by no means comprehensive since for each subfigure several variables are 

held fixed.  Therefore, generalizations about the total U* and force F* relative to 

the simplified model should not be made from the figure.  For example in Eq. 

( F.26) FP* is inversely proportional to ξ whereas FST* does not depend on ξ thus 
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at lower ξ values FP* will become larger relative to FST*.  Recall that the 

simplified model FST* is neglected and the force is due entirely to Laplace 

pressure; on the other hand, the Laplace pressure and Laplace pressure area are 

also different in the simplified model. Starting with Figure  F.5a) which shows the 

surface energy of the system U* and its components due to plate wetting ULS* and 

due to meniscus area ULA* as ξ is varied. In the literature ULA* is neglected based 

on an argument that this area will be small if ξ is small; this trend is observed in 

Figure  F.5a) and U* approaches Ulit* since ULA* tends to zero as ξ→0.  

Furthermore, due to differences in wetted area ULS* diverges from Ulit* as ξ 

increases.  Figure  F.5b) shows the total force F* and its components due to 

pressure FP* and due to surface tension FST* as ξ is varied. From Eq. ( F.26) FP* 

increases sharply as ξ→0; as a result the constant difference FST* between the 

simplified and axisymmetric models becomes negligible.  Figure  F.5c) again 

shows surface energy U* and its components this time as VL* is varied. Here we 

see the energy of the neglected area ULA* increases with increasing VL*.  ULS* 

follows a similar trend to U * however it diverges slightly as V * increases.  

varied are shown in 

lit L

ariations in the total force F* and its components as VL* is V

Figure  F.5d).  Here all force components increase with increasing VL* since from 

Figure  F.4c)-d) this corresponds to an increase in both Laplace pressure and 

Laplace pressure area which increases FP*. Furthermore the increase in rl* 

increases the contact line length on which the surface tension force acts which 

increases FST*.  FP* follows the same behaviour as Flit* although it diverges 

slightly as VL* increases.  Figure  F.5e) again shows surface energy U* and its 
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components this time as θc is varied. Here we see the energy of the neglected area 

ULA* decreases with increasing θc.  ULS* asymptotes to Ulit* as θc increases.  

Variations in the total force F* and its components as θc is varied are shown in 

Figure  F.5f).  Here the pressure force (FP*) diverges from Flit* as the contact 

angle is increases due to the discrepancy in curvature shown in Figure  F.4e). 

Furthermore since the surface tension force FST* is proportional to tan(θc) it 

increases with increasing contact angle.   

a) b)

c) d)

e) f)

 
c L

wetted plate USL* and meniscus ULA* are also shown along with the energy obtained using 

FP* and surface tension force FST* are also shown along with the force obtained using the 
method of Mastrangelo et al. 

Figure  F.5 Dependency of U* and F* on ξ, θ , and V *.  In a) c) e) contributions from the 

the method of Mastrangelo et al.  [3] Ulit*. In b), d), f) contributions from the pressure force 

vs. θc f) F* vs. θc 
 [3] Flit*.  a) U* vs. ξ b) U* vs. ξ c) U* vs. VL* d) F* vs. VL* e) F* 
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