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In ‘this thésiS;#e investigate the following class y of groups:

L
We say a group #6 1is in y if G is .soluble of finite rank and .
: - ’ . ' .
there exists a subgroup G,. of fipite index in G and afinite set of

primes m, such fhat whenever #, ¢ (a set of primes) and K < G,

then the set {g ¢ GD:‘ g ¢ X, for some w-number m} is a subgrbupj
7 ) ) -G G »
called the waisg;ggar of K in G, 'denoted by KHD; and IK °. KI

L T

is a 7-number. =

In Chapter 1 a summary-af'known results concerning the theory of
isolators developed by P. Hall [1] is presented. From his results it
follows that if G is finitely generatcd nilpotent by finite group

then G 1is always in X v

*

In,Chaper 2§.thg class ‘of Fitting‘Isalated groups is defined an:
we give a proof to one of Rhemtulla aﬁdgﬂaztley's fruitful résultsj"
that every torsion free soluble group of finite rank has a FittinF
Isolated sybgroup of, finite index, this result is used in the

investigation of the class . - : - - -

Denote by qﬁ? to the set {g ¢ G: gm-f H, m = 1} where

H

[

G. In Chapter 3 we show that, if G is n%t nilpotent, therec is

no reason to expect qﬁ? to be always alsuhgfﬂup, However it has bhcen

proved by Rhemtulla and Wehrfritz that every polycyclic group G has

[ . - .

a subgroup G, ,of finite index such ‘that’ Ggﬁ is a subgroup for

every H = G. .
‘In Chapter 4 the>maiﬁ result of this tgesis is givgn."ft is an

exampié which shows that pclyéyclic metabelian groups alfpédy fail to

be in X. ‘As a result of this example and a discussion with A. Rhemtulla,

we conjecture that G is in y if and only if G 1is finitely generated

nilpotent by finite group. |

s
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Chapter 0

LN .

Notations and Definitions

If X and’ Y are groups, we write X s Y to indicate that X
: 7
is a subgroup of Y. X < Y means that X /1s a proper subgroup of Y.

When X 1is a subset of a group, (X):‘will denote the--subgroup
. N \
generated by the elements of X. If X consists of the ‘elements

x we also write',(xl,xz,...)

12X
For any subgroup H of G, NG(H) denotes the normalizer of H

in G. CG(H) denotes the centraliser of H in G. For any integer

ni# O, -

, ¢" = (g": g ¢ G

'é§ The commutator [a,b] of any two elements a and b of G is’

given by the equation

{a,b] = a tpblab .

Let H and K be any subgroups of G. Then [H,K] will denote the

subgroup generated by the set of all commulators™ {h,k] with h e H

and k ¢ K . } —
If H,K are subgroups of G such that H < K, then LAY

denotes- the index of H in K, i.e. the number of cosets of H in

K. , ‘ ' .
If G 'is a group and we have a sc#ics of subgroups,
. ~
G =G, 2 G2 > ... 2 Gn 2 Gn+l’= {1}, then the series is a subnormal
AL series if 9i+1 is a normal subgroup of Gi’ 1 <3 <£n. The scries

is a normal scrics if each subgroup G; is a normal subgraup of G.

A group G is soluble if it has a finite normal series,

) .
-1-



G=6G,-26G,2 ... 26G = {1} , such'that G./G. . 1is Abelian
nel 17 i+l . .

6
(1ish). .

A group G 1i's polcyclic if it has a finite  subnormal series of

It

G-

G = {1}, such that G./G. is
1 ! 17 i+

n+l 1

subgroups G 2 G, 2

cyclic (l=izn).

o]
=y

Aigraup G 1is supersoluble if it has a finite normal series

subgroups G = G, 2'G, z ... > G = {1} such that; Gi/Gi*l is

cyclic (l=i=n).

, L. 3 , . )
-A group G is nilpotent if it is soluble, and the normal series

{Gi} (1£i£n) «can be chosen so that the action of G on each of the
factors Gi/Gi*l is trivial, i.e. every element of G acts as the

(1<i<n)- or

idéntity automorphism. That is to say [Gi,G] < Ci*l

equivalently, Gi/Gi*l is in the center of G/Gi*Ii »FDF this reason,

any series satisfying this condition is called a certral series of G.
A particular ;éntral series, defined for any group G, is the

lower central series {Yii , defined as follows: Y, < G , and

Y L [yi,G]g It is easy to show inductively that, G 1is nilpotent

i+l
if and only if for some positive integer «c, Yeal = {1} . The number
¢ obtained in this way is called the class of nilpotency of the
nilpotent group G.

Another central series, in some waygiﬁual to the series vy., is

the upper central series, {Z,}, defined as follows: Z, is the

center of G, and Zi*l {x ¢ G: iZi is in the center of G/Zi}.

= 1 . = = = = o= i‘! _
It is easy to verify that G is nilpotent if and only if for sowe -

positive integer n, Zﬁ = (. The smallest such integer is the class,

¢, defined above. ‘

. \ ‘
For a complete reference, we refer the reader to P. Hall [1] 4nd
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to B. Warfield [9].
. ) i . i
Finally ‘the following lemma will be used in the ngit'chapter,‘fbr

the proof see [1]. ‘ -
¥ V .
LEMMA (A): (1) A group G is polycyclic if and only if it is soluble ,
' '+ and all its subgrauPS%ETE’finite]y generated.
(ii) - Finitely generated nilpotent groups are supersalugléi

(iii) Every supersoluble group G has a nilpotent subgroup

]
—
=
]
R

K such that |G:K| <= and K 2 G', where G'

.




- Chapter 1 .-

\\

in Nilpotent Groups

H
A3

We stﬁdy.hére the theory of isoletors developed by P. Hall [1] and
; _ : . .
i

list the main definitions and results that will be .used in this thesis.

]

Definition 1.1: Let, n be a set of prime numbers. A n-number is a
positive intcger whose prime divisors lie in w. A m-group is a finite

group of qrder a n-nubmer. If = contains just one prime p, we write

#*

p-number and p-group, Thus a p-group here always means a finite

" p-group. .

- !‘i:: ) )
-Gdven a group G, an element g ¢ G 1is called an m-element if its

order divides a power of m. The m-elements of G are the pglements

whose orders are w-numbers.

-

Definition 1.2: Let P be a property of groups. A group~G is

- i
called lécally - P if every finitely gencrated subgroup of G has™ /

the préﬁéfty P.. 7
’

The following lemma will bhe useful to prove the main result of

this Chapter, for the proof s , page 12].

Let G = {a,,..i;hf} be a finitely generated nilpotent

Tl

Lemma 1.3:
group. If |G: HG'| = m 1is finite, where H is a subgroup of G,

then |G:H| . is an m-number. In partjcular, if for cach i
- m,
wc have !ail e H wherc m, is a m-nymber, then |G:H|] is a w-number.
m. :
m is finite, then |G| is an m-numher. 1f ail =1, for

1,...,r

1f ]G:c|
i=1,2,...r , where m; is a w-number then IG| is a w-number.

44



: 7 i , ]
Definition 14: For any subgroup H of a group G, and any set of

primes 7 , let HS denote thé set {g e G: g ¢ H, for some w-number

{ ] X s *
m}.. . - —

.- We spy H has a n-isolator in G, if H’ is a subgtpup'af G,
= G )

and that H is n-isoloated in G, if "H = H’

Theerem 1.5: Let G be a locally nilpotent grDQp,i H aﬁy subgréup,
P ———— . S D - -
G

m any set of primes. Then H_ is a'subgroup, called the w-isolator

of H in G. If G is finitely generated and therefore nilpotent,
WGl e N ’
then lHi;H[ is a m-number. -

' - 7
Proof: Let xm,yn belong to H, where m&n are n-numbers, and if-

v , , A ,
K= {x,y} and L = Hn K, then [K:LK'| 1is finite and divides mn.
But K is finiiglyfgencrated and thercfore nilpotent. By Lemma 1.3,
]K;Li is a w-number, and in particular (Xy}g ¢ L<H for sQme

. + P

n-number a. Thus ‘Hﬁ is a group.

- . N
If G is finitely genérated, and thereforc nilpotent, so is

HS by 1emma A(i). Hence ]Hf:H(HS)‘[iS aﬂ-numberi HEﬁcei IH :

is a w-number by 1.3. ' »

As an immediate Tesult of this theorem we can state the following

Corollary.

Corollary 1.6: The n-elements of a locally hilpatentgra&p G forma fully

invariant subgroup'of G. If G is finitely generated, the n-elements forma
finite subgroup. :

Our goal in this thdsis is to tty to extend the result of 1.5 to
a bigger class of groups. - And that will be done in Chapters 3 and 4.

The next thecorem plays a good role in the next chapters, but
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before that-wé»nééd the following Lemma and for the proof sece [1; page
12].

.. B e e e m m ~ -1 .
Lemma 1.7: et H = {x,y} bec nilpotent and x x , then,k xy is

. an m-clement, B ) _ CZ;

, | . k
Theorem 1.8: P. Hall [1] ’ - 9 '

Let G he a locally nilpotent.group without m-elements different

from the identity. If C is any céﬁfgalizcr in G or any ferm'of
the\l)ppl-.r central St‘?l‘iES-D\f G, then C = CS , i.e. C 1is m-isolated

*

subgroup. , P : i

B ) -
Proof-:.’ Suppose first that C éC(A) is the centralizer of the set

- C‘ir'i then y’m ¢« C, for some wm-number m.

H
Ly
o
"
™,

A of eleménts of L.

-1~ , -1 .. ,
Hence (a ya)” = y\' for all a ¢ A. But ,{y,;\iza} is nilpotent.

: vy '\\énd
1ya s a n-element. Hence Ty,a] =1, md y e C,

By -17"[}’,3]g y“la

C = cg*fff he~fase ( = Zl = 72(G) 1is iﬂducgq»Fy ;héasing A =G.

Suppose the gesult proved for C = Z., where Z., ./Z. 1is the center
— i +1" 71

=

of G'/Ze;; Thep” G = G/Z. has ngd n-element # 1 and is locally
v 1= ' ! —

we have € =C0 if C=2(6)=2,,/2

fon]

nilpotent. By the case 1'—2‘1; RIS

: o 3G :
Hente (Ziﬂ)ﬁ = 2.
’

7 As a’resuit of- this, true

Corollary 1.9: In a‘torsion free locally nilpotent group, all central-
- B - « ¥ . . - .
izers and all terms 4f the ypper central series are n-isolated, for

al‘l choices of w. . K
f

Now_we neged the following lemma to prove the last result of this
3 k !

chapter.




-Lemma 1.10: P. Hall 1°

Let G be a finitely generated nilpot group and let H S’Hl
3 h ) 7-,1 7! i » .
. L . e = .
n-numbers. Then I[HI,KI]:[H,K]r is a m-number.
(o

As a result of this, if H ‘and K are subgroups of a locally

and K <.k be subgroups of G such that [H :H| and |Kj K]\

! nilpotent group . G, then
(18 X0 @ [H, K]

E A e f'ﬁ‘-‘ : -

Theqrem 1.11: P. Hall [1] ,;" S /

/7 :/ —

- et G be locally nilpotent, H af; subgroup of

"5 )

o}

'
Loy

w

-
B
o
'

r+

1]

normalizer in G then:

(i) HC a NG aja = He

(ii%s If G 1is nilpotent, then

H = HE if and only if ML= N n H

- (ii?) (If G 1is finitely gengfateq'thcﬁ NS}%}Eithé n@rmai_

[H,N] spy the pTCLCd hg lemma and .

G‘ ]
-’ o Rii ﬂf

N .

T

have H 4 NG and so NF
-_— ki m

i

Cii) Suppose G is nilﬁ@tent and H
E\§hc nnrmal1?cf o f Npﬁjy . Tt will be sufficient t&” prove that
C

N = NS n Nl " fafjl Dntlnu1ng the normalizer ferics H,N ,

U]
e

Nl,éig,”% = 5, wp obtain H =_H’ nN-= H: n Hlts ...=H nG=H.
Thus we may take G = N, so that N a G. Using a contradiction argunent,

1
we éuppas& G = {N,x} where x" ¢ N for some m-number m ~ 1 and

NN



e

deduce the existence of an elément y in (HS\H) nN.

Let K = r]Ht so that K 9 G. Let L/ﬁ be the center of N/K

teG .
sihce G = N , we have [L,G] s [LO,NC] < [L,N]G < HS by 1.10, since .
m kU w kg L <
.[L,N] €< K < H. If [L,G)] £ H, we can choose for y any element of

[L,G] not in H. But [L,G} <G and so if [L,G] < H , then [L,G]

and therefore L 4G, L nH =K, But H is not normal in G, and

K < H. Define H6'= H, H. . = [H.,N] for i 2 0. Let j . be the
i . 1+1] 1 -
first index for which H. < K. Then H. <L and L nH>=H >K,
. J+1 J : je
a contradiction. . .

-

l(iii) Let G be finitel generated and let -x be an element
of G such that xleﬁx :-HS . We have to prove X ¢ Nﬁ. Take
G = {N(,x} . Then HC <G by (i), fand the choice of x. By 1.6,

[u:nf = m is a wnumber. Hence (ng)mg i But 601« G since if

< K,

4 G.

Let C be thé centralizer in G of the finite group lﬁ/(Hg)m. Then

!

|G:C| is finitc and since G 1is nilpotent, |G:c|] 1is a w-number.

We have . [HS,C]S (I{S)m <H so that C s N < N .

Hence IG:Ngl is a w-number, G = NE, X € Ng as required..



Introduction 2.1: The work of this chapter has been done by A.H.

Rhemtulla and B. Hartley, in order to develop enough isolator theory

in polycyclic groups, extend the results of P. Hall which we already

introduced in Chapter one and to give a propf to one of Rosebladg's

: - .
recent results on prime ideals in group ringy of polycyclic groups.

However we gave here a definition to the ¢ ass of Fitting Isolated

groups and a proof to one of thei: jor results which will be used in

<0 we mention Roseblade's results and will

" the following chapter.
prove it along the lines of Chapter 3. .

Following terminology re«:ent%y proposed byﬁéseblade [2] we shall
call a subgroup H of a group G Drbiiél if H has.a finite orbit
under the canjugéti@n action of G on the;set of subgroups of G,
that is, if ]G:NG(H)[ < =. Agroup G ié called orbitally sound if
IHrHél < = for evefy orbital subgraup H of G, where H = xrng .

G

is the core of H in G.

By a theorem of Ito and Szép [3, p.45], this is equivalent to

[

"saying that IHGIHGI < =, where HG is the normal closure of H in

In Roseblade's recent and fundamental work on prime idcals in
group rings of polycyclic graudg, a significant role is played by the

&

following fact: . 251

Proposition A: (Roseblade [2])

"Every polycyclic group has an orbitally sound subgroup of finite index.
- ' : : )
Since every pplycyclic group has a torsion-free subgroup of

finite index, this is a recally a theorem about torsion free polycyclic

-a.



o : K BRLE
grgupsgﬁ_ﬂcw it is rather easy to see that evéry!finitely genera;ég
tﬂfsiﬂﬁ”ffEE nilpotent group is orbitally sound by using tharthegry
of isolators developed by P. Hall in [1? uhiiﬁ we intf@d@ceﬂ in chapter

one. : )
L

S

"Definition 2.2: For any subgroup H of a grpup G, let /H

denote the set {g ¢ G: gﬁ'é H for some n 2 ]}. We say that H has

isolated

an isolator in G, if vH is a subgroup of G, and that H is

H .

in G, if R

3

every subgroup H of G has an i;?LiEcr /H, and that [/H:H| <
Also NG(fﬁ] is is}aated in G. 1If aﬁ is érbﬁtal, then NG(H) < NG(/ﬁ),
we find tﬁag Vil 4 Gy ‘Sinte |VH:H| < =, we sg;§§ﬁat H contains a
cha}acteiistic subéraup of finite index éfgéﬁi and hence that
[H:Hg| < . -

Instead of confining ourselves to taf;inn free paiycyclic groups,
we shall for the most part work within the somewhat wider class of
torsion frece soluble groups of finite rank. By the rank of a_group
we mean here its Mal'cev spcﬁéal or Prufer rank. Thus, G has finite
rank, if there cxists an‘integef nzo sﬁch that every finitely
gencrated subgroup of G can be generated by n elements. It is known
that every toYsion free soluble group Dfefiﬂité rang has a subgroup

X of finite index whosc derived subgroup X' is nilpotent, seec
[3,part2,p.138]. : . b

Also G has a finite: series

»

1]
fn
*

1=Gp 96 9 ... 4 G -



) ' : | 11.
in which' each factor is either finite or a torsion free abelian group

of rank 1. The number of torsion free factors in such a series ¥s an

invariant of G which we call the Hirsch number of G and denoig by 7
{

-
h(G).
Finally, each torston free sbluble group G of finite rank has a
unique maximal normal nilpotent subgroup called the ?ifting subgroup
, X , I i . " grou]

of G and is dénated by F(G). ‘ .
¥ - : :

Definitipn72.§: Let G be a torsion free soluble group of finite rank.

We say that G is FI (Fitting Isolated), if, whemever H = K|L

(L<K<G) 1is a torsion free section of "G, then H|F(H) 1is.torsion free
F 5 N =

abelian.

The class of FI-groups is clearly closed under taking subg?@ups

and torsion free homomorphic images.

Theorem 2.4: [A.H. Rhemtulla and B. Hartley]

If G 1is any torsion free solublc group of finite rank, then .G

contains an FI-subgroup of finite index. e

Proof: We may assume that GIE(G) is abelian. Let ,

1]

I

1 =2y <2 <...<2_ =E(G) be the upper central serics of E(G)
- . : = i c i

and Ci CGcZi/;i—l)ﬂ 1<is<c. Then F

, and each of the

1

[T
Y
o

gréups‘. G| C‘i can be thought.-of as an abelian group af-mﬂiriées ever 0. The
_tgrsicnsubgraup3feach ﬁ/Ci is finite [4.9.33)], and it follows that the

torsion subgroup  T/F of G/F is’finitef ltente G/F splits ﬁvef T/F,
and.there(ggists a subgroup Gl of finite index in G, such that G]/Fr

is torsion fTEE Since T %E(ﬁlf, we may cven assume that G/F(G) is

torsion free abelian, o .



‘ ! o
¢ The proof now falls into two parts: .
(L) There exists a subgroup Gg of G such that Go 2 FTUG),
':, IG:GOI < o, aﬁd H/FE (H) ’is,tcrsian free, for every H'< Go-
(2) G, if F.I. d

< We prbve'(l) by induétion'an K(G). If h(G) 0 there is nothing

to do, so assume h(G) ;,0. ‘Let B be an abelian normal subgroup of
pinihal rank.of G cbptained in the centre Z(E(G)) of F(G) , and

let A = G/E} Then A < F(G) since G/E(G) 1is torsion free, and hence,
by the theory of isolators in nilpafcnt‘grnupsi [1], A is a Subgrgup of

g(g(c))J By induction, there is a subgroup Gl/A of G/A , containing

F(G/A) and hence F(G)A/A , such that’ 1G:G, 1 < = and G, /A o

satisfies (1). ™
/ £ B ‘
Let C = CC(A)' Then C 2 F(G), we have secn above that the

0

torsion subgroup of G/d is finite, so that G/C contains a torsion

frep subgroup G,/C of finite index. Let Gg = G, n G, . Then L
|6:G6,] < « and Go 2 F(G). ’

, then H = HA/A, and the fact

%

1t

Now let H < Gy . If HnA =1

that ,H/EkH) is torsion f;ec follows from the propertics of Gl/A.

Suppose that Hn A # 1, and let h be an element of H such that

h" € E(H), for some n 2 1. Since H n A < F(H), we have

[H n A, hn,.;.,hn] = 1, and hence CHﬁAChﬁ) 1, Hénce XCA(hﬁ) is

a non-trivial isolated subgroup of A, and is normal in G since G/C

is abelian. Thcref?re n" - Cc. But G 7G§ n € is torsion free.

Hence h e C. If F/AnH = F(II/Anll} ;| we also know hy_induétinn that

hrc F. Hence h ¢ éF(AhH),’n ni]ﬁgtcnt normal subgroup of H. ‘Therefore
-

h ¢ F(H), as required. *

Next we will prove (2). We have to show that if G is a torsion



free soluble group of finite rank and

[
(]

") H/F(H) is torsion free abelian for every H

then. G/N has the property (*) wheneverr, N ¢« G and G/N is torsion free.

Suppose this is, false, and let R 4 %e the smallest integer for Hhi%ZJ
there exists a counterexample G with h(G) = r. EAmaﬁg all pairs 7
(G,N) which furnish a counterexample with h(G) = T, choose Dnefwith
h(N) minimal. Theﬁ G/N Qantéinsia subgroup H/N such that
(H/N)/F(H/M) is not torsion free. We may clecarly assume that Hrf G. .
‘ ‘Let F/N = F(G/N}, and choose an element t e G/F sﬁch that *t™ ¢ F

a ) ,
for some m > 0. Let G, = F(&{(t), N, =N~ Glj F1 =Fn Gi. Then

 isomorphism, F_/N; corresponds to

ijﬁﬁ = GIEfN; urder th

(FnG,IN/N

1

[

N)

I
~—~
Tl
et
z
L
=
-
oy
p—t

teG,,t¢F ,t eF,. Thus (G,,N.) is a counterexample, so we
RS 1 L O ,'
may assume that G = GI’ that is G = F(G)(t)

/Next,we notice that, if Z = Z(F(G)), then

[}
-
L

(1

Ci(t) = .
clearly Cz(t) = Z(G). Let Y denote this subgroup, which is isolated
in G since Z jis. By the minimality of h(N), there is no normal
subgroup M of G such that 1 <M <N and G/M is torsion free.
Clearly N n F(G) # 1, and 60 N n Z #1. Since Z is isolated in

E(G), [1]} and G/F(G) is torsion-free, Z is isolated in G, so N < Z,

Hence YN < Z, and thc isolator G#?ﬁ of YN in G is an

normal subgroup of G. Also /YN/N =V is a torsion frce @belian

normal subgroup of G/N , and V/CVCG) is periodic, sinec \C, (G) > YN/N.
Hence [V,G] = 1, that is YYN/N < Z(G/N).

)

E(GN/N),"as GN/N 4G/N. We have [\

m , 7
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e
Now trivial arguments show that G/Y has the property (*). If

Y # 1, then¥he minimality of :jf)_ shows that G//YN has the

property (*). But /YN/N < F(G/NY = F/M, and F(G/YW) = F//AN as
- /YN/N < Z(G/N). Hence G/F is torsion free, -a contradiction. This
proves (1).

Clearly Z/N = F/N , and since t™ ¢ F, we have

(z,t",...,t"

N. T

<

N(t“)'z K/N # 1. Now commutation

In particélar, if Z > N, then CZ/

_with t"™ . induces endomorphism* £ of K whose image lies in N and

so has smaller rank than K. Hence ker E CK(tm) # 1. Let

L= cxctm); The ™ ¢ FEL(t)), and by (*); t ¢ E(L{t)), that is
L{t) is nilpotent. Therfore ([L,t,...,t] =1, and CL(E) £ 1.
This contradicts (1), We deduce that Z = N.

It clearly follows that F'(G) # 1. Let U/F'(G) be the torsion

subgroup of F(G)/F'(G) . Then N <.U, as Nn F'(G) # 1. Since

F(G) = G, we deduce that

(E(G),t", ..., t"] < u.

Let C be the nilpotency class of F(G). Then

1Ay (E(O) < N,

where {yi(x)} isléhé lower central scrics of a group X.
1f xl,,i!,xc ¢ F(G), then since, TEQE(G)) »s torsion free, the

value of [xl,iii,xE] only depends on the valuc of ﬁl,...,xc motlule

h

L4 ,
U. We obtain a well-defined ({t)-modulce epimorphism of

E(G)/ve ... ® F(G)/U (with c factors) onto yc(ifﬁ)]; namely ih\



x1U ® ... @ x.U-> [x],...,xc]

(cf. [3,partl,p.55]). The tensor product is to be viewed as a
(t)-module via the diagonal action, the action on the individual

factors being by conjugation. Since F(G)/U has a-finite series with

t™_trivial! factors, so does the tensor product, and hencc also

YC(E(C)) (cf. {3],part 1, p.56). ch‘ce CN(tm) # 1. Argpuingfas in

B\
the previous pd&ragra we deduce that C (t): nd obtain contra-
p upc{rg ph,‘ ! ,N()/i«—i',’ﬂ 3
diction td (1). This co%cludes the proof'. ‘ -
-
\
-
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Chapter 3

A\

Isolators in Polycvlic Groups

Introduction: The work of this Chapter is the first step in an attempt

to expten P. Hall resu}té in‘[l]. If G is not nilpotent group, we
sho; in 3.2.1 that, there is no Teason to expect G/ﬁ. to be always
’a suhgfoup. In 3.2.2, we show that if G is polycyiic Fitting
isolated group thén G -ﬁas a subgroup G, of finite index, such
G T ' o G, .
_ that M is a subgroup for every H < G, and that | %ﬁiﬂil is
finite. Also throughout the lines of this Chapter We give a proof
to propésition (A) of Chapter 2. ~
If G 1is polycyclic group, Mal'cev in an earlier theorem, has
proved that G can be embedded in GL(n,Z), the gencral linear group
of degree n ovef the integers. And sihcenGVEry }inear group is
a CZ-group, we néed'here to study those properties of CZ-groups that -
seem Televant to the theory of isolators. . -

I have therefore split. this chapter into CZ-groups in section 1

and the isolator Eheory of polycyclic groups in séction.zi

Section 1 7

.CZ-groups and the Zariski topology

Let U be the space of n-row vectors over the field F and

R. = F[Xl,...,Xn], the polynomial ring over F in n indeterminants.

A subset A of U is said to be clostd in U if there exists a sub-

.

set S - of R such that A is the set of zeros of S, tT;t is, if

s

A = {(al,...,an) c U: f(él’“"’an) = 0 for ?]l f in S8} .

16-



If S 1is any subset/of R 1let V(5) denote the set of zeors of

S (in U). Nate that V(S) = V(ideal generated by §)

r]V(Sa) = V(U Sa)i

a -

L

Suppose that A = V(I) and B = V(J) where I and J are

V(1)  V(1J)},

st
—

ideals. We claim that A u B = V(IJ). For JeI, so A
and similarly for B. C0nversiey let x ¢ V(IJ)\A. Since A = V(I)
there exists an element f of 1 such that f£(x) / 0. If g e J,

0 for all g

then fg ¢ 1J, so 0“ fg(x) = f(x)g(x). Hence g(x)
in J and so x ¢ V(J) = B.

Thus the closed subsets of U define a topology on U, called

the*Zariski topology. Note that U = V({0}), ¢ = V({1}). If
,(ald...,aﬂ) e U then {(al,...jan)} = x({xlnall.,i;xﬁéan})é Hence
every one element subset of U 1is closed (i.e. thc topology is a

Tl-topplogy).' If A c B are closed sets there exists ideals I and

V(Oy 7 B =V(Q) and Jc'l. For if

J of R such that A
A=V(') and B =V(J), put I =1' + J. *Thus the Hilbert basis

theorem implies that the Zariski, topology satisfies the descending

chain condition on closed sets, or equivalently the ascending chain

*

"condition on open sets. -

. ) x
Definition 3.1.1:* A Z-space is a tapalagigal space in which every one
_ ,

element set is closed (i.e. is a Tléspace) and which satsifies the

descending chaih condition on closed sets.

‘Every subspace of a Z-space is a Z-space.

Definition 3.1.2: A CZ-group is a Z-space G whose underlying sct

carries a group structure such that for every a in G the four



mappings given by

X =+ ax , X+ X .
s o " - ) ®
xg* Xz X + x ~ax , e G ,

are continuous.

‘ v s . T
Every linear group is a CZ-group, fqr if V is an arbitrarly,
finite dimensional vector space over F, then V can be endowed®ith

uitable choice of basis,

a Zariski topolpgy after.a

Let G be la subgroup of 9 E;F . Eﬁ is a vector space

over F of dimension nz and so carries the Zariski topology. The
four mappings above are continuous [4,5.1,page 72]. ’\
Since the;tapalagy.iﬁdu}ed on a given linear group is unaffected by

ground field extension [4,page 73}, we can unambiguously speak of its

closed suhgets without specifying the groung field. (

Theorem 3.1,3: [4,page 75]

If G is CZ-group then the normalizer of a closed subset of G

igﬁglased and the ﬁentralifcr.cf'any'subset of G is closed.
k4

roof: Let $ be any closed subset of G and a any element of

8. Denote by Sta) the inverse image of S in G under the continuous
/ , .
mapping given by x -+ x lax. Then Ny = NS(a) = {x ¢ G x Tsx c 8}
. ) aes
is closed in G:

If (a)S denotes the inverse image of § in G under the

continuous mapping given by x » xax ) = (x;l)glaxgl , then ‘

N, = N (a)S =" {x € G: xSx < 8§} 1is closed. Therefore NG(S) = N, ﬁNz'
» acs y
j.
is closed in {:. -
- B B e . ‘
Let T be any subset of (.



. e
W

(t) = NN_(t)

C-(T) = NC
G teTG

teT G

- and Ng(t) -is closed by the above. Consequently C;(T) is closed in

-

G.

)
Theorem 3.1.4: [4,page 78}>

/} In a CZ-group G the closure of a subgroup is a subgroup and

the closure of a normal subgroup is a normal subgroup.

Proof: Let H be a subgroup of G and H its closure in G. Now

H-= H-l. Since the mapping given by x -+ X-l is a homcomorphd sm

of G, (H)_l = H. Let h ¢ H. The inverse image of H in G under

the mappipg given by x +» hx is closed and contafns H. Therefore it
/o \
contain€ R; that is, }(ig_ﬂ for all h in H. If %k e B, the

inverse image of H under the mapping given by x - xk contains H

and so H. Hencc Wi < A is a subgroup of G. Suppose’that H is

a normal subgroup of G. Since the mapping given by x —+ aglxa is

continuous, aﬂa_l is a closed subset of G containing, H. Therefore
o ’ .
A g,aﬁa~l for all a in G; that is H is normal in G.

Theorem 3.1.5: [p,page 78]

bl

Let A,B 4dnd C be sugroups of the.CZ-group G and A,B and

their cldsures in G. If [A,C] < B then [A,C] < B .

Proo t ¢ ¢ C. The mapping given by x.» [a,c] is continuous

and the nversc image of B in G contains A. Therefore
[A,c} € B for all ¢ in C.
. If a ¢ A the inversc image of B under. the mapping given by

x » [a,x] contains £ and hence C. Thus [A,C] < B
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Theorem 3.1.6: [wéhrfritz]

R is finitely generated integral domain of

p

20 and G = GL(n,R) , then if p 0, for al

primes gq, then G contains a subgroup T of
; I

such that for all closed subgroups H of G

(NS(H)ﬁTq)H/H is residually finite q-g

For the proof see [5]. As a matter of fact we c

T
q

of rank n, and M(n,Z) is the sct of n by

G n (I*qM(’n;Z?) , q any prime, where 1

integers Z.

Then Tq “e G: g =1 (mod q)}.

Lemma 3.1. is residually finite p-group

q-group torsion free.

Egaéf' Let x ¢ K, x

(p,m) = (q,m) = 1.

qjm £ 1.

generality that
i
and order

F

y so that y # 1 y

Now, y ¢ K , which is residually finite p-group,

that y ¢ H and K/H is a finite p-group. So
o

(i.e. yp

L a
Tp

2 integers r and s such that qum = 1

¢ H contradiction.

o if we let G (T1+2M(n,Z)) n(1+3M(n,

(¥l

G
o
NI /H is residually finite QQgrOup and residual

N(I)/H is torsion free for all closed subgroups

¢ H, for some integer a) and (pg,qjm)

"‘\
. o
characteristic
1 but finitely manyESK

finite index in G

roup.

an take
is the identity matrix

n matrices over the

-

and residually finite

prqlm,

where

Assume without loss of

replace x by

¥

j

where (p,qm) = 1.

implies 3 H < K such
. .. @
Hy has order p

1 hence

i.c.
iZ)\ then by 3.1.6,

Iv finite 3-group, i.c.
of

I G ..
[§]

i
LAy
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If H is a Clﬂsed subgroup of G,, then H is isolated.

Corollary 3.1.8:

Proof: Suppose H/is not jsolated in G,, let x¥ ¢ H for some

and x ¢ H. Let J = the closure of (xr) {the Zariski
e S

integer r > 1

clogure in/ G.)). Then J = H, and since. x normalizes (x¥) then

and we have x' ¢ J. But from the remark made above since
* -~

J 1is ¢losed then N(J)/J is torsion free. Then Xx & J 1.e. X ¢ H

b a commutative Ting and M a finitely

" generated R-module. Mn c{ement g of Aut.(M) is called unipotent
iéﬁif (g-1) is nilpotent, i. if some power of (g-1) is the zero map. A
subgroup G of AutR(M)' is called unipotent if every element of G

is unipotent. ‘ ' ;

Theorem 3.1.10: [Wehrfritz]

s If H is a subgroup of U(G), the set of unipof&nt elements of
G, where G = GL(n,Q). Then the Zariski colusre A of H in G is

*®

~ . i . :
equal to the isolator of H in U(G). .

® | . -

For the proof see [6] -

2. Isolators in Polycyclic Groups

There is no reason to expect G/ﬁ to be always a subgroup, for

Exaﬂp}g 3.2.1: Let G = {a,b: al = a‘l). Thus [bzla] =1, (ab)zﬁx b2,

{(ab,b) and A‘# G/E, for
ﬁ'

Let H = (bz), then G/ﬁ z {ab,b}. But G

kY
ay¢ G/ﬁ . '
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If G is locally nilpotent group P. Hall, as we have seen in
chapter 1, has proved the following:

i)y SV i

lways a subgroup

ii) If H

a
G /7 N C o ¢ 5f M ic icle '
H, then NG(H) = JNG(H) ij.e. if H is islolated
subgroup, so is NG(H)i
iii) If G 1is finitely generated, and therefore nilpotent, then
|SVA:H] < =.
iv) If G i% finitely generated, and therefore nilpotent, then

G _
N (/1)

Theorem 3.2.2: [Rhemtulla and Wehrfritz].

Every polycylic group G has a subgroup G, of finite index in
G ‘such that
i) Hs<G_ , then OH 1is a subgroup.

y . Go
ii) I1f H = %, then Ng (H) = DvﬁG )
o . o

G, . | CYR
iv) NS () = N, () .

Corollary 3.2.3: Roseblade's result in Chapter 2, follows from 3.2.2.

Proof: If G if given as in 3.2.2 then G, 1s orbitally sound, for, -

NG (H}Y with [ngﬂl < = , then

let H pe a subgroup of. G, and N
o

Go, ) o
G, = YN . But from (ii), we get

— : GV
"Gy = N (V1) e VT 4G,

3 G - ! V N 7
- Qﬁf, hence from (ii1) we have " < H, m# 0. Then if a - ]

call I+

then a% ¢ I (since T < 06) , g G, - Hence (ag)m = (3m)g y ni

for cvery g o ﬁgi Hence a" o uf o, for cevery g ¢ G i.c.
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am ¢ M HB = core. H = H which implies I/HG is periodic, i.e.

gé G, Co Gc;r 0 /E/

H/H. is periodic and since G, is polycyclic, then H/H. is finite,

o o
which gives the result,

Step 1. Mal'cev has proved that every polycyclic group G can be

embedded in GL(n,Z) , the general linear group of degree n over the

[

integers, also G 1is nilpotent by abelian by finite, and the nilpotent
by abelian part is traingularizabel over the algebraic closure of Q,
see [4, Theorem 3.6,page 45].

Thus we pass from G to this t%igﬂgula;izahlé subgroup and we call

it G .again and lets U(G) ®Me the set of unipotent matrices of G. By

By 2.4, we may also assume that G 1is Fittling isolated,

Step 2. If G, = G n (I+2M(n,Z)) n (1+3M(n,Z) then by 3.1.6, G, is

of finite index in G "and G, satisfies the following properties:
i) No (H)/H is torsion free for every closed subgroup H of G,
Yo

by the remark made after_ Lemma 3.1.

ii) U(G)) is closed subgroup of G, by 3.5, with U(G,) 46,
U(GD) nilpotent and ,Gé < U(GQ); from Step 1.
’ —

We shall try to show that G  satisfies i,ii,iii and iv mohtioned

in 3.2.2,

[}

Step 3. U(GD) is isolated by Corollary 3.1.8. Let UQD H n U(Gg)i

where H = G, and supposc H is isolated subgroup. Then U(H) is

ur

also isolated, sincec both 1l and U(Gﬁ) are so. Then by 3.1.10,
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™ .
* U(H) 1is closed, and since G')< U(Go), then [N(H),H] = Hn U(Gn)

U(H)

(by N(H) we mean here NG (Hjj. Applying 3.1.5, we get [N(H),H] < U(H).
o )

But U(H) = U(H) , then ([N(H),H] < U(H) < H. i.e. [N(H),H] £ H, then
N(H) = N(H) by the definition of the normalizer, i.e. N(H) 1is closed.

Hence N(H) 1is isolated by Corollary 3.18.

Hence we conclude that if H is isolated subgroup of Gg 50 is.

(H), which proves (ii).

(*) We can also sce from thc preceding argument, that if H is any

subgroup of G and U(H) is isolated in U(Gd) then

Step 4. Now take H < Go’ U(H) f H n U(Go) . §§#?f§§§g

G U(G,) ‘ : ,
°VU(H) , since G,/U(G,) isrtarsion3T$je

Qo
c
—~
==
—
|

The closure of U(H) in Gy » by 3.1.10

. = U(H)
&
, ‘ : L r ' o
since’ U(G)) is nilpotent, then U(H)- is a subgroup and |U(H) :U(H)] < =,
by 1.5. Since [N(H),H] < u(ll), for every subgroup 'H of EGD then
[N(U(H)) ,U(D] s O(H) . But N(H) < N(U()) , then /)
NG ,UG] < BQE) . d.c. U(H) « NOI) . Hence (H) 4 N(H),

for if x'c UMH), gc N(T), then x" ¢ U, n # O and"
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5

gélxng = (gslxg)n € U(H); since U(H) < E{H) then gél;g;z U(H). i.e.

NG, U] < O, | Applying 2.1.5, then [N(H),U(D] < UGW. ' Now

H-U(H) since i S(H) UH) and |U(H):U(H)| < = , then
: 7 Ha UM

J
HH E

let H1
IHJHI < =,

#

H

il

Since U(H)) L 0 UGG, = H-UHY n U(G,) = U(HY- (H U(G,)

=U(HruH) = U(H) then U(Hl) is closed, i.e. it is isolated. Then.

.e. [N (‘i) ;] < H, n U[GQ) = U(HI) and

(e

by ( 1

since 1 {1) = H. < N(”l)’ then [HI’HI] = U(Hl)* Hence

[N(Hl)fHI]:g H

HI/U(H ) = Z(ﬁTYU(HI) = thgicentef of the group ﬁ}/U(ng. Now since

U(Hl) is isolated, then P' (H ) 1is torsion free, then it is Fitting

isolated group. And since Z(ﬁ}/U(Hl) < Fitting subgroup of (ﬁ}/U(nl))? é

which is isloated in ﬁi/U(H,), then Z(ﬁ}/U(Hl) is isolated. Hence

< Z(E3/U(Hl) < ﬁ;/U(Hl) i.e.. ﬁ:/U(H ) is abelian, and since U(Hl) < H

-then ﬁi/Hl is abelian which is périodic and finitely generated, then

it is finite i.c. IﬁizHll < =, But lHl:Hl < =, then lﬁl:Hl < = since

ﬁgé ﬁ}j then . |H:H| < = , and we know before, from 3.1.4, that H is a

subgroup. And since M is closed then, by Coroldary 3.1.8, it is isolated

n 'GQ. i.e. H - G%@i and since GQ’E:= GqﬁT -then H = ‘Qﬁi, i;eg

YH is a subgroup of G, and 169475i]A< o, whgch proves (i) and (iii).
To see (iv), éigc; [N(R),A] < A, applying 3?1.5 then

Y e

N(H) , hence' N(H) is iéalated. And since )

(NC),A) < A, i.c. N(D)

N(H) = Nfﬁ), then N(H) < N() = N(1) i.c. N(H) < N(H).

NOD. let x ¢ Gé _such that

T

Now we want to prove N(H)
x Mix = A , we have to prove x ¢ N(H).
L )
il a K since . [N(H),H] * and applying Theorem 3.1.5, we get

Take K = (N(iD,x)}. Then

[N(I),H] < H, i.c. 0 < N(D and by the choice of x, then 1l 4 K
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m, where m is a finite number. Hence A" < H.

By (iii), |[R:H|

But A™ 4 K since A 4 K. Let C be the centralizer in K of the

E

14
;w%
1
o

finite group A/i™. Then |K:C| is finite. We have [H,C]

so that C < N(H) < N(H). Hence |K:ﬁYH)i is finite i.e. K

Mt
2z
—
I
[

and '; e N(H) as required.

Now the following Corollary will, in some extent, generalize Theorem

Corollary 3.2.5: Every polycyclic group G has a subgroup G{3 of

finite index, such that, if H is a subgroup of GG, then the Zariski

closure H of H in G  is equal to the isolator of H in G,.

Proof: If G G n (I+2M(n,Z)) n (1+3M(n,Z)) then by 3.1.6 , G

o}

~1s of finite index in G. And if H s Gy then 3.1.4, the Zariski

L7y

clqéuie H of H in G, is a subgroup and as we have seen throughout

the proof of 3.2.4, |A:H|] is finite. And since fi is closed then

|

. Gg,=
by Corollary 3.1.8, it is isolated in G, i.e. H = %H. But since

G, — G, )
%R = "% . then A = S,

¥



Chapter 4

n-Isolators and Polycyclic Groups -

=
%

In this Chapter we present the main result of this thesis.

We define a class x of groups as follows:

x if G 1is soluble of

Definition 4.1: We say a group G is in

finite rank and there exists a subgroup

of finite index in G

and a finite set of primes =, such that ‘whenever LETA (a set of
primes) and K = GG then the set {g ¢ G: gm ¢ k , for some w-number
m} is a subgroup (called the m-isolator of K in G, and denoted by

Go )

6o . ol
K, ), and_ |k °:k] is a m-number.

=5

Now the following theorem is an immediate consequence of the defini-

tion. )

Theorem 4.2:.i) If Ge x and H <G, them H e x.

ii) If G c¢x and H a G, then G/H ¢ x.-

iii) If He yxy and K € x, then HxK ¢ x.
iv) If Gg is finitely generated nilpotent by finlte group
then G e x, see 1.5. |
One could conceivably try to extend P. Hall result in 1.5 to some other

class of grups by investigating the class x. The following example

shows that somec metabelian polycyclic groups already fail to be in x.

yx,xt = y,yt = xy) then G ¢ x.

Theorem 4.3: If G = (X,y,t:xy

Proof: The subgroup - {x,y) of G rcpresents the Fitting subgroup,

E(;)j of G. And G > F(G) = 1 1is a normal serics of G with

k3]

G/F(G) = {t) the infinite cyvclic group and E(G) = {x,y) is torsion

-27-
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free abelian of rank 2. That is to say G 1is a metabelian polycyclic

group. -
Now suppose G € x. We may assume that L has largest prime

P > 5, by enlarging ', if necessary, we may also assume that G

contains F(G). 1i.e. G, = (x,y,tm}; for some m > 0.

% ¥

Let N = (x yqjtmp} be a subgroup of G,» where q is a prime,

. 2
which will be chosen later.

Question (*): If "N 1is given as above, is there a prime q greater

- Q — !
than p, such that N is normalized by t™P  but not by t"? ¢

If a positive answer were~given to (*) then we are finished.- For,
let t" =7 argl suppose 3q > p  such that N = (x,y%,7P) is normalized
* G -
by P but not by 1. Let L =NnFE(G), M=1L 0 (the normal closure

of L in G_), then it is easy to see that M = F(G) and G = {L,7).

Since N is not normal ‘in Go,» then N is a proper subgroup of FN.

G,
So if q ¢ n , where = is a set of primes containing =,, then N °
B
) Gy . , .
is not a subgroup. For, if Hﬁa is a subgroup, so0 it must be all of
Go,'and IGQ:N] is a finite 7w-number. But then ym ¢ N, where m is

n-number, and so yq e N implies y ¢ N, a contradiction.

And if we throw q inside " then by repeating the argument we

will be able to find an increasing sequence of primes

Q=9 <qy;< ... <q < which will prevent us from kgcping 4
' - (1),50
finite if we want ° N 7

to be a subgroup, where " /
. £ 3 qz :
(I)N - (x,yql+1 M

1]

>, 1=0,1,2,...,q, = pf

Now by studying the action of the operator t on F(G) we can

2 ) o - - . )
sece that t— = 1 4 1 and t = Fﬂ=1 + l“t; where F, are the

Fibonacci numbers defined as follows:



Now (*) is equivalent to say:

Question (**): Is there a prime g > p such that timp but tin?

=p Fap-1*Fmpt
For, if t™P  pormalizes N, then It ¢ N, i.e.,6 x mp-1_"mp e N
Fapt , . L
then x "P ¢ N, i.c. y " ¢ Ni.e. qump; also t" does not
e i

normalize N means timi
Hence in order to give an answer to (**), we need to study the

ring of integers Z[0], where (32 =0 + 1. Let K = Q(/5), i.e. K

is a quadratic field. O = ;fj-==5, where the minimal polynomial of o
over K is x° - x? - 1. R = Z[2] 1is a Dedekind ring, for {1,6}
is a basis for R over Z, and the discriminant of R over Z is

equal to the discriminant of.the bas;s {1,0} thfih is given by:

Tr(1l) Tr(0)]
det 2 =
Tr(0) Tr(o")

Since disc.(R/Z) = 5, is square frec positive intcger, then R

2 1

13|

is Dedekind, sec [8). And since 5 1is the only prime dividing

disc.(R/Z), then 5 is the c:rily prime which ramifies in K.

b .
Let q be a f;atir:mal prime number since R is a Dedekind T’i‘
N elr Cq

~-then qR, as an ideal of R can be factorized as, qR

P Q

Q
a product of a dlStlnCt primes of R with rmwerfa* e, 2z 1 in Z.

The power e, = e(Q /qZ) is called the T*lmlfl#l.llﬂﬂ index of Q, over

3

qzZ .

Since Q; n Z= qZ the inclusion Z + R induces a monomorphism

v .
] .
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Z/qz » R/Q; of fields. Since R is finitely generated as Z-module

the dimension: f,i' = dimE/qZR/Qi is an integer 2: 1. The dimension

£, = f(Qi/qé) is called the degree of interia of Q, over qZ.

We denote by N (I) to the cardinality of R/I where I is

a non-zero ideal of R. '

" The integers e; and fi ;atisfy the following equation
8 , 1 s

2 = y eifi’ sec [8], and the later has only three solutions in
i=l

positive integers.

.
H
[

1) g =1, e = 2, . Then gR and we say q

ramifies in K.

2y g=1,¢e =1, f¢

n
]

- Then qR = Q, N, (Q) = qz and we say q

3)

o]
L
el
-
o
(-
]
-]
[]
—
]

fl 5 = 1. Then qR QIQE’

Nk(Q1) = N (Q,) = q, and we say q splits in K.
Now, bef?re we proceed with our proof we need theffc]lawingz

Lémma 4.4: i) F - =F  F +FF

ii) If n 1is divisible by m, then Fh is divisible by Fo-

iii) 1

(o]

=

W
P

[

jou
[

Bl

o'
Y

_—
-

]

. ]
H—
s |

H‘ .
=
S,
Tl
-]

LS

W'
]

L]

-Proof: i) We shall carry out the proof by induction on m. m =1,

Fn+l = Fn=1 Fl + FnF2 = Fn-l + an SupPase it is true for m = k, and

m =k + 1: we shall prove it is true when m = k + 2. °*Thus lect

F

]

Frek = oot Pofians Foaker 7 FactPear * Fofiape Adding the

neke2 = FooaFreo *Fafies.

last two equations term by term we obtain F

And this is the required result.

ii) Let n

mm, . We shall prove by induction on m For

m, =1, n=m obvious. Suppose | __ is djvisible by F_, and
) mm m

-



oy

H

consider chml*l)! But Fm(m1+1) = F from (i}, we get

.31,

mrnl*m

~ry
I
-
-
+*
-

The right hand side of this equation
is divisibel by Fmi Then Fﬁ(ml+1) is divisible by Fm'

iii) We shall prove by induction on m. If m =1, then

> p. Suppose m > 1, and let m

k + 1, then

"

( FmP/ Fg) Fp
ng*l)pr= FEpr - fkp-lefiifkpfpfl N kaflfp f,fkppp _ (FkPEQ*ka)Ep

Fret Frsal Fral

Fo .. Footyn  Foo
_kp+l 1. Thus . (k+l)p , ﬁkp*l_' F
k+1 . k+1 ke1 P

Ym>0, p>5.

We now go back to our proof. We have R = Z[o0], @2 = 0 +1. ~The
conjugate of 0 in R is equal to 1 - 0O, si?cc it satisfies the
same minimal polynomial of (€. i.e. we have two autamarphiSmsrCapd
only two) on R. One of them is the identity and the other is given

auto.
=%

by o: R R, o(0) =1 - 0.

Now we have the following:

For (i), we shall prove by induction on n. n l; then

- F 0 = ( - . o k _ e e
0 = FD + Fla =0+0 0. Suppose 0 = Fk—l + Fko. Then
ktl Kk, . (e . - I . 2 . . :
67" =078 = (F [+F0)0 = Fi ;0 4 Flo” = F 0+ T, (0+1)

k k
To sce (ii), oo" - o =

@

= Fpo¢ (B 1 *Fo = Fro+ T

FpoFn0) - (P +Fy?)

Fn(légc)i Also oo - 0 = 1 - 20.

L]

(Froa

. | n

o
L0
L
ol
It
-y
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Now the proof will follow into two cases:

Case 1: Suppose piFm (p does not divide F ). Since m divides

/F

;E) is

mp, then by Lemma 4.4 (ii)}, Fm divides Fmp' i.e. (Fmp

‘an integer, and by 4.4 (iii), it is greater than p. Hence there
exists a prime q divides (Fmp/Fm)g Hence q divides Fmp’ and

we shall consider twe cases: »

)
Q
|3
Ly
st
[
[
=
=
[
(]
sl
s ]
e
-y
]
H
L
s
[

_ 1)  Assume tim‘ Let € =

conjugate is (é%ﬂ, i.e. the norm of ¢ is —:—=-= 1. Then

&En = en N " - q ;
Fn = o0 - o0 5] %0 -0’ and since qu and q‘Fm, then -

(o

I

(mod qR) and e 51 (mod qR). Hence: p divides the order
q , P

™
11}
it

= ¢ + qR, in (R/qR) , the set of unit elements of the finite
A
Fq—Algebra R/qR, hence p divides the cardinality of (R/qR)‘; and

before we proceed we need the following, which can be found in

o]

e

™
1]

{10,p.125]).

Lemma 475: If 1 1is a non zero ideal of R, then thec number of units
of the finite ring R/I is given by
* card®/D* = N(D 1_(1 *ﬁf%ja :
p2l
(q-1)(q+1) if qR = Q
Now, card(R/qR)” = {q(q-1) if qR = Q° .
\ (q-1)2 if qR = Q)Q,.
And if p divides q+l, then p divides %{q*]), since q+l
Z'is'éven integer, (unl@ss q = 2 when plq+1, contradicts p > 5).
But %{q*lj < q, then p < q. Similarly if p divides q-1, we get
p<q. And if p divides q, then p = q, and in this casc q

ramifies in K and since 5 1s the only prime ramifies in K then



. that p is different from q. And if Q1Fm’ then by (i), q>p, as

P’zg:

3|"s
[
] A
T

F__
then —P.

ey

since qum, then ¢

get EFP-MP

0 (mod qR)

a contradiction.

Case 2:

mp-m,, W

Suppose p|F_ i.

(l+e+.

1 (mod gR).

. Hence p

A

e. €

, 50 if we let

F Pp-1
- [P€1)§P )

=¥

. mp , s
o"PmE__ -1, mp-m (I*Em*;;i*zm(p-l))!

From the

i

5, a contradiction with p > 5.

Assume q|F_. And we have ql(

33,

So this q answers question

: mp
PP) since F_=o"PE&__=-1
F : mp a9 -

m\“,_.‘

_ 1.

Em(psl))v

0 (mod qR), and

last two equations, we

q, and since q|F_, then p!Fn

1 (mod pR)

since

1 + §. Hence

F_
_p
Fi

p (mod pZR)i Hence pzi(ng) .
\'m

o™-Mp

F_&
But we know 7§E?§-p , where p > 5. Then there exists a prime q

different from p, such that q(F /F.).

Now, if q|F_, then by (ii), q = p a contradiction to the fact

required. This concludes the proof.

Conjecture 4.6:

and A. Weiss we conjecturc that G

is.in y

-

As a result of 4.3 and a discussion with A. Rhemtulla

if and only if G is -

finitely gencrated nilpotent by finite group. -
[
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