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Abstract 

This thesis discusses methodologies for experimental measurement of delamination 

resistance and the prediction of delamination development in fiber-reinforced composites 

in mixed or pure fracture modes using analytical approaches or finite element methods. 

A new test method, named internal-notched flexure (INF) test, was developed to 

measure the composites' resistance to delamination growth in pure shear mode. 

Experiments and theoretical analysis have shown that the INF test generates 

unconditionally stable delamination growth, with monotonic increase of load and 

displacement in a nearly linear way. The resistance curve (R-curve) associated with the 

delamination growth in the INF test was established using a new data reduction method, 

the direct method with final crack length correction (DMC). Compared to the R-curves 

by the traditional compliance calibration method, the DMC avoids difficulties of in-situ 

crack length measurement, thus improve consistency of the results. Through a series of 

tests with different setup configurations and fiber content, the mode II delamination 

resistance was found to be independent of setup configuration but decreases with the 

increase of fiber volume fraction. 

A cohesive damage material model was developed for the simulation of 

delamination onset and propagation using finite element method. The cohesive damage 

material model adopts delamination toughness to govern the damage evolution and uses a 

multi-axial-stress-based criterion to predict the damage initiation, so that the model is 

able to show the hydrostatic stress effect. This material model can also address some 

issues related to mode-II-dominated delamination such as the frictional force effect. The 

validity of the model was firstly examined by simulating delamination growth in pre-



cracked coupon specimens of fiber composites, including stable/unstable delamination 

growth in pure/mixed fracture mode. The material model was then used to simulate 

delamination in a composite specimen for without starting defects (or a pre-crack). The 

results were compared with those from experimental studies, for physical location of the 

delamination initiation and the final crack size developed. In addition, thesis also presents 

a parametric study that investigates the influence of material strength on the delamination 

initiation in composites with or without initial defects. 
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Chapter 1 Introduction 

1.1 Background 

Composite materials are engineered materials consisting of two or more constituents 

which have significantly different physical or chemical properties and remain separate 

and distinct on a macroscopic level in the finished structure. In the past several decades, 

composite materials have spread nearly everywhere in daily life. For example, all 

electrical appliances contain a circuit board that generally uses composite materials as 

substrate to mechanically support the electronic components, furniture and wall of 

dwelling houses are made of a common composite, wood fiberboard. 

The constituents of composite materials could be divided into matrix and 

reinforcement. The reinforcements usually have special mechanical and physical 

properties, but are too small in size and lack of integrity. The matrix material serves as a 

support to hold the reinforcement materials together and a media to transfer load among 

individual reinforcement. Integration of matrix and reinforcements generates a new 

material that has properties unachievable by each constituent. 

Fiber-reinforced composite materials (fiber composites for short) are the most 

commonly used, high performance composite materials, and generally contain continuous 

fiber as reinforcement and polymer as matrix. One of its applications is in the aeronautic 

and aerospace industries as a light, stiff and high-strength structural material to replace 

metallic alloys. The portion of fiber composites in the next generation of Boeing 
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passenger aircraft is expected to rise up to 50%. The major structural parts, such as the 

fuselage sections (main body of a plane) and wings, will be made of carbon fiber 

composites. In combat jets, the portion of composite materials is even higher. For 

example, composites weigh more than half of the total weight in contemporary 

EuroFighters [1]. 

Fiber composites often constitute a layered or laminated structure, with the 

fundamental unit being a unidirectional fiber layer (laminar). Unidirectional fiber layers 

could be arranged in different directions in fiber composites thus giving a lot of flexibility 

to build laminate with desirable mechanical properties. However, due to its special 

laminated structure, the failure mechanism of fiber composites is different from metallic 

materials. Shocks, low velocity impact or cyclic stress loading can cause fiber composites 

to separate at the interface between two layers, which is a failure mode known as 

delamination. Failure by delamination is hard to inspect from the surface since it is 

embedded within the fiber composites, much like fatigue in metals. Its effects on 

structure, however, are detrimental, including a dramatic loss in strength and effective 

service lifetime, making it a big safety concern. As a result, there is an imperative 

demand for thorough understanding of the delamination mechanism and generation of 

reliable means to predict the delamination occurrence and growth that lead to the final 

structural failure. 

The study of delamination is beyond the scope of composites mechanics. Instead, 

as a type of crack, delamination is commonly studied in the context of fracture mechanics, 

which is a subject using analytical or numerical methods to calculate the driving force for 

crack growth and experimental methods to determine the critical driving force value as a 
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characteristic of material's resistance to fracture. The definition of driving force is not 

unique. For example the energy release rate, the stress intensity factor, and the ./-integral 

all can serve as the driving force, but each has its limitation and restriction in applications. 

Among those, the energy release rate has been chosen as a suitable and adequate driving 

force for delamination in fiber composites. Consequently, the study of delamination 

usually is concerned about the characterization of delamination resistance in fiber 

composites by its critical energy release rate, and the prediction of delamination based on 

the driving force for delamination growth and composites' resistance to delamination. 

1.2 Aims and scope 

Aims and scope of thesis are illustrated in Figure 1.1. The ultimate goal of this study is to 

develop analytical and numerical methods to simulate the delamination development in 

fiber composites. The simulation will provide information such as the critical load to 

initiate delamination, the speed and extent of delamination crack growth and the impact 

of delamination on the strength, stiffness and serviceability of the components made of 

fiber composites. The information could facilitate the design of composite structures for 

preventing the initiation or suppressing the propagation of delamination, thereby offering 

reliable and safe fiber composite structures. 

The accuracy of simulation results also depends on the input information on 

composites' properties, without which any simulation result is in vain. The most 

important parameter for delamination is obviously, as mentioned above, the critical 

energy release rate. Therefore, the measurement of the critical energy release rate, 

through appropriate testing methods, is another goal that this study should achieve. There 

are three basic fracture modes for delamination in fiber composites, i.e. the opening mode 
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(mode I), the shearing mode (mode II) and the tearing mode (mode III). The value of the 

critical energy release rate in each mode is generally different. The double cantilever 

beam (DCB) test, as shown in Figure 1.2(a), had been standardized by American Society 

for Testing and Materials (ASTM) [2] as the test method for mode I delamination 

toughness. The mixed mode bending (MMB) [3] test (see Figure 1.2(b)) has also been 

standardized for measuring the critical energy release rate of mixed mode I and II 

delamination. For pure mode II delamination, there are several mode II testing methods 

currently being considered, including the end-notched flexure (ENF) test (Figure 1.2(c)), 

the end-loaded split (ELS) test (Figure 1.2(d)) and the 4-point bending ENF (4ENF) test 

(Figure 1.2(e)). However, none of them has been accepted as the standard testing method 

due to some technical issues like unstable crack growth. The study on the mode III 

delamination has been very few, because this mode is not as common as mode I and II in 

real applications of fiber composites. Therefore, the part of this thesis on the critical 

energy release rate mainly focuses on pure mode II delamination. 

The critical energy release rate is not a directly measurable term. It has to be 

derived from other variables that can be measured experimentally, such as crack length, 

force and displacement. Therefore, data reduction methods, usually based on analytical 

approach or finite element method (FEM), are needed to correlate the measurable 

quantities with the critical energy release rate of interest. This procedure, together with 

the development of testing methods for delamination, is known as characterization of 

delamination, which is the topic of the first part of thesis. 
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' • • i 

Figure 1.1 Scope of the thesis. 

In the 2nd part of thesis, analytical approaches and FEM will be used to predict 

delamination in fiber composites for its initiation and propagation based on the critical 

energy release rates. This procedure, as shown in Figure 1.1, is the simulation of 

delamination. Great efforts have been devoted to simulate delamination using FEM. 

However, previous work either lacked of physically meaningful criteria for delamination 

development, missing some important stress components in determining the delamination 

onset, or involved applying inappropriate fracture mode in the mixed mode fracture 

scenarios. The FEM work presented in this thesis will be based on a different strategy to 

model delamination to address all of the above problems. 

Overall, a framework is established in thesis to assess the resistance of fiber 

composites to delamination and to predict its occurrence and potential hazard before the 

failure happens in the application. 
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1.3 Structure of thesis 

The first part of thesis is concerned with the characterization of delamination, comprising 

of 

• Chapter 2, discussing the analytical approaches to prediction of the energy release 

rate which is used in Chapter 4 for the data reduction of the critical energy release 

rate; 

• Chapter 3, introducing a new finite-element-based approach to predict the energy 

release rate which provides crosscheck of the analytical approaches in Chapter 2 

and can also be used in the scenarios where the analytical approaches are not 

available; and 

• Chapter 4, developing a new mode II testing method and the associated critical 

energy release rate reduction strategies based on the work in Chapters 2 and 3. 

The second part of this thesis is concerned with the simulation of delamination, which 

consists of 

• Chapter 5, introducing analytical methods to predict the delamination length and 

location, results from which are compared with experimental results; and 

• Chapter 6, discussing the FEM work for the simulation of delamination, which is 

verified by the examples used in Chapters 2-4. 

Each of Chapter 2 to 6 also contains necessary introduction and literature review 

regarding the main topic of that chapter. 

The last chapter summarizes the whole work and identifies problems that could be 

considered for the future work. 
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Figure 1.2 Configurations of the DCB, MMB, ENF, ELS and 4ENF tests. 

- 8 -



Chapter 2 Analytical Methods for the Calculation Energy 

Release Rate 

2.1 Introduction 

The calculation of the energy release rate is one essential step in the study of 

delamination. In a delamination test for the toughness measurement, the calculated 

energy release rate based on the experimentally determined critical loading conditions 

serves as the delamination resistance. In the simulation of delamination, the calculated 

energy release rate is compared with the delamination toughness to decide whether crack 

stays or advances. A closed-form expression of the energy release rate, which expresses 

the role of each parameter on the delamination development, is always the favorite 

solution. Although the closed-form solution is commonly derived based on beam or plate 

theories, taking advantage of the beam or plate structure of fiber composites, it is not 

available for most of practical composite components, let alone the analytical solutions 

by theory of elasticity. The difficulties may come from the irregular crack profile and 

complex boundary conditions. Only in the cases with simple geometry and boundary 

conditions, such as coupon tests for measuring delamination toughness, are the closed-

form solutions possibly obtained. 

A commonly used approach to derive the energy release rate is the compliance 

method, which is based on an equation in linear elastic fracture mechanics to correlate the 

derivative of compliance with respect to the crack length to the energy release rate. When 
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applying compliance method to fiber composites, the expressions of the compliance are 

often obtained using beam or plate theories that have been well established centuries ago. 

Even so, some concepts in the beam theories were still misused in recent literature, such 

as Refs. [4-6], which led to erroneous conclusions on the energy release rate of fiber 

composites. Thus, the following section of this chapter will briefly review the beam and 

plate theories and point out the errors in the literature. Some case studies of delamination 

growth in beams and plates will also be given. 

Another analytical approach for the energy release rate is the crack tip element 

(CTE) analysis. The CTE analysis was invented by Schapery and Davidson [7], based on 

Irwin's virtual crack closure method and plate theory. The CTE analysis calculates the 

energy release rate from the forces and moments, incurred by stress concentration at the 

crack tip. In some cases, the CTE analysis could significantly simplify the procedure of 

deriving the energy release rate. In section 2.3, the formula of the CTE analysis will be 

re-derived in a clean matrix form. The CTE analysis will also be used to evaluate the 

frictional force effect in mode II delamination tests. 

2.2 Compliance method 

Denoted by G, the energy release rate in quasi-static fracture is defined as 

GdA = dW-dU (2.1) 

where dW is the external input energy, dU the change of strain energy and dA the change 

of crack area. 

In linear elastic fracture mechanics, Eq. (2.1) could be rewritten as the product of 

the applied force P and the derivative of compliance C with respect to the crack area A: 
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G -£-* (2.2) 

2 dA 

The approach of using Eq. (2.2) to derive the energy release rate is known as compliance 

method. To use this method, the compliance has to be well-defined, i.e. only a single 

concentrated force or displacement is allowed to apply to a linear elastic system. 

The key-point of using the compliance method is to obtain the expression of C as 

a function of A. Sections 2.2.1 and 2.2.2 will focus on deriving the compliance in beam 

and plate structures, respectively, which contain a crack. 

2.2.1 The energy release rate in cracked beams 

2.2.1.1 Euler-Bernoulli beam theory 

Basic assumptions 

Euler-Bernoulli beam theory has five assumptions that are applicable to most beams. 

They are: 

1. The beam is long and slender, i.e. the length is much greater than the width and 

thickness; 

2. Deformation remains small; 

3. Cross-sections of the beam remain plane; 

4. The beam cross-sections remain perpendicular to the neutral axis after deformation; 

5. The beam is made of isotropic, linear elastic material. 

Geometric equations 

Let x and z denote the locations along and perpendicular to the beam axis (see Figure 2.1). 

Based on assumptions 2-4 above the displacement in the axial direction u and that normal 

to the beam axis w could be expressed as 
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I u(x, z) = «0 (x) ~z\j/{x) 

\w(x,z) = w0(x) 
(2.3) 

where UQ(X) and WQ(X) are the displacements on the neutral axis in the x- and z-directions, 

respectively, and y/{x) the rotation angle of the cross-section. From assumptions 2 and 4, 

the rotation angle y/(x) equals the slope of the deflection curve wo(x), thus, 

y/(x)-
dw0 (x) 

dx 
(2.4a) 

and the curvature of the deflection curve K is the first order derivative of y/(x) : 

K{X) = 
dy/{x) 

dx 
(2.5) 

Figure 2.1 Sign conventions for displacements and rotation angle 

Constitutive equations 

From assumption 5, the bending moment M(x) and the resultant axial force N(x) on the 

cross-section are related to the curvature and axial strain, respectively, by 

M(x) 
K(X) = --

EI 

du{x) N(x) 

dx EA 

(2.6) 

(2.7) 
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where E is elastic modulus of the beam, / area moment of inertia, and A cross-sectional 

area. The sign convention for M is shown in Figure 2.2 and that for JV follows that N is 

positive when it produces tension. 

+M M +Q -Q +q -q 

CUHM) t 1 1 
\ 

t 
1 ]/ \ ' 1 \ A A 

Figure 2.2 Sign conventions for bending moment M, shear force Q, and distributed 

shear force q on an beam element. 

Equilibrium 

Equilibrium is from the free body diagram of an element of a beam shown in Figure 2.3: 

dM 

dx 
= Q 

dQ___ 
dx 

(2.8) 

(2.9) 

where Q and q are resultant shear force on the cross-section and the distributed transverse 

force, respectively, with the sign conventions depicted in Figure 2.2. 

Q 

q{x) 

M dx 

M+dM 

Q+dQ 

Figure 2.3 Free body diagram of a beam element for equilibrium. 
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Combining Eqs. (2.4-2.9), the following forms of governing equations yield for 

the Euler-Bernoulli beam, 

EIwl = -M or EIw% = -Q or Ehv"0'= -q (2.10a, b,c) 

EAu' = N (2.11) 

where the prime denotes the derivative with respect to x. Using Eq. (2.10) together with 

boundary conditions, the deflection curve of the beam can be obtained. 

2.2.1.2 Timoshenko beam theory 

The major improvement of the Timoshenko beam theory over the Euler-Bernoulli beam 

theory is that the former considers shear strain. That is, the 4th assumption of the Euler-

Bernoulli beam is not required in the Timoshenko beam theory, and neither is Eq. (2.4a). 

In a Timoshenko beam, as shown in Figure 2.4, the slope of the deflection curve is the 

combination of the rotation angle y/ and the shear strain y, 

dw0 (x) 

dx = r + Hx) 

{ 
cross-section 

ZL 
t un-deformed 

deformed 

(2.4b) 

Figure 2.4 Illustration of the deformation in a Timoshenko beam. 
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The equilibrium and constitutive equations of the Timoshenko beam theory are 

exactly the same as those of the Euler-Bernoulli beam theory. Using Eqs. (2.4b) and (2.5-

2.9), the differential equations for the Timoshenko beam are obtained: 

EI(W -r)' = -M or EI(w' - y)" = -Q or EI(w' - y)'" = -q (2.1 Od, e, f) 

Another constitutive equation introduced to the Timoshenko beam theory is to 

relate y to the shear force Q and the shear modulus pi by 

r = ir^ (2.i2) 

where kSh is a correction factor taking into account the non-uniformly distributed shear 

stress. The value k is generally determined by 

\\f-dA=l-Qy (2.13) 
2 JA ju 2 

where r denotes the shear stress. The left hand side of Eq. (2.13) represents the strain 

energy due to shear force on a unit length of a beam element and the right hand side is the 

external work responsible for generating this amount of shear deformation. For instance, 

in a beam with rectangular cross-section (h x B), x can be expressed as [8], 

2 A Ah1 *•(*) = ^ T O T T T - 1 ) (2-14) 

By substituting Eqs. (2.12) and (2.14) into Eq. (2.13), ksu is found to be 5/6. 

2.2.1.3 Composite beams 

Though a unidirectional fiber composite beam that has orthotropic property does not 

satisfy the assumption of isotropic material for the beam theory, the beam theories are 

still applicable if the beam axis is along one of the principal directions of the orthotropic 

material. In this case, the material constants E and n should be replaced by the modulus 
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in the corresponding directions, such as by changing E -» Ex and /u —> jun in the case 

that the local 1-direction of the material is along the beam axis. 

The beam theories ignore the Poisson's ratio effect. When Poisson's ratio is taken 

into account, two types of beams could be distinguished according to the aspect ratio of 

width to thickness, which are referred to as narrow beams for small aspect ratio and wide 

beams for large aspect ratio. Considering a beam with rectangular cross-section under 

pure bending, as show in Figure 2.5, due to the Poisson's ratio effect, the upper half of 

the beam where compressive axial stress exists expands in the width direction, and the 

bottom half shrinks. In the case of a narrow beam the stress in the ^-direction is free and 

the whole cross-section is distorted, as shown in Figure 2.5(a). But in a wide beam, which 

behaves more like a plate, the strain in the >>-direction remains zero in most part of the 

width and only the portion near the edges is distorted. Mathematically, these two beams 

can be viewed as plane-stress and plane-strain models. Therefore, Young's modulus E in 

Eqs. (2.6) and (2.10) should be modified to address the plane-strain or plane-stress 

condition, i.e. 

E 

£ - > 
wide beam or plane - strain conditon 

l-v2 r (2.15) 
E narrow beam or plane - stress condition 
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M 16 V 

y 
M/z 

^ X 
> 

X 

y* 

(a) (b) 

Figure 2.5 Poisson's ratio effect in (a) a narrow beam, and (b) a wide beam. 

2.2.1.4 Example: a cracked beam subjected to 3-point bending. 

An example of using the Timoshenko beam theory to determine the energy release rate 

for a crack at the mid thickness of a unidirectional fiber composite beam when subjected 

to 3-point bending is given below. 

Assuming that the crack is not an edge crack, four possible scenarios, as 

illustrated in Figure 2.6, are considered here. The 1st scenario, Figure 2.6(a), has the 

delamination crack lying between the central loading point and one of the supports. The 

2nd scenario, Figure 2.6(b), has the delamination crack extend beyond the central loading 

point, but lying between the two supports. The 3rd scenario, as shown in Figure 2.6(c), is 

similar to the 2nd scenario except that the delamination crack has extended beyond one of 

the supports. The 4th scenario is similar to the 1st scenario, but the crack extends over the 

support, as shown in Figure 2.6(d). 
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Scenario 1 

(a) 

Scenario 2 

7T 

Scenario 3 

7T 

i 
a2 dj 

I 

<?2 a; 

TV 

7X" 

(b) 

(c) 

Scenario 4 

7T 

i 
a2 

7T 

aj 
(d) 

Figure 2.6 Crack configurations in a beam subjected to 3-point bending. 
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The scenario of Figure 2.6(a) is used to demonstrate the derivation of the 

expression for G using the compliance method. The beam is divided into two halves, with 

each half carrying half of the load, as shown in Figure 2.7(a) for the top half. Free body 

diagram of the top half of the specimen is shown in Figure 2.7(b). According to Eq. 

(2.14), the internal shear stress x on the cut boundaries is uniform and equal to 3P/(8hB). 

Two force components (FCi and Fa) and two bending moments (Mci, and Ma) at the 

crack tips take into account the stress concentration. However, the moments MQ\ and Ma 

have to be equal to 0 to meet the compatibility between the 2 halves of the beam. The 

coordinate system for Figure 2.7(b) is set at the mid-plane of the upper half beam with 

the origin above the right crack tip, point O of Figure 2.7(b). Following the approach in 

ref. [4] for the convenience of the derivation and without losing the generality, it is 

assumed that the deflection and rotation angle are zero at the mid point of the upper half 

beam (point B), as depicted in Figure 2.7(c): 

w(-ax) = 0 

!/(-«,) = 0 (2.16) 

Using the governing equation Eq. (2.10d) and the above boundary conditions, the 

deflection, w(x), and rotational angle, y(x), in section AC of Figure 2.7(b) is obtained, 

&h3BE 4hBju 

(X + al)[2L-(X + al)] 

Sh3BE 

Substituting x = («2 - «i) to above equations, w and y/ at point C in Figure 2.7(b) can be 

expressed as: 
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w(a2 -ax) 
P(3L-a2)a2 Pa2 

y/(a2-ax) = 

WBE AhB^i 

a2 (2L -a2) 

Sh3BE 

(2.19) 

(2.20) 

I 

A" 

P/2 

-A (a) 

PIA 

P/2 

B 

Ma=0 

Of ->: 

V Fc2 

D 

MC2 =0 PI A 
(b) 

\ 
w(-a,) = 0 

M-ai) = ° 
u{-ax)-0 

(C) 

Figure 2.7 Diagrams for beam analysis: (a) upper beam model; (b) free body diagram 

of the upper beam; and (c) boundary conditions. 

To obtain the deflection curve of part CO in Figure 2.7(b), the following 

compatibility equation is introduced due to the unknown concentrated forces Fc\ and FCi 

at the crack tips, 
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u(0,h/2) = u(a2-avh/2) (2.21) 

This equation states that the length CO in Figure 2.7(b) remains constant during the 

deflection, as elongation of CO in the top half should be compatible with the counterpart 

in the bottom half. 

Again, by solving ordinary differential equations together with boundary 

conditions of w and y at point C (Eqs. (2.19) and (2.20)) and compatibility condition (Eq. 

2.21), FCi and FC2 were obtained as: 

FCl=FC2=^(al-a2) (2.22) 

Similarly, w and y/ in section OD are: 

P[2x3 +6(a1-L)x2 +6(al
2 -2alL)x-a3 +9afa2-9a1a

2-6afL + 3a3
2] P(x + ax) 

W(X) — 5 1 
\6EBh3 A/jBh 

(2.23) 

Hx)JP^a,)[2L-{x + ax)] ^ 

SEBh 

Eqs. (2.17) and (2.23) describe the deflection of the beam in Scenario 1 of Figure 2.16, 

and provide the information needed to determine compliance of the beam. 

Following the same procedure, expressions of the deflection curve for the other 

scenarios of Figure 2.6 were derived. Thus, expressions for compliance C were obtained 

and listed in Eq. (2.25). 

For the 1st scenario, Figure 2.6(a), the expression for C is: 

C^4^ + - ^ - +
3 ( V 2 ) 3 (2-25a) 

Ah1 BE AhBfj, 32h3BE 

for the 2nd scenario, Figure 2.6(b) 
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c = L3
 | L | 3(fl!+q2) -lf>axa\ 

Ah'BE 4hB<u 32h3BE(ax+a2) 

for the 3r scenario, Figure 2.6(c) 

4/z35£ 4/z£// 
r 1 (2.25c) 

3[-3Z4 + 4a!l3 + 8a2Z
3 + 6a2Z2 + 12a,a2Z

2 -12a1a2Z + 4a,a3 +a2 J 

32/*35£(a1+a2) 

and for the 4th scenario, Figure 2.6(d) 

c—*U-^ 
4h3E 4hpi 
3[-3L4 + 4axL

3 + 8a2L
3 -6a2

2L
2 -\2axa2L

2 + l2axa
2L-4axa

3
2 + a2] 

32h3BE(ax-a2) 

The expressions for G were obtained by substituting the above expressions for C into Eq. 

(2.2), which are: 

for the 1st scenario, Figure 2.6(a), 

9P 
Ga\=Ga2=-—-—{ax-a2f (2.26) 

>2 

64EB2h 

for the 2n scenario, Figure 2.6(b) 
9P 2 

64EB h (ax+a2) 

op2 

64EB h (ax+a2) 

for the 3rd scenario, Figure 2.6(c) 

QP 2 

G* = *A™*7< ^ .2(a2
2-2a2Z-Z2)2 (2.29) 

64£J5 A (ax + a2) 

op2 

G«* = AAM2U*, + *(«1 +L2-2axL + 2axa2f (2.30) 
64 EBh(ax + a2) 
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rfl 

and for the 4 scenario, Figure 2.6(d) 

9 p 2 
G^ = ^ F R 2 , 3 , -fiai-la.L + Ly (2.31) 

64£5 h {ax -a2) 

9P2 

G°* = *A™W, ., ^ ( ~ a ' +^2 -2«1X + 2a1a2)2 (2.32) 
64EB h (ax + a2) 

Each of the above G expressions represents the energy release rate for the 

increase of crack length in the direction that is designated by the subscript (a\ or ai). 

2.2.1.5 Shear deformation effect 

Shear flexibility was suspected to be a factor that influences the determination of G. 

Some researchers gave equations to quantify this effect, including the work by Carlson et 

al. [4], Zhou et al. [5] and Corleto et al. [6]. However, in the above example of cracked 

beam the shear modulus does not appear in the expressions of G, Eqs. (2.26-2.32), though 

the shear deformation was considered in the derivation. The expressions of compliance, 

Eqs. (2.25a-2.25d), however contain the term for the shear deformation, but show 

independence of the crack length. Thus, these terms vanish when taking derivative with 

respect to the crack length. 

Following the same procedure used in the previous example, the expressions of C 

and G of the common mode II delamination tests, i.e. the ENF test, the ELS test and the 

4ENF test, were derived and listed in the following. 

For the ENF tests (Figure 1.2(d)), 

2Z3 + 3a3 3Z 

8h3BEl lOhBju 
CtNt = ' + ^ ^ - (2.33) 

2 „ 2 

GENF = 9P" 2 (2.34) 
\6Exh

lB2 
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for the ELS test (Figure 1.2(c)) 

S,ELS L +3a 3L , „ „ ^ 

CEL = — + (2.35) 
2h3BEl lOhB/j 

GELS=^~ (2-36) 

and for the 4ENF test (Figure 1.2(e)) 

c4ENF 9(L-d/2)2a | (L-d/2)2[3L-5(L-d/2)] | 3(L-d/2) 
%h3BEx 4h3BE, lOBhju 

,4ENF 9P2(L-d/2)2 

\6h3B2El 

(2.38) 

All results show the independence of G from the shear modulus. However, Refs. 

[4-6] concluded that shear modulus affects the G value, which was actually caused by an 

erroneous assumption in the derivation that created an unnecessary term in the expression 

of G related to the shear modulus. The erroneous assumption is that the shear strain in the 

un-cracked section of a beam introduces rotation of the adjacent cracked section, thus 

generating extra terms in G. The schematic description of the deformation with shear 

strain is illustrated in Figure 2.8 which shows that the shear strain y does not cause any 

rotation of the cross-section. The rotation at the end is entirely due to the bending 

deformation. 
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Bending deflection Shear deformation, no rotation 

Total deflection 

dwo(x)/dx 

Figure 2.8 Deformation mechanism of a beam with shear force. 

2.2.2 Energy release rate in cracked plates 

2.2.2.1 Plate theory 

The classical plate theory is a 3D version of beam theory, and is established based on 

similar assumptions: 

1. The plate is thin, i.e. in plane dimensions are much greater than the thickness; 

2. Deformation remains small; 

3. Material is isotropic and linear elastic; 
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4. A straight line normal to the mid-plane remains the same length after the deformation 

and is still normal to the mid plane (Kirchoff s hypothesis). 

Based on the above assumptions, the displacements u, v and w could be expressed as 

w=w(x,y) 

u = u0(x,y)-zw,x 

v = v0(x,y)-zw,y 

(2.39) 

The kinematics, constitutive, force resultant, and equilibrium equations of the classical 

plate theory are summarized here. 

Kinematics 

(2.40) 

(s "1 

Syy 

\Yxy) 

- z 

( \ 

— 2w 

— z 

( \ 
Kx 

*y 

Resultants 

KM*yJ 

-h 
''<0 

\axyj 

dz 

Constitutive equations 

f \ 
s 
£ 

yy 

\Yxy J 

1 = 
E 

- # : > 

1 -v 0 

-v 1 0 

0 0 2(1+ v) 

V 

\axyj 

(2.41a) 

(2.41b) 

(2.42) 
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Equilibrium 

Q =
 dM* | dM*y 

dx dy 

dMv dMxv 

e*=ir+^f (2'43) 

The governing differential equation of the deflection w can be obtained by the 

combination of Equations (2.39-2.43) with Hooke's law, that is, 

V\DV2w) = q (2.44) 

where q is the distributed load acting along the plate normal, V2 is the Laplacian 

d2 d2 

differential operator which equals to — - + — - in a Cartesian coordinate system and D 
dx dy 

is the bending rigidity. 

2.2.2.2 Example: penny-shaped crack in a plate 

This section presents the derivation of the energy release rate in a plate structure shown 

in Figure 2.9. The plate contains a penny-shaped crack in the mid-thickness and is simply 

supported along a circumference of radius R with concentrated force P at the center of the 

top surface. 

First two basic solutions of circular plates without any crack but subjected to a 

force loading at the center are presented, one with simply supported and the other with 

clamped boundary conditions. 
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p 

Figure 2.9 Penny-shaped crack embedded in a plate. 

A cylindrical coordinate system is set at the center of the circular plate. Since it is 

an axisymmetrical problem, all derivatives with respect to 6 are zero. The governing 

equation (2.44) in the cylindrical system is: 

d3w 1 d2w dw V 
• + : ; + — = 0 

dr r dr r dr D 

where Fis the shear force per unit length, equal to P/(27rr), and D is equal to 

30 -v1) 

The bending moments in r and 9 directions are, 

\Mr = -D(wrr + vwr Ir) 

\Me=-D(vwrr+wrlr) 

The boundary conditions for simply supported circular plate are 

W\r=R=Q 

w,r Lo=° 

(2.45) 

(2.46) 

(2.47) 

(2.48) 
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The first boundary condition specifies zero displacement at r = R, the second denotes 

zero bending moment at r = R, and the last one is the symmetrical condition at the center. 

By solving Eq. (2.45) with the boundary conditions, we have 

P[(3 - v)(R2 - r2) - 2(1 + v)r2 MR I r)] 
w(r) = 

\6TTD(1 + V) 
(2.49a) 

For the case with clamped boundary, the second equation of Eq. (2.48) should be 

changed to wr \r=R= 0 to represent zero rotation on the clamped boundary. The deflection 

curve for this case is 

w(r) = 
P[R2-r2-2r2ln(R/r)] 

\6nD 
(2.49b) 

P/2 

+ 
<-

R <- R 
< • 

a 

(D (2) 

Figure 2.10 Schematic illustration of the superposition 

+ 
<-

(3) 

The problem defined in Figure 2.9 could be solved by decomposing it into 3 

simple sub-problems as shown in Figure 2.10. It is easy to find that the superposition of 

the solutions of problems (1-3) in Figure 2.10 satisfies all boundary conditions of the 

original problem and the three sub-problems share the same governing equation. 

Therefore, the summation of these three problems must be the unique solution of the 

cracked circular plate. Thus, the displacement at the loading point can be expressed as 

P 
wU= ZlnEH 

-[9a2(l-vz) + 9R2 -6vR2 +3vlRz] (2.50) 
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Dividing the above equation by P yields the expression of compliance C 

_ 9 a 2 ( l - v 2 ) 9R2-6vR2+3v2R2 

C = i ^ + (2.51) 

Based on Eq. (2.2), note dA = Inda in this case, the corresponding G for crack growth, is: 

9P2(l-v2) 
G = yr \ v> (2.52) 

64x2Eh3 

2.3 Crack tip element analysis 

2.3.1 Crack tip element theory 

A brick element containing a crack tip is taken out from a delaminated laminate plate as 

shown in Figure 2.11(a). The width of the crack tip element is assumed to be so small 

that the crack front is straight and along the >>-direction? though the entire crack front may 

be curved. It is also assumed that the length (x-direction) of this element is small, thus the 

forces and moments on the front and back surfaces can be ignored. 

Extending from the crack, the element is divided into two parts. Three 

concentrated forces, N& Sc and Mc, at the crack tip are exposed and illustrated in the free 

body diagram of the top part of the element, as shown in Figure 2.11(b). Based on the 

equilibrium, we have 

NC=N\-Nl (2.53a) 

SC=S\-SX (2.53b) 

Mc = M\ -Ml - Nctx 12 (2.53c) 

or in the matrix form 

-30-



KMX-M\j 

fNr^ 
- rr-O) [C^ l 

\Mcj 

no­where [C '] denotes a 3*3 matrix of constants. 

(2.54) 

sy 
*2, 

A 
I 

V 

"A" 

v 

Si d 

S2H 

Nj \M, 

N2*)M2 y / 
• > 

(a) 

h 
A 
V 

Sc Mc 

Nj^Mi 

(b) 

Figure 2.11 Free body diagrams for (a) crack tip element, and (b) half crack tip element 

According to the laminate theory, strains sj-1^ and yxyl\ and curvature TO/1*1 of the 

upper arm are linear functions of the external loads, 

bx 

yd) 
/ xy 

K-(1) 

' A O 

= [AW1 

v ^ y 

and 

( P'<y)\ 
bx 

/ xy 
„'(!) 

\K* J 

f \T'\ 

- rAff l [Aw ] (2.55) 

where, [A('] is a 3x3 matrix and the variables with prime denote the quantities in the un-

cracked portion. 

Assuming crack advances a length Aa, according to Irwin's virtual crack closure 

method [9], G can be calculated based on the work required to close this crack length 

increment. Thus, 
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G = [Nc(u2-ul) + Mc(p2-i//l) + Sc(y2-vl)]/2Aa (2.56) 

where u\, v/ and y/j are the displacements and rotation angle of the crack front on the 

upper arm after the crack growth, u2, vi and y/2 are for the bottom arm. u\, vi and y/j can 

be expressed as 

ux = Aa[(s? + K^tx /2)-(sf+Kf tx /2)] (2.57a) 

vl=Aa[fx
l>-rr] 

¥l=Aa[K^-K^} 

(2.57b) 

(2.57c) 

By rewriting Eq. (2.57) into a matrix form and using Eqs. (2.54-2.55), we have 

f.. \ 

v ^ y 

= Aa[BU)] 

bx b x 

yd) _ y.(D = Aa[Bw][All'][Cu>] 

0 \ ^ 

VMcy 

(2.58) 

Similarly, u2, v2 and ^2 for the bottom arm can be written as, 

r.. \ 

\V*J 

' A O 
(2)irA(2)irr'(2)-= Aa[B w ] [A w ] [C w ] 

V^cy 

(2.59) 

Substituting Eqs. (2.58-2.59) into (2.56) gives the expression of G, 

G = [([B(2) ][A(2) ][C(2) ] - [B(1) ][A(1) ][C(1) ])[N]r[N] / 2 (2.60) 

where [N] = [No Sc, Mcf. Eq. (2.60) indicates that G can be fully determined by the 

concentrated forces [N], material constants [A] and constant coefficient matrices [B] and 

[C]. The expressions of [B] and [C] are given as follows, 

<i) _ 

- 1 

0 

f,/2 

0 

- 1 

0 

0 

0 

- 1 

, c ( 2 ) = 
1 0 0 

0 1 0 

-t2/2 0 1 

(2.61a,b) 
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B (i) 

1 0 txl2 

0 1 0 

0 0 1 

, B(2) = 

1 

0 

0 

0 

1 

0 

-t2/2 

0 

1 

(2.62a,b) 

Example: cracked beam under bending 

The example discussed in Section 2.2.1.4, with G derived using the compliance method, 

is re-analyzed here using the CTE analysis. As to be shown here, the CTE analysis takes 

much less effort for the derivation. 

In the case of unidirectional composite beams, with the absence of shear force Sc, 

Eq. (2.60) could be further simplified as 

/-i / 1 2 . _2 , 6 6 , , , ? / 6 6 
G = (—r- + ~^-)Fc + (—ry + —rjWl + (— -)FCMC (2.63) 

where E[ the equivalent Young's modulus in the longitudinal direction that is equal to 

Ex for narrow beams (plane-stress condition) and Ex /(l-v12v21) for wide beams (plane-

strain condition), with v12 and v2l being the corresponding Poisson's ratios. 

The previous analysis has shown that Fcl=Fcl=3P(al-a2)/(ShB) and 

Mcl = MC2 = 0 for Scenario 1 of Figure 2.6. Thickness for the two parts of beam is the 

same h, i.e. tY =t2 = h. By substituting these expressions into Eq. (2.63), it gives 

Ga\ = Ga2 = ( T 7 7 ) 

Exh 

3P(ax -a2) 

l6h~B 
(2.64) 

which is the same as Eq. (2.26). The same conclusion can also be found for other 

scenarios. 
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Example: penny-shaped crack in a plate 

The free body diagram for a sector of the bottom part of a circular plate is depicted in 

Figure 2.12. Similar to the shear stress distribution in the mid plane of a beam (Eq. 

(2.14)), the shear stress r(r) at the mid-thickness of the non-cracked portion is 

r(r) = ^ - (2.65) 

and the resultant force of the shear stress in the r-direction is 

3P0 

The normal stress has a linear variation along the thickness direction. This normal 

stress is zero at z=0 and maximum at ±h. Therefore, the average normal stress in the 

bottom half of the plate is amax/2, where amax is the maximum stress which can be related 

to the bending moment Me with respect to the #-axis by 

yh h 3 

The component in the r-direction of this normal stress is (see Figure 2.12), 

FCM =0%<Tm^/2dr = 0%^dr (2.68) 

The expression of Mg for the cracked (r > a) or un-cracked (r < a) portion can be 

determined using Eq. (2.47). Thus, FQ is obtained by equilibrium as 

Fc=Fcr-FCM=0^i (2.69) 

For unit length of crack, Fc=3P/\6n:h, by substituting above equation into Eq. 

(2.63), the same G expression as Eq. (2.52) is obtained. 
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Figure 2.12 Free body diagram for determining Fc-

2.3.2 Frictional force effect on G in mode II delamination tests 

Mode II delamination tests generally use beam-type specimens that contain an initial 

crack. Due to the nature of the mode II fracture, crack surfaces slide on each other during 

the crack growth. The compressive load on the cracked surface may generate a frictional 

force on the sliding surfaces. However, the G expressions derived in section 2.2.1.5 

ignored the effect of friction. CTE analysis is used here for explicitly quantifying the 

frictional force effect in the ENF, the ELS and the 4ENF tests. 

A generalized free body diagram of a half beam, cut by virtually extending the 

initial crack, is shown in Figure 2.13. The forces, Fc and MQ, acting on the crack surface 

at the crack tip are exposed, as depicted in Figure 2.13. The distributed compressive load 

on the cracked surface p(x) generates a frictional force valued Hfp{x), where ju/ is 

coefficient of friction. Due to the presence of the frictional force, Fc at the crack tip is 

alleviated and becomes, 

Fc = Fco ~ \vf • p(x)dA = Fco - }dfPc (2-7°) 
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where Pc is the resultant of the distributed compressive load on the fracture surface, and 

Fco the concentrated force for the same external loading but with pij = 0. 

External load 

h 
^ — ^ — < — ^ — ^ = 

T(X) 
Mc Fc 

Mfp(x) 

A 

p(x) 

Figure 2.13 Schematic free body diagram of a half beam. 

The effect of the frictional force could be evaluated using a non-dimensional 

parameter ej, defined as 

e,=(G0-G,)/G0 (2.71) 

where Go is the energy release rate of the beam specimen with frictionless contact and G/ 

the corresponding energy release rate with frictional contact under the same loading 

condition. 

Using the special form of G from CTE analysis, Eq. (2.63), and assuming 

t{=t2=h and Mc = 0, G can be expressed as 

G = {2Fcyi{E[h) (2.72) 

,nd With Eqs. (2.70) and (2.72), e/ can be expressed as a 2n order polynomial function off, 

defined as: 

f = tifPcIFt CO (2.73) 

That is, 
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ef = 
(Fcof-iFcY 

f (FcoY 
: ( 2 / - / 2 ) x l 0 0 % (2.74) 

Eq. (2.74) suggests that/is the single parameter for quantifying the frictional force effect 

on the G value. 

According to the above analysis, the key issue to quantify the frictional force 

effect on the mode II delamination resistance is to determine /from the corresponding Pc 

and Fco values for each mode II test. Expressions of Pc and Fco for the delamination tests 

can be obtained from the free body diagrams of the half beam. The ENF test is used here 

as an example to demonstrate how to determine the expression for/ 

P/2 , 

Half ENF • *-
specimen f - > - » - ^ ^ - ^ ^ - ^ - , ^ - f ^ 

P/4 r(x) = 3P/(Wh) Fco pE*F = P/4 

x 
V z 

Figure 2.14 The free body diagram of upper half of an ENF specimen. 

Setup of the ENF test is depicted in Figure 1.1(c) and the corresponding free body 

diagram for the upper half of the specimen is shown in Figure 2.14. The internal shear 

stress along the mid-plane of the beam, T(X), is 2>PI{Wh). Considering equilibrium in the 

x-direction, we have the expression of Fco in the frictionless contact as: 

F™=— (2.75) 

c o 8/2 

The compressive force on the surface of the starting defect in Figure 2.14, PcENF, is 

equivalent to the reaction force at the right support. That is 

P™F = ^ (2.76) 
4 
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ENF Thus, the expression of/(Eq. (2.73)) for the ENF specimen,/ , is 

fENF = ty_h 
3 a 

and the corresponding expression for e/is 

ENF 4f*f h 4/uf 1 (2.78) 
3 a 9 

The above equation suggests that the factional force effect in the ENF test can be 

fully characterized by the product of///and the ratio of half thickness h to crack length a. 

Using the same approach, the expression off for the 4ENF test is 

cAENF _ 8 > " / h 
/ " " * = rj (2.79) 

3 2L-d 

and for the ELS test 

rELS _ 2^f k 
y ^ = _ L 2 _ _ l (2.80) 

3 a 

in which the geometrical parameters are defined in Figure 1.2. 

The validity of the above derivation can be verified by comparing the analytical 

expressions for the frictional force effect by other methods in the literatures. Carlsson et 

al. [4], using Griffith's crack growth criterion, estimated the upper bound of the frictional 

force effect in the ENF test and a similar expression was provided. However, due to the 

misuse of shear deformation in the expression for the beam deflection, the second order 

term in their expression is different from that in Eq. (2.78). Kageyama et al. [10] derived 

the expression for the 4ENF test, but the second order term was missing. In Chapter 3, 

these analytical expressions will be further verified using FEM. 
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2.4 Concluding remarks 

This chapter introduces two analytical methods, the compliance method and the CTE 

analysis, for deriving the analytical expressions of the energy release rate. Examples are 

given to demonstrate the derivation of G in beam and plate structures. Specifically, the 

compliance method has been used successfully in mode II delamination tests, i.e. the 

ENF, ELS and 4ENF tests, and has proven the irrelevancy of shear deformation to the 

energy release rate. CTE analysis was used to assess the frictional force effect in the 

mode II delamination tests by a simple formula. 

The drawback of the analytical approaches is that they may not be applicable to 

problems that involve complex geometry, loads or boundary conditions. In addition, both 

the compliance method and the CTE analysis are within the scope of linear elastic 

systems that limits the scope of their applications. 
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Chapter 3 FEM Based Techniques for the Calculation of 

Energy Release Rate 

The previous chapter introduces the analytical methods for deriving energy release rates 

and demonstrates their applications in cracked beam and plate structures. It also points 

out that the analytical approaches are generally restricted to simple problems within 

linear elastic regime. In this chapter FEM based techniques will be employed to evaluate 

the energy release rate. The FEM-based methods are more proficient than the analytical 

methods in dealing with nonlinear material properties, complicated geometries or 

multiple cracks. This chapter firstly reviews the existing FEM-based methods for 

calculating G in the literature and summarizes their application limitations; secondly 

introduces a new approach, named energy derivative technique (the EDT), which has no 

restrictions in applying to any quasi-static fracture problems; and thirdly gives case 

studies using the EDT in composite and non-composite structures that may involve large 

deformation, complex loading or path-dependent processes (e.g. cases with friction and 

plastic deformation). 

3.1 Review of the existing FEM-based methods 

Existing FEM-based techniques in the literature, such as compliance derivative technique 

(CDT) [11, 12], virtual crack closure technique (VCCT) [11-15] and the /-integral [16-

18] have been successfully demonstrated for the prediction of G, and the results suggest 
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that these FEM-based techniques can provide benchmark values to evaluate the accuracy 

of the analytical expressions for G. The principles behind these methods and their 

limitation in applications are briefly reviewed in the following content. 

3.1.1 Compliance derivative technique 

The CDT has been widely used to determine G for the delamination in fiber composites. 

This technique is indeed the FEM version of the compliance method discussed in the 

previous chapter, as both acquire G using the derivative of C (see Eq. (2.2)). Since FEM 

cannot give explicit expression of C, numerical algorithms are needed to provide the 

derivative of C with respect to A using discrete C and A values from the output of FEM, 

among which finite differential approach was most often used [11]. The application of 

compliance derivative technique is limited to a linear elastic system. 

3.1.2 Virtual crack closure technique 

The VCCT is based on Irwin's virtual crack closure method [9] which is also the basis of 

the CTE analysis (see Section 2.3). The VCCT was first developed by Rybicki and 

Kanninen [13] using 2D 4-node linear elements, as depicted in Figure 3.1. Assuming that 

element size is vanishingly small and material behaves linearly, G for crack growth can 

be calculated from the product of nodal forces at the crack tip and the relative 

displacements between the adjacent nodes on the crack faces, 

1 1 

- 4 1 -



where ua and ub are the displacements of the node pair in front of the crack tip in the local 

1-direciton perpendicular to crack extend direction, va and vb the displacements in the 2-

direction, Fcl and Fc2 the nodal forces in the 1- and 2-directions, respectively, and Aa the 

length of the four crack tip elements (Elements 1-4 of Figure 3.1) in 1-direction. 

The VCCT calculates G from the quantities in the crack tip region, thereby not 

restricted to complicated loading condition. The original VCCT [13] can be easily 

extended to higher order [19] and 3D [20] elements. The VCCT was also used to separate 

fracture modes [19] by assuming that the first term in the bracket of Eq. (3.1) is 

corresponding to the opening component of G and the second term corresponding to the 

shear fracture. 

t !,«/ 

+ 2,u2 

Figure 3.1 Mesh at the crack tip for the VCCT. 

The nodal forces in the VCCT are determined by placing very stiff spring 

elements between the node pairs at the crack tip, thus elaborate manipulation on the mesh 

at the crack tip is required to build the proper FEM model. In practice, this method 

suffers from tedious modeling processes that include the regeneration of mesh when G 
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values for a range of crack lengths are needed. Besides, the VCCT is applicable to linear 

elastic materials only. 

3.1.3 The /-integral 

The ./-integral is defined as [21], 

y = l imJn-(C/I-«-uV)-qdr (3.2) 

where T is an arbitrary contour from the top surface of a crack to the bottom surface of 

the same crack, as shown in Figure 3.2, n is the unit vector normal to T and pointing 

outwards, c the Cauchy stress tensor, u the displacement vector, q a unit vector in the 

crack advancement direction, I the unit 2nd order tensor and U the strain energy density 

defined as j° o : dz, where E denotes the strain tensor. The numerical evaluation of the J-

integral in FEM generally uses its equivalent form which is converted to domain 

integration by divergence theorem. Detailed explanations and FEM formulations were 

given by Shin [21]. 

The ./-integral does not require the material to be linear elastic, but prohibits 

unloading when applying to elastic-plastic materials. That is, the crack advance must be 

infmitesimally small to avoid large scale unloading. Body force is not allowed in the J-

integral to ascertain a constant value along different contours. In addition, the ./-integral 

is based on the assumption of small deformation. Therefore, it cannot be applied to 

situations that involve large deformation with significant crack propagation. 
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Figure 3.2 Definition of the ./-integral. 

3.2 Energy derivative technique 

3.2.1 Principle of the energy derivative technique 

The energy derivative technique (the EDT) is based on the original definition of G (Eq. 

(2.1)). It deduces the G values by analyzing the change of energies from the output of a 

FEM model. In Eq. (2.1), the energies W and U can be determined by implementing 

subroutines in the FEM codes. In some commercial codes, such as ABAQUS, functions 

are already available to determine these energies. 

the EDT requires calculation of derivatives of energies with respect to the crack 

area A. A three-point parabolic segment algorithm is chosen here to perform this 

calculation. Explicitly, the energy quantity, Y (representing W or U), is written as a 

function of A by a 2nd order Lagrange interpolating polynomial 

Y(i) y (A-A^XA-A^) ^ (A-AXA-A^) | y (A-A&A-AM) 

' (4 - A^XA - Ai+l)
 M(Al+1-AiXAM-A-0 '-1 (4-i-4X4-,-4+1) 

(3.3) 

which passes through 3 consecutive data points (Y^A^), ( ^ , 4 ) a nd (YM,AM). The 

derivative is given by the gradient of the above equation at A=At. Note that the 
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derivatives at the first and last data points are simply based on the slopes of their 

associated parabolas at those points. 

The EDT requires that all the energy values come from one FEM model in which 

the change of the crack length has been incorporated in the simulation to reflect the true 

history of the energy variation. Therefore, the EDT can determine G of path-dependent 

problems such as large-scaled crack growth in structures involving extensive plastic 

deformation, even when friction exists between the contact surfaces. 

Another advantage of the EDT is that the energy quantities in FEM are easy to 

converge without mesh refinement. For example, for a crack in a linear elastic material, 

the stress field in the vicinity of the crack tip has r~U2 singularity, where r is the distance 

from the crack tip. The strain energy density, proportional to a2, has r~l singularity. 

When multiplying strain energy density by the area which is proportional to r2 to 

represent the energy of the crack tip region, the singularity is removed. As a result, fine 

mesh in the vicinity of the crack tips is not necessary. 

Moreover, applications of the EDT are not limited to small deformation that is 

prerequisite for the ./-integral, the VCCT and the CDT methods. 

As an intrinsic drawback of the total energy approach, the EDT cannot distinguish 

the energy dissipated in each fracture mode from the total energy change, thereby not 

being able to determine the fracture mode. Table 3.1 summarizes the application 

conditions of the EDT and those discussed in the previous section. 
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Table 3.1 FEM-based techniques for the energy release rate and their application 

conditions ("Y" means applicable while "-" means not applicable) 

Complex loading 

Nonlinear elasticity 

Large deformation 

Friction 

Plastic deformation 

Mode separation 

CDT 

-

-

-

-

-

-

./-integral 

Y 

Y 

-

-

-

-

VCCT 

Y 

-

-

Y 

-

Y 

the EDT 

Y 

Y 

Y 

Y 

Y 

-

3.2.2 Special forms of the G expression 

Constant displacement 

When subjected to constant displacement, dw - 0. Thus, Eq. (2.1) can be simplified as 

oA 

Constant force in linear elastic fracture 

When subjected to constant force in linear elastic fracture, dW equals two times of dU. 

Therefore, Eq. (2.1) becomes 

M 

With friction 

When friction exists during crack propagation, the work consumed by the friction should 

be excluded from the G calculation. In this case, dW in Eq. (2.1) should be replaced by 

(dW- dF), where F is the total energy dissipated by the friction. Thus the corresponding 

G expression becomes, 
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&W dF dU 

"dZ ~dA~~dA 
(3.6) 

3.2.3 Example: G of a penny-shaped crack in a plate 

The penny-shaped crack example in section 2.3.1 is studied to demonstrate the 

application of the EDT. 

The FEM model of the cracked plate was built in the commercial software 

ABAQUS. Because both the geometry and load are axisymmetric, only the rectangular 

revolving cross-section of the plate was modeled, consisting of 760 axisymmetric 

elements with incompatible mode (CAX4I). Figure 3.3(a) shows the mesh pattern and 

prescribed condition of the finite element model that is simply supported at r = R with a 

unit force loading at the center. 

Crack is assumed to develop in the radial direction within the mid-plane. The 

crack growth is simulated using a "debonding" technique that is available in ABAQUS 

for a pre-set path, as indicated by a thick line in Figure 3.3(a). The crack length increases 

automatically as a function of an artificial time that controls the crack growth rate. 

Frictionless contact was assigned to the crack surfaces. Material was assumed to be linear 

elastic. Dimensions and material properties are listed in Table 3.2. Note that the values 

are dimensionless, as this example only serves as a guide to performing the EDT. 

Table 3.2 Material and geometrical properties used in the penny-shaped crack model. 

E 

2E+105 

V 

0.3 

2/z 

5 

R 

50 

a 

2.5-50 

P 

1 
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The convergence of mesh density is checked based on the relative change of total 

strain energy U with the refinement of the mesh, because Eq. (3.5) is used for constant 

force condition. Values of U for each crack growth increment were given by the variable 

"ALLSE" of the output database of ABAQUS. The U values from the baseline model and 

another model with refined mesh, a total of 1590 elements, are plotted in Figure 3.3(b) as 

a function of crack radius a. Difference of the values between the two models is less than 

0.005%, suggesting that fine mesh is not necessary to reach the converged £/values. 

G values determined from the EDT based on the regular mesh (the one with 760 

elements) are presented in Figure 3.3(c) by dot symbols, and those from the finer mesh 

model by cross symbols. For the crack with radius a in the range from 5 to 45, a 

difference of up to 0.4% exists, showing the good convergence of the G values. The 

noticeable difference at crack lengths shorter than 5 or longer than 45 is because of the 

abrupt change of G in these regions. The finer mesh with more data points, obviously, 

captures the detailed variation of G, thereby giving slightly different G values from those 

from the model with the regular mesh. The theoretical prediction of the energy release 

rate (Eq. (2.52)) is also plotted in Figure 3.3(c) as a straight solid line that shows good 

agreement with the EDT solutions. Some discrepancy exists at small crack size, 

especially for a being shorter than 25. The discrepancy is probably due to the limitation 

of the analytical solution that is based on the assumption of the in-plane dimensions being 

much larger than the plate thickness. 
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(c) 

Figure 3.3 Penny-shaped crack in a plate: (a) the FEM model, (b) plot of U versus a for 

two different meshes, and (c) G by the EDT and the analytical solution. 
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3.2.4 Example: G of a cracked beam under 3-point bending 

The EDT is applied to the example discussed in Section 2.2.1.4 to verify the analytical 

expressions of C (Eq. 2.25) and G (Eqs. (2.26-2.32)) in a beam with an internal crack. 

15 mm 
< > 

w=0.1mm 

-> 

\l/z a 

2L 
< — > 

Figure 3.4 Predefined crack path in the cracked beam. 

The FEM model of the cracked beam is built using two-dimensional plane-stress 

elements (CPS4I) with incompatible mode in ABAQUS. The beam is subjected to a 

constant displacement of 0.1 mm at the central loading point. Contact conditions between 

the newly formed fracture surfaces were specified using frictionless and small sliding 

contact formulation. The nodal points at the two supports were restricted from any 

vertical motion during the crack growth. Material properties for the FEM model are given 

in Table 3.3, based on unidirectional glass fiber/polyester with fiber volume fraction 45%. 

To verify the C and G expressions in different scenarios of Figure 2.6, a fictitious 

crack growth was made up, by assuming that the crack initiates in the left half of the span 

section, at a distance 15 mm away from the central loading point, as shown by the 

diamond symbol in Figure 3.4, and the crack grows in the right direction only. The crack 

grows firstly towards the central loading point (Scenario 1 of Figure 2.6), and then 

through the right half of the span section (Scenario 2) with the final arrest after passing 
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over the right support (Scenario 3), as depicted in Figure 3.4. Similar to the previous 

example, the crack growth was implemented by "debonding". 

E 
E, 
<y> o c 
.<5 
"5. 
E 
o 
O 

10 

9 

8 

x10" 

Analytical 
EDT, FEM 

10 20 30 
Crack length (mm) 

40 

x10 

10 20 30 
Crack length (mm) 

40 

50 

(a) 

50 

(b) 

Figure 3.5 Comparison between FEM and analytical solution: (a) compliance and (b) 

the energy release rate, G. 
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Figure 3.5(a) compares the FEM compliance with the analytical prediction and 

shows that they match each other well. The EDT-determined G values are plotted in 

Figure 3.5(b), compared with the analytical solution. The good correlation between the 

plots gave confidence on both the analytical approach and the EDT. The relatively large 

discrepancy, occurring when the crack tip passed the loading and right support position, 

is because the ideal conditions used by the analytical derivation, such as the sudden 

change of the shear force direction but otherwise the same magnitude (see Figure 2.7), 

are not realistic, thus not reflected by the FEM model. 

Table 3.3 Material properties of the cracked beam 

Glass/polyester 
composite 

En 
(GPa) 

28.6 

En - £33 
(GPa) 

6.0 

<J13 - Gu 

(GPa) 

6.0 

V23 

0.3 

Vl2=Vi3 

0.3 

3.3 Frictional force effect on G using the EDT 

Analytical approach on the frictional force effect in mode II tests using beam type 

specimens has been given in Section 2.3.2. Here, numerical analysis will be carried out 

by the EDT to perform the same evaluation. 

3.3.1 Expression of G with friction and constant force loading 

The general expression of the energy release rate when friction is involved in fracture is 

given in Eq. (3.6). In a linear elastic system subjected to constant forces, with the 

frictional force being proportional to the external load, Eq. (3.6) can be further simplified 

to be 

- 5 2 -



QA 

This equation takes the same form as the expression for the linear elastic fracture 

without friction (Eq. (3.4)). This equation, as to be proved in the following paragraphs, 

not only simplifies the data reduction procedure by reducing 3 quantities in Eq. (3.6) into 

one, but also serves as the basis for some analysis on the effect of friction [22]. 

Due to the non-conservative nature of the frictional force, the variables in the 

numerator of Eq. (3.6) must be determined based on the loading situation depicted in 

State 1 of Figure 3.6, for crack growth with initial crack length ao. Let crack advance start 

when the force reaches P,, and the crack length increase from ao to a\ at the same loading 

level, as illustrated in state 1 to point A of Figure 3.6. Strain energy at point A, UA, is 

equal to that at point A' , UA,, of State 2 which is subjected to the same loading but the 

initial crack length is a\. In State 2, the expression for UA, (equal to UA) could be easily 

obtained as: 

^ =|(Z^)l«i~(Z/* l7,) l« r t=^ (3-8) 

where P,- andyj are external and frictional forces, respectively, and St and rji are the 

associated displacements of P, and fi. Similarly, the strain energy at point B, where the 

crack length is a\+da, is, 

Ur =^(Z^)l«i^ -\&ffli)\~»*=UB (3-9) 

The change of strain energy from A to B in State 1 is: 

dUAB=UB-UA 

= -jjfoPiSi)\a-al+da ~ ( Z ^ Si )l «-al Y ^ [ ( Z ^ )l «=«!+*» _ ( Z ^ iX-al ] 

(3.10) 
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Since Pi andyj are constant, the above equation becomes 

dUAB=~ZPi-dSi-\llfi-dj7i C 3 - 1 1 ) 

Also, 

dWAB=Y.Pi'd5i (3-12> 

and 

dFAB=Y,fi-drli (3-13) 

By substituting Eqs. (3.11-3.13) into Eq. (3.6), it yields 

G = (^PrdSi-^frdrJi)/da = ^ - (3.14) 

Therefore, even with the consideration of friction in the circumstance of constant force, 

the expression of G is still taking a simple form, same as that without the friction. 
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State 1: 
A 

4 i 

Pi 

dSt 

B 

State 2: 

$A <>B 

Displacement 

Figure 3.6 Monotonic load-displacement curves for crack growth with friction. 

3.3.2 Frictional force effect in the ENF and 4ENF tests 

Applying the EDT to the ENF and the 4ENF tests and assuming friction exists on the 

crack surfaces, the frictional force effect on the energy release rate are studied by the 

EDT and the results are compared here with the analytical solution obtained in 

Section 2.3.2. 

Two similar FEM models of ENF specimens were built in ABAQUS to calculate 

Go (the energy release rate with frictionless condition, defined in Section 2.3.2) and Gj 
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(with friction) using the EDT. The only difference between these two models is that the 

coefficient of friction JU/ between the fracture surfaces was either 0 or 0.5. For the 

comparison with existing results in literatures, dimensions and material constants 

followed those used in "model set 2" of Ref. [23]. The FEM model of the ENF specimen 

is shown in Figure 3.7. A unit force was applied at the top central node of the model and 

remained constant during the delamination growth, which was the same loading condition 

as that used in Ref. [23]. The nodes on the supports were constrained from any vertical 

movement, and the central nodal point at the bottom was constrained from any horizontal 

movement, to remove the rigid body motion. Crack growth was confined to be along a 

pre-defined path in the mid-thickness, with a/L in the range from 0.45 to 0.95, which 

covers the range commonly used in the experimental studies. 

Constant P 
Delamination growth path 

f- -r- -4-4- -h - 44 

1 -SsP •w * 
A 

Figure 3.7 FEM model of the ENF test for studying the frictional force effect. 

Energy release rates G0 and Gf of the ENF specimens were calculated by the 

EDT using Eq. (3.7). The difference of Gf and Go was then normalized by Go, to 

represent the frictional force effect ej (Eq. (2.71)). Values of G0 and Gf were also 

calculated using a more general expression of energy release rate (Eq. (3.6)), and their 

difference from those determined using Eq. (3.7) was found to be less than 0.1%, further 

confirming the validity of the simplified expression of Eq. (3.7) for determining G when 

subjected to the constant-force loading condition. 
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When investigating the 4ENF test by the EDT, ey was found to be a constant by 

changing the crack length because the factor/, i.e. the determinant of e/, is independent of 

the crack length according to Eq. (2.79). As a result, several fif values were used to vary/ 

in the study of the 4ENF test. 

Figure 3.8 summarizes the variation of e/ with respect to / i n the ENF and 4ENF 

tests. The e/values are from the analytical solution (Eq. (2.74)), the EDT and Ref. [23] by 

the VCCT. The figure shows that these three solutions match each other perfectly. By 

comparing (G0 -Gf)/G0 values of two data points, indicated by the arrows in Figure 3.8 

to represent results for specimens with the most common dimensions and setup 

configurations of the ENF and 4ENF tests, the 4ENF test has apparently more significant 

frictional force effect than the ENF test. It should be noted that the frictional force for the 

ENF and 4ENF tests only exist in regions where the crack is generated by a Teflon or 

waxed aluminum film, and thus the possible /u/ is unlikely to be more than 0.5, as 

supported by the experimentally determined coefficient of friction of 0.374 [24] or 0.35 

[25]. Therefore, the realistic e/ values to represent the effect of the frictional force in both 

tests should be even less than those pointed by the arrows in Figure 3.8. 
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Figure 3.8 The frictional force effect in the ENF and 4ENF tests, predicted by 

analytical solution, the EDT and the VCCT. 

3.4 Applications of energy derivative technique in nonlinear fracture 

In this section, the EDT will be applied to nonlinear fracture problems which are beyond 

the capabilities of the ./-integral, the CDT, and the VCCT. Two problems will be 

discussed: (1) a rubber sheet with a central crack and (2) large crack propagation in 

double-edge-notched tensile (DENT) test. Material nonlinearity, large and irrecoverable 

deformation, and long crack propagation are involved in the studies. 

3.4.1 Central crack in a rubber sheet 

This case study is to demonstrate the use of the EDT to calculate G for large deformation 

in a nonlinear elastic system. Consider a thin rubber sheet with a central crack subjected 

to simple tension as shown in Figure 3.9(a). Dimensions of the rubber sheet in the stress-
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free condition are 2L for the width and the length and 2a for the initial crack length. 

Opening of the crack in the centre is 2b when subject to tensile loading. 

Due to symmetry of the specimen and the loading conditions, a FEM model 

equivalent to quarter of the rubber sheet was used for the analysis. The model contains 

2400 plane-stress elements (CPS4), with the mesh pattern shown in Figure 3.9(b). Values 

of the half crack length (a), the half width (L), the initial shear modulus (juo) and the 

extension ratio (A,y) are listed in Table 3.4. Symmetric boundary conditions were applied 

along the two axes of symmetry, and a constant displacement of 2 for A was applied 

along the top edge. The half crack length was set to grow from 0 to L using the technique 

similar to that used for Section 3.2.3. 

Table 3.4 Material and geometrical properties used in the rubber sheet model. 

MO 

100 

Ay 

2 

L 

20 

a/L 

0-1 

Since the deformation is subjected to constant displacement, G values from the 

FEM model were determined using Eq. (3.5), in which t/is the recoverable strain energy, 

and equals the value for the output variable "ALLSE" in ABAQUS. 

Figure 3.9(c) compares the FEM results with those from an analytical expression 

reported by Yeoh [26] that was derived for a crack in a square rubber sheet with size 

much larger than the crack length. In Yeoh's case [26], 

G = 7vayb/2 (3.15) 

where b is the maximum crack opening width, determined using finite element analysis, 

and ay the normal stress in the far field. For the loading scenario given in Figure 3.9(b), 
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with Ay equal to 2, value of ay in Eq. (3.15) was determined from the following 

equation [27]: 

ay=2(Ay-A-;) — - + — -
V dIi dIi J 

(3.16) 

where Wj is a strain energy density function for hyperelastic material that can be 

expressed in terms of the first invariant I\ of the left Cauchy-Green strain tensor [27]: 

WM = CM -3 ) + C20(7, -3 ) 2 +C30(/1 -3 ) 3 (3.17) 

where the constants are: C10 = ju012, C20 = -ju01'20, and C30 = juQ /100. 

Since Eq. (3.15) is only valid when the crack length is much shorter than the 

width and the length of the rubber sheet, G values obtained from the equation is only 

plotted in Figure 3.9(c) for a/L less than 0.1. The comparison suggests that G values from 

the EDT match very well with G values from Eqn. (3.15). The figure also suggests that 

the EDT has the advantage over the analytical solution in that the former is not limited to 

small crack size. 
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Figure 3.9 Rubber sheet with a central crack in tension: (a) geometries, (b) FEM model, 

and (c) comparison of G values from the EDT and Eq. (3.15). 

3.4.2 Double-edge-notched tensile test 

This case study is to illustrate the use of the EDT for the evaluation of G for crack growth 

in elastic-plastic materials. As shown in Figure 3.10(a), a double-edge-notched specimen 

is subjected to uniform tensile loading, of which dimensions and material properties are 

listed in Table 3.5. Again, due to symmetry of specimen geometry and loading condition, 

only one quarter of the specimen is modeled using FEM. 

Table 3.5 Material and geometrical properties used in the DENT model. 

E 

3xl07 

V 

0.3 

00 

4xl04 

a 

0.5 

n 

5 

L 

20 

a/L 

0-0.8 
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Figure 3.10 Plastic deformation of DENT test: (a) specimen configuration, and (b) FEM 

model. 

The model contains 1480 2D hybrid plane-strain 4-node elements (CPE4H) with 

the mesh pattern shown in Figure 3.10(b). A constant tensile stress of 150,000 that is 3.75 
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times the yield stress (<r0 in Table 3.5) is applied along the top edge of the model as far-

field loading. The crack length a increased from 0 to 80% of the half specimen width L 

using the "debonding" technique, similar to that used in the previous case studies. 

The FEM analyses were conducted using two material models that are based on 

either deformation plasticity theory or incremental plasticity theory. Typical stress-strain 

curves of the two material models are presented in Figure 3.11, which are essentially the 

same in the loading phase when the stress increases monotonically. However, during the 

unloading phase, the two material models show different stress-strain relationships, as the 

incremental plasticity theory considers linear elastic unloading while the deformation 

plasticity theory assumes the same stress-strain relationship as that for the loading phase. 

„ x 1 0 4 

— Incremental Plasticity 
Deformation Plasticity 

Strain x ^ Q-3 

Figure 3.11 Stress-strain curves based on the incremental plasticity theory and the 

deformation plasticity theory. 
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Since the case study considers a large range of crack propagation, involving 

significant unloading behind the crack tip, different results are expected for G based on 

the two plasticity theories. 

Deformation plasticity theory 

Based on Ramberg-Osgood model [16], stress and strain involving plastic deformation 

have the following relationship: 

E-s = cr + a 
wl 

\aoj 
(3.18) 

where a is the "yield" offset, and n (>1) the hardening exponent for the plastic 

deformation. 

G values were determined based on Eq. (3.3) using the EDT. It should be noted 

that in this case, U in Eq. (3.3) consists of the dissipated energy for the plastic 

deformation (output variable ALLPD in ABAQUS) and the recoverable strain energy 

(ALLSE in ABAQUS). The G values were then converted to a dimensionless quantity hi, 

as explained below, for comparison with results published in the literature. 

Kumar et al. [28] proposed that within the framework of the deformation 

plasticity theory, the following /-integral expression can be applied to a DENT specimen 

when subject to fully plastic deformation: 

J = ao^c£rxhi (3.19) 

where eo is equal to a01E ,P the applied load, c half of the ligament length between the 

two notches at the load P, and Po the limiting load for the plane-strain condition that can 

be expressed as a function of c, <x0, and half of the specimen width L: 
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P0 =(0.72 + 1.82 -)cr0L (3.20) 

Since the /-integral value is equal to G for material models with a path-

independent stress-strain relationship, the G values determined in this study using the 

EDT were converted to the non-dimensional h\ values using Eq. (3.19). The results are 

summarized in Figure 3.12 as a function of a/L. Figure 3.12 compares the hi values so 

determined with those using different approaches, reported in references [16, 28]. These 

values are in fairly good agreement. 

Incremental plasticity theory 

Figure 3.13 summarises results based on the incremental plasticity theory, after 

converting the G values to hi using Eq. (3.19). Since no h\ values based on the 

incremental plasticity theory are available in the literature, the h\ values in Figure 3.13 

cannot be verified through comparison with the published work. Nevertheless, by 

comparing h\ values between Figures 3.12 and 3.13, it is clear that the latter (from the 

incremental plasticity theory) are much smaller than the former (from the deformation 

plasticity theory). This is consistent with the rationale that the incremental plasticity 

theory considers the energy dissipated through permanent plastic deformation behind the 

crack tip, thus the amount of energy available for forming new crack surfaces must be 

smaller than that based on the deformation plasticity theory. 
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Figure 3.12 Values of h\ for the DENT model using the EDT based on the deformation 

plasticity theory, and the comparison with those in the literature. 
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Figure 3.13 Values of h\ for the DENT model using the EDT, based on the incremental 

plasticity theory. 
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3.5 Concluding remarks 

This chapter reviewed the FEM-based methods for assessing the energy release rate in 

static or quasi-static crack propagation with a given crack growth pattern, and pointed out 

the application restrictions for each method. Then, the EDT was introduced as an 

alternative to the existing ones. The EDT is based on the original definition of the energy 

release rate without any further assumptions. Thus it is able to apply to complicated 

fracture problems including large and plastic deformation, which are beyond the 

capability of the existing techniques. Since the EDT is based on FEM, complicated 

geometry or crack profile, which might be intolerable for analytical methods, is not an 

obstacle for the EDT to determine accurate G values. 

Applied to fiber composites, the EDT verifies the analytical G expressions for a 

beam with an internal crack (given in Section 2.2.1.4) by comparing the G values of a 

fictitious crack growth pattern. The EDT is also used for numerical verification of the 

friction effect obtained by the CTE analysis. It is confirmed using the EDT that the 

frictional force effect in the ENF or 4ENF test is smaller than 8% with regular setup 

geometry and even reasonably large coefficient of friction. 

Two more applications other than in composite materials are presented to 

demonstrate the use of the EDT in complex situations, such as complex loading, material 

nonlinearity, large deformation or rotation, and path-dependent deformation processes. 

The case studies show excellent consistency with the data in the literature that were 

obtained using either analytical or other FEM-based techniques. Results also suggest that 

the EDT is very efficient and versatile, with the potential to deal with complex crack 

propagation problems that are non-linear and involve extensive plastic deformation. 
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Chapter 4 Delamination Tests for Measuring the Critical 

Energy Release Rates 

4.1 Introduction 

As mentioned in Chapter 1, the delamination resistance of fiber composites is 

characterized by the critical energy release rates (Gc) in three pure fracture modes, i.e. 

mode I, mode II and mode III. These values are generally different because the fracture 

mechanisms and fracture surface topography differ in each circumstance. For example, 

the mode I fracture surface, as shown in Figure 4.1(a) (courtesy of T. Kuboki [29]), is 

clean and smooth, much like a cleavage fracture. However the mode II fracture surface in 

Figure 4.1(b) (taken from an INF test specimen as to be discussed later) contains many 

matrix hackles formed through severe plastic deformation. The existence of matrix 

hackles also increases the net area of the fracture surface [30]. Consequently the energy 

required to generate unit mode II fracture surface will be more than that for mode I. 

Even in pure mode fracture, the critical energy release rate may vary with crack 

length. This variation is probably because of the change of the number of bridging fibers 

[30], the level of the bluntness of the crack tip [31], or the development of the plastic 

zone in the vicinity of the crack tip [31]. The plot of the critical energy release rate with 

crack growth length is known as the resistance curve or i?-curve. 

- 6 9 -



* - t\»/X K 

KhlW»WlWM>*i'W<*M **i • » * • " * • ! • * 

4" 

. 1 . « ••.w.ww—t-wt'iiih^a. 

\ . 
• « * aiwni.innii>imtj - . \ j * . * " » - •*—V^ <" 

(a) (b) 

Figure 4.1 Typical fracture surface topographies of (a) mode I fracture and (b) mode II 

fracture. 

In mixed mode fracture, the critical energy release rate Gc is believed to be 

enveloped by the critical energy release rates in the pure fracture modes. Some empirical 

equations [32, 33] were used to describe the mixed mode Gc as a function of Gic, Gnc 

and mode mixing ratio. Note that Gnic for the tearing mode is not often involved in the 

formula of Gc- This is because delamination in mode I and mode II is more likely to 

occur than mode III in composite structures, such as the delamination induced by lateral 

low velocity impact. 

In the past 20 years, researches have devoted great efforts to develop reliable tests 

for the accurate measurement of Gic and Gnc- This is because firstly Gic and Gnc are the 

most important parameters to evaluate the performance of fiber composites' resistance to 

fracture and secondly they are essential input quantities for simulating delamination 

growth using FEM (to be discussed in Chapter 6). 
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The accurate measurements of G/c and Guc depend on appropriate testing 

methods that generate pure mode of delamination, as well as reliable data reduction 

strategies to extract the critical energy release rate from the measured quantities. The 

DCB test and its associated compliance calibration (CC) method have been standardized 

[2] as the mode I delamination toughness testing method. However for mode II 

delamination, no agreement has been reached due to some technical issues. One of the 

major difficulties is the stability of delamination growth. The pioneer ENF test with the 

typical setup has an inherently unstable crack growth and thus making it impossible to 

generate an i?-curve. Later on, the ELS test [34] was proposed to determine the i?-curve. 

Theoretically, the ELS test generates stable crack growth pattern under displacement 

control [34], but in reality its delamination growth is not always stable [35, 36]. The 

4ENF test has become a promising candidate as the standard, which can generate 

relatively stable delamination growth, though "stick-slip" crack growth pattern does 

occur occasionally [37], thus raising concerns about its growth instability. 

The trend of the stability of these tests can be reflected by their load-displacement 

curves. With the assumption of a constant Guc value during the delamination growth, the 

schematic load-displacement curves generated by the G expressions for the ENF, ELS 

and 4ENF tests (Eqs. (2.33-2.38)) are presented in Figure 4.2 in which the delamination 

growth commences where the initial slope of the loading curve is reduced. An interesting 

trend, as indicated in Figure 4.2, is that the stability of delamination, which is in the order 

of the ENF, ELS and 4ENF tests, increases with the decrease of the rate of load drop after 

critical point for delamination. 
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The next section of this chapter will introduce a new delamination test, named 

internal notched flexure (INF) test. The INF test does not generate any load drop after the 

delamination initiation, as schematically shown in Figure 4.2, indicating that the 

delamination growth is more stable than any of the above delamination tests. The 

theoretical analysis will show that the INF test generates pure mode II delamination and 

several data reduction methods will be proposed for the INF test to establish the i?-curve. 

In the last section of this chapter, another mode II delamination test, named 

"Beam test" will be introduced. The Beam test was originally developed by Kuboki et al. 

[29, 38-40] for the measurement of GUc- Though the "Beam test" has unstable crack 

growth, thereby not suitable for the Guc measurement, it serves as a good example for 

evaluating the accuracy of the prediction of delamination onset and propagation, which 

will be discussed in detail in Chapters 5 and 6. 

critical point for 
delamination 
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Figure 4.2 Schematic load displacement curves of the ENF, ELS, 4ENF and INF tests. 
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4.2 The internal notched flexure test 

4.2.1 Test setup 

The setup of the INF test is shown in Figure 4.3. The test applies symmetric 3-

point bending to a beam specimen that has an insert film embedded in the mid-thickness. 

The specimen is aligned asymmetrically on the 3-point bending rig with respect to the 

insert film, with one end of the insert film being much closer to the loading pin than the 

other end, at a distance of aj and a\, respectively. Also shown in the figure, a\ is slightly 

longer than the half span length L. This is to ensure that compression from the loading or 

the supporting pins only acts on the starting film surfaces where the coefficient of friction 

should be very low. Such setup arrangement is expected to minimize the effect of friction 

on the measured delamination resistance. 

Figure 4.3 The INF test setup. 

Delamination growth in the INF test is expected to be in the direction of a\, that is, 

in the overhanging section outside the span length, in which the specimen is free from 
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any transverse loading. This, however, requires the INF specimen to have a sufficiently 

long overhanging section to provide the space for the delamination growth. 

The INF test applies load under the displacement control, and records load, 

displacement and the change of a\ during the delamination growth. The load-

displacement curve is expected to be bilinear, with the transition point occurring when 

the delamination is initiated, as schematically presented in Figure 4.4. 

• o 
CO 
o 

Commencement 
of delamination 
growth from ai 

Increase of 
delamination length 

ncrease of G, c 

-> 
Increase initial 
crack length 

Displacement 

Figure 4.4 Schematic load-displacement curve of the INF test, with varied initial crack 

length and Gc-

4.2.2 Analysis on the INF test 

The energy release rate 

It should be noted that the setup shown in Figure 4.3 is identical to the configuration of 

scenario 3 in Figure 2.6. Hence, the compliance of the INF test can be determined using 
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Eq. (2.25c) and the G expressions for delamination growth in the two directions, Ga\ and 

Gai, using Eqs. (2.29-2.30). The total energy release rate with crack growth in both 

directions could be expressed as [41], 

GINF= da' Gal+
 d"2 Ga2 (4.1) 

dax + da2 dax + da2 

The embedded starting defect in the INF specimen provides two directions for the 

delamination growth. In order to ensure that the delamination growth is always in the a\ 

direction, i.e. from the right end of the insert film of Figure 4.3, the value of Gai (Eq. 2.29) 

has to be greater than Gai (Eq. 2.30), which requires the following condition to be met 

[41]: 

L<ax<^^L (4.2) 
L — a2 

The above condition allows the delamination growth solely in the a\ direction for 

a length of [Z(L + a 2 ) / (L-a 2 ) -a 1 ] before the start of the crack growth in the ci2 

direction. In other words, under the condition of Eq. (4.2), crack growth never occurs in 

the <32 direction. Therefore Eq. (4.1) becomes 

GINF =Gal = ^f- -{a\ -2a2L-L2)2 (4.3) 

Expressions for Ga\ and Ga2 can also be derived using the CTE analysis. 

Following the analysis given in Section 2.2.1.4, the concentrated forces at both crack 

fronts, Fci and FQ2, and the moments, Mci and MQ2, could be obtained as 

IP 
F" = ^un< ^ Aa22~2a2L-L2) (4.5) 

\ohB(al +a2) 

3P 
Fc2 = T77^< ~M +L2~2aiL + 2axa2) (4.6) 

lohB(a1 +a2) 

-75 



MC1 = MC2 = 0 (4.7) 

Substituting Eqs. (4.5-4.7) to Eq. (2.63), it yields the same expressions of Ga\ and Ga2 as 

Eqs. (2.29-2.30). 

Fracture mode 

In addition to deriving the energy release rate, the CTE analysis can also 

determine the mode mixing ratio for the delamination growth in the INF specimen. Eqs. 

(4.5-4.7) indicate that the delamination crack in the INF specimen is subjected to 

concentrated forces Fc only, which is the same condition as that for the 4ENF test [37]. 

Therefore, the fracture mode introduced in the INF test should be the same as that in the 

4ENF test, and according to the analysis in Ref. [40] the two tests should be subjected to 

a pure shear mode of fracture. Therefore, the corresponding critical energy release rate in 

the INF test should represent G//c. 

Stability of delamination growth 

A stable crack growth requires the following conditions, 

\G = GC 

1 (4-8) 
[dG I da< dGc I da 

If Gc is regarded as a constant, a negative value of dGlda indicates stable delamination 

growth and a positive one unstable delamination growth. Using Eq. (4.3), it can easily be 

found that the value of dGlda for the INF test is always negative under both testing 

conditions, thereby enabling the generation of unconditionally stable delamination 

growth. This is because that crack growth under the displacement control should be more 

stable than that under the load control. 
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The stability for other mode II delamination tests is also assessed in the same way 

and the results are summarized in Table 4.1. The INF test is the only one that generates 

stable delamination growth under load control. 

Under displacement control, dG/da of all tests could be negative if the crack 

length is properly chosen. The reason for the unstable crack growth in the ENF and ELS 

tests could be attributed to the variation of Gc (e.g. because of the inhomogeneity of 

material). For instance, for the ENF test subjected to constant displacement, G values 

reach the maximum at a/L = 0.7, but drops less than 5% at a/L = 0.8 with the same 

displacement. On the other hand, experiments have shown that the variation of Gc in 

mode II fracture can easily be as high as 50% [36]. Hence, the value of dG/da could be 

greater than dGc I da, resulting in unstable crack growth. 

Table 4.1 Predicted stabilities in mode II delamination tests. 

INF 

4ENF 

ELS 

ENF 

Displacement control 

Stable 

dG/dai < 0 

Stable 
dG/da < 0 

Conditionally stable 

dG/da < 0 when a/L>0.55 

Conditionally stable 

dG/da < 0 when a/L>0.1 

Load control 

Stable 

dG/dai < 0 

Unstable 
dG/da = 0 

Unstable 

dG/da>0 

Unstable 

dG/da>0 

Load-displacement curve 

The load P and the corresponding displacement S of the INF test can be expressed 

explicitly as a function of critical energy release rate Gc and a\. The expression for P is 

simply through the rearrangement of Eq. (4.3) with Gc replacing GINF: 
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%{ax+a2)B<lEJ?Gc 
P = ' , z v ' , (4.9) 

3(L2+2La2-a
2
2) 

The expression for the displacement is obtained by converting the above expression using 

Eq. (2.25c): 

Gc(20L\ + 36a2L
2a{ -36La2

2ax + \2a\ax -\6a2L3 -9L 4 +lSa2
2L

2 + 3a2) 
(4.10) 

12(L2 + 2La2-al)y[Ey 

The above two equations suggest that both P and S are linear functions of a\. 

Using Eq. (2.25c) for the relationship between P and 8 before the onset of 

delamination and Eqs. (4.9-4.10) after, the trend of the change for the load-displacement 

curve from the INF test with respect to the increase of a\ and Gc is schematically 

illustrated in Figure 4.4. Note that the curves in the figure are constructed based on the 

assumption of stress-free fracture surfaces that do not impose any barrier to the 

delamination growth. With this assumption, the slope of the P-d curve during the 

delamination growth should be a constant for a given Gc value. 

Delamination growth rate 

Since d is a linear function of a\, with #2 and Gc being constant, the time 

derivative of Eq. (4.10) suggests that the delamination growth rate a is a linear function 

of the crosshead speed S, that is, 

12(Z-2 + 2La2 -a\)ASF A , . „ , 
a, = ,— ;̂̂  —^——— — o (4.11) 

JGC (20Z3 + 36a2L
2 - 36La2

2 + 12a3) 

Therefore, by controlling the cross-head speed 8, the INF test can be used to reveal the 

effect of crack growth speed on the delamination resistance. 
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4.2.3 Experimental details 

Based on the above analysis, a test program was conducted to measure mode II 

delamination resistance in fiber composites. 

INF specimens 

The specimens had isophthalic polyester as the matrix, and unidirectional weft 

glass fiber fabric of 305 g/m2 (9-oz/yd2) as the reinforcement, provided by Triple M 

Fiberglass and ZCL Composites in Edmonton, respectively. A wet hand-lay-up technique 

was used to fabricate flat composite panels of 220x220 mm , with fiber lay-up of 

[Oio/F/Oio] where F represents an aluminum insert film of 25 um thick and 42 mm long, 

acting as a starting defect for the delamination growth. Stitching threads, shown in Figure 

4.5, that held the fiber bundles together were removed in the middle 4 layers, i.e. from 9th 

to 12th layers, to reduce mechanical interlocking between the fracture surfaces during the 

delamination growth. These panels were cured at room temperature for 24 hours and then 

post-cured at 70°C for 20 hours to accelerate and complete the resin curing, resulting in a 

nominal thickness of 6.2 mm and fiber volume fraction of 38%. Strip specimens of 20 

mm wide were then machined from the panels for testing, with 0-degree fiber aligned in 

the longitudinal direction. 

Stitching thread 

t*«aatttM 
Stitching thread free region for 
delamination growth 

Figure 4.5 Glass fiber with/without stitching threads. 
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Delamination test setup and procedure 

INF tests were conducted using an INSTRON® Universal Testing Machine. The 

crosshead speed (S) was 0.254 mm/min. The half span length, L, for the INF tests was 

30 mm. The load was recorded using a load-cell attached to the central loading pin. The 

displacement was determined based on the cross-head speed and the loading time. Both 

loading and supporting pins had diameter of 5.08 mm. Values of a\ and ai in Figure 4.3 

were chosen to be 30 and 12 mm, respectively, which based on Eq. (4.2) allowed 

delamination growth for a distance of 40 mm in the a\ direction before any delamination 

growth could occur in the ai direction. 

Tip of aluminum Delamination crack 
insert film 

Figure 4.6 Photograph of an INF specimen taken during testing. 

Taking advantage of the translucent appearance of the specimen, crack 

propagation was recorded using a digital camera (Nikon D70) at a sampling rate of 0.2 

Hz, i.e. 1 picture for every 5 seconds. As shown in Figure 4.6, a paper strip with 1-mm 

marks was attached to the specimen edge so the crack growth length could be read 

directly from the photographs. 

Observation 

A typical load-displacement curve from the INF test and the corresponding 

change of crack growth are presented in Figure 4.7. The figure shows that a tiny 
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delamination crack was initiated at displacement of about 1.25 mm, which is equivalent 

to a loading level of about 2000 N. Delamination growth at this stage was found to be 

very slow and its occurrence barely changed the slope of the load-displacement curve. 

The crack growth speed increased significantly, at the displacement corresponding to 1.7 

mm. The fast delamination growth lasted for about 0.2 mm of the cross-head 

displacement, as marked by two dash lines in Figure 4.7 and generated a peak on the 

load-displacement curve (point A). Further increase of the cross-head displacement 

resulted in a reduced delamination growth speed that remained relatively constant till the 

end of the test, with total delamination growth length of around 30 mm. It should be 

noted that all specimens showed delamination growth that occurred in the a\ direction 

only, and the load-displacement curves were very reproducible. 

4000 

3000 

•a 2000 
o 

1000 

1 1.5 2 2.5 
Displacement (mm) 

Figure 4.7 The INF test results, load-displacement curve and crack growth against 

displacement. 

- 8 1 -



4.2.4 Data reduction methods 

4.2.4.1 Direct method 

In Figure 4.8 two sets of straight lines are plotted with the load-displacement curve. The 

lines from the origin are the PS response constructed using Eqs. (4.9-4.10), with constant 

increment of a\, Aa\. For the other parameters on the right-hand side of Eqs. (4.9-4.10), 

a2, L and h were measured prior to conducting the tests and E determined using the linear 

part of the experimental load-displacement curve. 

4000 

3000 

-o 2000 
o 

1000 •Test 

constant Aa„ 

constant G, 

1 2 3 
Displacement (mm) 

Figure 4.8 Determine Guc by direct method. 

The parallel lines are the PS response with constant Gc- The experimental load-

displacement curve (the solid line in Figure 4.8) followed the straight line with constant 

crack length (Aai=0) first, and afterwards followed one of the parallel lines with Gc = 

3000 J/m2. Each point on the load-displacement curve from the INF test has 

corresponding Aa and Guc values that could be determined from the lattice formed by the 

two sets of straight lines, or calculated using Eqs. (4.9-4.10) based on the load and 
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displacement values at that point. Plotting Gnc against Aa directly calculated from Eqs. 

(4.9-4.10) yields an R-curve. The method itself is thus named direct method (DM). 

4000 

3000 

| 2000 
DC 

1000 

"0 5 10 15 20 
Aa (mm) 

Figure 4.9 i?-curve obtained by direct method. 

Figure 4.9 shows the i?-curve obtained by DM. This method could easily establish 

the relationship between Gc and Aa without measuring the crack length during the test. 

However, it was found that the maximum crack length (17 mm) in Figure 4.9 is shorter 

than the visual crack length (30 mm) shown in Figure 4.7. This difference is because the 

assumptions behind Eqs. (4.9-4.10) are not fully met, one of which requires the facture 

surface to be stress-free. In the INF specimens, bridging fibers were found entangling 

between the top and bottom fracture surfaces, as shown in Figure 4.10, which may 

generate significant shear force interaction, thereby invalidating the analytical 

expressions. The bridging fibers were known to exist and were studied extensively in 

mode I DCB test [42-44], but they were not recognized as an issue in mode II tests 
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probably because they were not visible in the mode II tests as much as in mode I test in 

which the opening cracks was generated. 

Besides bridging fibers, the mode II fracture surfaces contained matrix hackles, as 

shown in Figure 4.1(b), which is another factor that may introduce interaction between 

the fracture surfaces. Figure 4.11 is a side view of the matrix hackles on the fracture 

surfaces. In mode II fracture, shear force generated by the zigzag-shaped hackles is 

expected to introduce resistance to crack growth because they interlock each other during 

the sliding motion. But the hackles may not generate any resistance when the fracture 

surfaces separate in their normal directions (mode I fracture). 

Consequently, due to the shear force induced by bridging fibers and matrix 

hackles, the compliance did not increase as much as it should according to Eqs. (4.9-4.10), 

or equivalently, the calculated crack length by the DM is underestimated. 

2 mm 
Figure 4.10 Photograph of a post-tested INF specimen showing bridging fibers between 

the fracture surfaces. 
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100pm 

Figure 4.11 Side view of the matrix hackles on the crack surfaces from SEM. 

4.2.4.2 Direct method with final crack length correction 

Because of the substantial difference between the measured crack length and that 

determined from DM, the i?-curve in Figure 4.9 cannot be correct. Therefore, a strategy 

was developed to determine the correct R-curve by horizontally stretching the plot in 

Figure 4.9 to the final visual crack length of 30 mm and compressing the curve vertically 

with the area underneath unchanged. Mathematically this procedure is a mapping process 

using the following formulas, 

f Aa, -» Aa, • k 
I , (4.12) 
[R->R-k-1 

where k is the ratio of the maximum visual crack on the INF specimen to the maximum 

crack length calculated using Eqs. (4.9-4.10). Using this method for building i?-curve is 
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named direct method with correction (DMC). The i?-curve from the DMC is presented in 

Figure 4.12. It keeps all peaks and valleys of the R-curve generated by DM, but with Ilk 

times the original magnitude. 

4000 

3000 

I 2000 

1000 

0^-— ' ' ' 

0 10 20 30 

Aa (mm) 

Figure 4.12 Comparison of R-curves by DM, DMC, CC method and area method. 

DMC is actually based on the principle of conservation of energy, as the areas 

below the i?-curves by the DMC and the DM in Figure 4.12 represent the total energy 

consumed by crack growth. Eq. (4.12) also assumes that the calculated crack length is 

proportional to the visual crack length, which is to be verified in Figure 4.13. Figure 4.13 

presents the calculated crack length against the visual crack length, marked by "x", which 

shows good linearity. The curve of the calculated crack length after the mapping versus 

visual crack length, marked by "•", appears nearly diagonally, showing that the crack 

length after the mapping and the measured crack length are approximately the same. 
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Figure 4.13 Calculated crack length versus visual crack length for verifying the linear 

mapping, "x" represent calculated crack lengths without mapping and "•" 

representing those with mapping. 

4.2.4.3 Area method for the average Gnc 

Because of the stable crack growth and the slow loading rate, the kinetic energy in 

the INF test can be ignored. Thus, the area method [45] that assumes zero kinetic energy 

can be used to quantify the Gc value using the following formula: 

AW-AU 
Gc = 

AA 
(4.13) 

where W is the external work, U the strain energy, A/4 the increment of delamination area. 

When choosing A4 as the total delaminated area and assuming that the system is linear 

elastic, Eq. (4.13) can be rewritten as: 

f max 
P(5)dS-P\s^5mJ2 

(4.14) 
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where £max is the maximum displacement and P\Smm its corresponding force. The 

average value of Gc by this method is plotted as a horizontal line in Figure 4.12. The area 

method is essentially identical to the average value of the i?-curve by DMC, because both 

are based on the load-displacement curve and the energy conservation. 

4.2.4.4 Compliance calibration method 

Compliance calibration (CC) method has been widely used in 4ENF and ELS tests to 

generate i?-curves. CC method is based on Eq. (2.2), but not using the analytical 

expression of dC/da. Instead, this derivative is obtained by curve-fitting of the 

experimentally determined C and a, thus requiring the in-situ crack length measurement. 

CC method was also adopted in the INF test, as discussed in the following. 

The expression of the compliance C for the INF test, Eq. (2.25c), could be 

rewritten as 

C = C0+
 C ' (4.15) 

with Co and Cy being constants. Substituting Eq. (4.15) into Eq. (2.2) yields 

2w (ax+a2Y 
G = — — ^ ^ (4.16) 

The CC method for INF builds R-curve using the above equation, where a\ and P(a{) are 

the measured crack length and force, respectively, and d is to be determined by fitting 

the plot of C versus (aj + a^) with a straight line, based on Eq. (4.15). 

The i?-curve established by the CC method is also plotted in Figure 4.12. This in­

curve however has a declining trend which is different from the one by the DMC that 

shows nearly constant resistance with the increase of crack length a. To investigate the 
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reason for the decreasing trend of the R-curve, the linear curve fitting for compliance is 

presented in Figure 4.14. Though majority of the data points do not scatter much from the 

fitting curve, the data in the range of small and large crack lengths, as circled in the figure, 

deviate considerably from the straight line. This deviation is because the compliance may 

not inherently be a linear function of (a\ + ai)'x due to the shear force interaction on the 

crack surfaces, as mentioned in Section 4.2.3.1. As a result, the CC method may not be a 

desirable method to derive G of the INF test. 

x10"7 

£ 8.5 
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I 7.5 
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-

i i 
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Figure 4.14 Linear curve fitting for the INF test. 

4.2.4.5 Discussions 

Four data reduction methods are discussed for extracting Guc from the INF test. The DM 

(Section 4.2.4.1) is the simplest and most straightforward one. It generates the .R-curve 

based on the load-displacement curve and has no requirement for the history of the crack 

growth length. However, it overestimates the mode II delamination resistance because in 
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the glass fiber composites material used in this study, the interaction between the fracture 

surfaces is so significant that the stiffness does not drop as much as it is expected from 

the analytical expressions. For carbon fiber composites which are the materials most 

commonly used in the study of the 4ENF test, it is possible that fracture surfaces do not 

have as much interaction as the glass fiber composites, since this phenomenon was never 

reported in the literature. If this is true, the calculated crack length for carbon fiber 

specimens should be consistent with the measured crack length in the 4ENF test thus the 

DM should work well. However, to our knowledge, the DM has never been applied to the 

4ENF test results. 

DMC corrects the i?-curve obtained by the DM using the final true crack length, 

based on the energy conservation principle. In this study, visual crack length is regarded 

as the true crack length. For opaque composites, such as carbon fiber composites, visual 

location of the crack tip may not be obvious. But there are many other ways to accurately 

measure the final crack length, such as X-ray [46] or ultrasonic C-scan [47]. The i?-curve 

by DMC, as shown in Figure 4.12, gives the Guc over 2100 J/m at small crack length 

(Aai < 3mm) but quickly drops to 1700 J/m2 at A<zi=6mm and oscillates slightly around 

this value for the rest of the crack propagation. The high Guc at the beginning might be 

due to thick aluminum foil (25 urn) which was much thicker than the suggested thickness 

of 8 um [48] to avoid the initially high Guc value. 

The CC method is more complicated than the DM and DMC. The former needs 

in-situ crack length measurement. For semi-transparent specimens, it is possible to use 

the change of translucency to monitor of the crack growth during the test. But for opaque 

materials, tests have to be run in a repetitive loading-unloading mode to monitor the 
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crack growth [49]. This is because the crack length needs to be measured using ultrasonic 

scan, X-ray or microscopy, thus requiring removal of the specimen from the test fixture. 

Such measurement procedure could be tedious and time-consuming. The loading-

unloading manner may also complicate the test, such as misalignment of specimen on the 

fixture or possible damage in the specimen by cyclic loading, thus creating additional 

problems. 

Area method provides the average Gnc value of the R-curvc, and requires the 

same information as that for DMC, i.e. the load-displacement curve and final 

delamination length. The average Gnc value will be used as the reference to evaluate the 

performance of composites' delamination resistance in the next section. 

4.2.5 The effect of fiber volume fraction on Gnc 

4.2.5.1 Testing details 

INF test 

The INF specimens used in this study are unidirectional glasslepoxy composites 

that are comprised of 300 g/m layers of E-glass fibers impregnated in epoxy by hand 

lay-up. The initial crack at the mid-thickness was built by inserting an <§ /um 

polypropylene film during the fabrication. The glass fiber layers contain 90-degree 

polyester stitching threads every 15 mm in glass fiber direction, as shown in Figure 4.15. 

Note that the specimens discussed here are different from those in Section 4.2.3, where 

the specimen had the matrix of polyester and glass fiber with stitching threads removed in 

the crack propagation region. Also note that stitching threads used to maintain the 
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integrity of the unidirectional glass fibers are often included in the glass fiber composites 

in real applications to facilitate easy handling during the manufacturing. 

E 
E 
10 

A 

V 

stitching 
fibers 

Figure 4.15 Glass fiber preform with stitching fibers. 

The specifications of the INF specimens are listed in Table 4.2. The name of each 

type of coupon specimens contains the information of the number of plies and crack 

length. For example, "P30-«42-L30" means that it contains 30 layers with initial crack 

length ao=42mm and half span length Z=30mm. All quantities listed in Table 4.2 are 

nominal and the true values for every single specimen will be measured before 

conducting the test. 

The tests were carried out using Quasar 100 universal testing machine under 

displacement control at a crosshead speed of 1 mm/min. The specimen was unloaded at 

the same crosshead speed after the visual crack had grown over 20 mm. Both loading pin 

and supporting pins had a diameter of 5.08 mm. 
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Table 4.2 The specifications of the INF specimens and test setup 

Number 2h ao (ci2,a\) L w Nominal fiber 
of layers (mm) (mm) (mm) (mm) content (%) 

P30-a42-L30 

P30-a47-L35 

P30-a47-L40 

P30-a52-L35 

P30-a52-L40 

P30-a57-L40 

30 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

42(8,34) 

47(8,39) 

47 (7,40) 

52(8,44) 

52(8,44) 

57(10,47) 

30 

35 

40 

35 

40 

40 

20 

20 

20 

20 

20 

20 

46 

46 

46 

46 

46 

46 

P24-a47-L35 

P36-a46-L35 

24 

36 

7.5 

7.5 

47(8,39) 

47(8,39) 

35 

35 

20 

20 

37 

55 

Typical load-displacement and crack length history curves are plotted in Figure 

4.16. It shows that there were two slow crack growth stages at Aa = 7 and 22 mm. This is 

due to the stitching threads which worked as pins holding together the adjacent two layers 

after the delamination crack front had passed through the position. Figure 4.17 shows two 

scanning electron micrographs that are examples of how a stitching thread prevents the 

sliding motion. Figure 4.17(a) was taken from the edge of a specimen. The end of a 

stitching thread is perpendicular to the picture. Figure 4.17(b) shows fracture surface 

where a stitching thread bundle is in the vertical direction. The stitching thread could 

incur massive shear force to prohibit the relative sliding motion of the upper and lower 

crack surfaces. Therefore, higher driving force was needed for the crack to bypass the 

stitching thread than that in the stitching-thread-free region. Consequently, a bump was 

created on the load-displacement curve, as shown in Figure 4.16. The corresponding in­

curves by the DM and DMC are plotted in Figure 4.18, compared to the average Gnc 

value from the area method. The one by DMC shows a peak at crack length of 7 mm, 
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where the crack front encountered a stitching thread, and a valley at crack length of about 

20 mm just before the interference with the next stitching thread. 

5000 

4000 
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CO 
O 
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1 2 3 
Displacement (mm) 

Figure 4.16 Typical load-displacement curve and crack length history of the INF test 

with stitching threads on the delamination growth path. 

- 9 4 -



• • n i . hi 
' _ ;•' V ^ - ^ ^ r a i i . ^ ; 

W"* «<• ** I 

. _ » 
• a 

Figure 4.17 SEM pictures of stitching fiber: (a) side view and (b) front view. 

(a) 
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Figure 4.18 i?-curves obtained by DM, DMC and area method. 

4ENF test 

4ENF tests were carried out to provide crosscheck of the INF test results using 

specimens of the same materials. The 4ENF test setup configures followed those in Ref. 

[50]. Similar to the INF test, load-displacement curve shows oscillation at the crack 

propagation stage, as shown in Figure 4.19. The shear force interaction was also found on 

the crack surfaces of the 4ENF specimen, due to the stitching fibers, bridging fibers and 

matrix hackles. Thus, instead of using CC method, area method, the DM and DMC were 

used for the average Gnc and i?-curve. Figure 4.20 shows that R-curves by the DM and 

DMC have similar peaks and valleys as those from the INF test (see Figure 4.18). 
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Figure 4.19 Typical load-displacement curve of 4ENF test. 
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Figure 4.20 Typical i?-curves built by the DM and DMC base on the 4ENF test. 
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4.2.5.2 Results and discussion 

Figure 4.21 plots all average Guc values by area method from the INF and 4ENF tests 

with respect to the fiber volume fraction that was determined based on the number of 

plies and the thickness of each specimen. Though the nominal fiber volume fraction was 

37%, 46% or 57%, the true fiber content varies from 38% to 54% due to the scattering of 

specimen thickness. The figure shows that fiber content has a strong influence on Gnc, 

that is, the higher the fiber content the lower the Gnc value. The mean Guc value for 

specimens of low fiber content, with 24 layers, is 40% higher than those with high fiber 

content, with 36 layers. This trend is probably because more energy is required for 

delamination propagation by breaking a relatively thicker interfacial resin-rich region in 

specimens of low fiber content. Figure 4.21 also shows the data points from the 4ENF 

test using solid circles. These data are mingled with the INF data points, indicating a 

good correlation between these two types of tests. 

2800 

40 45 50 55 
Fiber Volume Fraction, Vf (%) 

Figure 4.21 Average Gnc versus fiber volume fraction. 
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Figure 4.22 Average Gnc versus half span length, L. 
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Figure 4.23 Average Gnc versus initial crack length, ao. 

In Figures 4.22 and 4.23, Gnc for specimens with 30 fiber layers is plotted against 

the initial crack length and half span length, respectively. Results do not show a clear 
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trend of Gnc as a function of L or a.Q, suggesting that the Gnc values are irrelevant to the 

test configurations used in the study. 

4.3 Beam test 

4.3.1 Introduction to the beam test 

"Beam test" [29, 38-40] is a test method originally designed to quantify 

delamination resistance between fiber layers with different orientations. The Beam test 

adopts 3-point bending as the loading mode. Specimens for the beam test contain one 90 

degree fiber layer with all the other layers aligned in the 0-degree direction, such as 

[012/90,/012]. 

The Beam test usually has an unstable crack growth, making it impossible to 

generate an i?-curve. Therefore, Beam test can only give one average Guc value, based on 

the area method (see Section 4.2.4.5). The unstable crack growth also causes specimen 

vibration, thereby introducing kinetic energy to the fracture process which may invalidate 

the area measured for the calculation of Gnc- A remedy will be introduced to correct the 

error on the average Gnc caused by the specimen vibration. 

Despite the above disadvantages, the Beam test could generate delamination 

without any additional damages [29, 38-40], such as indentation around the loading point 

or fiber buckling. Compared to other types of delamination tests, such as the 4ENF and 

INF tests, the Beam test generates delamination without a pre-existing crack. Thus, the 

Beam test can be used to verify the criteria for delamination growth as well as 

delamination initiation in the fiber composites. 
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4.3.2 Test details and results 

The specimens were made by similar material and technique as those for the INF 

specimen described in Section 4.2.3. However, instead of having an insert film acting as 

initial crack, the Beam test specimens have a 90-degree fiber layer in the middle of a 

stack of 24 0-dgeree fiber layers, i.e. [O12/9O1/O12]. The nominal thickness of the 

specimens was 6.2 mm and the fiber volume fraction 45%. 

Beam tests were conducted using an INSTRON® Universal Testing Machine. 

Span lengths used for the testing ranged from 30 to 60 mm at an increment of 5 mm. 

Diameter of the loading and supporting pins were 20.5 and 5.08 mm, respectively. 
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Figure 4.24 Typical load displacement curves of the Beam test with span length 30, 40, 
50 and 60 mm. 

Typical load-displacement curves of the Beam test for various span lengths are 

presented in Figure 4.24. The specimen of the Beam test was loaded under displacement 

control at a crosshead speed of 1.27 mm/min. When displacement is big enough, matrix 
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cracking is initiated within the 90-degree insert layer, which leads to delamination in the 

adjacent interlaminar regions. The delamination growth in the beam test is very fast, 

completed almost at constant deflection, and after that the specimen is unloaded 

immediately. 

Figure 4.25 Matrix cracking (pointed by a white arrow) and delamination (black arrows) 

in a beam specimen. 

An example of the Beam test is given in Figure 4.25 in which the white arrow 

indicates the location where the delamination was initiated, in this case, from a matrix 

cracking within the 90-degree layer. The delamination grew in both directions, one to the 

left passing under the central loading point, and the other to the right passing over the 

support, as pointed out by black arrows. The delamination area was measured from 

specimen surface, as the delamination incurred a significant change of the translucency of 

the specimen when viewed from the specimen surface, as shown in Figure 4.26. 

Figure 4.26 Crack length and location measurement. 

Table 4.3 summarizes results of the Beam tests. The second column lists the 

average maximum force, Pmax, on specimens with the same span length. Values of Pmax 
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decrease with the increase of the span length, but it has a lower limit about 6000 N. The 

lower limit is actually related to the material shear strength, which will be further 

discussed in Chapter 6. The total delamination crack length, listed in column 3, increases 

more than 5 times from 17.3 mm for 30 mm span length to 96 mm for 60 mm span length. 

Location of the crack is measured by the distance of the crack tips to the loading pin, 

denoted as a\ and a2, as listed in the 4th and 5th columns of Table 4.3. Chapter 5 will give 

explanations for the length and location of the crack in the Beam test. The last column 

lists the Gc values determined by the area method. As mentioned in Section 4.2.4.5, the 

area method assumes no kinetic energy involved in the fracture process. The following 

section will demonstrate how to experimentally quantify kinetic energy to correct the Gc 

value. 

Table 4.3 Results the Beam test with varied span lengths. 

2L (mm) 
(Number) 

30(4) 

35(5) 

40(4) 

45(5) 

50(5) 

55(4) 

60(5) 

-» max 

(kN) 

(std. dev) 

7.3 (0.32) 

6.8(0.17) 

6.6 (0.30) 

6.0 (0.48) 

6.0 (0.32) 

6.0(0.31) 

6.0 (0.22) 

Total crack 
length (mm) 

(std. dev) 

17.3 (0.5) 

22.6(1.6) 

30.0 (4.5) 

34.0 (4.4) 

42.5 (6.1) 

51.0(2.3) 

96.0 (9.2) 

a2 (mm) 

(std. dev.) 

0 (0.0) 

0.6 (0.5) 

1.25(0.5) 

2.2(1.3) 

3.3 (0.9) 

3.7 (0.5) 

8.6(1.8) 

a i (mm) 

(std. dev.) 

2.3 (0.5) 

4.5(1.7) 

8.8 (5.0) 

9.3 (5.1) 

14.3 (6.8) 

19.8 (2.6) 

57.4 (10.7) 

Gc(J/m2) 

(std. dev) 

2263(173) 

2279(214) 

2431(207) 

2395(298) 

2513(119) 

2504(109) 

2257(99) 
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4.3.3 Vibration energy in the Beam test 

The energy loss caused by the specimen vibration is considered, and assumed to 

be the major form of energy loss apart from that for the generation of the fracture 

surfaces. This assumption was based on the experimental observation that showed little 

indication of any other forms of energy loss being significantly involved in the Beam test. 

With this assumption, the vibration energy loss is measured, and then Gc for 

delamination is corrected by excluding the vibration energy loss from the calculation. It is 

believed that this approach has improved accuracy of the measured Gc value. 

Specimen vibration after the start of the delamination is recorded using a high­

speed camera (Redlake MotionPro™) at a speed of 5000 frames/sec. A cracking noise 

was generated when delamination occurred, which provided a clear signal for manually 

triggering the video camera to stop the recording. Therefore, the fracture process for a 

duration before the triggering was recorded. The images were then analysed using 

MiDAS® to determine the frequency and the amplitude of the specimen vibration, which 

were used to estimate the kinetic energy involved. 

Figure 4.27 Photographs of the beam vibration: (a) beam deflection before delamination, 

and (b) beam deflection after delamination at the lowest position during 

vibration. 
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Figure 4.27 shows typical photographs recorded during the Beam test at the span 

length of 50 mm. Edge of the specimen in the figure is coated with a thin layer of liquid 

white and marked every 5 mm. Figure 4.27(a) was taken just before the delamination, 

and Figure 4.27(b) after the delamination with the left overhanging section at the 

maximum deflection in the vibration. 

Figure 4.28 Vibration motion of the Beam test specimen. 

Figure 4.28 demonstrates the vibration in the specimen due to the unstable 

delamination growth, which was created by contrasting the two photographs of Figure 

4.27. The photograph in Figure 4.28 suggests that specimen vibration mainly occurred in 

the left over-hanging section, with the vibration root located around the left support. The 

amplitude and frequency of the specimen vibration were measured and later used to 

estimate the associated kinetic energy. 

To estimate the kinetic energy associated with the specimen vibration, the 

following process is used. Firstly, it is assumed that for each point in the overhanging 

section the motion is in a harmonic mode. Thus, the displacement w and velocity (w) at 

each point of the overhanging section are expressed as: 

w(x,t) = wmm(x)-sin(2nfrt) (4.17) 

M.x,t) = wBm(x)-2ftfr - cos(2^0 (4.18) 

where fr is vibration frequency (measured experimentally), x distance to the vibration 

root, wmax(x) amplitude of vibration atx, and t time. 
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The maximum kinetic energy for the vibration motion (U™x) is 

Ur = i\wl^x)Apdx = \l^[w^(x)2^r]
2Apdx (4.19) 

where A is the cross-sectional area of the specimen, / total length of the over-hanging 

section from the support, and p the density of the specimen. The images taken by the 

high-speed video camera were used to identify the function wmax(x) that fit the deflection 

profile of the over-hanging section. 

Figure 4.29 compares the motion of the overhanging section with a swing motion 

and a cantilever beam vibration motion of the same amplitude. The figure suggests that 

the motion profile obtained experimentally can be more closely represented by the simple 

swing motion than by the cantilever beam vibration. This is probably because in the 

simply supported bending condition, the root of the overhanging section is not rigidly 

restricted from the rotation. The small amplitude resulted in a close approximation of the 

vibration motion by the swing motion. This is supported by the frequency of the vibration 

that was measured to be around 450 Hz, while the natural frequency for the equivalent 

cantilever beam vibration should be 1760 Hz. Therefore, the swing motion was used to 

approximate the maximum amplitude at each point during the vibration, that is, 

KM = ^v'l)x (4-2°) 
where B is half of the maximum displacement of the specimen tip during the vibration 

motion, as illustrated in Figure 4.29. As a result, E^x in Eq. (4.19) can be expressed as: 

C s (UBrx/l)2(27rf)2Apdx =1(2*/Br)
2Apl (4.21) 

J02 6 
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Swing motion 

True vibration 

• Cantilever beam 

wmax for a given position x 

By- Maximum displacement 
measured experimentally 

Figure 4.29 Schematic description of two modes of motion used to simulate the 

vibration. 

An example for estimating the kinetic energy using the above approach is given 

here, based on the measured vibration frequency/- and By~to-l ratio as 454 Hz and 0.0707, 

respectively. With known values of the cross-sectional area A, density/), and overhanging 

length / (60.96 mm2, 1.702><10"3 g/mm3 and 82 mm, respectively), the energy loss due to 

vibration, calculated using Eq. (4.21), is 0.169 J. This is about 12% of the total energy 

loss of 1.439 J. The average energy loss due to vibration, based on data from 5 specimens, 

is 12.7% of the total energy loss, with a standard deviation of 1.62%. 

In a previous experimental study of the Beam test [40], using total energy loss to 

determine Gc for delamination, it was found that the Gc values were independent of the 

span length in the range from 30 to 60 mm. Since the true Gc value should be 

independent of the span length, the fraction of energy loss for specimen vibration should 

also be independent of the span length, i.e. about 10% of the total energy loss. After 

excluding the energy loss for specimen vibration by subtracting it from the total energy 

loss, Gc value for delamination should be around 2000 J/m2, about 10% less than that 

reported in Ref. [40], 2200 J/m2. 
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4.4 Concluding remarks 

A new test method, named INF test, is proposed to quantify mode II delamination 

toughness of fiber-reinforced polymers, which generates unconditionally stable 

delamination growth. It was discovered that bridging fibers and matrix hackles on the 

crack surfaces incur shear force interaction and result in a lower compliance than the 

analytical prediction based on the same crack length. A data reduction method, DMC, 

was proposed to provide i?-curve for delamination propagation. DMC requires the load-

displacement curve and the final crack length to determine the R-curve. Compared to the 

commonly used CC method, DMC has fewer requirements on data acquisition, but 

provides more reliable R-curve. 

By conducting a series of INF tests with variation in setup configurations and 

fiber volume fraction, Gnc was found to be irrelevant to the initial crack length or the 

span length of the fixture in the INF test, but could be significantly reduced by higher 

fiber volume fraction. The 4ENF tests were also employed to provide a crosscheck of the 

INF test results. Using the same data reduction methods (DMC and area methods), the 

4ENF test generated similar i?-curve and average Gnc value as those from the INF test, 

suggesting that both tests give essentially the same evaluation on the mode II 

delamination resistance. 

The Beam test was also carried out. Since the Beam test always generated 

unstable crack growth, accompanied by specimen vibration, the kinetic energy loss due to 

vibration was estimated in order to correct the Gc value determined from the area method. 

Although the Gnc values obtained from the Beam test may not be accurate, it is a good 

example to represent the delamination in fiber composites, compared to other types of 
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delamination tests. This is because the Beam test does not have an initial crack, consistent 

with most of real applications of fiber composites. Thus, the results include information 

such as delamination initiation location, final crack length and the critical load to 

generate delamination, which can be used as benchmarks to evaluate the simulation 

works, which will be presented in Chapters 5 and 6. 
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Chapter 5 Analytical Prediction of Delamination 

Development in the Beam Test 

5.1 Introduction 

Crack growth is usually predicted by comparing the driving force of crack growth to a 

correlated threshold value. When the driving force is greater than the threshold, crack 

advances, otherwise arrests. The stress intensity factor (K) and the J-integral are often 

used as the driving forces in metallic materials, and correspondingly Kc and Jc are 

thresholds that govern the crack growth. In fiber reinforced composite materials, G and 

Gc are commonly adopted in the study of delamination. Therefore, this chapter will use 

these two parameters to predict the delamination development using analytical 

approaches. 

The analytical approach is limited to problems that have explicit expression of G. 

However, the analytical solution is not always available especially for cracks with an 

irregular shape or subjected to complicated loading. As a result, the Beam test was 

selected for this study. Section 5.2 will discuss the delamination crack path in the Beam 

specimen, based on the criteria of the maximum energy release rate. Section 5.3 will 

predict the upper and lower bounds of the crack length through two approaches, one 

based on the energy release rate, and the other is based on the balance of the total energy. 

The latter is essentially the integral form of the energy release rate. 
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5.2 Prediction of delamination crack path 

5.2.1 Criteria for crack growth direction 

As mentioned in the previous chapter, delamination in the Beam specimen starts from the 

matrix cracking between the central loading pin and one of the supporting pins (see 

Figure 4.25), growing in the adjacent interlaminar regions in both directions. It was 

perceived that the delamination growth rates in the two directions might not be the same. 

Therefore, criteria are needed to determine the sequence of the delamination growth in 

the two directions. Two criteria are proposed here for this purpose. 

Denoted by da, the total increment of the delamination crack length is 

da = da{ + da2 = t- da + (l-t)- da (5-1) 

where da} is the growth of the delamination in the right direction (see Figure 4.25), da2 

the growth of the delamination in the left direction, and t the ratio of daj to da (0<t < 1). 

Based on Eq. (2.2), the total energy release rate, Ga, is 

G iliK.^aci,^^ 0 (52) 
2B da 2B dax da da2 da 

where B is the width of the specimen, Gai and Ga2 are given by Eqs. (2.26-2.32) for 

different crack configurations. It should be noted that the presence of the 90-degree insert 

layer has been ignored in this analysis. This is because the 90° layer is located in the mid-

thickness and has a very small fraction of the total thickness (1/25). As a result, it is not 

subjected to any significant level of stress and its presence should have little effect on the 

change of G. 

The proposed 1st criterion is that the delamination grows in the direction that 

yields the maximum Ga value. Based on this, in the case that Gai*Ga2, Eq. (5.2) suggests 
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that t should be equal to 1 or 0 to yield the maximum Ga. Therefore, the first criterion 

suggests that when GaX & Ga2 delamination should grow in one direction only. 

However, during the initial delamination growth from the matrix cracking, as 

described by Figure 5.1(a), according to Eq. (2.26) Ga\ was found to be equal to Ga2- A 

2nd criterion is proposed in this case to determine the ratio of the delamination growth 

length in the two directions. 

The 2nd criterion states that the delamination growth should yield the maximum 

rate of increase of Ga with respect to the total crack length a. That is, when Ga\ ~ Gaz, 

delamination growth in either of the two directions should satisfy the following 

conditions: 

—(dGa /da)=0 and ^-r(dGjda)<0 (5.3) 
dt dt 

From Eq. (5.2), dGJda in the above equations can be expressed as 

^ = ±(Gal-t + Ga2-(l-t)) 
da da 

dG„, i , dG„-, dG„,., 2 x 5G-, ,, . 2 = — - r +(—^+—*!)(f-r)+——(1-r) 
oax oax oa2 oa2 

(5.4) 

with Gai and Ga2 being given by Eqs. (2.26-2.32). Eq. (5.3) can be solved analytically to 

express t as a function of a\, a%, E, etc. 

5.2.2 Crack path in the Beam test 

By applying the above criteria, i.e. primarily based on values of Ga\ and Gaz, and 

when Ga\ = Gai on dGJda, delamination growth in the Beam test is expected to evolve in 

the following manner. Firstly, delamination is initiated from matrix cracking in one of the 

half-span sections. Since Ga\ = Gai at this stage, delamination is expected to grow in both 
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directions, as shown in Figure 5.1(a). The two cracks in Figure 5.1(a) are named left 

crack and right crack, respectively, based on their positions relative to the initial matrix 

crack location. Using the G expression for Scenario 1 of Figure 2.6, with Ga\ = Gaz = G, 

Eq. (5.4) can be further simplified to be 

<«?„_ 
da [81ju+3(ax-a2) ju+SLh E] 

which suggests that dGJda is also independent of t. Therefore, based on the two criteria, 

it is expected that the delamination growth in the two directions should have the same 

potential at this stage, until one of the delamination crack fronts reaches either the central 

loading point or the nearby support. After that, the 1st criterion suggests that further 

growth in the same direction does not occur until the other delamination crack front 

reaches the other point, S or C as depicted in Figure 5.1(b). This is based on Ga values 

determined from Eqs. (2.27-2.28 and 2.31-2.32). As a result, delamination will grow 

beyond points C and S only after the crack is fully developed in the half-span section. 

Delamination growth beyond the central loading point and the nearby support 

falls into scenario 3 of Figure 2.6(c). Based on the 2nd criterion, further delamination 

growth in the two directions must yield the maximum value of dGJda. Using Eqs. (5.3-

5.4), with the definition of t being 

t(ax,a2,E,ju,...) = - L—- (5.6) 
da2 + dax 

expression for dax/da2 has been derived as a function of a\, ai, E, /A, etc. The explicit 

expression of daxlda2 is given below, after substituting Ga\ and Gai by expressions given 

in Eqs. (2.29-2.30) and force P being replaced by d/C. That is, for delamination growth 

under the constant displacement, 
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^ = ±Atn ±Btn (5 
aa2 i=0 / i=0 

where A0 = (48a,3 a2 + 54a2 a^ + 15a,a2)//, 

4 = (15a2 -126a,2a2
4 + 18a,a2 - 192a,3a3)// + (-16a,3a2 -24a,2a2 -8a,a3)/22£ 

A2 = (288a;3a\ + 156a,2a3 + 3a4a,)// + (-24a,a2 -8a2 + l6ax)h
2E 

4 = (-3a2 - 256afa2 -348a,2a2
2 - 140a,a3

2)/j + (8a,a2 + 8a2)h2E 

A4 = (16a2
3 + 129a2a, +112a,3 + 342a2a2)jU - (8a2 + %ax)h

2E 

A5 = (-142a,2 -142a2a, - 27a2)// 

A6 =(16a2 + 6lax)ju 

A7 = -9ju 

BQ = (-6a, a2 + 3a2)// 

5, = (36a,a2
5 -27a6

2)ju + (8a,a3 + 8a2)h
2E 

B2 = (93a2
5 - 42a2ax)ju + (-24a,3 -24ala

2
2)h

2E 

53 = (-85a4 -40a,a3) / / + (8a,a2 + %a2
2)h

2E 

BA = (-87a3 + 30a2a,)// + (8a2 + 8a,)/?2£ 

£5=(20a,a2 + 47a2 )// 

56 = (2a,+47a2)// 

2?7=9// 

With the initial conditions oia^=L and a2 = ° ; the solution for Eq. (5.7) is 

a, = L{L + a2) /(Z, - a2) (5 
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Stage 1 

Stage 3 1 

(a) 

(b) 

7T 

'?SJ^SS 

(c) 7T 

Figure 5.1 The process for delamination development in the Beam test: (a) stage 1, (b) 

stage 2, and (c) stage 3. 

The above equation suggests that further delamination growth at stage 3 of Figure 

5.1 should also occur in both directions, with delamination lengths a\ and aj following 

the relationship governed by Eq. (5.8). This equation also suggests that the length of the 

right crack beyond the support should be more than twice of the left crack length beyond 

the central loading point, i.e. (a; - L) > laj. By substituting Eq. (5.8) back into Eqs. 

(2.29-2.30), Gai and Gai were found to have the same value. Therefore, the crack growth 

in stage 3 is predicted to be simultaneous in both directions, but at different rates. 
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5.3 Prediction of the delamination crack length 

5.3.1 Based on the energy release rate 

Having identified the delamination crack growth pattern, the final crack length can be 

obtained simply by comparing Ga to the material constant Gc determined in the previous 

chapter. For example, Figure 5.2 presents a plot of G as a function of the total crack 

length a, based on the crack path in Figure 5.1. G values in the figure are calculated using 

the material properties listed in Table 5.1. Specimen geometry and loading conditions are 

the same as those given in the Beam test study (Section 4.3), with span length set at 50 

mm. Since the load and the displacement follow a linear relationship prior to 

delamination growth, the displacement for the onset of delamination is determined based 

on PmaxCo, where Pmax is the critical load for delamination onset, as listed in Table 4.4, 

and Co the initial compliance of the corresponding beam specimen. 

Table 5.1 Mechanical properties of the Beam test specimens 

Glass/polyester 
composite 

En 
(GPa) 

28.6 

E22 - £33 
(GPa) 

6.0 

G12- Gu 
(GPa) 

6.0 

V23 

0.3 

Vl2=Vl3 

0.3 

Figure 5.2 shows that Ga value increases with the increase of the total 

delamination crack length, until the length reaches the value of half span length, 25 mm, 

which is represented by the peak point of the curve. After that, Ga value decreases. A 

horizontal dash line at 2000 J/m2 is drawn in the figure to indicate the critical energy 

release rate for delamination (Gc), estimated from the experimental study described in 

Section 4.3. Based on the Gc value, Figure 5.1 suggests that a critical delamination length 

of 12 mm is required to initiate unstable delamination growth. With the assumption that 
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Gc for delamination arrest is the same as that for growth, the figure also suggests that the 

total delamination length is 38 mm, corresponding to point B in Figure 5.2. Eq. (5.8) 

suggests that for a total crack length of 38 mm, a\ should be 3.9 mm and a.2 34.1 mm. 

Since G is always above the level of Gc between points A and B, delamination growth in 

this crack length range should occur in an unstable manner. 

«x10"3 

L=25mm, 5=P cTl 
' max 0 

A / \ B 

"0 10 20 30 40 50 
Total crack length, a (mm) 

Figure 5.2 Variation of G with delamination length for a beam specimen subject to 

constant deflection. 

Using the above approach, the predicted values for total delamination crack length, 

(ai+a2), are compared with those obtained experimentally, and summarized in Table 5.2 

under the column ERR (representing the energy release rate). The table suggests that the 

predicted values of total delamination crack length are fairly consistent with, but slightly 

smaller than those measured experimentally, especially for span lengths up to 55 mm. 

Significant discrepancy was found at the span length of 60 mm. This discrepancy might 
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have come from the unstable manner of the crack growth, possibly because the analytical 

Ga value was derived based on the static state. 

Table 5.2 Comparison of the results from the Beam test and those predicted using the 

approaches based on G (ERR) and change of total energy (TE). 

22, 
(mm) 

30 

35 

40 

45 

50 

55 

60 

Total crack length (mm) 

Prediction 

ERR TE 

18 

22.0 

27.5 33 

32.0 41 

38.0 65 

46.0 91 

54.0 122 

- Test 

17.3 

22.6 

30.0 

34.0 

42.5 

51.0 

96.0 

a2 (mm) 

Prediction 

ERR 

1 

1.4 

2.3 

2.9 

3.9 

5.3 

6.7 

TE 

-

-

3.8 

5.1 

9.5 

13.1 

16.7 

Test 

0 

0.6 

1.3 

2.2 

3.3 

3.7 

8.6 

a\ (mm) 

Prediction 

ERR 

32 

38.1 

45.2 

51.6 

59.1 

68.2 

77.3 

TE 

-

-

49.2 

13.4 

80.5 

105.4 

135.3 

Test 

32.3 

39.5 

48.8 

54.3 

64.3 

74.8 

117.4 

5.3.2 Based on the balance of total energy 

An alternative approach to predict the delamination length in the Beam test is described 

as follows. This approach considers the change of total energy of the beam specimen 

during the delamination development. The principle of energy conservation [51] is 

8W-SUD=8U + 5UK (5.9) 

where ^represents the input energy, SUD the irreversible energy loss, SU the change of 

the strain energy, and 5UK the kinetic energy generated by the unstable delamination 

growth. It should be noted that SUK will eventually be consumed by damping. 
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Since the Beam test generated delamination at constant deflection, the input 

energy, SW, is zero. By ignoring other types of energy loss, such as friction energy and 

plastic deformation of the matrix, the sole contribution of SUD is the formation of 

fracture surfaces, i.e. 6UD = GC-Sa. By definition, SU is equal to (- G • da). Therefore, 

rewriting Eq. (5.9) in an integral form yields 

JGcda - JGda = - jdUK (5.10a) 

Through integration over the crack growth path, it yields: 

Gca-^Gda = -UK (5.10b) 

0 
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5: =p cn 
max 0 

Max a / 

V 
G = G C / 

KL-
1 

20 40 6 
Total crack length, a (mm) 

80 

Figure 5.3 Total energy change during the delamination growth when subjected to 

constant deflection. 
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Since the kinetic energy during the delamination development must be either 

J 'a 
Gda ] should be negative or zero. That is, the 

0 

delamination growth should not result in a positive value of [ Gca - Gda}. 

J -a 
Gda] is plotted in Figure 5.3 as a function of 

0 

crack length in a beam specimen with a span length of 50 mm, under constant bending 

deflection of PmaxC0 (same as that used for Figure 5.2). Figure 5.3 shows that the value of 

ra 

[ Gca - J Gda] becomes positive when the delamination length reaches 65 mm, which is 

the maximum length for delamination development. The true delamination length 

obtained experimentally, however, could be much shorter than that predicted by this 

approach, because the kinetic energy may not be negligible. 

The delamination lengths for all test configurations predicted using this approach 

are listed in Table 5.2, under column TE (representing total energy). The TE column 

shows that for span lengths of 40 mm and longer, the predicted crack length values are 

consistently larger than those measured experimentally. Therefore, the approach of using 

the change of total energy provides an upper bound for delamination length developed in 

the Beam test. 

It should be noted that for the short span lengths of 30 and 35 mm, a significant 

portion of the delamination growth was found to occur in a stable manner, producing a 

non-linear load-displacement curve. Therefore, it is questionable whether this approach 

can be applied to delamination development in Beam tests using such short span length, 

as the initial part of the crack growth is expected to occur in a stable manner. 
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5.4 Concluding remarks 

Analytical studies were conducted to explore possibilities of predicting delamination 

development in the Beam test. Since the crack in the Beam test has two fronts, criteria for 

equal and unequal energy release rates in the two crack growth directions were proposed 

to determine their relative crack growth rate. Analytical approaches, based on either 

differential or integral form of the energy release rate, were proposed to estimate the 

lower and upper bounds of the delamination size. The prediction has shown good 

agreement with the experimental results, suggesting that the analytical approaches could 

be used to predict the delamination size developed in the Beam test. 
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Chapter 6 Finite Element Simulation of Delamination 

6.1 Introduction 

The FEM techniques for determining the energy release rate such as the CDT, the EDT, 

the VCCT and the /-integral seems to be able to simulate delamination growth by simply 

comparing the FEM G values to the experimentally determined Gc value. However, there 

are difficulties for such applications. For example, the CDT and the EDT are inherently 

impossible to simulate crack growth, because the crack growth path and rate are the 

prerequisites for applying these techniques. The VCCT and the /-integral are hindered by 

the lack of topological information of the crack profile that is needed to calculate G for 

the crack growth. As a result, these techniques are only used to predict the onset of crack 

growth. 

A different approach, known as cohesive zone model (CZM), provides an 

alternative solution to avoid the above difficulties. Use of the CZM to simulate crack 

growth is depicted in Figure 6.1 in which a cohesive zone is bounded by upper and lower 

cohesive surfaces. A damage zone is developed in the cohesive layer to simulate crack 

growth, properties of which degrade with deformation due to the material damage or 

plastic softening. A stress limit is set for the cohesive zone based on the material strength, 

which also serves as a criterion for the damage initiation. That is, when the stress limit is 

reached, the damage starts to develop, and the stress decreases with the increase of the 

relative displacement (S) between the two cohesive surfaces. Eventually, the stress is 
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reduced to zero, leading to the formation of a new crack area. The coupling between 

stress (a) and 6 is governed by the cohesive constitutive law, with the area underneath the 

a-d curve representing the critical energy release rate, Gc, as also shown in Figure 6.1. 

Upper/lowi 
cohesive 
surfaces 

Cohesive damage zone 

1 | Crack front 
/ • 3* ^ w , W 

Cohesive zone 
(undamaged) 

Figure 6.1 Schematic of the cohesive zone model. 

In the past, the CZM was implemented in FEM using nonlinear spring [52-56] or 

interface elements [57-64, 64-77] that have all three key properties mentioned above, 

namely, damage initiation criterion, constitutive law {a-d curve), and the material 

property, Gc-

The critical energy release rate Gc is a material constant that should be obtained 

experimentally, as discussed in Chapter 4. 

Most of the constitutive laws in the literature were developed in a 

phenomenological way, in which the a-d curve was expressed in several functions, such 

as an exponential function [77, 78], a trapezoidal function [79], or the most commonly 

used bi-linear function [60, 64, 73, 80]. To our knowledge, there is no preferred function 

for the a-d curve, as these functions show similar results in simulation. This is because 
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the constitutive laws mainly govern the behavior within the cohesive damage zone that is 

too small to affect the global response. 

The past FEM works using interface elements [59, 60] have shown that the 

simulation results, especially in terms of load-displacement curve, are not sensitive to the 

damage onset criteria, which are commonly functions of stress and material strength, 

except when an excessively "weak" material is used. The use of weak material results in 

a very large cohesive damage zone, thus significantly reducing the global stiffness of 

structures. Blackman et al. [60] and Alfano et al. [59] had suggested some methods to 

optimize the cohesive zone strength in the damage onset criteria for increasing the 

computational efficiency without losing the accuracy. Nevertheless, all examples studied 

in Refs. [59, 60] had an initial crack to ensure that the damage onset criterion is satisfied 

at least in one element in the crack tip region due to the stress concentration incurred by 

the crack. Thus delamination always starts from the initial crack tip. However for 

composites without initial defect, where delamination is believed to be initiated from 

matrix crack [46, 81, 82], the value of material strength and the expression of damage 

onset criterion could be of great importance to the simulation results. Criteria for the 

accurate prediction of damage onset in defect-free composites may involve all stress 

components, such as the criteria by Choi et al. [81] and by Hou et al. [83, 84]. However, 

these criteria cannot be implemented in any CZMs using interface elements. This is 

because the interface elements [57-64, 64-77] are formulated based on the displacement 

jump vector and the corresponding energy-conjugated traction vector. They do not have 

the in-plane normal stress components. Another approach in the literature using spring 
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elements [52-56] can only adopt the simple maximum stress criterion, since axial stress is 

the only stress component that can be considered. 

To overcome the above difficulties, a new approach is developed, which uses 

solid elements and a new material model called "cohesive damage material", to 

implement the CZM in FEM. Solid elements have all the stress components so that multi-

axial-stress-based damage initiation criteria can be used. Meanwhile the cohesive damage 

material will adopt a damage evolution law based on the concept of the CZM, i.e. using 

critical energy release rate to control the damage development. 

Note that there are many damage material models reported in the literature to 

simulate delamination. However, none of them considers the critical energy release rate 

for the damage evolution. For example, refs. [83, 84] used a prescribed function for the 

damage development; Ref. [81] assumed an immediate drop of material modulus to zero 

after the damage initiation. 

In brief, compared to the interface elements, the new approach to be described in 

this chapter has the advantage of being able to adopt any damage initiation criterion, 

while compared to other damage material models, the new approach has a physically 

meaningful delamination evolution law. 

6.2 Cohesive damage material 

Using the cohesive damage material approach, the cohesive zone is represented by a thin 

layer of continuum solid elements, of which the properties change due to the damage 

development. The cohesive zone is inserted between two potentially separable surfaces 

with local coordinates that have 1-axis perpendicular to the crack surfaces, as shown in 

Figure 6.1, in order to facilitate determining the fracture mode. For example, when 
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subjected to mode I loading, the cohesive zone layer is expected to extend in the 1-

direction. Thus, by examining deformation of the cohesive zone layer, the fracture mode 

can be determined. In this chapter, all stresses are expressed according to the local 

coordinates shown in Figure 6.1. 

6.2.1 Constitutive relationship 

The cohesive damage material adopts the isotropic damage elastic constitutive 

relationship. Denoting d as the ratio of the damaged (or cracked) surface over total 

surface area at a local material point, the physical stress could be correlated to a reference 

stress state atj [85], by 

<jy=(l-d)cjy (/,;= 1,2, 3) (6.1) 

with atj being the corresponding stress of the physical strain e,y in the undamaged state, 

&y = Emsa (.U, k,l=h 2, 3) (6.2) 

where Eyki is the initial elastic stiffness. Substituting Eq. (6.2) to (6.1) gives the 

constitutive equation for the isotropic damage linear elasticity: 

^ = (1 - d)Eijklskl (i,j, k,l=l, 2, 3) (6.3) 

The range of d is from 0 to 1. When the damage is fully developed, i.e. d=\, based 

on Eq. (6.3) the material cannot withstand any types of load, thereby possibly leading to 

the interference between the upper and lower cohesive surfaces. To avoid the interference, 

stiffness degradation in the out-of-plane direction (1-direction in Figure 6.1) is prohibited 

when the compressive strain occurs in that direction. 
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6.2.2 Damage initiation criterion 

Previous experimental studies on fiber composites [46, 81, 82] have shown that 

specimens without a starting defect are expected to initiate delamination from matrix 

cracking in the resin-rich region between two adjacent layers. For this cohesive damage 

material model, the damage initiation criterion is expressed in two functions, depending 

on the hydrostatic stress component (a u ) being positive or negative: 

[ K IT)2 + K2
2 + cr2

3)/S
2 (for cru > 0) 

[a2
2+cxf3-(aau)

2]/S2 (for<r,<0) 
e = \\a . 2 V2 ,Zc2 I " J. (6-4) 

where <rn and ai3 are shear stresses, a a non-dimensional parameter that is used to 

quantify the effect of the compressive hydrostatic stress on the suppression of the matrix 

cracking, T the transverse tensile strength and S the shear strength of the cohesive zone. 

The only adjustable parameter a is determined using the critical load for damage 

initiation, of which the details will be discussed later. The value of e determines whether 

the critical condition for damage initiation is reached. That is, the damage is initiated 

when e is equal to or larger than 1. 

The use of the expression of Eq. (6.4) for the damage initiation criterion reflects 

the common phenomenon that the hydrostatic compression may slow down or suppress 

the damage initiation [86]. Note that when subjected to pure tensile or shear stresses, the 

above criterion is identical to the maximum tensile or shear stress criterion, respectively. 

Section 6.4 will present an example with the damage development in a stress state that is 

a combination of normal and shear stresses, to evaluate the validity of the criterion for the 

damage initiation. 
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6.2.3 Damage evolution law 

Gr in mixed mode fracture 

The total critical energy release rate Gc in mixed mode fracture is assumed to be a 

function of Gic and Gnc- Several approaches have been suggested to determine Gc for the 

mixed mode of fracture, such as power-law, exponential, or linear/bilinear functions, as 

summarized by Reeder [32]. In this cohesive damage material model, the simple B-K 

criterion [33], proposed by Benzeggagh and Kenane, is used. It assumes Gc as 

GC = GIC+{GIIC-G1CW (6.5) 

where r\ is a semi-empirical parameter and ft the mode-mixing ratio that is defined as the 

ratio of Gshear to Gc- Note that Gshear gives no distinction between the sliding mode (mode 

II) and the tearing mode (mode III) of fracture, following the suggestion by Camanho et 

al. [63]. The total energy release rate due to mode II and mode III of fracture is simply 

regarded as Gshear-

Mixed mode ratio 

In principle, the ft value in Eq. (6.5) should be determined after the damage has 

been fully developed. On the other hand, the FEM simulation based on the cohesive 

damage material model needs aft value to determine Gc (see Eq. (6.5)) once the material 

starts to degrade. To overcome this dilemma, a temporary ft value is assigned based on 

present state of the energies absorbed by the deformations of shear and opening modes, 

Ushearand Ui' respectively. Thereby, 

P'-'^u^iqj^+u,) (6.6) 

where Ushear and Uj are defined as, 
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Ushear = 2r0 \andsn +2t0 [<Jndsn 

(6-7) 

where t0 is the thickness of the cohesive zone (see Figure 6.1) and (*) denotes that the 

term equals zero if "*" is negative, otherwise equals "*". The /? value will be recalculated 

at each time increment according to the updated Ushear and t/7 values. Eventually, /? is 

fixed when the material is completely damaged, and by that time all stress components 

are zero. 

Development of damage parameters 

Eq. (6.3) shows that the damage factor d is the only parameter that governs the 

degradation of the material stiffness. The evolution of d can be defined by any non-

decreasing function, valued from 0 to 1, of any state variables such as stresses, strains and 

strain energy. In the cohesive damage material, the evolution of d is given below as a 

function of Ushear and £/7 (see Eq. (6.7)), 

d= E
 dE°c (6.8) 

where dE is 

d = max 
historically high dE 

(6.9) 

UQ in Eqs. (6.8-6.9) equals to the summation Ushear and C/7 when damage initiation 

criteria are satisfied at the first time, i.e. 

Ua={UShear+U,)\e=l (6.10) 
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It is easy to find that cf increases monotonically with the increase of (UShear +Ut) 

in Eq. (6.9). In the case of unloading, i.e. with the decrease of (UShear +C/7), cF will 

remain its historically high value. The physical significance of cf will be discussed in the 

following. Note that the damage parameter d fully governs the degradation of the 

stiffness in the cohesive damage material. The other parameter cf is merely for the 

convenience of modeling the swelling and frictional force effect which will be discussed 

in Section 6.2.5. 

6.2.4 Stress-strain response in pure mode fracture 

The cohesive damage material model defined in Section 6.2.1-3 is implemented in the 

finite element code ABAQUS/Explicit through its user subroutine VUMAT. The stress-

strain response of this material model under pure mode I loading is obtained by applying 

tensile deformation to a single element with the cohesive damage material properties, as 

described in Figure 6.2. 

U] > 0, us = 0 

4-node solid element with 
£ - - ' cohesive damage material 

properties 

Figure 6.2 Finite element model for determining load-displacement response in 

opening mode fracture. 

The stress-strain response obtained from the single element test is a bilinear curve, 

as illustrated in Figure 6.3(a). The horizontal axis of the figures in Figure 6.3 can also 
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represent the opening distance u\ which equals the product of en and thickness to (=1 in 

this single element test), thus the area in the figure represents energy per unit area. 

In Figure 6.3(a), point A refers to the moment when the damage initiation 

criterion is met. Therefore, the area OAD equals UQ. Beyond point A the stress reduces 

linearly with the opening distance (sntQ). Let point B represent the current state, the total 

energy input per unit cohesive zone area at B is the area of the quadrangle OABE, which 

can be divided into triangle OAB and OBE, representing the unrecoverable energy loss 

due to material damage and the recoverable elastic strain energy, respectively. If the 

opening load keeps increasing from current state, point B, the stress will go down 

following the line segment BC until unrecoverable energy loss equals Gc that is the area 

of triangle OAC. After that all the stress components will be zero. On the other hand, if 

unloading is applied at point B, the stress will go back to zero linearly following the 

dashed line with a slope of (l-d)E. 

Figure 6.3(b) plots the evolution of the damage parameters d and dE. Both start to 

increase from 0 (point A'), following two different paths, to 1 (point C ) for the complete 

damage development. If unloading is applied during the damage development, for 

example, at the displacement corresponding point B, d and dE defined by Eqs. (6.8-6.9) 

will maintain their historically high value with the decrease of displacement, as shown by 

the black dashed line in Figure 6.3(b). This is to reflect the fact that damage in the 

material is irreversible. 

It is noticed that in Figure 6.3(b), the parameter dE is proportional to the opening 

displacement measured from point A', Si, and its value is equal to the ratio of area OAB 

to OAC in Figure 6.3(a). We have shown that area OAB is the unrecoverable energy loss 
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in the cohesive damage material and area OAC equals the maximum energy that could be 

dissipated in the process of damage, i.e. Gc. Therefore, cf could be interpreted as the 

ratio of current energy loss to Gc. This interpretation is similar to the physical meaning of 

d, that is, the ratio of stiffness loss to the initial stiffness, as defined by Eq. (6.3). 

Damage 
A^^initiafion 

on 

Unloading 
and 
reloading 

B Current 
. ' E s t a t e 

Gc = AOAC 

Uo - AOAD 

Ur^Uskear = AoABE 

Energy loss at B = A0AB 

d, a 

(a) 

(b) 

Figure 6.3 The developments of stress and damage parameters with strain. 
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By applying sliding motion on the single element, as depicted in Figure 6.2, 

stress-strain curve similar to Figure 6.3(a) can be obtained, with cF proportional to the 

sliding distance dsnde measured from the damage initiation point and having similar 

meaning as the ratio of current energy loss to the critical energy release rate. However, 

when a mixed mode loading is applied, the load-displacement curves for the normal and 

shear stresses are not necessarily bilinear and dE does not hold the above physical 

meaning, because Gc keeps changing with damage development due to the variation of /? 

value. 

It should be noted that changing the expression of d (Eq. (6.8)) could yield 

different shapes of stress-strain curves. The requirement on the expression of d is that it 

has to be equal to 0 before the damage initiation criterion is fulfilled, and 1 when the total 

energy consumed by the material equals Gc- It should also increase monotonically and 

continuously in between. However, when the definition of d changes from Eq. 6.8, ^ 

may not represent the fraction of the energy release rate unless its definition in Eq. (6.9) 

is also changed. 

6.2.5 Special issues related to mode II fracture 

Swelling 

Swelling refers to the inflation of the material in the direction normal to the crack surface, 

which is accompanied with the mode II facture. This phenomenon, as illustrated in Figure 

6.4, is because of the mismatch of surface topography when sliding motion occurs. The 

coarse fracture surfaces might be formed by matrix hackles (see Figure 4.1), broken 

bridging fibers (Figure 4.10) and stitching threads (Figure 4.16). The swelling could incur 
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additional stress in the direction normal to the surface if the vertical motion is restricted, 

such as in the crack tip region caused by the adjacent non-cracked part. This effect on the 

stress may not exist in mode I fracture, because fracture occurs by moving the surface 

away from each other thus avoiding the interference. 

Sliding 

^[^V^A^^ 

A 

1 

1 
\ 1 

1 
1 

1 
1 

1 

1 1 

< 

Figure 6.4 Swelling due to mode II fracture and coarse fracture surface. 

Swelling is implemented in the cohesive damage material model by adding a 

mechanism as described in Figure 6.5 on top of the isotropic damage elastic material 

model (defined in Section 6.2.1). The mechanism for swelling contains a vertical spring 

that has one end fixed on the top surface and the other end rested on a slope. The four 

circles represent the nodes of an element for the cohesive layer. It is assumed that the 

spring is in an un-stretched state before the damage initiation. With shear motion, the 

spring starts to slide on the slope once damage process begins, thereby being compressed 

and generating compressive stress to account for the effect of mismatch of the surface 

topography. 
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ure 6.5 Modeling the swelling in the cohesive damage material model: (a) 

undeformed state and (b) with shear deformation. 
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The height of the slope A is the maximum value of the expansion when damage is 

fully developed without any deformation constraints in the 1-direction. The length of the 

slope is the sliding distance, 5™^ar, measured from the damage initiation to the fully 

developed damage, as shown in Figure 6.5(a). Figure 6.5(b) suggests that the position of 

lower end of the spring is proportional to5shear. Recall that in Section 6.2.4, we have 

shown the dE is linearly proportional to Sshear and valued from 0 to 1. Therefore, the 

stress due to the spring in the direction normal to the fracture surface can be expressed as 

<rZ=-(K/toy(dBA-<£n>t0) (6.11) 

where dEA and <sn >t0 are the relative positions of the lower and upper ends of the 

spring respectively, and K is the spring stiffness constant. The associated shear stress is 

*™=D.(A/5Zr)-< (6-12) 

where D is a parameter indicating whether the damage is developing at present, which is 

equal 1 if dE > 0, otherwise 0. 

Friction 

Friction between the cracked surfaces is modeled by introducing another term to the total 

shear stress in the direction opposite to the strain increment after damage takes place. The 

friction is assumed to be proportional to cr/f"', dE and the factional coefficient juf. Thus, 

a{2 = juf • a\Tl • \den \ I del2 (6.13) 

where off"' is the normal stress in the 1-dirction, which is the summation of crn (Eq. 

(6.3)) due to physical strain and cr™ due to the swelling, 

< < " = < T 1 1 + < (6-14) 
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As a result, the total shear stress is comprised of an (Eq. (6.3)), a^ (Eq. (6.12)) and 

a/2(Eq.(6.13)), 

_total . _.sw . f 
CT12 = CT12 + CT12 + CT12 (6.15) 

Stress-strain curves for mode II fracture loading with swelling and friction 

Stress-strain response with consideration of swelling and friction is obtained by 

applying horizontal displacement u% on the top surface of an element with unit thickness, 

as depicted in Figure 6.6. The loading history is also given in Figure 6.6, which suggests 

that this element is undergoing loading, unloading and reloading, with the damage 

initiated at point A, and completed at point D. 

Uj = 0, U2 > 0 

A 

fo=l 
V 

E, Gc - GJC 

U] 

U2 

"A 

U2\ Fully damage , n 

Damage initiation 

O 
time 

Figure 6.6 Single element for obtaining stress-strain curve and the loading history. 

The responses of shear and normal stresses with shear strain for the element 

depicted in Figure 6.6 are presented in Figures 6.7(a) and 6.7(b), respectively. In both 

figures the black solid lines are corresponding to loading history A-B and C-D; the 
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dashed lines are corresponding to the unloading-reloading part B-C; and the gray lines 

are used as reference corresponding to the stresses without any swelling or fictional force 

effects. 

From point O to point A, the material is in an undamaged state and the stress-

strain curves for this part are indistinguishable whether with or without swelling and 

friction, i.e. erf*1 increasing linearly and cr[0{al being zero. 

From A to B the stress-strain responses start to deviate from the gray lines. The 

shear stress, in Figure 6.7 (a), is higher by the amount of (cr,™ + a{2) during loading than 

that represented by the gray line. The compressive normal stress, plotted in Figure 6.7(b), 

is generated due to the effect of swelling (see Eq. (6.11)), even though the overall normal 

strain remains zero. 

When applying unloading and reloading (between B and C in Figure 6.6), the 

normal stress a™"1 maintains the same value and the shear stress exhibits a hysteresis 

loop, of which the magnitude of change is 2a{2 since frictional force changes its 

direction when shear strain increment changes from positive to negative due to the 

unloading. Note that a[2 is not involved at this stage because D in Eq. (6.12) is 0 from B 

to C as damage is not developing. 

When reloading is applied and uz comes back to the same level as point B, the 

stress-strain will go back to its original path (solid black lines). When the material is 

completely damaged, <J™ will disappear but cr™ and <j{2 remain, according to Eqs. 

(6.11-6.13). 
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2GndS 

Figure 6.7 The development of stresses under pure mode II loading with swelling 

effect and friction. 

6.3 Application to pre-cracked composites 

The DCB, ENF, ELS and MMB tests were chosen to verify the validity of the new 

approach using cohesive damage material model for the simulation of delamination. 

These four tests cover the scenarios of pure mode I crack growth (DCB), pure mode II 

crack growth (ENF and ELS), mixed mode I and mode II crack growth (MMB). 

Configurations of these tests are shown in Figure 1.2. The dimensions of the specimen 

and test setup for each test were chosen elaborately so that stable crack growth (DCB), 
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unstable crack growth (ENF and MMB) and an ambiguous state between stable and 

unstable crack growth (ELS) are all included in these cases studies. 

6.3.1 FEM models 

FEM models for the DCB, ENF, ELS and MMB tests contain three parts: an upper beam, 

a lower beam and a layer of cohesive zone in between. The upper and lower beams were 

modeled based on transverse isotropic elasticity, as the specimen contains only 0-degree 

fiber. Material constants used for the upper and lower beams are listed in Table 6.2. The 

layer of cohesive zone has a small thickness of 0.02 mm to minimize its role on the 

global stiffness and to be consistent with physical dimension of the resin rich region. 

Material constants for the cohesive damage material model are listed in Table 6.3. 

Mesh pattern of the FEM models, as shown in Figure 6.8, consists of 4-node, 

plane-strain continuum elements (CPE4R) for each of the upper and lower beams. To 

mimic the experimental condition, loading was applied by specifying a reasonably 

constant displacement rate that is computationally efficient without introducing 

significantly dynamic effect, such as that by the inertial force. 

Table 6.1 Geometrical parameters of the DCB, ENF and ELS tests. 

DCB 

ENF 

ELS 

MMB 

I(mm) 

-

50 

100 

50 

ao (mm) 

50 

30 

50 

25 

h (mm) 

1.5 

1.5 

1.5 

1.5 

w (mm/sec) 

0.8 

0.5 

2.0 

2.0 

c(mm) 

-

-

-

40 
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Table 6.2 Material properties for unidirectional fiber composites used in the study. 

DCB, ENF, ELS 
and MMB 

Beam test 

En 
(GPa) 

150 

34.3 

E22 - -E33 

(GPa) 

11.0 

6.0 

Gn~ Gn 
(GPa) 

6.0 

6.0 

V23 

0.3 

0.3 

Vi2=Vi3 

0.3 

0.3 

Material 
damping 
(kg/sec) 

100* 

100 

* Material damping is not used in the DCB model 

Table 6.3 Properties for cohesive damage materials and parameters for the cohesive 

damage material model. 

DCB, ENF 
ELS, MMB 

Beam Test 

Parameters in 
Eq. (6.2) 

E v 
(GPa) 

11.0 0 

6.0 0 

Parameters 

Gic 
(J/m2) 

300 

500 

i in Eq. (6.5) 

Guc 
(J/m2) 

300 

2500 

n 

2.0 

2.0 

Parameters in Eq. (6.4) 

T 
(MPa) 

20.0 

47 

S a 
(MPa) 

20.0 0 

40 0.3 

The element length in the cohesive zone was chosen to be 0.05 mm. According to 

Turon et al. [76], element length in the cohesive zone layer should be small enough to 

capture the continuum stress field in the cohesive damage zone. Among many theories 

that have been used to estimate the cohesive zone length (/cz), the most conservative 

estimate for mode I test is [76]: 

EGr 
/„ =0.21-

{Tf 
(6.16) 

Using the constants in Table 6.3, the above expression yields lcz of 0.77 mm 

which is more than 15 times of the element size selected for the cohesive layer (0.05 mm). 

Therefore, the mesh size used for the cohesive zone is deemed sufficiently small to 
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provide good resolution for the stress distribution. Note that the same element size was 

used for simulation of all four tests. 

Cohesive layer 

/ 

Starting defect 
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Figure 6.8 The mesh pattern for the DCB, ENF, ELS and MMB tests. 

6.3.2 The DCB test 

Analytical solution for the compliance {(fCB) and energy release rate for the 

delamination growth (GD B) of the DCB specimen, based on beam theory and linear 

elastic fracture mechanics, are: 

f-iUU) _ 4a3 

Euh' 

,DCB l2P2a2 
(-IUL.O _ 

Enh
5 

(6.17) 

(6.18) 

where E\\ is the longitudinal Young's modulus, a crack length, h half specimen thickness, 

and P the reaction force of nodes where the displacement was applied. 

The load-displacement curve generated by the FEM model is compared with the 

analytical solution in Figure 6.9, which includes an initial linear loading section to 
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represent the response before the delamination propagation commences. The nonlinear 

descent section that follows the onset of delamination growth was determined based on 

Eqs. (6.17) and (6.18) by eliminating a and assuming the value ofG008 to be Gc of which 

the value is given in Table 6.3. The two curves in Figure 6.9 show good agreement, with 

discrepancy exists only before the delamination growth occurs. Such discrepancy is 

mainly caused by the underestimate of the compliance of the DCB specimen by the 

classical beam theory [11], not by the FEM model. 

2.5 

2 

T3 
03 

^ 1 

0.5 

°0 2 4 6 8 
Displacement (mm) 

Figure 6.9 Load-displacement curves for the DCB test. 

6.3.3 The ENF test 

The analytical expressions of the ENF test for C and G, based on the beam theory, 

are given by Eqs. (2.33-2.34). Different from the DCB test, the ENF test with setup 

parameters given in Table 6.1 is expected to generate unstable crack growth. The 
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unstable crack growth causes specimen vibration though eventually being damped out. 

Therefore, its FEM model has a material damping function to dissipate the extra energy. 

Figure 6.10 shows the load-displacement curves generated by the ENF test. The dashed 

line represents analytical solution, which shows that when the unstable crack growth 

occurs, i.e. after the maximum load is passed, a phenomenon of displacement snap-back 

occurs with decrease of the load. The corresponding FEM solution (solid line with "•"), 

however, shows a phenomenon of "snap-through" of the load decrease from the 

maximum point, without any decrease of the displacement. Apart from such difference, 

the FEM prediction shows excellent agreement with the analytical prediction. 

Displacement (mm) 

Figure 6.10 The load-displacement curves of the ENF test. 
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6.3.4 The ELS test 

The analytical expressions for compliance and energy release rate are given by Eqs. 

(2.35-2.36). Similar to the ENF test, the analytical expressions generate a "snap-back" 

behaviour, as shown by the dashed line in Figure 6.11, indicating that the ELS test 

configuration may also generate unstable delamination growth. However, the FEM 

solution from the same test configuration shows a progressive drop of force with the 

increase of displacement, as shown by the thick solid line in Figure 6.11. The 

contradictory crack growth behaviour generated analytically is because the crack length 

used in the equations did not consider the additional crack length due to the presence of a 

damage zone at the crack tip, which based on the FEM model has a length of 9.5 mm. 

Such a damage zone length should effectively extend the initial crack length so that the 

ratio of the effective crack length to L exceeds the minimum value required for the stable 

crack growth, 0.55 (see Table 4.1). 

Figure 6.11 also shows that by doubling and tripling the shear strength used in the 

FEM model, thus decreasing the cohesive damage zone length to 3.9 and 2.4 mm, 

respectively, the snap-through behavior occurs, suggesting that the delamination growth 

becomes unstable. Since the two curves are very close to each other, they are presented as 

thin lines in Figure 6.11 without any distinction from each other. 

The curves from FEM in Figure 6.11 indicate that even by tripling the shear 

strength of the cohesive damage material model, the maximum load only increases 

slightly. Therefore, the maximum load is not sensitive to the strength value used. This 

agrees with the conclusion drawn in Refs. [59, 60] in which the dependency on the 

strength of the cohesive damage material model was found to diminish when a relatively 
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large value was used. Its insensitivity to the material strength is probably because the 

stress at the tip of a starting defect can exceed the material strength at a very small load 

due to the stress concentration. Therefore, the delamination growth is mainly governed by 

the critical energy release rate (Gc)- The results suggest that with an existing crack, the 

main role of material strength in the CZM is to change the size of the damage zone, 

which may sometimes affect stability of the delamination growth. 
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Figure 6.11 The load-displacement curves of the ELS test by the analytical solution and 

the FEM predictions with varied shear strengths. 

6.3.5 The MMB test 

The MMB test is to measure fracture toughness in mixed mode I and mode II 

delamination [3]. The load is applied at point A of Figure 1.2(e) at a distance of c from 

point B that is located at the mid point of the span. The loading on the specimen could be 
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separated into mode I and mode II, corresponding to DCB- and ENF-type of loading. The 

analytical solution for the energy release rate in the MMB test is given in terms of G for 

mode I and mode II fractures, 

\Gfm = 12P2a2/Eh3 

(6.19) 
[GTB =9P2

2a2 /l6Eh3 

where Pi and P2 are the forces for mode I and mode II loading, and can be determined as: 

\P = P(3c-L)/4L 
\ (6.20) 
\P2=P(l + cMMB/L) 

The compliance for the MMB test is 

(c +n\P ICDCB -P /CENFl-2r pirDCB 
QMMB _ \LMMB t L J L r i ' ^ r2i\s j ACMMBrx 11, 

LP 

where C°CB and (f^ are given by Eqs. (6.17) and (2.33), respectively. 

The load-displacement curve generated by the FEM model is compared with the 

analytical solution in Figure 6.12(a). The crack propagation parts of both curves show 

good agreement. The difference at the linear parts could be attributed to the mode I type 

of loading on the specimen, which leads to the inaccuracy in the initial slope as discussed 

in section 6.3.2. 

The mixed mode ratio /? along the crack growth path, for ao from 25 to 50 mm, is 

plotted in Figure 6.12(b), compared by the analytical prediction from Eq. (6.19). Despite 

the discrepancy at the beginning of the crack propagation, the FEM solution matches the 

analytical one fairly well in the majority of the crack length, showing the accuracy of the 

cohesive damage material model for the prediction of mode mixing ratio. 
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Figure 6.12 Comparison between the FEM results and the analytical solutions in the 

MMB test: (a) load-displacement curves; and (b) mode mixing ratio. 
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6.4 Application to the defect-free Beam test 

The experimental results from the Beam test were used to further assess the validity of 

the new cohesive damage material model and the criteria for damage initiation. The main 

difference between the Beam test and the other delamination tests considered for FEM 

simulation in Section 6.3 is that the former does not have a starting defect to initiate the 

delamination. 

6.4.1 Experimental results from the Beam test 

The Beam test results employed in this section were from Ref. [82]. Note that these 

results are different from those in Chapter 5. All of the Beam test specimens in the 

previous chapter had the 90-degree layer in the mid-thickness and were loaded using 3-

point bending with span lengths as a variable parameter. In Ref. [82] all specimens were 

loaded with a fixed span length, but with the 90-degree layer placed at a distance of 1/4, 

1/2, or 3/4 of the thickness from the bottom surface. The purpose of choosing these Beam 

test results instead of those described in Section 4.3 is that the latter generated 

delamination development in the neutral plane of the beam specimen where shear stress 

is the only stress component, thus could not be used to assess the influence of hydrostatic 

stress on the delamination development. 

The beam specimens are named 1/4-beam, 1/2-beam, and 3/4-beam specimens 

respectively, according to the position of the position of the 90-degree layer. The 

experimental phenomena in Ref. [82] were very similar to those described in Section 

4.3.2, i.e. unstable delamination initiated from one side of the loading pin at the interface 

between 0- and 90-degree layers and propagated at the interfaces. 
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6.4.2 FEM simulation of the Beam test 

FEM model 

The simulation was based on a 2D plane-strain model, as shown in Figure 6.13. The 

model contains three layers, of which the top and bottom layers are orthotropic and 

elastic with properties corresponding to the 0-degree glass/polyester composite, as given 

in the lower row of Table 6.2. Properties in the middle layer where delamination occurs 

are based on the cohesive damage material model, with properties and parameters given 

in the lower row of Table 6.3. The loading pin had an offset to the right by 0.5 mm, to 

ensure that crack growth only occurs on one side of the loading pin. A constant loading 

speed of 10 mm/s was applied until unstable delamination occurred. The specimens were 

then unloaded at the same speed. 

0-degree 

1 ' 
90-degree A Z 

-> 

~E i T 

Figure 6.13 The finite element mode of Beam test. 

Except Young's modulus E and Poisson's ratio vthat were based on the previous 

experimental study [82], values in the lower row of Table 6.3 were chosen in the 

following way. Tensile strength T was based on the tensile strength of the polyester resin 

[87], and the shear strength S based on the maximum shear stress of the 1/2-beam test 

generated at the maximum load because shear stress is the only non-zero stress 
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component at the mid-thickness and is uniformly distributed between the loading pin and 

the support. Gnc was set to be equal to 2500 J/m , according to the value reported before 

[82], and GJC 500 J/m [36]. The parameter rj was set to be equal to 2, following the 

suggestion by Benzeggagh and Kenane for brittle fracture [33]. Value of a was chosen to 

be 0.3 by matching the predicted maximum load for the 3/4-beam test with the 

experimental results. 

FEM results 

Figure 6.14 compares load-displacement curves for the 1/4-beam, 1/2-beam, and 

3/4-beam specimens from the experiments with those from FEM simulations. All curves 

show that the load increased initially with displacement in a linear style but then dropped 

quickly to a lower level after a critical loading level was reached. The figures suggest that 

the FEM simulation generated consistent load-displacement curves with those from the 

experiments. 
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Figure 6.14 Comparisons of the load-displacement curves from Beam tests for (a) 1/2-

beam, (b) 1/4-beam, and (c) 3/4-beam. 

Note that the 3/4-beam, Figure 6.14(c), has the maximum load over 30% higher 

than those for the 1/2-beam or 1/4-beam. Since delamination in the former was initiated 
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under compressive hydrostatic stress, as mentioned earlier, its maximum load was used to 

determine a value in Eq. (6.4). 

Figure 6.15 compares the locations (pointed by an arrow in the top photographs of 

all 3 figures) of the delamination initiation in the three types of Beam specimens, with 

those by the FEM simulation. These comparisons suggest that the delamination was 

initiated in a location within the range predicted by the FEM models, represented by 

contour plots of damage factor d below each of the photographs. Note that the brightest 

region in the contour plots is that with the largest d values. The plot of 1/2-beam, Figure 

6.15(a), has almost constant d values between the loading pin and the support. This is 

because the 90-degree layer lies on the neutral plane where the shear stress distributes 

uniformly between the loading pin and the support and is the only stress component to 

initiate the delamination. 

It was noticed that the location for delamination initiation, as shown by the 

photographs in Figure 6.15, has occurred closer to the loading pin and the support for the 

1/4-beam and 3/4-beam specimens, respectively, than that in the 1/2-beam specimen. 

This can be explained by the effect of hydrostatic stress. 

For the 1/4-beam specimen, delamination occurred in the region that is subjected 

to hydrostatic tension. Since the hydrostatic tension encourages damage initiation, 

delamination is expected to occur close to the loading point where the hydrostatic tension 

is high. 
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Figure 6.15 Comparisons of the delamination onset locations in the Beam test for (a) 

1/2-beam, (b) 1/4-beam, and (c) 3/4-beam. 
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For 3/4-beam specimens, on the other hand, delamination occurred in the region 

that is subjected to hydrostatic compression which is known to suppress the damage 

initiation. Therefore, delamination initiation in the 3/4-beam specimens is expected to 

occur in a region close to the support where the hydrostatic compression is lowest. Figure 

6.15 shows that the FEM models successfully predicted the trend of the locations for the 

delamination initiation. 

Another feature that is significant in the experimental results is the final size of 

the delamination generated by the Beam tests. The delamination area can be detected by a 

bright region appearing on the surface of post-tested specimens, as shown by the top 

photographs in Figures 6.16(a-c), taken from the three types of post-tested specimens. 

The photographs suggest that size of the delamination is in the order of 1/4-beam < 1/2-

beam < 3/4-beam. The trend has been correctly predicted by the FEM models, as shown 

by the contour plots of d in Figure 6.16 that were taken right after the load drop from the 

peak load. The pair of white dashed lines in Figure 6.16 indicates where the loading pin 

(left line) and the support (right line) were. 

The main difference in Figure 6.16 between the photographs and the d contour 

plots is that the delamination area in the post-tested specimens barely went beyond the 

left dashed line where the loading pin was, while that in the FEM contour plot was 

slightly over. This was probably because the friction was not considered between fracture 

surfaces in the FEM simulations, but should have existed in the Beam specimens due to 

the out-of-plane compression generated by the loading pin. The friction must have 

prohibited further propagation of the delamination over the line of the loading pin. 
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Figure 6.16 Comparisons of the final delamination area generated by the Beam test for 

(a) 1/2-beam, (b) 1/4-beam, and (c) 3/4-beam. 
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Parametric study 

The sensitivity of the simulation results to the longitudinal normal stress cr33 was 

examined by changing the term an in Eq. (6.4) to <rn and setting a value equal to 0, 

following the criteria proposed by Camanho et al. [63]. Note that the normal stress in the 

2-direction is always zero since Poisson's ratio is zero. A study was also carried out using 

the FEM model, to examine the effect of material tensile and shear strengths on the 

damage initiation for delamination, by increasing the tensile or shear strength, T or S, by 

50% but maintaining the same values for the other properties. 

Using 1/4-beam as an example, the results from the two parametric studies are 

presented in Figures 6.17 and 6.18. Figure 6.17(a) shows that without the consideration 

of cr33 the critical load for delamination initiation becomes much higher than that 

determined experimentally. Therefore, <r33 should have played a significant role on the 

maximum load allowed before the delamination initiation. The resulted delamination 

areas are presented in Figure 6.17(b), which also suggests that cr33 should be considered 

in the criterion for delamination initiation in order to reduce the delamination area to the 

size similar to that observed experimentally, Figure 6.17(b). In addition to the above 

differences, ignoring cr33 also resulted in the location for delamination initiation at a 

distance of 19 mm away from the loading pin, which is quite different from the 

experimental observation of around 8 mm away from the loading pin. 

Figure 6.18 summarizes the effect of material tensile (7) and shear (5) strengths 

for the cohesive damage material model on the damage development in the Beam 

specimens. By increasing T or S by 50%, Figure 6.18(a) suggests that a considerable 

increase of the maximum load is required to initiate the delamination. Figure 6.18(b) 
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shows that the resulted delamination area also increases, due to the increased amount of 

energy available for the fracture surface formation. 
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Figure 6.17 Parametric study of the effect of 033 in the 1/4-Beam test: (a) load-

displacement curves, and (b) the resulting delamination area with and 

without the consideration of 033. 
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Figure 6.18 Parametric study of the effect of material strength (T and S) in the 1/4-beam 

test: (a) load-displacement curves, and (b) the resulting delamination area. 

With swelling and friction 

Swelling and friction are introduced into the simulation of 1/2-beam for mimicking a 

more realistic situation of the Beam test. Besides the material constants listed in Table 6.2, 
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three more parameters are needed in this simulation. They are the frictional coefficient 

that is assumed to be 0.5, A assumed to be 0.2 mm that is less than the average thickness 

of each fiber layer, and the stiffness K being one-tenth of the stiffness of cohesive zone in 

undamaged state. These values were chosen intuitively. Therefore, the results are merely 

to address the influence of the swelling and friction qualitatively during the delamination 

crack propagation. 

In this study two loading cycles were applied to the 1/2-beam. In the 1st cycle, it 

was loaded upon fracture and unloaded to zero deflection. The load-displacement curve 

from the FEM model for this cycle is represented by a thick solid line in Figure 6.19. The 

curve started to drop at about 6000 N which is the same as that shown in experiment (also 

included in Figure 6.19), suggesting that the swelling effect and friction did not affect the 

onset of delamination. In addition, the force from the FEM model dropped to 4200 N 

after the fast delamination growth, which is very close to the experimentally measured 

value, suggesting that the simulation with the swelling and friction is more realistic than 

that without these two effects. 

In the second loading cycle, the cracked beam was loaded to the same deflection. 

Even though there was no indication of crack growth, the loading and unloading curves 

did not follow the same path because of the path-dependency of the friction. It was also 

found that the unloading part of the curve did not go back to the zero displacement, 

indicating the existence of the residual deformation. Figure 6.20 is a contour plot of strain 

in the thickness direction with darker color representing higher strain, after the two 

loading cycles. It shows the delaminated part between the loading pin and the right 
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support became thicker than the rest of the specimen, because of the residual strain in the 

damaged cohesive layer. 
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Figure 6.19 Load-displacement curves of the 1/2-beam with the swelling effect and 

friction. 

Figure 6.20 Residual strain in the 1/2-beam due to the swelling effect. 

6.5 Conclusions 

This chapter presents a new approach that uses cohesive damage material model and 

continuum elements in FEM to simulate damage initiation and propagation for the 

delamination fracture in fiber composites. The damage evolution law is based on the 

critical energy release rate; and the damage onset criterion takes into account the effect of 
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in-plane normal stress. The new approach has a major advantage over the existing 

interface-element-based approach in that the former can easily adopt any stress- or strain-

based damage initiation criteria, benefited from the use of solid continuum elements. 

It has been shown that with a simple bi-linear function for the damage evolution, 

the new cohesive damage material model can accurately predict the delamination 

development in either pure mode or mixed mode of fracture in fiber composites. The 

cohesive damage material model was firstly verified using benchmark problems such as 

the DCB, ENF, MMB and ELS tests, by comparing the simulation results with the 

analytical solutions, and then by the delamination development in the Beam specimens 

that did not contain any pre-crack. The study shows that the new approach predicts the 

fracture mode, the location for the delamination initiation and the final delamination size 

with good accuracy. 

Parametric studies were conduced to investigate the sensitivity of the simulation 

to the damage initiation criterion, by using higher material strength values or ignoring the 

in-plane normal stress. Using the ELS test as an example, the results suggest that the 

damage initiation criterion for the cohesive zone plays a very minor role on the critical 

load for the onset of delamination growth from a starting defect (or a pre-crack). 

However, using the Beam test, the study shows that both the material strength for the 

cohesive zone and the form of damage initiation criterion have a significant effect on the 

critical load required for the delamination initiation. 

A simulation using the 1/2-beam specimen was carried out to demonstrate the 

capability of modeling the swelling and friction in mode-II-dominated delamination. 

Though values of the parameters related to the swelling and friction need to be further 
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justified, the simulation results show some phenomena which are closer to the experiment 

observation but, to our knowledge, have never been obtained by others using FEM 

simulation, such as the hysteresis loop from cyclic loading and residual stress/strain in the 

cohesive layer after the delamination. 
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Chapter 7 Conclusions and Future Work 

7.1 Main conclusions 

A framework has been proposed for the characterization and simulation of delamination 

in fiber reinforced composites. The critical energy release rate is the key parameter 

throughout all approaches developed in this study. The parameter serves as a 

measurement to assess the capability of composites to resist delamination propagation. It 

is also an ascertained quantity, in both analytical and numerical methods to govern the 

delamination development. 

This study presented two analytical approaches for calculating the energy release 

rate with specified crack configurations and loading conditions. The first approach is the 

compliance method, which was reviewed and clarified for the limitation in its application. 

The second is the CTE analysis, which was redeveloped in a matrix form. Several 

examples were studied using both approaches and the results yielded essentially the same 

expressions for the energy release rate. The compliance method was also used to study 

the effect of the transverse shear force on the energy release rates in the mode II 

delamination tests, which concluded the irrelevancy of the shear force on the expression 

of the energy release rate in the force-controlled conditions. In addition, the CTE analysis 

was employed to derive a generalized formula to quantitatively assess the frictional force 

effect in beam-type mode II delamination tests. 

The finite-element-based EDT was introduced to calculate the energy release rate 

for any quasi-static crack development problems. The EDT was shown for its accuracy in 
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predicting the energy release rate in composites in a variety of crack growth scenarios, 

including crack growth with friction and large deformation. Two additional examples 

other than composite materials were also presented, to demonstrate the capability of the 

EDT in complicated fracture situations. One is the deformation and fracture in nonlinear 

elastic, rubber-like materials, and the other is the crack growth in the elastic-plastic 

metals. Besides the excellent correlation with the results from the results in the literatures, 

the EDT also has good efficiency and the potential to deal with crack propagation 

problems that involve extensive, non-recoverable plastic deformation, for which any 

other existing method cannot be applied. 

A new mechanical test, known as the INF test, was developed to quantify the 

mode II delamination toughness of composites. The INF test has the potential to be a 

standard mode II delamination test, together with the established mode I DCB test and 

mixed mode MMB test. The most significant feature of the INF test is its stable 

delamination growth, which has been proved theoretically and experimentally in this 

study. The INF test adopts 3-point bending that is the simplest fixture among all existing 

mode II delamination tests. In addition, the INF test is benefited from the newly 

developed data reduction method (DMC), to require only a load-displacement curve and 

the final crack length to establish the R-curve for the crack growth. Another advantage of 

the INF test is that the rate of delamination growth generated is proportional to the 

loading rate, thus making it possible to investigate the effect of the crack growth speed on 

the critical energy release rate. A series of the INF tests was conducted to investigate the 

sensitivity of the measured critical energy release rate to the test configurations and the 

fiber volume fraction. It was found that the geometrical parameters, such as the initial 
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crack length and the span length of the fixture, do not affect the measured value of the 

critical energy release rate, but the fiber volume fraction does. It was also discovered that 

the shear force interaction exists between the delamination surfaces generated in the INF 

test. The shear force, created by the bridging fibers, matrix hackles and stitching threads, 

provides explanations for the difference of the apparent crack length (from the 

compliance) to the visual crack length. 

Analytical methods were used to explore possibilities of predicting the 

delamination development in the Beam test. Because the Beam test specimen contains an 

internal crack, thereby having two possible growing directions, two criteria were 

proposed to determine the crack growth rate in each direction, in order to determine the 

relation between the two crack front locations. The total crack length was then predicted 

using differential and integral forms of the energy release rate in a Beam specimen. 

Compared to the delamination length measured experimentally, the predicted values 

serve as the lower and upper bounds of the experimental values, suggesting that the 

analytical approaches provide a reasonable estimate for the delamination size developed 

in the Beam test. 

A cohesive damage material model was developed to implement the CZM in the 

finite element codes for the delamination simulation. This approach has a major 

advantage over the traditional interface-element-based approach in that the former can 

easily adopt any stress- or strain-based damage initiation criteria. In this study, a novel 

criterion that takes into account the effect of in-plane normal stress was proposed for the 

damage initiation. The swelling and frictional force effects associated with mode-II-
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dominated delamination were also implemented in the model to take into account the 

experimentally-revealed shear force interaction between the delaminated crack surfaces. 

This cohesive damage material approach was verified in this study firstly by 

comparing the load-displacement curves and the mode mixing ratio from the finite 

element analysis, with the analytical solutions. Then, the approach was applied to the 

Beam test that does not contain any pre-cracks, to further verify the proposed damage 

initiation criteria. The study shows that the in-plane normal stress is crucial for 

successfully predicting the location for the delamination onset location and the final 

delamination size. Parametric studies were also carried out using ELS test and the Beam 

test to investigate the influence of the material strengths and other parameters in the 

damage initiation criteria on the simulation results. It is concluded that the material 

strength plays a very minor role in the situation that a starting defect (or a pre-crack) is in 

the structure, but has a significant effect on the delamination development in the defect-

free composite structures. 

Overall, systematic methods have been developed for the measurement of the 

critical energy release rate, including testing methods to generate delamination in the 

pure fracture mode and techniques to extract the critical energy release rate from the 

directly measurable quantities, such as force and displacement. Furthermore, analytical 

and numerical strategies have been proposed for the prediction of the delamination onset 

and propagation based on the critical energy release rate. 

7.2 Future work 

The results of experimental study of delamination (Chapter 4) using the INF and 4ENF 

tests have shown that both tests generate similar R-curves and average Gnc values, thus 
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giving confidence on the validity of the testing method. However, large amount of 

bridging fibers were also generated by these two tests. The bridging fiber introduces 

significant shear force interaction on the fracture surfaces, which affects the accuracy of 

the analytical analysis that is based on the assumption of stress-free fracture surfaces. It is 

speculated that that the bridging fibers are due to stable crack growth in these two tests, 

because stable crack growth may allow a bridging fiber to gradually peel off from the 

matrix. As a result, the amount of bridging fiber may be reduced by increasing the crack 

growth rate. However, it is not clear how the bridging fibers affect the delamination 

toughness. It is worthwhile to perform more INF test with varied loading speed to 

correlate the crack growth rate, amount of bridging fibers and the delamination toughness. 

Mode III delamination, though less important than the mode I and II fractures, is 

not addressed in this study. A completed testing system for measuring the toughness of 

fiber composite should include this fracture mode. So the investigation on pure mode III 

and mixed mode delamination fracture with mode III involved is a new area to be 

explored. 

To take mode III fracture into account is also a challenge for the finite element 

simulation of delamination into 3D cases. So far, the cohesive damage material model 

worked well in 2D simulations. The damage initiation criteria and the energy-based 

damage evolution law were all given based on 3D stress and energy states. If adopting the 

approach used by some interface elements [63], i.e. treating mode II and III equally as 

shear mode fracture, the proposed cohesive damage material model could be easily 

extended to 3D simulations. However, difficulty will be encountered if mode III fracture 

has to be distinguished from mode II, such as when similar amount of energies were 
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consumed by mode II and mode III fractures and Gmc is quite different from Gnc- In this 

case, the crack front profile is need to separate the energy consumed in the plane 

perpendicular to the crack profile from Ushear (Eq. (6.7)), the former is the energy loss by 

mode II deformation and the later Ushear is summation of energy loss of both mode II and 

III. The above discussion only provides a possible approach for mode separation strategy. 

There might be other ways to separate fracture modes, which need our further 

investigation. 
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