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Abstract

Data has become an integral part of analysis and decision-making across various dis-

ciplines including health, economy, biology, process systems engineering, and sports.

Despite the abundance of big data, the identification of the fundamental source of

disruption in process systems engineering continues to pose a formidable challenge.

Recognizing the significance of the rapidly evolving industrial landscape, in this the-

sis, we focus on various ways of using Causal Inference to determine the relationship

among process variables to identify the root source of process abnormalities.

The first contribution of the thesis considers the causal inference among non-

linear systems. The research investigates the applicability of the Gaussian Process

in the Causality analysis among non-linear systems. Employing Gaussian processes

facilitates the identification of causal relationships, thereby enabling a better under-

standing of complex non-linear systems. Since the traditional Gaussian Process-based

causal inference tends to provide spurious causations, the study focuses on deriving

sparse solutions to enhance the interpretability of the causal links identified. Sensi-

tivity analysis is conducted to assess the robustness of the findings, providing insights

into the reliability of the identified causal relationships within the intricate system

dynamics.

Given that conventional causal approaches rely solely on data, the integrity of the

results is heavily contingent upon the quality of the data. Owing to the susceptibility

of real-world industrial data to inaccuracies stemming from inadequate sensor main-

tenance, the effectiveness of complete data-based approaches is notably compromised.

Hence, the second contribution of the thesis explores the possibility of amalgamat-
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ing expert human knowledge with process data to reduce the over-dependence on

data and produce more reliable and accurate modeling. In this case, it is achieved

by using a constraint optimization technique where human knowledge is provided as

constraints in the optimization. To verify the existence of the derived causal relation-

ships and eliminate the possibility of chance findings, a novel surrogate generation

algorithm specifically designed for oscillating data sets is also proposed.

The third part of the thesis applies the previously developed methodology, in-

tegrating physics-based information with process data, to diagnose the challenge of

flooding in separation columns using real industrial process data. Moreover, an ad-

vanced predictive model for forecasting instances of flooding is formulated and its

results are analyzed. A user-friendly Graphic User Interface (GUI) toolbox is also

developed to automate the process of combining process data and domain knowledge.

The efficacy of all the contributions is verified through the numerical case study

or industrial case study.
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Chapter 1

Introduction

1.1 Motivation

The application of data analytics and data-driven modeling is finding increased promi-

nence with ever-improving computational capabilities. Data has become an integral

part of analysis and decision-making across a wide variety of disciplines including

health, economy, biology, process systems engineering, and even sports. The primary

objective in the domain of process systems engineering is always related to safe and

reliable plant operation apart from economic benefits, and this is achieved by early

detection and prediction of the root cause of abnormalities. Data-driven modeling

plays an important role in the identification of the root cause of abnormalities as

first principle-based modeling has its limitations due to limited understanding of the

processes, presence of feedback, and complex interconnections [1]. Causality analysis

is a widely accepted data-based technique for root source identification and hence has

been extensively studied across multiple disciplines [2–4]. Since the analytics methods

are sensitive to data quality, results obtained are subject to variations depending on

the quality and reliability of the data.

In process industries, the importance of data quality cannot be overstated, particu-

larly when performing tasks such as Root Cause Analysis through causal inference, as

highlighted in this thesis. Data quality serves as the cornerstone for accurate and reli-

able analyses, providing the foundation upon which meaningful insights and informed
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decisions can be built. In process systems, where intricate networks of interconnected

variables and parameters influence outcomes, the precision and reliability of data

are paramount. Flawed or inaccurate data can lead to misguided causal inferences,

potentially resulting in ineffective or even counterproductive interventions [5, 6]. Re-

liable and accurate data contributes to the overall efficiency, safety, and sustainability

of process industries. Since engineers and technicians working in process industries

possess years of experience, combining them with the data helps in mitigating the

issues associated with reduced quality data as the heavy reliance on data is overcome.

As all the process systems are not linear and many involve nonlinear relationships

among their variables, nonlinear causal inference is explored in the thesis. Non-

linear causal inference holds significant importance in various fields, including pro-

cess systems engineering, as it allows for a more nuanced understanding of complex

relationships that may not follow linear patterns. Nonlinear causal inference tech-

niques, including advanced machine learning algorithms, empower researchers and

practitioners to uncover hidden patterns, identify complex dependencies, and discern

the nonlinear dynamics that underlie intricate processes. Due to the non-parametric

nature, Gaussian Process-based nonlinear causal inference attracts a lot of interest.

As these methodologies may involve producing spurious causations in addition to

true underlying causations, sparse-based nonlinear causal inference is explored in this

thesis.

Therefore, in this thesis, novel methods are proposed to address the problems as-

sociated with complete reliance on data for causal inference and the issue of spurious

causations. While over-dependence on data is overcome by proposing a Physics-

Informed causal inference, the issue of spurious causations in nonlinear causal in-

ference is addressed by performing sensitivity analysis. In physics-informed causal

analysis, the problem is formulated as a constraint optimization to achieve more ac-

curate and reliable inference. The developed framework has been then applied to the

diagnosis of flooding in the separation column where process data is obtained through
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industrial collaboration. In the forthcoming sections, contributions and an outline of

the thesis are detailed.

1.2 Thesis Contributions

The thesis contributes to the development of methodologies for root cause analysis in

Process Systems Engineering using causal inference. Contributions of the thesis are

listed in detail as follows.

1. A nonlinear sparse causal inference using variational Gaussian process is pro-

posed focusing on nonlinear time-invariant systems.

2. A method of amalgamating human knowledge with data to improve the accuracy

and reliability and overcome the shortcomings of purely data-based approaches

for developing causal maps for systems involving oscillations is proposed.

3. A surrogate data-based hypothesis testing for systems involving oscillations

is proposed to verify that the causal-effect relationships obtained are not by

chance.

4. Physics-Informed sparse causal inference approach is applied for diagnosis of

flooding in separation column and a Principal Component Analysis-based Hotelling’s

T 2 statistics method is developed for advanced prediction of flooding in sepa-

ration column.

1.3 Thesis Outline

With the presented motivations and the contributions reviewed in Chapter 1, the

thesis proceeds to detail each of the contributions in the forthcoming chapters. The

rest of the thesis is organized as follows.

Chapter 2 presents the first contribution of the thesis which is nonlinear sparse

causal inference using variational Gaussian process. This chapter focuses on nonlinear
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time-invariant systems. Traditional Granger-based approaches fail to perform well for

nonlinear systems and the regular Gaussian process approach results in a significant

number of spurious causations in addition to the true causal relations. The proposed

methodology significantly mitigates spurious causation by incorporating a sensitivity

term. The effectiveness of the method is demonstrated through case studies.

Chapter 3 discusses the second contribution of the thesis in detail which is the

Physics-Informed sparse causal inference for source detection of systems involving os-

cillations. The shortcomings of traditional data-based approaches for root source iden-

tification in systems involving oscillations are discussed and causal inference methods

like Granger causality and Sparse Granger causality are detailed in the chapter. To

verify the cause-effect relationships identified, a novel surrogate data-based hypothe-

sis testing for systems involving oscillations is proposed. The efficacy of the proposed

approach is demonstrated through simulation and industrial case studies.

The third contribution of the thesis is discussed in Chapter 4 which applies the

developed Physic-Informed sparse causal inference approach for diagnosis and ad-

vanced prediction of flooding in separation column for a real industrial data set. Af-

ter performing a diagnosis using the proposed methodology, an algorithm combining

dimensionality reduction and anomaly detection techniques is developed for advanced

prediction of flooding. To streamline the application of the proposed methodology, a

Graphic User Interface (GUI) toolbox is developed. The chapter thoroughly explores

the features and implementation of this toolbox.
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Chapter 2

Non-linear Sparse Causal Inference
using Gaussian Process

This Chapter presents the first contribution of the thesis which is developing a non-

linear sparse causal inference approach using variational Gaussian Process models.

2.1 Introduction

The chapter focuses on exploring the intricacies of causal inference within non-linear

time-invariant dynamical systems. In systems involving complex relationships and

interactions, traditional causal inference approaches like Granger causality do not

perform well especially when confronted with nonlinear dynamics. After the intro-

duction of Granger Causality, researchers have proposed various formulations that are

either extensions or modifications of the Granger framework. However, the framework

of Granger causality and such extensions are primarily based on the autoregressive-

based modeling and hence can be applied only to linear models requiring the condi-

tion of separability to be satisfied which assumes that the driven information from

causative factors can be removed from the effects [2]. It has been observed that

Granger causality, in its traditional sense, may not be well-suited for detecting ca-

sual relationships in nonlinear deterministic dynamical systems [7]. Researchers have

developed and extensively studied various methods to address this limitation and

quantify causal relationships among variables in nonlinear systems. These methods
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include transfer entropy[8], non-linear cross mapping using state space reconstruc-

tion models [9, 10], conditional mutual information [11], and recurrence plots [12].

Faes et al. [13] proposed a causality estimator based on nonlinear exogenous auto-

regressive (NARX) modeling but suffer from the fact that it is not appropriate for

higher order non-linear systems. Chen et al. [14] proposed a nonlinear extension

to Granger causality, termed an extended Granger causality, based on fitting locally

linear models (AR) to randomly selected neighborhoods of the embedded time-series

and estimating the neighborhood Granger causality. Ancona et al. [15] proposed a

bi-variate nonlinear causality estimator that replaces auto-regressive-based modeling

with the Radial Basis Function. Marinazzo et al. [16] proposed a Kernel-Granger

causality-based estimator, initially for bi-variate systems, and then later extended it

to multivariate estimations [17]. Even though kernel-based approaches provide much

better performance compared to other existing approaches, the author pointed out

the fact that the performance of this approach will be substantially reduced in the

presence of significant noise [18]. Schiff et al. [19] presented another approach using

mutual prediction which is not explicitly a causal measure but more a measure of the

direction of information flow.

Majority of the approaches discussed above suffer significantly from the problem

of over-fitting and many of them result in spurious causations [20, 21]. By speci-

fying particular conditions on the mapping mechanism and the distributions of the

cause and noise variables, the causal direction becomes identifiable [22]. For instance,

Hoyer et al. [23] assume that the effect is a non-linear transformation of the cause

plus some independent additive noise. A potential drawback of these methods is that

the assumptions made by the particular model considered could be unrealistic for the

data under study. Pearl and Judea [24] in their work proposed a non-parametric ap-

proach for non-linear causal inference but was based on Markov factorization because

of which temporal and causal inference from samples further in the past are ignored

in modeling. Hence in this work, we propose a Gaussian Process-based nonlinear
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sparse causal inference approach. Whether we try to find the underlying behavior of

the data, estimate the parameters of the model, or identify the interactions and rela-

tionship between the input and output, it requires us to assume a certain function for

these operations. More often than not, the specific algebraic form of such an under-

lying function is unknown to us. In these situations, Gaussian process regression can

serve as a useful tool for performing inference both passively (for example, describing

a given data set as best as possible, allowing one also to predict future data) as well

as actively (for example, learning while choosing input points to produce the high-

est possible outputs) [25]. Gaussian process regression is a powerful, non-parametric

Bayesian approach to regression problems that can be utilized in exploration and ex-

ploitation scenarios [26]. In their investigation, Amblard et al. [27] utilized Gaussian

Processes for causal inference. Nevertheless, the susceptibility to spurious causations

renders their approach impractical for higher-dimensional data. Feng et al. [28] used

the Bayesian version of Convergent Cross Mapping (CCM) using deep Gaussian pro-

cesses (DGPs) for causal discovery in coupled time series, overcoming limitations of

traditional CCM but again the approach is computationally expensive and suffers

from spurious causations.

The proposed Gaussian process-based non-linear causal inference addresses the

limitations of existing approaches. Non-parametric estimation is driven by the data

itself rather than being constrained by a predetermined parametric model. This flex-

ibility enables adapting to various data distributions and structures. It can deal with

variables having nonlinear structure, and there is no restriction to the order of non-

linearity. As the modeling in this work involves the concepts of variational inference

and inducing points, the model can deal with higher dimensional data sets. Varia-

tional inference offers scalability and computational efficiency, making it advantageous

for approximating complex posterior distributions in Bayesian models, especially in

scenarios with large datasets or intricate models [29]. Its flexibility in choosing varia-

tional families allows adaptation to diverse problem characteristics, and applications
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extend to various machine learning tasks [30]. The sensitivity analysis carried out

in this work is an extension of LASSO Granger causality and it helps in overcoming

the problem of spurious causations. However, the extension is not straightforward

for Gaussian process-based approaches. Thus the main contribution of this chapter

is outlined below:

1. A novel framework for sparse non-linear causal inference using variational in-

ference and Gaussian process

2. A novel sensitivity analysis to overcome spurious causations

The remainder of this chapter is organized as follows. Section 2.2 provides an

overview of the concepts of GC and Section 2.3 provides an overview of sparse Granger

causality (SGC) which is a variant of GC. Section 2.4 provides an overview of the

Gaussian Process Regression, and testing causality using the Gaussian Process is pre-

sented. Section 2.5 provides an overview of the Sparse Variational Gaussian Process.

In Section 2.6, a novel framework of nonlinear sparse causal inference using variational

Gaussian Process is presented. In Section 2.7, simulation and industrial case studies

are presented that demonstrate the effectiveness of the proposed methodology. The

concluding remarks are presented in Section 2.8.

2.2 Granger Causality

Granger [31] proposed an approach to identify causal relations among the variables of

linear stationary processes which is popularly referred to as Granger causality. The

two important axioms of GC are

• Cause happens prior to the effect

• Cause has unique information about the future of its effect

Let X and Y be two sets of time series data. If the past values of X help in improving

the prediction of Y , then we say X Granger causes Y . To understand the concept

8



of GC from a mathematical point of view, let the prediction equations for two time

series X and Y be :

y(t) = a1y(t− 1) + a2y(t− 2) + ... + ady(t− d) + e1(t) (2.1)

y(t) = a1y(t− 1) + a2y(t− 2) + ... + ady(t− d)

+ b1x(t− 1) + b2x(t− 2) + ... + bdx(t− d) + e2(t) (2.2)

where d is the order of the vector auto-regressive (VAR) model, and e1(t) and e2(t)

are white noises for the above two processes.

If it is observed that var(e2) < var(e1), it can be inferred that with the addition of

the past values of X to predict the future of Y , the prediction accuracy has increased.

In this case, one can confirm that X Granger causes Y .

If one writes it in a Vector autoregressive (VAR) model in terms of instantaneous

(Xt) and delayed variables (Xtd), which is the most widely used approach for detecting

Granger Causality, we have

Xt = M Xtd + et (2.3)

where,

Xt =

⎡⎢⎢⎢⎣
x1(t)

...

x2(t)

⎤⎥⎥⎥⎦ ; M =

⎡⎢⎢⎢⎣
M11 . . . M1(p×d)

...
...

...

M1p . . . M(p×d)(p×d)

⎤⎥⎥⎥⎦ ;

Xtd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t− 1)
...

x1(t− d)
...

xp(t− 1)
...

xp(t− d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)
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As an alternative to analyzing causal relations based on the variance of the residual et,

one may use the coefficient matrix M to achieve the same objective. The test on the

variance of the residuals translates into a test on the elements of the coefficient matrix

[32]. Thus, the GC inference procedure involves the identification of M followed by

a test for the significance of the elements of M . The first step of identifying M is

formulated as an optimization expressed as follows:

min
M

||Xt −MXtd||2 (2.5)

Here, ||·||2 represents the l2-norm.

Despite the successful application of Granger Causality (GC) in inferring causal

relationships from stochastic data, it suffers from a notable limitation. Due to the

nature of Granger Causality, which involves conducting cross-correlation between the

source and effect across various time lags, its application to oscillatory data often

leads to spurious causations. To illustrate this limitation, we present a simulated

example that highlights the challenges of using GC with oscillatory signals. Consider

two signals x(t) and y(t) that are generated using the equations 2.6-2.7, as shown in

Figure 2.1.

x(t) = cos(0.01 t) + ex(t); (2.6)

y(t) = 0.6x(t− 1) − 0.7y(t− 1) − 0.5y(t− 2)

+ 0.1y(t− 3) + ey(t); (2.7)

where ex(t) and ey(t) are Gaussian white noise with variances of 0.05 and 0.1 respec-

tively.

Figure 2.2 displays the cross-correlation between x(t) and y(t−τ) for all 0 ≤ τ ≤ N .

The red horizontal lines represent the approximate upper and lower 95% confidence

bounds. Notably, the cross-correlation exceeds the confidence region for a substantial

number of positive lags τ . As a result, it is possible to mistakenly infer a causal
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Figure 2.1: X and Y series

relationship from Y to X, despite this not being the case in the true relation. This

observation is further supported by fitting a vector auto-regressive model to X, which

reveals significant coefficients corresponding to the past regressors of Y .
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2.3 Sparse Granger Causality

SGC is an extension of GC, and as the name suggests, is aimed at obtaining a sparse

causal network. Valdes-Sosa et al [33] proposed to enforce the estimation of sparse

AR coefficients using l1-norm regularized models such as the LASSO [34]. As the

dimension of the data set increases, GC becomes computationally expensive and tends

to provide a lot of cause-effect relationships, which might not be of significant causal

relation in the true network. Apart from that, when the system under consideration

involves periodic oscillations, GC always tends to produce spurious causation, which

causes misleading results. The sparse Granger approach overcomes this shortcoming

of GC by introducing a sparsity term or a penalty term in the objective function of

GC. One of the best-known types of penalty in statistical learning literature is the

LASSO [35]. The objective function of SGC therefore is:

min
M

||Xt −MXtd||2 + λ||M ||1 (2.8)

The penalty term is the sum of the absolute values of the coefficients multiplied by

a hyperparameter λ. The level of sparsity to be achieved is decided by λ. The higher

the value of λ, the sparser the resulting VAR model. Thus, SGC mitigates the issue

of spurious causations observed in the GC method. But on the flip side, it may also

remove weak causal relations present in the network leading to a failure in identifying

existing causations. To deal with this issue, additional modifications are needed to

the VAR identification problem, which leads to the proposed physics-informed SGC

framework.

2.4 Gaussian Process Regression

Regression analysis is a fundamental tool for modeling relationships between vari-

ables. Traditional regression methods often rely on assuming a specific functional

form, limiting their flexibility in capturing complex patterns. A Gaussian Process
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is a collection of random variables, any finite number of which have (consistent)

joint Gaussian distributions [36]. Gaussian Process Regression (GPR) offers a non-

parametric Bayesian alternative by modeling distributions over functions, allowing

for adaptive and data-driven predictions without imposing rigid assumptions. At the

core of GPR is the notion of Gaussian processes, representing distributions over func-

tions. The choice of kernel functions, determining the similarity between data points,

and hyperparameters governing the characteristics of these functions are pivotal in

shaping the model’s behavior [37]. By leveraging Bayesian principles, GPR provides

a principled way to incorporate prior beliefs and update them with observed data.

In the context of a regression task, let (X, Y ) represent the training dataset, where

X and Y are float vectors of length n, denoting the input features and corresponding

output values, respectively, with n being the number of training data points. The

objective is to determine a regression function that maps the input vectors X to the

target output values Y . The model has two parts - the prior as shown in equation

2.9 and the likelihood as shown in equation 2.10. The likelihood is the same as the

Gaussian likelihood in equation 2.10.

⎡⎣f(x∗)

f(x)

⎤⎦ ∼ N

⎛⎝0,

⎡⎣k(x∗, x∗) k(x∗, x)

k(x∗, x)T k(x, x)

⎤⎦⎞⎠ (2.9)

y(x) ∼ N (f(x), η2In) (2.10)

where k is the kernel function, which encapsulates a prior understanding of the

smoothness of the underlying function.

The Gaussian Process prior (GP prior) is a multivariate Gaussian distribution over

random variable vectors f(X) and f(X∗). f(X) is a random variable vector of length

n which represents possible values of the underlying regression function at training

locations X and f(X∗) is also a random variable vector that represents possible values
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of the underlying regression function at testing locations X∗.

In the likelihood, y(x) is a random variable vector of length n. It comes from a

multivariate Gaussian distribution with mean f(X), and covariance η2In, where η2

is a scalar model parameter called noise variance, and In is an n ∗ n identity matrix.

The marginal likelihood then can be written as:

p(f) =
1

(2π)n/2det(K)1/2
exp(

−1

2
yTK−1y) (2.11)

Prediction in GPR is performed by incorporating a new test point X∗ and condi-

tioning on the observed data along with hyperparameters. To make predictions for

f∗ at testing locations X∗,

p(f∗|y) = N (k∗x(K + η2In)−1y, k∗∗ − k∗x(K + η2In)−1kT
∗x) (2.12)

The Gaussian Process (GP) stands as a non-parametric model, necessitating the

presence of training data explicitly during test time to formulate the predictive distri-

bution, as evident from the expression mentioned above. However, Gaussian Processes

become computationally prohibitive for extensive datasets, demanding O(N3) time

for training due to the inversion of the covariance matrix. Subsequent predictions,

once the inversion is completed, incur O(N) complexity for the predictive mean and

O(N2) for the predictive variance per new test case.

2.4.1 Testing Causality using Gaussian Process

Consider two scalar time series xt and yt and two structural models as shown below:

Model 1:

xt = f 1
x(xt−1) + ϵ1x,t

yt = f 1
y (yt−1) + ϵ1y,t (2.13)
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Model 2:

xt = f 2
x(xt−1, yt−1) + ϵ2x,t

yt = f 2
y (yt−1, xt−1) + ϵ2y,t (2.14)

where f is distributed as a Gaussian process and the dynamical noises ϵ1,2x,t and ϵ1,2x,t

are i.i.d.

The marginal likelihood of the model also called the evidence of the model, is used

to test causality. Consider a causal relationship x− > y and to test whether such a

causal relationship exists, a statistic dx−>y that compares the log-evidences of Model

1 and Model 2 is defined as follows.

dx−>y = max
θ2

logP2(fy|X, Y ) − max
θ1

logP1(fy|Y ) (2.15)

Based on the computed value of d, the inference is that a causal relationship from x

to y is established when dx−>y > 0. This inference is grounded in the understanding

that a positive d signifies a higher likelihood of the model incorporating the historical

information of x for the prediction of y compared to the scenario where y’s past is

not considered. Conversely, when dx−>y < 0 it is deduced that x does not cause y

to adhere to the same reasoning.

2.5 Sparse Variational Gaussian Process

Sparse Variational Gaussian Processes (SVGP) represent a powerful extension of stan-

dard Gaussian Processes, addressing scalability concerns by efficiently handling large

datasets. In SVGP, the key idea is to introduce a set of inducing points, which are

a smaller, carefully chosen subset of the original data points. These inducing points

act as a representative sample, enabling the approximation of the full posterior dis-

tribution. By optimizing the positions of these inducing points and the associated

hyperparameters, SVGP strikes a balance between computational efficiency and main-

taining the expressive power of Gaussian Processes.
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2.5.1 Sparse Formulation

In the Gaussian Process regression model, both the objective function for parameter

learning and the predictive distribution require the matrix inversion(KN + σ2I)−1 as

discussed in 2.4. For instance, a GPR model for a dataset with 10,000 data points

needs 1012 operations to invert its covariance matrix. Since the size of data n, controls

the shape of the covariant matrix K, there are different ways to approach the problem.

One such approach is down-sampling by selecting a subset of the training data. Even

though it is easy to implement, it is difficult to decide which part of the training data

to remove. The most widely accepted approach is the introduction of inducing points

which are commonly referred to as pseudo points.

Consider a new set of random variables f(Xs), shortened as fs, referred to as

inducing random variables at some locations Xs, referred to as inducing locations.

Xs is a vector of scalars of length ns. where the subscript s stands for sparse. The

size of the inducing points ns is chosen such that it is much smaller than n. A

multivariate Gaussian distribution is used to establish the relationship between fs

and f and hence the new sparse GP prior is:

⎡⎣ f(X)

f(Xs)

⎤⎦ ∼ N

⎛⎝0,

⎡⎣ k(X,X) k(X,Xs)

k(X,Xs)
T k(Xs, Xs)

⎤⎦⎞⎠ (2.16)

The likelihood is the same as the Gaussian likelihood in equation 2.10. Here

the marginal likelihood serves as the quantity that measures how well the inducing

variables summarize the training data. The derivation of the marginal likelihood for

the Sparse Variational Gaussian Process (SVGP) is presented below.

p(y) =

∫︂ ∫︂
p(y|f, fs) p(f, fs) df dfs (2.17)

Dropping fs in the likelihood and re-organizing the terms gives

p(y) =

∫︂
p(y|f)(

∫︂
p(f, fs)dfs) df (2.18)
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Integrating fs out and substituting with the corresponding distribution gives

p(y) =

∫︂
N (y; f, η2In) N (f ; 0, K) df (2.19)

By using the Gaussian linear transformation theorem and further simplifying the

obtained equation results in :

p(y) = N (y; 0, K + η2In) (2.20)

The marginal likelihood obtained is the same as the GPR model. This is because

when fs is integrated out from the joint distribution of p(f, fs), it results in the

marginal distribution p(f) and also removes all references of Xs. This makes the

computation of the posterior distribution difficult as shown below.

p(f, fs|y) =
p(y|f, fs) p(f, fs)

p(y)
(2.21)

When applying Bayes’ rule for posterior inference, the computation involves de-

termining the marginal likelihood, p(y). However, calculating p(y) often encounters

challenges. To address this issue, an alternative approach is to leverage variational

inference techniques. Unlike traditional Bayesian methods that rely on the explicit

computation of p(y), variational inference directly approximates the posterior distri-

bution p(f, fs|y). By bypassing the explicit computation of p(y), variational inference

provides a practical and computationally efficient means of estimating the posterior

without the constraints associated with marginal likelihood computation.

2.5.2 Variational Inference

The posterior distribution, denoted as p(f, fs|y), represents a joint distribution over

the random variable vectors f and fs. In the context of variational inference, the

objective is to approximate this true posterior using a variational distribution, de-

noted as q(f, fs). This variational distribution is defined over the same set of random
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variables, and the goal is to ensure that q(f, fs) closely aligns with the character-

istics of the true posterior. For mathematical trackability, q(f, fs), which is a joint

distribution, is defined by the following factorization:

q(f, fs) = p(f |fs) q(fs) (2.22)

Here p(f |fs) is derived by applying the multivariate Gaussian conditional rule

on the sparse GP prior formulation and q(fs) is defined as a multivariate Gaussian

distribution. The expressions for these terms are shown in equations 2.23 and 2.24

respectively.

p(f |fs) = N (KXS K−1
SS fs, K −KXS K−1

SS KT
XS) (2.23)

= N (f ;Afs, B)

where A = KXS K−1
SS and B = K − KXS K−1

SS KT
XS

q(fs) = N (fs;µ, Σ) (2.24)

Since the marginal likelihood, p(y), serves as a metric for assessing how effectively

the SVGP model explains the training data, it has to be maximized with respect to the

model parameters. For computational convenience, the most widely used approach

is to maximize the logarithm of the marginal likelihood, log p(y). Since directly com-

puting log p(y) is not straightforward due to computational complexities, variational

inference employs the Evidence Lower Bound (ELBO) as an alternative maximization

objective. The Evidence Lower Bound (ELBO) is a fundamental concept in varia-

tional inference, particularly in the context of probabilistic modeling. It serves as a

lower bound on the log marginal likelihood and is crucial for approximating complex

posterior distributions. By maximizing the ELBO with respect to the model param-

eters, practitioners iteratively refine a variational distribution to closely match the
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true posterior, enabling efficient inference in models with latent variables, such as

Gaussian processes and other Bayesian frameworks. The derivation of the ELBO is

presented below.

log(p(y)) = log

∫︂ ∫︂
p(y|f, fs) p(f, fs) df dfs (2.25)

By dropping fs where the context is clear and introducing the distribution q(f, fs)

results in the following expression.

log(p(y)) = log

∫︂ ∫︂
p(y|f) p(f, fs)

q(f, fs)

q(f, fs)
df dfs (2.26)

Re-writing the above expression in terms of Expectation form gives

log(p(y)) = logEf,fs∼q(f,fs)

[︃
p(y|f)

p(f, fs)

q(f, fs)

]︃
(2.27)

Applying Jensen’s inequality to the above expression results in the following form

log(p(y)) >= Ef,fs∼q(f,fs)

[︃
log

(︃
p(y|f)

p(f, fs)

q(f, fs)

)︃]︃
(2.28)

Re-writing it back to the integral form

log(p(y)) =

∫︂ ∫︂
log(p(y|f))q(f, fs)dfdfs −

∫︂ ∫︂
log

(︃
q(f, fs)

p(f, fs)

)︃
q(f, fs)dfdfs (2.29)

The second term in the above expression is the Kullback–Leibler divergence (KL

divergence) between the distributions q(f, fs) and p(f, fs), and the first term is re-

ferred to as the likelihood term. Hence the above expression can be slightly modified

and expressed as:

log(p(y)) =

∫︂ ∫︂
log(p(y|f))q(f, fs)dfdfs −KL(q(f, fs)||p(f, fs)) (2.30)

The expressions for the KL divergence term and the likelihood term can be derived

as follows. For the KL divergence term,

KL(q(f, fs)||p(f, fs)) =

∫︂ ∫︂
log

(︃
q(f, fs)

p(f, fs)

)︃
q(f, fs)dfdfs (2.31)
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Using the definition of q(f, fs) from equation 2.22 , the above expression can be

written as:

KL(q(f, fs)||p(f, fs)) =

∫︂ ∫︂
log

(︃
p(f |fs) q(fs)

p(f, fs)

)︃
q(f, fs)dfdfs (2.32)

Using the reverse chain rule to split the GP prior term p(f, fs) and canceling out

the common term in the numerator and denominator gives:

KL(q(f, fs)||p(f, fs)) =

∫︂ ∫︂
log

(︃
q(fs)

p(fs)

)︃
q(f, fs)dfdfs (2.33)

Further re-organizing the terms and computing the expression of marginal q(fs)

and substituting it results in the following expression.

KL(q(f, fs)||p(f, fs)) =

∫︂
log

(︃
q(fs)

p(fs)

)︃(︃∫︂
q(f, fs)df

)︃
dfs (2.34)

=

∫︂
log

(︃
q(fs)

p(fs)

)︃
q(fs) dfs

= KL(q(fs)||p(fs)

The final expression is new KL divergence between the marginal variational dis-

tribution q(fs) and the marginal GP prior p(fs). Since both q(fs) and p(fs) are

multivariate Gaussian distributions, the KL divergence is analytical, and the final

expression for the KL divergence term is :

KL(q(fs)||p(fs)) =
1

2

[︃
log

(︃
det(Kss)

det(Σ)

)︃
− ns + tr(K−1

ss Σ) + (0 − µ)TK−1
ss (0 − µ)

]︃
(2.35)

where det is the matrix determinant operator, tr is the trace operator. ns is the

length of the random variable vector fs, or equivalently, the number of inducing

locations.

Now for the likelihood term,∫︂ ∫︂
log(p(y|f))q(f, fs)dfdfs =

∫︂
log(p(y|f))

(︃∫︂
q(f, fs)dfs

)︃
df (2.36)
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Integrating out fs by computing the integration in the parenthesis into the marginal

q(f) results in the following expression.∫︂
log(p(y|f))

(︃∫︂
q(f, fs)dfs

)︃
df =

∫︂
log(p(y|f))q(f) df (2.37)

To solve the above integral and obtain the final expression for the likelihood term,

the expression for q(f) has to be derived. The marginal distribution q(f) is obtained

by integrating out the variable fs from the joint distribution q(f, fs). However, it

should be noted that q(f) is a distribution of the random variable vector f and not the

marginal variational distribution q(fs). The multivariate Gaussian marginalization

rule cannot be applied to simply read off the marginal distribution q(f) from the joint

distribution q(f, fs). This is because the variational distribution q(f, fs) is not defined

as a multivariate Gaussian distribution; it is defined as the factorization p(f |fs) q(fs).

q(f) =

∫︂
q(f, fs) dfs (2.38)

Using the definition of q(f, fs) and then substituting the terms with corresponding

distribution gives,

q(f) =

∫︂
p(f |fs) q(fs) dfs (2.39)

=

∫︂
N (f ;Afs, B) · N (fs;µ,Σ) dfs

Applying the multivariate Gaussian linear transformation rule gives:

q(f) =

∫︂
N (f ;Aµ,AΣAT + B) · N (fs;µ,Σ) dfs (2.40)

= N (f ;Aµ,AΣAT + B)

Substituting this in the expression for likelihood in the equation 2.37 gives

∫︂
log(p(y|f))q(f) df =

∫︂
log p(y|f)) · N (f ;Aµ,AΣAT + B) df (2.41)

Substitute the Gaussian distribution p(y|f):
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∫︂
log

(︄
1√︁

(2πη2)k
exp

(︃
− 1

2η2
∥y − f∥2

)︃)︄
· N (f ;Aµ,AΣAT + B) df

Now using the Gaussian quadrature rule, the final expression for the likelihood

term is :

Likelihood term = − 1

2η2

(︂
yTy − 2 (Aµ)T y + tr

(︁
AΣAT + B

)︁)︂
(2.42)

− k

2
log(2πη2) +

1

4
(f − Aµ)T (AΣAT + B)−1(f − Aµ) +

k

4
log(2π)

+
1

4
log(det(AΣAT + B))

The expressions for the likelihood (2.42) and KL divergence term (2.35) in the

ELBO have been derived and hence ELBO can be maximized to obtain the optimal

parameters.

2.6 Proposed Methodology

Nonlinear Causal inference using a regular Gaussian process suffers from the issue of

spurious causations and computational complexities associated with the inversion of

the covariance matrix. Hence in this work, a sparse causal inference using a spare

variational Gaussian process is proposed. Sparse causal inference to overcome the

spurious relations is carried out using a sensitivity analysis. For a linear system, this

is straightforward by placing an L1 norm on the coefficient matrix obtained by the

partial differentiation as shown below:

Letting Xt denote the measured variables at time t, and Xtd represent the past of

X with a time delay d, then

xt = M · xtd (2.43)

M =
∂xt

∂xtd

∥M∥1 =
⃦⃦ ∂xt

∂xtd

⃦⃦
1
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But for the nonlinear system under consideration, it is not straightforward as shown

above since it involves dealing with probability distributions. The derivation for the

sensitivity term that ensures sparse solution is detailed below:

Consider the system: xt = f(xtd) + et where Xt denotes the measured variables at

time t, Xtd represents the past of X with a time delay d, e is Gaussian white noise

and f is modeled as a Gaussian process.

The probability density function (PDF) for multivariate Gaussian distribution is:

p(xt) =
1

(2π)D/2|K|1/2
exp(

−1

2
(xt − µ)K−1(xt − µ)) (2.44)

Here µ and K are the mean and covariance obtained for the prediction equation

based on inducing points as discussed and derived in section 2.5. Let α be the pseudo

input, β be the pseudo output and x∗ be the new test input in this case. Then the

expressions for µ and K become: µ = KxK
−1
M β and K = Kxx−KxK

−1
M KT

x +σ2 where

Kxx = K(x∗, x∗), Kx = K(α, x∗), KM = K(α, α) .

Now taking log on both sides,

log p(xt) =
−D

2
log(2π) − 1

2
log|K| − 1

2K
(xt − µ)T (xt − µ) (2.45)

Expanding the last term and rewriting the above expression gives:

log p(xt) =
−D

2
log(2π) − 1

2
log|K| − 1

2K
(xT

t xt − xT
t µ− µTxt + µTµ) (2.46)

Hence the sensitivity term that needs to be evaluated is

S =
∂ log p(xt)

∂xtd

(2.47)

The first term in equation 2.45 is a constant and hence the derivative becomes

0. The following part of the derivation shows the partial derivative of each term in

equation 2.45 one by one. The kernel function used in this study is the Radial basis

function (RBF) kernel.

For the second term −1
2
log|K|:
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∂

∂xtd

(
−1

2
log |K|) =

−1

2K

∂

∂xtd

(|K|) (2.48)

We have to find ∂K
∂xtd

. Now this is a partial differentiation of a scalar with respect

to a vector. But when we consider 1 sample at a time, it becomes a partial derivative

of a scalar wrt a scalar.

∂K

∂xi
td

=
∂Kxx

∂xi
td

− ∂KxK
−1
M KT

x

∂xi
td

(2.49)

∂K

∂xi
td

= −∂KxK
−1
M KT

x

∂xi
td

(2.50)

Applying the Chain rule,

∂K

∂xi
td

= −∂KT
x K

−1
M Kx

∂xi
td

= −∂Kx

∂xi
td

K−1
M KT

x −KxK
−1
M

∂KT
x

∂xi
td

(2.51)

In the above expression we need to find ∂Kx

∂xi
td

Kx = σ2 exp(
−1

2l2
(xi

td − αi)T (xi
td − αi)) (2.52)

Kx = σ2 exp(
−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) (2.53)

∂Kx

∂xi
td

=
∂

∂xi
td

(σ2 exp(
−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT ))) (2.54)

Here,

∂xiT
td x

i
td

∂xi
td

=
∂

∂xi
td

p∑︂
j=1

(xi
td)

2 (2.55)

= 2xi
td

∂xi
tdα

i

∂xi
td

= αi

∂Kx

∂xi
td

= σ2 exp(
−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ −1

2l2
(2xi

td − 2αi) (2.56)

Hence,

∂K

∂xi
td

= [σ2 exp(
−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi) K−1
M KT

x +

KxK
−1
M σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi)] (2.57)
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Substituting the above expression in equation 2.51 gives the final expression for

term 1.

∂

∂xtd

(
−1

2
log |K|) =

−1

2|K|
[σ2 exp(

−1

2l2
(xiT

td x
i
td−2xi

tdα
iT+αiTαiT ))∗ 1

2l2
(2xi

td−2αi) K−1
M KT

x +

KxK
−1
M σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi)] (2.58)

This is the final expression for term 2.

For the third term: ∂
∂xtd

(−1
2
xT
t K

−1xt)

Applying the chain rule gives,

∂

∂xi
td

(
−1

2
xiT
t K−1xi

t) =
−1

2
xiT
t

∂K−1

∂xi
td

xi
t (2.59)

Here we have to find ∂K−1

∂xi
td

Let I = KK−1. Taking derivative on both sides gives,

0 = (KK−1)1

0 = K1K−1 + K(K−1)1

∂K−1

∂xi
td

= −K−1 ∂K

∂xi
td

K−1 (2.60)

The expression for ∂K
∂xi

td
has already been found in equation 2.57. Substituting

equation 2.60 in equation 2.59 gives

∂

∂xi
td

(
−1

2
xiT
t K−1xi

t) =
1

2
xiT
t K−1 ∂K

∂xi
td

K−1xt (2.61)

Substituting equation 2.57 in equation 2.61 gives:

∂

∂xi
td

(
−1

2
xiT
t K−1xi

t) =
1

2
xiT
t K−1[σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT ))∗

1

2l2
(2xi

td − 2αi) K−1
M KT

x +

KxK
−1
M σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi)]K−1xi
t (2.62)

This is the final expression for term 3.
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For the fourth term: ∂
∂xi

td
(xiT

t K−1µ)

Applying the chain rule gives,

∂

∂xi
td

(xiT
t K−1µ) = xT

t

∂K−1

∂xi
td

µ + xiT
t K−1 ∂µ

∂xi
td

(2.63)

Here we need to calculate ∂µ
∂xi

td
. Applying the chain rule gives,

∂µ

∂xi
td

=
∂

∂xi
td

(KxK
−1
M β) (2.64)

∂µ

∂xi
td

=
∂Kx

∂xi
td

K−1
M β (2.65)

Therefore substituting equation 2.64 and equation 2.60 in equation 2.63 gives

∂

∂xi
td

(xiT
t K−1µ) = −xiT

t K−1 ∂K

∂xi
td

K−1µ + xiT
t K−1∂Kx

∂xi
td

K−1
M β (2.66)

Substituting equation 2.57 and equation 2.56 in equation 2.66 gives

∂

∂xi
td

(xiT
t K−1µ) = −xiT

t K−1[σ2 exp(
−1

2l2
(xiT

td x
i
td−2xi

tdα
iT+αiTαiT ))∗ 1

2l2
(2xi

td−2αi) K−1
M KT

x +

KxK
−1
M σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi)]K−1µ +

xiT
t K−1[σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ −1

2l2
(2xi

td − 2αi)]K−1
M β (2.67)

This is the final expression for the fourth term.

For the fifth term: ∂
∂xi

td
(µT

t K
−1µ)

Here µ is a scalar for a single sample. Hence,

∂

∂xi
td

(µT
t K

−1µ) =
∂

∂xi
td

(µi)2K−1 (2.68)

=
∂

∂xi
td

((KxK
−1
M β)2K−1)

Applying the chain rule gives,

∂

∂xi
td

(µT
t K

−1µ) = (KxK
−1
M β)2

∂K−1

∂xi
td

+ K−1 ∗ 2(KxK
−1
M β)

∂Kx

∂xi
td

K−1
M β (2.69)

∂

∂xi
td

(µT
t K

−1µ) = −(KxK
−1
M β)2K−1 ∂K

∂xi
td

K−1 + K−1 ∗ 2(KxK
−1
M β)

∂Kx

∂xi
td

K−1
M β (2.70)
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Substituting equation 2.56 and equation 2.57 in equation 2.69 gives

∂

∂xi
td

(µT
t K

−1µ) = −(KxK
−1
M β)2K−1[σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT ))∗

1

2l2
(2xi

td − 2αi) K−1
M KT

x +

KxK
−1
M σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ 1

2l2
(2xi

td − 2αi)]K−1 +

K−1 ∗ 2(KxK
−1
M β)[σ2 exp(

−1

2l2
(xiT

td x
i
td − 2xi

tdα
iT + αiTαiT )) ∗ −1

2l2
(2xi

td − 2αi)]K−1
M β

(2.71)

This is the final expression for the fifth term.

Hence the expression of the Sensitivity term is :

S =
∂ log p(xt)

∂xtd

= Term 1 + Term 2 + Term 3 + Term 4 + Term 5 (2.72)

Now we have obtained the expressions for the ELBO term as well as the sensitivity

term. ELBO being the lower bound on the log-likelihood should be maximized and the

sensitivity should be minimized for achieving the desired results. Hence the objective

function for the proposed sparse nonlinear causal inference using variational Gaussian

Process is:

max
θ

ELBO − λ ∥|S||1 (2.73)

where the parameters are l, σ2 (hyper-parameters of the kernel function), η2 (ob-

servational noise), α, β (the inducing points), and µ,Σ (The mean and variance of

the variational q distribution.

Once the optimal parameters are determined, causal relationships can be obtained

based on the d-statistic defined in section 2.4.1 using the determined optimal param-

eters.

2.7 Case study

In this section, the result obtained from the simulation case study is presented demon-

strating the efficacy of the proposed approach compared to traditional Granger causal-

ity and existing Gaussian process-based causal inference.
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2.7.1 Simulation Case study 1

A causal map consisting of 4 variables and 3 direct causal relations is considered for

the analysis in this simulation case study. The cause-effect relationships are shown in

Figure 2.3. It can be observed from the causal map that X1 and X3 are the source

variables and X2 and X4 are the effect variables. The nonlinear equations used for

the data generation of the variables are as follows:

x1(t) = log(1 + [2x1(t− 1) − x1(t− 2)]2) + e1(t) (2.74)

x2(t) =
1

(x1(t− 1) + 5)2
+ 2x3(t− 2)2 + e2(t)

x3(t) = 5exp(−0.1x3(t− 2)2 − 4x3(t− 1)2) + e3(t)

x4(t) =

(︃
x4(t− 1

1 + x2(t− 1)2
+ 5

)︃
sin(x2(t− 2)) + e4(t)

Figure 2.3: True Causal map

The covariance for noise e1:4(t) is taken as diag(0.05, 0.05, 0.05, 0.05). A total of

1000 samples were generated using the above equation. The corresponding plots of

all the variables are shown in Figure 2.4. For better visualization, only the first 175

data points are shown in the plots.
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Figure 2.4: Plots of the variables of simulation case study

First, the GC method is applied to generate the cause-effect relationship. The

obtained causal map is shown in Figure 2.5

From the figure, it is evident that Granger Causality fails to identify the underlying

true causal relations in a nonlinear system, and in addition to that, GC gave four

spurious causations (indicated by dashed arrows). These are as follows: X3 causing

X4, X1 causing X4, X1 causing X3 and X3 causing X1. This illustrates that

Granger causality cannot accurately reconstruct the true causal map when we have

a nonlinear relationship between the variables in the system. SGC was then applied

to the data and the obtained causal relations were exactly as similar to the results

of Granger causality. The spurious causations were so strong that they were not

removed. This further verifies the fact that Granger causality does not perform well

in a nonlinear framework as it fails to identify the true causal relations and also results

in spurious causal links.
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X1

X4

X2

X3

Figure 2.5: Causal map obtained by Granger Causality

Gaussian process-based causal inference was then performed on the data and the

obtained causal map is shown in Figure 2.6. It can be observed from the figure that the

GP-based approach was able to identify all the true underlying causal relationships

within the data, unlike the Granger-based approaches. But as discussed before, GP-

based approaches tend to produce a lot of spurious causations and it is evident from

the causal map. The GP-based approach gave 6 spurious causation. These are as

follows: X2 causing X1, X2 causing X3, X4 causing X2 and X4 causing X1, X4

causing X3, and X3 causing X4.

The proposed nonlinear sparse causal inference based on the variational Gaussian

process was then implemented on the data set and the obtained causal map is shown

in figure 2.7. It is evident from the causal map that, the proposed methodology

correctly identifies all the underlying true causal relations and gives only 1 spuri-

ous causation which is a significant improvement considering the existing Gaussian

process-based methodology had 6 spurious causations. The Confusion Matrix in Fig-

ure 2.8 summarizes the results of this case study.
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X1

X4
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Figure 2.6: Gaussian process-based causal map

X1

X4

X2

X3

Figure 2.7: Proposed sparse nonlinear variational Gaussian process-based causal map

2.7.2 Simulation Case study 2

A causal map consisting of 5 variables and 6 direct causal relations is considered for

the analysis in this simulation case study. The data generation for this case study is
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((a)) Granger Causality

((b)) Gaussian process-based causality ((c)) Proposed method

Figure 2.8: Confusion matrix obtained for the simulation case study 1. In each figure,
each block represents true positives, false negatives, true negatives, and false positives
(clockwise starting from the top left). Positive and negative imply the existence and
non-existence of causal relations respectively.

based on the study done by Wismüller et al. in their work towards nonlinear causal

inference [38]. The data generation process presented in their work has been modified

here to make the causal map more complex. The cause-effect relationships are shown

in Figure 2.9. It can be observed from the causal map that X1 is the source variable.

The nonlinear equations used for the data generation of the variables are as follows:
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x1(t) = 0.95
√︁

10 + 2x1(t− 1) − 0.9025x1(t− 2) + e1(t) (2.75)

x2(t) = 0.5x1(t− 2)2 + e2(t)

x3(t) = −0.4x1(t− 3) + e3(t)

x4(t) = −0.5x1(t− 2)2 + 0.5
√︁

10 + 2x4(t− 1) + 0.250.95
√︁

10 + 2x5(t− 1) + e4(t)

x5(t) = −0.5
√︁

20 + 2x4(t− 1) + 0.5
√︁

20 + 2x5(t− 1) + e5(t)

X1

X5

X2 X3 X4

Figure 2.9: Actual causal map for simulation case study 2

The covariance for noise e1:4(t) is taken as diag(0.05, 0.05, 0.05, 0.05, 0.05). A total

of 1000 samples were generated using the above equation. The corresponding plots

of all the variables are shown in Figure 2.10. For better visualization, only the first

175 data points are shown in the plots.

First, the GC method is applied to generate the cause-effect relationship. The

obtained causal map is shown in Figure 2.11
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Figure 2.10: Plots of variables of simulation case study 2
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X5

X2 X3 X4

Figure 2.11: Causal map obtained by Granger Causality in Simulation 2

From the illustration, it becomes apparent that Granger Causality (GC) falls short

in uncovering the genuine causal connections within a nonlinear system. Further-

more, GC erroneously establishes cause-effect relationships for all variables among

themselves, leading to the emergence of spurious relations, as depicted by dashed

arrows.

Gaussian process-based causal inference was subsequently applied to the dataset,

and the resulting causal map is illustrated in Figure 2.12. Examination of the figure

reveals that the GP-based approach successfully identified all genuine underlying

causal relationships in the data. However, as previously discussed, it is noteworthy

that GP-based methods often generate numerous spurious causations, as evident in

the causal map. The GP-based approach gave 8 spurious causation. These are as

follows: X2 causing X1, X2 causing X5, X3 causing X1, X3 causing X2, X3 causing

X4, and X4 causing X1, X4 causing X3, X5 causing X3.

The nonlinear sparse causal inference method based on variational Gaussian pro-

cesses was subsequently applied to the dataset, and the resulting causal map is de-

picted in Figure 2.13. The causal map illustrates that the proposed methodology
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X5

X2 X3 X4

Figure 2.12: Causal map obtained by GP-based Causality in Simulation 2

accurately identifies all the true underlying causal relations, without any spurious cau-

sation. This represents a significant improvement compared to the existing Gaussian

process-based methodology, which yielded eight spurious causations. The Confusion

Matrix in Figure 2.14 summarizes the results of this case study.

X1

X5

X2 X3 X4

Figure 2.13: Proposed sparse nonlinear variational Gaussian process-based causal
map for simulation 2

36



((a)) Granger Causality ((b)) Gaussian Process-based causality

((c)) Proposed Methodology

Figure 2.14: Confusion matrix obtained for the simulation case study 2. In each figure,
each block represents true positives, false negatives, true negatives, and false positives
(clockwise starting from the top left). Positive and negative imply the existence and
non-existence of causal relations respectively.
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2.7.3 Industrial Case Study

Figure 2.15: Schematic representation of the Australian refinery separation unit

The proposed method is applied to an industrial data set containing oscillations

to identify the root source of these oscillations through the construction of the causal

map of the system. We use the Australian refinery process data provided by Thornhill

(2007) [39]. Figure 2.15 depicts the separation process considered and it contains five

control loops, namely Analyzer (AC1), steam flow (FC1), temperature control (TC1),

upstream pressure control (PC1), and downstream pressure control (PC2). The data

for this case study has been taken during the time range when the set point remained

constant and because of this, we used only the process variables (PV) and controller

output variables (OP) of all the control loops and did not use the set point (SP) and

controller error(SP-PV) variables. Further, the whole data is divided into the training

data set and cross-validation data set to identify the optimal value of the hyper-

parameter λ where the objective function is minimized for Sparse Granger causality.

For this case, the number of samples in the training set and the cross-validation are

taken to be 500 and 200 respectively. The dataset contains 10 measured variables.

Some variables have non-stationarity in them and hence first order difference was

applied to remove the non-stationary. Plots of the variables after removing non-

stationary features are shown in Figure 2.16. It was identified in Thornhill (2005)

[40] that a faulty steam sensor in the steam flow loop FC1 was the root cause of the
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oscillation.
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Figure 2.16: Plots of variables in the industrial case study after first order differencing

The GC approach was then implemented on the data set and the causal network

was reconstructed. The obtained cause-effect network in the case of GC is shown

in Figure 2.17 where it can be observed that upstream pressure (PC1) is caused by

column temperature (TC1) which is an unlikely causal link. Additionally, GC also
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Figure 2.17: Granger causal map for industrial case study

failed to identify the true source of plant-wide oscillation. The cause-effect network

obtained by GC shows no causal links originating at the FC1 loop and primarily

identifies it as an effect rather than a cause. The source candidates identified by GC

are AC1 OP and AC1 PV where both of them are not the true source.

Sparse Granger Causality was then applied to the dataset and the determined

cause-effect network is shown in Figure 2.18. The hyper-parameter λ for this case

study was tuned using a cross-validation dataset. This is achieved by evaluating

the objective function of the optimization problem on the validation dataset and

then finding the value of λ for which the objective function value is minimum. The

optimal value of λ determined is 0.5. Figure 2.19 illustrates the variation of the

objective function value with varying values of λ. Based on the determined cause-

effect network for SGC, it is evident that the number of cause-effect relations is

reduced as expected compared to GC, but it still failed to recognize the true source of

plant-wide oscillation. Further, by analyzing the cause-effect network systematically,
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Figure 2.18: Sparse Granger causal map for industrial case study

it is observed that SGC fails to generate any distinct source in the reconstructed

network. All the variables of the network have a significant number of causal links

originating and departing from them. To establish a variable as a true source, a

significant number of causal links need to originate from the variables compared to

the number of causal links entering them. So, it can be concluded that the SGC

approach failed to identify the true source of plant-wide oscillation.

Thus the linear-based approach completely fails to identify the source variable since

Granger identifies the true source as the effect while Sparse Granger fails to identify

any true source. Subsequently, the Gaussian Process-based nonlinear causal inference

approach was applied to the data set, and the obtained causal map is shown in figure

2.20. The GP-based approach is an improvement on the linear-based approaches since

it does not identify the FC1 loop as the effect since a significant number of arrows

are originating from the FC1 variable but still has its limitations as it fails to identify
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Figure 2.19: Objective function Vs Lambda for Sparse Granger Causality

any variable as the true source.

Figure 2.20: GP-based causal map for industrial case study

The nonlinear sparse causal inference method was then applied to the dataset,

yielding a causal map depicted in Figure 2.21. Notably, the proposed approach re-

42



frains from designating any variable as an unequivocal source but highlights AC1

and FC1 as potential sources of causation. Considering the results obtained by other

approaches this is a significant improvement on the existing approaches. This verifies

the efficacy of the proposed approach in real industrial data. The omission of FC1

as the exclusive source may be attributed to the inherent challenges posed by the

quality of observed industrial data, which is susceptible to errors. Additionally, ana-

lyzing the variable plots reveals inherent periodic patterns, potentially influencing the

causal map. The periodic nature of certain features, recurring at regular intervals,

introduces a layer of complexity to causal inference, as causative relationships may

manifest intermittently. Despite these challenges, our proposed method produces sig-

nificantly better results when compared to the existing approaches. The table 2.1

summarizes the results of all the approaches in this industrial case study.

Figure 2.21: Proposed nonlinear Spare GP causal map for industrial case study
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Method Identified possible source variables

Granger Causality AC1 OP , AC1 PV

Sparse Granger Causality No distinct source variable

Gaussian-Process based Causality No distinct source variables

Proposed Methodology AC1 OP , FC1 OP

Table 2.1: Method and Identified source variables

2.8 Conclusion

This chapter proposes a novel nonlinear sparse causal inference method based on the

variational Gaussian process. The proposed method addresses the shortcomings of

existing approaches like Granger causality, sparse Granger causality, and Gaussian

process-based causality to identify and produce the true cause-effect relations among

nonlinear variables with minimum spurious relations. The simulation and industrial

case study results demonstrate the proposed method’s effectiveness. These promis-

ing results pave the way for further research and exploration of causal inference in

nonlinear time-invariant dynamical systems.
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Chapter 3

Physics-Informed Sparse Causal
Inference for Source Detection of
Plantwide Oscillations1

This Chapter presents the second contribution of the thesis which is amalgamating

human knowledge with process data in causal inference for root cause analysis.

3.1 Introduction

Studies about the detection and root cause analysis of plant-wide oscillations have

been extensively performed as this is a very prevalent issue in process industries.

Studies carried out by Ender and Bialkoswki point to the fact that satisfactory per-

formance was provided only by 30 percent of the operational controllers [41, 42].

This is because oscillations generated at any control loop propagate throughout the

plant feedback and interconnections, resulting in a substantial reduction in controller

performance in multiple loops [43].

A cross-correlation-based approach for identifying the propagation path of plant-

wide disturbances was proposed [44], but correlation does not always ensure causal-

ity. Duan et al. [45] in their work discuss identifying the root cause of oscillations

using data analysis in temporal and spectral domains. The most popular and well-

1This chapter has been published as: N. Madhusoodanan, R. Chiplunkar, VK Puli, B. Huang,
”Physics-informed sparse causal inference for source detection of plant-wide oscillations”. AIChE J.
2024; e18362. doi:10.1002/aic.18362
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distinguished approach of causal inference given a set of time series data, is the

prediction-based Granger Causality (GC) [31]. GC-based approaches for root cause

diagnosis of plant-wide oscillations have been widely studied. Yuan et al. [46] coupled

latent variable modeling for capturing oscillatory features and then applied GC for

the diagnosis of the oscillatory source. Chen et al. [47] propose an approach that com-

bines clustering oscillatory variables into various groups, and then the multivariate

GC is applied to each group to identify the root cause of multiple plant-wide oscilla-

tions. Sundaramoorthy et al. [48] proposed a two-step approach where sparse inverse

covariance estimation is coupled with likelihood score to address the problem of causal

analysis. To deal with the time-varying nature of process systems, Raveendran et al.

[49] introduced a causal modeling approach that relies on time-varying parameter

models estimated under the variational Bayesian expectation-maximization frame-

work. Raveendran and Huang [50], proposed a hybrid model by combining the factor

analysis model and vector auto-regressive exogenous model to simultaneously mine

causal connections and features responsible for contemporaneous correlations in a

multivariate process. Deng et al. [51] proposed a kernel-based Granger approach for

dealing with non-linear data and it was then further modified by Xiangzhi et al. [52]

where the authors proposed a Fuzzy kernel Granger causality approach for root cause

diagnosis. To deal with non-linearity and multivariate cases, Chen et al. [53] discuss

integrating Gaussian Process regression (GPR) into the framework of multivariate

GC. Bauer et al. [54] proposed a novel application of transfer entropy, a method

based on conditional probability density functions that measures the directionality of

variation for identifying the direction of disturbance propagation. Lindner et al.[55]

provides a comparative study of Granger causality and Transfer entropy to present

a decision flow for the application of oscillation diagnosis. Studies have also been

carried out that discuss a comparative study of Granger-based causal analysis and

dynamic Bayesian network inference in computational biology which specifically fo-

cuses on method selection when both of them give contradictory results [56]. Yu and
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Rashid [57] proposed a dynamic Bayesian network-based networked process monitor-

ing approach for fault detection, propagation identification, and root cause diagnosis.

Reconstruction of causal maps based on the aforementioned formulations is com-

pletely data-driven and hence is contingent on quality data. High-quality data are

the precondition for analyzing and guaranteeing the reliability of the results [58].

In causality analysis, such data quality issues result in two main errors: spurious

causations and failure to identify existing causations. Although causal maps can be

built based on the available expert knowledge of engineers and process flow diagrams

(PFDs) as studied in [59, 60], it may not always be the apt option, particularly for

complex and tightly-integrated processes.

Physics-informed modeling [61] is an area of research that has been gaining promi-

nence recently and has been applied across a wide variety of areas such as climatology

[62], rheology [63], and process systems engineering [64]. Fusing the physics informa-

tion with the observed data for the reconstruction of causal maps for source detection

of plant-wide oscillations is a scarcely studied problem. This is particularly impor-

tant because the issue of spurious causations is common in datasets characterized by

periodicity. Additionally, poor data quality may often lead to failure in identifying

existing causal relations, particularly if the causality is weak and incorporating the

physics information is useful in preserving such relations. With this motivation, this

work presents a novel framework where one can reconstruct the causal maps for linear

time-invariant dynamical systems by combining observed data and physics informa-

tion thereby aiding in finding the source of plant-wide oscillations more reliably.

The cause-effect relationships identified based on statistical approaches have to be

verified by hypothesis testing to establish the fact that the relationship truly exists

and is not obtained by chance. Surrogate data-based hypothesis testing has been the

main approach following the work of Theiler et al. [65] where it was used for testing

non-linearity. Apart from testing nonlinearity, surrogate-based hypothesis testing has

been extended to a wide range of applications such as tests for oscillations in noisy
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signals [66], for chaos [67], for synchronization between two or more systems [68], and

for causality analysis [69]. As will be discussed later, the existing approaches for gen-

erating surrogate datasets to test causal relationships are not effective for oscillatory

datasets. Thus, in this chapter, a novel framework for generating surrogates for data

sets involving periodic oscillations is also proposed. The main contributions of this

chapter are outlined as follows:

1. A novel framework for amalgamating observed data with Physics-Information

for the reconstruction of cause-effect networks.

2. A novel algorithm for the generation of surrogates for data sets with periodic

oscillations.

The remainder of this chapter is organized as follows. In section 3.2, a novel framework

of fusing the physics information with observed data, referred to as Physics-Informed

Sparse Causal Inference, is introduced and demonstrated with an example. In section

3.3, a novel algorithm for the generation of surrogates to test causality for data sets

involving periodic oscillations is introduced. Section 3.4.1 and 3.4.2 present the results

from two case studies that demonstrate the effectiveness of the proposed method. In

section 3.5, the concluding remarks are presented.

3.2 Proposed Methodology

Granger-based causality approaches face challenges with oscillatory data sets. Al-

though sparse Granger causality removes spurious causations, it may also eliminate

weak causal relationships. To address these limitations, this work presents a novel

formulation that integrates physics information and observed data, resulting in an

effective and dependable establishment of causal relationships.
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3.2.1 Physics-Informed Sparse Causal Inference

The proposed model introduces expert knowledge as a constraint in the original sparse

Granger causal problem and is formally defined as follows.

min
M

||Xt −MXtd||2 + λ||M ||1

s.t. ||Mij||1 is

⎧⎨⎩ = 0, for xi��→ xj

> ϵ, for xi → xj

(3.1)

where M represents the coefficient matrix. ||Mij||1 represents the L1 norm of the

coefficient matrix elements corresponding to the effect of the ith variable on the jth

variable. Xt denotes the measured variables at time t, Xtd represents the past of X

with a time delay d, and λ is the hyper-parameter that dictates the sparsity level.

To illustrate the optimization problem shown in 4.1, let us examine a linear time-

invariant dynamical process with three variables and pre-specified time lags up to

two. The explicit definitions of relevant notations are presented below.

Xt =

⎡⎢⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤⎥⎥⎥⎦ Xtd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t− 1)

x1(t− 2)

x2(t− 1)

x2(t− 2)

x3(t− 1)

x3(t− 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

effect of x1 effect of x2 effect of x3⎡⎢⎢⎢⎣
m1

11 m2
11 m1

21 m2
21 m1

31 m2
31

⎤⎥⎥⎥⎦M = m1
12 m2

12 m1
22 m2

22 m1
32 m2

32

m1
13 m2

13 m1
23 m2

23 m1
33 m2

33

(3.3)

The time-delayed variables are vertically stacked so that the corresponding coefficient

matrix M can be presented so that each of its columns corresponds to the effect of

one variable on the other. In the illustration shown in Eq. 3.3, the yellow-colored
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columns represent the effect of the past of X1 on all the observed variables X1, X2

and X3 (denoted as M1). Similarly, the blue and green columns represent the effects

of X2 and X3, denoted as M2 and M3, respectively.

M1 =

⎡⎢⎢⎢⎣
m1

11 m2
11

m1
12 m2

12

m1
13 m2

13

⎤⎥⎥⎥⎦ M2 =

⎡⎢⎢⎢⎣
m2

11 m1
21

m1
22 m2

22

m1
23 m2

23

⎤⎥⎥⎥⎦

M3 =

⎡⎢⎢⎢⎣
m1

31 m2
31

m1
32 m2

32

m1
33 m2

33

⎤⎥⎥⎥⎦ (3.4)

Each element of the coefficient matrix mτ
ij represents the influence of xi(t − τ) on

xj(t). Finally, the total effect of xi on xj is captured by the jth row of Mi matrix,

denoted as Mij. For example, the effect of x3 on x2 is shown in Eq. 3.5.

M32 =
[︂
m1

32 m2
32

]︂
(3.5)

The magnitude of elements in matrix Mij determines the presence or absence of a

cause-effect relationship. Expert information can be incorporated into the optimiza-

tion problem through constraints on Mij, establishing reliable causal relationships.

In the system being described, as an illustration, we consider two scenarios involving

the following expert information.

1. x1 → x2: Since x1 causes x2, it is necessary for at least one element in the vector

M12 to have a statistically significant value. This condition can be incorporated

using the following equation.

||M12||1= |m1
12| + |m2

12|> ϵ (3.6)

where ϵ is a small positive number which ensures that the magnitude of the

coefficient is not too low so that it does not appear as generated by noise.
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2. x3 ��→ x1: Since x3 does not cause x1, then all elements in the vector M31 should

be statistically insignificant. This condition can be incorporated using the Eq.

3.7.

||M31||1= |m1
31| + |m2

31|= 0 (3.7)

Thus, it is possible to derive more reliable cause-and-effect relationships from mea-

sured data while aligning with the insights and expertise of specialists in the field.

It is worth emphasizing that the requisite physics-related information essential for

conducting constraint optimization need not necessarily come from first principles-

based knowledge. It can be any rudimentary knowledge about the gains and interac-

tions in the system. In real-world scenarios which involve complex interconnections,

obtaining first-principle relations is difficult. This feature thus represents a notewor-

thy advantage of the proposed methodology.

3.3 Surrogate Data Analysis

Hypothesis testing serves as a statistical procedure to ascertain that the observed

results are not merely coincidental but represent the true characteristics of the un-

derlying system. Romano [70] et al. in his work summarizes various developments

in the field of hypothesis testing. In the context of surrogate data techniques, a spe-

cific attribute of a data set is compared with the corresponding attribute calculated

from a set of surrogate data. These surrogate data possess similarities to the original

data set but lack the property being tested. Such comparative analysis enables us to

determine the extent to which the observed property deviates from what would be

expected by chance.

3.3.1 Proposed Surrogate Data Analysis

In the context of this research objective, the null hypothesis posits that there is no

causal relationship. The primary aim is to produce a large number of surrogate data
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sets using the observed data under this null hypothesis. Previous methodologies, such

as Fourier transform-based surrogates and cycle phase permutation [71], have been

ineffective in eliminating the property under investigation in surrogates for oscillatory

data. This inadequacy can be attributed to periodicity in the data, as similar patterns

repeat themselves at regular intervals. Consequently, a novel approach employing

time-shifted surrogates [72] is proposed to overcome this limitation and assess the

significance of the identified cause-effect relationship in oscillatory data sets. The

algorithm is pictorially demonstrated in Figure 3.1.

In the case of VAR-based causality analysis, ensuring no causation essentially trans-

lates into ensuring no significant correlation between xi(t) and xj(t−1 : t−d). Thus,

the regressors and the predicted variables must be shifted in time such that the cross-

correlations at the shifted lags are insignificant. This notion forms the basis for the

time-shifted surrogates approach [72] where signals are shifted by random lags to

generate the surrogates. In the case of periodic signals, such a random shift may not

achieve a zero correlation among the variables due to the periodic nature of the cross-

correlation function. Thus, this work proposes a modification to the time-shifted

surrogates approach which is outlined in the following points.

The proposed surrogate data generation approach is schematically depicted in Fig-

ure 3.1. Upon generating N surrogates, a given causality inference method is applied

to each of the surrogates which would result in a distribution for each of the coef-

ficients in M . The upper and lower confidence limits, denoted as mτ
ij|U and mτ

ij|L,

respectively, are calculated based on the 95% confidence interval. The final deci-

sions about the existence of a relationship between xi and xj are contingent upon the

fulfillment of the following condition.

Decision :

⎧⎨⎩ xi��→ xj, If mτ
ij|L≤ mτ

ij ≤ mτ
ij|U ∀ 1 ≤ τ ≤ d

xi → xj Otherwise
(3.8)
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Algorithm 1 Proposed Surrogate Generation algorithm

1. The two signals xi and xj are shifted by a lag δij where the cross-correlation

between the two signals is zero. With this time shift, if xi(t) is regressed on the

time-shifted xj(t − δij − 1 : t − δij − d), the corresponding coefficients would be

zero.

2. To obtain multiple surrogates, multiple subsets from the time-shifted dataset

are selected in a moving window fashion. Such a surrogate dataset generation

ensures that each surrogate is at the same lag δij where the cross-correlation is

essentially zero.

3. A similar procedure is followed for all j = 1 : p (j ̸= i) which removes causal

relations of all the variables with xi. It can be noted that only xj’s are shifted

in time. Thus, this approach preserves the auto-correlation structure of xi while

removing cross-correlations between xi and all the xj’s.

4. The same procedure is repeated for all i = 1 : p.
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Figure 3.1: Pictorial representation of surrogate generation
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3.4 Case studies

In this section, the results obtained from two case studies are presented that demon-

strate the efficacy of the proposed approach compared to purely data-based ap-

proaches. The first one is a simulation case study in which the data is generated

from an assumed VAR model. The second one is an industrial case study where the

proposed approach is applied to a refinery separation unit data set characterized by

plant-wide oscillation.

3.4.1 Simulation Case study

A causal map consisting of 5 variables and 5 direct causal relations is considered for

the analysis in this simulation case study. The cause-effect relationships are shown in

Figure 3.2. It can be observed from the causal map that X1 and X5 are the source

variables and X2, X3, and X4 are the effect variables. To establish oscillations in

the system, the source variables X1 and X5 are generated using sinusoidal signals as

shown below where ω1 = 0.01 and ω2 = 0.05 and e1 and e2 are Gaussian white noise.

x1(t) = sin(ω1t) + e1(t) (3.9)

x5(t) = sin(ω2t) + sin(π/2 − ω2t) + e5(t) (3.10)

X3X1 X2 X5

X4

Figure 3.2: True Causal map

The variances of noises e1 and e2 are taken as 0.05 and 0.1 respectively.

Each cause-effect relationship in a causal map varies from each other based on the
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strength of their causation and therefore, is generally classified into two categories as

weak and strong causation. To consider this aspect of causation, we have introduced

two weak links in the considered causal map. Here the causal link X2 causing X3 and

X3 causing X4 are held as weak causation by giving a lower magnitude of coefficient

0.2 to these two links and a higher magnitude to the remaining causal links. The

coefficient matrix M used for generating the data is given below.

Mdata =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6 0 0

0 0 0

0 0 0

−0.7 0.2 0

−0.5 0 0.8

0.1 0 −0.3

0 −0.4 0

0 0.5 0.2

0 0.3 0

0 0 0.5

0 0 −0.3

0 0 0.4

0 0.4 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

It can be observed that apart from the causal relations, each variable is also gen-

erated by its past. The remaining variables are generated as follows:⎡⎢⎢⎢⎣
x2(t)

x3(t)

x4(t)

⎤⎥⎥⎥⎦ = Mdata Xtd + e2:4(t) (3.11)

The covariance for noise e2:4(t) is taken as diag(0.05, 0.05, 0.035). A total of 1000

samples were generated using the above equation. The corresponding plots of all the

variables are shown in Figure 3.3.

First, the GC method is applied to obtain the coefficient matrix and the significance

of each causation was verified by the proposed surrogate data analysis approach based

on 100 generated surrogates. The causal map obtained by GC is shown in Figure 3.4.

From the figure, it is evident that in addition to identifying actual cause-effect links
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Figure 3.3: Plots of variables of simulation case study
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(indicated by solid arrows), GC gave seven spurious causations (indicated by dashed

arrows). These are as follows: X3 causing X1 and 5, X4 causing X1, X2, X3 and

X5, and X5 causing X1. This illustrates that Granger causality cannot accurately

reconstruct the true causal map when we have periodic oscillations in the system.

X3X1 X2 X5

X4

Figure 3.4: Causal map obtained by Granger Causality. The dotted arrows represent
the spurious causal links while the boldened arrows represent the true existing causal
links

SGC was then applied to the data, and the coefficient matrix was determined and

causal relations were verified by the proposed surrogate data analysis approach. The

obtained causal map for SGC is shown in Figure 3.5. As expected, SGC reduced the

number of cause-effect links in the causal map compared to Granger, but it removed

the true causal links while still retaining spurious ones. At a lower value of the

hyper-parameter λ, it retains all the true causal links but results in many spurious

causal links. When the value of λ is increased, the weak causal links disappear

while spurious causal links remain. As the value of λ determines the level of sparsity

that needs to be achieved, the existence of weak causal links limits our ability to

increase its value since the weak links get removed at higher values of λ. It can hence

be concluded that whenever the system has periodic oscillations coupled with the

existence of weak causal links, the SGC approach fails to identify the true underlying

cause-effect network.

As the purely data-based GC and SGC approaches failed to reconstruct the true
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X3X1 X2 X5

X4

Figure 3.5: Causal map obtained by Sparse Granger Causality. The blue dotted lines
represent the true causal links that were not identified.

cause-effect network, physics information about the true network was coupled with

the observed data based on the proposed Physics-Informed Sparse Causal approach.

After that, the determined coefficient matrix was analyzed by the proposed Surrogate

data analysis approach. This is demonstrated by 2 scenarios where a different set of

physics information is used as constraints, respectively. The physics information given

as constraints in the first scenario are:

• X2 causes X3

• X5 does not cause X4

The obtained causal map for this scenario is shown in Figure 3.6. With the addition

of the above two physics information, the proposed approach was able to reconstruct

the true underlying cause-effect network. On analyzing the constraints in detail, it is

evident that having some information about one of the causal links among the effect

variables in the network helps preserve the weak causal links among the related effect

variables. To demonstrate this effect further, a second scenario is considered in which

a different set of physics information is considered. The physics information given as

constraints in this scenario are:

• X2 causes X4

• X3 does not cause X1
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X3X1 X2 X5

X4

Figure 3.6: Causal Map obtained by the proposed physics-informed sparse causal
inference approach

The obtained causal map for this scenario is similar to the one obtained in the first

scenario and is shown in Figure 3.6. It is evident that, with the addition of the above

physics information, the proposed method was again able to reconstruct the true

underlying cause-effect network, which reinforces the conclusion drawn from the first

scenario. It can thus be concluded that having some physics information about the

system under consideration significantly improves the reconstruction of the underlying

cause-effect network. In addition, the proposed approach also removes the spurious

links which both GC and SGC approaches failed to do. This illustrates that, in the

presence of periodic oscillating signals in the system coupled with weak and strong

causal links, the proposed Physics-Informed Sparse Causal Inference identifies the

true sources of the system and reconstructs the underlying cause-effect network. The

Confusion Matrix in Figure 3.7 summarizes the results of this case study.

To further demonstrate the efficacy and robustness of the proposed approach un-

der different oscillatory configurations, a different scenario involving time-varying

frequencies and phase shifts is considered. In this case study, the data is structured

such that the initial 1000 samples mirror the previous simulation, while an additional

1000 samples are deliberately designed to exhibit doubled frequencies (ω1 = 0.02 and

ω2 = 0.1). Additionally, phase shifts of ϕ1=450 and ϕ2 = 600 are introduced for

X1 and X5 respectively, thereby creating a comprehensive data set that encapsulates

these variations. The variable plots for this case are shown in 3.8. The data gen-
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Figure 3.7: Confusion matrix obtained for the simulation case study. In each figure,
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eration equations for the additional 1000 samples for the source variables are shown

below.

x1(t) = sin(ω1t + ϕ1) + e1(t) (3.12)

x5(t) = sin(ω2t + ϕ1) + sin(π/2 − ω2t + ϕ2) + e5(t) (3.13)

While maintaining consistency in all other aspects of the first simulation setup,

including the physics information, the optimization process successfully produces an

accurate causal map that reflects the true underlying relationships as shown in 3.6.

This outcome underscores the robustness of our framework while dealing with diverse

oscillatory configurations.

A key aspect of VAR models is that the addition of delayed values of variables in-

creases the number of parameters to be identified. This aspect thus increases the

number of samples required to reliably identify the model parameters. Noting that

identifying a VAR model is a multivariate regression problem, the sample size require-

ment for such problems depends on various factors such as the variability of data,

the degree of dependency among the regressors, and the degree of noise. Although

there are no definite methods to select the sample size particularly when many re-

gressors exhibit linear correlations, there are certain thumb rules, one of which is

that there must be at least 10 samples per independent regressor (or parameter).

With 15 parameters per AR model in this case study, this ratio suggests a minimum

sample size of 150 samples. It can be noted that the number of samples in this case

study sufficiently exceeds this number thus resulting in a reliable estimation of the

parameters.

3.4.2 Industrial Case study

The proposed method is applied to the industrial case study of the Australian Refinery

process discussed in Chapter 2.

Being a refinery separation unit, the system under consideration imparts certain
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Figure 3.8: Plots of variables of additional simulation case study
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common physics information that can be interpreted based on the common knowledge

of the process. Here in this case study, the physics information used for constructing

the cause-effect network is:

i FC1 OP causes TC1 PV

ii TC1 OP causes AC1 PV

iii AC1 OP does not cause FC1 PV

iv TC1 OP does not cause PC1 PV

v PC2 OP does not cause PC1 OP

The rationale for these constraints is given in the following points.

i FC1 OP , being the controller output of the steam flow into the separation unit,

directly affects the temperature of the column/tray. Hence the first constraint

is theoretically appropriate and can be given as a physics-information.

ii AC1 PV is the analyzer process variable for the column and is directly affected

by the changes in temperature of the column TC1 OP .

iii The amount of feed entering the column, FC1 PV , is estimated based on the

amount of product that needs to be withdrawn from the column and hence the

analyzer output does not have any direct cause-effect relationship with the feed

entering into the column.

iv TC1 OP , being the temperature of the separation column under consideration,

and PC1 PV , being the pressure upstream to the column, are not directly re-

lated since the temperature of the column has a direct influence on the pressure

within the column and not the pressure upstream of the column.
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Figure 3.9: Physics-Informed causal map for Industrial case study

v PC2 OP , being the pressure downstream to the separation column, and PC1 OP ,

being the pressure upstream to the column, do not have any direct cause-effect

relationship.

Based on the above constraints, the proposed method was applied to the dataset, and

the obtained cause-effect network is shown in Figure 3.9.

The optimal value of hyper-parameter lambda for this case has been determined

as explained previously and the optimal value of λ is evaluated as 0.05. Figure 3.10

depicts the variation of the objective function value with the values of lambda for the

proposed method. The obtained cause-effect network using the proposed method is

shown in Figure 3.9. The proposed method was able to identify the true source for

plant-wide oscillation which is the FC1 loop. Based on this industrial case study,

it can be concluded that purely data-based approaches like GC and SGC cannot
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Figure 3.10: Objective function Vs Lambda for Physics-Informed Sparse Causality

be relied upon completely for the development of a cause-effect network. However,

the addition of physics information to the observed data significantly improves the

accuracy and reliability of the cause-effect network along with accurately determining

the true source of plant-wide oscillations.

3.5 Conclusion

In this chapter, a novel physics-informed sparse causal inference approach is pro-

posed that reconstructs the cause-effect network for source detection of plant-wide

oscillations. Additionally, a novel algorithm for the surrogate generation of data sets

involving periodic oscillations is also proposed. The proposed method addresses the

shortcomings of existing data-based approaches like Granger causality and sparse

Granger causality to detect the source when the data involves periodic oscillations.

The physics information is formulated as constraints in a constrained optimization

framework and the cause-effect network is reconstructed. Combining the physics

information with observed data significantly improves the accuracy, reliability, and

interpretability of the constructed causal network. The results from the simulated

66



and industrial case studies demonstrate the effectiveness of the proposed method.

These promising results pave the way for further research and exploration of physics-

informed causal inference beyond linear time-invariant dynamical systems.
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Chapter 4

Diagnosis and Advanced Prediction
of Flooding in Separation Columns

This chapter demonstrates the application of the physics-informed sparse causal infer-

ence methodology, developed in Chapter 3, to real-world industrial data, representing

the third contribution of this thesis.

4.1 Introduction

In the domain of process engineering, the operating performance of chemical process

equipment stands as a critical factor in ensuring safe and reliable operation. Among

these various process equipment, the separation column serves as a linchpin for di-

verse industrial processes including distillation, absorption, and extraction. However,

the occurrence of unexpected process disturbances like Flooding poses a significant

challenge to its safe and reliable operation. Early flooding detection is thus crucial

for a profitable and sustainable plant.

Flooding occurs when a liquid rises above a tray because of foaming or excessive

downcomer fill-up [73]. This causes a significant loss in tray efficiency and hence plant

profitability [74]. Flooding can be understood from an operational and design per-

spective. The vapor-liquid ratio (V/L) serves as a pivotal parameter for the design of

a separation column. Usually, columns are designed with a higher (V/L) ratio, other-

wise known as near-flooding conditions to achieve higher separation efficiency. Failing
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to operate the column at optimal ratio results in significant operational challenges

as a lower (V/L) ratio results in a condition called weeping and higher (V/L) results

in flooding. Apart from this, differential pressure (DP) acts as another important

indicator for the detection of flooding as a higher pressure drop is set to occur on the

tray below the point of flooding.

Traditional approaches for identifying flooding instances rely heavily on manual

observation and liquid holdup assessments, leaving room for inaccuracies and incon-

sistencies attributed to human error. Consequently, the reliability and precision of

these methods are compromised, emphasizing the critical need for more advanced

and automated flood detection techniques. Numerous studies have been dedicated to

addressing the critical issue of flooding detection within separation columns. Given

the detrimental impact of flooding on the overall performance and stability of these

essential industrial units, the development of robust and reliable flooding detection

methodologies remains a focal point in the field of chemical engineering and process

optimization. Peiravan et al.[75] considered the correlation of the flooding effect with

internal process variables, especially pressure drop across the column while Pihlaja

[76] used the time derivative of the pressure drop. Brockkötter et al.[77] developed

a Gaussian process-based data-driven model to predict the flooding state of filled

liquid-liquid and high-pressure extraction towers. They tested the model’s perfor-

mance under different chemical systems and unstructured packing geometries, using

various Gaussian process regression algorithms. Ochoa-Estopier et al.[78] presented

a random forest model for the detection of flooding in distillation columns. Instead

of relying on direct pressure measurements, they focussed on real-time measurements

of flow rates, liquid levels, and temperatures to train a binary classification random

forest model. Liu et al.[79] proposed a Convolutional Neural Network-based approach

in their work. Various other machine-learning approaches were also employed to aid

decision-making in industrial columns [80, 81].

Given the reliance of all the aforementioned research on data, the absence of high-
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quality data would considerably compromise the results. Therefore, integrating hu-

man expertise with process data presents a more robust and precise approach to

detecting flooding, ensuring greater reliability and accuracy in the results. Merely

diagnosing the fault in isolation will not adequately address the requirements for mit-

igating process disturbances. It is imperative to employ advanced predictive methods

to anticipate such faults, enabling proactive measures to prevent their occurrence

and ensure uninterrupted operational efficiency. Hence in this chapter, PCA-based

T 2 statistics for advanced prediction of flooding in separation columns are also pro-

posed. Given the high dimensionality of process data, employing Principal Compo-

nent Analysis (PCA) as a dimensionality reduction technique facilitates capturing

maximal data variance within a lower-dimensional space [82] and the application of

T 2 statistics serves as an effective anomaly detection technique [83]. The importance

of automation in the process industry has increased dramatically in recent years.

It has become a force in the entire chemical, oil, gas, and biotechnology industries

[84]. Numerous researchers have developed various MATLAB-based toolboxes; how-

ever, the proprietary nature of MATLAB software presents certain challenges [85–87].

Hence in this chapter, we present a novel Python-based Graphic User Interface (GUI)

toolbox to automate the generation of causal maps by combining process data and

human knowledge.

The main contributions of this chapter are outlined as follows:

1. Applied Physics-Informed Sparse Causal Inference for Diagnosis of Flooding

2. PCA-based T 2 statistics for advanced prediction of flooding in separation columns

3. A Graphic User Interface (GUI) toolbox for automating the generation of the

causal map.

The remainder of this chapter is organized as follows. Section 4.2 provides an

overview of the process and problem description. Section 4.3 provides an overview
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of the diagnosis of flooding using the Physics-Informed Sparse Causal Inference ap-

proach. In Section 4.4, the prediction of flooding using the PCA-based T 2 statistics

is presented. In Section 4.5, the concluding remarks are presented.

4.2 Process & Problem Description

4.2.1 Process Description

Flooding was observed to occur extensively in the industrial de-propanizer column

associated with a Gas Recovery Unit as shown in Figure 4.1. The column was designed

to separate the mixed propane/butane stream by distillation from the De-Ethanizer

bottoms. The C3/C4 stream is rich in hydrogen sulfide and hence it is treated in an

amine treating unit before being fed to the de-propanizer column. The de-Propanizer

bottoms are fed to an adsorber to remove Diisopropanolamine (DIPA) before being

sent for storage. The de-propanizer overhead stream is sent to reflux to improve the

product quality and a slipstream is routed to the drier before being sent to storage

spheres.

4.2.2 Problem Description

A brief description of the problem of diagnosis and advanced prediction of flooding

in the de-propanizer column is presented here. In this work, the differential pressure

across the column is used as the Flooding Indication Variable (FIV) for diagnosis of

flooding. Physics-Informed Sparse Causal Inference is used to identify the root cause

of flooding and thereby generate the causal map. Based on the identified source vari-

ables, a PCA-based T 2 statistics methodology is developed to predict flooding events.
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Figure 4.1: De-Propanizer System

4.3 Diagnosis of Flooding

4.3.1 Data

The industrial process data spans almost a year. The data is divided into bi-monthly

data sets across ten Excel sheets. The sampling time for data collection is 1 minute.

The process variables and their corresponding tags used in this work are shown in

Table 4.1

4.3.2 Diagnosis

As discussed before, the proposed Physics-Informed Sparse Causal Inference approach

is employed for the root source identification of Flooding. The mathematical frame-

work for the diagnosis of flooding is given as:

min
M

||Xt −MXtd||2 + λ||M ||1

s.t. Physics information
(4.1)
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Process Variable Tag

Reboiler Steam RBS

Reflux RFX

Feed Flow Rate FFR

Feed Temperature FT

Reboiler Return Temperature RRT

Top Pressure TP

Tray 11 Temperature T11T

Tray 3 Temperature T3T

Tray 37 Temperature T37T

Tray 2 Pressure T2P

Overhead Flow Rate OFR

Flooding Indication Variable (Differential Pressure) FIV

Overhead Temperature OT

Overhead accumulated Temperature OACT

Bottoms C4 BC4

Bottoms C5 BC5

Table 4.1: Process Variables and their Tags
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where M represents the coefficient matrix, Xt denotes the measured variables at

time t, Xtd represents the past of X with a time delay d, and λ is the hyper-parameter

that dictates the sparsity level. In the context of our current investigation, focused

on constructing a cause-effect network for diagnosing flooding in the De-Propanizer

column, the physics information used is basic process understanding of an engineer

or technician associated with the operation of a separation column. They are

• Reboiler steam causes Top pressure

• Top pressure causes FIV

• Reflux causes Top pressure

• Reflux causes Overhead temperature

Differential Pressure (DP) being the Flooding Indication Variable was analyzed

to identify the actual flooding events in the process data. The obtained plots of

the DP are shown in Figure 4.2. Drawing from the insights gained through process

understanding and the established alarm thresholds for flooding, it becomes apparent

that a total of five flooding events transpired during the specified timeframe. To

elaborate, these events unfolded in distinct periods: once during October-November,

once during November-December, twice during December-January, and once during

March-April.
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Figure 4.2: Plots of Differential pressure
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After successfully identifying the instances of flooding, Physics-Informed Sparse

causal Inference was employed to obtain the causal map shown in 4.3. The Differen-

tial pressure variable which is the Flooding Indication variable is presented in Red

color, the source variables are presented in Green and the intermediary variables are

presented in Yellow. It is evident from the causal map that a significant number

of arrows are leaving the variables Feed flow rate, Feed temperature, Reboiler

steam and Reflux compared to the number of entering which makes them the source

variables and the others as intermediary variables. Even though the data consisted of

16 process variables, the variables Bottoms C4 and Bottoms C5 are not present in the

constructed cause-effect network. This can be accounted for by the sparsity term in

the objective function which removes variables associated with very weak causations.

Figure 4.3: Causal Map for Diagnosis of Flooding
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Once the causal map has been developed and source variables have been identi-

fied, various causal paths can be constructed starting from the source variables and

ending with the Flooding indication variable. This systematic approach facilitates

the verification of the causal map by analyzing whether these paths can explain the

instances of flooding in the process data. For instance, one causal path constructed

from the causal map in Figure 4.3 is Feed Temperature − > Tray 37 temperature − >

Top Pressure − > FIV. This causal path explains the flooding event that transpired

between October and November, as depicted in 4.4. This depiction serves as a robust

verification, ensuring the precision and reliability of the generated causal map.

((a)) Feed Temperature ((b)) Tray 37 Temperature

((c)) Top Pressure ((d)) FIV

Figure 4.4: Verification of Causal Map

In the illustration above, the graphs representing the variables along the causal

pathway are presented sequentially. The initial variations were detected in the Feed

temperature, followed by changes in Tray 37 temperature and top Pressure, ultimately

leading to the occurrence of flooding, as indicated by the FIV. Similarly, other flooding
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events in the data can also be verified as discussed above.

4.4 Prediction of flooding

The accurate prediction of flooding is indispensable for maintaining operational effi-

ciency, preventing equipment damage, and ensuring the overall effectiveness of separa-

tion columns. Predicting flooding with certainty is challenging due to the complexity

of the process and the various factors involved.

4.4.1 Prediction Methodology

As observed from the Diagnosis of flooding where the causal map was developed,

not all variables in the data contribute significantly to the modeling. Some variables

demonstrate redundancy, while others wield substantial influence. Apart from that,

dealing with the higher dimensional data in developing statistical process control tools

possesses its challenges. The sheer volume of variables can lead to increased complex-

ity, potential overfitting, and computational inefficiencies. As we navigate this terrain,

it becomes imperative to employ sophisticated techniques for dimensionality reduc-

tion and feature selection. By discerning the essential variables and mitigating the

impact of redundant ones, we aim to streamline the modeling process and enhance

the efficacy of statistical process control tools in the context of flooding diagnosis.

Hence in this work, Principal Component Analysis is used to reduce the dimensional-

ity of the data. The T 2 statistic, often referred to as Hotelling’s T-squared statistic,

plays a pivotal role in detecting deviations from the expected behavior of a system or

process. It is widely employed in various fields, including quality control, industrial

processes, and multivariate data analysis. First proposed by Harold Hotelling [88],

it is a generalization of Student’s t statistic that is used in multivariate hypothesis

testing. It is defined for a set of p variables x = (x1, x2, . . . , xp) having mean values

µ = (µ1, µ2, . . . , µp) and p×p covariance matrix, W Hotelling’s T 2 statistic is given

as [89] :
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T 2 = (x− µ)′W−1(x− µ) (4.2)

So, in a typical online monitoring process, sensor measurements are collected sequen-

tially and a decision of when a change occurs is made based on the value of T 2.

Based on these discussed concepts the developed algorithm for the prediction of flood-

ing is presented in Algorithm 2. The MATLAB codes for offline and online imple-

mentation are provided in the Appendix A

Algorithm 2 Prediction of flooding

1. Extract identified source variables data from the complete data set.

2. Carry out the pre-processing of data, including standardization.

3. Split the data into a training data set and a testing data set, where the training
data set consists of 75% normal operation data and the testing data set consists
of 25% normal operation data and flooding data.

4. Conduct Principal Component Analysis (PCA) based on training data for the
4 source variables identified and select 2 principal components (PCs).

5. Obtain the scores and loading matrices.

6. Calculate the T 2 statistics based on the equation:

T 2 =
∑︂(︃

ti,a
sa

)︃2

where ti,a is the score value for the ith observation and ath principal component,
and sa is the variance of the ath principal component.

7. Calculate the T 2 statistics for the test data based on the PCA model of the
training data.

8. Calculate the threshold value from the T 2 plot of the training data by keeping
1% to 2% of data points above the threshold.

9. Use the calculated threshold value for the prediction of flooding in the T 2 plot
for the test data.
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4.4.2 Prediction Results

The algorithm presented in the section Prediction Methodology was implemented on

the available data set to predict the flooding events identified earlier to verify the

efficacy of the proposed algorithm.
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Figure 4.5: PCA based T 2 statistics plot for training data

The plot denoted as 4.5 delineates the PCA-derived T 2 statistics applied to the

training dataset, exclusively populated with 75 percent of the normal operational

data. The threshold value computation involved selecting the upper 1.5 percent of

data points, yielding a threshold value of 10.2 as discerned from the T 2 plot of the

training dataset. This determined threshold was subsequently employed for the test

dataset, and the ensuing results are depicted in figure 4.6.

In Figure 4.6(a), the data points located to the left of the delineated dotted black

line represent instances of flooding, while those to the right constitute 25 percent

of normal operational data. For enhanced clarity, an amplified view of the flooding

region is presented in Figure 4.6(b). The dotted black line within Figure 4.6(b)

demarcates the temporal point at which flooding transpired. This specific occurrence

of flooding is pinpointed through the analysis of the plot for Differential Pressure,

identified as the Flooding-Indicating Variable (FIV). It is evident from the figure that

80



0 20000 40000 60000 80000 100000 120000
Time

T2
 st

at
ist

ic

Threshold = 10.2

Flooding data

Normal operation data

((a)) Complete test data

0 5000 10000 15000 20000
Time

T2
 st

at
ist

ic

((b)) Enlarged Flooding region

Figure 4.6: PCA based T 2 statistics plot for test data

all 5 flooding events identified from FIV plots lie above the threshold value determined

based on the training data. Among the five identified events, the second instance of

flooding, occurring during the December-January timeframe, was attributed to an

abrupt failure of the feed control valve. This failure led to instantaneous flooding of

the column, rendering this particular event unpredictable. The prediction results of

the other 4 events are shown in Figure 4.7.

Figure 4.7 depicts the PCA-based T 2 statistics plot designed for predicting four

flooding events within the dataset. These plots specifically concentrate on the vicin-

ity surrounding the flooding occurrences. The initial vertical dotted line denotes the

moment when the T 2 value surpasses the predetermined threshold, while the subse-

quent dotted line signifies the exact point of flooding. This observation underscores

the existence of a sufficiently extended prediction window, affording process operators

ample time to undertake essential corrective measures. The detailed summary of the

available prediction time for each flooding event is tabulated in Table 4.2.

With the rapid advancement in control systems technology over the past few

decades, the number of process sensors deployed for a particular plant has dramat-

ically increased. In addition, due to the ease of configuring the alarms in control

systems, the number of alarms in a plant has also gone up [90]. The false alarm rate

calculated in the data set based on this developed algorithm is 2/month.
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Figure 4.7: Prediction of flooding events

Flooding Event Time available for prediction

October - November event 85 minutes

November - December event 30 minutes

December - January event 20 minutes

March - April event 40 minutes

Table 4.2: Flooding Prediction time

4.5 Conclusion

In this chapter, the proposed physics-informed sparse causal inference approach has

been implemented on real industrial process data to identify sources of flooding in a

separation column. The causal map generated and the variables identified as sources
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are subsequently subjected to thorough analysis for validation. Additionally, an ad-

vanced predictive methodology is introduced to forecast flooding events enabling oper-

ators to anticipate incidents and take corrective actions within a reasonable time win-

dow. To facilitate the seamless application of the proposed methodology, a Graphic

User Interface (GUI) toolbox is introduced which is discussed in detail in Appendix

B. This toolbox serves a dual purpose: first, it automates the generation of the causal

map, simplifying the often intricate process. Second, it enhances user accessibility

by providing an intuitive interface for interacting with the physics-informed sparse

causal inference model.
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Chapter 5

Conclusions, Recommendations, &
Future Work

This chapter outlines the conclusions drawn from the proposed methods and their

implementations in various case studies. Additionally, potential future directions of

research in this area are also outlined.

5.1 Conclusions

The overall underlying principle explored in this thesis is that of root cause analysis in

Process Systems Engineering using Causal inference. Hence, all the proposed methods

focus on various aspects of improving existing causal inference approaches for root

cause analysis.

• In Chapter 2, a novel nonlinear sparse causal inference method based on the vari-

ational Gaussian process is proposed. The proposed method addresses the short-

comings of existing approaches like Granger causality, sparse Granger causality,

and Gaussian process-based causality to identify and produce the true cause-

effect relations among nonlinear variables. The main focus of the proposed

method is to minimize spurious relations, providing a more accurate and reli-

able assessment of causation in nonlinear systems. This chapter contributes to

the advancement of causal inference techniques, particularly in the context of
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nonlinear relationships, and offers a promising avenue for enhancing the preci-

sion of causal assessments in complex systems.

• In Chapter 3, we addressed the shortcomings of existing data-based approaches

like Granger causality and sparse Granger causality to detect the source when

the data involves periodic oscillations. Reduced accuracy and reliability of

causal maps due to the over-dependence on data is overcome by the proposed

methodology which amalgamates human knowledge with data. The incorpora-

tion of physics information is a key aspect of the proposed approach, achieved

by formulating constraints within a constrained optimization framework. This

allows for the reconstruction of cause-effect networks, overcoming the drawbacks

associated with purely data-driven methods. Notably, the methodology aims to

strike a balance between empirical data and domain expertise to enhance the

overall accuracy of source detection in systems with periodic oscillations. Ad-

ditionally, a novel algorithm for the surrogate generation of data sets involving

periodic oscillations is also proposed.

• In Chapter 4, we presented a robust framework combining the proposed Physics-

Informed sparse causal inference with PCA-based T 2 statistics for the diagnosis

and advanced prediction of flooding in the separation column. Successfully

applied to the industrial data of a deethanizer column, the causal map generated

and the variables identified as sources were subsequently subjected to thorough

analysis for validation. To facilitate the seamless application of the proposed

methodology, a Graphic User Interface (GUI) toolbox was also introduced. The

developed methodology and toolbox will be provided to the industry for testing

in real-time process operations.
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5.2 Future Scope

This section outlines the various possible avenues of research in terms of extensions

and further improvements to the methods presented in this thesis.

5.2.1 Extensions to the Proposed Physics-Informed Causal
Inference

The proposed Physics-Informed Causal Inference in Chapter 3 is designed for linear

systems and as discussed in Chapter 2, a significant number of systems in the real

world tend to show nonlinear nature. Hence the Physics-Informed Causal inference

can be extended to nonlinear systems by combining with the variational Gaussian

Process methodology developed in Chapter 2. Modifying the objective function de-

rived in Chapter 2 into a constraint optimization where physics information can be

provided helps to overcome the issues related to the reliability and accuracy of the

nonlinear data from process industries.

5.2.2 Causal Inference for Fault Prediction

In process industries, it is common to have measurements sampled at different rates

thereby making the time scales different from one variable to another. Usually, in

time domain causality analysis, data are assumed to be sampled at regular intervals

for all the variables. Hence, this problem of causality analysis with multi-rate sampled

data can be a good research topic to work on. Also, since flooding is a predominant

issue in almost all process industries, transfer learning can be integrated with causal

analysis, where the causal knowledge obtained from one particular process can be

transferred to the process dealing with similar disturbance issues. It is also ideal to

research the integration of more advanced machine learning techniques, such as deep

learning or reinforcement learning, to handle complex and non-linear relationships

within process data. As the operating conditions in process industries tend to change

frequently due to the changing production requirements, it will be beneficial if the
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model can adapt itself to these frequent changes and provide good results.
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[21] M. Paluš and M. Vejmelka, “Directionality of coupling from bivariate time se-
ries: How to avoid false causalities and missed connections,” Physical Review
E, vol. 75, no. 5, p. 056 211, 2007.

[22] Z. Chen, K. Zhang, L. Chan, and B. Schölkopf, “Causal discovery via repro-
ducing kernel hilbert space embeddings,” Neural computation, vol. 26, no. 7,
pp. 1484–1517, 2014.

[23] P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, “Nonlinear
causal discovery with additive noise models,” Advances in neural information
processing systems, vol. 21, 2008.

[24] J. Pearl et al., “Models, reasoning and inference,” Cambridge, UK: Cambridge-
UniversityPress, vol. 19, no. 2, p. 3, 2000.

[25] C. E. Rasmussen, C. K. Williams, et al., Gaussian processes for machine learn-
ing. Springer, 2006, vol. 1.

[26] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian process
regression: Modelling, exploring, and exploiting functions,” Journal of Mathe-
matical Psychology, vol. 85, pp. 1–16, 2018.

89



[27] P.-O. Amblard, O. J. Michel, C. Richard, and P. Honeine, “A gaussian process
regression approach for testing granger causality between time series data,” in
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2012, pp. 3357–3360.

[28] G. Feng, J. G. Quirk, and P. M. Djurić, “Detecting causality using deep gaus-
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Appendix A: MATLAB Codes for
Chapter 4

A.1 Offline Implementation

A sample MATLAB code for calculating loadings and score matrix is shown below:

% Sample datase t ( r e p l a c e t h i s with your own data )
data = randn (100 , 5 ) ; % 100 samples with 5 f e a t u r e s each

% Step 1 : Mean cente r the data
data mean centered = data − mean( data ) ;

% Step 2 : Standard ize
data s tandard i z ed = data mean centered . / std ( data mean centered ) ;

% Step 3 : Ca l cu la te the covar iance matrix o f the s tandard i zed data
covar i ance mat r ix = cov ( data s tandard i z ed ) ;

% Step 4 : Perform PCA us ing the bu i l t −in pca func t i on
[ c o e f f , ˜ , ˜ ] = pca ( data s tandard i z ed ) ;

% Step 5 : Ca l cu la te PCA s c o r e s
s c o r e s = data s tandard i z ed ∗ c o e f f ;

% Display the r e s u l t s
d i sp ( ’ P r i n c i p a l  Component  Loading  Matrix : ’ ) ;
d i sp ( c o e f f ) ;

d i sp ( ’PCA Scores : ’ ) ;
d i sp ( s c o r e s ) ;
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A.2 Online Implementation

A sample MATLAB code for calculating T 2 statistic is shown below:

% Sample datase t ( r e p l a c e t h i s with your own data )
data = randn (100 , 4 ) ; % Replace t h i s with source v a r i a b l e data

% Loading matrix obta ined from PCA model o f o f f l i n e s imu la t i on
c o e f f = transpose ( [ Obtained load ing matrix from PCA] ) ;

% Ca l cu l a t i on o f s co r e matrix
s co r e = data ∗ c o e f f ;

% Step 5 : Ca l cu la te the T2 s t a t i s t i c s for each data po int
T2 = sum( s c o r e . ˆ2 . / std ( s co r e ) . ˆ 2 , 2 ) ;

% Display the T2 s t a t i s t i c s
d i sp ( ’T2  S t a t i s t i c s : ’ ) ;
d i sp (T2 ) ;

% Plot the T2 s t a t i s t i c s p l o t
p l o t (T2)
ylim ( [ 0 , 4 0 ] ) ;
y l i n e ( 1 0 . 2 , ’− ’ , ’ Threshold ’ ) ; % Threshold value ;
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Appendix B: Graphic User
Interface (GUI) Toolbox

A Graphical User Interface (GUI) toolbox was developed as an integral facet of Chap-

ter 4 of this work. The GUI toolbox serves as a sophisticated front-end for interacting

with the underlying algorithms and functionalities, offering researchers and practi-

tioners a versatile and user-friendly interface implemented using Python and tailored

to the specific requirements of this work. The impetus for developing the GUI tool-

box arises from the inherent limitations of conventional command-line interfaces in

managing the nuanced intricacies.

B.0.1 Implementation Details

The GUI toolbox is realized through the utilization of Python, a versatile program-

ming language, coupled with robust GUI development frameworks. The primary

frameworks employed include Tkinter and Pygubu, chosen for their widespread adop-

tion, community support, and seamless integration capabilities. Tkinter provides a

lightweight solution that seamlessly integrates with Python’s standard library, while

Pygubu offers a more feature-rich and aesthetically pleasing interface, enhancing the

overall user experience. The GUI toolbox operates on an event-driven programming

paradigm, where user actions and system events trigger specific responses. This ap-

proach ensures responsiveness as users interact with the interface. Event handlers

are created to manage user inputs, such as button clicks, or menu selections, en-

suring smooth communication between the graphical interface and the underlying

computational backend.

97



B.0.2 Interface and Features

The GUI toolbox consists of three windows, where the first window allows the user to

upload the process data and also provides the user with the platform to visualize the

time series plots of the process parameters in the data as shown in Figure B.1. More

specifically, the first window comprises the title label, a button to upload the process

data, a drop-down menu from which a specific variable can be selected to visualize

the time series plot on the frame to the right of the menu, and a button to add the

physics-information which ensures a seamless transition to the subsequent window.

Figure B.1: First window of the GUI toolbox

After uploading and visualizing the process data, the user can go on to add the

physics information by clicking the ’Add Physics-Information’ button by which the

subsequent window appears as shown in Figure B.2. This window consists of two

drop-down menus to select the variables and one drop-down menu to select whether
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one of them is causing the other or not. After selecting the variables and causation,

the user can click on the ’Add’ button to add that physics information into the

computational framework. Once the user adds the required physics information, it

then appears in the textbox at the bottom of the window for the user to verify at

the end. The user can add any number of physics information they have about the

process under consideration.

Figure B.2: Second window of the GUI toolbox

After adding the physics information, the user can go on to click the ’Generate

Causal Map button’ at the bottom right section of the window so that the third

window appears with the generated causal map as shown in Figure B.3. This window

consists of a frame where the generated causal map is shown along with options

for Diagnostic and Predictive analysis of the causal map. More specifically, there

are designated buttons in the window that enable the user to identify direct causal

variables and indirect causal variables for both diagnosis and prediction. For example,

if the user wants to identify the variables directly causing the variable ’Tray 10T’,

selecting that variable from the drop-down menu below the label Direct Causality for

Diagnosis provides a list of such variables in the textbox at the bottom. In a similar

vein, users can acquire indirect causative variables for diagnostic purposes, and this

extends seamlessly to predictive analysis.
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Figure B.3: Third window of the GUI toolbox
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