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Abstract 
 

The Ensemble Kalman Filter (EnKF), a parameter estimation approach using the 

real-time DTS temperature observations is proposed for automatic history 

matching and quantitative reservoir characterization of SAGD reservoirs. EnKF 

algorithm is coupled with the discrete cosine transform (DCT) for updating 

reservoir models whose petrophysical properties are not necessarily Gaussian. 

The DCT-EnKF provided a highly attractive algorithm for parameterizing the 

facies labels in SAGD reservoirs. Furthermore, to capture geologically 

meaningful and realistic facies distribution in conjunction with matching 

observed data, we included fiber-optic sensor temperature data. 

Several cases with different facies distribution and well configurations were 

studied. In order to investigate the effect of temperature observations on SAGD 

reservoir characterization, the number of DTS observations and their locations 

were varied for each study. The qualities of the history-matched models were 

assessed by comparing the permeability maps, facies maps and the Root Mean 

Square Error (RMSE) of the predicted data mismatch. Finally, sensitivity 

analysis was performed to obtain an optimum number of sensors and their 

locations for improved reservoir characterization. Use of temperature data in 

conjunction with production data demonstrated significant improvement in 

facies detection and reduced uncertainty for SAGD reservoirs. The results reveal 

that increasing the number of temperature observations showed very little 

improvements after some critical number of sensor observations. At the end, the 

methodology has been applied to a real SAGD reservoir.  
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Chapter 1  

Introduction 

The Steam Assisted Gravity Drainage (SAGD) provides significantly greater 

production rates, high recoveries, and lower Stem-Oil ratio (SOR), as compared 

to conventional surface mining extraction techniques and other thermal recovery 

methods. It is due to these advantages that the SAGD technique is considered the 

most promising process for recovering Athabasca oil sands' deposits, which 

contains 140 billion cubic meters or one trillion barrels of bitumen-in-place;  this 

amount accounts for 20% of Canada's total oil reserve and two-third of Alberta's. 

 

The quantitative reservoir characterization of heterogeneity and determination of 

shale barriers are important for uncertainty assessment and prediction of 

production performance. This also aids in identifying the reservoir zones with 

the greatest SAGD potential and selecting the optimal number of SAGD wells 

for production. The shale barriers act as flow barriers depending on their size, 

location, and continuity throughout the reservoir. The long continuous shale 

barriers are important to characterize, as they are the barriers for steam migration 

which greatly influences the reservoir performance; however, the short 

horizontal shale barrier does not have much effect on the reservoir performance 

(Butler et al, 1992). Reservoir characterization studies involve integration of 

several measurements such as seismic data, well log data and core data into the 
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geological model to enable construction of multiple conditional or unconditional 

realizations of the various property fields. However as these measurements are 

expensive to acquire, the geological models are associated with several uncertain 

parameters due to which there is a lot of uncertainty in the reservoir performance 

estimates.  The dynamic production data (oil production rate, water cut, bottom 

hole pressure, temperature etc) on the other hand provide an additional level of 

information with which the geological models are calibrated to reduce the 

uncertainty associated with the reservoir description. These data are more 

valuable than periodic measurements, as they provide accurate information about 

what is going on in the well and the reservoir.  

 

Both the heavy computational burden and high data sampling frequency requires 

a computationally efficient data assimilation algorithm that have the capability to 

simultaneously use all the recorded data to provide uncertainty assessment by 

generating multiple plausible reservoir models. Flexibility to assimilate diverse 

data types and simple simulator coding algorithm are another requirements. The 

Ensemble Kalman filter (EnKF) has emerged as a promising approach for real-

time updating of reservoir models. The Ensemble Kalman Filter (EnKF) is a 

recursive filter that was first introduced by Evensen in 1994 as an extension to 

the traditional Kalman filter to nonlinear problems. It uses an ensemble of 

models from which all necessary statistics (e.g., model parameter and response 

relation) can be calculated. The EnKF has been successfully used in weather 

forecasting, oceanography, and hydrology (Evensen et al, 2002; Margulis et al, 

2002). However, in these applications, only dynamic variables were tuned. The 
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EnKF algorithm had been successfully applied in the petroleum industry for 

reservoir characterization as well as matching real-time multiphase production 

data [Naevdel et al, (2005), Oliver et al, (2004), Chen et al, (2005), Evensen et 

al, (2007), Gul et al, (2011)].  

1.1 Problem Definition  

The process of calibrating the uncertain reservoir model parameters to minimize 

the difference between the model predictions and field observations is called 

history matching. Traditional history matching involves manually tuning the 

reservoir parameters followed by matching dynamic data on a well-by-well basis 

and consequently, can be very time consuming for large reservoirs with a large 

number of wells.  In traditional history matching, uncertainty assessment usually 

through repeated history matching with different initial models, which makes the 

process more CPU demanded. Also traditional history matching does not allow 

continuous model updating. When new production data are available and are 

required to be incorporated into the reservoir model, the traditional history 

matching process has to be repeated using all the measured data. This limits the 

applicability of the traditional history matching techniques to small and simple 

reservoir models. Automatic history matching, on the other hand, allows 

calibrating the reservoir model through the use of algorithms that are designed to 

honor prior observations and preserve geological characteristics of the reservoir. 

This method has the capability to match large set of data and model parameters 

and greatly reduce the history matching time. The automatic history matching 

can be broadly classified into two types: (a) Gradient based method which solves 
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the inverse problem using the gradients or parameter sensitivities of an 

appropriately constructed objective function. However this approach becomes 

computationally demanding when generating multiple history matched model 

realizations which involves repeated application of the procedure to each 

realization (b) stochastic approaches which again are slow to converge, requires 

repeated turnarounds for model calibrations. Recently the data output frequency 

has increased due to the increased deployment of permanent sensors for 

monitoring pressure, temperature or flow rates. Thus it becomes very important 

to maintain ‘live reservoir model’ incorporating the data as soon as they become 

available so that the reservoir model is always up-to-date.  A new kind of history 

matching algorithm is thus required that can use all the recorded information for 

fast and continuous model updating by generating multiple plausible reservoir 

models. A recent and promising inverse modeling approach that combines these 

capabilities called the Ensemble Kalman Filter (EnKF) is proposed to 

continuously and simultaneously characterize and history match the petroleum 

reservoir model based on the observations of dynamic parameters and 

uncertainty quantification using the static parameters. 

1.2 Objective 

The principal objective of this thesis is to develop a methodology using the 

Ensemble Kalman Filter (EnKF) parameter estimation approach along with the 

real-time temperature observations to provide a highly attractive algorithm for 

reservoir characterization, automatic history matching and shale barrier detection 

in SAGD reservoirs. In this work, the Ensemble Kalman filter has been refined 
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for applications to the problem of non-Gaussian distributions by combining the 

EnKF with discrete cosine transform parameterization (DCT) approach. 

Considering two case studies, a single facies and a two facies SAGD model, we 

have shown several cases to compare the benefits of including temperature 

observations along with the production data during the data assimilation step in 

EnKF.  Sensitivities of using different number of temperature observations and 

their locations within the SAGD reservoir for uncertainty assessment are also 

investigated in this thesis. 

1.3 Thesis Overview 

This thesis consists of eight chapters. Chapter 1 gives a brief overview of the 

Steam assisted gravity drainage (SAGD) process and also states the challenges 

associated with it. This chapter also explains the aim of the research and the 

methodology adopted to address the problem statement. Chapter 2 is devoted to 

the introduction of Kalman filter (KF) algorithm and the Ensemble Kalman filter 

(EnKF). A detailed literature review on the application of this method in 

petroleum reservoir model characterization, along with EnKF’s most recent 

modifications is also included in this chapter. Chapter 3 proposes the EnKF 

methodology for continuous reservoir model updating using production data 

along with the temperature observations for characterizing and history matching 

SAGD reservoirs. The equations involved in the Ensemble Kalman filter (EnKF) 

based petroleum model updating is also explained in detail in this chapter. 

Chapter 4 comprises of implementation details of EnKF carried out on a 

synthetic single facies SAGD reservoir model. The aim of this study was to 
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detect high and low permeability regions in a SAGD reservoir by using 

temperature observations along with the production data during the data 

assimilation step and tuning permeability distributions. A sensitivity analysis of 

using different temperature observations is also carried out to obtain an optimum 

number of temperature observations to be used for SAGD model updating. 

Chapter 5 and 6 shows the application of the EnKF methodology for 2D and 3D 

SAGD models having shale and sand facies. This study aimed at detecting long 

continuous shale barriers in SAGD reservoirs by the use of continuous 

temperature observations along with the production data. Similar to the previous 

chapter, a sensitivity analysis is carried out to come up with the optimum 

number and location of temperature observations for SAGD reservoir 

characterization and history matching. Chapter 6 shows the implementation of 

the proposed methodology for a realistic 3D SAGD case study. ConocoPhillips’s 

Surmont SAGD reservoir simulation model is used for this study. Finally,  

Chapter 8 presents the summary and conclusion of the conducted study, 

discusses possible modifications to the proposed algorithm.    
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Chapter 2  

The Ensemble Kalman Filter –Introduction 

and Background 

The data assimilation processes has seen great progress during the last couple of 

decades especially in the atmospheric and oceanographic sciences. The data 

assimilation involves continuous integration of available information into a 

numerical model, typically a geophysical system. For example, the atmospheric 

models should include the most recent observations such as temperature and 

atmospheric pressure for better weather forecast. A major challenge in data 

assimilation is the inclusion of massive available data into these models real-

time. These challenges introduced improvements in traditional data assimilation 

processes to be capable of handling large amounts of data and more severe 

nonlinearities. One of the widely used data assimilation technique is the Kalman 

filter method, introduced as a recursive solution to the discrete data linear 

filtering problem. The Kalman filter is an optimal recursive data assimilation 

algorithm which estimates unknown variables using series of measurements 

observed over time, containing noise and other random inaccuracies.  
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2.1 Outline of Kalman Filter Algorithm 

The Kalman filter was first developed in the 60’s by Kalman and Bucy (Kalman, 

1960; Kalman and Bucy, 1961) as a data assimilation technique for estimation of 

linear dynamic systems. With Kalman filter, a model equation containing the 

current state of the system (associated with an uncertainty expressed by 

covariance matrix) and an observation equation that relates a linear combination 

of the states to measurements is always available. The measurements are also 

available with uncertainty. These model equations are used to calculate the state 

variables forward in time with the current estimate of the state as initial 

condition. Wide applications of the Kalman filter algorithm can be found in the 

fields of satellite navigation systems, seismology, 3D modeling, dynamic 

positioning and weather forecasting, to name a few.  

 

The Kalman filter provides a recursive solution to the discrete data linear 

filtering problem in two steps: a forecast step and an update step. 

Forecast step or the prediction step produces the estimates of the current state 

variables thus evolving the state vector forward in time between two consecutive 

measurement times. The dynamic system model equation is given by following 

Formula:  

 

   =                                  (2.1.1) 
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The evolution of state vector is  

 

  
           

                (2.1.2) 

Where the subscripts k and k-1 are time indices for measurement time tk and   

tk-1, where measured data are available.   
 
 represent the prior state vector at 

time tk . The prior state vector is the direct output of the dynamic system before 

updating.     
 

represent the updated state vector obtained after the data 

assimilation step.      is the state transition matrix that transits the state vector 

from time tk-1 to time tk. wk-1 is the model error with covariance Qk-1. 

 

    
             

     
        (2.1.3) 

    
 

 is the covariance matrix associated with the prior state vector. It is 

calculated by propagating an assumed initial covariance matrix of the state 

vector at time 0,     
 

 through time.       
 

 is the updated covariance matrix 

after data assimilation step at time tk-1. 
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At the update step, the prior state vectors are updated using the new observed 

data: 

  

  
     

                  
                             (2.1.4) 

Where Kk is the Kalman gain matrix which is computed as follows: 

 

        
   

        
   

        
                            (2.1.5) 

 

Here      is the data error covariance matrix. The analyzed covariance matrices 

are updated as follows: 

 

    
               

 
                 (2.1.6) 

The above two step procedure is at repeated at each measurement time and is 

continued till the last data is assimilated. The Kalman filter is based on the 

assumption that model and measurement errors are Gaussian, unbiased and are 

not correlated in time. Hk is a matrix operator that relates the state vector to the 

production data.  

Applications of the Kalman filter can be found in estimating petroleum model 

variables (Eisenmann et al, 1994; Corser et al, 2000). However Kalman filter can 

only be applied when there are relatively small numbers of variables and when 

the variables to be estimated are linearly related to the observations. Most data 

assimilation problems in petroleum reservoir engineering are highly non-linear 
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and characterized by many variables. The Kalman filter was extended to work 

with nonlinear dynamic models through the extended Kalman filter (EKF), 

replacing the equation 2.1.2 by following formula: 

    

    
        

                          (2.1.7) 

Here Fk is the state transition matrix. The extended Kalman filter uses 

linearization of the dynamic model and observation equations. However for 

highly non-linear systems the extended Kalman filter fails and the equations that 

need to be solved using EKF becomes infeasible because of the problem 

calculating and updating the covariance matrix Cy. Evensen (1994) introduced 

Ensemble Kalman Filter (EnKF) as a solution to resolve some of the problems 

the EKF. The suitability of EnKF for highly-linear dynamic problems is shown 

by many researchers (Zang and Malanotte-Rizzoli, 2003; Bertino et al, 2003). 

Since its introduction in 1994, the EnKF has been widely used in the 

meteorology, oceanography and ground water hydrology ( Evensen and van 

Leeuwen, 1996; Evensen, 1997, 2003; Houtekamer and Mitchell, 1998, 2001; 

Anderson and Anderson, 1999; Hamill et al, 2000; Reichle et al, 2002; Chen and 

Zhang, 2006). 
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2.2 Applications of the Ensemble Kalman filter in petroleum reservoir 

engineering 

The Ensemble Kalman filter (EnKF) is a Monte Carlo approach in which an 

ensemble of models is used from which the covariance matrix of the state vector 

is directly estimated. Thus in EnKF, the higher order statistical moments are kept 

when the non-linear dynamics is propagated forward in time.  

 

The use of EnKF technique for continuous updating of a reservoir model is 

applied for the first time by Geir Nævdal et al, (2002a and 2002b). In these 

papers, EnKF is applied for near-well reservoir monitoring, focusing on its 

performance in forecasting the future production. Both model parameters and 

state variables are used to update the reservoir model. The EnKF methodology is 

initially applied to a simple synthetic reservoir model which is updated with the 

forecasts consistent with the measurements. Later this methodology is applied to 

a semi-synthetic 2D-field model from the North Sea with larger number of state 

variables. The static parameter updated using EnKF was permeability 

distribution and the measurements used in the data assimilation step were 

bottom-hole pressures, water cuts and gas-oil ratios. The efficiency and 

robustness of EnKF is clearly demonstrated as the results showed significant 

consistency between measured and predicted values. 

 

  Yaqing Gu and Dean S. Oliver examined the application of EnKF on a PUNQ-

S3 small-scale synthetic reservoir model constructed on the basis of a real field 
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operated by Elf Exploration Production. The PUNQ (Production forecasting with 

Uncertainty Quantification) project is used to compare methods for quantifying 

uncertainty assessment as a joint venture by European research institutes, 

companies and universities. Dean et al. applied EnKF to this model and 

compared the results with other traditional data integration methods. EnKF 

proved out to be an efficient approach for predicting the oil production rate as 

compared to other data integration methods. The after history match oil 

production rate prediction obtained from the ensemble of corrected models was 

in agreement with the truth.  However there was overshooting problem in the 

porosity and permeability fields and they were not matched well. Later Gu 

implemented the EnKF with a one-dimensional, two-phase waterflood problem 

and a two-dimensional, two phase problem ( Gu and Oliver, 2006). These cases 

were selected to investigate two primary concerns in application of the EnKF. 

The first concern was the response of the EnKF in cases when the covariance 

matrix provides poor representation of the distribution of variables. The second 

concern was the representation of covariance matrix using lower number of 

ensemble members. Gu concluded that the forecasts were consistent with the real 

data and that the constructed model honors all the measured data. However the 

results also indicated the need of relatively larger ensemble members to obtain 

stable results, particularly for the reliable assessment of uncertainty. This leads 

to high computational work and costs.           

 

Later Wen and Chen added a confirming option to the EnKF algorithm to ensure 

that the updated static and dynamic variables are always consistent and also 
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avoids nonphysical values for the updated dynamic data (Wen and Chen, 2005).  

They used a 2-D synthetic reservoir model to illustrate the application of the 

newly developed EnKF methodology in which permeability is chosen as the 

tuning parameter to match the real-time multiphase production data. Sensitivity 

analysis is also carried out using different ensemble size and different covariance 

models. They found that a relatively large ensemble size is required to accurately 

estimate the uncertainty of the model parameters. However small ensemble size 

is capable of providing better production data match.  They also found out that if 

the available production data are of the same type and from the same wells for 

long time, there is less updating of the reservoir model in the data assimilation 

step. Yan and Zhang (2005) also conducted a sensitivity analysis of the EnKF 

methodology based on different ensemble size and also based on varied 

ensemble type and observation data assimilation timing. They showed that early 

production data contains more useful information about the reservoir 

heterogeneity and plays an important role in forecasting state variables. They 

also showed that if the prior statistics are far apart from the benchmark case, the 

predicted values might never converge to the measurements and observations.           

Lorentzen et al. (2006) applied the EnKF methodology for controlling downhole 

chokes so that the water flooding is optimized. They used EnKF to optimize 

either the total cumulative oil production rate or NPV. The results showed that 

EnKF provided better results as compared to the Partial Enumeration method.         

 

Jafarpour et al, (2007) combined the EnKF algorithm with a flexible and 

effective parameterization method, the Discrete cosine transform to address the 
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challenges in history matching of large reservoirs such as scarcity of available 

measurements relative to the number of unknowns leading to ill-posed inverse 

problem and computational effort required for large reservoir problems. 

Implementing the above approach using two waterflooding examples showed 

that with DCT parameterization the results are almost identical to the results 

obtained with a much more expensive approach that estimates states in every 

block of the simulator computational grid. Thus the proposed approach proved to 

be efficient in providing efficient estimation of unknown geological properties in 

large reservoirs. 

         

Huseby et al, (2009) discussed the integration of natural and conventional tracer 

data in reservoir modeling using the EnKF. These data sources are mostly 

unused source of information and are underexploited as a source of data for 

reservoir modeling. The use tracer data along with production data in EnKF 

estimation is contrasted to estimations without tracer data. The results have 

shown that improved estimates of porosity and permeability fields are obtained 

using natural tracers in data assimilation step.   

 

Chitralekha et al, (2010) demonstrated the efficacy of the EnKF algorithm taking 

into account the geological heterogeneity of SAGD reservoirs for history 

matching of SAGD reservoirs. This was the first use of EnKF algorithm for 

history matching and characterizing SAGD reservoirs. Gul et al, (2011) 

implemented a constrained-based Ensemble Kalman Filter for characterization, 

production management and history matching of SAGD reservoirs. The first 
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constraint was applied to the updated permeability values where permeability of 

each layer was confined to predetermined values. The second constraint was 

applied to temperature observations and specific temperature data were taken 

into account at different update steps. The results indicated that using real-time 

temperature observations during data assimilations step led to better prediction 

of geological heterogeneity and reservoir’s response to well adjustments. 

 

Nejadi et al, (2011) proposed a entropy weighted EnKF (EWEnKF) technique 

for updating non-Gaussian reservoirs. The Entropy is an excellent normalized 

measure of the spread of any given probability distribution is entropy, which is a 

general uncertainty measure on random variables. A weighting factor based on 

linear combination of mismatch in entropy of model parameters and forecast 

mismatch was introduced to compute the ensemble mean. It allowed the 

simultaneous reproduction of non-linear system dynamics and honoring of 

reference model distributions. The implementation of this methodology was 

carried out in two synthetic models and the results revealed that EWEnKF has a 

significant potential to resolve the shortcomings of traditional EnKF in reservoir 

characterization and history matching of reservoirs exhibiting complex 

heterogeneities. A continuation to this work, Nejadi et al, (2012) proposed a re-

sampling procedure to correct for the loss of non-Gaussian contributions in 

model parameters are EnKF update and to honor the reference distribution 

obtained from static geological information. The proposed algorithm involves 

combining the P-Field re-sampling with the DCT-EnKF approach which is 

successfully implemented for facies detection of multiple (three) facies model. 
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They also carried out smoothing algorithm to correct for the short-scale 

variability of the distributions. A detailed review on the most recent findings on 

the EnKF application is covered by Aanonsen et al, (2009) and Oliver et al, 

(2010)    
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Chapter 3 

Ensemble Kalman Filter Methodology & 

Workflow  

The EnKF methodology consists of three steps: (a) forecast step based on the 

current state variables (b) the data assimilation step in which Kalman gain is 

computed using the most current production data (c) the update step in which the 

state variables are updated using the previously computed Kalman gain.   

 

The state variable consists of three types of parameters: 

 

 

Here yk,j is the j
th

 ensemble member of the state vector at time tk. ms are the 

static parameters (e.g., porosity and permeability distributions) that do not vary 

with time. md represents the dynamic parameters such as pressure and phase 

saturation values that are the solution to the flow equations and thus are 

parameters changing with time. The production data such as oil production rate, 

water injection rate, bottom-hole pressure, temperature etc. are represented by d. 

k denotes the time steps at which data is assimilated. 
 

 

       

  

  

 
 

   

 
             (3.1) 
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The typical workflow of a EnKF is described as follows:  

1. The first step involves generating initial ensembles of state vectors. At 

the starting time (time=0) we assume that no production data is 

available. 

 

Here Ψ represents the ensemble of state vector and Ne is the total number of 

realizations in the ensemble. Multiple realizations of state vectors are generated 

using geostastical methods conditional to the reference permeability distribution 

to represent the initial uncertainty in the reservoir model. The initial pressure and 

saturations are assumed to be known without uncertainty.  

 

2. The forecast step consists of running the reservoir simulator for each of 

the model realizations till the next data assimilation step when new 

measurements of production data becomes available.  

 

  
   

        
   

                                                           (3.3) 

 

Here   
    represents the forecasted state vector at time-step k. F(.) is the forecast 

operator representing the reservoir simulator and       represents the model 

error. Superscript p and a represents the predicted and updated state vectors. In 

the forecast step new ensemble of dynamic and production data consistent with 

the initial static parameters are generated. For large-scale field applications, the 

forecast step is the most computationally demanding step. 

                             (3.2) 
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3. The forecast step is followed by the update step whereby the state 

vectors are updated using the Kalman update equation as follows: 

 

  
     

            
    

 

   (3.4) 

Here the matrix Kk is the ensemble approximation of the Kalman gain 

for time tk and dk represents an ensemble of the sampled observations. H 

is the matrix operator that relates the state vector to the production data. 

It simply selects the simulated data from the state vector. The 

measurement matrix H is given by: 

           (3.5) 

Where I is the identity matrix. The Kalman gain (K) is computed as 

follows: 

       
 
   

      
         

   

 

            (3.6) 

   
 
  is the covariance matrix for the state variables at the time tk that can be 

calculated from the ensemble of forecasted state vectors using the standard 

statistical method:  

   
   

 

    
    

   
 

 
     

   
 

 
  
 
  

 

         (3.7) 

Here Ne is the number of realizations in the ensemble.  
 

 
   is the mean of the 

state variables. With Kk and the production data at the assimilating time step (dk), 

the updated state vector is calculated using equation (4). To create an ensemble 
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of production data, we add random perturbations to the observed production 

data. The updated covariance matrix can be computed with the following 

formula:  

 

   
             

                (3.8) 

 

Each realization of the updated ensemble reflects the most current production 

data after the update step. 
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EnKF work flow for history matching   

Initial Ensemble of 
model parameter

Forecast Step

Forecast Ensemble

Analysis Step

Observation 
Data

Updated Ensemble

 

Figure 1: EnKF methodology flowchart for Data Integration (Adapted from 

Seiler et al, 2009) 

 

 

As can be seen from the Figure 1, to initiate the EnKF algorithm, initial 

ensemble of permeability model parameter along with the state variables such as 

fluid saturations, operating pressure, temperature of the injected steam, PVT and 

relative permeability curves are prepared. There is no production data available 

at the starting time (t0). The initial ensemble is generated using a semivariogram 

model derived from the permeability data of the benchmark case or the true case. 

Once the initial permeability ensemble is generated, it can be incorporated into 

the thermal simulator through EnKF forecast step. For simplicity, it is assumed 

that reservoir porosity is constant. 
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Eclipse’s E-300 thermal simulator is chosen as the thermal flow simulator. The 

production data are incorporated into reservoir model sequentially in time as 

they become available and the ensemble of reservoir models evolves with time, 

representing the assimilation of measurements at the given time. The reservoir 

simulation is simply run for one forward time step using the most current state 

vector to the time at which new production data are available and perform above 

analysis to update the state vector in order to reflect the new data. With every 

data assimilation step, there is some degree of increment of quality to the 

estimation of the reservoir model. The improvement in the quality of the 

estimation depends on the information the new measurement data is carrying.  

Also, during history matching, we have an ensemble of updated reservoir models 

matching the most current production data available at all time that also assists in 

uncertainty assessment. For traditional history matching, when new 

measurements needed to be matched the entire history matching process has to 

be repeated using all the data. This makes EnKF based history matching a 

probable history matching approach especially when the frequency of data is 

fairly high as, for example, data from permanent sensors. Thus, EnKF can be 

built upon any reservoir simulator, which makes the implimentation of EnKF 

relatively simpler as compared to the traditional gradient based history matching 

approaches.    
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Chapter 4 

Single-facies 2-Dimensional SAGD reservoir 

model updating using EnKF 

In this chapter and the upcoming chapter we will implement the EnKF 

methodology to history match and characterize a 2-D single facies and two 

facies SAGD reservoir model. We used the EnKF equations by preparing the 

workflow in the MATLAB programming software by interfacing it with the 

Eclipse E300 for compositional simulation modeling and Petrel RE for 

petrophysical. The EnKF can be built upon any reservoir simulator, as the 

simulator acts as a black box in EnKF workflow. This case study consists of a 

single facies model in which the permeability distribution is the unknown model 

parameter. Figure.4.1(b) shows the true permeability distribution for the first 

case study, which was generated using Sequential Gaussian Simulation (SGSim) 

in Petrel. The reference field has high and low permeability regions, which we 

aim to detect by the EnKF algorithm based on the real time production and 

temperature data.  

 

2-D SAGD reservoir models, having 21x1x21 grid blocks with model 

dimensions of 250 meters x 750 meters x 35 meters, have been used in this case 

study. A pair of injector and producer is used in the simulation model. The 

observation data include the oil production rate (Q), cumulative steam-oil ratio 
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(cSOR), and temperature data from different sensor locations. The porosity is 

assumed to be a constant 35% value throughout the reservoir. The other reservoir 

parameters are presented in Table (4.1) 

 

Table 4.1: Single Facies Reservoir Model Properties 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

4.1 Initial Ensemble Generation 

The reference permeability distribution Figure 4.1(b) is generated through the 

sequential Gaussian simulation (SGSIM) technique using Petrel RE by assuming 

an exponential geostatistical variogram model with a range of 200 m and 75 m in 

the major and minor direction, respectively, along with an azimuth angle of 45
o
. 

At the starting time, (t=0) when no production data is available we can see that 

the initial averaged model Figure. 4.1(a) is featureless and has constant values 

which are very close to the mean and variance of the input histogram. The ln 

(permeability) was the simulated property whose  distribution is assumed to be 

Table 1: SAGD Model Reservoir Properties 

Model Dimensions   21 x 1 x 21 

Length in X, Y, Z direction  250 m x 750m x 35m 

Porosity 35% 

Permeability Range Single facies : 1000 to 4000 md 

Formation Heat Capacity 7.4E2 KJ/m3/K 

Rock thermal Conductivities 2.1E2 KJ/m/day/C 

Temperature 18 C 

No. Of wells  1 producer & 1 injector 

Pressure 30 Bar 

Injected Fluid Steam 

Steam Quality 90% 

Injection Temperature 285 deg C 
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Gaussian with a range of 1000 md to 4000 md. The reference permeability 

distribution, as well as the simulated dynamic data using this reference 

permeability such as oil production rate (Q), cumulative steam oil ratio (cSOR) 

and temperature data are considered as true case. The observed data is assumed 

to be available at the end of every month for 14 years, and they are directly read 

from the true data. 

 

  

Figure 4.1: Single facies permeability map. 

(a): Average of Initial ensemble of permeability models 

(b): The Reference permeability field 
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An initial ensemble of 60 permeability models is generated using the SGSIM 

method with the same histogram and variogram as the reference field. Initial 

ensemble generation is an important step in EnKF workflow as estimation of the 

model parameters and prediction of state variables is directly influenced by the 

covariance structure stored in the initial ensemble models. The initial ensemble 

of model parameters are generated such that they follow Gaussian distribution, 

and limiting them to the permeability range according to the reference 

distribution. These initial ensembles of permeability models are used to generate 

initial ensembles of state variables (Figure. 4.2). These ensembles of 

permeability models are input for the EnKF and are updated every 3 months, 

assimilating the most current observed data. The hard permeability data is 

assumed to be available at the (4, 1, 4), (4, 1, 16), (4, 1, 21), and (17, 1, 4) grid 

blocks and well locations and are used as a conditioning data. 
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Figure 4.2: Initial Ensemble of production data forecasted using the 

reference permeability in simulation 

 

The history matching was performed for 10 update steps, and the production data 

was assimilated at every three months. A measurement noise variance of 5, 0.01, 

and 1 were assigned to Q, cSOR, and the temperature observations, respectively. 

The permeability perturbation noise variance was chosen as 1.0e
-2

 for all grid 

block locations. The Root mean square errors (RMSE) for all the three cases are 

plotted to match determine the quality of the mismatched results. In order to 

investigate the importance of temperature observations in EnKF to reliably 

represent the uncertainty in prediction of steam chamber rise or length of steam 

fingers at the edge of steam chambers, we perform the EnKF with the same 
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initial realizations but with 0, 4 and 8 temperature observations along with the 

production rate (Q) and cumulative steam-oil ratio (cSOR) observations. 

4.2 Model Parameter Update 

As discussed before, the model parameters include parameters such as 

permeability, porosity etc that are traditionally called static because they do not 

vary with time. However in our EnKF based dynamic history matching we have 

assumed permeability as the tuning parameter which gets updated with time and 

thus can change with time.  The updated mean permeability (Figure 4.3) at each 

step of data assimilation is compared for the three cases with 0, 4, and 8 

temperature updates.  
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Figure 4.3:  Comparison of the permeability update for the 3 cases with 0, 4 

and 8 temperature observations. The average permeability map at different 

update steps compared to the true case is shown in each case 
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The true (benchmark) case is also shown in the bottom right of each figure for 

comparison. In each case, compared to the benchmark case, we can see that at 

the starting time when no production data is available, the averaged model is 

featureless with constant values close to the mean and variance of the input 

histogram. Also in the first few data assimilation steps, most variation in the 

averaged model is observed and we are able to successfully detect high and low 

permeability locations in the reference model with reduced uncertainty. As more 

and more production data is incorporated, improved average permeability 

models are obtained and the average permeability fields become closer to the 

benchmark case. However as compared to the initial data assimilation step, there 

is no major improvement in the permeability match and the averaged 

permeability fields become closer and closer between the different assimilation 

steps, clearly indicating that the early time production data contain valuable 

information about the reservoir heterogeneity. 

 

 In each case, it can be clearly seen that the updated mean permeability field has 

improved significantly and the final updated permeability predictions are close 

to the reference case. However, in the first single facies model, visually, it is 

difficult to compare the quality of permeability match in Figure 4.3.  
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4.3 Root Mean Square Error (RMSE)  

RMSE is used to compare the quality of mismatched results. The Root mean 

square error (RMSE) is evaluated by calculating the difference between the 

estimated permeability field and the reference permeability field. For each 

gridblock, the RMSE for the entire ensemble of the updated realizations can be 

computed with the following formula: 

 

        
 

  
         

      

  

   

 (4.3.1) 

Here      is the estimated value of the permeability map for the i
th

 gridblock and 

j
th 

realization and   
     is the permeability value in the i

th
 gridblock of the 

reference field. Ne is the total number of realizations in the ensemble of model 

parameters. Finally the average RMSE is computed for all the gridblocks using 

the following formula: 
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 (4.3.2) 

 Here N is the total number of gridblocks.  As more and more production data is 

incorporated in the data assimilation step, the RMSE and the Avg. RMSE values 

decreases and the ensemble of models move towards the benchmark case. 

 

We have plotted the cumulative Avg. RMSE graph (Figure 4.4) for all the three 

cases with 0, 4 and 8 temperature observations to compare the quality of history-

matched model.  
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Figure 4.4: Single facies model, Comparison of Root mean square error 

value of the temperature data for the three cases 



35 

 

We randomly selected a block temperature data, which has not been updated 

during the data assimilation step. When 4 temperature observations are used, the 

RMSE values are drastically reduced, as compared to the RMSE values in cases 

with no temperature observations. However, including 8 temperature 

observations showed no major improvements, as compared to the case with 4 

temperature observations. Thus, real-time temperature measurements for 

continuous model updating in SAGD reservoirs led to better reservoir 

heterogeneity predictions. However the RMSE results reveal that after the 

optimum number of sensors, further increasing the number of temperature 

observations showed no major improvements. 

4.4 Dynamic Parameters Match  

Using the updated permeability value in simulation, the ensemble of production 

rate, cumulative steam-oil ratio, and temperature data is plotted along with the 

true case (Figure 4.5 to Figure 4.7) to show the after history match predictions. 

As compared to the initial ensemble of production data (Figure 4.5) where all the 

predictions are far from the true case, the after history match predictions moved 

closer to the true case clearly indicating significant reduction in uncertainty of Q, 

cSOR, and temperature data after updating with the EnKF algorithm. All the 

realizations of the ensemble move closer to the true value, thus indicating 

improvements in predictions after history matching. 
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The red line in the figure represents the observations from the reference model 

and the grey lines represent the trajectories of the model predictions after re-

running the updated models from initial time. 
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Figure 4.5: Oil production rate after history match for all the three cases 

with different temperature observations 
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Figure 4.6: Cumulative steam-oil ratio after history match for all the three 

cases with different temperature observations 
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Figure 4.7: Block temperature after history match for all the three cases 

with different temperature observations 
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Chapter 5 

Two-facies 2-Dimensional SAGD reservoir 

model updating using EnKF 

The second case study has been done to investigate the application of the 

Ensemble Kalman Filter (EnKF) for detection of continuous shale barriers in 

SAGD reservoirs. The quantitative reservoir characterization of heterogeneity 

and determination of shale barriers are important for uncertainty assessment and 

prediction of production performance in SAGD reservoirs. This also aids in 

identifying the reservoir zones with the greatest SAGD potential and selecting 

the optimal number of SAGD wells for production. The shale barriers act as flow 

barriers depending on their size, location, and continuity throughout the 

reservoir. The long continuous shale barriers are important to characterize, as 

they are the barriers for steam migration which greatly influences the reservoir 

performance; however, the short horizontal shale barrier does not have much 

effect on the reservoir performance (Butler et al, 1992).  In this chapter we will 

implement the EnKF methodology to history match and characterize a 2-D two 

facies SAGD reservoir model containing sand and shale facies. Similar to the 

previous case study, the EnKF algorithm was prepared in the MATLAB 

programming software by interfacing it with the Eclipse-E300 for compositional 

simulational modeling and Petrel RE for facies modeling. This case study 

consists of a two facies model in which the facies distribution is the unknown 
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model parameter. Figure.5.1 (b) shows the benchmark facies distribution, which 

was generated using unconditional Sequential Indicator simulation (SIS) in 

Petrel. The reference field shale barriers, which we aim to detect by the EnKF 

algorithm, based on the real time production and temperature data.  

 

2-D two facies- SAGD reservoir models, having 21x1x21 grid blocks with 

model dimensions of 250 meters x 750 meters x 35 meters, have been used in 

this case study. A pair of injector and producer is used in the simulation model. 

The observation data includes the oil production rate (Q), cumulative steam-oil 

ratio (cSOR), and temperature data from different sensor locations. The porosity 

is assumed to be a constant 35% value throughout the reservoir.  The other 

reservoir parameters are presented in Table (5.1) 

 

Table: 5.1 Two facies SAGD Model Reservoir Properties 

 

Model Dimensions 21 x 1 x 21 

Length in X,Y,Z direction 250 m x 750m x 35m 

Porosity 35% 

Permeability Range Sand - 3000md; Shale - 50md 

Formation Heat Capacity 7.4E2 KJ/m3/K 

Rock thermal Conductivities 2.1E2 KJ/m/day/C 

Temperature 18 C 
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No. Of wells 1 producer & 1 injector 

Pressure 30 Bar 

Facies Proportion 60 % Sand 

40 % Shale 

Injected Fluid Steam 

Steam Quality 90% 

Injection Temperature 285 C 

 

5.1 Parameterization with Discrete Cosine Transform 

The EnKF is a Monte-Carlo based technique that only uses the mean and 

covariance of the prior probability density function (pdf) when calculating the 

posterior ensemble. It is based on the simple assumption of Gaussianity. Thus in 

highly non-linear problems, the traditional EnKF incorrectly estimates the 

uncertainty and fails to obtain a good production data match. This problem arises 

with multiphase flow and non-Gaussian distributions. All these problems 

requires the need to make improvements in the traditional EnKF method to 

update and history match the reservoir models whose petrophysical properties 

are not necessarily Gaussian (Evensen 2007, Aanonsen et al, 2009). The shale 

barriers in a SAGD reservoir, due to its complex geological nature, are exhibited 

as a different facies and thus it is difficult to detect shale barriers using the 

traditional EnKF algorithm. Different approaches has been used to model non-
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Gaussian parameters such as Discrete Cosine Transform, Truncated Pluri-

Gaussian and Gaussian Mixture models (Evensen, 2007).         

The Discrete Cosine transform is a Fourier based transformation applied to 

decompose the spatial distribution of the facies indicators into the coefficients of 

the retained cosine basis functions. DCT is performed on each realization of the 

initial ensemble and certain number of basis functions and the coefficients are 

retained. It is noted that the total number of basis functions (r) can be much less 

than the total number of model parameters. The DCT coefficients are 

incorporated into the state vector instead of the model parameters (m). After the 

EnKF update step, inverse DCT transform is used to convert back the updated 

DCT coefficients into facies indicator values. These updated indicators are 

further used in the subsequent forecast and update steps as new observations 

become available. 

5.2 Generation of Initial Ensemble 

The two-facies 2-D model has shale and sand distributions whose permeability is 

assumed to be uniform with an average value. The permeability of sand and 

shale is set to 2000 md and 50 md. The reference facies distribution is generated 

through the Sequential Indicator simulation (SIS) technique using Petrel RE by 

assuming an exponential variogram model with a range of 150 m and 100m in 

the major and minor direction respectively, along an azimuth angle of 135
o
. For 

the reference case, the facies proportion is 60% sand and 40% shale. The 

reference reservoir model. Figure 5.1(b) has continuous shale barriers which we 

aim to detect combining a novel parameterization approach, the discrete cosine 
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transform (DCT) with the Ensemble Kalman Filter. Similar to the previous case, 

at the starting time, (t=0) when no production data is available we can see that 

the initial averaged model. Figure. 5.1(a) is featureless and has constant values 

which are very close to the mean and variance of the input histogram. The 

simulated dynamic data, such as Q, cSOR, and temperature observations, that is 

obtained using the reference case are considered as true case and are assumed to 

be available at the end of every month. To evaluate the performance of the 

SAGD process by using temperature observations as dynamic parameter updates 

in EnKF, we run three cases with 0, 4 and 8 temperature observations. 
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Figure 5.1: Two facies model 

Top: Average of initial ensembles of 2-facie model 

Bottom: Benchmark case facies distribution 
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Using the reference facies distribution, an ensemble of 100 distributions were 

generated via the sequential indicator simulation method. This ensemble of 

facies models is the input for the EnKF algorithm and is updated at the end of 

every 3 months, thus assimilating the most current data. We have used the 

discrete cosine transform (DCT) to parameterize the facies indicators whose 

coefficients are then included in the state vector and updated.  The hard facies 

data is assumed to be available at the (5,1,4), (17,1,4), (5,1,18), and (17,1,18) 

grid blocks and the well locations. These hard data are used as conditioning data. 
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Figure 5.2: Initial Ensemble of production data forecasted using the 

reference facies distribution in simulation 
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The history matching was performed for 21 update steps for the 2-D model, 

assimilating the production data at the end of every three months. The same 

measurement noise variance as the previous case was assigned to Q, cSOR, and 

the temperature observations. The model noise variance was chosen as 1.0e
-2 

for 

all the grid blocks. Again, three different cases with 0, 4, and 8 temperature 

observations have been run for the 2-D model with the same set of initial 

realizations. Simiar to the previous case study, the Root Mean Square Error 

(RMSE) value for all these cases has been plotted to compare the quality of final 

updated facies model.  

5.3 Model Parameter Update 

For model parameter estimation in two-facies SAGD reservoirs, a comparative 

study was carried out to examine the importance of temperature data inclusion in 

the data assimilation step during EnKF assisted history matching process. After 

applying the DCT + EnKF to perform history matching of a two-facies, the 

updated mean facies for each case is shown in Figure 5.3. It can be clearly seen 

that in the first case, in which temperature observations are not used for history 

matching, the facies update is underestimated, and even after 21 update steps, the 

final model is not able to catch the shale barriers within the reservoir. However, 

when temperature observations are included, the facies match is close to the 

reference case and results in improved shale barrier detection.  
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Facies Match (0 temperature observations) 

Facies Match (4 temperature observations) 
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Figure 5.3: Comparison of the facies match for the three cases with 0,4 and 

8 temperature observations. The average facies match at different update 

steps compared to the true case is shown in each case 

Facies Match (8 temperature observations) 
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Again similar to the previous case, the Root Mean Square Error (RMSE) plot is 

used to evaluate the quality of the final updated facies distribution at the end of 

the history matching. 

 

 

 
 

Figure 5.4: Two facies model, Comparison of Root mean square error value 

of the temperature data for the three cases 
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It can be clearly seen from Figure 5.4 that the inclusion of temperature 

observations in data assimilation step clearly gave reduced RMSE values as 

compared to the case when no temperature observations are used. However 

similar to the previous case, using more temperature observations showed no 

major improvements clearly indicating the need of using optimum number of 

temperature observations. 

5.4 Dynamic Parameters Match 

The history match results of production parameters for the two-facies 2D SAGD 

model are shown in Figure 5.5 to Figure 5.7 where oil production rate (Q), 

Cumulative steam oil ratio (cSOR) and temperature observations are plotted . 

The updated facies distribution is used in simulation to obtain the after history 

match ensemble. Clearly, the combination of EnKF and DCT is able to estimate 

the facies proportions that result in predictions matching the reservoir history 

more closely, as temperature observations are included for continuous model 

updating in SAGD reservoirs.        

 

The redline curve represents the benchmark case results using the benchmark 

facies distribution in simulation, whereas the grey lines represent the 100 

ensemble members prediction results using the final updated facies values in 

simulation. In each figure it can be seen that when temperature observations are 

not used, even after 21 update steps the ensemble members are far from the true 

case clearly indicating lots of uncertainty in the Q, cSOR and temperature data.  
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However when temperature observations are used, all the ensemble members 

move closer to the observations and uncertainty is significantly reduced.    
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Figure 5.5: Oil Production rate (SM3/DAY) after history match for all the 

three cases with different temperature observations  
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Figure 5.6: Cumulative steam-oil ratio after history match for all the three 

cases with different temperature observations 
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Figure 5.7: Block temperature after history match for all the three cases 

with different temperature observations 
 

The distribution of steam chamber growth has also been compared for the true, 

initial, and updated facies distribution for all the three cases in Figure 5.8 and 

Figure 5.9 for the 2-faceis model. It is evident from the figure that inclusion of 

the DTS data for continuous model updating has great potential in providing a 

better understanding of the steam chamber growth and steam chamber 

orientation within SAGD reservoirs. Accurate information about the location and 

movement of steam chamber can be derived from the updated ensemble model 

with lower uncertainty.  
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Figure 5.8: SAGD Model Temperature profile 

Benchmark Case 

Initial Ensemble Model 
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Figure 5.9: SAGD Model Temperature profile 

            (a) 0 temperature observations 

            (b) 4 temperature observations  

            (c) 8 temperature observations 
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5.5 Analysis to obtain optimum location of DTS data 

An analysis is also done to obtain optimum locations of the four temperature 

observations for improved facies detection and reservoir characterization. In the 

first case, the four temperature observations (Figure 5.10a) are placed in one 

corner at (19,1,2) , (19,1,3), (20,1,2) and (20,1,3), whereas, in the second case, 

each temperature observation (Figure 5.10b)is kept close to a corner at (2,1,2), 

(2,1,20),(20,1,2), and (20,1,20). Finally, a third case is ran in which the 

temperature observations Figure 5.10c) are distributed within the steam chamber 

at (4,1,16), (4,1,10), (18,1,10), and (18,1,16). 

(b)   One temperature observation in each corner 

(c)   All four temperature observation distributed 
within the steam chamber

(a)   All four temperature observation in one corner 

 

Figure 5.10: Different locations of 4 temperature observations for sensitivity 

analysis.  
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To compare the quality of mismatch in all the three cases, the mean facies match 

at each update step against the benchmark case is plotted. It is evident from the 

figure (Figure5.11) that inclusion of temperature observations, which are 

distributed uniformly within the steam chamber; provide a better facies match, as 

compared to the other two cases. The RMSE graph (Figure 5.12) of each case is 

plotted, which again shows the lowest RMSE for the case in which the 

temperature observations provides better information about the steam chamber 

propagation.  
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Figure 5.11: Comparison of facies match for three cases with different 

locations of 4 temperature observations. The facies map at different update 

steps compared to the benchmark case is shown in each case.  
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Figure 5.12: Comparison of Root mean square error value (two facies 

model) of the temperature data for the three cases with different locations 

of the 4 temperature observations 
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Chapter 6 

Two-facies 3-Dimensional SAGD reservoir 

model updating using EnKF 

In the third case study we have utilized temperature records of observation wells 

along with production and injection well data to characterize and history match a 

3-D two facies SAGD model. Similar to the previous two facies case study, the 

unknown parameter is the facies distribution that we aim to detect combining 

Discrete Cosine Transform (DCT) parameterization technique and the Ensemble 

Kalman filter (EnKF) algorithm. The benchmark case, which has continuous 

shale barriers, is generated using Sequential Indicator simulation (SIS) in Petrel. 

The 3-D reservoir model has 21 x 5 x 21 grid blocks with model dimensions of 

250 meters x 750 meters x 35 meters. The observation data includes oil 

production rate (Q), Cumulative steam-oil ratio (cSOR) and temperature data 

from different sensor locations. The porosity is assumed to be constant 35% 

throughout the reservoir. The other reservoir properties are presented in Table 

(6.1)    

 

Table 6.1: 3-D SAGD Model Reservoir Properties 

 

Model Dimensions 21 x 5 x 21 

Length in X,Y,Z direction 250 m x 750m x 35m 
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Porosity 35% constant 

Permeability Range Sand - 3000md; Shale - 50md 

Formation Heat Capacity 7.4E2 KJ/m3/K 

Rock thermal Conductivities 2.1E2 KJ/m/day/C 

Temperature 18 C 

No. Of wells 1 producer & 1 injector 

Pressure 30 Bar 

Facies Proportion 

(Benchmark Case) 

60 % Sand 

40 % Shale 

Injected Fluid Steam 

Steam Quality 90% 

Injection Temperature 285 C 

 

Similar to the previous two facies case study, in this case also the 3-D SAGD 

model has shale and sand distributions with average permeability value. Facies 

distribution of the benchmark case is 60% Sand and 40% shale. Permeabilities of 

the sand and shale distribution were set to 3000 md and 50 md, respectively. The 

simulated dynamic data using the reference facies distribution in simulation is 

considered the true case and is assumed to be available at the end of every 

month. 
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6.1 Model Parameter Update 

Similar to the previous two facies case study, the model parameter which was 

updated in the analysis step is facies distribution. The Kalman gain is computed 

through the covariance matrices at each analysis step of EnKF based history 

matching process and the SAGD model was tuned through the Kalman gain. 

Figure 6.1 and Figure 6.2 shows the reference facies distribution, initial mean 

facies distribution and updated mean facies distribution for layer 5 and layer 1 of 

the 3-D SAGD model.                                         

                                               
                                                  

                                     
 

                                     
 

 

Figure 6.1:  3D-SAGD model facies distribution match of layer number 5 

            (a) Reference facies distribution 

            (b) Initial mean facies distribution  

            (c) Updated mean facies distribution 
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Figure 6.2:  3D-SAGD model facies distribution match of layer number 5 

            (a) Reference facies distribution 

            (b) Initial mean facies distribution  

            (c) Updated mean facies distribution 

 

As shown in the above figures, after applying the DCT + EnKF to perform 

history matching, the updated mean facies distribution is close to the reference 

case. Thus the use of temperature data in conjunction with production data 
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demonstrated significant improvement in facies detection and reduced 

uncertainty for SAGD reservoirs. 

6.2 Dynamic Parameters Match 

The oil production rate, steam oil ratio and temperature observations were 

assimilated in the history matching process and the updated parameters are 

plotted in the following figures. Using the reference facies distribution, an 

ensemble of 60 realizations were generated using sequential indicator simulation 

(SIS) method. These initial ensembles of facies distributions are updated at each 

data assimilation step. The history matching was performed for 21 update steps, 

assimilating the production data at the end of every three months. The after 

history match ensemble is generated by using the updated facies distribution in 

simulation. The redline curve represents the benchmark case or the true case 

whereas the grey lines represents the ensemble members prediction results.  In 

each figure it can be clearly seen that the combination of EnKF and DCT is able 

to estimate the facies proportions that result in predictions matching the reservoir 

history closely, using the temperature observations in the data assimilation step. 
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Oil Production Rate 
 

 

 

 

(a)Before History Match 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) After History Match 

 

 

Figure 6.3: Oil Production rate(SM3/DAY) before and after history match 

for the 3D-SAGD model 
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Cumulative Steam-Oil Ratio 
 

 

 

 

 

 

(a) Before History Match 

 

 

 

 

 

 

 

 

 

 

   (b)After History Match 

 

 

 

Figure 6.4: Cumulative Steam-Oil ratio before and after history match for 

the 3D-SAGD model 
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     Block Temperature 
 

 

 

  

  

  

  

  

   

(a)Before History Match

  

  

  

  

  

  

  

  

  

         

         
             
 

 

 

 

 

 

 

 

(b)After History Match 

 

 

Figure 6.5: Block Temperature before and after history match for the 3D-

SAGD model 
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Chapter 7 
 

Realistic 3-Dimensional SAGD reservoir 

model updating using EnKF 

 

In chapter 7 we have implemented EnKF to a realistic case study adapted from 

Surmont In-Situ Oil Sands Project. It’s a 50/50 joint venture between 

ConocoPhillips and Total E&P Canada Ltd. operated by ConocoPhillips. Similar 

to the previous cases, the permeability static variables were constrained to 

available core data and temperature observations using the Sequential Gaussian 

Simulation (SGSIM) to estimate reservoir heterogeneity. The Surmont SAGD 

reservoir is located 65 km southeast of Fort McMurray which is located in 

northern Alberta, Canada. The Surmont SAGD nine well-pair pilot was used for 

EnKF based model updating study. In this case study the EnKF algorithm was 

prepared in the MATLAB programming software by interfacing it with the 

thermal reservoir simulator CMG-STARS and Petrel RE. The reservoir consists 

of high-porosity unconsolidated sand at a depth of around 400 m. The reservoir 

model has 56 x 59 x 74 grid blocks with nine pairs of injector and producer. Two 

heater wells are also used for preheating the reservoir prior to starting the 

production. The porosity is assumed to be a constant 0.35 value throughout the 

reservoir. The permeability ranges between 100 md to 21000 md. 
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Figure 7.1: A cross section 3D view of the Surmont Model showing the 

location of wells 
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Table 7.1: Surmont Model Reservoir Properties 

 

Model Dimensions 56 x 59 x 74 

Length in X, Y, Z direction 800 m x 1000 m x 35 m 

Porosity 0.35 

Permeability Range 100 md to 21000 md 

Initial Temperature 11 C 

Pressure 1400kPa 

API Gravity 8 deg 

Viscosity 1e+6 cP 

No. Of wells 9 pairs of injector & Producer 

No. of Heater wells 2 

Injected fluid Steam 

Steam Quality 90% 

Injection Temperature 285 C 
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7.1 Updating the cumulative field production data along with the 

temperature observations    

Using the reference permeability distribution, an ensemble of 50 permeability 

models (keeping high computational time in mind) is generated using SGSIM 

method with the same histogram and variogram as the reference field. Similar to 

the previous case study, the initial ensemble of permeability models is the input 

for the EnKF and is updated at the end of every 6 months till Oct. 2010 

assimilating the most current injection, production and temperature data. The 

hard permeability data is assumed to be available at the well locations and the 

observations well locations. In Figure 7.2 to Figure 7.4 the initial ensemble of 

injection and production data is shown on the left and the updated ensemble is 

shown on the right. Similar to the previous case studies, the redline curve 

represents the true case and the grey lines represent the 50 realizations generated 

using the initial and updated permeability in simulation. In each figure it can be 

seen that the realizations of the ensemble move closer to the true values 

indicating reduction in uncertainty of Oil production rate, gas production rate 

and water injection rate. Thus improvements in the production and injection data 

predictions can be seen after history match. However no major improvements 

are seen in the permeability update (Figure 7.9 to 7.11) and even after the final 

update, the permeability update is under estimated.  
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Figure 7.2: Cumulative Oil Production rate before and after history match 

 

 

 

 



79 

 

 

Figure 7.3: Cumulative Gas Production rate before and after history match 
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Figure 7.4: Cumulative Water Injection rate before and after history match 
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The growth of the steam chamber and associated drainage channels has the 

direct impact on oil rates and injection parameters during SAGD operations. To 

shorten the time required to reach the SAGD peak oil rates, the optimization of 

the injection parameters are necessary based on the different growth behaviors of 

the steam chamber. Multiple distributed temperature observations were placed 

along the horizontal well pairs to monitor the orientation of the steam chamber 

expansions (Figure 7.5) Red dot indicate the location of the DTS observation 

wells which are used to provide time and depth temperature observations for 

EnKF based reservoir model update). The choice of data type and observation 

locations are crucial for estimating model parameters and predicting state 

variables. Owing to the large size of the reservoir model, only one case study 

was carried out using the temperature data from four DTS well locations 

However if all the temperature observations (Figure 7.5) are used, improved 

model parameter estimation would be obtained. The number of realizations to be 

used in EnKF based reservoir model updating depends on the desired quality of 

estimates and the number of data integrated. Also for large reservoir models, 

large number of realizations would be required to avoid ensemble collapse and 

to obtain better estimates. However implementing all these data would be 

computationally expensive and would require faster system or parallel 

programming to reduce the computational time.  
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Figure 7.6 to 7.8 represents depth and time profile of the temperature data for the 

four observation wells used in the EnKF analysis step for model updating. Each 

temperature profile shows plateau features, which indicates a well established 

steam chamber around the observation well. In each figure, improvement in the 

updated temperature profile can be seen as compared to the initial profile clearly 

indicating that the use of temperature data in updating a SAGD reservoir 

enhances the understanding of reservoir heterogeneity. This clearly indicates that 

using more temperature observations during the data assimilation step would be 

useful in detecting potential steam barriers however while using more of the 

temperature data, both sampling cost and computational cost should be taken 

into account. 
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Figure 7.5: DTS well locations (ConocoPhillips Canada, “Surmont Pilot 

Performance: Resource Management Presentation to the EUB” ) 
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Figure 7.6: Temperature profile (Oct’10) of observation well 102-P04-OBA 

 

 

 
 

 

Figure 7.7: Temperature profile (Oct’10) of observation well 102-P03-OBA 
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Figure 7.8: Temperature profile (Oct’10) of observation well (a) 102-P01-

OBA (b) 102-P02-OBA 
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Initial Permeability field Updated Permeability field  

 

   

 

 

Figure 7.9: Permeability distribution match of layer number 40 

 

 

  

Initial Permeability field Updated Permeability field  

 

  

 

 

Figure 7.10: Permeability distribution match of layer number 44 
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Initial Permeability field Updated Permeability field  

 

  

 

 

 

Figure 7.11: Permeability distribution match of layer number 48 

7.2 Updating the cumulative production data of individual wells along with 

the temperature observations    

In this case study we have updated the individual well cumulative production 

and injection data (cumulative oil production rate, cumulative gas production 

rate and cumulative water injection rate) in the data assimilation step along with 

the temperature observations to identify the importance that data from individual 

well holds in reservoir characterization and history matching. Similar to the 

previous case study the permeability distributions are tuned at the end of every 6 

months till Oct. 2010 assimilating the most current injection, production and 

temperature data. Figure 7.12 to Figure 7.17 represents the initial ensemble and 

after history match ensemble of cumulative production rate for the individual 

well pairs.  In each case the updated ensemble moved closer to the true case thus 

indicating improvements in the production data update and reduced uncertainty 

in data measurement. Though, similar to the previous case  
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no major improvement is seen in the permeability match (Figure 7.18 to 7.20).  

 

Figure 7.12: Cumulative Oil Production rate before and after history match 

for production well 102-P01  
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Figure 7.13: Cumulative Oil Production rate before and after history match 

for production well 102-P02  
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Figure 7.14: Cumulative Oil Production rate before and after history match 

for production well 102-P03  
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Figure 7.15: Cumulative Oil Production rate before and after history match 

for production well 102-P04  
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Figure 7.16: Cumulative Oil Production rate before and after history match 

for production well 102-P05  
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Figure 7.17: Cumulative Oil Production rate before and after history match 

for production well 102-P06  
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Initial Permeability field Updated Permeability field 

 

   

 

 

Figure 7.18: Permeability distribution match of layer number 40 

 

 

Initial Permeability field Updated Permeability field  

 

  

 

 

Figure 7.19: Permeability distribution match of layer number 44 
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Initial Permeability field Updated Permeability field  

 

  

 

 

Figure 7.20: Permeability distribution match of layer number 48 

 

Emerick et al, (2011) implemented covariance localization to history match a 

field case using the Ensemble Kalman Filter. He proposed that in a real field 

case having a large reservoir model, covariance localization is necessary to avoid 

the propagation of spurious correlations caused by sampling errors in EnKF. It 

also increases the degree of freedom available to assimilate data. The EnKF 

application with and without covariance localization is shown for a real case. 

The covariance localization showed a better match for permeability distributions 

and also better predictions as compared to the without localization case. Thus for 

history matching and characterizing the Surmont field case, the EnKF can be 

applied along with covariance localization. Also further studies is needed to find 

an optimal number of realizations and keep estimation accuracy unchanged or 

even improve it. 
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Chapter 8 

Discussion, Conclusions & Future Work 

8.1 Discussion 

The ensemble Kalman filter (EnKF) approach for continuous model updating 

using production data along with temperature observations seems very promising 

approach for characterizing and history matching SAGD reservoirs. In this thesis 

we have presented an inverse modeling methodology based on the Ensemble 

Kalman filter by assimilating permeability measurements, production data and 

soft temperature observations for modeling and characterizing a SAGD operated 

petroleum reservoir model. The overall EnKF workflow is also modified for 

reservoirs whose petrophysical properties are not necessarily Gaussian by 

coupling it with the discrete cosine transform (DCT) algorithm for 

parameterizing the shale facies lables in SAGD reservoirs. The EnKF has been 

implemented on synthetic 2D and realistic 3D SAGD case studies and it has 

proved to be good for estimating model parameters (static parameters such as 

permeability) and predicting dynamic model’s states (dynamic variables such as 

production rate, water injection rate, temperature observations). Also using 

EnKF, an ensemble of reservoir models assimilating the most current 

observations of production data and temperature observations are always 

available. Thus it also provides uncertainty assessment due to its ensemble 

nature. In the previous chapters we have presented the influence of assimilated 
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temperature observations number and location on the quality of permeability and 

facies estimate for synthetic as well as realistic case study based on the Surmont 

SAGD thermal project. In order to investigate the effect of temperature 

observations on SAGD reservoir characterization, the number of DTS 

observations and their locations were varied for each study. The qualities of the 

history matched models were assessed by comparing permeability maps, facies 

maps, facies distribution and the Root Mean Square Error (RMSE) of the 

predicted data mismatch.   

The case studies shown in this thesis and their conclusions can be summarized as 

follows:  

 The first case study was implemented on a single facies 2D SAGD 

reservoir model containing high and low permeability regions which we 

aimed to detect using EnKF by assimilating production data and 

temperature observations. Three different cases with 0, 4 and 8 

temperature observations (during data assimilation step) had been studied 

under this case study. Comparing the permeability maps for all the cases 

visually it was difficult to compare the quality of the updated 

permeability maps. Therefore Root mean square error (RMSE) graph of 

block temperature data were plotted for all the three cases to determine 

the quality of mismatched results. The RMSE of the predicted data was 

improved when DTS temperature observations were used. However, 

including more temperature observations than the optimum number 

showed no further improvement in results. 
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 The second case study was performed on a two facies 2D and 3D SAGD 

models having shale and sand facies whose permeability was assumed to 

be constant with an average value. In this case study we aimed to detect 

long continuous shale barriers whose detection is very important in 

SAGD reservoirs as they greatly affect their production performance 

(Butler et al, 1992; Chen et al, 2008). 

 Similar to the previous case, three scenarios with 0, 4 and no temperature 

observations assimilation were presented in this case study. Comparing 

the updated facies maps it could be seen that when temperature 

observations were not used, even after many update steps the final model 

was unable to predict the shale barriers within the reservoir. However, 

when temperature observations were included, the facies match is close 

to the reference case and eventually led to improved shale barrier 

detection. Including more than optimum number of DTS temperature 

observations showed minimal improvement in history match as well as 

RMSE plot clearly suggesting the limiting (cut-off) need for DTS data. 

 A sensitivity analysis is also carried out to analyze the effect of DTS 

locations for improved facies detection and reservoir characterization. 

For this analysis, four temperature observation assimilation had been 

used at different locations. Similar to the previous cases, the qualities of 

the history matched models were assessed by comparing facies maps and 

RMSE of the predicted data mismatch. The results indicated that the 

assimilation of DTS data from nearby steam chamber location has 
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significant potential in significant reduction of uncertainty in steam 

chamber propagation and production forecast. 

 

The EnKF updated model parameters such as grid permeability values showed 

improvements by assimilating field observed data and simulation predictions 

such as oil production rate; cumulative steam-oil ratio and temperature 

observations. These improved model parameters update are crucial for SAGD 

field developments.  

8.2 Conclusion 

The ensemble Kalman filter (EnKF) had been implemented with Eclipse E300 

and CMG STARS reservoir simulator to continuously update an ensemble of 

SAGD reservoir models assimilating real time data and observations. The 

discrete cosine transform (DCT) algorithm is coupled with EnKF for 

parameterizing the shale facies labels in SAGD reservoirs. The real-time 

temperature measurements from DTS in conjunction with the production data 

are assimilated successfully in two synthetic case studies, single facies and two 

facies model, for characterization, continuous shale barrier detection, and 

automatic history matching. Sensitivities of using different number of DTS 

observations and their locations were also investigated. The following 

conclusions can be drawn from this thesis:  

 The EnKF is very efficient and robust method for real-time updating of 

reservoir models to confirm the newly collected production data. The total 
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time for creating Ne realizations of reservoir models to match the latest 

production data is about the cost of running Ne reservoir simulations.  

 EnKF’s ensemble nature helps in uncertainty assessment of the reservoir 

model estimates. An ensemble of reservoir models that are consistent with the 

up-to-date production data are always available. 

  In all the case studies there is significant update of the permeability and 

facies maps at the first few data assimilation step clearly indicating the 

importance of assimilating early production data for fast reservoir 

heterogeneity characterization. At later data assimilation steps, the averaged 

permeability and facies maps became closer and closer between different 

assimilation steps indicating that the production data at the later time carry 

less useful information on the reservoir heterogeneity as compared to ealy 

time data. 

 The DTS temperature observations provided valuable information for 

reservoir characterization and shale barrier detection in SAGD reservoirs. 

 The discrete cosine transform (DCT) along with EnKF is used to parameterize 

the facies labels. DCT-EnKF provided a highly attractive algorithm for 

updating and history matching petroleum reservoir models whose 

petrophysical properties are not necessarily Gaussian.  

 For all the case studies temperature data assimilation showed evident 

improvement with DCT-EnKF history matched models in terms of;  

 Reduction in predicted data mismatch (RMSE) 

 Ability to preserve the reference distribution of model parameters 
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 Improved information about the SAGD steam chamber location, 

its movement and its rise rate within the reservoir. 

 The temperature observations distributed uniformly within the steam 

chamber is ideal for better facies detection with reduced uncertainty. 

 The assimilation of more temperature data is desirable; however, a few 

observations data could well serve the purpose of improved 

characterization. 

8.3 Recommendations for future work 

As for future work, the EnKF can be applied into the Surmont SAGD 

model using the temperature observations from all the distributed 

temperature sensors. Different type of transformation techniques such as 

Normal transform, Truncated Pluri-Gaussian, Gaussian mixture models 

can be applied to characterize non-Gaussian reservoir models. The 

localization of the covariance matrix may be studied to eliminate the 

effect of spurious data correlation caused due to large number of well 

pairs. 
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List of Abbreviations, Symbols and 

Nomenclature 
y       =   State Vector 

 k         =  Time Indices 

  
 
    =  Prior State Vector 

     
 

   =  Updated State Vector 

        = State Transition Matrix 

    
 

     = Prior Covariance Matrix 

        =  Model Error 

Kk    =  Kalman Gain Matrix 

        =  Data Error Covariance Matrix 

Fk    =  Differentiable Equation 

ms    =  Static Parameters 

md    =  Dynamic Parameters 

d    =  Production Data 

H    =  Matrix Operator 

I    =  Identity Matrix 

Ne    =  Number Of Realizations 

Q    =  Oil Production Rate 

cSOR    =  Cumulative Steam-Oil Ratio 

T    =  Temperature Observations 
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2D    =   two-dimensional  

3D     =  three-dimensional  

CMG    =   Computer Modelling Group Ltd  

COP    =  Cumulative Oil Production  

EKF    =   Extended Kalman Filter  

EnKF     =  Ensemble Kalman Filter  

GSLib software  =  Geostatistical Software Library  

KF    =   Kalman Filter  

MATLAB software  =   Matrix Laboratory  

MCS    =   Monte Carlo Simulation  

MSD    =  Mean Standard Deviation  

PVT    =  Pressure-Volume-Temperature 

 RMSE   =   Root Mean Squared Error  

RSE    =  Root Squared Error  

SAGD    =  Steam Assisted Gravity Drainage  

SD    = Standard Deviation  

SGS    =  Sequential Gaussian Simulation  

SIS    =  Sequential Indicator Simulation  

STARS software =  Steam, Thermal, and Advanced Processes 

Reservoir Simulator  

Superscript 

1,2,3…   =  Ensemble Number 

P    =  Predicted 

j    =  Ensemble Member 
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a    =  Analyzed 

T    =  Transpose 

Subscript 

k    =  Time Step 

obs    =  Observed 
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