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iAbvstr.act

This worl\ 1s prlmarlly concerned with the numerical mvestl;gatlon of frazil ice crvstall
growth in a supercooled body of water. The major aspect of thls study focuses on the
appllcatlon of the “Bourfdary Fitted Coordinate” method for the solutlon of crystal
growth problems and explores the validity of the solution obtained in a quiescent melt
- of infinite extent. Of particular 1mportance in this study is the examination. of c-axis
growth rates of the ice particle. Earlier investigators have almost always assumed
that growth perpendic¢ular to the basal plane can be ignored because it is significantl ly”

smaller i In comparison -to the a~aXis growth rate. The results of this study however

v

/

" indicate that although crystal thickening rates at moderate supercoolmg values may

be small, the net effect over a sufficiently large tlme span is mdeed srgmﬁcant so that

-ignoring it would lead to an overestlmate of rad,lal growth rates.

The mﬂuence of fluid turbulence on. crystal growth is considered by employing the

concept of a thin stagnant film of fluid surrounding the crystal The major outcorne is

xncreased heat transfer rates to the surroundmg llqurd region: Comparlson of growth -

rates whlch are calculated on using this method were found to be considerably larger
than results from a prev1ous study using empirical heat transfer data. ThlS difference
of growth rate magnltudes demonstrates the presencé of existing ﬂaws in the more
traditional methods of calculation. An important outcome of this study is the need
for more rigorous experiemntal worl\ together w1th a more precrse measurement of

turbulence parameters.
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Chapter 1

INTRODUCTION

[

Generally in a quiescent body of water, both the supercooling and hence the
ice formation take piace on its surface and consequently result in a more or less
continuous ice cover. The presence of turbulence, on the other hand,_ leads to a
thick supercooled layer in which ice may form. Due to the mixin‘g and agitation
of the water surface, the creat'ion of a monolithic ice sheet on the water surface is
prevented. Instead, thé existing ice crystals are broug‘htvdown-to lower layers where
they can grow and interact with each other. This interaction forms the basis of
additional frazil production and is probably the most significant factor responsible
for the commonly observed large accumulation of ice crystals. Frazil ice is almost
always formed in turbulent, supercooled bodies of water and appears aLs fine spiculer
plate or discoid crystals‘:,distributed throughout the volume of water. Under certain
cpnditions, these cryspalé can stick to underwater objects such as vegetation along the
river bottom and to each other, thereby, becominé either ice floes or the water surface
or anchor ice on the riv{;r basin. The nucleation and growth of frazil ice crystals in
northern rivers and lakes has a tremendous négative imp’act on man’s aétivi,ties in

cold climate regions. The adverse engineering problems associated with frazil include

“ the blockage of water supply intakes, hydroelectric plant intakes and of irrigation and

water supply canals. Frazil ice is also responsible for the formation of ice jams which

cap block an entire river cross-section and often causes extensive flood damage during

the spring thaw period.’

A]though.frglzil causes considerable damage every year in regions in the northern
hemisphere, the amount of information available about it is usually quite general

and limiied in scope. Existing research has been fragmentary and has concentrated



2

primarily‘on.describing the nucleation, formation a;nd subsequent production of ffazil ‘
ice crystals through observations in the.field: and -limited experimentation in the
Iaboratory. Although this research is quite useful and acts as a helpfﬁl ‘base for
alditional work by itself, it%leaves huge gaps and lacks significant detail s0 that
several important questions still remained unanswered The rather slow developinent
of theor tical and numeical work#for the realistic prediction and modelling of frazil

grow:h plicnomenon is mainly due to this lack of quantitative experimental analysis.

Pre. 'ou= analytical studies on the growth rates 6f,frazil ice cr&stals have generally
made several simplifying assumptions, which have resulted in inaccurate growth rates
and crystal size predictions. Two such assumptions in particular have been to neglect
the growth rate of the ice crystal in the c-axis directvion and to treat the ice crystal
as an isothermal particle. Usually at the low supercoolings associated with.fr;zil
growth, c-axis grox;v'ﬁh rates may indeed appear to be negligi'ble in quiescent water.
_ Howevér, this may not necessarily be true in turbulent, supercoéled bodies of water.
Although the c- axis growth rate is generally considerably smaller than the a- axis
growth rate of the crystal by an order of magnitude and appears to be insignificant,
it may still have some effect on the radial extent of the crystal over a period of time.

The effects of turbulence have also not been effectively incorporated into available

andlytical solutions of frazil gbrowth problems.

’Facfors such as fhese form the motivation to develop an improved model to predict
the‘growth behaviour of fraéil ice crystals ‘under more realistic conditions. In. this
thesis, we first develop the background physics and mathematics needed to ‘describe
~ the growth behaviou’r‘of)a frazil ice crystal in a quiéscent body of xvater.;Thié is
later extended to include the qualitétive effects of turbulence. The validity of these
results is then verified by comparing them with available empirical methods. In order

to effectively employ this technique for the prediction of frazil growth behaviour and



\
to apply it to existing frazil ,ice interaction models, the calculated results must be =
verrﬁed more rigorously with further experlmentatlon An outline of the development

of this thesis proceeds in the followmg order.
r

The remainder of this chapter presents background material for crystal growtl v
prbcesses and reviews the avallable llterature on frazil .ice. and crystall1zat10n '
'me hamsms A literature review of available analytlcal solutlons related- to fraznl,
crystals is also presented mcludrhg a brlef review of recedt numerrcal developments

in 1ce growth problems

Chapter 2 deals wrth the governing equaﬁxons and boundary conditions descrlbmg“
~the growth of a frazrl ice. crystal Slmpllﬁcatlons due to geometr1cal and physxcal(
- assurnptions are made in order to reduce some of the complexmes i1t the equations.
~ Later, the “Boundary Fitted Coordmates scheme together with its apphcatlon to

the solution of the frazil growth problem is dcscrlbed in some detail.

ln Chapter 3, the growth of a frazil ice crystal submerged ina. quxescent hqurd-

s exammed The valldlty of the numerlcal scheme is Ve

' 3 comparmg it w1th '
an analytical’ solution for a 51mpllﬁed case. In addxtlon the Justlﬁcatxon of a quasi-
steady state growth assumpt1on 1s mvestrgated Fmally, the traditional assumptxon of
negligible c-axis growth rates are examined along with its effect on the radlal growth

PN

of the cry stal

Growth of a frazil crystal suspended in a turbulent,-supercooled fluid is examined
in Chapter 4. It is known that the major effect of turbulence results in increased

heat transfer rates to the liquid phase. This fact can effectively be mcorporated mto

the model developed in Chapter 4 by assummg that the entlre volume of fluid (m-' o

-~ which the crystal 1s suspended) is well mixed and hence, at a uniform temperature,
- except for a thin conductive layer surroundlﬁg the crystal. By i 1ncreasmg or decreasmg

the conductive thickness layer, the level of turbulence can be respectively decreased



or increased. These results obtained are verified by comparison with an existing
simplified frazil growth model.which is based on empirical turbulent heat transfer

data. The correctness of the results is further checked by modelling t'he.growth
behaviour of a collection of crystals subject to the typical ing trends exhibitedA

during the initiation and development of frazil in bodies of w: r and comparing sizes

predicted with existing experimental and field data.

Conclusions and recommendations for additional studies are outlined in the final
chapter. In particular, the need for mc . -ic-rous experimental work consistent with.
parameters used in the numerical study is emphasized Also, more detailed studies
on the effects of turbulence intensity and its correlation with the conduct1v1ty layer
thlcl\ness are needed. Thus, frazil growth rates under more realistic conditions can>

“be determined for use in a frazil crystal dynamics model [18] which can then be used

for more comprehensive studies in river icing and hydrology problems.

1.1 BACKGROUND AND LITERATURE REVIEW
” /

1.1.1 FORMATION AND GROWTH OF FRAZIL ICE IN BODIES OF
| WATER

!
Nucleation is the m1t1at10n of the transformatlon of an unstable phase to a

| more stable dne. When liquid water is lowered below its freezmg pomt it becomes
" thermodynamically metastable and will begin to change phase when the temperature
~is lowered below a certain value known as the nucleation temperature. Figure 1.1
schematically illustrates the freezing process. Sensible heat is removed from the
liquid until it is’ cooled past its melting point T, to its nucleation temperature
T.. At this point, transition to the sohd phase begins. The. process'oc'c.urring

between states A .and B, and between states B and C is called crystal growth and

&



1
1
1
t
'
1
1
1
t
1
1
[}
1
]
'
1
]
t
1
]
1
t
1
1
]
1
1
1
1
1

t
'
1
1
1
il
i
1
1
i
)
1
e
1
I
1
1
i
1
t
1
1

LIQUID CRYSTAL + /% CRYSTAL
LIQUID
»

TIME —

Figure 1.1: Freezing process for water (from Knight [44])
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is characterized by the latent heat release resulting from the phase transition. The

temperature of the liquid water b--low its melting temperature is termed supercooling

or undercooling. All liquids require supercooling before solidiﬁcation can take place.

For pure water, Hobbs [36] reports a supercoolinbg of 40 °C for freezing to o« ur
(homogeneous nucleation). The presence of impurities in the liquid acts to lower the

supercooling required for nucleation (heterggeneous nucleation).

Frazil ice crystals are almost always formed in slightly supercooled, turbulent
bodies of water. Explaining the source of initi‘al frazil crystals has been the object
of several research investigations. Normally, frazil crystals have been observed where
the supercooling of the water has been less than 0.05 °C [60]. Consequently, the
homogenéousmucleation of ice particles is r t physically possible. Altberg [1] and
Devik [20] proposed that initial ice nuclei formed by. spontaneous heterogeneous
nucleation. Hevover, examination of the nucleation témperatures of water with
various organic and inorganic matérials present indicate that a minimum supercooling

of 1.3 °C is required [75] .

Michel [54] suggested thai = ontaneous heterogeneous nucleation occurs in a thin
layer of highly supercooled water on the surface. This excess supercooling was

thought to occur due to an enhanced heat loss into the atmosphere alorﬁg the water

~ surface. Later, this theory was refuted by Osterkamp [61] who showed that the -water

surface temperature supercooling was well above the nucleation temperatures of any
impurities prczf,srent. Hanley [32] presented a ther‘modynamic.al argument proving that

the only matetial capable of providing nucleation sites for subsequent frazil growth at

supercoolings of the order 0.05 °C is ice itself. Thus it can be concluded that initial .

seed crystals are required for the initiation and production of ¥ -zil ice crystals. The

obvious question is how the water surface is seeded.

Osterkamp [61] proposed that highly supercooled ice crystals in the cold
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atmosphere, resultirlg from ice fog, water spray, or snow, rain down upon thel
water surface provrdu‘lg the 1n1t1al ice nucle: requlred for frazil ice to form and

grow. Alternatively, Tsang [75] suggested that hlghly cooled dust particles in the -
cold atmosphere fall to the water surface and cool the water in immediate contact
- with them to a degree where heterogeneous nucleation of ice partlcles is p0551ble

Both 'hese processes descrlbed above are referred to as atmospheric seeding and

appear to adequately explarn the presence of initial ice nuclei at relatively low
water supercoolings. The number of seed crystals deposited on the water surface
undoubtedly influence ensuing frazil productlon and is highly dependent on the
atrnospheric' meteorological conditions. The relation between these two parameters

however has not been studied in great détail.
po N o o ,
The necessity of seed crystals for frazil ice production is further supported by

“observations in turbulence jars or industrial crystallizers. Mueller (57 conducted.
. experiments for frazil ice f)rmatlon in a turhulence jar with the level of supercoolmg
rangmg'between 0.05 °C and 0.30 °C. His experiments revealed that regardless of the
degree of supercoollng, the turbulence intensity or the presence of foreign materials

in the water, no frazil ice formed unless the water was seeded with initial ice nuclei.

Other experimental studies conducted by Garbabedian and Strickland-Constable [29]

and Ettema et al. [21] report similar results.

Osterkamp [60] notes that although the turbulence intensity does not affect initial .
nucleation of frazil crystals, the enhanced heat transfer it provides strongly affects
the growth rates of the individual crystals. Also, (‘:ollision breeding of ice crystals
is greatly enhanced by the presence of turbulence As initially deposited i 1ce nuclel
grow on.the water surfdce, they are transported to lower depths by water agitation
arising from the flow turbulence. Formation of ;L monolithic ice layer on the water

-

surface it prevented by the water turbulence. The subsequent growth and interaction
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then leads to collisions between the larger crystals and produces extremely small bits

and fragments which act as additional ice nuclei. This process, known as secondary

nucLeatlon was stated by Daley (18] “to be the single most important mechanism for

4
i

fra21l production in lal\es rivers and industrial crystallizers”.

-

Gérbabedian and Strickland- Constable [29] conducted experiments to check the
effect of secondary nucleation for enha.ncmg crystal production. Their experimental
apparatus consisted of a chunk of ice contained in an enclosed jar filled with
: supercooled water. The fluid was stirred at various rates by a motor driven impelter
to geneqate turbulence. They concluded from their studies that in the stirred pure
liquid, tl‘lye collision of the%large ice crystal with the vessel walls resulted in }_iigh rates
of nuoleaﬁion. The also observed that higher rates of E@:irring‘ led to a larger number
of ice nucfei being formed. Experimental studies by Ettema et al. [21] yielded similar
results. Tileir experimental apparatus consisted of a vessel containing water which
could be sgpercooled and maintained at a constant temperature by means of cooling
coiis. Turrbglence in the jar was generated by means of an oscillating grid whose
oscillation frequency ranged from lg cycles/second to 110 cycles/second. The study
revealed that““although higher turbulence intensities result in highep frazil production,
the rate of frazil production was more pronounced for lower water s&bercoolings. Thus
second” - nucleation rates were found to depend on ‘the three factors— turbulence
level, " rystal size distribution and the degégg; supercooling.

\ .
The importance of secondary nucleation in frazil ice production has also been

observed in the‘\‘ﬁeld. The sequence of events during frazil ice formation in the fast
. flowing turbulen\p‘ body of water, the Niagara river, are described in detail by Arden -
and Wigle [6] an:ﬂ illustrated schematically in Figure 1.2. Frazil formation occurred
in the river durm\g cold clear nights when the atmospheric meteorologlcal condltlons '

- were sufficient to dlsSIpa.te the heat content stored in the river. Arden and Wigle



reported frazil nucleation on the water surface when the mean temperature of the
river was +03 °C. Crystals on the surface were observed to grow as the river was
further cooled to a temperature of —0.05 °C and eventually were submerged to lower
depths by the turbulent eddies. Coolirrg of the river progressed from the surface to
the bottem and during a period of < Hui . one hour they reported that the top 2 m
to 3 m of the river became supetrcooled while the remaining depth of 5mto 7 m-
remained slightly above freezing. During this period frazil was observed only in the
top s.upercooled layer. Frazil was reported to exist at all depths as the entire river

eventually became superco.oled‘. The majority of the ice crystals observed during

this sequence were disc shaped with very few 1rregular shaped crystals. The high .,

frazil production rates developed into “} driving snow- storm such as can be seen‘
through the headlight beams of a moving automoblle at night” when vrewéd,;‘rmder
apljght source [6]. Crystals colliding into each other eventually sintered togetlrer and
agglomerated into ice flocs which eventually floated to the surfacé and formed large

floes of slush ice. -

The corresponding water temperature behaviour during frazil formation has been
studied by Michel [55] and Carstens {15].. A typical sequence of water temperatures
leading to and during frazil formation is shown in Figure 1.3. The water is cooled by
heat loss to the cold ambient surroundings‘ causing the temperature to drop linearly
to a value just slightly below the equilibrium temperature' T.. At a temperature a
few hundredths of a degree below the freezmg temperature T,,, small ice partlcles
invisible unless magnified, can be detected These partrcles grow larger in size and
interact producing additional crystals as explained before. This increased production
however results in a decreased cooling rate of the water. When the water reaches
its maximum supercooling ATnaz, the temperature slowly increases due to the latent

heat relesse from the multitude of growing crystals.. This temperature rise in the



TEMPERATURE

AGGLUTINATiON, SINTERING AGGLOMERATION OF FRAZIL AGGLOMERATION OF FLOCS

NUCLEATION OF FRAZIL-ICE DISKS ICE TO FLOCS TO PANS AND SLUSH
Q 2 hvj
. . . hd a = hd -
. e .t o PN N - - -
R o e e . o o &
. . . . SN 'Y a
. . * & .
* |[SUPERCOOLED o o &
« WATER o - w
©
- . £

ANCHOR ICE

Figure 1.2: Sequence of events during formation of frazil

10

TIME



11

water continues until a he?t balanc¢e between the latent heat released by the growing
~crystals is balanced by the heat loss from the water surface. At t@ point, the
water temperature asymptotically approaches a constant temperature T,, termed the
residual supercooling. The value of T was found to depend on the hydrometeorlogical
éonditions under which frazil is formed. The values T, T,.. and T, for\natural
lakes and rivers have not been well documented. as it is difficult to measmxe\ under
variable field conditions. Hanle‘y‘[S‘Z], Carstens [15] and Michel [55] noted however
that the maximum supercooling could be as low as 0.10 °C and frazil ice nucleation

was observed to occur at a supercooling not less than 0.02 °C.

An excellent review of frazil and anchor ice formations in northern lakes and fivers
is given by Tsang-[75]. He provides a thorough, concise description of nucleation
mechanisms, sources of heat loss from fhe perspective of ‘an overall thermal energy
balance of natural bodies of water. Also contained in this manuscript are several

cases of hydraulic problems associated with frazil and anchor ice growth.

1.1.2 GROWTH AND MORPHOLOGY OF FRAZIL ICE CRYSTALS

An understanding of crysta{growth mechanisms and ice morphology is important
in the study of frazil evolution in turbulent bodies of water. The major role of crystal
growth mechanisms is to influence the morphology of ice particles, their resulting
size and ultimately their number concentration. .Once the water has been seeded,
as described in the previous section, the rate at which new crystals form depends
strongly on the number of available crystals and their respective sizes. In order to
understand the dependence of these parameters on crystal growth rates, we shall
examine the growth mechanisms of frazil ice crystals and discuss their influence on

ice morphology.
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An ice crystal immersed in a pure supercooled melt will grow only if the difference
in free energy between the liquid and solid phase is positive and increases with distance
from the solid-liquid interface. The two principal f&ctors which' control the growth*
rates of ice crystals are the rate of transport of latent heat from the growiﬁg surface
and the rate of atomic deposition on the solid- pl?ase. The magnitude of these two
parameters dependé on the .najo- driving force, the overall temperature difference
AT. A frazil ice crystal has t .6 distinct growth mechanisms which give rise to the
commonly observed disc like morphology. Growth in the radial and axial directions is
dictated by two different growth mechanisms. Experimental observations have shown
that radial growth proceeds much more rapidly than axial gp‘owth since the thickness
to diameter ratio is reported to be approximately 0.02 [61]. Before proceeding further
in discussing the characteristics of frazil growth mechanisms, it 15 ﬁrst necessary to
introduce some terminology associated .with crystal growth and brleﬂv discuss the

¢
physics of crystalllzatlon '

The two principal growth directions observed in jce crystal growth arise due to
the atomic rearrangement of a wager molecule during solidification and its subséqueﬁt _
bonding w1th adjacent molecules. A unit cell of an ice crystal is hexagonal in shape,
as shown in Figure 1.4, from which its two principal growth dlrectlons are readily
seen. The hexagonal axis of the cell is referred to as the c- axis and the three axes
(120° from each other) perpendicular to it are termed the a- axes. The top surface of
‘the hexagonal prism is referred to as the basal plane, which is perpendicular to the
c-axis. The existence of these twe major growth directions can be verified from the
'optiéal prgperties of an ice crystal. The unit ice cell consists of twelve oxygen atoms
bonded to each other with hydrogen atoms in which the oxygejl atoms lie in layers.
The hydrogen atoms, on the other hand, are alternatively {z'a,lsed and lowered. Also
water molecules in adjacent layers have the hydrogen atoméghentated in opposing

\.
¥
,
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Figure 1.4: A unit cell of an ice crystal (from Kallungal [41])

directioﬁs resulting in the shared hydrogen atoms to be closer to one ‘oxygén atom
than the other. For growth of the crystal to occur in the c-axis direction, six hydrogen-
oxvgen bonds are féquired compared to four in each of the a-axis directions. Since
crystal growth is more likely to proceed where the fe‘west number of molecular bonds
are required for a stable arrangement, growth in the a-axis direction will proceed at

a more rapid rate compared with the c- axis direction.

A theory characterizing the roughness of a solid-liquid interface was proposed by
Jackson [38], [39] based on the minimum free energy condition of the system. He
’. R .

defines the par'an-ieter ap, given by

el
- . . (L)
gim T

ap

where ¢ is the fraction of the total binding energy of an atom that can be associated

4
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with an atomic layer parallel to the face under consideration and R, is the universal
gas constant. Jackson concluded that a crystald face for which a, > 2 will be smooth
while the one with o, < 2 will correspond to rough crystal face. The kinetics for
a smooth crystal face are more likely to be so slow that it will control the crystal
growth rate so that the crystal will grow with large, ﬂat%%?s In a stepwise fashion.
Conversely, for atomically rough crystal faces, the kinetics are rapid enough so that
the surface grows in a smooth, continuous manner indicating that some factors at
the macroscopic level actually limit the growth rate. Fujioka [28] has shown that
the values of o, for ice in the a- and c-axes directions are 0.88 and 2.64 respectively.
~Therefore for frazil ice crystals, the interface in the radial-direction is rough and
parallel to the a-axis This lmphes that growth in this direction Is very rapid
and dominated by macroscoplc factors such as heat diffusion. The crvstal surface
perpendicular to the c-axis is smooth and therefore growth proceeds very slowly

indicating that it is controlled by the interfacial kinetics.

Growth mechanisms important for frazil ice crystal growth fall into two major

categories described below:

: Continuous Growth: A solid-liquid crystal igfterface may be rough at a molecular
h scale due to certain conditions. Water molecules can then easily attach
themselves at random sites on the rough surface quite rapidly, resolting in a
.continu‘ous growth nermal to the surface. The rate at which the surface grows

1s postulated to be of the form

hd

Vo = mAT (1.2)

where y; is a constant.
.

Surface Nucleation: A perfectly smooth crystal surface grows by the consecutive

nucleation of thin monolayers spreading across the flat crystal face. For growth
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to occur, a stable island must be nucleated on the growmg surface (Figure 1.9)
which spreads across covering the crystal face mstantaneously The general

form for this growth mechanism can be shown to be
Vi, = pre’?/8Tx (1.3)

where V;, is the growth velocity of the surface, #1 and po are constants, and

ATy s the interfacial supercooling.

+

The interface kinetics for a frazil ice crystal are of type 1 in the a-axis direction and
of type 2 in the c-axis direction. In theliterature, both these growth mechanisms have
been investigated theoretically and experimentally resulting in a large accumulation

of references. Many of these studies however, arose as a consequence of desalination

research where more emphasis was placed on the effect of dissolved impurities upon .

growth in the two principal dlrectlons rather than upon a detailed analysis of the
growth mechanism itself. Several studies have been conducted for the measurement
«nd prediction of a-axis and c-axis growth rates. Most notable are the works of
Hillig [35], Sperry [53] and Simpsbfl (68]. Hillig and Sperry grew ice crystals orientated
in the c-axis direction inside capillary tubes. The capillary tubes were cooled by
being immersed in a cooled bath. Simpson, on the other hand measured growth
rates of free, unconfined crystals. Hillig’s (H(1) in ‘Figufe 1.5) and Sperry’s results
are similar at supercoolings Iess.than 0.05 °C as seen in Figure 1.5. For higher
values of supercooling, Hillig’s relation gives significantly higher c-axis growth ratés
than doe‘s Sperry’s. This is due to Hillig’s failure to “considerfhe heat tran_sfef

resistance of the cgoling water boundary layer on the outside wall of the capillary

tube” {53] in the heat dissipation analysis to determine the true interface temperature.,

Consequently, Hillig’s relation as a function of the actual interface supercdo‘ling differs

from Sperry’s relation which accounts for these additional thermal resistances. It is
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noteworthy to mention that Hillig’s experimental results, which are a function of the
overall supercoohng AT, are almost identical to Sperry’s re@lts when the interface
temperature correction has been taken into account. ThereEore, we may use Hillig’s
- experimentally-obtained coefficients (H(2)) in the surface nucleation model (1.3) to
estimate c-axis growth rates for crystals when AT is less than 0.20 °C in place
of Sperry’s relation which is in a form not sﬁitable for numerical implementation.
A comparison of Simpson’s results with those of Hillig and Spervry‘ shows that the
uriconfined growth rates are approximately of an order of magnitude lower than
those of the conﬁnevd growth cases. Despite the lack of agreement betﬁ‘een the two_
techniques, both indicate that growth perpendicular to the basal plane prdceeds by
surface nucleation. It can be shown that the rate of growth by two dimensional
surface nuc]eatlon (see Appendix A for derivation of this expreSSJOn and definition of

¢l symbols) is given by .
Ve = nAdpe™4Fmas/SRT, N Y

The ‘semi-empirical relations for c-axis growth determined by Hillig, Sperry and

Simpson are given in Table 1.1. - Y

Growth rate-s‘parallel to- the basal plane have been measured by several
' investigators such as Fletcher [23] Hobbs [36], Kallungal [42] and Fernandez [22].
They report growth rates described by the relation '

V. = A(AT)™ N (1-5)‘

where the value of m is approx1mately umty for a continuous growth mechanism.
However the coefficient m was found to vary between 1.3 to 2.2 mdlcatmg that
another type of growth mechanism was dominant. Nevertheless they concluded that
the interface kmetlcs in the a-axis direction are very rapld and did not limit the %

growth rate. Instea.d growth is controlled by the rate of latent heat dlSSlpatlon from
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REFERENCE

GROWTH MODEL

f © H2

HILLIG (1) | V.= pje-#/ATe 3.0x107°° | 0.35
HILLIG (2) | V= pyes/aT 3.2 x 10~ 0.246
SPERRY V. = AT 1.024 x 10° 2.0

' (AT, <0.0629 °C)
2.524 x 104 10.0
< (AT, > 0.0629 °C) |

" SIMPSON V.= pye-ta/aT 1.734 x 1076 | 0.234

Ly
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Table 1.1: Values used for constants for empirical surface nucleation growth mo'-ls -
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Solid

Figure 1.6: Temperature variation near the tip of a growing ice crystal

the interface. The rate of latent heat transfer iﬁsQLf can be affected by ,severalA factors
such as the temperature difference, the interface curvature, turbulence intensity in

the liquid and the presence of impurities in tlhebliquid.

S

The major driving force for crystal grO\\;th in a supercooled melt is the overall
supercooling AT given by _
| “ CAT=T,-T, | )
where T, Is the melting fe.mperatur'e of the pure liquid and T.. is-the mean bulk
temperature of the liquid far from the growing surface. Figure 1.6 shows the variation
typically found in the supercooied liﬁuid into wh{ch the crystal is growing. For pure

water, the total supercooling AT is made up of three distinct temperature differences

AT = AT, + AT, + AT, o (1.7)"

L
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where
AT, - T, —T. (1.8)
AT, =T, - T, (1.9)4
ATy =T, - T, o (1.10)

Each of these temperature differences is used up by the three resistances to crvstal
growth The first of these resistances is due to the interface curvature which acts to
decrease the thermodynamlc equxhbmum temperature Tn. The second is a result of
‘the intrinsic kinetics (rate of atomic deposition) which depresses the: crystal surface
‘temperature from T¢ to T;. The magnitude of this undercooling (AT) depends on .
the growth mechamsm of the crystal. The remaining portion of the total driving force

is used up for the ! rlsfer of heat away from the crystal face.

The temperature required to overcome the resistance to surface curvature is gnen
' by th Glbbs Thompson relation

AT.=T,-T, = 7/’)‘52 <R1+Ri2)_? L aay
W. :re vy is the ice-water surface free energy, p, is the der;situ no'f ice and L is the
latent heat of fusion. The quantities R; and R, are the pr1nc1pal radii at any point -
on the interface (see lixgure 1.7) . Frazil ice crystal mterfaces in the a-axis dlrectlon
are generally assumed to be flat (1e R, — ) so: lhat l/Rg can be neglected. It can ,
be seen from Equation (1.11) that the resistance due to curvature will be quite large,
for very small crystal sizes, resulting in no growth or possibly melting. The size at

Wthh this w111 occur is'termed the critical radius (R.) and can be shown to be e

, T
R°’:p7}l,AT - (119

Flgure 1.8 shows the variation of the Hembholtz free energy as fUIlCtIOIl of the crystal

radius. The crystal will only grow for sizes greater than R, since a maximum value



21

TOP

PLANE 4, [

Figure 1.7: The two principal radii of curvature for a frazil ice crystal. The
crystal is considered flat edged when R, is very large (R; — o0)

occurs at 7 = R, indicating an unstable equilibrium. The dependenée of R., on
:the supercooling AT is shown in Figure 1.9. As the supercooling increases, -the
minimum crystal radius fequired for growth correspondingly decreases. Consequently
at relatively low supercoolings, larger ice particles are required for sustainéd growth
compared to high supercoolings. The influence of dissolved impurities in the melt has
the effect of depressing the freezing temperature of water and can be © ~orporated into
the expression for R., and AT, but will not be considered in_ the course of this study
The temperature difference ATy is the reduction in the crystal surface temperature
~due to its growth kinetics. The mixgmtude of AT} depends on the type of growth

mechanism along a crystal face. This in turn’ depends on the orientation of the a-
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and c-axes.

The dominant shape of ice crystals observed in bodies of water such as lakes,
rivers and industrial crystallizers is disc shaped. Ice crystals appear in natural lakes
and rivers in an assortment of shapes and sizes ranging from spicules and discs to

ulti-branched dendrites. Field observatiéns by several investigators indicate that the
most common fra21l 1ce morphology is disc-shaped and that in natural water bodies
ice nuclei resultmg from initial seeding or secondar) nucleation eventually evolve
into the disc 'shape regardless of the initial geometry. Arden and Wigle [6] report,
that crystal shapes at the onset Q_f frazil production are irregular “like thin pieces of
broken glass” and gradually assumié a discoid shape after a period of a few hours.
These ice crystals continue to grow as discs untll they reach a certain size after which '
the disc boundary becomes jagged and 1rregular eventually developlng into dendritic
growth at the edges. The fact that a disc morphology is observed, supports the idea
that the disc shape is a result of the strong anisotropy in interfacial growth kinetics.
This fact is supported by the observationAthat the low levels of supercooling (usually
AT < 0.15 °C [60]) normally associated with frazil growth lead to c-axis growth rates

which are approximately an order of magnitude lower than a- axis growth rates.

The shape of an ice crystal and its size greatly influence the heat trans;fer'
characteristics from the crystal. This in turn has an important effect on the resulting
growth rate. The factors causing this seem to bé due to an interaction of the heat
transfer requirements of the crystal and its mterface kinetics. This can be thought of
in the followmg manner. As the crystal grows Iarger in size, the rate. of latent heat
released along its phase boundary increases. In order to better d1551pate this heat
energy, the crystal boundary edge develops protuberances and becomes tapered and
irregular to better dissipate the increased latent heat. Tsdng [75] wEites that when the

number of nuclei are large and the ambient water temperature is relatively warm, the
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rate of heat dissipation by each crystal is low and the crystals can continue _growihg as
discoids. However, at a high degree of supercooling and with a low number of initial
" nuclei, the rate of heat dissipatioﬁ by each crystal will be high resulting,in a spicule
or needle shape in order to better diffuse the high rate of latent heat liberated. The
spicule shape essentially yields a higher surface area to volume ratio as compared to

the discoid shape.

Morphological instability limits the m;aximum‘diameter of frazil crystals to about 8
mm. Osterkamp [60] reports that frazil crystals maintain their disc form for diameters
up to 5 mm with diameter to thickness ratios from 5 to 100. Other studies [57]
report frazil crystal diameters on the average of 1 mm with ‘:‘maximum thicknesses
' . of approximately one third the diameter. A classical experiment exhibiting the |
growth behaviour of ice discs growing in slightly supercooled water was conducted by
_Arakawa [4]. He introduced small ice particles approximately 0.01 mm in diameter

into the bottom of a container containing water supercooled to -0.30 °C. On rising to
the surface, the crystals asguflrlled a disc morphology and continued growing as discs
until they reached diameters ranging from 0.50 mm to 3.0 mm. The thicknesses of the
discs were estimated to be between 0.005 mm and 0.60 mm. Upon reaching a critical
size, (different from ‘the thermodynamical critical size R.) the crystal morphology
becan%e unstable and began to develop a jagged i.rregular disc perirmeter. Figure 1.10
p.ictorially depicts Arakawa’s visual observations. %\.
|
1.2 ANALYTICAL  AND NUMERICAL INVES-
TIGATIONS OF ICE GROWTH |

Although a great deal of experimental work on the nucleation and evolution of ice

.crystals has been done and the growth mechanisms involved have been investigated,
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Figure 1.10:  Growth sequence of a disc crystal (from Arakawa [3]). Note the
- morphological instabil‘ity.at the large disc diameters.
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very little work is available on the theoretical study of frazil ice crystal growth.
Limited theoretical models for the growth of disc shaped crystals have been developed
by a small number of individuals and will be discussed in this section. Some numerical
studies on“{ce growth problems will also be reviewed. The main purpose here is to
evaluate the methodology and relative simplicity of populdr mlmerlc;al schemes for
~ application to this particular research. The literature reported will be divided into
two categories. The first section will report previous theoretical studies related to
frazil crystal growth and the second section will investigate numerical:studies of ice

growth problems.

1.2.1 THEORETICAL INVESTIGATIONS

The theoretical determmatlon of ice crxstal growth rates falls into the general
c17351ﬁcat10n of “phase change” or “Stefan problems The primary difficulty involved
in determining an analytical solution is the nonlinear boundary condition at the solid-
]ivquid interface. This nonlinearity arises from the unknown position of the moving
interface. Therefore,'~it is usually necessary to make simplifying aséumptions in order

to obtain a solution. Theoretical studies for determining the growth rates of disc

crystals were conducted by Mason, Williamson, Avignon and Fujioka. In order to

objain a solution, all these studies involved making some simplifying assumptiofs.

Mason [50] developed a simplified mathematical model for an ice disc growing
" in a supercooled, quiescent liquid of infinite extent. He assumed that the thermal
conductivity of ice was infinite and that the disc was of infinitesimal thi‘ckness. B_y
virtue of these assu'mptions; it is implied that the ice disc is entirely isothermal and

that the temperaturé varies only in the liquid region. The resulting growth rate of

' . -



the disc in the radial directiovn was determined to be

dR 4k ,
o= %AT : (1.13)

(where £; is the thermal conductivity of the supercooled water and L is the latent heat
~of fusion) by assuming that the total heat produced at the edge interface was released
at the upper and lower basal plane surfaces. Also, for this part of the calcglation only,

a finite thlcl\ness h is a351gned to the disc.

Williamson (77] determined an expression for the growth rate bf an unperturbed
ice disc which arose indirectly, as a consequence of his studies on Ithe stability of ice
discs.  Williamson assumed that the disc would grow like a spherical particle. His
| Justlﬁcatxon for this was that growth in the c- axis direction would pre* i the radial

growth of the disc resulting in a spherical temperature distribution around the disc.

3
The edgewise growth rate was then calculated to be
dR K
P ZEAT ‘ (F.14)

which is much smaller than actual growth rates and those obtained from Mason’s

model].

Like W'illiamson Avignon’s [7] growth rates for ice discs’ also arase as a result of
his model for the morphologlcal stability of a disc shaped nucleus. His model is based
~on the analysis of the two dimensional growth of a nucleus attached to a substrate.
He assumes that heat transfer by convection occurs between a thin 1nﬁmte51mal layer
on the basal plane of the disc and the ajr above it. Heat conduction only, occurred i n.
this thin layer where the temperature dlstrlbutlon in the layer above the SOlld phase
was satisfied by

kT =T, -
VAT, = fe e o
ko

(1.15) . .
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and in the layer above the liquid phase by

- kT, —T
V2T, = ~e it Lo
YT kR

(1.16)

where T, is the temperature of the ambient air and k&, is its thermal conductivity;
h is the thickneés of the disc and d is the thickness of the conductivity layer. The
temperature gradien£ in the direction perpendicular to the water surface was assumed -
to be negligibly small. Thus, all the heat released at the ‘growing edge was diffused
through this thin layer and the calculated temperature distribution in the layer was
a function of the radial position only. As Avignon did not derive the growth rate of.
an unperturbed ice disc, Fujioka [28] solved Equation (1.15) _énd (1.16) above and

determined an expression for the anpertufbed growth rate given by

dR AT (1_ Rc,> < L(X,) 1\'1(X,)>

dt L R \PTx,) T HRX,) (1.17)
where 7 |
. ks.lka
Hsl = }ld
and
ke r
Ty = ——
7\ ket Vid
kq
X, = i

k. /hd

R., 1s the critical radius of nucleation and the functions /,, I;, K, and K, are modified
Bessel functions of brdér 0 and 1 respectively. For large values of thermal conductivity
of the air such that k,; is much larger than k, and by the further assumption that
the conduct1v1ty of the sohd layer 1s approximately four times the conductivity of the
liquid layer, the expression for the gr wth rate simplifies to

dR _ 3AT [kk,
dt ~ L \ hd

(1.18)
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Unlike Williamson and Avignon, Fujioka and Sekerka [27] devéloped a model to
determine the unperturbed growth of a disc shaped crystal. They considered growth
of a submerged disc in a quiescent, undercooled bath and assumed that growth in
the c-axis direction was small enough to be considered negligible. Hence, the di‘sc
refnained a finite constant thickness h.  Also, they assumed that the temperature
field was not explicitly a function of time; thus a quasi-steady étate__a_pproximati_on
was used. Their justification for this was that since the growth rate.of the crystal
edge is so small (on the order of 1075 m/s), the change in position of the solid liquid
interface over a shori discrete time step would be negligible. It should be noted that
this assumption would be valia when the crystal is relatively large in size and the
growth rate is quite small. The applicability of the quasi-steady state approximation

will be examined in more detail in the next chapter.

Fujioka and Sekerka further assumed that the thermal conductivity remained
constant and was ‘equal to that of water for the entire solution domain. The growth

rate of the disc at its centerline was determined to be

dR kAT ( Rc,>
(1

dt ~ LR¢[h/2R R ' (119)

: : {

.where‘R is the disc radius and g.(z) is the toroidal intégral‘ of order zero.” For disc
radii rnuchv larger than disc thickness (ie. R > &), the expression for growth rate can

' be simplified to be " | ) AT‘ ’

| E}t_z: QIjrh In[16eR/h] = - (1:20)

A comparison of the growth rates of disc shaped ice crystals obtalned by Fujioka
and Sekerka with the previous models at a supercooling of 0. 15 °C 1s shown in
Figure 1.11. Also shown in this plot are the experimentally observed growth rates
. for ice discs in a quiescent fluid obtained by'K_umai and Itigaki [47] and Fujioka [28].

The growth rates of frazil crystals submerged in a mean flow ‘of various magnitudes,
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measured by Bukina [12] are shown in Figure 1.12. It is cilea.rly.seen from
Figu:e 1.11- that the predicted‘growth results of Williamson are significantly lower
than those obfair?o? by Mason or Fujioka and Sekerka. None of the analytical results

appear to compare well with the experimental results. This is undou‘btedly due
to the assumptions made in determining the temperature distribution. The result
ofAWilliamson’s inoorrect assumption that the ice disc grows as a s-pherical shaped

particle is demonstratéd by the low growth‘rates calculated. Tt should be noted that
the growth rates obser\ ed by Kumai and Itigaki are for floating dlscs of undetermined
thickness. Therefore, 1t 1s probablv not valid to compare themn with the other results.

Fullol\a s experrmental results appear more realistic since the trend of the data is
SJmllar to the calculated model Tesults, although the thickness of the crvstal 1s not
prec1sely known. Fujioka and Sekerka initially attributed this difference to additional
‘heat loss mechanisms not accounted for in their model, although no specific sources
were m'éntioned, Late "‘ujvio‘ka [28] developed.armodel which takes into account
- the difference in thermal conductivities between water and ice. The growth rate.
determmed from this model is also shown n Flgure 1.11. A comparlson of these two
results shows that underestimating the thermal conductivity of the ice phase y 1elds a

faster reduction in the crystal growth rate.

. Fujioka also solved for the growth rate of an ice disc which included growth in‘the
c-axis dlreétlon "The major drawback to this solution was the assumptlon that the
solid and liquid thermal conductivities were identical. Solutions were obtained for
the two. Gases of thlrkenmg with latént: heat as a 51gn1ﬁcant factor and thickening of.

3 Lo

the disc w1th neghglﬁge latent heat release from the ba,sal plane. From these r>sults
“he concludee}z}i%t 5{@\9.;

the radial grow?é,h’li;

thickening process of a frazil crystal appears to slow dbwn

The latent heat release from the basal plane was found t5-be

negligible in comparlson'to the disc edge. However it was noted that it was sufficiently
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Figure 1.12: Experimental growth measurements of frazil crystal growth rates
by Bukipa [12]. The quantity V represents the mean flow velocity-
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large to retard the thickening rate of the crystal. . The expressions describing the
temperature field for these two cases were complicated integral-differential equatlons
which had to be evaluated numerlca.lly If additional complexities such as a variable
thermal conductivity, or a comphca,ted crystal geometry were considered, this would

undoubteg,ly result in additional difficulties in obtaining a solution. As a result, it is

" of sxgmﬁcaht importance to develop a convenient numerical scheme for solvmg crystal

;,,”growth roblems . :
ot ¥

v
2

1.2.2 NUMERICAL STUDIES OF ICE GROWTH FROM THE MELT

.Analytlcal solutions for multidimensional ice growth problems are difficult to
_obtain without mmplevmg the problem. The solutlon if available, is of a complex
form ma.kmg the evaludtlon of the expresswn dlfﬁcult The assumptions needed to
obtain solutlons are often unrealistic and the analytic expresston for the solution can
be evaluated only by numerical approximations Singh [69] ‘appropriately states that
“dnalytical techniques for crystal growt‘h problems have reached the limit of thelrb

usefulness

The most popular numerlcal techmques for solving ice growth problems are
front tracking methods where the governing equations, subject to some boundary
conditions, are solved using either the finite element method or the finite difference
method. In this section, we descrlbe the numerlcal schemes along with their major
ad\antages and drsa.dv”antages Although this review of the numerical literature is by
no means comprehensxvg thes research surveyed prov1des a wide cross-section of the

popular numerical schemes of solving ice growth problems.

\/arlous meihods have been proposec( for the nirmerical solution of phase transition

problems ‘They prrmarlly differ in the way that heat transfer on the phase boundary

. :,.
T



is modeled. If a heat flux balance is conducted on the phase boundary, then an

expression explicitly eontaining the solid-liquid interface position enters the problem '

formulation which then must be determined prnor to determmmg the temperature
distribution. This leads to what are termed front tracking methods v Popular

numerical strategies for solvmg ice growth problems have tradltlonally used front

tracking methods in which tf'le phase front evolves smoothly ip space and time. The

other method, known as asfixed domam method, 1nvolv&s »absorblng the heat flux
vonditions on the solid-liquid interface into the governing heat conduction equatlons
hich are then solved on the fixed domaln The resulting nonlmear equatxons are
.en solved numerlcally USLI’lg a ﬁnlte difference dlscretlzatlon or by the finite element
technique or by the numeric solution of a variational inequality. The posxtlon of the
phase boundary is determined after solving for the temperature di: trlbutlon and then

tracing the contour given by T(r.,z)= T,, where T; 1s the known interface temperature

value. The ma_]or advantage of this method is that compllcated interface geometries

can be handled with relatne ease. But freezing point reductlons due to curvature -

cannot be included since the interface temperature T;. must be known in order to
determine the phase boundary posmon Another dlsadvantage of this method is that

it has been found to be less accurate tha_n the front tracking methods [52].

The major difficulties associated with front tracl(ing, methods have resulted from

the deficiencies in the discretized grid domain. Older numerlcal work-is based on finite

difference approximations defined on a fixed rectangular grld mesh. Consequently, the

solid-liquid interface boundary will not always coincide with the. grid lines requiring
cumbersome two dimensional interpolation between,.grxd mesh points. Also a large
number of nodes, closely spaced together, '1s.requ1red for an’accurate determination
of the growth rate of the phase boundary. This is beq__aus_e_ the temperature gradients

at the solid-liquid interface are very “hlgh and estimating them atcurately requires a
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~large concentration of nodes near the vicinity of the phase boﬁndary. This unnecessary

resolution of the grid in regions far from the interface where the temperature gradient
is relatively small can result in time consuming computer runs. Slmllar difficulties

‘arise when the finite element method is implemented on a statxonary fixed grid.

The recent use of adaptive or deforming grids has helped overcome the difficulties -
encountered when using fixed grids. Here, the phase boundary is always coincident

w1th a gr1d line and its shape is sufficiently defined since more nodes can be'

‘ concentrated along the interface without unnecessarily refining the rest of the mesh.

One of the earlier works using an adaptive grid was due to Bonnerot and Jamet [10].

“They used the finite element method for the solution of a two dllmensmnal freezing

problem. The problem consisted of a growing solid mass of ice as shown in Figure 1.13.
The temperature distribution in the solid satisfied the heat conduction equation

0T L OT o*T _1aT
dz2 oy?  « Ot

b

(1.21)

subject to the boundary conditions. .

T(z,y,0) =Tinit

T($7y7t):g(‘ray) On"Sl

aT )
'a—n =0 on 52 4
| , T(s(t),t)=0 on S(t)
A , dS or
| ' 7= Y%

where Tinit and C are constants and derivatives with respect to n represent derivatives
normal to the surface (see Figure 1.13 when referring to aplication of the boundary
conditions) Bonnerot and Jamet discretized the domain with 200 three node triangles

resulting in 600 nodes. The phase boﬁndary was approximated by a polygonal line
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whose Vermces coincide with the trlangularlzatlon nodes. A new mesh was determined |
at each time step as the boundary moved forward. Nodes were not highly concentrated
near the moving boundary. Moreover,/smce the domain was expanding with each time
step, triangles which had vertices on the free boundary became much larger than
thé interior triangles resulting in a poor approximation of the temperature gradient
and hence of the nodal veloc1ty They further noted that the use of higher order

quadrilateral elqmen"?or 1soparametr1c elements made apphcatlon of their procedure

conceptually more glfﬁhdlt as well as computatlonally more time consummg

Singh [69] modeled the grov&@ rate of a needle shaped dendritic crystal growing
in a supercooled melt of infinite extent. He modeled the dendrite geometry as a

paraboloid of revolution and assumed the interface shape would remain similar for

wall time (ie. shape preserving). This assumption allowed the time dependence in

* the heat conduction equation to be eliminated by considering a coordinate system

© originating from the dendrite tip. As a result, the governing equation in the solid and

liquid regions become
1

o°T +18T+82T+V8T . » e
67‘2- ror 0z oz(?r. "“)

where V,, is the rafe of growth of the phase boundary. Figure 1.14 shows the solu}ion

domain and corresponding boundary conditions. The domain was divided into

400 cubic triangular elements with nodes ~Eriore dénsely packed near the interface.
The infinite boundary for the li‘quid phase was appfoximated by a finite boundary
such that the temperature gradiént was sufficiently close'to zero. This was found to
occur at a distance of 20R in the z direction and 40R in the r direction where R is the

WY e

uharacterlstlc length. It Wa“%

Sumed that the growth process was diffusion controlled
thereby ignoring the mterface kinetics. The interface temperature varied due to
curvature effects in accordance wiph the Gibbs-Thompson relation. The curvature

at the phase boundary was approximated by fitting a cubic spline through the nodes
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Figure 1.13: Solution dorm 1210 employed by Bonnerot and Jamet

comprising it. The accuracy ‘of the method was verified by calculatin‘g growth rates

for spheres and cylinders and comparmg them with available analytlcal solutions.

For problems where the shape does. not Tepeat, the above formula¥ion would
be cumbersome and a deformlng grid would be necessary. O’Neill and Lynch [59]
.deve\loped a finite element method with a moving coordinate system for solvxng ice
_ growth problems." They applied their schemeé for the simple one dimensional case with
heat conductlon into the solid phase only and with a constant interface temperature.
—They noted that their formulatlon became significantly more complicated when
extendedzto more reahstlc multidimensional cases: Also, the concept of a movmg grid-

mtrodgféed an additional term for the time derlvatxve of temperature which essentially

was the velocity of each node.
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Figure 1.14: Solution domain and boundary conditions ° for shape preservm“
dendrite (From Singh [69]) , H

Sullivan [71] extended the method of O’Neill and Lynch to stully the stability
of planar growth restricted to two dimensions. He discretized the domain with
linear triangular elements and employed adaptive grid strategies for mesh motlon

and control. The solution" domam was discretized w1th 20 proportionally spaced

elements in the liquid phase and 4 similarly spaced elefs Qs in the solid phase. The
immediate neighbourhood near the phase front was more refined and consisted of 44

equally spaced elements in both the so_lid.and liquid regions. Sullivan also included the

effects of interfacial kinetics in his problem formulation. His use of moving elements

added a mesh advection term to the governing equations as shown below

or _or ‘
9
aViT + V,— In = o (1._.3)

where V, is the rate of growth rate of the interface. This equation was then
solved iteratively with the interfacial energy balance equation. Neglecting the mesh

advection term results in a temperature distribution that is not heat conserving.
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Sullivan noted that tﬁe mesh must retain a topology suitable for computation at
each' time stcp (ie. the triangular elements cannot be grossly deformed). Sullivan
found that node > deployment introduced an additional complication. Consideration of
sev eral methods led h1rn to a scheme where internal node deployment was handled }gv
con51der1ng the mesh to be a solid body that deformed elastically. Thus the equations
‘of elasticity for plane stress were used to determine the mesh deforma,tio(n at each time
step. This rather cum’ldersome fosl 5 latlon was used with consjderable accuracy to

model growth proﬁles 'of dendrites : j’

ThlS technique, commonly referred to as Boundary Fitted Coordmates ‘?':ﬁwas ﬁrst '
" developed by Thompson et al [73] for the solution of _partial differential equations
on-arbitrary shaped domains. Rieger et al so vedw energy equation in the liquid.
phase and the conductlon equation in the sohd phase' by numerically mapping the real”
domain to a rectangular Computational grid consisting of 600 nodeég. Time steps were
quite small but were increased when the process was conduction dominated. The
go\/erning equations were discretized using a ﬁni.te difference formulation and were
solved implicitly subject to the given boundary conditions. We feel that this method
is versatile and simple for the solution of crystal growth problems with nonlinear

boundary conditions. It will be described in more detail in the following chapter.

To summarize, analytical solutions for problems simulating more realistic crystal
growth conditions are difficult to obtain and are often not possible. Further difficulties
arise when the expression for the solution is in a form that requires numerical
approximations. Therefore, it is more advantageous to solve numerically the/governing

“partial differential equations with the accompanying boundary conditions. Numerical

formulations employlng front tracking methods have been falrly popular in the past
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‘and are best suited for applications to crystal growth problems including the effects
of interface kinetics and boundary curvature. In particular, methods utilizing moving
or deforming coordinates are ideally suited to this formulation an¢ offer enhanced
accuracy and stability without extra computational effort compared to fixed grid
methods. We feel that impfementation of the finite element method utilizing moving
coordinates is far more complicated compafed tc the “Boundary Fitted Coordinate”
(BFC) schemne. The BFC' method offers the advantages of the finite elément method
 with the simplicity of finite differences. The application of this method to frazil
crystal growth problems will be described in detail in the next chapter.

?
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Chapter 2 |

MATHEMATICAL FORMULATION AND METHOD OF

SOLUTION ,
i

In this chapter, the mathematical formulation for the growth of a frazil ice crystal
is presented. The first portion deals with a description of the governing equations
and boundary conditions implied by the physics of the problem. The second portion
discusses the assumptions made in the general equations and their implications. The
last section of this chapter is concerned with the discussion of the numerical technique
selected for solving the frazil crystal growth problem and the methodology. followed.
Also, a brief description of some other popular techn’iques for solving moving boundary

problerns is presented and the merits of the method used in this study are outlined.

2.1 PHYSICAL MODE~ AND ASSUMPTIONS

This study is concerned with the modelling of frazil ice crystal growth ;ates in
- shghtly supercooled watef. Models for predicting the growéh rates of ice crystals
are based on a description of’*E‘he heat transport process and its physical constfaints
such as crystal morphology, interface curvature and 'the‘surrounding fluid velocity
and temperature distribution. Previous experimental and theoretical mvestxgatlons

discussed in Chapter 1, have prov1ded some important data on the nucleatlon fgrowth -
and morphology of ice crystals submerged in supercooled waters. These results

provide the basis for the development of a Justiﬁable physical model.

Consider the idealized situation shown in Figure 2.1 which shows a single frazil

¢. *al immersed in a volume of supercooled liquid water of infinite extent. The . -

solic iquid system is maintained at a constant pressure and is bounded by an

42 o » . o
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isothermal, impermeable wall. It is assumed that both the liquid water and ice are

pﬁre homogeneous and isotropic with no dissolved solutes present in either phase.’

‘Most experimental data and field observatlons have reported that the typical water

supercooling rarely exceeds 0.10 °C durlng the course of frazil productlon In fact, the

initial stages of {razil nucleation and growth usually require a supercooling less than

0.05 °C. Thus, the model crystal is assumed to be disc shaped since the commonly
observed i ice crystal morphology at supercoohngs less than 0.13 °C is that of discoids
and thin platlets [78]. Provided the disc remains symmetrical (true for crystals less

than 3 mm in diameter), this assumption implies that the temperature distribution

in the solid-liquid region only varies in the radial and axial directions and can be

assumed to be axisymmetric.

a

The__shape of the edge interface is of particular importance since its curvature
determines the temperature’ variation along the interface. Researclrers such as
akawa [4] and Osterkamp [61] had made some observations on the shape of the edge
interface (in the a-axis dlrectlon) of dlSC -shaped crystals by v1sual 1nspect10n The

general conclusmn frorn these limited observatlons was that the interface shape was

flat in the center portion with curved portions j joining the face and edge of the crystal.

More recently l\mght [45] has shown that the corners between a- and c- axes are sharp

and not round‘ed a.s, prevrouslv lndlcated The major consequence of thlS assumption

‘1s that the edge 1nterface of ‘the .model crystal will be at a constant temperature and’

will only be & function of the disc radius as indicated by Equation (1.4). Thus as the

crystal radius increases, the freezing point depression along the edge also decreases .

and approackéishe thermodynamic freezing point To,.
. m)s&» M”

Since 1t ﬁssumed that the liquid phase is free of dissolved solutes the
"thermodyrfamrc freezing temPerature T,, can be taken to be 0 °C and the freezmg
. point depressxon along the crystal 1nterface will only be ‘caused by the surface

0

?
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curvature. We also assume that thermal propertxes such as conductivity, density, ‘
spec1ﬁc heat and viscosity are.constant within each phase The valugsTof these
properties change from those of the ice to those of water in a stepwise manner at

the solid-liquid interface.

Convective heat transfer (due to the displacement of the liquid ahead of the
growing interface arising from the different densities of the ice and water phases)
1s ignored due to its negligible effect. As the crystal grox;vs larger due to the freezing
process, a conservation of mass at the interface shows that the liquid is dlsplacéd
ahead of the crystal with a normal velocity V given by
Vo= (PP, (2.1)
Ps :
where v, is the normal velocity of the growing interface and ps and p; are the densities
. of the solid and liquid phases respectlvely Chambre [16] has shown that when the

a:(——’”ﬂ”) <1 (2.2)

ratlo

3

the temperature distribution is not affected by this fluid displacement. Since o < 0.10

 for ice/water systems, the effect of this displacement convection can be justifiably

neglected from the model. B

Natural convection at the growing tip of an ice crystal was shown to be an
important factor for the growth' of dendrites in* 2 large, enclosed volume of water
at supercoohngs‘of 1 °C and greater [62] The dommant heat transfer mechamsm"
for the growth of dendrites in small quantities of water is conduction.” Gilpin [31]
had shown that the influence of natural convection was only irﬁportant for a matrix
of dendritic crystals growing in. an enclosed volume of supercooied water. Natural

convective effects at low supercoolings (normally associated with frazil morphologies -

for freely suspended ice crystals) is negligible and its effects can be ignored. It should
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also be noted that forced convection arising frém relative motion between the crystal
and liquid would be of greater magnitude than natural convective effects and hence

would have a more dominating influence in the latent heat dissipation.

2.2 GOVERNING EQUATIONS AND BOUNDARY
 CONDITIONS L |

In this" section. the general govefning equations and boimdary conditions

describing the temperature distribution for the ice- water region and the growth rates
‘of the crystal are presented. These governmg equatlons are later 51mp11ﬁed through

~ an order of magnitude analy51s conducted In section 2.2.

For the smgle disc shaped crystal of Figure 2.1 growing in a supercboled liquid of

infinite extent, the temperature distribution at any time t can be obtained by solving

the heat conduction equation in the solid phase '

1 T, . | ‘
2 = Yds Y
VT, = - | (2.3)

where the subscript, s refers a property to the solid phase and the energy equation

in the Ii/Quid region
- /

U

' Lz; : QZ} +U- VTI = a[V 1 + (V-ﬁ')? o (2.4)

, ot p1Cy, »
where $he subscript, [ refers a property to the liquid phase. The quantities o, and ay
are the thermal diffusivities of the solid and liquid phases respectively. The quantity

i represents the Auid velocity distribution near the vicinity of the ice disc. The rate at

-

which the disc grows in the radial direction, V, is determined from an energy balance
along the edge of the disc given by | .
oT.

ps LV, = (ks_’ ——k@
or

r=R— 67'

) | (2.5)
r=R* ) ) ?
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where p, is the density of the solid phas anc R* and R~ represent the hquld and™

M’

solid regions in the v1c1n1ty of the edge in rfac=. Slmllarly, the thlckemng rate V. is

obtained by an energy balance along the basal olane of the disc which AT
a7,

psL% = (

where £/2% and h/‘7 represent the liquid and solid regions in the VlC]nltV Iﬁ the basal
plane. Inclusion of the interfacial kinetics for disc- thickening results in thes ar‘lﬁhtlonal

‘condition

'\7 .._‘

V. = f(ATy) | (2

IR
& ‘ '
where f(AT}) is one of the expressions given in Table 1:1. In addition to these, the .~

i

temperat'ure along the edge of the disc is _
y v ' h .

."‘i?}; | T(R,z) =T, - ATC , 0< 2 < 3 . (2.8)

_where AT, is'defined as in Equatlon (1.14). An Two additional 1nterfac1al conditions

are requ1red in order to mamtam a continuity in the temperature distribution in the

solid and liquid phases. Along the edge of the crystal, this aditional condition is ",

T,(R, z) = T[(R,z), for z =1

2] | =
<0
—~
)
o)
-

and along the basal plane, it is

b oo ., - ‘
Ty(r,5) = =Ti(r,5), for 0<r <R (2.10) -

..4 ..

Also, the fluid far away from the growing d]SC surfaces is well mixed and the

temperature has a constant value, i.e
TI:TOQ, as r— 00, 2 — 00 ' _ (2.1
- where T, is the bulk fluid temperature.

The above equations and boundarv condltlons completely formulate a frazil crystal

growth problem.

AN
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2.3 NONDIMENSIONALIZATION

It is convenient to normalize Equations (2.4) through (2.9)

following dimensionless parameters

T (2.12)
/, . z :T (2.13)
’ 0, = gm:?; ) (2.14)
0}‘ T:Z_ 7;:0 (2.15)
5 r= i’f | (2.16)
c - 74
i=g (2.17)
V., = tlv’ (2.18)
V, = tIVz (2.19)

. ) 4 . ' |
where [, and.U, ~are the characteristic length and veloc1ty scales respectlvely After

the governing equations have been normalized, the dimensionless parameters defined

above will no Ionger be written with a bar over top for convenience.

o Substltutlon of the parameters (2.12)
: vlelds .
v, =
and
< : 0
L - “ % ﬁ + Pet - Vﬁ,

a; Ot

B "“\',

to (2.19) into Equations: (2.3) and (2.4)
09’ -
2.2
ar (_._Q)
V2%, + Pr Ec(V-i)? 221

by choosing the -
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where Pr, Ec, and Pe are the Prandtl, Eckert and Peclet numbers defined as
U
Pr= 2.22
pICm ( )
‘ . P . -
pIUc2 . -
Fe= —r"r _ . 2.23
‘ CP((Tm - TOO_) ( )
. 7 ‘
‘Pe = U?. (2.24)
Gt ngl a
The interfacial energy balances (2.5) and (‘é'.@‘)-‘alo‘ng the disc edge and face become
o L 5 | |
- - [ 08, ky 06,
7 — Ste - 2.2
‘r tev ( 07—' F:jli: ka 3F F:#) ( 5)
and
- 09, k, 06 '
.= St - 2.2
i ‘ ( Sle=ge™ ky 071 pt (2.26)
where Ste is the Stefan number defined as
Tw—T, .
: v Ste = Co,( mL ) (2.27)

it

Finally, the boundary conditions (2.11) and (2.9) can be expressed in normalized form

as . . v
6.(R/l.. )= O(R/l.,5)=0. - (2.3)

where ' . 0 i

R B

0. = (1- <) :

R 1

and ' -
07, 5)=0 sas7—ooandz oo’ . (2297

Before proceeding further the problem car be srrnphﬁed by ehmmatmg terms
which are small in magnitude relative to each other. Also, it is necessary to quantlfy
the valuey to be used for the characterrstlc scales:in the normallzed forms above.

Rather than determining these values from an“,forder of magmtpde., analysis, these

-

e

T
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o~

terms will be chosen accordlng to experimental observatlons This way, there is some
basis for neglecting terms which appear 1n51gn1ﬁcant The 0bv10us choice for the
.characterlstxc length scale i 1s to choose it to be the crltxcal radius of the 1ce crystal as
defined in Equation (1.5). The characteristic fluid veloc1ty scale U, is chosen to be the
mean relative solid-liquid veloc1ty rather than the mean flow velocity. This is because
frazil ice crystals are often formed in bodies of water where there is no mean flow as in
industrial crystallizers or lakes. Also, even in fast flowing rivers, ice particles do not
experience the effects of the mean free stream velocity since they are entrained ; in the
flowing water. Frazil ice particles are however subject to inertial and gravitational
forces which result in the crystals rising to the water surface. Daly [18] has shown that
- the terminal rise veloc1ty of suspended ice particles due to gravity are of the order of 1

cm/s. He also states thai‘%’ﬁ% %Iu may be an overestimate of the actual rise velocities

of frazil ice crystals §§nce H.‘r"bu, lence acts to counter the upward motion. Therefore
taking U; = 1 cm/s, :t ean be seen that Pe < 1 and hence the convective term in
Equatlon (2:21) can be neglected. Insertmg the value for U, into the expression for
the Eckert number, we see that at these low velocities and temperature diffe pces,
the v1scous‘d1551pat10n term can also be neglected. These additional sxmphﬁcatlons
allow the heat transfer mechanism in the 11qu1d phase to be modelled as conduction.

Also, from the symmetry of the geometry and the temperature distribution, only the

~top right hand portion of the disc sectjon need be considered as shown in Figure 2.2.

Then to obtain a complete temperature distribution and determine the crystal
growth rétes, weéaeed to sol\'e tlm followmg partial dlfferentlal equations for the

reglons shown in Figure 2.2: : ,

1. In the solid region | : N




Figure 2.2:

S7
» D )
5 LIQUI 0
Basal Plane S,
h
2 .
Edge Interface
SOLID 5
S . l Se
R
r
Solution region considered for the frazil growth problem and

" boundary conditions
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subject to the boundary conditions

0, =6, on S (2.31)
0, =6, on S, - * (2.32)
a0,

- = VS 2.
o7 ~ 0 om 15 ! 33)_
a9, :
5; =0 on 5 (239

where 6. and 6, are dimensionless undercoolings due to the Gibb:’s’éThoj{n‘;’)son" ;.

effect (curvature) and integface kinetics respectively.

2. In the liquid region : ' ‘ ‘ _' o
C ‘ a; 06, AR
Vi = —— 2.3!
=22 (2:3)
subject to the boundary conditions
9,=0, on S | (3.36)
0,=0, on S, » 2.37) .
8—7’1 =0 on S5 (2.38) -
o9 | L
571 = on S ’ (239) ‘
z . . . -
6,=0 on & o (2.40)
The heat balance conditions at the interface are given by
5 2.4 . koo N SO
_ _fiot T (2.41)
v Ste(af[:lf_‘ k,af;=§i> S (2 ),
‘on S, and S |
- 89, ./C[ '091 .
— ——al 2.49
Vz-_ e (55 =p k07 =t (2:42)
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on S;. The interface kinetics condition on S, is given by
V.= f(0) & oo

Tosummarize, the growth of a frazil ice crystal en‘trained in a flowing body fwate-
can be modelled as an ice disc suspended in a quiescenl: shghtly supercooled vehire
of water. Thus, the latent heat dissipation mechanism from the growmg surface of
the crystal can be reduced to transient h~at conduction in both the solid and liquid
phases lt should be noted that in the analysis so far, the effects of turbulence in
the fluid have been ignored, This is partly due to the fact that few studies have
been done to understand the turbulence properties of bodies of water in which frazil
‘ctystals are formed. Also, modelling crystal growth rates in a quiesceut fluid is not
only a reasonable approxrmatlon but also forms the basis for making comparisons
w1th actual rneasurernents and for making later models Wthh will incorporate the

effects of turbulence
o

Fujioka [‘78] modelled the growth of an icel disc assuming that transient effects
were negllgrble H1s rationale for this was that at the relatively low supercoolings
of the surroundmg water, transient effects should damp out very quickly and hence
the transient tefm was neglected in the model. The va lidity of this assumption will -
.l)e checked in the following chapter. However at this point, a relatively simple but
efficient method for solvmg the governing system of equations in a moving boundary |

domain will be descrrbed_ .
2.4 NUMERICAL'METHODOLOGY

Several popular numerlcal and semi-analytical methods for the solution of crystal

growth problems were descrlbed in the last section of the prev1ous cha}éter Features

N
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required in a scheme for modelling frazil'growth rates include (a) apphcablllty to non-
uniform domains, (b) concentration of nodal points in regions of high gradiénts, (c)
tracking of movmg fronts without increased computational dlfﬁculty, (d) application
to various geometries and boundary conditions with little modlﬁcatlon to the
computer source code, and (e) good reliable accuracy w1th a minimum of formulation
and computatlonal effort. The two most popular numerlcal methods that have’ been
prev1ously used for solving moving boundary problems are the ﬁmte difference method
and the finite elémient method (see, (8], [37] and [67] for .a(detauled descrlptlon,of the

finite element method).

The finite element method provides. many of the desxred features but with the
dlsadvantages of a complex formulation and 1mplementat10n For this studv, it was
desired to use a method which retains the advantages offered by the ﬁmte element
method but with the 51mp11c1ty and ease of. implementation of finite dlfferences
This method' referred to as Boundary Fitted Coordmates" (BFC for brevxty) was
developed by Thompson et'al {73] for the solution of’ partlal dlfferentxal equatlons
in irregularly shaped or deforming regions. An overview of the method 1s gnen in
the next section followed by a detailed description. of coordmate transformatlon and

numerical mesh generatlon

2.4.1 BOUNDARY ' FITTED CURVILINEAR COORDINATE
SYSTEMS |

The follovnng discussion and the subsequent development of the equatlons will -
be restricted to two dimensions although in pr1nc1ple it can be extended to three
dimensions. It should be noted that the general equatlons and constramts to be
developed can be simplified con51derably if the solutlon domain is cla.ssxﬁed in terms

of regular, simple coordinate systems. The i major advantage of using BFC for such

5 Fy
I3
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regions is its ablhty in handhng nonumformly spaced grlds

- U'\

The underlymg conéept of boundary fitted coordinates is to solve the governing

partlal differential equatl“ ns along with its boundary conditions on a region with a

boundary conditions to a stmp} i:;émputational domain. This makes the governing

equations and their constraints rqqré; complex in form; however, the solution domain

°

1s a simple rectangular or polar region where application of the boundary conditions

becomes much simpler. Such a coordinate transformation is shown schematically in

Figure 2.3 where the two phase irregularly shaped region is mapped to a rectangle

with vertices A, B, C' and D. In addition, the agcuracy of a numerical solution

for a systern of parabolic or elliptig partial dlfferentlal equations is highly dependent |

on an accurate representation of its. boundary conditions. The boundary conditions
usually dominate the character of the solution: hence an inaccurate representation of

the boundary position and geometry result in numerical errors in precisely the region

of greatest sensitivity. These errors are than nﬁg_rgﬁed and propagate to interior

grid points in the solutlon domain. One can often choose a cylindrical coordinate
system if the region is circular or elliptical coordinates if the geometry of the region
is elliptical. If the region is irregular, Thompson [73] and others ( (17], [33], [56]
and [64]) suggested developing a natural coordinate system for the region of interest
that fits its boundaries exactly. They state that in f)rinciple, one can develop the

natural coordinates for any given boundary profile that is not fitted by standard

coordinate systems. The traditional finite difference approach was to interpolate the’

position of the béundary between mesh points. Such methods can result in large

L
sl

pred

e
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sources of error particularly if the variation of the dependent variable is high near the

: boimdary.

Consider the region shown in Fighre 2.3 bounded by Ty, I, and I's on which a
partial differential equation of the parabolic type is to be solved. The equation is
given by | .

L(¢) = f(r,z,¢) ‘ v (2.44)

where L is linear differential operator and f ’s a function of the coordinates r, z.
and the time ¢. The region is divided into two subdomains, which represent the
solid and liquid phase. These two phases are separated by the interface I'; which
deforms with time. Bounddry conditions along I'y, I'; and T3 aré of the Dirichlet and
Neumann type and the condition along I'y determines the rate at which this boundary
moves. The natural coordinates for this boundgd region are given by 7(r,z), which
runs parallel to the lines I and Iy, and £(r,z) which is made to be orthogonal to
n. This condition of orthogonality is not necessary but assuming it to be so, greatly v
simplifies the analysis. In general though, it is possible to determine an orthogonal

set of natural coordinates in most cases.

The region D is the rectangular region shown in Figure 2.3 in the (£,7) coordinate
system. By a suitable transformation, the Equation (2.44) and its ‘boundary
conditions can be tranéforméd to the simpler coordinate system. Solution of the
governing equation in the (£,7) coordinate system, referred to as the computational
domain, results in a simplified difference approximation. Also, the computational
space remains constant for all time since changes to the physicél domain geometry
are taken into account in the transformation of coordinates. Coordinate lines can be
- concentrated in. areas of high gradients éince a suitable transformation will always
yleld a compuutational domain with constant grid é_pacing. Ultimately, the solution of

Equation (2.44) will be determined as a functicn of the computational coordinates.
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This can easily be expressed as a function of the physical coordinates since the relation

between the physical and the computational coordinates has already been established.

The major difficulty involved in the above procedure is to determine the
relationship between the physical coordinates and the computational coordinates (ie
to develop suitable mapping functions). Anderson et al [2] classify techniques for grid

generation (coordinate transformation) into the three -main categories:

[y

. Complex variable methoas.

o

Algebraic methods.

3. Differential equation methods.

O

Any of the above procedures 1s.valid if it leads to an acceptable grid. One of the fost
highly deve]oped techmques for generating acceptable grids is the differential equation
method. Winslow [79] suggested the use of elliptic equations for generatmg a system
of natural coordinates. Thompson et al and others ( (73], [33] [56] and [64]) have
worked extenswely on the use of Laplace and Poisson equations for ‘the generatlon
of grids. The application of such families of equations for grid generation is best

understood with an a.nalogy with heat conduction.

If we consider the example of steady .state heat conduction, then the solution
of Laplace’s equation with Dirichlet boundary conditi}ons will result in smooth and
continuous isotherms which are nonintersecting If"‘these isotherms were used as
grid lines, they would yield the desirable proper/tres of continuity a.nd uniqueness:
'Another feature useful in grid generatlon 1s the ability to concentrate grid points in
reglons of high gradxents Con51der1ng agaln the heat conduction analogy, we see that
inclusion of a source term in the heat conductlon problem would act to increase the

concentration of isotherms in the vicinity of the source. Applying this concept to grid
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generation, concentration of the grid lines can be achieved at any desired location on
the mesh by incorporating suitable source terms in the mesh generation equations. -

In this manner, Poisson type equations could be used to generate grids and control

the placement and concentration of coordinate lines.

The mapping of coordinates according to the method of Thompson consists of

specifying lth.e desired grid points (r,z) on the boundary of the physical domain. -

- The interior distribution of grid points can be determined by solving the system of

equations A
’ frr + f:z
! . S Nrr + N2y

P&, n)
Q& n)

where P and @ are terms for controlling the coordinate point spacing in the interior

(2.45)

e

of the region and the subscrlpts denote dlfferentlatlon with respect to the subscrlptedJ
variable. The solution of these two equations in the uniform rectangular region is

made possible by interchanging the roles of the dependent and independent variables

-

¢ £(r,2) -
= L (2.46)
L7y Lnlrz)]
The inverse function of the above transform is written as
(][] B
« =] o L (247)
L.Z... _2(57 T]) J

‘The Jacobian matrix of the transformation (2.46) is

. | m _ [ﬁr 5;}

7.
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and similarly, the Jacobian matrix of the inverse transformation (2.46) is

v

, N rr -
; e T .
S [J2) = 1 7} (2.49)
¢ 2y
The matrices [J;] and [J,] are related to each other as indicated by
[J1] [J'z] =[] . (2.50)
whefe [f] s the ‘identity matrix. The determinant of the matrix [Jg](equlvalentlv the
Jacobla,n) is then - R _ , ‘ _ )
S i ‘ J = Teg2n — 7",;.35,‘; . (251) .
:Then, from (2.50), the following relations can be determined '
. ) ' 6" = 3n/*ﬁ‘ :
e | A
* _ & .'T”/Jq : : = (2.52)
r e =.—z¢/J
) N: = TE/‘] .

4

Partial derivatives of a function f(r,2), which is some sufficiently differentiable
. » -

C e - ’ ' i by . .
function of r and z, are {Fhnsformed using the relations

I AR _ (eafe ey (2.53)

ar a(r,z)/a(é,n) g
end | .
8f o(r,: %ﬂén (—mﬁ+&h)‘ ?zM)

82_ rz[@{, o g wr

| . Higher order derivatives are ebt'ained by the r'ep‘eated'application of (2. 53){and (2. 54V)

Derivatives with respect to time remain unchanged,.unless the region is deforrmng :

bor the boundary is moving (i.e. df(r,z)/dt = df(f n)/dt). A moving boundary or

boundarles in the reglon mtroduces an addltlonal term to the/ﬂlme derlvatxve Wthh

. accounts for the change in posmon of the coordlnate pomts within the reglon as 1t

1
S0

'eﬁ

R
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deforms. In this case, the independent variables r and z are now functions of time

and the &ependent variable f,fcari be expressed in the following manner "

(4

flroz8) = f(r(t),2(t),t) : (2.55)

)

Diy_fferent'iating the above expression with respect to time yields

af afdr “dfd:

g7 as 2.5
o ‘ at dr dt + Jz dt (2.56)

Usmg Equatlon (2.56) and Equation (2.52) to Equation (2.54), this can be rewritten
in the more useful formi as

of
ot

(.ffzn_fnzf) dr (ffrnb_fnrﬁz) .
‘?(d—t) 7 () (2.

r,z_ a é 77—

o
ot
G
~

where dr/dt and dz/dt are the velocity of a moving grid né& Details of the
mathematical verification of the above relations mcludmg a comprehenswe set of

transformed derlvatlves and operators is contained in Appendlx B.

Sufﬁment conditions for the ex1stence of, the transformatlon described above are
ngen by the inverse function theorem [46]. In particular, if the component functions
of (7 46) are contmuously differentiable at a pomt say (a, b) .and the Jacobian
‘matrl} (’ 48) is nonsmgular at (a b) then there exists a dlsk N, ab(;ut (a,b) such’
lvthat the'i mverse function (2.47) exists and (2. 49) holds for all [r,2] in N,. It can be
seen thatft‘h-rﬂverse function theorem only guarantees exxstence in a ldcal rnannefit
Thus, functlo(m)of (2.46) are sought which possess even more desuable _properties

than those required by the inverse functlon theorem:

_ The basic approach of the present tra.nsformatlon is to let the componer& functions
' of (2.46) be solutions of a system of elhptlc partial dlfferentlal equatlcfns with Dmchlet
bound: , ‘onditions. Smce harmonic functlons have continuous derlvatlves of all

orders i | obey a max1murn pr1nc1ple (Wthh states that the maximum and minimum
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values of the function must occur on the boundaries.of the region D), the best

choice for the functions £(r, z) and 7(r, z) would be either harmonic, subharmonic, or

superharmomc Subharmoruc -and superharmonic functxons also obey the maximum

principle, although it is not as strong a condition as it is for harmonic functions:

Hence, subharmonic and superharmonic functions are also continuously differentiable. -

Since no extrema occur within the region D, the first derivatives of the function
Wwill not simultaneously vanish within D and hence, the Jacobian will not be zero
t ;

1
due to the presence of an extremum. Further, the maximum principle guarantees

unlqueness of the coordinate functions §(r,z) and n(r, z) [48] and thus ensures that

4
no overlappmg of the boundarles will occur. A more general and rigorous dxscussmn

of the mathematlcal propertles of the tyansformation is given in [51].

2.4.3 APPLICATION TO THE FRAZIL GROWTH I’ROBLEM

Consider the region'shown in Figure 2.3 representing the upper right hand
quadrant of a frézil Aisk sub{rged in a supercooled liquid. Since it is desired to
perform all numerical computatlons on the uniform, transformed plane, the dependent
and mdependent variables hre interchanged through application of the relations
established in the previous sectlon. As a result, the grid generation equations (2.45)

are transformed to yield the ‘coupled system

'CrEE + 2167'617 Iy = _JQ(PT'E + an)
C2ee +2B2¢y ~ vzy = ~JH Pz + Qz,)

o

“where ' : \' : . \ ‘ _ \

9]

g

S ea S 3o

{2.58) .

13
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and J is given by Equaﬁion (2.51) The governing equations and boundary conditions

@

are transformed to the"-‘"&omputational (€,7) plane using Equations (2.53) to (2.57)

and become

(O + 20803, — 703, + —J*(Pre + Qr,) = J03 — JW

. (2.59)
4955'+ 2806, — 104, + —JH(Pze + Qz,) = J2a, /oub.. — Ja, [y U
where ‘ 3
U = (2,0¢ — z0,) R, + (ref, — r,0¢)hs
and subject to the conditions
: b — 20,k (20 — =0
e = St A S o T Y Bt Sl 47}
e R A )
v - reby — o0 ki (el — 0 \
u.'zf?k = Ste nV¢ M RS/ nY¢
# {< J )3 ks . J {
‘ (reby — 140¢) = 0 for £ =0
(200 = 2¢0,) =0 for =0 .

The other ¥ tions are the same as Before.

The functo??s P 1‘5’?@ are included 1f the grid spacmg is to be nonuniform or
certain mesh properties such as grid orthogonality are requlred otherwise.they may
be taken to be zero. Thompson et al [73] suggest that the choice of the source terms

P(&, ) and Q¢, 77) be co}mprlsed of sums of terms of decaying exponentlal functions. ‘
These functlons prov1de the means for concentratmg grld lines at desired locations in-

&
,the reglon In addition, they can be used.as weighting functions to. yleld orthogonal

-grlds where none was pOSSIble otherw1se Choosmg the functlons P and Q in. this .

manner however is a trial and error procedure thh each successful ch01ce being

limited only to a particular g;hd. . v g o,

o

.

s
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A

A more consistent method for choosing P and @ was developed By Thomas and
Middlecoff [72]. This method is particularly useful for obtaining orthogonal grrds
when the reglon boundary is specified by a nonumform distribution of grid pomts

The form Wthh they suggest for the source terms P and @ are
r P =6lE, (e, + ) ~ (260)
~

a.nd.

Q=uE. Nk +07) (2.61)

where ¢(¢ | 1) and zb({ n) are functxons yet to be specified. Substltutmg these forms

for P and Q into Equatiors 2.39) results in

.5 . ‘
\ / ((ree + ¢re) — 2Bren + (1o + Yry) =0 - (2.62)

C(zee + b2¢) — 2Bzen + 7(27777 + ¥2,) = R ’ (263) |

They then develop a set of equations which defirie the parameters ¢ and 1 and can be '
obtamed from Equ’atrons (2.62) and (2.63) above by i imposing two a pr10r1 constramts
on the local slope and curvature of the coordmate curves transverse to the boundary.

These constraints are that the transverse coordmate curves be-locally stralght and

orthogonal to the %oundary

v

.El_i,minating W in Equation (2.62) and Equation (2.63) yields a single equation

~

which can be written as : ‘

-

.ra%va+¢m)—m&&+¢%n%;%mﬂmJar+wa%xr (2.64)

!

The constraint that the transverse coordmate curves £ = _constant.be locally sfraigllt

(1e have zero curvature) can be expressed as : “
7“77 5 B - ' / [>)
(Z2)=0 on p=ns (2.65)

s

#
&
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Furthermore the orthogonality condltlon w1th the coordinate curves and the

boundary can be shown to satisfy the expression
rer + 2¢y, = 0 on = p, (2.66)

Evaluation of Equation (2.64) at the boundar"y‘ N = 7 and application of the

conditions (2.65) and (2.66) yields an expression for )

—(reree 4 zezee)
(r2¢ + 22¢)

6 = (2.67)

that is valld along the boundaq M- Similarly, an expression for 1 can be obtained

by mterchanglng ¢ and £ with ¢ and g respectlvely in the expression above to yield

e = (TyTon + ZnZnn)

N (2.68)

>a10ng°the boundanes n=mn and £ = §, the I values at iz 1{ points can be computed

by hnear 1@terpolat10n along th@ertlcal grld llnes :f“'}"i' v
gf)

horlzontal grid hnes n = constant for . ThlS procggly re for evaluatlng ¢ and

1nsures that ‘the grld throughout the interior of the computational domain will be

governed by the grid p01nt dlstrrbutron that is assigned on the boundarles _and that

the transverse grid lines will be locallymthogonal to the boundarles [72]. .
5. wi
. ‘?;r'f:«w,' R

\

2.4.4 DISCRETIZATION OF EQUATIONS AND ME»THOD‘ OF.

SOLUTION e

< The cou;ﬁed grld generatlon equatlons (2. 59) are dlscretlzed using central order
finite drfferences to yield a system of algebraic equations. The dlfference relatlons to
be used for the drscretlzatlon are g1ven in Appendix B It should be noted that the

differenice between grld points in the computatlonal domaln Af and A, are 1rrelevant

~

!

Once the parameters o and z/) are defined at, each grid pomt ’
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and can be taken to be unity. Thompson et al [73] recommend a point iterative

tec;}nique such as “Successive Over Relaxation” (SOR) or hne iterative scheme to
sol*ve the above system. Since the number of iterations when using a line iterative
technlque is reduced only by a factor of 1/V2 compared to point iteration, SOR s
the r:referred method of solution for the grid generation equations, since it is so much

simpler to apply. The procedure to solve the system is as follows:

! v . ‘

1. Make an initial guess for the interior (r,z) grid points on the physical domain.

A

S

Assign the boundary values for the region for each (£,7) on the computational

‘domain.

&

3. Calculate the parameters ¢ and zj) along the boundaries of the reglon and
determine the interior values through linear interpolation.
4. Compute the value of the source terms F and @ for each grid point. Also,

determine the values of ¢, 3, v, and J. _ L
B 0

(81}

Solve Equation (2.45) using SOR to determine the refined values for the interior

grid points.

6. Repeat steps 2 to 5 until the grid mesh points have converged to a specified

tolerance.

The governlngvequatlons and boundary condjtions are also dlscretxzed In a manner
51m11ar to the grid generatlon equations to yxeld a 31m11ar set of algebralc equations.
They are then solved 51multaneously with the grld generation equatlons If the -

‘ geometry 1s simple, several terms in the two sets of equatxons drop ou:leadmg to

a simpler set of equations. ‘§mce the resultmg system of equations are nonlinear,

an iterative procedure must be applied. ’K\number of iterative solution techmques

N/
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are avallable [30], [66], a.nd [70] but due to the simph geafhetry of the disc growth
problem a point 1terat1ve scheme such as SOR is recor”lmer} ed A solutron algorrthm
for the numerlcal solutlon of the general problem (i tfahsrent W1th curved edge
/mterface) is shown in Flgure 2.4. If the regron is rectanﬁk‘ Jar, the method of hody fitted
coordmates is much easier to apply The transformﬁq equamons ¢an be 31mpllﬁed.
somewhat by realrzmg that all cross dernatrve terms ar® Zel‘o The terms rg and z, can '
also be neglected since they too are zer_o.'_b A most us}efu1 teat e of the BFC method for
these cases is the ability‘ to coucehtrate 'grid lines in defl eq fRgions in the real domain
- while the computatronal mesh is 51mple with constant Qodgl Spacing. As aresult, the
" finite dlfference dlscretlzatlon is also simplified since {lnﬂuﬂlforrﬂ nodal spacing need
" not be cons1dered in the computational dorham A‘lmtlﬂrlal simplifications result -

srnce.the spacrng between nodes in the computatronal hace Ran be taken to be unity.

- The general solution® procedure described abO\’é is applicab e for the most
complrcated case (1 e. frazll ice crystal with secondar}’ cur_ture 5t the edge) This
. case was I‘LOt consrdered in thls study since the 'nam Durpﬂse wag to predlct crystal
growth rates and not to estrmate frazil crystal interface N of/®s. Adgjtional difficulties
such as determining an orthogonal grid; estimating the %coﬂdary ¢yrvature at a point;
and employing a suitable nodal mesh distribution sdhemg ris€ when tracking the
crystal proﬁle These addrtlonal complentreﬁ?grezgﬁl\ éQmpllQate the already existing
probléns a.ssocrated with the hon linear intbiface cor7°lmg.ﬂS As 5 result, the edge
interface was assumed to remalm flat during its growtl\ seflence and the effects of
secondary curvature along the redge of the aisc were ‘lvglgcted The radia] growth
rate is calculated at each node co c1d1ng with the edg//' N LIPS cry Stal 1s calculated for
" each time step. Since the radlal growth rate¢ along the erstal edge yarles Vch 2, the

velocity at which the edge mter‘face grows is determr[“ﬁd bf ¢a Culatmg the a\erage'
edge velocrt\ (arlthmetlc averagﬂ of the grow:h rate al vach node). at each t]me step ”

|
|
|

.
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. Solve the grid generation equations usmg the algorithm listed above (step 1

through 6) to obtain the nodal mesh coordinates r(¢, ) and z(f n)

e When a sultable grid has been computed store the calculated values of the
parameters C B, 7, P& ) Q({, ) whlcn are to be used in the solution of the

transformed governmg equatlons

o Estlmate the prmc1pal curvature at each node comprising the crystal edge
“interface. From this, the temperature depressron due to the Gibbs Thompson ‘

effect can be determrned

e Solve Equation (2.58) subject.to the given boungary condltrons 1teratwely with

the energy balance CODdlthﬂ and the mterface l\fxﬁelcs relation .
"'séfi“i

o At each iteration, check the phase boundary nodal veloc1ty and the error in the

temperature distribution

‘e Iterate until both the temperature distribution and the noda(ff'f

have converged to the desired tolerance

) Calculate the increase in the phase boundary during the cut 6

the product of the nodal phase boundary velocity and the time'step increment’

- e Advance the phase ‘boundary. nedes by the amount calculated in above step

SRR -
-e Continue above steps until the set time period expires

o Stop . . ' . - : | » ‘\,(/’

v

Fi igure 2.4: \umcrlcal solution procedure for ffeneral ctvstal growth problem
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and then assuming that the entire edge interface grows at this average rate. With this

added assumption, the edge interface will always remain flat and hence the solution

Y

procedure listed in Figure 2.4 can be simplified considerably. The most important _ -

simplification is that the grid generation equations (steps 1 through 6 above) do not, -

need to be solved at each time step since the interface geometry is simple.
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Chapter 3 b . Lo,
GROWTH OF ‘A FRAZIL ICE CRYSTAL IN A

SUPERCOOLED MELT )

The main objective of this chapter is to examine the appli\cability of the “Boundary
.Fitted Coordinate” method for the study of frazil ice crysgar’g)Wth and verify
the validity of the numerical results. The first part of this chapter compares the
numerical results with an analytical solution for the case of the growth of a disc
shaped crystal with no thickening effects. From this, several numerical parameters
such as nodal mesh distributions, rnes}i resolution, convergence criteria,‘ and solution.
domain dimensions are determined. The validit_y of the quasi-steady state growth
assumption, employed by Fujioka and Sekerka (27], is’also checked by examining the
transient growth and temperature behavi.ouraof a subcooled ice particle. The second
portion of this chapter deals with the application of the model to the study of frazil
growth in a quiescent T"}wcoolea melt. We investigate the validity of the common

assumption of negligible growth in the c-axis direction made in previous studies.

3.1 GROWTH IN THE a-AXIS DIRECTION IN A
QUIESCENT SUPERCOOLED MELT |

Before proceeding to the more difficult and rea‘listic‘f_razil crystal growth models, it
is first necessary to check the validity and accuracy of the computer code. Generally,
thisis accompliéhed by obtaining an analytical solution for a problem with a simplified
g eometry and then comparmg it thh the numerically obtained solution. The
major dlfﬁcultv associated with the numerical aolutxon in a disc-shaped région is

_Lhe de{elopment of a suxtable grid mesh. This is further increased when the thickness

L~y

s
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to diameter ratio can be as small as 0.02. Since simple geometries such as a semi-
infinite slab or infinite cylinder are not as éensitive to grid spacing, the.computer
program cannot be tested with them. Although it may work for these simple cases,
1t will still yield incorrect results for the disc region. Therefore the diec geometry
must be retained when checking the numerical algorithm with simplifications made
‘to the governmg equations and boundary condltlons Once an analytical solutlon
is obtained, it can be used to verify the accuracy of the numerlcal results. An
ana‘iy@cal solution for the growth of a submerged ice disc was obtained by Fujioka and
Sekerka [27]. This solution presents an excellent opportunity not only to examine the
validity of the computer program and to eliminate errors but also tune the computer
model by enabling us to pick several important numerical parameters. We now present
the solution fonthe simplified case as developed by Fujioka and Sekerka.
1‘
3:1.1 COMPA*RISON OF THE NUMERICAL AND ANALYTICAL
SOLUT"iON

To simplify the governing partial differentia.l Equatiorfsjfﬁ"(Q 21) and (2.22) so that
an analytlcal solution could be obtamed Fuuoka a.nd Sekerka made the following

~

three assumptions: S . -

1. The disc shaped crystal grows in the radial direction only; hence, thickening
effects are ignored. Also, s.ince'growth is in the a-axis direction, the interface .

Kinetics are so rapid that‘they can be ignored.

The crysta,l growth process occurs in a quasi-steady state manner; therefore the

o

' governirig ‘equation descrlbmg the temperature dlstrlléutlon is not an exp11c1t y

function of time.
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. 3. The thermal conductivities of the solid and liquid phase region are identical and

g

equal to that of water.

K

As a result of these assumptions, the temperature distribution in the solid-liquid , A

region is satisfled by the steady state heat conductlon equation

a*T 1 oT + 9T 0°T
orr " r or 0z?

=0 B

and the energy balance at the disc edge may be written in the form

dR(t ) h oT oT :
- =k —_— 2
L= dt (2 121) (37’ r=R-. Or r=R+/ : (3.2)
where H(:c) is the Heaviside step function, )
: ‘ I, ifz>0
H(z)= {
10, ifz<0.
- The temberature along the interface was, specified as
. Rcf RS . : . v . '
T. — T = AT(1 — ?) (3.3)°

The general solution of (3.1) from Fujioka ’z‘md Sekerka [27] V\{aé found to be

I'$

«

o T(rz) = To = /OwA(A).cos(Az)Io(A_Q)5@\@5)dA (3.4)
where - . ‘ - |
- T for 0. <r < R{¢)
Te = (. :
| S YR, for R(t) <r
ani// , : v .f R
5 . T, or R(t) <r
. ,7.;/_._;‘ ) : ( ) T
R(t), for 0 <r < R(t)

I,(z) and K, (z) are mo'diﬁedB’essel functions of order zero. A(A) is determined by
applying the boyundary conditions and is found.tip be |
' " 2L dRsin(\h/2)

A=k
S P
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. : . {
The radial growth rate of the disc, at its centerline z = 0, was determined to be

dR 7wk AT R..

’

—_— 1 —_ — Bd
dt L Rqo[h/QR]( ' Rr) ) (36)
<
where ¢,(2) is called the toroigal integral of order zero and is defined as
- e sin(zz) . (.
7o(2) =A2/ I (z)K,(z)dz :
0 T

t

For ice discs with R >> h, Equation (3.6) fan be approximated as

df _wk AT -
T dt L RIn(16eR/h) (3.7)

-~
-

‘The numerical solution,, for the sirrrpliﬁed disc growth problem, was obtained in
ord/e§ to compare it w1th the analytlcal solution. As mentiongd, the primary reason for
doing this was to fine’ tune the numerical rnodel by appropriately choosing numerical
parameters such as mesh distribution am:i dimensions of the solution regime that
‘normally would have to be determined from a lengthy trlal and error procedure
Generally, studies. in &rystal growth only requlre an accurate determination of the

/

temperature in the vicinity of the growing interface s0 that the rate of heat ﬁow into

: grovx th of a frazil crystal, an accurate estimation of the temperature distribution is

\\-

ol ecessary not only to have an accurate determmatlon of the crystal growth rate
e,

solid phase region. -

" The location of the’ outer 'boundar‘yv for the supercooled melt must also be

~approximated since it is not realistically possible to locate it at an infinite distance

N

s :

he sohd and liquid phases and hence the growth rate can be accurately computed. For

bt also a reasonable comparlson of the temperature dlstrrbutlons throughout the
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from the ice water interface. For real crystals, this outer boundary would be located .

where the melt temperature 1s sufﬁcrently uniform and constant The dlstance

: :x between this bor@rndary and the crystal interface could then be used as an approximate
valué for the boundary condition at infinity. Rather than employing a time consuming-
trial and error procedure to. approximate the rnagnitude of this distance, it is

" much easier to cornpute the tempe_rature values and gradients‘ from the analytical
solution (3.2), at varying distances from the ice disc. As the distance from the crystal
increases’in the 7 and z directions, the tempera;ure w111 approach the constant \alue
of Too, the bulk hquld temperature At the same trme the gradients OT/ar and_
dT/@z will apﬁp,roach zero. Based on this, the outer boundary is to be located) at
the shortest distante from the disc edge and face so that both the temperature and"
temperature gradrents are within predeﬁned tolerance hmrts of therr ideal values.

| Iable 3. 1 surnrnarlzes the outer boundary locatrons in the radral and axral directions ~

\

for drscs of several aspect ratlos where the aspect ratro is deﬁned as
T Aspect Ratio = S

As airesult of this analysis, it can be seen that the ratio R;O/R of the distance
Ry (from the disc edge to the outer boundary) and the disc radiug R is relatively
constant, where | -

o | T(Roo, 2) = T

and aj‘ o S o

ar ,_RNIT‘-O; % g “

However in the axial direction, the ratio 2Z°o/h of the outer boundary distance and

disc thickness varies between 20 and 200 for

e

L T(r, Zeo) ~ Too



- .*'I{abl‘g.'_{i.l: Locations of the outer boundary for the disc crystal

ASPECT RATIO | R(pm) | Reo/R | 2Z0o/h
Y01 T | 500 | 200 | 100.0
0.05 100@) | 20.0. | '150.0
C o 0.025 200.0 | 20.0 | 250.0
0.0167 300.0 | 20.0 | 400.0
10.0125 1400.0 | 200 | 500.0
0.010 500.0 | 20.0 | 600.0
~ 0.0083 1 600.0 | 20.0 | 700.0
0.0071 700.0 | 20.0 | 800.0
0.0063 | 800.0 | 20.0 | 900.0
0.0056 900.0 { 20.0 | 1000.0
0.005 1000.0 | 200

1000.0

oo
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" Thus it is evident that the location of the outer boundary depends on the disc(size

=Zc0 . : RY

and thickness. Bolhng and Tl]ler (9] have stated that for dendritic growth the far
field .temperature cali be assumed constant at a distance 10¢; /v, away from the salid
interface, where v, is the solidification rate. ,'A°pplying this criterion to frazil crystal -
growth, we see that the smaller fast growing crystals V;/ill disturb the constant liquid
temperature over a shorter distance than the larger, but slower growing ‘crystals.
f\lso due ic the anisotropy in radial and axial growth rates, the influence of thel
thermal disturbance in the axial direction w111 be over a much shorter drstance n the
axial direction compared to the radial drrectron of the disc. For the purposes of this
study, Rs and Z., were chosen to be 50R and 10R in the radial and akial;directions
respectively. For this'eteady state cTase, the characteristic length 1C'Was chosen to be ‘

the radius R of the ice disc. -

" In order to accurately predict crystal growth rates, it is essential to determine
accurately the temperature' distribution near the'ice-water interface and then estimate
precisely the temperature gradient in the solid and liquid regions at thebinterface.
Also, since the thickening rate of the crystal 1s dependent on the basal plane interfacial
'undercooling, the temperature in the entire “solid regiOn must be computed to a
fine .tolerance. Although the temperature distribution in the sohd region alone

is not dlfﬁcult to obtain, srmultaneously estlmatrng the gradrents oT/or and
r=R*

aT/ar ~ is'not a tr1v1a1 task From the form of the analytrcal SOlutIO’l (3.3), it
r=R- .

can be readrly seen that the temperature gradlent 1s very steep near the interface
due to the terms. 1 ()\r) and K (/\r) and changes signs abruptly across the interface.

As a result ‘numerrcally calculating Jt :"_qurres a high order scheme and a suitable
L S . :
drstrlbutlon ‘of grrd todes. Also since the’ numerlcal scheme- ns computatrona y

N~
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intensive, it was desrred that the domam Be discretized wrth the smallest size mesh" '

possible. :
2.

Several types of grid meshes were tested to’ determrne whrch conﬁguratron ylelded'

ﬂd accurately calculated the crystal growth rates and basal plane unidercooling. To "

obtam values of crystal growth rates that compared well wrth the analytlcal result

Jt was necessary for the grid nodes to be highly concentrated near the vicinity of

the 1nterface and for the slope of the temperature with respect to radial distance to
) be calculated by a third or fourth order difference scheme An alternatrve method
to using. hlgher,order ﬁmte dx'fference scheres is to employ 1nterpolat1ng functions.
For the present problem use of an mterpolatlng function such-as a thrrd degree

"polynomral or a cubxc splme along with a reasonable grrd mesh was found to be

sufficient for accurately estlmatmg the gradient. It should be noted that this method

is O(83), where 5 is the magnitude of the mesh spacing,‘ compared't;(f-(&ard

and backward finite dlfference schemes .which are normally 0(52) 2]

problem encountered was that a mesh distribution Wthh resulted in an accurate-

“

determination of the- growth rate usually resulted in a’'poor estlmatron of the basal

plane supercooling. ThlS was not an important consrderatron in the hqurd phase since
an accurate temperature proﬁle was only required in the vrcmlty of the rnterface for
the purposes of estimating the temperature gradient. Several nodal dlstrlbutrons were

‘tried in order to find the rlght combination so that an accurate temperatureproﬁle and

. thermal gradients near- the interface could be computed. After many combmatlons

a node placement scheme was arrived at ‘which. resulted in satisfying both problem:_"-"- y

' requrrements Schemes that worl\ed well consrsted of nodes drstrlbuted in the radlal
direction in the solrd phase accordrng t6 the expreséron |

e/\(1—:) -1

a1 (3:8)

T =

apr ,

A
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where is the node number Imes is the maxrmum nurnber of nodes in the sohd phase -

‘ and Aisa parameter to control nodal spa.cmg In the hqmd phase reglon nodes were -

spaced accordlng to the relatlon
T .:, Ai% 4 Agi? + Agi +Ay , IME i< IR o (3.9)
. which provided rnore'ﬂexibility in the nodal posjtioning due to the choice of four
. spading par’ameters. Figure 3.1 shows one of the grid‘-mes_hes used in the numerical
scheme. It is of interest to note that constant grid spacing was employed in the solid
,phase in the ax1a1 direction because the overall accuracy was not sensitive to nodal
spacing in t}ﬁs direction. This is probably due to the fact that the disc face does

" not act as a heat source like the disc edge where latent ‘heat s released Even for

real crystals, the latent heat release along the basal plane is very small compared

to that along the edge [18}. In the liquid phase region: (a-xllal direction), grld ‘nodes ;

were distributed according to the Equation (3.9) so 'that.va large number of nodes
_ did not have to be used in the far field. In-the course of evaluating various grid
meshes, it ‘was noted that sudden or abrupt changes .in ‘nodal spacing resulted in

: sfability and convergence problems. This problem was par_ticlarly prevalent in regions

'|

v

of transition where the gradient increased sharply. This difﬁculty can be eliminated by =

choosing a nodal distri{)ution which avoids abrupt' changes in grid spacing and instead
has a smooth transition from the (’:oarse to fine mesh: Therefore when employing
\nonunlform meshes in future work, it should be kept in mind that sudden or abrupt
changes in the spacing between grld nodes can seriously influence the accuraey of the
- solution. .

Using the nodal distributions scheme just described, the solution region was
discretized to a 40 x 36 nodal mesh. _T;he solid region eontained 14 nodes in the

radial direction and 5 nodes in the axial direction while the remainder of the nodes

were appropriately déstributed in the liquid region.” With this number of nodes, the -

0

)'/

*
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Figure 3.1: Example of a grid.mesh requlred for the frazﬂ growth problem The

mesh is' concentrated néar the location of the edge mterface The
mterface is locate "'at r=1 and z = O 03'3 s :
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-number of iterations required to converge to a tolerance of

imax Jmas

- 3 Z|9“—0°' | <1.0x107

1=l j=1

(where the superscripts represent iteration number) was just u'nder 2000 for discs
with low aspect ratios. The number of iterations increased to 5000. and higher as
the aspect ratio decreased or if the region was discretized by a finer mesh. As a

compromise between accuracy and computer time, the 40 x 36 mesh was employed

“for all quasi- steady state calculatlons ' /

¢

Figure 3.2 to Figure 3.4 compare the analvtical and ‘numerical solution of the

temperature along the base of. Lhepdlsc (atz = 0) for three dlfferent aspect ratlo;

The analytlcal and numerical golutlons are seen to be in close agreement for all values
of r/R. The agreement is especially good in the solid region where the basal plane
temperature is computed to within- 2% and in the hquld reglon for values of r/R less
than five. The dlfference between the analytical and numemcal solutions increases for .
r/R greater than five to a maximum of 7% at the boundaries. Figures 3.5 and 3.6
show a comparison of the two solutlons in the v1cm1ty of the 1nterface fo discs of aspect
\ratlos of 0. 10 and 0. 0125 The mterestmg point to-note here is thatq’the numerical
solution is more accurate in the solid region for discs with high aspect ratios and
this accuracy&'decreases as 'the‘aspect ratio decreases. The accuracy i‘nt‘he liquid
= portion however, increases with decreasing aepect ratios. This reversal in accuracy“
*Und'erlines the importance of nodal posvitioning in regions of high grad‘ients‘ For'small
stubby discs, the concentratlon of grid nodes is higher than in the 11qu1d reglon Thls '

- situation changes for larger dlSCS as the. concentratron of nodes in the hquld portlon

increases w1th a correspOndmcr decrease in the. solid phase reglon These apparent
shifts in accuracy between the SOlld and liquid reglons are small however,. ‘and do‘

not significantly affect the two important quantities which are to be calculated: the
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AN ALYTICAL SOLUTION

- 6(r,0)

Figure 3.2: Comparlson between ana.lytlcal and numerical solutlon for R =

50um and h/2=5um

81



\ »
. \
/

ANALYTICAL SOLUTION

k]

" Figure 3.3 Comparison between analytical and numerical solution for R =

200pum and h/2 = 5um

82

-



- Figure 3.4: Comparison between analjtical and numerical solution for R =

— A 400pm and h/2 = 5um . : S
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Figure 3.5: Comparison bef;weon analytical and numerical solution near the

edge-interface for A/2 2 = 0.10
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_Fi'gure 3.6: Comparlson between analytical And. numerlcal 50 Uthl’l near. the
CR " “edge interface for h/7R = 0.0125
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growth rate and the basal plane supercooling. Tal)le 3.2 summarizes the a-axis growth
rates at z = 0 obtained using the analt'tical solution and the numerical procedure
for discs of several sizes and thicknesses. The température at the center of the disc,s
along the basal plane (r = 0, z = %) is also given in Tible 3.2. A compremise
had to benade between the accuracy of the temperature.'di'stributi.on within the

solid region and the accuracy ,of the calculated growth rate. Since caxis growth

rates will later Ne computed from the basal plane undercoohng, the tolerable error 1n

this quantlty 1s lebs than 5%. Although the gradlents along the edge interface were
~ computed using a method of or;der 0(63) the error in the calculated growth rate still -
" varies between 12% and 18% over the range of aspect ratios and drsc sizes considered.
' Although thrs may appear to be somewhat hlgh it should be noted that the actual
dlfference between the analytical and numerical growth rates is a tolerable value of
about Qum/s over the range of dlSC sizes conSJdered Improvement n 1ts accuracy can
only be accomphshed at the expense: of the accuracy for the. basal plane undercoolmg
Under these constramts 1t 1s evrdent that the numerrcal procedure yields a solution -
whichis in reasonable agreement with the analytrcal tesult for aspect ratios betwefn
0.010 and 1.0. The solution- however becomes numerrcally unistable and dnerges llor
'aspect ratros less than 0.010 due to the disparity in grrd spacrng 1n the radral _

axial d_rrectrons e

‘v .This does notvp.ose a. pr:oblem for the pr_esent st‘udv slin‘ce the diamet‘er to thickness
ratros of frazil crystals is normally in the order of 0.020 for large drameter discs and

1 0.10 to 1.0 for smaller size crystals [18] [75). As a result it is not necessary to solve
L "-these stabrhty problems 1l order to calculate an arcurate tcmperature distribution
and growth rates.for ice dlSCS with aspect ratlos less than 0, 010 As a representatnev' '
example Frgure 3.7 shows the temperature distribution. for an ice dlSC with an aspect. -

ratro of 0.20. With the accuracy of the numerrcal scheme verified and w1th confidence .

’
-
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- 0(0, h/2)

h/2R | R dR(t)/dt dR(t)/dt 8(0, h/2)
ANALYTICAL | NUMERICAL | ANALYTICAL | NUMERICAL
(1m) (um/s)  (um]s)
01 | 500 11.50 9.35 0.583 0.591
10.05 | 100.0 10.20 8.86 .0.517 0.523
> {
0.025 | 200.0 9.12 . 7.62 0.464 0.476
0.0167 | 300.0 8.60 7.53 0.438 0.477
I 0.0125 | 400.0 8.27 6.70 0.421 0.464

Table 3.2:l Comparison of analytical and numerical values of centerline growth
rate and basal plane temperature at (0, 2/2)



88
:
B . (\ - F a.,
2 i
A 183
0.00 0.50 1.00 1.50  2.00
. - | ‘ ‘ r / N

Figure 3.7: Normalized tempe .. ure contours for an ice disc of aspect ratio 0.20

(h=k) . - . e



T | | " 89

| established in the numerical_.;:)‘r'(')cedure, a-axis growth rates were computed for the
‘mora realistic distinct conducjtjvity case. The temperature distribution for ice discs
with aspect ratios of 0.05 and 0.20 are shown in Figures3.8 and 3.9. Cdmparing these

~ sults with the single conductivity case (k, = k;) of Figure 3.7, we see that a lower
thermal conductivity in the solid phase increases the basal plane supércooii‘ng.ffand .
results in a temperature gradiént that is steepe‘r’in fhe SO‘l;ld. regio_rl'/btit unchanged in
the liquid phase. It is also noted that the isothérm 6=031is located in approximately

the same place for both cases.

In the 'recently made comparisons between the numerical and analytical ,_g.rlowth'
rates, only the centerline (z = 0) value was compared. This was due_to the difficulty
in obtaining an analytical expression for the variation o} growth ra eleong the edge.
With the present numerical procgdure_howevef, there are no such restsictions since the
growth rate may be compﬁted at any point along the edge. As one would‘ expect, the
- growth rate along the edge of fhe disc varies from a maximunr at the corner (R, h/2),
to its minimum at (R,0) due to the increase in thermal resistance. Table 3.3 gives
the variation in growth rate along the disc edge for crystals of different sizes. The
difference between the maximum and mi..imum values is most significant in the earlyx
stages of growth. For larger disc diameters, the corner edge growth rate does not
differ by more than 10% of the centerline value. In order to simplify the geometry,
1t was assumed that the edgé would remain ﬁat for all disc sizes. Consequently, the
value presented as the a.-axis'grq'wth rate will be the average growth velocity of the

edge.

The a-axis growth rates were computed as a function of disc ;:adius for three disc
thicknesses and at two different supercoolingsj Figure 3.10 shows the radial growth
‘rate of the crystals for thicknesses of 5um, 10um and 20um at an overall supercooling

of 0.05 °C. Similar results are shown in Figure 3.11 for a supercooling of 0.10 °C'.*The
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Figure 3.9: Normalized temperature contours for an ice disc of aspect ratio 0.05
(dual conductivity case)



. 2pm) RADIAL GROWTH RATE (um/s)
50(um) | 100(um) | 200(um) | 300(um) | 400(pm)
0.0 9.35 | . 8.86 762 | 753 6.70
1.25 975 9.15 7.91 7.65 6.93 -
2.50 1094 | 999 | 8.77 8.03 767 |
375 - | 144 | 1270 | 11.03 | 8719 9.19
500 | 4243 | 2611 | 17.40 | 1287 | 1204
j o
AVERAGE dR/dt | 17.3¢ | 13.36 | 1055 | 8.97 8.50

Table 3.3: Variation in the growth rate along the disc edge for the identical

conductivity case
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1mportant feature (o ngtice is that, for a glven disc radius, thlnner discs tend to grow
at a faster rate than the thicker ones since thinner discs are better able to d1351pate
latent heat from the crystal edge resulting in a higher gradient in the solid phase. This
is of considerable importance particularly when considering c-axis growth because if
the disc were thickening, the rad'ial growth rate would be expected to decrease more
» rapidly comparedﬁ/dg:sc growing without any thickening effects. The crystal growth
“rates are also observed to beéhgher for disc of small'radii but.decrease as the dle
size increases. Fujioka and Sekerka [27] noted that crystal‘ growthlrates they obtained
were lower than the measured values of Kumai and Itigaki [47] which they attributed
to the neglectioﬁ of convective heat transfer effects. From these present results, it -
e.ppears that this difference is probably due to the incorrect assumption of the thermal
conductxwty of the ice phase equalling that of wager Another source of error in their
model was that of usigg the growth of the centerline of the disc (which is the lowest

along the edge) rather than the average growth rate.’

3.1.2 TRANSIENT GROWTH OF A-DISC CRYSTAL

The results for a-axis growth rates obtaivned so far have assumed that the crystal
Erows in'ka quasi-steady state process. By quasi-steady state, it is implied that
the temperature distribution is not explicitly a funct‘ion\o_f time. Generally this
assumption is employed when the solidification rate is small and approXimat‘ely
constant with time. In fact, ;this assumption has been shown to yield accurate‘
solutions for solidification of sbherical crystals and infinitely long cylin Irical
crystals [28]. Presently, "the quasi-steady state assumption has been intuitively
justified -by realizing that the Stefan number for an ice water system at relatively

low supercoolings was much lower than unity. In fact, for frazil ice and the typical

supercoolings associated with their formation, the Stefan number is of the order

N
~
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10“6;. In order to provide further support to the quasi—steady state assumption for
frazil crystal growth agd determine for which conditions it is valid, the fully transient
set ‘of equatijons must be' solved. By a comparison of the trgnsient and quasi-steady
state solutions, we can more reaso_nably justify neglecting the time dependence term

in Equations (2.20) and (2.21).

A transient solution is obtained for a constant thickness disc crystal immersed in

a supercooled melt. The main objective of this part of the study is to determine how
quickly the transient effects would dissipate. The initial crystal size is chosen to be
just slightly larger than the critical radius R, and its cbrrespond’ing temperature 1s
taken as T, the equilibrium freezing temperature and the initial condition for the
surrounding mass of water is at the uniform tem:peratu_re Tw. These conditions can

¢

be expressed as

0(r.2.0) = 1, for 0<r<R and-OSZS% (3.10)

0, for >R and z>§
This particular condition for the ice water system was chosen on the following phys: :al
srounds.  Since most frazil ice crystals are initiated by the process of secondary
nucleatioﬁ, these éecor;dary nuclel begin tAheir, growth phase as small fragments of ice

that are broken off a larger parent crystal whose interface temperature is very close

to T,n. Also, choosing the crystal size to be just slightly larger than R, would ensure

rjhat the model crystal grew.

Since the crystal is starting.out at a small size, and the ratio of disc thick:éx? '
tc; diameter is about one, a uniform nodal distribution is used in the solid region
‘in both the radial and axial directions. A variable 'spaced grid is used in the liquid
direction since a small number of nodes was desired. .The most criti¢al parameter
found to signiﬁcéntly ipﬂueﬁce results was the size of the time 'step. Choosing too

largé a value results in numerical instabilities which are reflected in the smoothness
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of the sgjution. The value for the dimensionless time step increment (used iin the
computey runs) ranged between A1 = 500 and A7 = 2000 which correspond to real
time intyements of 0.125 x 107 s and 0.50 x 107% s respectively. The smaller time
" step is'necessary for early times in order to accurately obtain initial growth rate
behavioyy and is gradually increased when the growth rate apprsaches a quasi-steady
state Value..’The number of nodes chosen was limited to 2. in the radial and axial

" directiong of which 100 nodes were taken in- the solid region.

Figupe 3.12 and Figure 3.13 show the average growth ru. : and radius of disc
crystals for thicknesses of 20 #m, 30 pm and 50 pm and a supecreooling of 0.05 °C
as a fuhction of time. The initial transient response of tfle disc results in a rapid
change in growth rate which peaks at a value that is approximately of an order of
magnitude larger than the quasi-steady state Value. This response is due to the initial
condition which s:ets the ice pha.sé?temperature_at the melting point. As a result, t,he'
initial thermal gradients at the crystal edge interface are quite large, resulting in
high growth rates. This tranSIent effect occurs for a very short period of time of
the order of 7 to 8§ milliseconds at relatively small radii and as such, does not affect
the subscquent radius time behaviour of the ice disc significantly. Figure 3.14 shows
the radiyg time evolution of a 50 um thick disc at various supercoolings. Again, the
transient offects are damped quite quickly, as quasi-steady growth rates of 4.1 pm/s,
8.7 ym/s and 12.5 pm/s are Obtamed for correspondlng superg,oolmgs of 0. 01 °C,
0.03 °c and 0.05 °C respectively. For the low supercoolings con51dered here, the
results fupther indicate that the steady state growth rate is directly proportional to

the supercoolings as indicated by Equation (3.7).

Before proceeding to examine c-axis growth rates for frazil ice crystals, the basis
for using the quasi-steady state assumption should be recalled. Firstly, since the

transient effects were observed to damp out very quickly, the long term effects of the
‘ 3
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- initial condition on the developing temperature distribu . are negligible. In fact,
the initial transient effects acted over a very short time period ‘of a few milliseconds.
During this time however, the crystal can grow to a radius of 10 to 20 um, depending
on the supgrcooling, 4indicating that the quasi-steady state assumption should only

be applied to crystals which have grow oeyond these sizes.

3.2 GROWTH
OF A DISC CRYSTAL WITH THICKENING IN A
QUIESCENT SUPERCOOLED MELT

“The purpose of this section is to exténd the qyasi-steady state model, for a-axis
’ groy\}th of a disc shaped crystal, to include the effects of c-axis groyth perpendicular
to the crystal face. It has been shown that a quasi-steady state growth assumption is
applicable for frazil ic. growth since the effects of the initial conditions are dissipated
within the time period of a‘févs; milliseconds. Previous frazil crystal growth studies
have geng‘arally ignored the thickening of frazil ice crystals assuming its rate to bé very
small and hence negligible when compared to the radial growth rate. At extremely
low.supercoolings, this is probal - true but as the interfacial superco‘olirng Increases,
c-axis'growth also increases at a rate given by Equation (1.2). In fact, Hillig [35]
has shown that for an interfacial supercbqling of 0.10 °C, the c-axis growth ra.t.e of
an ice crystal is a.ppro'xi’ma.tely 0.30 ;zfn/s;. :Over. a time frame of one minute; this
can result in a thickening of 36 um for»b both faces of the disc. It was shown in
the previous sectioﬂ that the radial growth rate of a frazil ice disc decreased with
increasing thickness. T'herefore-,'even with‘ what might appear to be insignificant
'vtvh'i'ckening rates, the total increase in disé thickness over a period of time can h‘ave a

significant effect. In addition, the total amount of latent heat released along the two ;

s
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faces of the crystal can also be of importance.

Throughout the remaining course of this stydy, it will be assumed that the
interfacial kinetics for growth in the c-axis direction will be due to the mechanism
of surface nuclgation and will progress according to Equation (1.10). The values
to be used for the coefficients p, and p, are contained in Table 1.1. We wil! use
the experimental valilés obtained by Hillig rather. than his values which have been

modified to incorporate the actual interface temperature. It was shown in Chapter

1 that Hilligls experimental relation yielded c-axis growth rates ‘almost identical to

those obtained using Sperry’s relation for the range, of supercoolings.associated with
. . v |
frazil growth. It is not desirable to use a c-axis growth model in the form determined

by Sperry because it is not well suited to iterative schemes. As mentioned earlier, it

involves the use of two different correlations with each correlation only valid over a

given range of supercooling. Hillig's relation, on the other hand, is in a form that is

easier to apply to the numerical procedure.

Substituting Hillig’s relation (1.3) for c-axis growth into the expression for the

energy balance along the basal plane of the disc gives the nonlinear boundary

condition
2T

z:z—‘ ) 62

0z

This equation is to be solved in conjunction with the heat conduction equation to

pLp et/ ATk = k,aT (3.11)

+

—h
=32

determine the maximum interface supercooling on the basal plane surface. From this
maximum basal supercooling, the rate of thickening of the crystal is computed. Again,
we emphasize the importance of accurately computing the temperature distribution
within the solid phase region, since the solidification rate,in the c-axis direction is

‘highly dependent on the basal plane supercooling AT}.

Several numerical parameters such as the number of nodes for mesh discretization

and their positioning, concentration of'nodes near the interfaces and location of the

f’
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outer boundary had to be :ietermined for the disc thickefxing case. Since the geometry
of this problem is not signiﬁcantly different from the previoﬁs case, quantities su~ch as
the number of nodes to employ need :notl b{:hanged and nodal distributions in the
radial and axial directions need not be fe-e luated. The major difference between
 this mod;el and the a-axis growth médel is the édditional latent heat reléased along
the two faces of the crystal and the sfightly higher heat released along the disc eelge
due to its increased area. It was thought that the influence of the higher lagént heat
release would act in the vicinity of the crystal and generally would not affect the far
ﬁeldbisotherms. ‘As a result, the previously established criteria for the location of
the outer boundary can be employed for tbhe disc thickening case. It is felt that this

“assumption is probably valid at the relatively low supercoolings for which the crystal

morphology 1s discoid.

3.2..1 QUASI-STEADY STATE c-AXIS GROWTH MODEL RESUL’I‘S

*

The influence of growth in theyc-axis direction for a frazil ice cryétal leads to
" increased latent heat release into the surrounding water. The effect this has on
the temperature near the vicinity of the growing solid-liquid interfaces can best
be determineg{ by examining crystal growth rates and resulting crystal sizes. "The
increased l‘ate\nt heat release for the ice crystal érises from two sources. The first -
of these is the latent heat of solidification released during the thickening process of
the disc and the second is due to the increase in area of t' ‘crystal edge due to
the increase in disc thickness. Just as the radial growth of the crystal depends on.
its thickness, the thickness of the crystal is dependent on the‘ crystal size. When
the disc radius is very sméll, it is generally cylindrical in shape and its temperature
is relatively constant throughout, equivalent to that at the edge interface. At this

stage, the interfacial cooling on the basal plane is very small sir ~e the entire disc is
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approximately the,same temperature throughbut. Furthermore,. being close_to the
edge interface of the disc keepé the basal plane wdr;n. As the diameter of the ice
disc increases, the tnterfacial supercooling AT} also increases. When AT} reaches a
threshold value, initial growth in the c- axis direction begins. Further increases in
the interfacial undercooling result in thickening of ‘the crystél at even higher rates.‘
‘Prior' to this though, there had been no latent he:;,t released from the disc face but
as solidification occurs in the axial direction of the disc, the surrounding ﬁu-id begins
to warm up and acts to decrease the basal plane supercooling. As a result, one
wouldhexpect a 10ca1 maximum in the c-axis growth rate. Another important factor
controlling the thickening rate of a frazii ice crystal is the overall supercooling. Since
it is not physically possible to. measure thepinte'rfacial supercooling ATy, it is usually
desirable to determir;e the applied supefcooling AT which gives an appreciable c-axis

growth rate.

The c-axis growth rate for an ice disc of initial size R, = 30um and h/2 = 10um
is shown in Figure 3.15 for AT varying between 0.05 °C and 0.25 °C. Although
supercoolings higher. than 0.15 °C probably do not result in a disc morphology
and are physically unrealistic for frazil growth conditions, they have been included
here to emphasize the rather substantial effect they have ofl c-axis growth rates.
One important observation made from Figure 3.15.is that for supercoolings less
than 0.05 °C, the thickening rate for the lice crystal is virtually nonexistent. For

“higher applied supergoglings, the solidification rate in the c-axis direction increases
astoundingly to a maximum value of 1.6 pm/s with AT = 0.25 °C. Another
important aspect observed.is that disc thickening rates increase to a maximum value
which remains constant 0\_}er a relati\'/ely.“sport period of time. The crystal thickens
at this maximum value until the latent he\z\at release along the basal plane surface

decreases AT}, at which point, the c-axis growth rate also decreases. The length of
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time for which the ‘disc thickens at its maximum rate is se-en to be dependent; on
the bulk supercooling AT. For AT = 0.10 °C, tl:e ::— axis growth rate reaches its
maximum value and continues to g ow at this constf),nt rate without decreasing, over
the range of sizes computed, indicating that the latent heat release due to thickening
is not sufficient to warm the basal plane. For higher values of bulk supercooling
however, the latént heat release from the didc fac‘e is of sufficient magnitude to retard

the rate of thickening, asvi.s seen from the decrease in the curves of Figure 3.15.

The corresponding basal plane undsrcooling.is plotted én dimensionless form as a
function of disc radius in Figure 3.16. For supercoolings of 0.10 °C' and lower, the
basal plane temperatufe at 1 = 0 and =z = h/2 decreases from its initial value of
0 = 0.88 to a constant value of approximately § = 0.60. For higher values‘of AT,
the quantity 0p (max?i}a:lum dimensionless basal plane undercooling) decreases to its
minimum value, at which time its thickening rate is a maximum, and then Eegins to -
rise due to the latent heat release. The time at which this minimum occurs is earlier’
for increasing values of AT confirming the ‘asser«tion'that the quantity of latent heat

release has a retarding effect on the thickening rate.

- The corresponding growth ratés in the radial direction are shown.in Figure 3.17.
Here the characteristic dependence of radial growth fate on crystal size is.observed
to be the same as for the constant thickness case. The major difference getween the
thivckem'ng and constant thickness cases is that the radial growth rate decreases more
rapidly for a disc with thickening included. This efféct is caused by the excess latent
heat released from the edge due to its increased thickness. The latent heat release
from the basal plane is not of sufficient magnitude to retard the edgewise growth rate
significantly. For AT = 0.10 °C, we see that the latent heat release from the basal

plane is negligible but the a-axis growth rate at a disc diameter of 1 mm is reduced

from 22 um/s, for the constant thickness case, to 19 gm/s with thickening included."



IYigure 3.16:

T
//// ..........
/(\? —————————————————————————————
o >
Q‘N
o
T
o-‘ .
' AT=0.05C
__AT=0.10 C |
LLAT=0.15C
AT=0.20 C
s AT=0.25 C )
.//\
© T T i T T T _
0.0 ‘5.0 10.0- 15.0 20.0 25.0 30.0 35;04
DISC RADIUS (m) *10

1

Dimensio»nllcss temperature at the center of the basal plane (r
0,z = h/2) for several values of AT '

107 .



?O Q
- 10
%
. .
[4V
o .AT=0.05 C
. . AT=0.10C _
sy AT=0.15C .
8 AT=0.30¢"
" AT=0.25 C
CQRn |
~ l
£ o
~ 5
m —{
B~
<4 0
AR B
= |
B~ o |
=od
oL
o~
O w |
S v '
SN
o J\ N
N—' .
o : ‘
d 1 | —\Y-
0.0 50 100 " 150 20.0 250 30.0 35.0
*10°*

Figure 3.17:

DISC RADIUS (m)

108

a-axis growth rates for ice discs at various supercoolings with

K.,

initially R = 30pm and h/2 = 10pm



109

These effects are more noticeable at the higher supercoolings although reasonable
comparisons cannot be made since the crystal groyth rate for the constant thickness
case never reached a near steady state value due to numerical difficulties associated )
with disc aspect ratios falling below 0.01. For AT = 0.10 °C, the disc thickness has
increased from 10 um to 1. pm by the time the disc has reached l‘rpm in diameter.
This difference in growth ra.cs would be more significant at Iargér r'éndii since the
correslfq'ndiﬁg disc thickness would also have increased \The discrepancy in growth
rates for supercoolings higher than 0.10 °C would be even|more substantial since the

latent heat release would be higher.

Another point to note in Figure 3.17 is that the thickefling of the crystal causes\the
radial growth rate to decrease as applied supercoolingfis increased. We ‘see that the
radial growth rate is slightly lower for AT = 0.15 °C than for AT = 0.10 °C. This is
contrary to what one would expect for ice discs with a constant thickness where, the
a-axis growth rate always increases proportionatély with an Yincrease in the applied
supercooling. The observed trends with thickening included are in fact consistent
with what 1s physically e>.<pected, namely that the thicker discs have lower growth
rates compared to the thinner ones. At higher supercoolings, the disc thickening rate
increases resulting in a higher latent heat release. This eventually retards the radial

growth rate sufficiently so that discs growing at a lower applied supercooling have

higher radial growth rates than discs_growing at higher levels of supercooling.
. .

The corre.sponding increase in the disc radius over the same period of growth as
Figure 3.17 is shown in Figure 3.18. The variation in disc thickness over this time
.period 1s plotted as a fﬁnctipn of crystal size in Figure 3.19. From Figure 3.19, it
can be seen that the increase in disc thickness can b(e quite large over a period of

timé. For example, the thickness increases from 10 pm t ! \pproximately 50 pm for

a supercoolmg of 0.20 °C and an increase in radius of 0.97 mm\ This increase in
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Figure 3.19: Increase in thickness of a frazil ice disc for varions supercoolings
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thickness was not as significant for tlale lower supercoolings. For AT = 0.05 °C the
disc thickﬁess remained at a constant value of 10 um and for AT = 0.10 °C, the
increase.in thickness h/2 was approximately 2.5 um. Since the increase in thickness
is sigpjficantly larger for higher supercoqlings, it is of interest to note that the increase
in radius for ATI: 0.10 °C is considexgébly higher than the other supercoolir;gs as
seen in Figure 3.18. Naturally for AT = 0.05 °C, the increase in disc radius is not
very high since dR/dt is.considerably lower than the other supercoolings. As a result,
the overall size of a frazil crystal deperidant only on the applied supercooling, but
also on the two cor}lpeting forces of interfdcial undercooling on the disc face and the
latent heat réléase.‘ ,
; -

Figures 3.20 and 3.21 show the a-axis growth rate of ice discs with initial
t_hicknessles of 5 pm, 10 pm, 20 pm and 25 pm fof supercoolings of 0.08 °C and
0.10 °C respectively. The cor_responaing c-axis growth rates are shown in Figures 3.22
and 3.23. Both these sets éf results indicate that the radial growth rate of ice crystals-
~ollapses to a single curve when the disc r'adius is abproximately 1 mm regardless of.
the initial thickness. The basic conclusion to draw from this is that frazil crystal, if
given sufficient growing time, will grow to the same.thickness.for a constant applied . |
sup=rcooling as shown in Figures 3.22 and 3.23. The reason for this i.s that thinner
discs will have higher radial growth rates resulting in a faster reduction in the basal
plane interfacial undercooling as compared to thicker discs shown in Figures 3.24
and 3.25. As ‘a result, the thinner discs will have higher thickening rates. The
increase in thickness, however will act to retard the radial growth rite. In the end,

these same competing factors mentioned above will result in thicker dis¢s although to a

lesser degree. Consequently, the final result will be that discs with varying thicknesses .

‘initially will grow to a constant size and thickness. Figurves' 3.24 and 3.25 also indicate

that the largest diameter discs are also the thickest, an argument supported from
r .

.
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experimental observations by Bukina [13].

Summarizing the results of this chapter, we see that the numerical pro‘cedure-‘
employed provided a reasonably accurate solution of the frazil ice growth problem. In
addition, the validity of the quasi-steady state assumétion for frazil growth studies was
also demonstrated. So far all the results of this chapter have resulted from assuming
that relative motion between the ice and water’components was negligible so that
~ the heat transfer rates into the melt could be modelled as conduction. Although this
1s a reasonable assumption however in reality, frazil is generally formed in turbulent

bodies of water.

Methods for including the effects of turbulence and its influence on heat transfer

rates are the SLibJ:e:Ct of the next chapter.



Chapter 4
GROWTH' OF FRAZIL CRYSTALS
FLUID |

<

IN A TURBULENT

- A model considering growth of an ice disc in an infinite quiescent fluid is physically
unrezﬂi’gt\if since frazil accumulations almost always occur in turbulent bodies of water.
The source of the turbulence can result from wind and flow conditions for lakes and
rivers or mechar.ical agitation for industrial crystallizers. The turbulence intensity can

\‘depend on several factors, of which few are well researched or documented. In this
. section, the existing rhodel will be further extended to include the effects of turbulence ‘
so that its influence on crystal growth rates may be assessed. The anticipated effects

are increased growth rates in both the a-axis and c-axis directions due to higher rates

of latent heat dissipation.’

The‘. major objective of this chapter is tobbﬁvaluate some standard methods for
including the effects of turbulence. Sbeciﬁ_cally, we would like to compare the stagnaht
layer coﬁcept-for modelling turbulence intensity with other traditional turbulence
representation models. In pérticular, we want to evaluate the feasibility of using
empirical- heat transfer relationships for approximating the por_t-iori»of-latent heat
released to the surrounding turbulent liquid. The analysis of growth in a turbulent
fluid is further extended to situations where the supercqoling is tirrie\ dependent.

4.1 EFFECT OF FLUID TURBULENCE ON CRYSTAL
GROWTH

Before proceeding to describe methods for incorporating turbulence effects, a brief

background on fluid turbulence characteristics is presented. Fluid turbulence can be

120
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visualized as numerous interacting eddies or vortex tubes of various length scales. -
- The largest sized eddies result from instabilities in the mean flow. T-he scale and
orientation of these eddies Is strongly dependent upon the geometry of the flow and
~ its constraints. Some typical examples of large eddy length scales are as follows. In
a large stirred tank, such as a crystallizer, the largest eddies are of the order of the
impeller width. For river or channel flow, the large scale eddles are limited by the
channel width or depth. In large open bodies of water such as lakes, it is difficult
to determine the scale of the large eddies since the turbulence is generated by some
external, variable agent such as agitation of the water.surface by wind generated shear

forces.
The K('ﬂrnogorov Theory of Isotropic Turbulence states that *the energy contained

in the large\}oa\le eddies cascades through the entire spectrum of eddy sizes to the
smallest sized ezi'dies until it is dissipated by fluid viscosity”. The spectrum of eddy
sizes can be classified into four main catagories. The first of these consists of the
 largest scale eddies resulting from instaiﬁlities in the bulk flow. These large scale
‘eddies are respo’nsible for the generation of turbulence energy. The second category
contains eddies of a slightly smaller scale which are responsible for transportmg the
turbulence energy down to the smallest scale eddy siaes where the energy is eventually
dissipated. The third category is classified as the inertial. subrange and contains
eddies of length scale larger than the d1551pat10n scale but smaller than the scale of
the large energy- containing eddies. Dissipation of the turbulence energy begins at
this stage by the inertial interaction of different size eddies. The final category is
the viscous dissipation range‘and contains eddies of the smallest length scale. Fluid
viscosity plays an important role in this regime by quickly damplng and d1531pat1ng,
the remaining turbulence energy. These smallest size eddies have no memory of the

mean flow orientation and are said to be locally 1sotrop1c. This energy cascade, is



illus'trataed schematically in Figure 4.1. The fundamental assumptfon made in the
Kolmogorov Theory is that turbulence is in local equilibrium; production from the
Reynolds stress-mean shear interaction is balanced by the continuous destruction of
turbulence by viscous dissipation. The kinetic_energy per unit mass of fluid contained
in large scale eddies is proportional to u?, where u, is the eddy velocity. The time
"scale in which this energy is dissipated is proportional to u,/l, where I is the lengtfx
scale of the large eddies. From this, the rate of turbulence énergy production P is

- estimated to be u3/1, which is usually expressed in units of Watts/kg. Therefore, the

rate of dissipation'is-defined to be

I
'\‘luw

€ ~

(4.1)

The scale of the smallest eddies, which are dissipated by viscosity, were estimated by

Kolmogorov to be- : .
. V3 14 =S ‘

j : M ~ <—'> ' o (12)

6 .

where 7y is referred to as the dissipation scale o Kolmogorov scale and v is the fluid-

kinematic viscosity.

The last two categories in the spectrum of. edd‘y‘sizes (inertial subrange and
viscous dissipation), exhibit a universal charz;cter when plo'ttéd\as function of the
wave number ¢ (reciprocal of the wavelength). This i.mplies tﬁt the turbulence
en.ergy’spectrum is shape-preserving, provided ¢ and v remain constant. The range
of eddy sizes over which this occurs isreferréfiv to as the universal equilibrium range.
A typical turbulence energy spectrum. 1s 'shown in Figure 4.2. It is noted that the
slope of this curve is —5/3 in the inertial subrange region and —7 in the viscous

dissipation region. These characteristic slopes ha.¥e been observed for the turbulence

energy spectra for a variety of turbulent flows.

Typical values for / in rivers and lakes is of the order 0.1 m and velocity fluctuations

N\
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W' are between 0.2 m/s and 0.4 m/s. Thus from Equafions (4.1) and (4.2), the
Kolmogorov scale can be estimated to be approximately 90um. Compared to frazil
crystal diameters, which range in size from a few microns to 0.80 mm, the Kelmogorov
scale is of about the same order for small crystalls an‘d an orde<r6f'ﬁr nitude smaller
for the larger crystals. For small crystals, thermal energy diss\i~g)atio§ss)by diffu;ion
from suspended particles of size smaller than n;; a quiescent layer can be assumed to
surround the disc. If the crystal is much smaller than 7y, the quiescent layer can be
considered to be of infinite extent since the temperature distribution in the liquid will

be very close to the infinite quiescent fluid case. As the crystal radius approaches ks

the.thickness of the layer decreases resultmg In a steeper temperature gradlent in the

~ liquid pha,se For larger crystal sizes, the ratio of the qmescent sublayer to the disc

N

diameter is small indicating that small crystal growth is governed by conductive heat

dissipation and large crystal growth rates are more hlghly dependent on turbulence

characterlstlcs of the bulk flow.

The most significant effect of turbulence on frazil,ice crystals, as noted previously,

is that it promotes crystal collisions and in this way acts as the drlvmcr force for

,secondary nucleation. The presence of turbulence. also acts to increase crystal groxﬂtl

rates by increasing the rate at which latent heat from the growing: surface can be
dissipated to the surroundmg fluid. Neglecting it in the frazil growth model will
result in significantly lower growth rates. Therefore, we are rnost interested in the

incorporation of these effects to the frazil growth model in a straight forward manner.

There are three methods for mcludmg the effects of turbulence on frazil growth

Clearly, the most sophisticated method is to determine the veloc1ty -distribution

©of the fluid the crystal is immersed m, by solving the appropriate flow and

turbulence energy balance equations. The major drawbacks to this approach are the’

computational difficulties involved when cdﬁpled with the crystal growth problem. In
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addition, several assumptions must be made about the flow regime and its turbulence

'pa\r'gmeters. Omsbedt [58] attempted to model the effects of turbulence on a collection
\\

of crysh'ﬂs‘_usinfr a two equation turbulence model. He snnphﬁed the heat transfer

“analysis considerably by assuming a lumped capacity type heat balance relation

13

for both the ice and liquid phases. Traditional methods for including the effects

of turbulence in crystal growth problems have consisted of assuming an average -

turbulent heat transfer coefficient from which the rate of latent heat dissipation to the

fluid can be determined The turbulent heat transfer coefficient is determined {rom
empirical data The final method consists of assumlng that a qu1escent conductive
fluid layer surrounds the i ice crystal. The thxckness of the layer depends on the level
of turbulence in the fluid. Since the effect of turbulence is to provide a mixing effect
between fluid layers of varying temperatures. The end result is to rapidly provide

a well- mlxed 1sothermal region some distance frorn the disc; thls distance bemg a

-function of the turbulence intensity. In the next section, the two empirical methods

for mcludlng the effects of turbulence in the disc growth model will be compared. It

should be noted that we cannot check the:validit'y of one method over the other due

Therefore, only qualitative comparisons are possible. Also, the turbulent nature of
water bodies that frazil forms in has to be correlated with stagnant layer thlcknesses

in order to ef'fectlvely use this technique.-

ad

‘\.

*~
L3

to the lack of experimental results for the growth of frazil crystals in a turbulent fluid.
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“

4.2 GROWTH OF FRAZIL IN TURBULENT FLUID

-’

4.2.1 CRYSTAL GROWTH BASED ON E‘MPIRICAL HEAT
TRANSFER DATA

4,

- Daly [18] examined the a-axis growth rates of frazil ice crystals during’ the eoufse
of his work on frazil ice dynamics. The turbulent heat transfer coefficients were
determined from the eﬁcperimental‘ results of Wadia [76] for rrias; transfer properties
from suspended partlcles such as.discs and spheres. Addltlonal values for heat transfer
coefficients of frazﬂ crystals were determined experimentally by Bukina [13]. He
correlated Lhese heat transfer coefﬁaents with the crystal thlckness and diameter,
the relative fluid velomty and the crystal growth rate. It should be noted that
the magnitude of heat transfer coefficients used by Daly and those from Bukina are
approximately of the same order of magrﬁtude although Bukina’s values vield higher
‘ values for radial growth rates. The accuracy with which growth rates of frazil crystals
 can be deterrmned using Daly’s expressmns for heat transfer. coefﬁaents depends on
a prior knowledge of the fluid turbulence levels. Bukina’s expresmen for the heat
transfer coefficient i 1s not very useful since it requires a prior knowledge of the crystal -

growth rate. |

For disc growth in the quiescent liquid, the portion of latent heat conductedv .
th'rouéh the solid phase was found to be comparable in magnitude to the portion
~ conducted through to the liquid phase. Since the heat transfer coefficients used b)?::
Daly are based on mass transfer data, it was necessary to assume that all the latent
heat generated at the growing crystal edge be dissipated to the‘ﬂsurrounding turbulent
fluid, which is contrary to what is expecte_d.v This is because Wadia experiments
‘measured the dissolving rates of small parficles into a liquid. Since the pafticle '

dissolved into the liquid, the mass transfer coefficients determined by Wadia were for
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the liquid region only. Therefore in making the mass transfer-heat transfer analogy,

Daly was forced to neglect conduction through the solid phase. Daly further assumed ‘
that thickening rates of frazil ice crystals are very small in comparison to radial growth
rates and hence can be'igr}o‘red. As a result, the growth rate of a frazil c_r&sta\l in the

a-axis direction can be given as
pL— = hp(Ti = Tx) T (4.3)

where hg is'the average heat transfer coefficient along the crystal edge and T, is the
edge interface temperature. Since T; is approximately equal to‘Tm for crystal sizes

- greater than R, the temperature difference can be replaced by AT.

VD‘aly stated that heat transfer, in a turbulent fluid; is dominated by diffusion for -
cryétalsﬁrowing in the small Peclet number rangeq(Pe < 1). For these low Peclet
n’um?,e’r/s, he séys that the rate_cﬁf heat transfer is insensitive to the shapé of the
"'.part.‘}\cle. The radius ¢~ hese particles, for small Peclet numbers, is R < e Pri/?. For
large crystals (R > n¢) the Peclet numbervis iérge‘ (Pe > l) and the ‘heat transfer
from the particle is determined from the Frossling equation for spherical Yparticl_es.
These results can b‘e stated in a more intuitive form as follows. Firstly, the turbulent

Nusselt number is defined as

- ‘-":. kl B kl

: R(t
N - _R()
N . < - .\ N 77k
.Then‘it‘hér.:z@g\% ¢heat transfer coefficients are given as follows 5
. . l',:},’?‘t'& ,_;‘ YA L
for m < 1/ Pt

S Nup =,Gﬂ +0.17Pr2) (4.5)
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for 1/Pr'/? <« m <10 - .
1 pra\ o
| /\/‘)Nw = (— + 0.55;1C ) - (4.6)
m : .

For m > 1 and low intensity (q;rm4/3 < 1000)

m

1 ) P 1/2 o )
Nur = <-77_1 + 0. {00%035_7‘ ) Bs . ' (4.7

where ar is the free stream turbulence intensity and 3, is a shape factor equal to 1.1

for discs. For m > 1 and high intensity (arm?*/* > 1000)

Fl

1 :
Nup = <— + O.:TOa%25Prl/3) B,. - (4.8)
m = .

Figure 4.3 shows values of Nur ;Rlotted 'as a function of the parameter m for a free

stream tufbulence intensity of 0.20. From the experimental results of Wadia [76],

- Daly concluded that for large values of m, the ratio of hg/hp approaches unity, where

hg is the average heat transfer coefficient for the frazil disc face. This result from
Wadia’s expe‘riments‘. is shown in Figuie 4.4 for various aspect ratios as a function
of the quantity 7/7, whefe 7 is defined as the radius .of a -ephere with the safne
s’ur'face area as the disc. The plot shows thatb the ratio 1_15/713 increases rapidly for
low levels of 7/m as the aspect ratio departs from unity. For a fixed aspect ratio,
he/hp approaches unity for Increasing values of 7/ne. From these results, Wadia
speculated that the effect of turbulence 1ntensxt>v would be to enhance hB more than
he. For large values of 7, he felt that the effects of higher local shear at the edges of

the disc 1ncrease-hE. However, due to the simultaneous enhancement of hg because

" of the&l{bulence intensity, the ratio hg/hp approaches unity. ot

What these results+fidicate is that for small disc sizes, c- axis gfowth ratAes will be-

very small when the face heat transfer coefﬁcv 1tisa fractlon thé edge heat transfer ‘

coefficient. With mcreasmg crystal size, c-axi- ‘*owth rates will increase since the



130

100

LOW PECLET
__HIGH PECLET

HIGH FROSSLING (SPHERES )
HIGH FROSSLING DlchsR)ES

- 0.1

Trry T TrTY

10 100 '”1_000
r/m,

Figure 1.3: Nondimensional heat transfer correlation based on a turl’)ulenf
Nusselt number (from Daly [18])




131

N M v’
o <
o !
) .
&
2 -
o 0=h/2R = 0.23
5 o=h/2R = 0.35
A=h/2R = 0.50
o=h/2R = 1.00
(o]
LIS
Felial
\.
.G
e
'e]
]
2 .
4 ﬁ "éo
© pemm gy e R e Rl e
o1 .1 ?) 100 1000
. | r/m; , _, |

Figure 4.4: Ratio of heat transféxb'f:l‘c'o.efﬁcient from the disc f::dge and the face

(from Wadia [76]) -



T i3

value éf t}re heat transfer coefficient on the basal plan¢ will app“méch t}}e value of th“e
edge heat transfer coefﬁcierrt. When the crystal has grown t§ a sufficiently large size,
the thickening rate of th}e*‘crystal"will become comparirable with the miagnitude of the
radial growth rate. Physrcally, this is what one would equct since the radial growth
of frazil crysta]s decreases with 1 mcreasmg crystal size. " This results in a reduction in’

the basal plane undercoollng and subsequently causes an increase in the thickening

rate. Although Wadials results are only for aspect disc ratios between 0.23 and 1.0, we,

can still é,‘pply them to obtain c-axis growth rates for the purposés of comparing with

the results of the stagnant layer model to be discussed in the next section. Therefore

'

we can state that thé growth in the c-axis dlrectlorr Is given by

pls— =he(Ts—Tw), (4.9) .

where Tp is'the basal plane temperature. Inclusion of the interfacial kinetics yields |

the additional condition *

1.dh

bt #lem/ATk

24t T

Using the relations (4.3) and (4.9) for a-akis and c-axis growth rates along with

Equations (4.4) through (4.8), the growth behavrour of ‘a frazrl ice crystal in a

turbulent body of water can be modeélled. We' refer to this calculatlon method as -

“Daly’s mo;del’ in the remalnder of this chapter for brevity. It should be noted
that c-axis growth rates are computed indepérrdent»ly of the a-axis growth rates,
since equations 4.3 and 4.9 are not dire tly related. Growth rates in the a-axis
direction however, are implicitly depenélt;on{'the thjcknesé of the disc since the
correlations (4.7) and (4.8) inéovrvporate the disc s}ia.pe of ‘the cry'stal through the
parameter . For computing c-axis growth rates, it was assumed that hg = h5/2
whrch was chosen primarily because 1t is the maximum value within’ the range of

1 \
Wadia’s results. For our calculatlons, we have assumed that hp will always remain

[
T o
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‘as hg/2 for all disc sizes, since the correct functional dependence is not known.

Results of a-axis growth rates are summarized in Figures 4.5 to 4.6 for

’supercoolmgs of 0.05 °C and 0.10 °C. The initial diameter and thickness of the
disc were 60um and 20um respectlvely Although the trends for a-axis growth rates

are similar to growth trends established for the quiescent fluid model, the magnitudes

ave considerably lower than the previous results. A value of ni = 10um corresponds

. to a very high dissipation rate of 573 W/kg. In most lakes and rivers however, the

dissipation rate € is estimated to be approﬁimately 50 mW /kg which corresponds to

a Kolmogorov length scale of about 100 um. Thus, for reasonable levels of turbulence

intensity, Daly’s growth model predicts an edgewise growth rate of approximately 1

pum/s for a disc radius of 1 mm and a supercooling of 0.05 °C. For very high levels
of turbulence, c‘orrespOnding'to a Kolmogorov scale of 10 um, the predicted growth
rate is 6 um/s. Clearly, these vahi:es_ are lower than what one would expect, since
the quiescent growth model predicts 4 radial growth rate of lOéum/s for .the same

supercooling.

Thicken‘ing rafés’ of ice crystals for the same supercoolings of 0.05 °C and 0.10 °C
are shown»in Figures 4.7 ;md 4.8 respectively. Unlike the calculated a-axis growth .
rates, the ‘magnitu'dev of these values appears to be consistent with those obtained
frdm the quiescent médel... For the quiescent model, the maximum c-axis growth rate
is 0.19um/s for a supercooling of 0.10 °C and negligibly small for a supercooling
of 0.05 °C. Using Daly’s heat transfer data yields c-axis growth rates of 0.10um/s -
to 0.15um/s for AT = 0.05 °C and 0.45um/s to 1.0um/s for AT = 0.10 °C for
disc radii greater than 1.0 mm. 'The variation of the c-axis growth rates thever is
reversed from results obtaihed through the quiescent model. For the present casé,'
the c-axis growth rate, contrary to the physics, decreases with increasing crystal size

a.nd not with increasing size as was the case with the quiescent model. This is mainly
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due to the way in which c-axis growth is calculated which causes the basal plane
temperature 7T} to increase for increasing disc radius. The basal plahe undercooling
is not affected by the latent heat release from the thickening process since it is all
dissipated into the liquid. The increase in T}, results from the decredsing basal plane
. heat transfer coeflicient with increasing crystal size and consequéntly the incorrect
behaviour of decreasing c-axis growth rates. Another major shortcoming of Daly’s
model is ﬁhe- independence of the a- and c-axis growth rates from each other. From
the quiescent model, it was observed that the thickéning rate of the disc indirectly
reduces the radial growth rate of the crystal as a copseqﬁence of the ihcréased latent
heat rgal'eased at the disc edge. In Daly’s model, no such result is observed, since there

&,

1s no connection between the disc radius and its thickness.

4.2.2 STAGNANT LAYER MODEL

A

If the fluid surrounding the crystal is assumed to be well mixed and the turbulence
is homogeneous and isotropic, then it can be assumed that a thin quieécent layer of
fluid is surrounding the crystal thi‘:%}ugh which the mechanism of heat transfe.r is by
conduction. Siﬁce the surrounding fluid is well rﬁixed, it can be assumed to Be at a
uniform temperature. Thus, any temperature variation in the crystal occﬁrs within
the quiescent layer surrounding the crystal. This method ilas been employed when
complicated flows are encountere‘d in external convective heat t.ransfer problems. The
concept of a thin, stationary conductive layer‘of fluid surrounding the solid body‘
is employed to calculatke heat transmission rates to the fluid [34]. The thickness
of this layer is usually determined from previously established experimental results.
Empirical data relating the heat transfer coefﬁcié;t to the conductive layer thickness
are available for natural convection problems. However, there is a considerable lack

of experimental work which is necessary to formulate such empirical correlations
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(relating the conductivity layer thickness to levels of turbulence intensity) for a disc
‘geometry subjected to fluid motions similar to that of frazil crystals. We will refer -
to this method for incorporating turbulence as the “stagnant layer” approach. This
method was used by Tikuisis et a%‘-vg74] to calculate the dissolving rate of a gas bubble
in a well mixed, stlrred solution. They employed the concept of a thin unstirred liquid
layer of thickness § for the determination of the dissolving rate of bubbles in a stirred
volume of liquid closed to mass transport. They noted that the thickness of the
diffusion layer was dependent only on the level of fluid motion. '1“he values used for
the diffusion layer thickness were’ examined through an experimental investigation of
bubble evolution in a stirred liquid. The only parameter that ngeds to be determined

in this case, is the thickness of the stagnant liquid layer.

Clearly, for very small crystals (R < nx) the concept of a quiescent liquid layer has
physical significance. The mechanism by which heat is ‘transferred' to the liq.uid phase .
is by conduction since the crysta' is smaller than the size of eddieé in 'the viscous
dissipation range. Therefore, we can consider the fluid surrounding the crystal to be
quiescent and of infinite extent (It was shown in Chapter 3 that the outer boundary
located at infinity can be approximated by the distances of 50 R in the radial direction -
and 10R in the axial dire‘cf?bn). The concé;t— of an infinite conductive layer of fluid
around the crystal weakens when the crystal grows to sizes larger than the Kolmogorov
scale. Physwally, the existence of a qulescent layer of fluid becomes less hkely due
to the relative motion created at the crystal boundary by small scale eddies. The
thickness of this layer can be approxxmated by the length scale of the smallest size ‘
eddies (i.e. the Kolmogorov length scale). The stagnant layer approach may be
employed in order to determine crystal growthv rates in a turbulent fluid. The major

roblem is to determine values to use for the conductive layer thickness 6.

The Kolmogorov scale n, provides some basis for the relative magnitude of the
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stagnant layer thickness from which two limiting values can be'es.tirnated. The lower
limiting value for the s_t:;gn'ant layer thickness is of the order of the Kolmogbrou scale
N and corresponds to strong levels of turbulence The other limiting case corresponds
to little or no turbulence present (i.e. infinite qulescent liquid). Intermediate values
of § can be used to vary the level of fluid turbulence. If the turbulence 1nten31ty s
relatlvely low, the dissipative scale will be large, resulting in a thicker layer of stagnant
fluid. If the turbulence intensity is high, then the dissipative scale nx will be small
(most of the fluid surrounding the ice cry's};al" will be well mixed) and the resulting‘

latent heat dissipation rate will be increased. Thus, the thickness of the conductive

layer is strongly dependent upon the intensity of turbulence in the water.

For the results that follow, the stagnant layer thickness was varied from 6§ = 5.m,

- corresponding‘to a highly turbulent fluid, to 6 = 30um corresponding to intermediate

levels of turbulence. The infinite quiescent fluid case is also presented for the purposes
of cornpa'rison‘. Figure 4.9 and 4.10 show the a-axis growth rates of ‘a frazil disc for
bulk supercoolings of 0.05 °C and 0.10 °C. The initial size of the ice disc for both

caseswas taken as R = 30um and h/2 = 10pm. The corresponding c-axis growth

‘rates are shown in Figures 4.11 and 4.12. The trend of the growth rate curves for

all the values of eénsidered is seen to decrease with increasing cry;tal radius. The
growth rate is very high at the initial crystal size bu"t decreases to a quasi-steady value
in a manner similar to the infinite quiescenf fluid case. Decreasing the stagnant layer
thickness (whlch effectively increases the level of turbulence) is shown to increase the
lo &g term tadial growth rate of the crystal. The radial growth rate is obser;/ed to
be 10,um/s at a crystal &v?e of .1 mm and a supercoohng of 0.05 °C for the 1nﬁn1te
quiescent ﬁuld case’ Theb"correspondmg growth rates for values of § equal to 5pm

lO/zm 15pmm m, 20pm and 30,um aré 21/1m/&‘v29/1m/s, 38um/s, 44pm/s and 63um/s
respectlvely The radial growth rate. for the crystal would be between IOym/s and -

')Y

L
L2

e
o

w!
i



3
*10
15.0
!
C-,

/)
6.0 9.0 12.0

a—AXIS GROWTH RATE (i

1

3.0

>

d Ul

0.00001 0001 T oo1
DISC RADIUS (m) ' :

% iy Initial values of R and h/2 taken as 30um and 10um respectively.

’8

e ?:& g,f The Tabel: “INFINITE” corresponds to the quiescent ﬂuxd of infinite

vy extent
Yz C

a-axis growth rates for stagnant la.yer model with AT = 0.05 °C. ..

141



142

o :
= S- -
x ™
6=35 um
_0=10 pm__
; L8 =15um
no =20 um
N 6=30 um
E o INFINI E
N
=3
Emt
<
e
@
=~
=
)
o
G
n =]
—
<
B
«
o
(D'_
~= =
S) & \
O’ iy Th——
0.00001 0.0001 _ _ - 0.001
DISC RADIUS (m)
Figure 4.10: a-axis gro‘&rth rates for stagnant layer model with AT = 0. IiO °C.

Initial values of R and h/2 taken as 30pm and 10um réspectively.
TQeJa.bel “INFINITE” corresponds to the qu1escent ﬂmd of infinite

- extent.



- o
*10
25.0

]

20.0
1

10.0
L

| c—AXIS GROWTH RATE
'15.0

5.0

0.0

S=5um
_.0=10 um__
6= 15am

d=201um

0=30um

INFINITE

/— INFINITE

Figure 4.11:

T T ISR B S B g0 ¢ T
0.00001 0.0001.

6.001 C 0.0t
DISC RADIUS (m)

c-Axis growth rates for stagnant layer model with AT = 0.05 °C.
Initial values of R and /2 taken as 30um and 10pm respectively.
The c-axis growth rate for the infinite quiescent fuid is very low -
and represented by the horizontal axis of the graph.

143



10

10.0 15.0°° 20.0 25.0
| - | 1 1

c—AXIS GROWTH RATE

5.0
]

<
o

el gy
S
it
Y
o> i o §
i 444
";‘:‘;‘ ]
R ,517‘
Vt‘:‘ N
A s N
”_‘._:._._—_..-.:-A:-..—A.—,f.‘—,.-.i.‘._;._.—,ﬂ-'i ¢
-7, /; i(‘l'avg:'.‘ W
% )
i
- <t
s L.
3 nt
. E
é‘ﬁ - Yo

6 =30

INFINI

Fié‘ure 4.12:

0.00001

l / —
0.0001 0.001
DISC RADIUS (m)

0.01

c-axis gr@f;}y,tﬁ‘réfésﬁ for stagnant layer model with AT = 0.10 °C." ’
Initia] values of R and /2 taken as 30pm and 10um respectively.
The label “INFINITE” corresponds to the quiescent fluid of infinite

extent. R
N



145

21pm/s for a stagnant layer thickness greater than 30um. These results appear

physically realistic since limited observations for radial growth rates of crystals in a

quiescent fluid by Fujioka (28] and Bukina [1‘2] also show. sirnilar trends.

" There is a sxgn1ﬁ€ant change in the c-axis growth behavmur ‘As the stagnant

~T v
s

Jayer thickness ¢ decreases the thickening rate of the crvstal increases rapidly to its

maximum value in contrast to the quiescent fluid cases. The maximum c-axis growth
rate 1s observed to be independent of the stagnant layer thickness § and the disc radius

R. The thickening rate in%reases from almost zero, for the quiescent case, to 0.20um /s

for AT = 0.05 °C. Sirnilarly, for,a supercooling of 0.10 °C, it increases from a modest

rate of 0.20,um/s to a substantial value of approximately 2.6um/s. These high c- axis
growth rates are due to the increased basal plane supercooling as a result of increased
levels of turbulence (decreasing values of 8). Recall that the growth mechanism ln the
c-axis dxrectlon is surface nucleation. Consequently, c-axis growth rates are a functron
of the temperature dlfference AT;; =Tn —T(0,kh/2). Therefore, the thickening rate

of the disc and the latent heat release along the disc face increase as the basal -

plane temperature (7°(0,£/2)) decreases. The maximum basal plane undercooling

" (in dimensionless form) is shown in Figures 4.13 and 4.14 for the supercoolings of

0.05 °C amd 0.10 °C respectively. - The basal plane temperature decreases very

rapidly to approximately § = 0, which corresponds to the bulk fluid temperature.
Consequently a rapid increase in c-axis growth rates is observed. As a comparison,
we see that neglecting the effects of turlﬁulence would have yielded 2 ~dimensionless
basal plane temperature of § = 0.60 for AT 0.10 °C. The radlal growth rates
predlcted from the stagnant layer model are mgnrﬁcantly hlgher in comparison to
Daly’s growth rates. Daly s radial growth rate predictions are urreasonable since
they are even® loWer than those predicted from the infinite quiescent fluid model.

The thickening rates.obtained by using the stagnant layer model however are very



146

o

0.00001 00001 " 0001+ 0.0l
. DISC RADIUS (m) . . o

Figure 4.13:  Mazimum. dlmenswnless basal plane undercOolmg as a functlon of
crystal ‘radius for AT = 0.05 °C. The 1initial crysta.l radius is
30um . and h/2 =10um. The label “IHFINITE” corresponds to
the quiescent fluid of 1nﬁmte extent

Y



147

1
{1

0(0,h/2)

o

%:0.0001 0.001 0.01

_o.ooobl,‘é'?},v"ﬂ
o DISC RADIUS (m)

Figure 4.14: Maximum dimensionless basal plane undercooling as a function of
- crystal radius for AT = 0.10 °C. The initial crystal radius is
"30pm and k/2 = 10um. The label “INFINITE” corrésponds to

the quiescent fluid of infinite extent.
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‘'similar in magnitude to those predicted on using Daly’s heat transfer data. The c-axis
growth rate for a supercooling of 0.05 °C and high levels of turbulence (7, = 10pm) is
approx1mate1y 0.15um/s for a disc radius of 1 mm. The c-axis growth rate obtained
using the stagnant layer model for these same conditions is 0.23um/s. The difference
in these values is somewhat larger for a supercooling of 0.10 °C. Daly’s model yields c-
axis growth rates of 1.04m/s compared to 2.6pm/s on using the stagnant layer model.
Thus, radial growth rates obtained by using Dal&i;%nodel are signiﬁeantly lower than
~ those obtained from the stagnant layer model although the rate of thickening is almost

the same.

The major difference in the c-axis growth rates between these two methods is the
trend of the calculated values. The trend predicted by Daly’s model is the reverse of

what i 1s predicted by using the stagnant layer model. Furthermore, c-axis growth rates

o determmed from Daly’s model are strongly dependent on the turbulence intensity

unlike c-axis growth rates predicted uelng the stagnant layer model. The family of
curves is seen to have a downward trend for decreasing values of 7. Results from the
stagnant layer model however are observed to be in(:tependent_of the stagnant: layer
thickness over the range of ¢’s considered. Figure 4.15 compares the aspect ratio
of ice discs obtained using the stagnant layer model and Daly s model. The major
conclusion that can be drawn from comparlsons between these results is that Daly s
model predlctsﬂsmall stubby disc crystals with a hlgh aspect ratio, while the stagnant

layer model predicts thin discs with a low aspect ratio.

Since raﬁial' krowth rates of ice discs are highly dependent on the rate of latent
heat dissipation, it is clear that Daly’s model underpredicts the rate of latent heat
withdrawal {rom the growing edge. This indicét’e:ft%tt either the turbulent heat
transfer coefficients used by Daly are incorrect, due to eoesiBie‘-errors in measurerrtent, .

or another source of heat transfer from the edge is unaccounted for. The latter
1'5 i
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radius between the stagnant layer model and Daly’s model: The.

supercooling is AT = 0.10 °C with R, = 30um and h/2 = 10um

initially.

o5
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explanation is more-plausible because Daly’s model,reduiresa:"‘)t all latent _heat
generated at the growing edge be dissipated to’the surrounding liquid. The present
results, includving those from the infinite quiesce'nt model, indicate that tf.~ component
of the latent heat conducted through the solid phase is of comparable menitude to
the portion released into the llquld In fact it may be even higher than the liquid
component since the thermal conductivity of ice is larger than that of water The flux
conducted through the solid is eventually d15$1pated to the melt through the upper
and lower faces of the crystal. For the infinite quiescent model with AT = 0.05 °C

and a disc of radius 300um and aspect ratio of 0.0167, the average heat flux in the

solid':phase is 8248 W/m? compared to 660 W//rryzl2 in the liquid phase. The latent
~heat components' for a.;--,dis’kc,‘.}with radius 30pum and an aspect ratio of 0.30 are 889
VV/m2 and 1685 W/mzy (1n ‘the solid and liquid phases) for the stagnant layer model
.yvign 6 = 30um and the same supercooling. As the aspect ratio of the disc decreases

to 0. 033 the portion conductedt through the solid increases to 2609 W/m? and the

portlon transferred to the liquid increases to 1378 W/m?. For decreasing values of - -

the stagnant layer thickness, the ratio of the heat fluxes in the solid and liquid phases
is approxxmately 0 80 In fact, the portlon conducted through the solid i increases as

the crystal face area increases and the temperature along the basal plane decreases.
Therefore,: the component conducted throngh the solid phase must be considered in
a Crystal-growth model since it is a sizable portionof the total latent heat generated

at the crystal edg’e;‘

The effective :heat.gtran'sfer_ coefficient along the crystal edge and basal plane are
defined as
‘ .

qg = hpApAT
. and

‘, ‘qB'= ITLBABAT

et
D

A
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respectively where Ag is the area of the edge interface and Ap is the area of the
basal plane. Figures 4.16 and 4.17 show the typical varia,t,ions in the a.verage edge
and face heat transfer coefﬁcients for the stagnant laye'r/ rnodel with AT = 0.10 "C'.‘ :

The infinite quiescent fluid case ‘is also shown in,these_plots for comparison. The

plotted results are nondimensionalized in terms of the ans‘vselt number -defined as

" Nug = hER/’kg for the edge and Nug = FLBR/kI,-,,for-the basal plane. For the -~ =~

[ .
infinite quiescent fluid, the Nusselt number along the basal plane is calculated to be

approximately 1. 3 for all disc sizes. This compares reasonably well thh the theoretlcali
vajue of 1.1 for a disc shaped particle suspended In a stationary fluid [18]. The effect
of decreasing the stagnant layer thickness &resultsvm a 51gn1ﬁcant increase in the
disc face Nusselt number. As the radius of the disc i in@eases the value of the Nusselt_
number also increases quite rapldly to a max1mum value of about 7. For the same
supercoohng of AT =0.10 °C, the edge Nusselt, number is also observed to 1ncrease
to a maximum value of approx1mately 100 It is not p0531ble however to- compare
the calculated values of the Nusselt number obtained from the stagnant’_layer model
with the turbulent heat transfer coefﬁcients given in Equations (4.5) to (4.8), since
those correlations are based on-all latent heat generetion being .dissipated-into the
liquid phase. In order for Daly’s gtowth rates to be equal to those for the stagnant
layer model, the turbulent Nusselt number needs to be modiﬁed 50 that the effect of
oonduction into the solid phase is also included. This can be 'Stated more precisely as

Nu up = N E+ Zf - o (4.10)
where NuE is the modified dlmenswnless heat transfer coefﬁcxent and Nug is Daly’ s
dimensionless heat transfer coeflicient for the crystal edge The second term on the

righthand side of (4.10) represents the average portlon of the latent heat conducted
- through the solid phase. The magnitude of this flux is usually 30« % to 50 % of the

3

total latent heat generated along the edge.
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4.3 RESPONSE OF FRAZIL CRYSTAL GROWTH TO
APPLIED COOLING RATES -/

~~

I

In the previous sectioﬁs, growth of frazil ice crystals was examined on asSumging
‘that the(é‘p;plied supercooling remained constant. In practice, the body of water in
which th}e ice crystals are immersed is supercooled only for a short period of time
during théinitial sfa,ges of nucleation and growth. After a sufficient amount of latent
heat has been absorbed by the water, its supercooling will begin to decrease resulting
in a reduction in crystal growth rates. The variétion in the overall supercooling
results from the coolirig rate of the volume of water and the growth of the crystal. In
this section, emphasis will be placed on the effect of a variable applied supercooling
- on frazil crystal growth in a finite volume of water. The objectives of this section
are to-determine the nucleation temperature T, and the maxi.mum supercooling
attainable as functions of cooling rate. These predictions can Be compared with

some experimental data that is available in the literature.

Consider a single frazil ice crystal submerged in a finite volume V,,of liquid. The

volume of the liquid can be determined from the crystal number concentration. For

s

relatively large bodies of water such as lakes and rivers, Schaefer |65] reports the
number concentration is a}_ﬁproximately 1/cm?. Daly and Colbeck [19} report number
'concentrations' of 0.17/cm? to 0.98/cm? in their experiments on frazil ice generations |
in a flume. The slight difference is attribut;ble to the g.eneration of new crystals
by secondary nucleation. As the supercooling of the water 'increascs, the subsequent
~growth of the immersed crystal results in a warming of the surrpunding water due to
the latent heat release. For the case of the model, we consider this heat loss to occur

over an effective area A,. An overall heat balance of the model crystal-water system
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can be described by the following
Qs=Qc—Qr (4.11)

where @ represents.the heat lost to the surroundings; Q¢ represents the q‘uantity of

latent heat liberated to the volume V,, of water and Qs is the energy stored in the

water. Heat losses to the surroundings are customarily expressed as

] A

QL :'h'aAs(Tw —TA) . (412)

~ where A, is the convective heat loss coefficient and A, ivs:the effective area over which
this heat loss occurs for the model system. The temperat{lre of 'the water T, is
assumed to be uniform, since the water is well mixed. For natural bodies of water
“such as rivers, heat losses from ihe water usually occur by convection, evaporation
and radiation due to the presence of cold air above its surface, with k, of the "‘order of
5W/m? °C to 10W/m? °C. The rate of latent heat release from the crystal is given

as
_dm,-

Qe = pSL:Tﬁ_ | o (4.13)

where m; is the mass of the ice phase. The quantity dm;/dt can be reluted to the

a- and c-axis growth rates. calculated previously. Using the above two relations, the

overall heat balance in Equation (4.11) can be expressed by the equation

AT, —h.A,

L dmi
dt  m,C,

o=t t e, d

(4.14)

where m,, is the mass of water. If we consider growth of the crystal to occur in
a series of discrete time steps and take dm;/dt to be constant over each short time
interval, Equation (414) can be integrated to give the following variation of the overall

supercooling AT at each time step

—haA L dm; RA
~(1- als i AT, @l 4.15
AT (l exP[me'p, ]) (haAs p + TA) + exp| C. ] (4.15)
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where AT, is the initial supercooling of the water. Carstens [15] in his experiments on
| the effect of cooling rates on frazil generation, varied the initial cooling rate between -
- 0.00012 °C’/s and -0.00106 °.C/.s In naturel bodies of water such as rivers, the cooling
rate of the water is documented by Carstens [15], Osterkarnp [60] and others to be of
the order of -0.0001 °C'/s to -0.0005 °C/s It should be noted that these values are

very rough estimates since the rate of heat los\ from the water is highly dependent

on the rneteorologlcal conditions.

If the initial water temperdture 1s very close to the fusion temperature of ice, the
initial cooling rate from Equation (4.14) is given by

‘o C dT. | —haA,

= T, ' .
dt p[Vpr[ (4 16)

since the'latent heat release has a negligible effect on T, Assuming a crystal
concentration of 1/cm® and an overall heat transfer coefficient of 8 Vf//m2 °C, it

can be seen that the ratio Vw/é’ varies between 0.0182 m and 0.1603 m for the |

c001ing rates used by Cargtens in A' erirnents. This range of values will be used

Flgure 4.18 shows the pred1 JA i1 the water supercooling with time for
several cool_lng rates, on using t éint layer model with a conductivity layer of
5 = 100xm and Equation (4.15). The 1n1t1a1 nucleus size was chosen to be R = 5.0pum
w1th h/2 = 5.0um. The initial supercooling AT, wasL en to be 0.004 °C since the
critical size for the ice particle would be just slightly lower than the disc radius chosen
( for ATO = 0.004 °C, R, = ‘4.97;zm). Tne results of this simulation are consistent_

with Carstens’s-observations (i.e. the applied cooling rate remains consiant until th_e

latent heat release is large enough to cause the rate of cooling to decline).

Carstens conducted a series of experiments on the effect of a variable cooling rate

é

on’the overall supercooling of a volume of water. His experimental setup consisted
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of'a recirculating‘ oval- shaped flume through which supercooled water was circulated
by means of a small propeller. The turbulence energy productxon in the flume was
| estlrnated to be 9 mW/kg from the mean water velocity generated by the propeller.
Assumlng turbulence dissipation. rate to equal the pr_oductlon rate, the Kolmogorov
scale n; was determined" to be approximately 160um. "Figure 4.19 shows the variation
in supercoollng observed-by Carstens f01 a cooling rate of —0.00106 OC/s The results
from the stagnant layer model for values of é equal to 50um, 100um, 150pm and
200pm, and Daly’s model for a dissipation scale of n, = 160um are also shown in’
Figure 4.19. Carstens’ observations show that the Su{%%rcooling increases linearly
until the rate of latent heat release is sufficient to warm the water. The cooling rate
begxns to decrease from —0.00106 °C/s and as the latent heat release becomes more
»domlnant the overall. supercoohng eventually peaks and then beglns to decrease. '
: Carstens noted that the rate at Wl’llCh the supercoohng'decreases is more rapid than .
the rate at which it was increasing. This is probably due to the effects of secondary
' ucleatlon which increases’ the- crystal condentratioi and her'ce i 1ncreases the latent
heat _'rele_ftse to the water. Since the effects of secondary nucleation are not included
'.i'n. either model, values of supe‘rvcooling beyond the maximum value are not compared
with Caestens’ values. The trend of the'transienf cooli‘ng curves predicte} d by both
Daly s model and the stagnant layer model are consistant with Carstens’ observatlonsv
(i.e. the supercooling increases until a maximum va.lue is reached and then decreéases).
The rnax1rnum supercoohng obtained from Daly s model a’re seell to be significantly
higher than Carstens data and the stagnant layer model results This is due to the
low growth rates predlcted by Da‘ly s model The stagnant layer model unclerpredlcts'
the max1mum supercoollng achleved for the values of 5 used, Increasmg the value of '
“the stagnant layer thickness (¢) however, is see.n to increase the value of the maximym
-supercooling that can be achleved It was felt that the tranSIent coohng curves were
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dependent on the parameter h, and decreasing its magnitude would result in a better
comparigson with Carsten’ data. For realistic values of h,, the stagnant layer results

are insensitive to the magnitude of the heat loss coefficient h,.

The temperature at which the first few frazil ice crystals form and‘b'egin to
grow is termed the nucleation temperature. The difference between the nucleation
temperature and the melting temperature is denoted by AT,,. This quantity is loosely

*“defined as the temperature at which the slope of the cooling curve deviates from
the initial linear codling rate. Figure' 4.20 shows the 'nucleation supercooling AT,
'obtained from the stagnant layer model, Daly’s model and those from rstens’
e;perimental results. The trends of these results are very similar to those established
for the maximum supercooling results. "All three sets of results indicate that the
nucleati\on temperature increases with increased cooling rates. Daly’s model predicts

the nucleation supercooling to be almost double that of Carstens’ measurements. The

émodel predicts values for AT, that are lower than Carstens”‘values.
"\, ) V. N l‘» .

s the dependence of the maximum supefcooling on the applied
cooling rate for’ the stagnant layer model, Daly $ model and Carstens’ experimental
data. Carstens’ measurements for a cooling rate of —0.00012 °C/s is'seen to compare
Very well with the stagnant\ layer model results. Carstens values however, for higher. -
cooling rates, are séen to be consistently higher than those predicted by the stagnant
layer model. ,gResults from Daly’s mod,el consistently overpredlct the maximum :
supercoohng attalnable compared to the. experlmental results-and the stagnant layer

'results The maximum supercooling is observed to decline with’ 1ncreasmg levels

kof turbulence. For a coolmg rate of —0. 00012 OC and stagnant layer thlcknesses of
50/1m 100 pm, 150um£.nd 200pm., the max1mum supercoolmg AT equals 0. 023 °C,
0.031 °C, 0. 035 °C and 0: 039 °C respectlvely .Similar trends were also observed‘ .

for Daly s’ rnodel although the magmtudes of ATma; were more thar tw1ce that of
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C?rStens’ results and ‘those determined by the stagnant layer model. This observatior
(of decreasing values of maximum supercooling’fqr, increasing levels of turbulence) was
also noted by Carstens. He stated that strong levels of turbulence acted to reduce the
rate of cooling of the *water. This obServation appears reasoné,ble since the rate of
latent heat release to the water and hence 1ts V\grmlng rate would increase with rising
levels of turbulence. The hlgh values of AT, and AT ar predrcted by Daly’s model
indicate that the latent heat release is not sufﬁcrent to counteract the cooling”effect
and substantially increase the water temperature. This is due to the low growth rates

predicted by Daly’s model. ) : 5

g

Figures 4.22 and 4.23 contaln plots of the fraiil'crystal radius at the maximum
supercooling as a function of the cooling rate for the two models. Figures 4.24
and 4.25 show the corresponding aspect‘ ratios. Osterkamp [61] reported that
frazil disc dlamfters observed in the field are usually 2 mm to 5 mm w1th an aspect
ratio usually between 0.02 and 0.05. Mueller [57] ob_served frazil drsc diameters
of 0.80 mm in crystallizers. Carstens [15] also observed ice crystals of 2 mm to
3 mm'in diameter during his experiments on the effects of variable supercooling.
Cooling rates observed ln natural bodies of water, as rnentiqned; are reported to vary
between ~0.0001 °C/s and —0.0005 °C/s. The maximum cooling rate considered
by Carstens was —0.001 °C/s. Fdr cooling rates less than ~0. 001 °C|/s, the aspect
ratio predrcted by the stagnant layer model is 0,03 for moderate levels of turbulence
corresponding to- 5 = 100pm and less than 0 01 for high turbulence 1nten31t1es At
high turbulence mtensmes the aspect ratios are relatlvely low since the thlcl\enlng.‘
rate of crystal; which is strongly dependent on the applred supercooling, does not have
the opportunlty to attain significant magnitudes. Results from Daly s model also have
similar trends, but due to the hlgh/s}percoohngs achleved the thickening rate and

hence the aspect ratio was qulte large. For the range of turbulence levels. consrdered )

'> . . N . kf.,;-_



. : o 4 164

- *0*
.-25.0
. ) .

\
20.0
0.(

15.0
i

DISC RADIUS (m)

10.0

e
o

0: ooobz " 0.0001 " 0.01
. | 'COOLING ¢ RATS (°C/s) |

&
.

Figure 4.22: Disc radius at Lhe maximum supercoolmg for several cooling rates |

»

predlcted by the stagn:mt layer model ' .



*10*

.
°,

Figure 4.23: * Disc radius at the maximum supercooling fpr severhéfoling rates

DISC RADIUS (m)

10.0
1
rd

20.0
I

15.0
VY

LT

5.0

0. oodoz ) o ooo1 ) ' "~ 0.01
"COOLING RATE e C/s)

i
J

predicted by Daly’s model

/

165



0.10 0.15 0.20

DISC ASPECT RATIO

- 0.05

Figure 4.24:  Aspect ratio of ice discs at the maximum supercooling for several

N

————
——
-

X - —
0.000 0.00%

r
0.010

COOLING RATE (°C/s)

cooling rates predicted by the stagnant layer model

G

“« .
"VV..

0.015

5



. .

y-3
Q ’ |
o 'S :3‘
S 7
) .
./-
;‘ ./ .......................
0 N
g o : / e
e / L [
Q S g
m -o" /”
= | /o
N A
2l S
ey ./ - s
2 . o
A
-
o
S
° ‘ .
T | |
0.000 0.005 0.010 Thiy

COOLING RATE (*C/s)

Figure 4.25: Aspect ratio of ice discs at the maximum supercooling for several
cooling rates-predicted by Daly’s model



168

and realistic values of the cooling rate, Daly’s model predicts aspect ratios between
0.06 and 0.1 for the range of Kolmogorov scales considered. The corresponding disc
sizes obtained are just over 1 mm in diameter For the stagnant layer model, disc
diameters of 2mm were predlcted This appears to be consistent with previous field
observations and some experimental result's for turbulent waters, discussed in Chapter
1, where maximum disc sizes of 1.5 mm to 2mm have been reported. Both the
stagnant layer model and Daly’s model probably overpredict maximum disc diameters
“that can be reached, since the water was assumed to be free of any impurities and
since interactions between existing crystals were not incorporated. Jhis process of

secondary nucleation can significantly influence frazil crystal size distributions and
concentrations.

.
Ju

Some: zTrev1ous experimental studies have also predicted c0n51derably lower values'
for maxxmum frazil sizes. A notable example was given by Daly and Colbeck [19],
who condumed a series of experiments to generate frazil in a supercooled channel
of water at various flow conditions and constant levels of applied supercooling. The
supercoolings ranged between 0.01 °C to 0.02 °C for;mean flowrates not more than
0.026 m3/s. The hydraulic conditions set, in the experiments such as the slope of
the chanriel arid the bottom roughness resulted in a turbulence dissipation scale of
190/rm The maximum diameter of crystals was observed to be about 0.8 mm, which
1s con51derably smaller than what previous studies had mdicated The mean diameter
of the frazil crystal distribution was observed to be generally above 0.10 mm. Results
from the stagnant layer model with § =:120um and a constant applied supercooling
of 0.01 °C yield disc diameters of 0.50 mm and 1.2 mm for time intervals of 70 s'and
240 s respectively. These particular time intervals werz chosen because the residence »
time in the experiments were determined .to vary-from 70 s to 240 s. Similarly; results. A

using Daly’s model were also obtained for the same applied sup'e'r‘cooling and a choice
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of g = 120pum. After a time interval of 70 s after seeding., the crystal diameter
was 0.15 mm and after 240 s, the disc diameter was 0.27 mm. For a supercooling
of 0.02 °C, the stagnant layer model y1elded a crystal diameter of 0. 76 mm and 1.9
mm at re51dence tlmes of 70 s and 240 s respectively. Crystal diameters of 0.21 qi,m‘
and 0.36 mm are obtémed. at these same time intervals of 70 s and 240 s using DE}Iy $
mode]. These values obtained using Daly’s model were found to be more consistent
with the experimental observations. However, it should be noted that a possible
major source of error, as noted by Daly and Colbeck [19], resulted from the large
production of anchor ice on the bed and sides of the flume. These anchor ice deposits
were noted to act as a sink for crystals in suspgnsion, although it was not known
which particular crystal sizes were preferentially attrac‘ted for depbsition as anéhot
ice. This affected the residence time ixt which crysfél diameters were measured and - *

hence the mean diameters which wer;a reported.

4.4 SUMMARY

- In order to more realistically model frazil crystal growth, it was necessary to
"'"mcofporate the effects of fluid turbulence in the g{Lth model developed in the
previous chapter. Two methgds for lncludmgrthe effects of turbulenc_e on latent heat
dissipation rates were tried and subsequently compared. The first, more traditional
z{pproach, consisted of incorporating experimentally obtained heat transfer data from
suspended particles in“;order to de'ter'mine the radial and axial growth rates of disc
'shaped ice crystals. T/};:ezcoﬂd approach involved modifying the existing conduction
model by considerving that’the major effect of turbulence was to provide a well mixed
ﬁu%d everywhere excépt in the immediaté vieinity of the 'crysta‘l.v It Waé further

assumed that a thin, stationary, conductive layer of fluid surrounded the crystal.
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Levels of turbulence were then varied;by varying the thickness of the conductivit_y .
layer. Qualitative comparisons between the two methods émplbyed indicated that
neglecting the latent heat generated at the edge ,an'd‘ conducted through the solid led
to signiﬁcantly lower gg‘owth rates for the heat transfer —coefﬁcieﬁg model. Also, it was
noticed that crystal sizes predicted by this method yielded diameters which diff(?’éd by |
more than 50 % from previous experimental results as well as those from the stignant
layer model. The stagnant layer médel indicate that the results are consistent with
existing experiméntal and field observations. It is recommended however; that in‘ﬂ
order to ftjlrtﬁe;r enhance the applicability of the stagnant layer model, it should
be yeriﬁéd with mage rigorous éxperimentation. In particufar, the thickness of the

/.}‘gsta.gnant layer should be correlated with the turbulence levels in the water.
P

-



&

Chapter 5

CONCLUSIONS

(\ 4

The purpo‘se of this study. has been to develop a mathematical model for the

determination of frazil growth rates and verify the approprlateness of these results

by comparlsons wrth a.vallable empirical data and analytlcal results. The objectives

Y

“of this thesis have been the followmgr

L.

To formulate and implement the “Boundary Fitted Coordinates” procedure for

a crystal growth prohlem.»

P To determine the effects of growth perpendlcular to the basal plane on the radial. -

‘growth of frazd ice.

- ¥

.

To develop a simple, straight forward method for the incorporation of turbulence

N

N
heat transfer effects on frazil_ growth. N

As a result of this study, the_‘following conclusions and recommendations are made:

[

.-~>The “Boundary Fltted Coordmat,e rnethod proved useful in the solutlon of the

- ‘_.-:.“'govermng partlal dlfferentlal equatlons descrrbmg the teniperature dlstrrbutlon

of a frazil {ce crystal. This numerical method, although dev‘eloped, for the. x

- solution of problems in curvilinear regions, was effectively uti.lv‘ized' for: the

solution of partial differential equations on an irregular grid. Some".prec‘antions ‘
' should be ta.ken when using a variable spaced mesh It was notlced that abrupt

changes in the spacing of grid nodes, partxcularly in reglons of high gradlentﬁtn -

cause stability and convergence problems in the numerical solution. Also, whel® ~

the aspect ratio of t:he grld esh blocks becomewtoo small, stahility problems

171
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can occur causing the solution to ‘d’i\/erge. For the case of frazil crystals immersed

in an infinite, quiescent melt, this occurred when the aspect ratio was less than

- 0.01.

o

.\ y

The valldrty of assuming quaSJ steady state.crystal growth was exammed The

assumption of qua31 steady state crystal growth was examined by obtalnlng a

solution for the fully transrent system of equatlons and then comparing these

results with the quasi- steady Tesults. [t was observed that the mﬂuencepof

¢

the initial condition damped out very quickly and the crystal growth rate

"approached values calculated from the steady state temperature dlstrlbutxon

As a result, the fully tran51ent set of equatlons need not be solved for modelhng“
the growth of frazil crystals over 25pum in diameter... The major advantage of

this is the con51derable savmgs in computer time. -

Almost all prevrous studies rev1ewed have assumed that it is- reasonable to

neglect c-axis growth rates in the theoretlcal study of ice crystal growth. This -

has been justified by noting that c-axis growth rates are dommated by the .-

7

' interfacial kinetics and hence are usually an order. of magnitude lower than

growth rates in the a-axis dire¢tion. The results of this study i#dicate however

that this assumption is invalid and in fact can lead to incorrect values for a- axis

growth rates. The radial growth of ice discs was found to be hlghly dependent T

on the thxckness of the dlSC 1nd1cat1ng that c-axis growth rates are respon51ble
for reducing the ra.dxa.l.growth, rate of the crystal. This is due to the increased
latent heat released along the edge of the crystal resulting from 1ts increased

thickness. Although c-axis growth rates are an order of magmtude lower than -
I3

-a-axis growth rates, the increase in thlckness over the time perlod in which a

= ' frazll crystal grows is large enough to 51gn1ﬁcantly reduce the radlal growth rate.

The latent heat release along the faces of the crystal caused an increase in the

£
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basal plan& ternperature and con“sequently acted to reduce the disc thickening

rate.

1. Tr‘&ditional methods for the prediction -of frazil ice growth rates in turbulent
bOClleS of water are based on empirical heat transfer data. The ‘heat transfer
.growth model underpredicted the quiescent growth rates This indicated that
the heat tra{usfer coefficients cannot be used with the simple liquid phase heat
balance to predict crystal growth‘rates. Another me including the
effects of turbulence involyed using the_stag-nant layer approach. Th_i‘s method
1s usgful to employ since heat transfer coeflicients for the liquid do not‘haye-
| to be estimated. A direct relat1onsh1p between the turbulence intensity in the
melt and the thlckness of the stagnant layer was not p0531ble due to a lack of '
experyfnental data. However, the predlcted trend and magnitudes of the a- and :
c-axis growth rates.of the crystal obtained usmg this method was found to be
consistent with what was predicted for the quiescent fluid case. Aspect ratios of
~ the ice discs predicted by this method were also consistent with previous field

observations and experirnéntal results.

. A more reallstlc simulation of frazil crystal growth behaviour requires a varymg
rate of supercooling. ‘The rate at Wthll the supercoohng varies was determined
from a thermal energy balance of the ice water system The behaviour of the
cooling curves determmed for both Daly’s model and the stagnant layer model
were smnlar to previous experlmental results. The ﬁnal size of the crystals at the
maximum supercoollng achleved for dlf’ferent coolmg rates using the stagnant
layer model was double that determlned by using Daly s model. The dlsb aspect
ratio at final crystal sizes have been observed to be between 0 02 and 0.05.
These values agree well with dlSC aspect ratios predxcted by. the stagnant layer

model Daly s rnodel however over predlcts the disc aspect ratlos by an order




of magnityde compared to experimental values. The ‘major cdnclusion drawn
from these two sets of results is that thé stagnant layer model predicts crystals

' sizes Wthh are consistent with most expenmental and ﬁeld observations. Daly s

model-however, predicts frazil) crystals tQj;pe*small stubby discs which’ appears  *

contrary to previous observations.

. An important recommendation resultlng from the coufsé of -this study‘is the“
" neéd for » more rigorous experimental work with attentlon paid to more prec1se
measurement of turbulence parameters. In order to make use of the stagnant
layer me*hod‘ it 1s also necess:‘ry to correlate the conductlve layer thickness
with the level of turbulence i in the fluid. Without exper1mental results future
theoretical or numerical work on frazil ice growth and the validity of its results

will be difficult to ascertain. T
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Appe%dix A ‘ -
DERIVATION OF THE SURFACE NUCLEATION -
GROWTH MODEL '

Growth of a frazil ice crystal m the dlrectron perpendicular to its basal plane
was shown to proceed by the mechanism of two- dlmehsronal nucleation in \Qhapter
It was also noted that experimental results by Hillig and others were found to
match closely with theoretlcal surface nucleation growth models. The derlvatlon of,

this growth mechanism will be discussed brreﬁy in this appendxx

Consider a portron of the basal plane surface contammg a small island of radlus
R and helght Ao- The total free energy of the system is given by
Fr=FYT, A", N') + F}(T, A%, N*) + F/(T, A', N) . (A.1)

3
where each of the terms in this expression coresponds to the regions labélled in

Figure A.l. The quantities N, and N, represent the number of moles of solid and
liquid and &V, is the number of moles of solid at. the nucleus boundary. The critical
radius, R, of this nucleus may be obtained from the total differential of the free
energy Fr, which is given as_

dFr = y'dA' + p'dN' + y*d A? 4 u2dN? + ¥'d A" +4'd N (A.2)
where 71. and % are the surface tensions corresponding to the nucleus and

nucleatrng surface respectively and 7 1s the line tensron of the monolayer boundary.

_Equatlon A2 tan be further simplified and expressed as
(7! =%)dA +4/dl =0 o (A.3)

from which it can be shown that
‘ !

(' =) = = I
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Figure A.1: Portion Of Basal Plane.Surfac‘e Containing Monolayer
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The left hand side of Equatxon A.4 may be deterrmned in terms of more common |

A
parameters by using the Gibbs- Adsorption equations

‘J S - : . . ) .
dy' = s'dT — Tldy} ' (A.5)
dv* = $*dT — T2dy? ' (A.6)

where '} and I'Z are the surface adsorption coefficients and s and s? represent the
molar entropy. Utilizing these two relations, it can be shown that the chemical
potentials p, and po are equal due to equilibrium. As a._'fééult, it can be shown
that by expanding the chemical potentials, 4} and 12, about th‘evf‘gsion temperature

T, in a Taylor series and eqqaéing the two yields the relation

(s* = s')(Ti - T)=f%f—75 - (A7)
oty , o
Since the latent heat o? fusion per atom is given by g
L=Tn(s®— s _ (A.8)
Equati.n A7 may be rewritten as - .
J ' .

e L, L(T; - T, .

(71_72).;._9_% - (A.9)

C LI . h
Combining Equation A.9 with A.4 results in the critical size of the monolayer to be

v RQ'\m¢ o y‘ (A.10)
T T LT —Ti) o

It can be shown from classical fhermodyn}xmics that the energy required to

nucleate a monolayer of size R., is a maximum and equal to

AF .y = —§—7r71R§, - o o (A.lljh
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Also, from the principles of statistical thermodynamics, it can be shown that the

‘nucleation rate per unit area of the basal plane is given by
I = xe~AFmaz/kT R _ .(A.‘12)

where K is an unknown parameter to be determined from the theory of molecular
: dlffusmn and k OS/}C Boltzmann ‘constant. The growth rate in the c-axis i.c~tion
1s then ngen as L J L

V= 1AM, (A.13)

where A is the area of the crystal face and )\o is the step hleght of the nuc.eated
monolayer. Combmmg Equatxons A.10 to A2 w1th A.13 results in the fo! lowmrr
: exp"r‘_éssioh '

. AT
‘ ‘ SN . o
Ve = A IR (a1

This expression is often expressed in the more compact form

A kAN BFmseSRT T (6 gy

which is similar to the_fnodel proposed By Kaischew ar\1d Stranskl ‘[40] and Hillig [35] BRI
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- SUMMARY OF DERIVATIVE TRANSFORMATIONS:

.

This gppehdix contains a compreheifisive list of the relatiors in the transformed
(&€,7m) plane. Relations involving derivatives of the com'puta.tiorial coordinates £(r, z)
and 7(r, z) with respect to 1he physical space. coordmates r and z are also included.

- Finally, the finite d\fferenu dlscretxzatlon of these dlfferentlal relatlons is presented

for’ireference , PR

The ‘fbllowing'déﬁnitions are applicable throughout this section:

e f(r,z,t) - atwice ;ontinubusly differentiable scalar function of r, z and ¢.

3

e r(&,n) - coordinate transformation fun.tivu for the radial coordinate direction.

e 2(£,7) - coordinate transformation fusiction for the axial coodinate direction.

-2 2
f =T, + z, . |
N ¥
g = T¢Ty + 2ezn .

e 2 2
Y=TE Ttz

o J=rez,— TnZ¢

fa o
The general transformation from the physwal region -to the, transformed region is

defined by the vector valued functlon

. [5} = F(r’z) - (B.1)
. ' U U(r,z)_l ‘

The inverse function of the above transform is:

[ r&m]
dol=1 . (B.2)
{ZJ L(f,n)J o |
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Derivatives of £(r, z) and ’7‘7(7', 2) ,‘
&= z/J
‘ £ = —=ry/J (1;3)
N = —z¢fJ
n.= 1e/J .
.. = (‘frzfn j MTrZnn) (ész'_*—Jérnr‘Jn)‘ (B.4)
| £ “(Er tnrm) (€2 *Eeney) (B3
e (f.zzsn -; N:m) _ (6:€:J ﬁfrmJn) o BT
Tep = _(Tlrvzén‘;L §rffae). - (n2J, +J§r77rJe) : (B.7)
e = (7:% }' E-ree) _ (i, +J§z77zJ£) E .‘(_B.8)
- _ (M2 + Eozee)  (memady + £.1,J;) (B.9)

: J J

Partial derivatives of a function f(z,y), which is some sufficiently differentiable

4

function of z and y, are transformed using the relations:

v .V.e
00 _ (afe— %) T
= el = L (B'10)
f/ %!;_”_ (rif";’"ff'). | (B.11)
S
o Rmg| S| -tesmme
- Cesnald 2, (B.12)

~o



27 - .
f 9 f _ (zrzljf(_zzcznfen'*'z:frm
TTr T -
or? J?
+ (z52¢¢~22¢ 2nzgn+2d 2nn) (rnfe—r¢ fn)
3 »
(=3 '66"22£~n"€n+2 ranW(ze fn—2n f¢) v
+ 75

2 - -
); o°f (’nftc—Z’?(nfcn*"(fvn
3z = 822 J23
' (Tqrfe‘2"57'vr"£v7+"5Tnn)(chn-znfe) ,
.-‘. ' ] N + J3
(r}ze¢=2rernzen+r2z0n)(rn fe—r¢ fn)
+ 73

2 .
f = 9 f — (rezqtrnze)fen—reze fan—rnznfee  °
rz — . - 2 -

ordz ¢ J

+ [roznree—(rezntraze)rentrezeran ) (znfe—z¢ fn)
; J3

+ [raznzee—(resntrnze)zentrez zon][re fn—rnfe -
‘; J3 -

Lapé}lci:n; in axisymmetric coordinates:
ﬁf - gfmzaj}.,ﬁfw) n (cre<+25r5n+yjr;,q)(z<fq—zqf¢)
+ (<z<¢+2ﬁzenh;3nq)(r.,/g—r¢fq) +1 (,zm;chv,) (B.13)

or this can be expressed more simply as ) -

Vi = (Cfee + 2B fes ‘;27fu7<fn +9f) (B.14)
Gradient: _ - . »

S/ = (znfe ; 2h) ¢ (rey ;rvgfe) ; (B.15)

C ——

B.1 FINITE DIFFERENCE APPROXIMATIONS IN
THE TRANSFORMED PLANE

" A compilation of second order finite dlfference expressions used to approx1mate

partlal dCIIVWhe transformed' plane are glven below. The field step sizes A

“rerdt
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and Anp are both taken to be unity since due to cancellation after substitution in the

transformed equations results in the actual values of £ and 7 to be 1mma.ter1a1 All

functions and their derivatives are eva.luated at the discrete locations (ét,nJ) on the

‘computational plane.

First Derivative, Central Differences

fivrj — fiorj

(fe)ij =~ 5
i = figa
(fﬂ)!"] - 9

First Derivative; Forward Differences

(fé)w_v( f1+2J+4fx+1J 3fi,j

2
L

(f;,)i,j ~ {=fijeo+ €fijo1 — 3fi,}

2

First Derivative, Backward Differences

(f 2] dfi;+ 3fi,j:

(ff)u — T «
(fo)ij =~ (=fig-2 = 4‘)f"'jl‘1 +3fi,

4

Second Derivative, Central Differences

(fx+1 = 2fi;+ ficr;
4

(fef)u -~

(3

(B.16)

(B.17)
(B.18)

(B.1‘19)

(B.20) 7

(B.21)



. ' A '.‘ . ' 1
. e g = 2fi + figet.
: ) Ny 4 .
(fen)is = (fit1,j01 — fir1.5-1 4— ficvjt1 + fici51

. Transformation Parameters

-~

L+ ),

Gij =/ 1
8. =~ (re)ii(Ta)is + (ze)ij(zn)iy
1,7 4
N (re)?; + (20)2;
1,7 — 4
g~ Tedig(za)i = (rn)ig(ze)es
t,J B ’ 4 Y
o o iy (=)
iy = T4

L (ra)i; + (29)3



Appendix C

PROPERTIES OF WATER AND ICE ' ¢

The thermal properties of water and ice used throughout the course of this study

are given below:

SYMBOL PHYSICAL PROPERTY VALUE USED

T F‘reezing Point Of Water 273.15_[('

L Latent Heat. Of Fusion - 333600 J/kg

Vst Surface Free Energy Of 0.022 J/m?

Ice-Water Interface » .

k, Thermal Conductivity Of Water 0.601 W/m °C

a, Thermal Diffusivity Of Water 0.1338 x 10-¢ m?/s
Ps -Density Of Water . 997 kg/m*

Uy Kinematic Viscosity Of Water 1.798 x 107" m?/s
Cp, Specific Heét Of Water . 4170 J/gm °C

"Pr Prandt] Number For Water 13.44 _
ko Thermal Conductivity Of Ice 2.25 W/m °C

. @  Thermal Diffusivity Of ce ~ 0.1778 x 10-5 m*fs

- Cy, | Specific Heat Of Ice . 2250 J/gm'ﬂik/
R, Universal Gas Constant - 8.31434J/mo

M Molecular Weight Of H,0 18.015
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