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MARCINKIEWICZ LAW OF LARGE NUMBERS FOR
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DEPENDENT DATA

By Michael A. Kouritzin and Samira Sadeghi∗

University of Alberta

The Marcinkiewicz Strong Law, lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s.

with p ∈ (1, 2), is studied for outer products Dk = XkX
T
k , where

{Xk}, {Xk} are both two-sided (multivariate) linear processes ( with
coefficient matrices (Cl), (Cl) and i.i.d. zero-mean innovations {Ξ},
{Ξ}). Matrix sequences Cl and Cl can decay slowly enough (as |l| →
∞) that {Xk, Xk} have long-range dependence while {Dk} can have
heavy tails. In particular, the heavy-tail and long-range-dependence
phenomena for {Dk} are handled simultaneously and a new decou-
pling property is proved that shows the convergence rate is deter-
mined by the worst of the heavy-tails or the long-range dependence,
but not the combination. The main result is applied to obtain Marcink-
iewicz Strong Law of Large Numbers for stochastic approximation,
non-linear functions forms and autocovariances.

1. Intoduction. Let Dk = XkX
T
k be random matrices with {Xk},

{Xk} being Rd-valued (possibly two-sided, multivariate) linear processes

Xk =

∞∑
l=−∞

Ck−lΞl, Xk =

∞∑
l=−∞

Ck−lΞl.(1)

defined on some probability space (Ω, F, P ).{(
Ξl = (ξ

(1)
l , ..., ξ

(m)
l ),Ξl = (ξ

(1)
l , ..., ξ

(m)
l )

)
, l ∈ Z

}
are i.i.d. zero-mean random Rm+m-vectors (innovations) such that E[|Ξ1|2] <
∞, E[|Ξ1|2] < ∞ and (Cl)l∈Z, (C l)l∈Z are Rd×m-matrix sequences satisfying
sup
l∈Z

|l|σ∥Cl∥ < ∞, sup
l∈Z

|l|σ∥C l∥ < ∞ for some (σ, σ) ∈
(
1
2 , 1
]
. Hence, {Dk}

can have heavy tails as well as long-range dependence.
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2 M.A. KOURITZIN AND S. SADEGHI

Linear process models are heavily used in finance, engineering, econo-
metrics, and statistics. In fact, classical time-series theory mainly involves
the statistical analysis of stationary linear processes. Current applications in
network theory and financial mathematics leads us to study time series mod-
els where {Dk} can have heavy tails and long memory. Heavy-tailed data
exhibits frequent extremes and infinite variance, while positively-correlated
long memory data displays great serial momentum or inertia. Heavy-tailed
data with long-range dependence has been observed in a plethora of em-
pirical data set over the last fifty years and so. For instance, Mandelbrot
[11] observed that long memory time series often were heavy-tailed and self-
similar.

The possible rates of the convergence is affected by both long-range depen-
dence and heavy-tailed. There are two broad types of dependence for linear
processes. If the coefficients (Cl) are absolutely summable and innovations
have second moments, then the covariances of Xk are summable and we say
that {Xk} is short-range dependence (SRD). On the contrary, we generi-
cally say that {Xk} is long-range dependence (LRD) if its covariances are
not absolutely summable. Practically, by choosing appropriate coefficients,
matrix sequence (Cl) can decay slowly enough (as |l| → ∞) such that {Xk}
shows LRD. We consider {Dk} to have LRD too in this {Cl} non-summable
case even though the second moments for Dk may not exist. There are also
two general kinds of randomness. If each Dk fails to have a second moment,
then we say it has heavy-tailed (HT) and is otherwise light-tailed (LT). In
our setting, Dk will either have HT or LT depending upon the moments of
and dependence between Ξ1 and Ξ1.

There few general Marcinkiewicz Strong Law of Large Numbers (MSLLN)
results for partial sums of Xk under both heavy-tailed and the long-range
dependence and the MSLLN for partial sums of nonlinear functions of Xk is
almost untouched. Our purpose here is to establish a method and a structure
under which certain MSLLN for heavy-tailed and the long-range-dependent
phenomena can be handled properly. Technically, our goal is to prove:

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s. for p <
1

2− σ − σ
∧ α ∧ 2,

when max
1≤i,j≤m

sup
t≥0

tαP (|ξ(i)1 ξ
(j)
1 | > t) < ∞ for some α > 1 and sup

l∈Z
|l|σ∥Cl∥ <

∞, sup
l∈Z

|l|σ∥C l∥ < ∞ when (σ, σ) ∈
(
1
2 , 1
]
. This format of {Dk} is critical

for our result since, it allows LRD and HT conditions decouple and conver-
gence rate be determined by the worst of the HT requirement p < (α ∧ 2)
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and the LRD condition p < 1
2−σ−σ , but not the combination. A bifur-

cation happens. Consider the summation, Dk =

∞∑
l,m=−∞

Ck−lΞlCk−mΞm,

broken into off-diagonal and diagonal terms. Due to the independence of
(Ξl,Ξl) from (Ξm,Ξm), the off-diagonal sum

∑
l ̸=m

Ck−lCk−mΞlΞm does not

have heavy tails ( when α > 1 ). Conversely, since σ + σ > 1 the diagonal

sum
∞∑

l=−∞
Ck−lCk−lΞlΞl does not experience long-range dependence. In ad-

dition, the rate of convergence depends on the worst of (α∧2) and 1
2−σ−σ , so

whenever we are in the LRD dominant case, (α > 1
2−σ−σ ), the off-diagonal

terms dictate the rate of convergence by the LRD effect (p < 1
2−σ−σ ) and in

the HT dominant case, (α < 1
2−σ−σ ), the diagonal terms dictate the rate of

convergence by HT effect (p < α). The bifurcation point is when α = 1
2−σ−σ

and α < 2.

2. Background. In this section we give a review of some existing lit-
erature on MSLLN or weak convergence for partial sums, sample covariance
and non-linear function of partial sums with heavy-tailed and/or long-range
dependence. Many existing results were only established in the scalar case.
For ease of assimilation we use {xk}, (cl), {dk} and {ξk} to denote these
scalar versions of {Xk}, (Cl), {Dk} and {Ξk} and {xk+h} for {Xk} when it
is a shifted version of {xk}.

2.1. Partial Sums. There are many of publications that consider almost
sure rates of convergence for linear processes having either LRD or HT.
However, there are only a few like Louhchi and Soulier [10] that considered
the combination of these two phenomena. They stated the following result
for linear symmetric α-stable (SαS) processes.

Theorem 1 Let {ξj}j∈Z be i.i.d. sequence of SαS random variables with
1 < α < 2 and {cj}j∈Z be a bounded collection such that

∑
j∈Z

|cj |s < ∞

for some s ∈ [1, α). Set xk =
∑
j∈Z

ck−jξj . Then, for p ∈ (1, 2) satisfying

1
p > 1− 1

s +
1
α

1

n
1
p

n∑
i=1

xi → 0 a.s.

The condition s < α ensures
∑
j∈Z

|cj |α < ∞ and thereby convergence of∑
j∈Z

ck−jξj . Moreover, {xk} not only exhibits heavy tails but also long-range
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4 M.A. KOURITZIN AND S. SADEGHI

dependence if, for example, cj = |j|−σ for j ̸= 0 and some σ ∈
(
1
2 , 1
)
. Notice

there is interactions between the heavy tail condition and the long range
dependent condition. In particular for a given p, heavier tails (α becomes
smaller) implies that you can not have as long range dependence (s must
become smaller) and vice versa. Moreover, this result is difficult or even
impossible to apply in our outer product setting due to the fact that xk’s
are linear processes with SαS innovations and so xk cannot be decomposed
to product of two variables even in the scalar case.

2.2. Non-linear function of partial sums. The limit behavior of suitably
normalized partial sums of stationary random variables that demonstrate
either LRD or HT has been subject of study by many authors. Applica-
tions can be found in geophysics, economics, hydrology and statistics. For
instance, in contexts like Whittle approximation, the asymptotic behavior of
quadratic forms of stationary sequences have an important role. In addition,
the efficacy of “R/S-statistic” theory that was introduced for estimating the
long-run, non-periodic statistical dependence of time series by Hurst and de-
veloped by Mandelbrot [12], can be confirmed by convergence of these limit
functions.

There are many results that deal with the existence and description of
limit distributions of sums

Sn,h(t) =

[nt]∑
k=1

(h(xk)− E(h(xk))), t ≥ 0,(2)

where h is a (nonlinear) function. The limit behavior for a Gaussian LRD
process {xk}, firstly was studied by Rosenblatt [14]. Afterward, Dobrushin
and Major [4] explained it in more general form. Then Taqqu [18] showed
that the limit in distribution of particular normalized sums Sn,h(t) is deter-
mined by the Hermite rank m∗ ∈ {1, 2, ...} of h(x), which is the index of the
first nonzero coefficient in the Hermite expansion. On the other hand, the
behavior of nonlinear non-Gaussian LRD processes is much less commonly
known. One of the most studied models of non-Gaussian LRD processes is
the one-sided linear (moving average) process,

xk =

∞∑
j=0

cjξk−j ,(3)

in which, innovations ξk, k ∈ Z, are independent and identically distributed
(i.i.d.), have zero mean with finite variance, and coefficients cj satisfy:

cj ∼ cσj
−σ, j ≥ 1(4)
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for some constant cσ ̸= 0, c0 = 1 and σ ∈ (12 , 1).

Surgailis [16] considered the limit behavior of partial sum processes Sn,h(t)
of polynomial h of linear process {xk}k∈Z. Later, Giraitis and Surgailis [5][6],
Avram and Taqqu [1] noticed that the only difference between this case and
Gaussian case is that the Hermite rank m∗ of h(x) has to be replaced by
the Appell rank m.

Vaiciulis [19] investigated distributional convergence for normalized par-
tial sums of Appell polynomials Am(xk) of linear processes xk having both
long-memory and heavy-tails in the sense EA2

m(xk) = ∞. In particular, he
assumed xk had the form (3) with innovations {ξmk } belonging to the domain
of attraction of an α-stable law with 1 < α < 2 and cj following (4). The
limit was: i) an α-stable Levy process, ii) an mth order Hermite process,
or iii) the sum of two mutually independent α-stable Levy and mth order
Hermite processes, depending on the value of α,m and σ where σ ∈ (12 , 1).

Thereafter, Surgailis [17] considered the bounded, infinitely differentiable
h case where {xk} was LRD and had innovations with probability tail decay
of x−2α for 1 < α < 2. Suppose xk satisfies (3) and (4). Then he showed
three different limiting behaviors corresponding to three different LRD-HT
setting: n1−(2σ−1)m∗/2Sn,h(t), n

1
2ασSn,h(t) or n

1
2Sn,h(t) converge in distribu-

tion to respectively a Hermite process of orderm∗, a 2ασ-stable Levy process
or a Brownian motion, all at time t, for certain range of α and σ.

2.3. Sample Covariances. Auto-covariance functions play a substantial
role in time series analysis and have diverse applications in inference prob-
lems, including hypothesis testing and parameter estimation. The natural
estimator of auto-covariance is sample covariance. Hence, the convergence
properties of the sample covariance is of great interest. In the case of LRD
and HT, it is an area of active research.

Davis and Resnick [3] studied the distributional convergence of sample
autocovariances for two-sided linear processes with innovations that were
i.i.d. and had regularly varying tail probabilities of index α > 0.

P (|ξk| > x) = x−2αL(x),

P (ξk > x)

P (|ξk| > x)
→ p and

P (ξk < −x)

P (|ξk| > x)
→ q, as x → ∞,(5)

where L(.) is a function slowly varying at infinity

(
lim
j→∞

L(aj)

L(j)
= 1

)
and

0 ≤ p ≤ 1, q = 1 − p. They considered the case where the innovations had
finite variance (ι) but infinite fourth moment, i.e. 1 < α < 2 with absolutely
summable coefficients cj with form of (4).
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6 M.A. KOURITZIN AND S. SADEGHI

Note: We choose to scale our constants, here and in the sequel, so that
α < 2 always mean HT of the object of interest, which is xkxk+h or more
generally XkXk.

In case of infinite fourth moment for {ξk}k∈Z, the asymptotic distribu-
tion of normalized sample autocovariances of long-memory processes was
studied by Horvath and Kokoszka [7]. Suppose we observe the realization
x1, x2, ..., xn+v, n > 1, v ≥ 0, the sample autocovariances and population
autocovariances are defined as

γ̂
(n)
h =

1

n

n∑
k=1

xkxk+h, h = 0, 1, ..., v, and

γh = E[x0xh] = ι

∞∑
j=0

cjcj+h,(6)

respectively. Horvath and Kokoszka [7, Theorem 3.1] studied the asymptotic

distribution [γ̂
(n)
h − γh], h = 0, 1, ..., v for linear process of form (3) with

coefficients and innovations satisfying (4) and (5) and a norming constant

an = inf{x : P (|ξ1| > x) ≤ n−1} (roughly of order n
1
2α ) satisfying

lim
n→∞

nP [|ξk| > anx] = x−2α, x > 0.(7)

We quote this result in our notations as the following theorem.

Theorem 2 Suppose, conditions (3), (4), (5) and (7) hold.

(a) If 1− 1
2α < σ < 1 and 1 < α < 2, then

na−2
n [γ̂

(n)
h − γh]

d→
(
S − α

α−1

) ∞∑
j=0

cjcj+h

 , h = 0, 1, ..., H.

where S is an α-stable random variable. For the above to hold for
σ = 3/4, we must additionally assume that a−4

n n lnn → 0.

(b) If 1
2 < σ < 1− 1

2α and 1 < α < 2, then

n2σ−1[γ̂
(n)
h − γh]

d→ ιc2σ [Uσ(1)] , h = 0.1, ..., H.

where Uσ is a Rosenblatt process. The Rosenblatt process is often de-
fined by the iterated stochastic integral:

Uσ(t) = 2
∫
w1<w2<t

[∫ t
0 (τ − w1)

−σ
+ (τ − w2)

−σ
+ dτ

]
W (dw1)W (dw2),

in which W (.) is the standard Wiener process on the real line.
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This theorem works for one-sided linear processes with a regularly varying
tail condition and gives us weak convergence.

Notice that in Theorem 2, case (a) represents the HT dominant, (α <
1

2−2σ ), so the diagonal terms dictate convergence to an α-stable distribution.

However, case (b) represents the LRD dominant, (α > 1
2−2σ ), hence off-

diagonal terms take over and we get convergence to Rosenblatt process.

3. Main results. Our first result is in the scalar case. Later, we will
extract the full vector-valued result as a second main theorem. All proofs
are delayed until the next section after we have discussed the applications.

Theorem 3 Let
{
(ξl, ξl)

}
l∈Z be i.i.d. zero-mean random variables such that

E[ξ21 ] < ∞, E[ξ
2
1] < ∞ and sup

t≥0
tαP (|ξ1ξ1| > t) < ∞ for some α > 1.

Moreover, suppose (cl)l∈Z, (cl)l∈Z satisfy

sup
l∈Z

|l|σ|cl| < ∞, sup
l∈Z

|l|σ|cl| < ∞ for some σ, σ ∈
(
1

2
, 1

]
,

dk =
∞∑

l,m=−∞
ck−lck−mξlξm and d = E[ξ1ξ1]

∞∑
l=−∞

clcl. Then, for p satisfying

p < 1
2−σ−σ ∧ α ∧ 2

lim
n→∞

1

n
1
p

n∑
k=1

(dk − d) = 0 a.s.

Remark 1 The tail probability bound ensures that E[|ξ1ξ1|r] < ∞ for any
r ∈ (1, (α ∧ 2)) and E[d1] exists but it is possible that E[d21] = ∞ so we are
handling heavy tails for {dk}. On the other hand, E[|ξ1ξ1|α] < ∞ implies
our tail condition by Markov’s inequality. σ, σ bound the amount of long-

range dependence in xk =
∞∑

l=−∞
ck−lξl, xk =

∞∑
l=−∞

ck−lξl. If σ can be taken

larger than 1, then
∞∑
k=1

E[x0xk] < ∞ and there is no long-range dependence

in {xk}. σ > 1
2 with E[ξ21 ] < ∞ ensures that

∞∑
l=−∞

ck−lξl converges a.s.

Remark 2 Notice that the constraints to handle long-range dependence,
p < 1

2−σ−σ , and to handle the heavy tails, p < (α∧2), decouple. This decou-
pling appears to be due to the structure of dk. Due to the independence of
(ξl, ξl) from (ξm, ξm), the off-diagonal sum

∑
l ̸=m

ck−lck−mξlξm does not have

heavy tails. Conversely, since σ + σ > 1 the diagonal sum
∞∑

l=−∞
ck−lck−lξlξl

does not experience long-range dependence.
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We will give a simple example to verify conditions in Theorem 3. Recall,
a non-negative random variable ξ obeys a power law with parameters β > 1
and xmin > 0, written ξ ∼ PL(xmin, β), if it has density

f(x) =
β − 1

xmin
(

x

xmin
)−β ∀ x ≥ xmin

so E|ξ|r =

{
xrmin(

β−1
β−1−r ) r < β − 1

∞ r ≥ β − 1
.

It has a folded t distribution with parameter β > 1, written ξ ∼ Ft(β), if it
has density

f(x) =
2Γ(β2 )

Γ(β−1
2 )
√

(β − 1)π

(
1 +

x2

(β − 1)

)−β
2

∀ x > 0

so E(|ξ|r) exists if and only if r < β − 1.

Example 1 Suppose p, q, α, β, β > 1 are such that 1
p + 1

q = 1, β > pα + 1,

β > qα + 1 and pα, qα ≥ 2. If ξ1 and ξ1 have power law distribution,
lets say ξ1 ∼ Pl(xmin, β), ξ1 ∼ Pl(xmin, β) for some xmin, xmin > 0, then

E[ξ21 ], E[ξ
2
1] < ∞ and sup

t≥0
tαP (|ξ1ξ1| > t) < ∞. If ξ1 ∼ Ft(β), ξ1 ∼

Ft(β), then E[ξ21 ], E[ξ
2
1] < ∞ and sup

t≥0
tαP (|ξ1ξ1| > t) < ∞. Either way,

the Theorem 3 applies with properly chosen (cl, cl).

We now consider the case where Xk and Xk are (multivariate) linear
processes.

Theorem 4 Let {Ξl} and
{
Ξl

}
be i.i.d. zero-mean random Rm-vectors such

that Ξl =
(
ξ
(1)
l , ..., ξ

(m)
l

)
, Ξl =

(
ξ
(1)
l , ..., ξ

(m)
l

)
, E[|Ξ1|2] < ∞, E[|Ξ1|2] < ∞

and max
1≤i,j≤m

sup
t≥0

tαP (|ξ(i)1 ξ
(j)
1 | > t) < ∞ for some α > 1. Moreover, suppose

matrix sequences (Cl)l∈Z, (C l)l∈Z ∈ Rd×m satisfy

sup
l∈Z

|l|σ∥Cl∥ < ∞, sup
l∈Z

|l|σ∥C l∥ < ∞ for some (σ, σ) ∈
(
1

2
, 1

]
,

Xk, Xk take form of (1), Dk = XkX
T
k and D = E[X1X

T
1 ]. Then, for p

satisfying p < 1
2−σ−σ ∧ α ∧ 2

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s.

This theorem follows by linearity of limits and Theorem 3.
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3.1. Applications. We give some applications of our theorems.

3.1.1. Stochastic Approximation. Stochastic approximation (SA) is often
used in optimization problems for linear models. Hence, the convergence
properties of SA algorithms driven by linear models is of utmost interest. For
illustration, we assume {zk, k = 1, 2, ..} and {yk, k = 2, 3, ...} are respectively
Rd− and R−valued stochastic processes, defined on some probability space
(Ω, F, P ), that satisfy

yk+1 = zTk h+ ϵk, ∀k = 1, 2, . . . ,(8)

where h is an unknown d-dimensional parameter or weight vector of interest
and {ϵk} is a noise sequence. We want to estimate the parameter vector h
through the stochastic approximation algorithm:

hk+1 = hk + µk(bk −Akhk),(9)

where µk is the kth step gain of the form µk = k−χ for some χ ∈
(
1
2 , 1
]
,

Ak = zkz
T
k and bk = yk+1zk.

Kouritzin and Sadeghi [9] studied the convergence and almost sure rates of
convergence for the algorithm (9). Now, we can combine our main result
(Theorem 4 ) with [9, Corollary 1] to obtain a powerful rate of convergence
result for stochastic approximation.

Theorem 5 Let {Ξl} be i.i.d. zero-mean random Rm-vectors such that

sup
t≥0

tαP (|Ξ1|2 > t) < ∞ for some α ∈ (1, 2)

(Cl)l∈Z be R(d+1)×m-matrices such that sup
l∈Z

|l|σ∥Cl∥ < ∞ for someσ ∈
(
1
2 , 1
]
,

(zTk , yk+1)
T =

∞∑
l=−∞

Ck−lΞl,

Ak = zkz
T
k and bk = yk+1zk and A = E[zkz

T
k ] and b = E[yk+1zk].

Then, |hn − h| = o(n−γ) as n → ∞ a.s. for any γ < γ
(χ)
0

.
= (χ− 1

α) ∧ (χ+
2σ − 2).

Proof. By Theorem 4 when 1
p = χ − γ, X

T
k = XT

k = (zTk , yk+1), Ξl = Ξl,

C l = Cl, σ = σ, and Dk =

(
zkz

T
k yk+1zk

yk+1z
T
k y2k+1

)
,

1

nχ−γ

n∑
k=1

(Dk −D) → 0 a.s.,
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10 M.A. KOURITZIN AND S. SADEGHI

where D =

(
A b
bT E[y2k+1]

)
. The first d-rows of 1

nχ−γ

n∑
k=1

(Dk −D) →

0 a.s. then establish the MSLLN

1

nχ−γ

n∑
k=1

(Ak −A) → 0 and
1

nχ−γ

n∑
k=1

(bk − b) → 0 a.s.

Now, we apply [9, Corollary 1] to complete the proof. �
Remark 3 Note that χ− γ satisfies the required conditions χ− γ > 2− 2σ
and χ− γ > 1

α in Theorem 4. Theorem 5 also appears in [9, Theorem 2].

3.1.2. Non-linear Function of linear processes. As mentioned in Back-
ground, Vaiciulis [19] showed the convergence of distributions of the partial
sum processes with non-linear h(xk) in terms of convergence of Appell poly-
nomials Am(xk) of a long-memory moving average process {xk} with i.i.d.
innovations {ξk} in the case where the variance EA2

m(xk) = ∞, and the
distribution of ξm1 belongs to the domain of attraction of an α-stable law
with 1 < α < 2.

Practically, the simplest examples of functions h(x) with a given Appell
rank m are Appell polynomials h = Am relative to the marginal distribution
x1 of the linear process (3). In case m = 2 the Appell polynomial is A2(x) =
x2 − µ2 where µ2 = Ex2. Viaiciulis [19, Theorems 1.1 and 1.2] proved that
when m(2σ − 1) < 1, m ≥ 2 and σ ∈ (12 , 1) the limit distribution of partial
sums of mth Appell polynomial is either (i) an α-stable Levy process for
2−2σ < 1+ 2

m( 1α −1), or (ii) an mth order Hermite process for 2−2σ > 1+
2
m( 1α −1) or (iii) the sum of two mutually independent processes depending
on the value of α,m and σ, for 2− 2σ = 1 + 2

m( 1α − 1).
Taking into account all his conditions ( when t = 1 ) and transforming

it to our case we write our complementary almost sure rate-of-convergence
theorem.

Theorem 6 Suppose A2 represents the Appell polynomials with rank 2 rel-

ative to the marginal distribution x1 of the linear process xk =

∞∑
j=0

ck−jξj,

for p ∈ [1, 1
2−2σ ∧ α) when

sup
t≥0

tαP (ξ21 > t) < ∞ for some α ∈ (1, 2),(10)

sup
l∈Z

|l|σ|cl| < ∞ for some σ ∈
(
1

2
, 1

]
.(11)
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Then,

lim
n→∞

1

n
1
p

n∑
k=1

A2(xk) = 0 a.s.

One might wonder if we have obtained the best possible MSLLN. Indeed,
we have. For example when m = 2, Viaiciulis [19] shows convergence in

distribution of
1

n(2−2σ)∧ 1
α

n∑
k=1

A2(xk) to different non-trivial limits in cases

(2−2σ) > 1
α (LRD dominant) or (2−2σ) < 1

α (HT dominant), respectively.

Therefore,
1

n(2−2σ)∧ 1
α

n∑
k=1

A2(xk) cannot converge to zero almost surely. The-

orem 6 gives MSLLN for Appell polynomials with rank 2 or in other word
gives the convergence and almost sure rates of convergence for partial sums
of second Appell polynomial when 1

p > (2 − 2σ) ∨ 1
α . Our result is optimal

in polynomial sense and we cannot do better than that in terms of MSLLN.

3.1.3. Autocovariances. As mentioned in the background, autocovari-
ance estimation under HT and LRD conditions is an active area of research.
We will handle the asymptotic behavior of sample covariance function for
processes with LRD, innovations of infinite 4th moment and finite variance
ι. If we define the sample aurtocovariance and population autocovariance
functions by γ̂(n)(h) and γ(h), as (6), we have following almost sure result.

Theorem 7 Assume γ̂(n)(h) and γ(h), as (6) in which xk =
∞∑
j=0

ck−jξj and

satisfies (10) and (11) with E[ξ21 ] = ι. Then for p satisfying p < 1
2−2σ ∧α∧2

n
1− 1

p [γ̂
(n)
h − γh] → 0 a.s.(12)

Proof. Note that in Theorem 3, for case ξl = ξl, E[ξ21 ] = ι, cl = cl+h and
{cl = 0, ∀ l < 0} we have

dk =

k∑
l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm and d = ι

∞∑
l=0

clcl+h.

Hence,

1

n
1
p

n∑
k=1

(dk − d) =
1

n
1
p

n∑
k=1

(
k∑

l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm − ι

∞∑
l=0

clcl+h

)
.(13)
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12 M.A. KOURITZIN AND S. SADEGHI

On the other hand, (12) can be written as

n
1− 1

p [γ̂
(n)
h − γh] =

1

n
1
p

n∑
k=1

(xkxk+h − Ex0xh)

=
1

n
1
p

n∑
k=1

(
k∑

l=−∞

k+h∑
m=−∞

ck−lck+h−mξlξm − ι

∞∑
l=0

clcl+h

)
.(14)

So, the result follows.�
As we saw, Theorem 2 gives the convergence to the following non trivial

limits for 2α−1
2α < σ < 1 and 1

2 < σ < 2α−1
2α when 1 < α < 2,

(a)
1

a2n

n∑
k=1

(xkxk+h − Ex0xh)
d→
(
S − α

α− 1

)[ ∞∑
l=0

clcl+h

]
,

(b)
1

n2−2σ

n∑
k=1

(xkxk+h − Ex0xh)
d→ ιc2σ [Uσ(1)] ,

respectively, for h = 0, 1, ..., v.
It is clear that in the case of HT dominant, 1

α > 2− 2σ, we have almost
sure convergence (Theorem 7) when 1

p > 1
α . When 1

p = 1
α , we get into the

case (a) and have convergence to an α-stable distribution. On the other
hand, in the LRD dominant case, 1

α < 2 − 2σ, from Theorem 7) we have
almost sure convergence for 1

p > 2 − 2σ, yet for 1
p = (2 − 2σ) we have

convergence to Rosenblatt process by (b) .
Hence, Theorem 7 shows the a.s convergence for difference of sample auto-

covariance and population autocovariance with HT and LRD. One example
can be in the case that h = 0. Theorem 2 and (15) give the convergence in
distribution

1

a2n

n∑
k=1

(x2k − Ex20)
d→ (S − α

α− 1
)

∞∑
l=0

c2l

1

n2−2σ

n∑
k=1

(x2k − Ex20)
d→ ιc2σUσ(1),

for 1
p = 1

α and 1
p = 2− 2σ, respectively.

While, Theorem 7 gives the almost sure convergence for
1

n
1
p

n∑
k=1

(
x2k −Ex20

)
when 1

p > (2− 2σ) ∨ 1
α .

When we have convergence in distribution to non-trivial limits we can not
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get almost sure convergence to 0. However, by Theorem 7 we can get arbi-
trary close to that with polynomial rate and get optimal polynomial almost
sure rate of convergence. We can not do better than that in terms of MSLLN.

4. Proofs.

4.1. Notation List. |x| is Euclidean distance of some Rd-vector x.
∥C∥ = sup|x|=1 |Cx| for any Rn×m-matrix C.
⌊t⌋ .

= max{i ∈ N0 : i ≤ t} and ⌈t⌉ .
= min{i ∈ N0 : i ≥ t} for any t ≥ 0.

ai,k
i
≪ bi,k means that for each k there is a ck > 0 that does not depend

upon i such that |ai,k| ≤ ck|bi,k| for all i, k.
q∏

l=p

Bl (∀Bl being a Rd×d-matrix) = BqBq−1 · · ·Bp if q ≥ p or I if p > q.

a ∨ b = max{a, b} and a ∧ b = min{a, b}.

4.2. A First Light Tail Result . We first give a result that only
handles long-range dependence without heavy tails. However, our proof of
Theorem 3 to follow will show that these two phenomena decouple, so we
can easily build upon the Theorem 8 to handle both long-range dependence
and heavy tails together.

Theorem 8 Let
{
(ξl, ξl), l ∈ Z

}
be i.i.d. zero-mean random variables such

that E[(1 + ξ21)(1 + ξ
2
1)] < ∞, (cl, cl)l∈Z satisfy

sup
l∈Z

|l|σ|cl| < ∞, sup
l∈Z

|l|σ|cl| < ∞ for some σ, σ ∈
(
1

2
, 1

]
,

xk =
∞∑

l=−∞
ck−lξl, xk =

∞∑
l=−∞

ck−lξl, dk = xkxk =
∞∑

l,m=−∞
ck−lck−mξlξm and

d = E[ξ1ξ1]
∞∑

l=−∞
ck−lck−l = E[ξ1ξ1]

∞∑
l=−∞

clcl. Then, for p < 1
2−σ−σ

lim
n→∞

1

n
1
p

n∑
k=1

(dk − d) = 0 a.s.

Proof. . Insomuch as the proof of the general case only differs cosmet-
ically from the notationally-simpler case where ξl = ξl and cl = cl ={

1 l = 0
|l|−σ l ̸= 0

, we only provide the proof of the later for which the con-

straint becomes p < 1
2−2σ . Assume without loss of generality that σ < 1 and

E[ξ21 ] = 1.
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14 M.A. KOURITZIN AND S. SADEGHI

Step 1: Divide partial sums into diagonal, large c, small and mixed type
terms.
Let nr = 2r and T = T (n) = nν for ν > 0, n ∈ [nr, nr+1) and r ∈ N0, and
define

S(1)
n =

n∑
k=1

∞∑
l=−∞

c2k−l

(
ξ2l − 1

)
(15)

S(2)
n =

n∑
k=1

k+T∑
l,m=k−T

l ̸=m

ck−lck−mξlξm(16)

S(3)
n =

n∑
k=1

∑
(l−k)∧(m−k)>T

l ̸=m

ck−lck−mξlξm(17)

S(4)
n =

n∑
k=1

∑
m−k>T

k+T∑
l=k−T

ck−lck−mξlξm.(18)

By breaking

{
1

n
1
p

n∑
k=1

(dk − d) , n = 1, 2, ...

}
into pieces and considering those

pieces with different (process) distributions, we just need to show that

lim
n→∞

S
(1)
n

n
1
p

= lim
n→∞

S
(2)
n

n
1
p

= lim
n→∞

S
(3)
n

n
1
p

= lim
n→∞

S
(4)
n

n
1
p

= 0 a.s.,

provided p < 1
2−2σ . To handle (the diagonal terms) S

(1)
n , we let ζl = ξ2l − 1,

set K = E[ζ21 ] and use standard steps.

Step 2: Bound second moment of geometric diagonal partial sums S
(1)
nr .

By symmetry and then integral approximation, we have that

E[(S(1)
nr

)2]

=
∞∑

l=−∞

∞∑
m=−∞

nr∑
j=1

nr∑
k=1

c2k−lc
2
j−mE[ζlζm]

= K
∞∑

l=−∞

∣∣∣∣∣
nr∑
k=1

c2k−l

∣∣∣∣∣
2

r
≪

nr∑
k=1

1 + 2
∞∑
l=1

l−4σ + 2

nr∑
j=k+1

(
2(j − k)−2σ +

k−1∑
l=−∞

(k − l)−2σ(j − l)−2σ
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+

j−1∑
l=k+1

(l − k)−2σ(j − l)−2σ +

∞∑
l=j+1

(l − k)−2σ(l − j)−2σ


r
≪

nr∑
k=1

1 +

nr∑
j=k+1

((j − k)−2σ + (j − k)1−4σ)


r
≪ nr.(19)

Note:

j−1∑
l=k+1

1

(l − k)2σ (j − l)2σ
≤ 2

⌊ j+k
2 ⌋∑

l=k+1

1

(l − k)2σ (j − l)2σ

j,k
≪ (j − k)−2σ

⌊ j+k
2 ⌋∑

l=k+1

1

(l − k)2σ

j,k
≪ (j − k)(1−4σ) .(20)

Step 3: Maximal bound for geometric diagonal partial sums.
Following (19) we have for nr ≤ n < o < nr+1

E[(S(1)
o − S(1)

n )2] ≤ K

∞∑
l=−∞

∣∣∣∣∣
o∑

k=n+1

c2k−l

∣∣∣∣∣
2

o,n
≪

o∑
k=n+1

1 +

o∑
j=k+1

((j − k)−2σ + (j − k)1−4σ)


o,n
≪ o− n.(21)

Therefore, it follows by Theorem 2.4.1 of Stout [15] with g(a, n) = Cn for
some constant C > 0 that

E

[
max

nr≤n<o<nr+1

(
S(1)
o − S(1)

n

)2] r
≪

(
log(2(nr+1 − nr))

log 2

)2

(nr+1 − nr)

r
≪ r2nr.(22)

Step 4: Use previous two steps to show normalized diagonal sums con-
verge.
Combining (19) and (22), one has that

∞∑
r=0

E

 max
nr≤n<nr+1

(
S
(1)
n

n
1
p

)2
 ≪

∞∑
r=0

r2n
1− 2

p
r < ∞,(23)
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16 M.A. KOURITZIN AND S. SADEGHI

provided p ∈ (0, 2). It follows by Fubini’s Theorem and nth term divergence
that

lim
n→∞

S
(1)
n

n
1
p

= 0.

Step 5: Set up for off-diagonal terms.
Letting

a2,nl,m = 2

n∑
k=1

1m−T≤k≤l+T ck−lck−m(24)

a3,nl,m = 2
n∑

k=1

1k<l−T ck−lck−m(25)

a4,nl,m =
n∑

k=1

1k<m−T 1l−T≤k≤l+T ck−lck−m,(26)

we find that

E
[
(S(i)

n )2
]

=

∞∑
l1=−∞

∞∑
m1=l1+1

ai,nl1,m1

∞∑
l2=−∞

∞∑
m2=l2+1

ai,nl2,m2
E [ξl1ξm1ξl2ξm2 ]

=

∞∑
l1=−∞

∞∑
m1=l1+1

ai,nl1,m1

∞∑
l2=−∞

∞∑
m2=l2+1

ai,nl2,m2
δl1,l2δm1,m2

=

∞∑
l=−∞

∞∑
m=l+1

(
ai,nl,m

)2
(27)

and for nr ≤ n < o < nr+1

E
[
(S(i)

o − S(i)
n )2

]
=

∞∑
l=−∞

∞∑
m=l+1

(
ai,ol,m − ai,nl,m

)2
(28)

for i = 2, 3, 4. Using a change of variables and the Beta distribution pdf, we
have that

j−1∑
l=k+1

cj−lck−l

j,k
≪

∫ j

k
(j − t)−σ (t− k)−σ dt

= (j − k)1−2σ
∫ 1

0
(1− s)−σ s−σds︸ ︷︷ ︸
B(1−σ,1−σ)

j,k
≪ (j − k)1−2σ .(29)

imsart-aos ver. 2013/03/06 file: MSLLN*for*outer*product.tex date: January 23, 2014



MSLLN FOR OUTER-PRODUCTS OF LINEAR MODELS 17

Step 6: Apply S(1)-procedure for convergence of large c terms S
(2)
n

n
1
p
.

Using (29) and integral approximation, one has for n ∈ [nr, nr+1)

E
[
(S(2)

n )2
]
− 4

n∑
k=1

∑
m>l

1k−T≤m≤k+T · 1k−T≤l≤k+T c
2
k−lc

2
k−m

= 8
∑
j>k

∑
m>l

1j−T≤m≤k+T · 1j−T≤l≤k+T cj−lcj−mck−lck−m

≤ 4
∑
j>k

∣∣∣∣∣∣
k+T∑

l=j−T

cj−lck−l

∣∣∣∣∣∣
2

≤ 4

n∑
k=1

n∧(k+2T )∑
j=k+1

∣∣∣∣∣∣2cj−k +

k−1∑
l=j−T

cj−lck−l +

j−1∑
l=k+1

cj−lck−l +

k+T∑
l=j+1

cj−lck−l

∣∣∣∣∣∣
2

n
≪

n∑
k=1

k+2T∑
j=k+1

[
(j − k)−2σ + (j − k)2−4σ + (j − k)−2σ T 2−2σ

]
n
≪ nl(n),

where l (n) =

 T 3−4σ = n
ν(3−4σ)
r σ < 3

4
log (T ) = ν log(nr) σ = 3

4
1 σ > 3

4

. Hence,

E
[
(S(2)

n )2
]

n
≪ nl (n) +

n∑
k=1

∣∣∣∣∣
T∑

l=−T

c2l

∣∣∣∣∣
2

n
≪ nl (n) .(30)

Similarly, we have for nr ≤ n < o < nr+1 that

E

[(
S(2)
o − S(2)

n

)2] o,n
≪

o∑
k=n+1

∣∣∣∣∣
T∑

l=−T

c2l

∣∣∣∣∣
2

+
o∑

j,k=n+1
j>k

∣∣∣∣∣∣
k+T∑

l=j−T

cj−lck−l

∣∣∣∣∣∣
2

o,n
≪ (o− n) l (n) .(31)

Therefore, it follows by Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(S(2)
o − S(2)

n )2
]

r
≪

(
log(2nr)

log 2

)2

(nr+1 − nr)l(nr+1)

r
≪ r2nrl(nr).(32)
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18 M.A. KOURITZIN AND S. SADEGHI

Combining (30) with n = nr and (32), one has that

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S
(2)
n

n
1
p

)2
 ≪

∞∑
r=0

r2n
1− 2

p
r l(nr) < ∞,(33)

provided 1 + ν(3 − 4σ) ∨ 0 < 2
p (i.e. p < 2

1+ν(3−4σ) when σ < 3
4 and p < 2

when σ ≥ 3
4 , both of which are true). It follows that lim

n→∞
S
(2)
n

n
1
p

= 0 a.s.

Step 7: Apply S(1)-procedure for convergence of small c terms S
(3)
n

n
1
p
.

E
[
(S(3)

n )2
]

=8
∑
j>k

∑
m>l

1j+T<l · 1k+T<lcj−lcj−mck−lck−m

+4
n∑

k=1

∑
m>l

1k+T<lc
2
k−lc

2
k−m

≤ 4
∑
j>k

∣∣∣∣∣∣
∞∑

l=j+T+1

cj−lck−l

∣∣∣∣∣∣
2

+ 2

n∑
k=1

∣∣∣∣∣
∞∑

l=k+T+1

c2k−l

∣∣∣∣∣
2

n
≪

n−1∑
k=1

n∑
j=k+1

∣∣∣∣ ∫ ∞

j+T
(t− j)−σ (t− k)−σ dt

∣∣∣∣2 + n∑
k=1

∣∣∣∣ ∫ ∞

k+T
(t− k)−2σ dt

∣∣∣∣2
n
≪

n∑
k=1

 n∑
j=k+1

∣∣∣∣ ∫ ∞

T
t−2σdt

∣∣∣∣2 + ∣∣∣∣ ∫ ∞

T
t−2σdt

∣∣∣∣2


n
≪n2T 2−4σ.(34)

Similarly, we have for nr ≤ n < o < nr+1 that

E

[(
S(3)
o − S(3)

n

)2] o,n,r
≪ (o− n) oT 2−4σ

o,n,r
≪ (o− n)n

1+ν(2−4σ)
r+1 .(35)

Therefore, it follows by Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(
S(3)
o − S(3)

n

)2] r
≪

(
log(2nr)

log 2

)2

(nr+1 − nr)n
1+ν(2−4σ)
r+1

r
≪ r2n2+ν(2−4σ)

r .(36)

Combining (34) with n = nr and (36), one has

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S
(3)
n

n
1
p

)2
 ≪

∞∑
r=0

r2n
2+ν(2−4σ)− 2

p
r < ∞,(37)
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provided p < 1
1+ν(1−2σ) , which is the given condition, so lim

n→∞
S
(3)
n

n
1
p

= 0 a.s..

It is notable that condition on p, p < 2
1+ν(3−4σ) , in step 6 gets more

stringent when ν > 1 and the same is true for condition on p, p < 1
1+ν(1−2σ) ,

in step 7 when ν < 1, so the best choice that raises the same condition on p
is when ν = 1. Hence, we will have to satisfy p < 1

1−2σ in either cases.

Step 8: Apply S(1)-procedure for convergence of mixed terms S
(4)
n

n
1
p
.

Finally, we note

E
[
(S(4)

n )2
]

=

n∑
k=1

∞∑
m=k+T+1

c2k−m

l=k+T∑
l=k−T

c2k−l + 2

n∑
k=1

k+2T∑
j=k+1

∞∑
m=j+T+1

cj−mck−m

k+T∑
l=j−T

cj−lck−l

n
≪

n∑
k=1

T 1−2σ +
k+2T∑
j=k+1

T 1−2σ
[
(j − k)−σ + (j − k)

1−2σ
+ (j − k)

−σ
T 1−σ

]
n
≪ nT 3−4σ.

Similarly, we have for nr ≤ n < o < nr+1 that

E

[(
S(4)
o − S(4)

n

)2] o,n
≪ (o− n)T 3−4σ.

Therefore, it follows by ν = 1 and Theorem 2.4.1 of Stout that

E

[
max

nr≤n<o<nr+1

(
S(4)
o − S(4)

n

)2] r
≪
(
log(2nr)

log 2

)2

(nr+1−nr)n
3−4σ
r+1

r
≪ r2n4−4σ

r .

Combining these two equations, one has

E

 ∞∑
r=0

max
nr≤n<nr+1

(
S
(4)
n

n
1
p

)2
 ≪

∞∑
r=0

r2n
(4−4σ)− 2

p
r < ∞,(38)

provided p < 1
2−2σ , which is true. It follows that lim

n→∞
S
(4)
n

n
1
p

= 0 a.s. �

4.3. Proof of Theorem 3. Without loss of generality we assume 1 <
α < 2.

Step 1: Reduce to continuous {(ξl, ξl)}.
Let {(Ul)}l∈Z be independent [−1, 1]-uniform random variables that are in-
dependent of everything and set U l = Ul for all l. Then, we have that

1

n
1
p

n∑
k=1

(dk − d) =
1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
(ξl + Ul)(ξm + Um)− d− 2

3

)
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− 1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
ξlUm + Ulξm + UlUm − 2

3

)
.(39)

However,

lim
n→∞

1

n
1
p

n∑
k=1

∞∑
l,m=−∞

ck−lck−m

(
ξlUm + Ulξm + UlUm − 2

3

)
= 0(40)

by Theorem 8. Moreover, ξ1 + U1, ξ1 + U1 have the same moment and tail
probability bounds as ξ1, ξ1. Hence, without loss of generality, we can assume
ξl, ξm are continuous random variables, which will be important for the
truncation to follow in Step 4.

Step 2: Handle off-diagonal sum as previous proof since unaffected by
heavy tails.

Suppose S
(2)
n , S

(3)
n and S

(4)
n are defined as in (16-18). Then, we know that

lim
n→∞

S
(2)
n

n
1
p

= lim
n→∞

S
(3)
n

n
1
p

= lim
n→∞

S
(4)
n

n
1
p

= 0 a.s.,

provided p < 1
2−σ−σ by the proof of Theorem 8.

Step 3: Reduce ξlξl (in diagonal sum) to non-negative with single atom
at 0.
Noting

∞∑
l=−∞

ck−lck−l(ξlξl − E[ξlξl])

=

∞∑
l=−∞

ck−lck−l((ξlξl)
+ − E[(ξlξl)

+])−
∞∑

l=−∞

ck−lck−l((ξlξl)
− − E[(ξlξl)

−]),(41)

we only have to consider the case where ξlξl ≥ 0 for the remainder of the
proof. Moreover, insomuch as the proof of the general case only differs cos-
metically from the notationally-simpler case where ξl = ξl, E[ξ21 ] = 1 and

cl = cl =

{
1 l = 0
|l|−σ l ̸= 0

, we only provide the proof of the later for which

the long-range dependence constraint becomes p < 1
2−2σ . We will however

indicate the most significant changes that would be needed for the general
case.

Step 4: Divide diagonal terms into zero-mean truncated (i.e. bounded)
and remainder pieces.

Let κ > 0. Fix u+r = n
κ

2−α
r to find

2

∫ u+
r

0
P (ξ21 > s)sds

r
≪ 2

∫ u+
r

0
ss−αds

r
≪ nκ

r ∀ r = 1, 2, ...(42)
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Now, by defining{
ζi = ζ

r
i = (ξ2i ∧ u+r )− ϑi, where ϑi

.
=
∫ u+

r

0 P (ξ2i > s)ds ≤ 1,

ζ̃i = ζ̃ri = ξ2i − 1− ζ
r
i ,

(43)

we find that

E[ζi] =

∫ u+
r

0
P (ξ2i > t)dt−

∫ u+
r

0
P (ξ2i > t)dt = 0,(44)

so both ζi and ζ̃i are zero mean, and by (42)

E[|ζ1|2] = E|ξ21 ∧ u+r |2 −

(∫ u+
r

0
P (ξ21 > t)dt

)2

= 2

∫ u+
r

0
P (ξ21 > s)sds−

(∫ u+
r

0
P (ξ21 > t)dt

)2
r
≪ nκ

r ∀ r = 1, 2, ...(45)

(In the general case, we note that ξ1ξ1 is non-negative and of continuous

distribution on (0,∞) so E[ξ1ξ1 ∧ u+r ] =
∫ u+

r

0 P (ξ1ξ1 > s)ds as required. We

also have ζ̃ri = ξiξi − E[ξiξi]− ζ
r
i .)

Step 5: Moment Bound for truncated using the proof of Theorem 8.

Noting {ζi} are i.i.d. with E[ζ1] = 0 and E[ζ
2
1] < ∞ and defining

S(1)
n =

n∑
k=1

∞∑
l=−∞

c2k−lζ l,(46)

one finds from (23) in the proof of Theorem 8 that

E

[
max

nr≤n<nr+1

(
S(1)
n

)2]
≤ E|ζ1|2r2nr.(47)

Hence, it follows by (45) that

E

[
max

nr≤n<nr+1

(
S(1)
n

)2] r
≪ r2n1+κ

r .(48)

Step 6: Moment Bound for remainder using Doob’s inequality.
Turning to the ζ̃ri and using the formula

E[g(X)] =

∫ ∞

0
g′(t)P (X > t)dt−

∫ 0

−∞
g′(t)P (X < t)dt,(49)
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one has by our tail probability bounds that the non-negative part of ξ̃1
satisfies

E|ζ̃+1 |τ = τ

∫ ∞

0
sτ−1P (ξ21 > u+r + s+ 1− ϑ1)ds

≤ τ

∫ ∞

0
sτ−1P (ξ21 > u+r + s)ds since ϑ1 ≤ 1

r
≪

∫ ∞

u+
r

(s− u+r )
τ−1s−αds

≤
∫ 2u+

r

u+
r

(s− u+r )
τ−1ds(u+r )

−α +

∫ ∞

2u+
r

(s− u+r )
τ−α−1ds

r
≪ (u+r )

τ−α r
≪ n

κ(τ−α)
2−α

r ,(50)

for 1 < τ < α. Therefore, it follows by Jensen’s inequality and Doob’s Lp

inequality that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

∞∑
l=−∞

c2l ζ̃
r
k−l

∣∣∣∣∣
τ]

≤ E
1
τ

[∣∣∣∣∣
∞∑

l=−∞
c2l sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

ζ̃rk−l

∣∣∣∣∣
∣∣∣∣∣
τ]

r
≪

∞∑
l=−∞

c2lE
1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

ζ̃rk−l

∣∣∣∣∣
τ]

r
≪

∞∑
l=−∞

c2lE
1
τ

∣∣∣∣∣
nr+1−1∑
k=1

ζ̃rk−l

∣∣∣∣∣
τ


r
≪ nr∥ζ̃r1∥τ ,(51)

so by (50,51)

E

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

∞∑
l=−∞

c2l ζ̃
r
k−l

∣∣∣∣∣
τ]

r
≪ n

τ−κ(α−τ)
2−α

r .(52)

Step 7: Use Truncation and Error Term bounds with Borel-Cantelli for
convergence.
Combining (48) and (52), one has that

P

(
sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

∞∑
l=−∞

c2l ζk−l

∣∣∣∣∣ > 2ϵn
1
p
r

)

≤

E

 sup
nr≤n<nr+1

∣∣∣∣∣ n∑
k=1

∞∑
l=−∞

c2l ζ
r

k−l

∣∣∣∣∣
2


ϵ2n
2
p
r

+

E

[
sup

nr≤n<nr+1

∣∣∣∣∣ n∑
k=1

∞∑
l=−∞

c2l ζ̃
r
k−l

∣∣∣∣∣
τ]

ϵτn
τ
p
r
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r
≪ r2n

1+κ− 2
p

r + n
τ−κ(α−τ)

2−α − τ
p

r
r
≪ r2n

1−α
p

r + n
τ−α

p
r ,(53)

by letting κ = 2−α
p . Hence, if τ ∈

(
1, αp

)
, then

∞∑
r=1

P

(
sup

nr≤n<nr+1

∣∣∣∣∣
n∑

k=1

∞∑
l=−∞

c2l ζk−l

∣∣∣∣∣ > 2ϵn
1
p
r

)
< ∞,(54)

under our heavy-tail condition p < α and

n
− 1

p

n∑
k=1

∞∑
l=−∞

c2l ζk−l → 0 a.s.,(55)

by Borel-Cantelli. The proof is complete. �
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