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Abstract

In this thesis, we propose mechanisms to extend the lifetime of wireless sensor

networks. In-network data aggregation is considered on both tree-based and flow-

based routing protocols during the process of data collection to reduce redundant

transmissions. In the flow-based data collection design, we introduce the concept of

flow loss multiplier to express the impact of data aggregation over correlated data.

The application has the freedom to set the flow loss multiplier to reflect its specific

knowledge of correlation.

We also introduce traffic balancing as a complementary technique to data aggre-

gation. It helps avoid exhausting the energy of any sensor node while leaving large

amounts of energy at other nodes. In tree-based data collection schemes, we adjust

the tree structure judiciously to balance energy consumption before any node’s fail-

ure due to total residual energy depletion. In flow-based schemes, after aggregation,

data flows are split and the fragments are spread to increase network lifetime.

We investigate the impact of performing greedily data aggregation at the “best”

aggregation site regardless of its location, the results of our analysis show that only

applying 2-way data aggregation may limit the ability to explore more complex

aggregation possibilities. To address this problem, we propose an aggressive data

aggregation for a specified application, contour map reconstruction. Based on the

simulation results, our aggregation scheme is shown to be able to eliminate large

volume of contour data and retain satisfying data accuracy.
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Chapter 1

Introduction

Recent technological advances in micro-electro mechanical systems (MEMS) and

wireless communications have enabled the deployment of small and low-cost sensor

nodes [37]. These sensor nodes are usually equipped with limited programmable

computing, sensing and wireless communication components. Sensor nodes are of-

ten randomly deployed. They are usually battery-powered and difficult, or impos-

sible, to recharge. Therefore, dense deployment is employed to extend the spatial

coverage but also to increase the fault-tolerance and robustness of the system.

Once deployed, these sensor nodes self-configure into a Wireless Sensor Net-

work (WSN) with the objective to monitor physical phenomena of interest that oc-

cur within their area. The emergence of WSN technology is revolutionizing a wide

range of applications in both civilian and military domains [37, 87, 88, 77, 61,

18, 64], such as environmental surveillance, structural health monitoring and target

tracking.

In a common WSN application scenario, each sensor node periodically monitors

its vicinity and reports its observation (sensor data) to the base station (sink node)

for storage and further processing. Owing to the periodic data collection, time can

be thought of as divided into many equal-sized epochs, and within each epoch ( or

“data collection round”), sensor data from each source is gathered at the sink. If

the sensor nodes are not the direct neighbors of the sink node, a multi-hop routing

mechanism is required and those intermediate nodes have to relay data on behalf of

others to the sink in addition to reporting their own data.
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1.1 Characteristics of Wireless Sensor Networks

Scarce energy supply is the most significant constraint in WSNs. Sensors are too

small to carry a battery with large capacity. In addition, they are often dispersed in

inaccessible areas. It is difficult to replace or recharge their batteries. Once depleted

of energy, a sensor node will stop providing any support to the system, which may

further lead to the termination of the functionality of the whole WSN, because each

sensor is also responsible for routing. Therefore, any system design has to take

this energy limitation into consideration and provide a solution for prolonging the

operational lifetime of the system. Since all the sensor data will be gathered at

the sink node for storage or further processing, it is assumed accessible and has

unlimited energy supply.

Another feature of a sensor node is its limited transmission range. Wireless

sensors are small and possibly cheap devices, which result in its limited wireless

transmission capacity. Most WSN applications require that all or part of dispersed

sensor nodes report their measurements. Due to the restricted transmission ability,

multi-hop routing has to be utilized. Since the sink node is usually the unique

site at which all sensor data has to be gathered, sensor nodes along the frequently

accessed path (to the sink) have much larger traffic burden than others. This traffic

load imbalance results in biased energy consumption, which brings a significant

challenge to extending the system lifetime of WSNs.

Although the capability of each sensor is limited, a number of deployed sensor

nodes could cooperate to accomplish a large and complex monitoring task. This

collaboration typically occurs in the form of data aggregation among a subset of

sensor nodes carrying similar sensor data. Due to the nature of the phenomena being

monitored (usually smoothly developing in both temporal and spatial domains) and

the dense sensor node distribution (to fulfil sensing coverage requirement of a given

WSN application), the sensed data are highly correlated. Data redundancy among

multiple similar sensor observations can be removed while they are routed to the

sink node in order to save energy consumption by avoiding delivering redundant

data. This approach is usually referred to as in-network data aggregation [45].
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For many applications, accurate node position is important for efficient coop-

eration of the deployed sensors and functionality of the sensor network. Most re-

search work about WSN assumes GPS receivers are available on all or some sensor

nodes [39]. However, sometimes GPS devices may not be feasible for sensor nodes

due to limited hardware cost, or they do not work well due to limitations of satel-

lite coverage or degraded satellite signals. In this thesis, we first design GPS free

data collection schemes. Then, for a particular WSN application, contour map re-

construction, we design data collection approaches based on accurate sensor node

positions.

1.2 Maximizing Lifetime Data Collection with
In-network Aggregation and Workload Balance

The lifetime of a WSN can be defined as the time after which a certain fraction of

sensor nodes deplete their energy. In particular, in this thesis, we assume lifetime

of a WSN ends when any single sensor node runs out of its energy. This is the most

strict lifetime definition and it can be used as an “acid test” to verify the ability

of a data gathering scheme to handle stringent requirements such as scarce sensor

energy supply and high sensor network density requirement from the specified ap-

plications. The reason is that if it is impossible to recharge sensor nodes, once any

single sensor exhausts its energy supply, the functionality of the whole WSN may

be compromised or even terminated.

No matter which definition of the lifetime is adopted in the system design, as we

discussed before, traffic load imbalance results in heterogeneous energy consump-

tion among deployed sensor nodes leading to early cessation of operation of some

part of the system. In addition, dense sensor deployment guarantees the network

connectivity but also indicates a high degree of sensing coverage overlap, which

introduces the possibility of strong data correlation within the network. On the

other hand, it has been realized that local computation is much cheaper than wire-

less communication in terms of energy consumption [8]. So it is desirable to utilize

in-network data aggregation to reduce data redundancy among sensor nodes that
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possess similar sensor observations. In this way, we trade computation for wireless

traffic reduction, thus extending system lifetime.

In this thesis, we concentrate on designing data collection mechanisms to max-

imize lifetime by performing in-network aggregation, as well as balancing traffic

load across the whole network. The former helps alleviate the heavy wireless trans-

mission burden accumulated at those nodes close to the sink; the latter helps avoid

creating areas, anywhere in the network, in which nodes run out of energy much

earlier than others. Without explicit mention, throughout this thesis, data aggrega-

tion is mainly from spatial data correlation (similar readings are usually obtained

by closely located sensor nodes).

1.3 Example Applications of In-network Aggregation

Wireless sensor networks have application to many military and civilian scenarios

such as target tracking, environmental monitoring, traffic monitoring, seismic de-

tection, etc. In this section, we describe several scenarios where a large amount of

sensor data is required to be transmitted across the network and performing data ag-

gregation is beneficial during the process of data collection. In different application

scenarios, there exist different data correlation patterns. Given a WSN application,

a corresponding data collection strategy (based on an appropriate data aggregation

model) should be implemented to benefit from in-network aggregation as much as

possible.

1.3.1 Environmental Monitoring

Sensors are often deployed to collect environmental information in order to study

and explain the impact of environment on the behavior of living organisms. In an

environmental monitoring system, each sensor node is equipped with several differ-

ent sensing components in order to measure temperature, light, humidity, rainfall,

etc. Sometimes cameras with high resolution are also deployed providing visual

surveillance on, for instance, rare and endangered species [10, 59]. For example, in

[10], there are two types of data transported across the network, numerical data (e.g.
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temperature) and high-resolution images. Both of them are periodically generated

and have to be gathered at the sink node. The numerical readings are subsequently

classified into five categories: “normal”, slightly above and below “normal”, and

“extreme outlier” on both sides. Simple environmental readings are only reported

once they fall outside the “normal” category. In this exception reporting scheme,

the value range of each category is determined by the data accuracy requirements

of the application.

In [22], the numerical readings obtained from different sensor nodes over a

period of time (e.g. a fixed number of rounds) can be modeled as a function of

the time when they were generated and the location where they were generated.

Only key coefficients of the function need to be delivered from each sensor to the

sink, and the sink can restore all the sensor readings based on the received function

coefficients (within a deviation tolerance).

Image data is also collected but less frequently in [10], to provide casual obser-

vations while numerical readings are reported as normal. During the image collec-

tion, it is possible for a relaying sensor to perform aggregation over the image it

received. If the relaying sensor itself obtains a similar image, it can use it to only

relay the part of the image it received, because the image obtained by the relaying

node itself will be gathered at the sink in its integrity. Upon receiving the partial

image and the intact reference image, the sink can restore the aggregated one.

From this example we can see at least three ways of aggregation: based on gran-

ularity and “characterization” of data, based on a model described by coefficients,

based on the image and its reference counterpart.

1.3.2 Target Tracking

Target tracking is another typical WSN application in both military and civilian

domains [76, 44, 65, 33, 79]. The objective is to assess and maintain an accurate

trajectory estimation as a potential target traverses the region under surveillance.

There may be several targets traveling at the same time [79]. Each of them is usually

treated as a point source of an acoustic signal [90]. The signal amplitude attenuates

with the distance from the source. When an acoustic source is located near one
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or multiple sensors, the signal is strong enough to be filtered from the background

noise and the sensor data is rich enough to contribute to the tracking task. Each

sensor has a limited sensing range; only closely located sensors have the probability

to capture the target’s acoustic signal. To make sure the system can detect and locate

multiple objects, each deployed sensor periodically senses its vicinity and reports

to the sink. So the direct implication of cooperation in a WSN in this example

is that sensor data between nearby sensors tend to be (spatially) correlated. This

correlation can be exploited to reduce data communication, assuming neighboring

nodes process jointly the acoustic data.

Besides traditional signal processing sensor networks, new target tracking sen-

sor networks composed of binary proximity sensors have been proposed [76, 44].

Compared with the acoustic-amplitude sensors for target distance estimation and

the direction-of-arrival sensors for direction estimation [52], the output of a binary

sensor is simple (only one bit denoting if the object of interest is or is not within its

sensing coverage). The basic idea in this type of application is to use line segments

as an approximation to the real trajectory of the object (within a sufficiently small

interval). During the operation of the sensor network, each sensor around the target

periodically reports one bit, and a binary “word” is expected to be collected at the

sink. For each pair of consecutive binary words collected from the sensors, only a

few bits flip. This allows the temporal correlation to be captured by the Hamming

distance between successive words, and the same (Hamming distance) representa-

tion can be the basis to filter unnecessary wireless transmissions [68, 69].

Two aggregation techniques are applied in this application. The first one is per-

formed by means of collaborative signal processing in which the target location is

estimated by some sensor node with the help of other ones. The second aggrega-

tion technique is based on error-correcting codes[68], where temporal-correlated

observations can be jointly coded, thereby reducing redundant transmissions.

1.3.3 Structural Health Monitoring

The main objective of Structural Health Monitoring (SHM) is to detect the existence

and localize the damage in large civil constructions, such as skyscrapers, bridges
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and stadiums [15, 91, 64, 17]. In order to obtain insight into the physical state of a

building, SHM systems usually measure structural response to ambient vibration or

forced excitation. Once the damage occurs, a SHM system reports the existence and

location of that damage by detecting and analyzing the structural property changes.

The structural response measurements are usually generated at a very high data

rate [91]. At each sensor location, the structural response is sampled and collected

as a time series of sensor readings for further structural analysis. In [91], a two-fold

data aggregation technology is incorporated during the data collection to reduce

wireless traffic. The first scheme is event detection, which suppresses energy costly

wireless data traffic when there is no interesting event. A threshold is set up to

make sure only interesting events will be reported. To further reduce data volume

and the large latency over data acquisition, wavelet compression based progres-

sive transmission is applied as the second strategy. The vibration data is written

to the sensor’s local memory without any compression. But a separate procedure

periodically reads data from local storage and compresses vibration samples before

sending the data summary to the sink node.

To further exploit internode data correlation, model-based data aggregation de-

rived from structural analysis [64] can be performed without compromising the

quality of the acquired data. The a-prior known correlation functions of structural

response to events are utilized to facilitate data compression. These correlation

functions are determined by the nature and design of the structural system. Once

the compressed data is insufficient to support precise damage detection, the sink

may issue a request for the original data from each sensor node. The sink’s request

however for the full data must happen quickly because the full precision data are

overwritten by new data as time goes by. Again we see models used to produce

aggregate data that are smaller (in volume) than the sensed data.

1.4 Contributions

Data collection is a major functionality for most sensor networks. Constrained by

limited energy supply, maximizing lifetime becomes the most interesting research
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topic in WSNs. To reduce data redundancy transmitted across the network, in-

network data aggregation is used. In this thesis, we consider the impact of data

aggregation on both tree-based and flow-based data collecting protocols, introduce

traffic balancing as a complementary technique to data aggregation for maximizing

the system lifetime, and also study the interplay between data aggregation strategy

and workload balancing in a WSN. The contributions of the thesis are in three main

areas:

1.4.1 Tree-based Data Collection Schemes

A data collection tree is one of the most important and commonly adopted rout-

ing topologies in WSNs. To collect sensor data, a tree rooted at the sink has to

span all sensor nodes possessing the desired information. Data aggregation ben-

efits much from the tree structure as sensor data are collected while approaching

the root. We propose several distributed heuristic algorithms for in-network data

aggregation. We also examine the effect of our aggregation approaches in terms

of different metrics, such as communication cost, energy cost and processing cost

(only for large networks). Then, we design and evaluate a dynamic tree structure ad-

justment mechanism that proactively alleviates traffic load over some critical nodes

whose residual energy is depleted faster due to large data relaying burden. Our

performance study indicates that it is possible to effectively construct the aggrega-

tion tree based exclusively on local network knowledge and simple sensor devices

without location information. Additionally, our proactive tree adjusting strategy is

capable of both balancing traffic load and performing data aggregation, therefore

significantly extending the system lifetime.

1.4.2 Flow-based Data Collection Schemes

Compared to tree-based schemes, flow-based data collection protocols are more

flexible in terms of load balancing. They can split sensor data at any on-path node

and transmit data fragments along different paths to the sink. Load balancing across

multiple paths results in a corresponding balanced energy consumption and there-

fore prolongs the system lifetime. We formulate the optimization problem into
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an IP/LP model where the objective is maximizing the system lifetime. We also

take into account the effect of data aggregation by defining a flow loss multiplier

which represents the ratio between sensor data volume after and before aggrega-

tion. Heuristics are proposed for assigning an efficient data aggregation node for

each data source. Simulation results show that our schemes significantly improve

performance compared to tree-based schemes both in terms of longer system life-

time and less total data received (indicating more aggressive aggregation) at the

sink.

1.4.3 Contour Map Reconstruction

We investigate the impact of performing pairwise data aggregation (in both tree-

based and flow-based schemes) on the lifetime of an energy-constrained WSN. Our

theoretical analysis indicates that to obtain the maximum lifetime, the effect of ag-

gregation in terms of data volume reduction should be extremely high. Motivated

by this result, we explore alternative applications, namely applications based on

contour map reconstruction which provides a spatial summary of the entire sensor

field regarding the phenomenon of interest. Such applications allow for aggressive

aggregation across multiple sources. Simulation results confirm that our aggressive

mechanisms remove a large amount of data redundancy and simultaneously ensure

required data accuracy. It is shown how our new aggregation schemes can be in-

tegrated with both tree-based and flow-based data collection protocols for system

lifetime extension, and what is the resulting performance.

Note that, throughout this thesis, the concept of a flow loss multiplier

is used to model the impact of data aggregation. A discussion about this concept

will be presented later on.

1.5 Outline of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 gives a brief overview

of the existing work related to maximizing lifetime data collection in WSNs. Since

data aggregation is one of our major strategies for extending lifetime, in Chapter 3,
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we give a brief review of different data aggregation models and their correspond-

ing application scenarios, and introduce a generic model that can express a large

number of aggregation scenarios. Chapter 4 presents our tree-based schemes for

extending the lifetime of data collecting in WSNs. We deal with the flow-based

data gathering solutions in Chapter 5. In this chapter, we describe the IP/LP model

with flow loss multiplier (denoting the effect of data aggregation) and our heuris-

tics for choosing the efficient data aggregating sites. In Chapter 6, following the

theoretical analysis about the impact of data aggregation over the system lifetime

maximization, aggressive aggregation methods for contour data are proposed and

evaluated. At last, Chapter 7 concludes this dissertation and discusses the future

work.
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Chapter 2

Literature Review

One important issue in WSNs is the energy constraint, which implies a need for

energy-efficient routing protocols. Most energy-efficient data routing techniques

try to optimize their design objectives that express different metrics: total energy

consumption [78, 30, 7, 20], system lifetime [12, 34, 42, 95, 84] or total amount of

data collected at the sink (during the system lifetime) [71]. To minimize the total

energy consumed by all sensor nodes, a typical technique ([13]) is to direct traffic

along the shortest path from source to destination. Although it minimizes energy

consumption, this approach usually imposes unbalanced traffic load, resulting in

rapid energy depletion on nodes that receive most of the traffic.

In some WSN applications, obtaining sensor data from each active sensor node

instantly and continuously is impossible or unnecessary. In such cases, sensor data

is usually stored locally at each node and extracted when it is required. For such

energy-constrained store-and-extract scenarios, regardless of where the data comes

from, the total amount of data gathered at the sink is the most important metric [71].

Since gathering data at the sink for further processing is an essential functional-

ity of WSNs, a variety of data collection schemes have been proposed to address the

energy consumption imbalance and to prolong the network lifetime. In this chap-

ter, we briefly classify energy-efficient routing into several categories according to

the data routing structures they rely upon. A number of tree-based strategies will

be first discussed. Then the cluster-based hierarchical routing techniques will be

studied. After that, we will give a brief review of flow-based data collection proto-

cols. They are designed to deal with the inherent load imbalance of tree and cluster
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techniques. We also touch on some other research issues in WSNs that are closely

related to our work.

2.1 Tree-based Data Collecting Schemes

It is convenient to deliver sensor data along a tree-based structure from each source

to the sink (which is also the root of the tree). To collect all the sensor data, the

tree has to span all source nodes. Each on-tree node needs to maintain at least in-

formation about its parent node, i.e. the next hop to which it should send the data

upstream. Compared with other complicated structures, building a data gathering

tree costs less energy for exchanging control messages dealing with path discovery

and updating [70]. Additionally, since each node receives all the data from its chil-

dren, data aggregation can be efficiently performed at any non-leaf node. However,

for every source, tree-based routing protocols transmit data along a single path.

Some nodes like those near the sink are easily overloaded by relaying large vol-

ume of data for their children, which leads to unbalanced traffic load and shortened

system lifetime.

2.1.1 Aggregation Trees for Maximum Lifetime Data Gathering

To solve the problem of Maximum Lifetime Data gathering with Aggregation (MLDA),

an efficient routing approach is proposed in [42] to transmit sensor data from all

sensors to the sink. A collection of aggregation trees are built and utilized in order

to gather all data at the sink. During this process, many-to-one data aggregation

(a number of incoming unit packets are reduced into a single one) is performed

enroute at the intermediate nodes between sources and the sink.

Inspired by the flow path augmenting algorithm which iteratively augments data

flow along the shortest cost path [12], MLDA tries to find a flow augmenting data

aggregation tree in each round of data collection until there is not enough energy left

at some node for another data collection round. In MLDA, a data gathering schedule

is defined as a collection of data aggregation trees, each of which is rooted at the

sink node and spans all the sensors. Each data aggregation tree specifies within the
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current round of data collection, how the data is routed from all the sensors to the

sink node, i.e. which tree is to be used.

To determine a data gathering schedule with maximum lifetime, an Integer Pro-

gramming (IP) model is formulated. The original IP can be converted to a LP by

replacing the constraints of integer variables with appropriate constraints of real

numbers. Then the variable values in the solution to the LP can be rounded into

integer variables which do not violate the constraints in the original IP. In this way,

a good approximation to the optimal solution can be obtained in polynomial-time.

Based on the derived schedule, a sequence of aggregation trees is built.

MLDA requires the location information of all sensors and the sink node. Each

sensor is also assumed to have the ability to communicate directly with the sink

node and any other sensor nodes. Obviously, these two preconditions are expensive.

Another tree-based scheme [83] is provided for data collection and aggregation.

In [83], lifetime is defined via both first node failure and network partition. A data

gathering tree is built in a distributed fashion in order to save energy consumption

on collecting network knowledge and computing paths (from sensors to the sink

node). First, each sensor node builds a local minimum spanning tree (MST) over

itself and its one-hop neighbors. Based on these local MSTs of individual sensors,

a graph spanning all nodes is generated at the sink node. Then, a minimum energy

consumption tree is built for data collection and aggregation. To deal with node

failure during the process of data collection, a tree structure adjusting approach is

also proposed in [83] to maintain the paths for sensor data delivery.

Due to its distributed nature and tree structure adjustment, the proposed algo-

rithm is scalable and robust. Simulation results also verify that its lifetime is ex-

tended and close to the traditional MST but with a distributed tree constructing

process. However, data aggregation is not explicitly studied in [83].

2.1.2 Spanning Tree Over Connected Correlation-Dominating
Set

In a sensor network with a high degree of data correlation, an approach exploiting

data correlation during data collection is proposed in [32]. A Connected Correlation-
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Dominating Set is a subset of sensor nodes whose sensor readings are sufficient to

reconstruct data for the entire network, in addition, the selected subset of sensors

has to be connected. The representative subset of sensors is chosen based on data

correlation features discovered from a given sensor network scenario and the data

accuracy required by the application.

According to the communication graph for a given WSN, several energy-efficient

algorithms are designed to select a small set of sensors to form the Connected

Correlation-Dominating Set. To evaluate the performance of the distributed schemes,

an exponential centralized approximation algorithm is also proposed. It has been

shown in [32] that this approximation algorithm returns a solution with O(log n) of

the optimal size, here n denotes the total number of sensor nodes. Based on this

approximation algorithm, the authors further provide a set of centralized heuristics

which can return other near-optimal solutions. Simulation results show that the

designed schemes generate small enough Connected Correlation-Dominating Sets

and effectively extend the network lifetime.

Notice that the approach proposed in [32] only works for those cases where

strong data correlation exists. Otherwise, the number of representative sensors will

be close to the total number of deployed sensors. In addition, the application-

specific data correlation pattern should be discovered before selecting the Con-

nected Correlation-Dominating Set in order to guarantee that the data restoration

of the whole sensor network will be within the required error bound.

2.1.3 Sensor Surveillance Tree

In the scheme discussed above, data redundancy among similar sensor observations

obtained from a subset of sensor nodes is removed during data collection. Another

method for reducing energy consumption is to schedule deployed sensors in order

to maintain only a subset active for sensing and reporting. This option is examined

in [51]. The authors consider a target-watching scenario and present a maximal

lifetime scheduling strategy for sensor surveillance systems. The solution consists

of three steps. First, assuming the positions of targets and sensors are static and

known a-priori, the maximal lifetime is computed via a LP model. Meanwhile, a
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workload matrix whose element xij denotes how much time sensor i should monitor

target j, is also derived to express the total length of time that a sensor should watch

a target. Second, a sequence of schedule matrices are derived from a decomposition

of the workload matrix. Finally, a corresponding tree rooted at the sink node is

constructed according to each schedule matrix which specifies the active sensors

monitoring targets for a period of time and the routes to transmit sensor data to the

sink.

The objective is that as long as the system operation continues, any object of

interest will be monitored by at least one active sensor and all the data should be sent

back to the sink. Due to the large computational complexity, the scheme presented

in [51] is not easily scalable for sensor networks with a large number of sensors and

targets. Spatial data correlation is exploited by introducing sleep/active modes to

ensure each target is covered by as few sensor nodes as possible. This mechanism

may not be suitable for other applications where high monitoring granularity is

required.

2.1.4 Multiple Trees for Real-time Data Collection

In [62], multiple trees are built to gather sensor data at a number of sinks which

are the roots of these data collection trees. During this process, similar to [42]

(discussed in Section 2.1.1), many-to-one data aggregation is performed at all the

on-tree nodes to reduce total traffic volume.

An Integer Linear Program (ILP) is provided to formulate the optimization

problem of finding data collection trees which minimize total energy consump-

tion on collecting data over these trees with limited delay on data delivery. In this

model, each link connecting two sensors which are within each other’s transmission

range, is denoted by a binary variable. The link is on a data collection tree if its cor-

responding variable is 1; otherwise its binary variable is 0. Then, the total energy

consumption can be denoted as the summation of all the products of these binary

variables and the amount of energy consumption on transmitting and receiving unit

data packet over these links.

Due to the computational complexity, a distributed protocol is provided to min-
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imize total energy consumption depending only on local information. In order to

fulfil the required delay bound, for each pair of source and sink node, a path is con-

structed with an intelligent compromise between real-time data delivery latency and

the energy consumption along this path. In [62], it is assumed that each sensor only

reports to a single sink node. Since multiple sink nodes are used for data collection,

the strategy of sink node assignment is also introduced to balance workload on each

sink node.

The assumption of many-to-one data aggregation at each link simplifies the ILP

model. In this model, only one unit packet is routed over each on-tree link within a

data collection round. It can not be applied for some applications where fractional

data may be generated after aggregation.

2.2 Cluster-based Data Collection Schemes

Cluster-based routing is another intensively studied field in WSNs. The basic idea

is to organize the deployed sensor nodes into a hierarchical structure where data

collection is performed in different levels, for examples, sensor data are first gath-

ered at each cluster heads, then the data are routed to the sink via multi-hop relaying

over cluster heads. Specifically, the sensors are usually divided into several clusters

according to certain criteria. Each cluster is composed of a cluster head and many

cluster members. Within a cluster, the head is responsible for collecting sensor

data from its members and reporting to the sink after performing local data aggre-

gation. The hierarchical structure makes cluster-based protocols scalable for large

and dense WSNs. However, most cluster-based schemes assume either long haul

transmission which ensures any sensor can reach the sink in one hop [34], or ideal

data aggregation performed at the cluster head [49, 42]; otherwise, heavy traffic

load will still be accumulated as sensor data is delivered upstream to the sink.

2.2.1 Low-Energy Adaptive Clustering Hierarchy

To introduce scalability and robustness in WSNs and tackle the problem of work-

load imbalance, a cluster-based routing protocol LEACH (Low-Energy Adaptive
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Clustering Hierarchy) [34] is proposed to collect sensed data from an environment

monitoring sensor network. In LEACH, deployed sensors are organized into a num-

ber of clusters. The optimal number of clusters is determined by the characteristics

of the given sensor network, such as network topology and relative energy con-

sumption on data processing and communication. Each cluster head acts as a gate-

way node between its cluster members and the sink node. Cluster heads forward

data to the sink in one hop. Within each round of sensor reporting, many-to-one

data aggregation is performed at each cluster head. Once the network starts op-

eration, all the sensor nodes first randomly elect themselves as the cluster heads

with a predefined possibility. Some nodes become cluster heads. The other sensors

nearby select an appropriate cluster head to report their data. After a small and fixed

number of data collection rounds, all the sensors randomly elect themselves cluster

heads again in order to share the heavy energy consumption on the cluster heads.

Due to the randomized “rotation” of cluster head election and the local data ag-

gregation at cluster heads, the total energy consumption is reduced and the system

lifetime is extended. In addition, compared to other data routing protocols, LEACH

reduces the latency of data collection because it avoids multi-hop data transmis-

sion between a source node and the sink. However, LEACH assumes each cluster

head can reach the sink node in one hop, which makes it not applicable for a large

monitoring area.

2.2.2 Power-Efficient Gathering in Sensor Information Systems

As an improved version of LEACH, a chain-based routing scheme for data collec-

tion over homogeneous sensors, PEGASIS (Power-Efficient Gathering in Sensor

Information Systems), is proposed in [49]. The basic idea is that in order to prolong

the system lifetime, each deployed sensor node only communicates with its closest

neighbor and this neighbor node sends all the received data and the data of itself

to the next node, this transmission continues until all data of interest are collected.

In this way, all the sensor nodes can be constructed into a chain. Upon receiv-

ing incoming data packets, each on-chain node performs many-to-one aggregation.

The chain construction starts from the node which is the furthest from the sink. A
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greedy approach is adopted to build a simple chain. Each time, only the neighbor

which is closest to the current node will be selected and join the chain. Once added,

the on-chain node will never be changed.

Unlike LEACH, PEGASIS avoids wasting energy on cluster formation and uses

only one node within each data collection round to transmit aggregated data to

the sink node instead of using multiple cluster heads. During this process, each

sensor node takes turns to become leader (all the data of the chain are reported to

it) and transmits all aggregated data to the sink. In this way, energy consumption

is more evenly distributed than LEACH across the entire network. However, similar

to LEACH, PEGASIS assumes each leader node can reach the sink in one hop,

which makes it not applicable for a large sensing region. Additionally, PEGASIS

introduces excessive latency by collecting sensor data along a single chain, which

may make it inapplicable to some real time systems.

2.2.3 Hybrid Energy-Efficient Distributed Clustering

Also inspired by LEACH, a Hybrid Energy-Efficient Distributed Clustering proto-

col (HEED [95]) is proposed to prolong system lifetime. Cluster heads are peri-

odically selected by considering each node’s residual energy. Sensor nodes with

large residual energy will be chosen with high probability because serving as a

cluster head will consume much more energy than a cluster member. Once the

cluster heads are determined, the remaining nodes have to choose a cluster head

to join according to a secondary clustering parameter. To evenly distribute traffic

load, a node should join a cluster head with the minimum node degree. Conversely,

to create dense clusters for more efficient data aggregation, a node should select

the cluster head with the maximum node degree, expecting a large amount of sen-

sor data will be collected and effectively aggregated there. Detailed intra-cluster

(within each cluster) and inter-cluster (across clusters) data routing strategies are

also presented in HEED [95].
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2.3 Flow-based Data Collection Schemes

In contrast with tree-based and cluster-based routing techniques, flow-based schemes

balance workload by splitting the traffic and transmitting along multiple paths. For

each path, partial data is delivered and the amount of data along this path is intel-

ligently decided (usually at the sink node) in order to evenly distribute traffic load.

Unfortunately, flow splitting destroys the integrality of sensor data, which makes

in-network aggregation very challenging.

We briefly review the existing flow-based approaches whose objective is to com-

pute data flows to maximize the system lifetime, the time at which the first trans-

mission failure occurs due to energy outrage on a sensor node. We will present our

solution to this problem later on in Chapter 5.

2.3.1 Flow Augmentation

The authors in [13] formulate the data routing problem as a LP model. To solve the

problem, a distributed heuristic algorithm, Flow Augmentation (FA) is proposed.

FA is a shortest path routing algorithm built on a specific link cost metric which

reflects both the energy consumption rate over the current hop of wireless trans-

mission and the residual energy left at the transmitter and receiver. In FA, sensor

data packets need to be routed from monitoring nodes which work on limited power

supply to one, or a set of, sink nodes. Each pair of source and destination nodes rep-

resents a single commodity flow. FA operates on a sequence of data transmission

rounds. Within each round, FA finds the cost-based shortest path for each com-

modity and routes data volume along the chosen path. During this process, each

involved link will change the residual energy at the nodes at both endpoints of the

transmission. FA iterates until one node exhausts its energy and can not transmit

sensor data any more. The solution obtained from FA has been demonstrated by

numerical simulation to be very close to the optimal solution.

FA also introduces an important parameter α, which denotes how frequently the

link cost information will be updated. There is a tradeoff between maximal system

lifetime and the link cost updating frequency. Generally speaking, more frequent
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updates will lead to a longer lifetime, because the new paths are selected according

to the latest link status, i.e. residual energy status. However, the conclusion above

is based on ignoring the overhead of refreshing link state. Too frequent updates will

result in a large amount of energy consumption, therefore reduces system lifetime.

Notice that, although the lifetime upper bound has been computed by a LP

model in [13], FA is a heuristic algorithm without any approximation ratio guar-

antee. Moreover, the order that commodities are routed within each round might

have a significant impact on the performance of FA, which makes FA to perform

even worse in some scenarios.

2.3.2 Local-Control Flow Algorithm

A Local-Control Flow Algorithm (LCFA) [72] is devised to solve the maximum

lifetime routing problem in both static and slowly changing wireless networks in-

cluding sensor networks. LCFA is a multi-commodity flow distributed algorithm

which guarantees a near optimal solution. In [72], the problem of routing data be-

tween K pairs of source and destination nodes to maximize lifetime is formulated

as a maximum concurrent flow problem by viewing each pair of source and desti-

nation nodes as a commodity. The data generating rate at each source node denotes

the commodity data demand.

Given a wireless network, there are K commodities that need to be consid-

ered simultaneously. The idea of LCFA is analogous to simulating real-world fluid

dissemination. The liquid follows a path from a node with high potential to one

with a lower potential. At each node, for each of its outgoing links, there are K

queues, each of which is maintained for a corresponding flow commodity. For each

commodity, there may be several paths along which each of the data fragment is

delivered from the source node to the sink (assuming the sink is the unique desti-

nation node for all commodities). A potential function based on the queue “height”

is introduced at each intermediate node for each of its outgoing links, in order to

compute the appropriate data volume which should be pushed to the other end node

of an outgoing link. At the sink node whose potential is always zero for all the

incoming link, all the arriving flow fragments are absorbed. By applying LCFA, the
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resulted network lifetime is ensured to be within an asymptotically small error to

the optimal solution.

2.3.3 Distributed Subgradient Algorithm

In [56], the subgradient algorithm is used to solve the maximum lifetime routing

problem. The dual problem is built on the original LP model by introducing La-

grange multipliers. A subgradient algorithm is proposed to determine the solution

to the dual problem, and it is guaranteed to converge to an optimal routing solution.

In [56], each sensor node is assumed to be able to adjust its transmission power

level according to the distance between itself and the potential receiver. In addi-

tion, a synchronized TDMA (Time Division Multiple Access) MAC (Media Access

Control) protocol [2] is assumed to support the protocol. Each sensor node is active

when it is required according to the schedule. In this framework, the data commu-

nication bandwidth associated with each link is assumed to be much higher than the

total flow transmission rate over it, so the feasible solution is free from bandwidth

constraints. For the sake of simplicity, energy spent on receiving data at the wireless

transmission receiver is ignored.

After modifying the objective function of the primal (original) LP problem, the

objective function of the dual problem becomes differentiable. The distributed sub-

gradient algorithm works in a number of iterations. Within each iteration, the vari-

ables that are used to evaluate the dual objective function can be updated by each

node based on local information. On the other hand, the corresponding solution

to the primal problem is also improved and closer to the optimal solution. After

enough iterations, an approximate solution to the primal problem with guaranteed

error bound can be achieved. Two similar implementations are provided to com-

pute the flows, one is completely distributed and the other is partially distributed in

which a centralized computation needs to be carried out by the sink. Based on the

simulation results, there is a trade-off between the amount of control information

transmitted within each iteration and the total number of iterations before conver-

gence. The fully distributed implementation shows a slower rate of convergence

than the partially distributed one. However, the partially distributed implementa-
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tion requires communication between all the nodes and the sink in each iteration.

2.4 Other Related Work

Besides the data collection schemes discussed above, there are many other rout-

ing approaches whose objective is also to spread traffic load and average energy

consumption across the network. In this section, we discuss several load balancing

approaches that differ from flow-based data collection schemes.

2.4.1 Special Data Collection Structures

Data aggregation usually happens when similar data converge at the same inter-

mediate node at approximately the same time (spatial and temporal convergence)

while being routed to the sink. Structured approaches may obtain optimal aggrega-

tion by specifying a certain pattern in which data packets are transmitted from each

source to the sink. In contrast, opportunistic aggregation requires no fixed pattern

but results in non-deterministic and limited aggregation performance.

To obtain efficient aggregation without the overhead of constructing and main-

taining the data gathering structure, a structure-free approach which is mainly com-

posed of two approaches, Data-Aware Anycast and Randomized Waiting, is pro-

posed in [24]. Data-Aware Anycast chooses the next hop for each transmission

out of a set of candidates. Without an explicit data aggregation structure, it can

converge data packets to a few aggregation points where data redundancy will be

removed. In addition, higher priorities are assigned to nodes closer to the sink in or-

der to avoid forwarding packets away from the sink. To further improve aggregation

performance, Randomized Waiting is introduced to address temporal convergence

problems. Any nodes possessing data packets delay sending them out by an interval

which is chosen based on a pre-determined threshold. In this way, the opportunity

to perform aggregation over more correlated data is increased without inducing high

latency to the sensor data collection.

In [60], another routing structure is developed which combines the advantages

of tree-based and multi-path based approaches by applying them simultaneously in
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different regions of the WSN in response to changes in network condition. For a

region where the communication loss is low, a tree-based structure is utilized to eas-

ily perform data aggregation and produce accurate TinyDB [57] query answers. A

multi-path data collection topology is used in an area with a large number of com-

munication failures. Instead of transmitting a partial result to its single parent in a

tree-based topology, the multi-path scheme allows each node to broadcast its partial

result to multiple neighbors to improve robustness in terms of message delivery. In

this way, more than one copy of the result is sent to the sink along different paths.

However, unlike flow-based data collection mechanisms whose multiple paths (for

each data flow fragment) are strictly chosen for workload balance, the paths se-

lected by the multi-path scheme in [60] are based on their wireless message loss

rate.

2.4.2 Multi-Sink Data Collection Schemes

The recent research work [67, 66] show that in a multi-hop single-sink WSN, sen-

sor nodes close to the sink spend much more energy on relaying accumulated data

traffic. This unbalanced energy depletion phenomenon becomes obvious when each

sensor has a fixed transmission range or an aggressive data aggregation cannot be

performed due to high data accuracy requirement. Therefore, sensor nodes close to

the sink tend to exhaust their energy quickly, leaving the area near the sink uncov-

ered causing network functionality to be terminated.

To remedy this problem, multi-sink solutions have triggered a great deal of re-

search interest [12, 97, 5, 86]. They can substantially extend lifetime since the

average number of hops between any sensor node to the sink is greatly reduced,

which subsequently saves total energy consumption on data collection. The life-

time upper bound on multi-sink WSNs is derived in [5]. Accordingly, the optimal

locations of the deployed sinks that maximize the system lifetime are also provided.

After careful analysis, simulation results validate the lifetime bound and the optimal

choice of the sink locations.

In [86], a disjoint multi-path routing technique is proposed to balance workload

as well as to improve the robustness of data collection. For each data source, there

23



are two sink nodes (primary and back up), either one of which can be used to collect

the data. Two colored trees, red and blue, rooted at two different sink nodes and

assuring two node-disjoint paths (from the source to either destined sink node) are

formed in order to make data collection resilient to any single sink failure. The

colored-trees construction problem is formulated as an IP problem. The authors

also devise a distributed path augmentation algorithm to build colored trees based

only on the local network knowledge of each node’s one-hop neighbors.

Multiple mobile sink nodes are deployed in [6] to mitigate energy consumption

imbalance as well as the network capacity bottleneck which usually occurs around

the unique and fixed sink node. The authors propose a two-stage data collecting

strategy. First, the monitoring area is divided into several polygons with approxi-

mately the same size, and the sensor data from each polygon is aggregated at one

representative node. Then, each sink collects aggregated data from each polygon

when it passes by. Multi-path routing is applied on the second phase to spread traf-

fic load. An analytical framework is set up to determine expected energy depletion.

This helps the multi-path routing scheme avoid transmitting data over nodes with

poor residual energy. The fundamental interrelationship between the degree of ag-

gregation and aggregated traffic spreading has also been examined in [6]. However,

there are no details in [6] addressing how to choose paths for delivering aggregated

data.

Multi-sink WSNs can mitigate the uneven energy consumption among sensor

nodes. In this thesis, we focus on maximizing system lifetime of the single-sink

sensor networks. Since a multi-sink WSN is usually divided into several single-

sink sub-networks, our solutions for single-sink networks also help in designing

multi-sink sensor networks.

2.4.3 Summary

Three data routing structures are reviewed in this chapter. Tree-based structures

are usually easy to build and it is convenient to perform aggregation on on-tree

nodes where sensor data from different sources converge. The unbalanced traffic

load may shorten the system lifetime. Cluster-based schemes organize the sensors
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into a hierarchical data collecting structure. Data aggregation can be applied at the

cluster heads. Sensor nodes take turns to act as cluster heads, which distribute the

heavy relaying duty of being cluster heads. However, cluster heads are assumed

to communicate with the sink in one hop. It is not guaranteed in a WSN deployed

over a large area. Data flows can be split and routed along different paths in flow-

based strategies. They facilitates the traffic load balance across the entire network.

But flow splitting destroys the integrality of sensor data, therefore this makes data

aggregation challenging. Special structures and gathering data at multiple sinks are

also discussed in this chapter.
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Chapter 3

In-network Data Aggregation

Data aggregation in WSNs is usually application-specific. Different applications

have different data correlation patterns, and the appropriate data aggregation tech-

nique should be applied in order to take full advantage of data correlation and im-

prove overall system efficiency. All these diverse in-network aggregation strategies

have to be built on data collection schemes. In this chapter, we give an in-depth

study of existing data aggregation models according to their different requirements

and their impact on the behavior of data collection.

Due to a possibly high density in sensor deployment and the continuous ob-

servation of physical phenomena of interest, there are two types of data correlation

that can be exploited for data aggregation: temporal and spatial [89]. Before provid-

ing a survey of typical application-specific in-network data aggregation schemes in

WSNs, we discuss the spatio-temporal data correlation shared by a variety of WSN

applications. Subsequently, we introduce the flow loss multiplier concept to denote

the impact of data aggregation on the data collection abstracted away from charac-

teristics of any specific applications.

3.1 Spatio-temporal Data Correlation

In WSNs that have temporal data correlation, successive sensor data obtained at

a source node changes little within a short period. The future sensor data can be

predicted based on similar sensor observations achieved so far. For scalar sensor

readings, such as temperature, humidity and precipitation, some feature extraction
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techniques [50] can be applied on the time series of sensor measurements in order

to transmit a few coefficients based on which the raw data can be reconstructed with

a high enough confidence instead of explicitly reporting every sensor reading to the

sink. For more complicated data, such as video, and image sequences in general,

the temporal correlation can also be exploited locally at each sensor node to achieve

data compression. For instance, the source node transmits updates only if it does

not deviate from the prediction too much.

Spatial data correlation is usually the result of dense sensor distribution and

physical phenomena that affect a large monitored area [41]. For WSNs with plenty

of spatial correlation, within the same collection round, sensor readings from one

node could be partially reduced or even totally replaced using readings of another

sensor located within the same related area. Of course, the final data restoration at

the sink must satisfy the accuracy requirements.

A particular mode of use of WSNs is periodic data collection which gathers

sensor data from each sensor location to the sink. For each round of sensor data

collection, it is desired to reduce data transmission by exploiting spatial data corre-

lation. It has been observed that spatial data aggregation is often caused by adjacent

sensor nodes having overlapped sensing coverage [55, 21]. Therefore, for certain

applications, it would be possible to model the data aggregation mechanism in an

application-independent manner by expressing the aggregation potential as a func-

tion of Euclidian distance between two sensor nodes. In that case, the degree of

spatial correlation increases with decreasing internode separation. Thus when two

sensors coincide in space, their readings will be identical hence we can completely

replace the readings of one with those of the other.

Throughout this thesis, we consider the potential of using spatial correlation for

aggregation purposes. This is not to say that the temporal correlation cannot be uti-

lized as well, but the application of the techniques contributed by this to exploiting

temporal correlations is left for future work.
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3.2 Data Aggregation Models

The help us formulate the data aggregation and routing problem in abstract terms,

we need a model that is sufficiently accurate yet of manageable complexity. First,

we categorize existing approaches to data aggregation by examining the interplay

of data aggregation and data collection protocols. Within each category, we present

one or more concrete data aggregation techniques. The observations gathered in this

part motivate us for the formulation of an abstract indicator of aggregation potential

that we will call flow loss multiplier.

3.2.1 Coding-based Data Aggregation

A variety of WSN applications make use of data compression of correlated sen-

sor readings. Coding-based aggregation schemes, such as Explicit Entropy Coding

(EEC) [20] and Distributed Source Coding (DSC) [68, 69], have recently received

attention. They use the entropy (a measure of the uncertainty associated with a ran-

dom variable) possessed by each data source as the lower bound on the data volume

required to transmit from that node, and use joint entropy (entropy contained in a

joint system of two or more random variables) to represent the net amount of data

transmission after data aggregation. In particular, DSC refers to the compression

of multiple correlated data sources without explicit communication among them.

It has been shown in [20] that when EEC is applied, the volume of data redun-

dancy identified and removed is determined by the specific path chosen for routing

data. Therefore, coding and transmission structure have to be considered jointly,

which makes choosing optimal routes for sensor data sources a NP-hard problem.

However if DSC is applied, routing distributed coded sensor data along shortest

paths is optimal with respect to minimizing the total communication cost ([data

size]*[link weight]) on gathering correlated data at the sink. In practice, it is dif-

ficult or too energy-expensive to collect knowledge of the global data correlation

structure among all sensor nodes across the network, which is essential to perform-

ing DSC.

In order to simplify the problem and minimize communication cost for corre-
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lated data gathering, a joint entropy formulation as a concave function (a function

of a single variable is concave if every line segment joining two points on its graph

does not lie above the graph at any point) of the number of sources is used in [30].

Assuming data correlation is independent of the data source location, a randomized

tree construction algorithm is devised to ensure the tree is within an approximation

factor to the optimal solution for all such concave functions.

A novel DSC scheme is introduced in [40] to allow each sensor to compress its

data without exchanging reference data with others. It also provides each sensor

with an adaptive compression rate to account for as the data correlation structure of

the sensor network changes. Assuming any sensor reading can be quantized into a

n-bit binary string, a tree-based codebook is constructed and each sensor reading

can be presented by a i-bit (i < n) index which denotes its corresponding codeword

position on the codebook tree. At the sink, each index is restored by looking up the

codebook tree. Therefore, the transmissions are reduced without any loss of data

accuracy.

Aiming at minimizing total communication cost over all potential coding/routing

schemes, the authors in [53] prove that combining DSC and commodity flow rout-

ing is the optimal solution for a single sink sensor network as long as energy con-

sumption is a convex function of link flow rate. A new metric, distance entropy,

based on conditional entropy (the remaining entropy of a random variable given

that the value of a second random variable is known) is introduced as the lower

bound of the total communication cost. For some generic spatial correlation mod-

els, the neighboring correlation dominates the total correlation. A practical data

collection scheme which only exploits neighboring data correlation is proposed and

it is shown to be asymptotically optimal for a large number of real spatial data

models.

To ensure each sensor node obtains all the other sensor readings of the network,

wireless transmission increases with the increment of the number of sensors. It

demonstrates that when increasing the scale of a sensor network, the transport ca-

pacity of each sensor node will decrease. To address this challenge, classical source

coding based data aggregation combined with an intelligent routing algorithm is
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provided in [73]. Data aggregation is performed at intermediate relay nodes where

multiple sensor measurements converge. During this process, some encoded sensor

readings may be decoded and encoded jointly with other sensor readings. It has

been shown in [73] that the proposed approach guarantees the total sensor data vol-

ume generated across the entire network is small enough to avoid traffic congestion.

For a typical WSN application, each sensor node observes some underlying

physical phenomenon, quantizes its local observation, and reports the quantified

sensor data to the sink node. The goal is to reconstruct a global picture of the

physical phenomenon of interest within the required data accuracy criterion. So

far, there are few practical WSN applications with coding-based data aggregation.

Binary proximity sensor network for target tracking [76, 44] can be viewed as one

example. However, the application of this data aggregation technique is based on

the assumption that binary words from correlated sensors have constant Hamming

distance (the number of different bits between two binary words), which makes this

coding scheme applicable only for a subset of strongly correlated source nodes.

3.2.2 Query-based Data Aggregation

From the perspective of data storage and extraction, WSNs can be treated as a dis-

tributed database system, consequently query processing is a natural application for

WSNs. A novel data-centric communication paradigm [38] is proposed for dif-

fusing data to participating sensor nodes. A reinforcement-based path selection

scheme is utilized for data routing. During this process, in-network data aggrega-

tion can also be applied. Both of them create an energy-efficient and robust data

dissemination framework in WSNs.

A query processing system, TinyDB [57] can operate over a network of TinyOS

[35] sensor nodes. It provides a SQL-like interface to help the users form queries

for the data they are interested in. In certain WSN applications, instead of extract-

ing all raw sensor readings, the user usually first requires a summarized report to

check if an event of interest happened. An in-network data aggregation service,

Tiny AGgregation (TAG) [58, 98] is proposed to address this problem. TAG sup-

ports SQL-style queries, which usually contain aggregate operators (min, max, avg,
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sum, count). After the user issues the query request, it is propagated and delivered

to the corresponding sensor nodes. Then the sensor readings are routed back to

the user usually along a tree-based routing structure which is rooted at the user and

spans all involved sensors. During data collection, in-network aggregation is per-

formed according to the particular aggregate operator. The basic idea is that instead

of applying aggregate operators on the collection of all raw sensor data, the same

result can be obtained by performing the operations on several different levels of

data segments and merging partial query results enroute.

In [42], a data aggregation scheme is devised according to a database aggregate

operator in order to eliminate redundant transmissions and also provide a com-

pact but multi-dimensional view of the region being monitored. Query answers are

mapped to data packets. By performing aggregation a particular sensor node along

the path to the sink can transform many incoming data packets into a single one

with the same size and send it to the next hop.

Besides simple query aggregate operators, a general framework for answering

complex queries is presented in [31]. It is applied with the intention to substan-

tially reduce unnecessary data transmissions, when periodically gathering a set of

environmental attributes. For each sensor node, a large number of measurements

are represented as a function of time at which the measurement is taken. Only the

arguments of the function are transmitted to reconstruct the original readings with

required fidelity. To exploit spatial correlation among closely located sensors, node

location information can be introduced as a factor affecting the sensor readings

into a regression model from which the coefficients determining the sensor reading

function of time are derived.

Another model-driven data acquisition approach is raised in [22] for answering

queries in WSNs. A statistical model of real-world processes built on historical data

makes acquired sensor readings easy to understand and efficient to be represented.

Once set up, the model provides approximate answers with probabilistic confidence.

Data communication only happens when the approximate readings are not within

acceptable error margins. Upon receiving recent sensor data, the model is updated

to generate more accurate estimates in the future.
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Sometimes the users want to extract all raw data from all operational sensors,

thereby aggregate operators are not allowed. An approximate data collection ap-

proach is proposed in [16] to attack this problem. A family of replicated dynamic

probabilistic models are proposed for intelligently exploiting both spatial and tem-

poral data correlation under given network conditions. The model is maintained

both at the sink and every deployed sensor node. Each sensor node reports its sen-

sor data once the difference between the current sensor reading and the expectation

exceeds the required error bound. This approach is adaptive to the gradually chang-

ing physical phenomena and assures data accuracy on collected data as well.

3.2.3 Application Specific Data Aggregation

Data aggregation is usually application-specific. In this subsection, we give a brief

review of other application-specific data aggregation techniques in recent research

work. We identify contour data aggregation as particularly interesting because it

allows aggressive aggregation over contour data and it also has a variety of applica-

tions [80, 46, 11, 92, 29]. We propose our own contour data aggregation strategies

and the supporting data collection framework in Chapter 6.

Contour Data Aggregation

Extracting contour lines instead of gathering raw sensor data at the sink node pro-

vides aggregated but adequate visual information about the underlying physical

phenomenon of interest and spends less energy because of reduced wireless trans-

missions. A contour line is usually defined as a two-dimensional curve along which

the attribute values are same. A contour map is composed of a set of contour lines

where two adjacent lines are usually separated by equal step-values. Contours rep-

resent the global picture of a region being monitored as well as developing trends

of phenomena in terms of both spatial and temporal dynamics. Contour map re-

construction has a wide variety of applications, such as forest fire prevention [96],

disaster or pollution monitoring [15, 17], weather forecasting [48], surveillance

[93], etc. Efficient data aggregation schemes can be applied in order to convey a

faithful representation of the area of interest, trading off sensor data accuracy with
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total volume of data traffic and network resource consumption.

A contour line (isoline) aggregation approach is proposed in [81]. Sensor nodes

reporting similar readings and geographically adjacent are grouped into isoclus-

ters [80], denoted by areas delimited by contour lines. Within an isocluster, only

those sensors close to the isolines report to the sink. Assuming sensor location

information is known a-priori, sensor data from isoclusters is usually represented

by polygons whose vertices are manipulated as they travel along the data aggrega-

tion tree. However, constrained by the particular data gathering structure, similar

sensor readings from two closely located sensors may not be aggregated until they

converge at the same ancestor node.

Considering sparsely distributed data samples and noisy measurements, a dis-

tributed algorithm for extracting approximate contour lines is developed in [46].

According to neighboring sensor readings, each node computes its gradient which

points to nodes with higher readings. This eventually leads to the reference points

(at which the extremum readings are obtained) of the sensor field. Based on the

location of these reference points, sensor nodes are partitioned into several clusters

and the corresponding contour lines are determined by similar sensor measurements

obtained within the same cluster. Upon the receipt of all necessary information, ap-

proximate contour lines are finally constructed at the sink node.

The notion of event contour is introduced in [63] indicating the pattern of the

event of interest such as altitude, temperature, velocity, rainfall, etc. Under the im-

pact of the same event, only the nodes possessing more “rich” information report.

Sensor nodes only report their current measurements if they have a large enough

change since the last one or several data collection rounds. In addition to provid-

ing spatial and temporal data aggregation applicable on neighboring sensor nodes,

a novel routing information delivering algorithm is also provided for aggregating

sensor data that are multiple hops apart. If a sensor node receives a similar data

report from another sensor located within a number of hops, its own report will

be suppressed. Note that this approach can also be applied with other particular

application-based aggregation schemes in different scenarios.

To represent the original contour map of a sensor field by a sequence of topologically-
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equivalent polygons, the authors in [29] propose a new scheme which approximates

the spatial summary of the given sensor network. Based on the given parameter k

(number of reference nodes), all contour lines will be rebuilt at the sink with k

reference vertices while the shape and nesting order of the contour lines are pre-

served. By treating the entire sensing coverage as multiple equal-sized small grids,

a polygonal contour extracting technique is proposed in [92] for producing spatial-

temporal patterns of the monitored event. To construct a contour map, each sensor

node reports the status of the grid it covers along a multi-hop transmission path. As

partial maps, the sensor data can be combined as a large polygonal contour region

during the transmission process. In this way, the proposed algorithm trades geo-

graphical details of the event pattern (quality of the reconstructed contour lines) for

significantly decreased wireless traffic.

Other Application Specific Aggregation Schemes

Similar to the statistical model proposed in [22] to represent and interpret raw sen-

sor readings for answering queries, another model-based data aggregation technique

[64] particularly for Structural Health Monitoring systems is proposed to dramati-

cally reduce sensor data. The physical nature of the structural system is considered.

A higher priority is usually assigned to the sensor measurement of the latest state

of the phenomenon. Based on this model, the missing sensor readings can be es-

timated with a satisfying accuracy. In this way, the negative impact from data loss

due to unreliable wireless transmission is mitigated.

Real time tracking is another major application of WSNs. An aggressive four-

tier data aggregation architecture [33] is applied to reduce the large amount of data

generated by frequent sensing process at a high resolution. Based on the sensor

data obtained at each individual sensor and its neighboring nodes, a detection con-

fidence is first generated as a number between 0 and 1 denoting how confident the

sensor node is about the existence of the target within is sensing coverage. Then, a

single classification vector composed of multiple confidence values from different

nodes, can be used to denote the detection confidence of a group of sensors which

monitor the same target. After that, sensor nodes detecting the same target join the
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same logic group. The group leader aggregates all vectors from its members and

periodically reports to the sink. Finally, all reports from group leaders are collected

and aggregated at the sink to generate a final report. According to the concrete

application requirements, the multi-tier aggregation architecture can flexibly adjust

the data accuracy of the aggregated sensor data, thus achieving the balance between

energy efficiency and information availability and loyalty.

Another application which generates a large amount of sensor data and requires

special aggregation schemes is video surveillance. This type of WSN is composed

of multiple high resolution cameras. It is used for object detection, identification

and tracking [27, 55, 43]. Within every data collection round, the deployed cameras

sense their vicinity and generate a multi-view image of the same scene. All the

images are gathered at the sink node for storage and further processing. The spatial

data correlation among images is determined based on their overlapping sensing

range [55]. During the multi-hop transmission of an image from its source to the

sink, any intermediate node is capable of performing aggregation by representing it

as a partial image based on the reference image obtained by itself. Upon receiving

the partial image and the intact reference image of the same object, the sink will

restore the image with the required fidelity.

3.2.4 Aggregation As An Abstract Problem

The benefit of data aggregation has been first theoretically confirmed in [45]. The

authors propose data-centric routing schemes for data collection in WSNs. The

performance of these schemes are compared with traditional end-to-end routing

protocols in terms of energy saving and delay. Heuristic data aggregation schemes

are also provided. Then, the impact of network density on data aggregation is ex-

amined. The simulation results support that data aggregation, even if performed in

a greedy fashion, usually achieves significant energy savings in WSNs with high

node density.

Realizing aggregation near the source is critical to energy efficiency and lifetime

extension (the more data redundancy removed near the source, the less transmission

workload on the relaying nodes), the authors of [25] focus on improving spatial
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and temporal convergence during the process of data collection. A data aggregation

protocol, Data Aware Anycast, is devised for applying aggregation near data sources

without using an explicit data transmission structure, thereby reducing the overhead

of construction and maintenance of the structure. It delivers sensor data to the

most correlated sensor node. Without explicit message exchanges in structure-less

aggregation, intermediate nodes just forward data packets to nodes that can achieve

aggregation. As the aggregated, or partially aggregated, packets approach the sink,

data is further aggregated as the packets are forwarded along a tree rooted at the

sink.

In a large WSN, bandwidth capacity bottlenecks are another severe constraint

which sometimes can not be solved merely by data aggregation. If additional reduc-

tion of sensor reporting rate is necessary to operate within bandwidth constraints,

it is desired to ensure all sources have equal chance to provide their data. A new

aggregate fairness model which works for any routing protocol is proposed in [14].

In the particular scenarios, some sources have more important data to report than

others. In this case, a weighted fairness should be introduced. To implement this

model, a localized algorithm is also devised in [14]. For a multi-hop data delivery

network, each intermediate node can adjust its forwarding rate for each incoming

data flow, thereby avoiding unfair packet drops due to upstream congestion (con-

gestion usually occurs near the sink node, where a large volume of data is often

accumulated).

Some applications require guaranteed data precision during the process of data

collection. Data quality is often measured by the quantitative difference between an

approximate value (after lossy aggregation) and the original sensor reading. Larger

data quality implies more data is carried which can result in high energy consump-

tion on some nodes. In particular, in a multi-hop WSN, sensor nodes near the sink

node have to relay large data volume for others. They are inherently heterogeneous

in terms of energy consumption, e.g. depending on their topology.

The trade-off between data accuracy and energy consumption is investigated

in [85] with the intent to extend the lifetime of WSNs. In order to save energy

consumption on wireless data communication, only a subset of sensors report their
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readings as long as the approximate data value of the network which is obtained

at the sink node, is within the overall precision constraint. In [85], the application

specified precision constraint is partitioned and the corresponding quantitative error

bounds are allocated to individual sensor nodes in a coordinated fashion for energy

consumption balance across the network. The authors consider a typical WSN ap-

plication with periodic sensor measurement collection. Each sensor node sends out

a new sensor reading only when its value violates the allocated error bound. In

this way, energy consumption across the entire WSN can be balanced via careful

precision assignment.

Adaptive precision allocation in a multi-hop network operates by periodically

adjusting the error bounds of sensor nodes. Once the necessary information from

all the sensor nodes is collected, the sink node computes the optimal precision for

each sensor and diffuses it downstream to sensor nodes for their adjustments. Large

system overhead is introduced by periodically performing this precision allocation,

which makes this centralized mechanism not immediately applicable to WSNs with

severe energy constraints.

For some WSN applications, for instance, video surveillance [21, 55], complex

operations are required for data aggregation. The corresponding energy consump-

tion on data aggregation may not be negligible. In [54], Adaptive Fusion Steiner

Tree (AFST) is designed to optimize on both transmission and aggregating cost.

AFST is an aggregation-driven routing scheme, which is capable of adjusting its

aggregation decision. It constructs a data collection tree which is rooted at the sink

node and spans all the involved source nodes and some other nodes in order to

minimize the sum of the given metric associated with each edge.

More precisely, when transmitting sensor data from each source to the sink,

AFST compares the benefit and cost of the current aggregation operation and de-

cides whether to perform the data aggregation or transmit the data to the sink with-

out aggregation.
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3.3 Flow Loss Multiplier
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Figure 3.1: An example of flow loss multipliers

Moreover, flow loss multiplier can express forms of aggregation not limited to func-

tion of Euclidian distance. We will refine the flow loss multiplier’s meaning in

subsequent chapters.

We have seen in the previous sections the efforts to defining models that cap-

ture the quantitative impact of data aggregation, and, in particular, of spatial data

aggregation. We introduce a means to express the quantitative impact through the

flow loss multiplier. Specifically, the flow loss multiplier mij is defined between

any two nodes i and j that reside in the WSN. This number is between 0 and 1 and

it captures the fraction of data volume (generated at a particular source, say i) that

is left after aggregation with reference data obtained from its corresponding aggre-

gation node, say j. Figure 3.1 shows an example of how the flow loss multiplier

is used to compute total data volume after data aggregation. The numbers above

the arrows represent the transported volume of data. Without loss of generality, we

assume each node generates a unit of sensor data within each data collection round.

We will use the flow loss multiplier without necessarily describing how it is

derived, which we will leave it up to the application. For the sake of example

though we could consider a flow loss multiplier which is a function of the Eu-

clidean distance. In such a case, as long as correlated sensor nodes are located with
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each other’s sensing range their flow loss multiplier is a non-zero and less than one

value. When they are outside each other’s range the flow loss multiplier could be set

equal to 1, i.e., no aggregation, and when they coincide the flow loss multiplier is 0,

i.e., one of the two sensors can be completely replaced by the data produced by the

other (perfect aggregation). This simple model is used, e.g., in Chapter 4, where we

introduce a simple circle sensing coverage. Needless to say, the sensing range and

the shape of sensing coverage are determined by the features of each type of sensor

and the environment being sensed, so this definition is highly idealized. We hasten

to add that whereas the flow loss multiplier as used in the simulations reported in

Chapters 4 and 5 follow this ideal circular model, the schemes in the same sections

are applicable regardless of how the flow loss multipliers are derived. Hence, often,

throughout this thesis the assumption of flow loss multipliers derived from the cir-

cular sensing area overlap is done for the purpose of simulation convenience rather

than because of an inherent limitation of the proposed schemes.

While it is true that for many WSN applications [76, 33, 79, 54], the gain of

performing data aggregation degrades with the increase of Euclidean distance be-

tween a pair of sensors, there are other applications, for instance contour map recon-

struction [11, 29] where sensors far apart may still report similar sensor readings.

In Chapter 6, we will explicitly discuss contour map reconstruction and the cor-

responding data aggregation model. The flow aggregation potential can still use

abstract models like that of flow loss multiplier but with some suitable adjustment.

For the sake of completeness, we describe a type of aggregation which although

more elaborate (and in fact applicable to both spatial and temporal aggregation)

can still be captured by flow loss multipliers. This is coding-based aggregation

techniques, where the joint entropy is used to denote the net amount of data trans-

missions after performing aggregation over two correlated sources. The correlation

between these two sources guarantees that the joint entropy is not more than the

sum of the entropy of each individual data source. Considering data from source i

being aggregated at the source j, the difference between joint entropy and entropy

of j is the net data volume of i required to be delivered to the sink. In this case,

the ratio of this difference to the entropy of i can be used as flow loss multiplier of
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source node i.

3.4 Summary

In this chapter, we discussed two types of data correlation existing in WSNs, spa-

tial and temporal correlation. Then we presented several concrete data aggregation

techniques. We also defined flow loss multiplier and showed it can be utilized to

demonstrate the aggregation potential during correlated data collection under dif-

ferent WNS application scenarios.

In the remaining chapters, the flow loss multiplier is the abstract quantifier of the

impact of aggregation (over a pair of source and aggregation node) without having

to know the specifics of the particular application.

We will present our tree-based and flow-based data collecting schemes in the

two subsequent chapters. In order to evaluate their performance, we will compare

our schemes to other competitive solutions. The criteria for selecting opponent al-

gorithms are two fold. First, the performance (mainly in terms of lifetime extension)

of the chosen algorithms is good enough to compare with. Second, data aggregation

has to be easily integrated with the chosen data collecting approaches. Therefore,

we can also analyze the impact of data aggregation on our data collecting schemes.

In Chapter 4, Flow Augmentation (FA, [13]) is chosen as the opponent algo-

rithm for our tree-based schemes. Different to other candidates ([32, 42, 51, 62,

83]), FA is derived from the linear programming model formulated for maximizing

the network lifetime. The simulation results show FA achieves the near-optimal

network lifetime. In each round of data collection, sensor data are routed from each

sensor to the sink along a particular link cost shortest path. Data aggregation can

be applied on any on-path node.

In Chapter 5, Adaptive Fusion Steiner Tree (AFST, [54]) is chosen for our flow-

based schemes to compare with. AFST provides a near-optimal solution to the

problem of correlated data collection in terms of minimized energy consumption.

During the process of data collection, aggregation can be intelligently performed

for the maximized benefit from data aggregation.
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Chapter 4

Tree-based Data Collection Schemes

In WSNs, sensor data gathering from each deployed sensor to the sink node is the

dominant cause of data traffic. Intelligently designed routing protocols for col-

lecting data should be able to significantly improve the system’s lifetime. A tree

structure is one of the most important and commonly adopted routing topologies in

data communication networks. In this scenario, a tree rooted at the sink is built to

span all sensors. Such trees are usually constructed so that the cost from each sen-

sor to the sink is minimized, where the cost is determined by the WSN application

requirements. Each on-tree node only needs to forward the sensor data obtained

from all its children in the subtree plus the data observed by itself. The total sensor

data of the network is transmitted upstream along the tree until the sink is reached.

4.1 Static Data Collection Trees with Data Aggrega-
tion

We start by considering a hop-based Shortest Path Tree (SPT) as the data collect-

ing structure. To build a hop-based SPT, each node determines its hop-count, h

(minimal number of hops to the sink) via Distance Vector routing (see e.g. [9]) and

only choose one nearby node with smaller hop-count as its parent. As it turns out,

in a dense sensor network, each node has many neighbors that have the same hop-

counts. Forming the SPT to collect sensor data requires that we break ties among

next-hop neighbors that have the same hop-count. Remarkably, what our results

indicate is that a clever way of breaking ties (without much network information to
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go by) makes a lot of difference.

Another advantage of tree-based data gathering schemes is that data aggregation

can be easily performed over collected data at any on-tree node because during

the period of system operation, sensor data from a single source will always be

delivered to the same parent node. The convergence of sensor data at some node

upstream makes data aggregation beneficial for tree-based data collecting strategies.

In this chapter, we introduce a simple proximity based model for data aggregation

in order to examine the impact of data aggregation on our tree-based collecting

schemes. In addition tree-based algorithms are easy to apply and maintain in most

WSN application scenarios.

4.1.1 Problem Formulation

First we introduce some notation to help describe the problem in abstract terms. It

will be also used in subsequent network models and simulations.

We consider a network of N homogeneous sensor devices deployed in a 2–

dimensional space. We use index i = 0 to denote the sink, and i = 1, . . . , N to

denote the sensing nodes. The sink does not perform any sensing, it merely collects

the data. Let V = {0, 1, . . . , N} denote the node/vertex set, inclusive of the sink.

Each sensor is capable of communicating within a radius of Rt, which is the most

important parameter in our communication model. di,j is the Euclidean distance

between any two nodes i and j. We use Ni to denote the set of all neighbor nodes

of i within its transmission radius, i.e., Ni = {j | di,j ≤ Rt, i �= j, j ∈ V }.

Assume G is the graph defined as G(V, E(Rt)) where E(Rt) = {(i, j) | di,j ≤
Rt, i �= j, i, j ∈ V }, i.e. the edges between nodes are close enough to allow

direct communication between them. Without loss of generality we assume that a

successful sensor deployment ensures that G is connected.

Energy is a very important factor to data collection protocol design in WSNs.

During the process of data collection in WSNs, energy is spent on idle listening,

transmitting, receiving and mode switching (e.g. switching from transmitting to re-

ceiving). However, transmitting and receiving sensor data is still responsible for the

largest weight in the energy budget compared to other energy consumption factors
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[8]. A series of experiments have been performed in [26] to obtain knowledge of

the energy consumption behavior of actual wireless devices. The amount of energy

consumed on transmitting and receiving a data packet is composed of two compo-

nents. The fixed component is determined by the wireless communicating device’s

state; and the incremental component is proportional to the size of the data packet.

In WSNs, short sensing and transmission range of the sensor device results in

dense sensor deployment, where an energy-efficient medium access control (MAC)

layer is necessary to provide a variety of functions that support the wireless trans-

mission across the network [94]. For instance, packet collision has to be avoided

as much as possible, if it happens, the packets involved have to be discarded and

retransmitted. To focus on the efficiency of data collecting heuristics themselves,

we assume the sensor network has an ideal MAC layer. There is no collisions

and the sensor wireless transmitting and receiving circuit turns off when there is

no need for data communication. During data collection, each node can adjust its

radio-power in order to save energy and reduce overhearing, and also ensure enough

signal strength detected at the receiver. To study the impact of data aggregation on

our schemes, we adopt a simple energy consumption model [34, 66] which also

confirms the energy consumption model described in [26]. Specially, the amount of

energy spent on transmitting or receiving a unit of data can be denoted below:

E = adα + b (4.1)

where d is the Euclidean distance between the transmitter and the receiver, 2 <=

α <= 6, and a and b are both device-related positive constants. The value of path

loss exponent, α is determined by the wireless transmission environment.

Each sensor node monitors an area around it. The area sensed by sensor i is

denoted by Ai which is approximated by a circular disk of radius Rs. We adopt the

convention that the information collected by a sensor is proportional to the area it

senses. Hence, in our simple proximity based data aggregation model, the redun-

dancy between the sensed data of two sensors is proportional to the overlap between

their corresponding sensed areas. Accordingly, the area sensed by a subset of sen-

sors is the union of their corresponding Ai’s. This simple proximity based model for
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aggregation is connected to the communication model by assuming that Rt ≥ 2Rs.

In this way, two sensors with overlapping sensing areas are capable of communi-

cating directly with each other. Therefore, it is safe to assume that without position

knowledge, sensors can communicate to its neighboring nodes and compute the

sensing overlapped areas with its neighbors only via the Euclidean distance.

We note that the objective of any data collection algorithm in a sensor network

is to forward sensor data along a spanning tree subgraph of G(N,E(Rt)) with the

root of the tree at vertex 0. For notational convenience, we denote as c(i) the set

of children of node i in the data collection tree, and p(i) the parent of node i in the

data collection tree (as a convention p(0) = 0). Each node i in the data collection

tree defines a set, Ti, of all the nodes (including i) that belong to the subtree rooted

at i (note that T0 = V , while in the case of leaf nodes Ti = {i}). Let Si denote the

sensing area covered by all the nodes in subtree Ti, i.e., Si = ∪j∈Ti
Aj . Then, the

size of Si can be denoted as |Si|.
The notation we have introduced and will introduce later is summarized in the

Table 4.1.

Table 4.1: Summary of Notation

Notation Definition

V node/vetex set

E(Rt) edges set determined by communication range Rt

N number of sensor nodes

Ai area sensed by node i
Rs sensing range

Rt transmission range

di,j Euclidean distance between node i and j
Ni neighbor node set of sensor i
p(i) parent of node i (according to current tree)

c(i) offspring set of node i (according to current tree

Ti subtree rooted at node i
Si sensing area covered by Ti

hi hop-count of node i
E initial energy assigned to the sensor node

α energy critical threshold

mij flow loss multiplier between source i and node j
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Communication Cost Metric A node in the tree removes redundancy that exists

among its children’s sensor data as well as redundancy between its own sensor data

and those from its children. It forwards up the tree the resulting (non-redundant)

information. Assuming the information content is proportional (by a constant factor

γ) to the sensed area (after removal of redundancies), then the total communication

cost of collecting data along the tree is
∑N

i=1 γ|Si|. Therefore the task of minimizing

the communication cost is in essence:

minimize

N∑
i=1

γ|Si| (4.2)

where of course γ is irrelevant to the optimization, and the real impact on finding

the optimal tree with the minimum communication cost is in the way the tree is

structured, which determines the Ti’s and, consequently, the Si’s.

Energy Cost Metric If the transmission power is the same for each transmitted

bit and it is the same regardless of the node, then minimization of the energy cost

metric for the entire tree is equivalent to the minimization of the communication

cost (Equation 4.2), differing only in the constant factor γ. However, a more re-

fined energy cost can be considered whereby, once the data collection tree has been

determined, the transmission radius, ri of each node is adjusted to just enough (but

always less than Rt) to reach its parent node in the tree. Thus, ri = di,p(i) ≤ Rt. As-

suming the loss exponent capturing the attenuation of transmissions with distance

is α, then the total energy cost is
∑N

i=1 γ′|Si|dα
i,p(i), thus the corresponding energy

optimization problem is:

minimize

N∑
i=1

γ′|Si|dα
i,p(i) (4.3)

for a constant γ′ which denotes the proportional relationship between energy con-

sumption and the multiplication of the data volume and the exponential function of

di,p(i). We note that we generally have no expectation that sensors are capable of

fine transmission power adjustments to arbitrarily set ri. Therefore, the results of

optimizing this metric should be seen only as an indication of how much better the

energy consumption would have been if the hardware complexity could allow for

transmission power adjustments.
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Processing Cost Metric We also provide a very approximate metric for the pro-

cessing cost at each node in the data collection tree. We consider the process

of redundancy removal to be solely expressed by the cost of identifying cross-

correlations between data sets. At its simplest, cross–correlation calculation in-

volves quadratic processing cost (more specifically, cost on the order of the product

of the data set cardinalities). Thus, let c(i), the set of children of node i, be ex-

pressed as c(i) = {i1, i2, . . . , im} indicating (in an arbitrary order) the set of the

IDs of the m children of node i in the subtree rooted at i (|c(i)| = m). We define

the auxiliary sets fi,j , recursively: fi,0 = Ai and fi,j = fi,j−1 ∪ Sij . The basic idea

is that if the total processing cost (for redundancy removal) spent on node i is deter-

mined by the joint sensing coverage of node ij (j-th child of i) and the processing

cost on removing data redundancy among i and its the other j − 1 children (fi,j−1).

Hence, the total data processing cost can be approximated by:

N∑
i=1

|c(i)|∑
j=1

(|fi,j−1| |Sij |) (4.4)

We refrain from considering the optimization problem which minimizes Equa-

tion 4.4 because on top of determining each subtree rooted at i (Ti), it will also have

to establish an order of the elements of i’s children (c(i)). According to Equation

4.4, only one particular order of c(i) can result in the minimized total processing

cost. While this is conceivably doable, the cost expression supplied will eventually

depend on the particular application. Indeed, the processing cost presented here

assumes: (a) determining cross-correlation is the dominant process cost, (b) cross-

correlation is performed in a pair–wise fashion, while one could opt for simulta-

neous cross–correlation among more than two sequences at a time, and (c) nodes

possess no location information, so they have to indirectly (via cross–correlation)

discover redundancies.

4.1.2 Distributed Tree Construction Algorithms

There are several requirements for a data gathering scheme to be designed as a dis-

tributed solution. First, WSNs usually work within a hostile environment which

induces more frequent node and link failure. It is extremely energy expensive to
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adjust a data gathering structure in a centralized manner. Second, the large number

of deployed sensor nodes require network scalability. In some particular circum-

stances, collecting global information from a large scale network is not affordable

especially for a resource scarce sensor network. Finally, a distributed data collecting

scheme is flexible and adaptive to a dynamic sensing task which may be required

by some special WSN applications.

In order to evaluate the performance of different tie-breaking strategies in terms

of metrics we stated above, we consider five distributed heuristic approximation al-

gorithms for solving the problem of efficiently building the data gathering tree in

sensor networks with redundancy removal, i.e., for finding an approximate solution

of the optimization in Equation 4.2. The algorithms are a combination of the Dis-

tance Vector routing (DV) protocol (see e.g. [9]), but simplified because the only

destination of interest is the sink, plus a tie-breaking scheme that characterizes the

particular algorithm. As we noted earlier ties are common in a densely deployed

network so the effect of tie-breaking rules is expected to be significant. The result

of the DV run is that each node i determines the hop-count, hi, to the sink.

The algorithms rely only on local information and are therefore scalable as the

network grows. None of them uses location information. Three of the algorithms

(Random, MaxDegree and MaxSubset) are based on a simple-to-determine

graph property, namely the cardinality of the set of neighbors Ni. Nodes announce

to their immediate neighbors the cardinality of their corresponding neighbor sets.

Two of the algorithms ( MaxDist and MinDist) are based on the existence of

a monotonic distance-dependent metric (e). A realistic example of such a metric

is the received signal strength ei,j (from transmissions of j as received at node i).

Specifically if, by convention, transmissions (e.g. certain control traffic transmis-

sions) are at the same transmission power level regardless of the sensor emitting

them, a low received signal strength (averaged over a sufficiently long period of

time to account for channel imperfections) implies a longer distance from the trans-

mitter to the receiver. Hence, if di,j1 ≤ di,j2 ≤ . . . ≤ di,jm (where jk ∈ Ni) then

ei,j1 ≥ ei,j2 ≥ . . . ≥ ei,jm .

Specifically, the studied approximation heuristics are:
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Minimum Distance to Next Hop (MinDist) In this algorithm, a tie is broken by

choosing the “nearest” neighbor (in the sense of largest ei,j) out of all the neighbors

which are of the same hop-count. Notice that within node i’s neighbor set Ni, there

are some nodes whose hop-counts are 1 less than i. The other neighbors either have

equal or larger hop-counts than i. Thus, if N �
i is the set of neighbors of i that have

less hop-counts, i.e., N �
i = {j | hj = minm∈Ni

hm , j ∈ Ni} then, the tie-breaking

is:

p(i) = {j | ei,j = min
k∈N �

i

ei,k , j ∈ N �
i } (4.5)

The intuition behind MinDist is that gathering sensor data via a SPT will save

energy consumption and reduce delay in data collection. In addition, based on our

spatial data aggregation model, the most sensing area overlap will occur between

each sensor node and its closest neighbor. It is desirable to remove data redundancy

as much as possible by performing data aggregation at a close neighbor, as long as

this neighbor does not divert us away from the hop-based shortest path to the sink.

Maximum Distance to Next Hop (MaxDist) The idea behind MaxDist is the

opposite of MinDist, we attempt to take the longest “stride” away from the cur-

rent transmitter. However, sensor data is still routed along a SPT, which ensures

that it takes the same number of hops to collect sensor data for both MaxDist

and MinDist. Unfortunately, MaxDist sacrifices opportunities for better redun-

dancy removal. We present this heuristic anyway as a benchmark to demonstrate

the different performance between MinDist and MaxDist.

Symbolically:

p(i) = {j | ei,j = max
k∈N �

i

ei,k , j ∈ N �
i } (4.6)

Random Next Hop (Random) This algorithm breaks ties by uniformly randomly

selecting the next hop among all the candidate sensors with minimum hops to the

sink. This approach is introduced here for illustrating that a more “educated” selec-

tion, in the vein of MinDist, does have some impact. Indeed, one would expect

Random to perform in-between the performance of MinDist and MaxDist (it
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turns out that this is the case). Assuming uniform(A) is a function denoting the ran-

dom uniform selection of an element of set A, then the tie-breaking rule is simply:

p(i) = {j | j = uniform(N �
i ) } (4.7)

Maximum Degree of Next Hop (MaxDegree) MaxDegree’s tie-breaking se-

lects as the next hop the neighbor that possesses the maximum cardinality neighbor

set among all minimum hop-count neighbors. The intuition behind it is that the

node with the most neighbors is bound to have several overlaps with its neighbors.

Choosing that kind of neighbor as the next hop will greatly improve the opportunity

of getting rid of data redundancy among many nodes as soon as possible.

p(i) = {j | |Nj| = max
k∈N �

i

|Nk| , j ∈ N �
i } (4.8)

Maximum Subset of Next Hop (MaxSubset) MaxSubset also looks at the

neighbor set of the neighbors of node i to break ties. Consider j, a neighbor node of

node i. We observe that some nodes included in the neighborhood of node j, are not

going to select j as their parent because their hop-counts are less than node j and our

routing is based on minimum hop shortest path. Sometimes, MaxDegree does not

distinguish these nodes as not being part of the potential “fan–in” towards node j,

and misses better choices. MaxSubset is based on the “partial degree” of node j,

which is the number of nodes within j’s transmission radius whose minimum hops

to sink are greater than the minimum hops for node j itself. Only those nodes have

the possibility to choose node j as their parent and should be counted as likely to

have their redundancies removed by j. We use N ′
j to denote the set of all neighbor

nodes of j within its transmission radius except those nodes whose hop-count is

less than or equal to node j, i.e., N ′
j = {t | ht > hj, t ∈ Nj}. Then,

p(i) = {j | |N ′
j | = max

k∈N �
i

|N ′
k| , j ∈ N �

i } (4.9)

4.1.3 Simulation Results

To evaluate the performance, we generate random configurations and compare the

algorithms based on communication cost, energy cost and processing cost. The
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communication cost metric was the main design criterion for our heuristics, how-

ever, it is of interest to see how the algorithms perform for the other two metrics

as well. The configurations are generated as follows. A sink node is placed at the

origin of a 2-dimensional coordinate system. Experiments were made with other

placements of the sink node but there were no significant differences in relative

performance. Sensor nodes are placed uniformly randomly within a square area de-

fined by the origin (0, 0) and (f, f). Ten independent instances (node placements)

are generated and the results for communication cost, energy cost and processing

cost are averaged for each algorithm. The maximum and minimum values (that is,

the range) over the 10 instances are also recorded.

To further explore the performance of our heuristics, we also compare them

with another important topology, Minimum Spanning Tree (MST). MST organizes

nodes into a tree by connecting them via edges whose total cost (e.g. Euclidean

distance) is minimum. The edge cost can be measured in different ways depending

on particular application scenario. In our case, short Euclidean distance between in-

dividual sensor nodes indicates large overlap of sensing coverage, which also leads

to large amount of data redundancy removal. In this way, we intent to capture all

the maximized pairwise data aggregation between each sensor node and its parent

across the tree. In addition, since energy consumption is proportional to the ex-

ponent of Euclidean distance of each edge, MST may spend less energy cost on

data collection. There also exists distributed version of MST [28]. In our experi-

ments, we use Euclidean distance as edge weight and modify the regular MST via

assigning the sink (root of the tree) as parent to all its one-hop neighbors. Then, the

modified MST (MMST) is built based on this star topology. The idea comes from

our observation that it is efficient for the neighbors of the sink to transmit sensor

data directly to the sink node.

In the first set of experiments we consider small configurations where it is com-

putationally feasible to find optimal results. We construct an omniscient exhaus-

tive search algorithm over all spanning trees [74, 75] which determines the optimal

spanning tree under either the criterion of minimizing communication cost from

Equation 4.2 or that of minimizing energy cost from Equation 4.3. This is done by
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calculating the union of sensed areas via Voronoi tessellations [3]. However, the

exhaustive search is computationally very costly to perform and assumes knowl-

edge (exact location information) that we lack in the presented heuristics. Due to

its computation load, we were unable to determine the optimal solution on config-

urations of more than 13 nodes. The set up for the small configuration experiments

have area 25 x 25 (that is, f = 25), transmission range Rt = 10 and sensing range

Rs = 5.

In the real world, the range of α in Equation (4.1) changes from 2 to 6 according

to the wireless transmission environment [66]. In our experiments, any α between

2 and 6 will be large enough to amplify the weight of Euclidean distance on energy

consumption and introduce large energy cost on long-range wireless data commu-

nication. Therefore, we set the path loss exponent, α, to 2.

To illustrate the behavior of the optimal algorithms and the heuristics, we exam-

ine the data collection trees for a particular instance of the 13 node case in Figure

4.1. The optimal trees for communication and energy are shown in Figures 4.1(a)

and 4.1(b) respectively. Note that Node 9 in the minimum communication cost

sink tree connects to Node 1; while in the minimum energy cost sink tree, Node 9

conserves energy by connecting to Node 11 which is closer. In Figures 4.1(c) and

4.1(d) the sink trees for the heuristic algorithms MaxSubset and MaxDegree re-

spectively are shown. Unlike the optimal cases, both heuristic cases connect Node 7

to Node 1 which has fewer hops from the sink than Node 4. Node 8 has a choice of

connecting to Node 4 or Node 7 and this tie is broken differently for the two heuris-

tics. In the MaxDegree case it connects to Node 7 which has more neighbors;

while in the MaxSubset case it connects to Node 4 which has more neighbors

further from the sink. At last, MMST is depicted in 4.1(e). It is much different in

shape than the other data collection trees. In order to connect all sensor nodes by

short edges, node 9, 10 and 11 have to take a long path (large number of hops) to

reach the sink.

We next consider results averaged over the 10 iterations for the small config-

urations. With the given area and transmission range, fewer than 8 nodes results

in many cases where paths to the sink do not exist for some nodes (underlying
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Figure 4.1: Small network example (a) optimal (communication) tree, (b) optimal

(energy) tree, (c) MaxSubset tree, (d) MaxDegree tree, (e) MMST.

graph is not connected). Therefore, we vary the number of nodes from 8 to 18 for

the heuristic algorithms with the optimal results computed for up to 13 nodes. In

Figure 4.2(a), we show the averaged communication costs for the optimal commu-

nication cost sink trees, MMSTs and the heuristic sink trees. As can be seen in this

figure, the heuristics are very close to the optimal, while MMST has much larger

communication cost than others. This indicates that forming shortest hop trees pro-

duces close to optimal results for these small cases. Figure 4.2(b) shows that the

energy costs of the heuristics are more different from the optimal solution which

is recomputed for the new metric. The reason is that reducing energy was not the

main design criterion of these algorithms, neither would it have been possible be-

cause knowing the di,j values (possibly via knowledge of their exact location) is

not within the assumptions about the sensors hardware complexity for these experi-

ments. However, the energy cost obtained by MMST is close to the optimal solution

because less energy is consumed on data transmission over its small Euclidean dis-

tance edges. In Figure 4.2(b), we also show the energy cost spent by trees which
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Figure 4.2: Small network (a) communication cost, (b) energy cost.

are optimal in communication cost. The result testifies that optimizing for different

objective results in different data collection trees. Moreover, for both cost metrics,

the tie-breaking heuristics do not greatly affect the results since in small networks

there are few ties to break.

In the next set of experiments we look at larger scenarios with many more nodes.

In these cases we have a 100x100 grid (f = 100) with nodes of transmission range

Rt = 20 and sensing range Rs = 10. We first consider a particular instance of

finding a sink tree for 300 nodes. For these large networks, there are clearer patterns

in the sink trees produced by the heuristics. The sink tree for MinDist in Figure
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4.3(a) shows that this heuristic produces trees with small line segments strongly

oriented towards the sink. The fan-in, which indicates opportunity for merging

redundant data, is good. The fan-in improves for the heuristics of MaxSubset and

MaxDegree as seen in Figures 4.3(b) and 4.3(c) respectively. These algorithms

seek explicitly to improve the fan-in by choosing parents with high potential for

a large number of children. MaxSubset has the largest fan-in. These designs,

however do result in longer segments than the MinDist heuristic. MaxDist,

which can be seen in Figure 4.3(d), has the least-ordered appearance with very

long segments because it will choose as a parent the minimum hop neighbor that

is furthest away. At last, MMST is shown in Figure 4.3(e). It guarantees almost

all shortest edges are chosen to construct the data collection tree but ends up with

much longer paths (in terms of hops) from the furthest nodes to the sink.

(a) (b) (c)

(d) (e)

Figure 4.3: Large network example (a) MinDist tree, (b) MaxSubset tree, (c)

MaxDegree tree, (d) MaxDist tree, (e) MMST tree.

We next compare the communication cost and energy cost of the heuristic al-

gorithms for a range of 100 to 600 nodes. We also present the simulation result

for data processing cost. In general, for all of the metrics, as the number of nodes
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increases, the costs increase as well. This can be explained by the fact that leaf

nodes are not able to aggregate data until those data reach their parent and as in-

creasing the number of nodes deployed potentially increases the number of leaves.

The only exception is MMST depicted in Figure 4.4(b) for energy cost, which will

be explained later on. In Figure 4.4(a), the communication cost of the heuristic

algorithms is found for different numbers of nodes. The error bars on the graphs

represent the range (min and max values) over the 30 iterations. As the number

of nodes is increased, the differences in the heuristic tie breakers becomes more

significant. This occurs because there are more chances for ties as the network be-

comes denser. Obviously, all our SPT based heuristics outperform MMST because

compared with SPT, MMST has larger hop-count for each sensor node, which leads

to unnecessary communication cost spent on routing sensor data along a longer

path (in terms of hops) to the sink. MinDist and MaxSubset have the lowest

communication cost; while MaxDegree has only slightly higher cost. All of these

tie-breaking algorithms seek to increase the amount of overlapping data: MinDist

by connecting to close nodes and MaxDegree and MaxSubset by connecting to

nodes with more potential to combine data. Their communication costs are sig-

nificantly lower than random tie-breaking, indicating that intelligent tie-breaking

is important. MaxDist has the highest communication cost because it misses the

opportunity of data aggregation by connecting to nodes that are further away.

In Figure 4.4(b), the energy cost of the heuristic algorithms and MMST is shown.

Since energy cost takes the exponent of edge distance as a major factor, MMST

demonstrates great efficiency in terms of energy cost. It possesses the lowest rank

among all compared algorithms. In addition, the increase of network scale brings

little effect on its performance. The relative performance of the 5 heuristics is sim-

ilar to the communication cost results except that MinDist now has lower energy

cost than MaxSubset. This is reasonable since by choosing the closest neighbor,

MinDist will reduce the squared (path loss exponent is set to 2 in this case) dis-

tance factor of the energy metric (at least locally). This can also be seen in the exam-

ples of Figure 4.3 where the line segments are noticeably longer for MaxDegree

and MaxSubset than for MinDist. MaxDist has the longest segments and
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Figure 4.4: Large network (a) communication cost, (b) energy cost, (c) processing

cost.
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therefore highest energy cost because it connects a node to the furthest minimum

hop neighbor. In doing so, it defers the removal of redundancy to further up the tree

resulting in higher communication and processing costs as well. As we discussed

before, a larger path loss exponent may excessively reward some data collection al-

gorithms which transmits over short links, e.g. MinDist and MMST, and make the

difference between them and the other algorithms even larger than before. However,

the rank of them may not change.

In Figure 4.4(c), the processing cost of the heuristic algorithms is shown. The

relative results are very similar to the communication cost metric results of Fig-

ure 4.4(a). The general method already chooses a minimum hop path so that the

ability to combine data is the dominating requirement of the tie-breakers for both

communication and processing cost metrics. Again, the performance of MMST is

even worse than Random because MMST fails to process redundancy removal in an

efficient way. Compared with MaxDegree, MaxSubset and MinDist, for each

interior node, MMST usually ends up with less fan-in which induces longer hops

(more processing effort) for the same amount of redundance removal.

Taking into account the removal of data redundancy, we proposed five dis-

tributed heuristic algorithms for constructing data collection trees. We also evaluate

their performance through detailed simulation based on different metrics. Commu-

nication cost reflects the impact of data redundancy removal on data gathering pro-

cess. According to our simple proximity based data aggregation model, processing

cost describes the computational load on each involved node for removing data re-

dundancy. Processing cost may vary with different data correlation scenarios. Since

it is an application-driven metric, we will not apply it to our future simulations

where a general correlation model is assumed. As we stated before, the extremely

limited energy resource is the major challenge in WSNs. Therefore, among all three

metrics, energy consumption will become the major concern in the rest of this the-

sis. As well as minimizing energy consumption among entire networks, to maintain

the system functionality as long as possible, balancing energy consumption across

the network becomes another issue in WSNs. Based on the observation of previous

experiments, tree based data gathering schemes have one intrinsic problem, the ac-
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cumulated data traffic makes the nodes close to the sink have much more load than

leaf nodes. For instance, the largest energy consumption differential ratio is about

7.3 in a 13-node network. This ratio goes up with the increment of the network

scale. In the next subsection, we propose tree adjustments to release heavy traffic

duty on some sink-close nodes induced by a fixed data gathering tree.
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4.2 Energy-Critical Node Aware Spanning Tree with
Dynamic Tree Structure Adjustment

We observe that the sensor node’s double task of sensing and forwarding different

amounts of traffic from other nodes results in energy depletion which is heavily

dependent on the data collection structure. An uneven traffic load drains some

nodes’ residual energy much faster than others and leads to loss of sensing coverage

or even worse, loss of network connection. In this case, balancing workload among

all deployed sensor nodes has to be considered as well as energy-efficiency.

To address this problem, we propose a distributed spanning tree building scheme

by identifying energy-critical nodes (whose residual energy is equal to or below the

predefined threshold) and making them leaf nodes, or as a last resort, balancing the

traffic load handled by them, so as to release them from heavy duty. During the

process of data collection, the tree structure can be judiciously adjusted to balance

energy consumption before any node’s failure due to total residual energy depletion.

This tree structure adjustment can be performed locally with few control message

exchanges and as few as possible sensor nodes involved.

4.2.1 Energy-Critical Node Aware Spanning Tree

In this subsection, we present the algorithm, “ENergy Critical node Aware Spanning

Tree” (ENCAST). The objective is to attach critical nodes as leaf nodes of the data

collection tree such that, (a), data from critical sensors can still be collected and,

(b), critical nodes are no longer responsible for forwarding upstream data of other

nodes. Property (b) needs to be violated if it becomes impossible to reach certain

nodes (critical or non–critical) without the assistance of critical nodes. A pattern of

energy–critical nodes could result in a partitioned network if we plan to avoid using

energy–critical nodes as data relays. When this becomes the case, critical nodes

are recruited for data forwarding, thus violating (b). In that case, (b) is replaced

by another property, (c), that the load across critical nodes that become interior tree

nodes is kept balanced. By load we mean the number of children attached to a node.

Clearly this form of load balancing is restricted by the particular topology. Certain
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nodes may not be able to assist as many children as other nodes, and a “natural”

imbalance ensues. Thus, ENCAST attempts only to approximate property (c).

ENCAST operates in two phases. The first phase is a breadth first traversal

starting at the sink. If no critical nodes exist, the data collection tree will be the tree

derived from this first phase. The breadth first search is a well solved problem, and

distributed versions exist with small message complexity, e.g., [4]. When critical

nodes exist, any critical node visited in the breadth first search blocks any further

traversal from the visited critical node. That is, at the end of the first phase, critical

nodes can only be leaf nodes of the resulting tree. Clearly, by blocking the traversal

to proceed further than a critical node, certain nodes may not be reachable via a tree

path from the sink that involves exclusively non-critical nodes. The tree constructed

from the first phase is not a complete spanning tree, and off–tree nodes can be a mix

of critical or non–critical nodes. The second phase extends the tree produced by the

first phase in order to reach the off-tree nodes.

We note that if there are no critical nodes, the tree resulting from the first phase

is a Shortest Path Tree (SPT) in terms of hop-count. However, it has been noted

in the past [100, 99] that in dense sensor networks, many SPTs exist. The exis-

tence of many SPTs is due to the fact that nodes have many neighbor nodes and

many of these neighbors have the same minimum-hop distance from the sink. In

this case, a secondary (tie-breaking) criterion can be used to select the “best” par-

ent node among all potential minimum-hop parent nodes. We consider two tie-

breaking criteria. The first is MinDist (proposed in the previous subsection) ac-

cording to which the selected parent is the minimum-hop node nearest (in terms

of Euclidean distance) to the child node. MinDist requires ranking the neighbor-

ing nodes according to their distance based on the received signal strength, and it

has been shown (refer to the previous simulation for tree-based heuristics) to result

in significant data aggregation potential. The second is the Weighted Randomized

Parent Selection (WR) scheme [99] according to which a (minimum-hop) parent is

randomly chosen in inverse proportion to the number of nodes that are neighbors of

the potential parent. WR exhibits potential for balancing the resulting tree, produc-

ing presumably a more even load across sensors.
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1. CR := {v ∈ T : v is critical };

2. foreach i ∈ CR do
3. critical ancestor[i] := i;
4. P := CR
5. while |T | < |V | do begin
6. C := ∅;

7. foreach i ∈ P do
8. if j ∈ Ni and j /∈ T then C := C ∪ {j};

9. foreach j ∈ C do begin
10. k := arg minl∈Nj∧l∈P w[critical ancestor[l]];

11. T := T ∪ {j};

12. p[j] := k;

13. critical ancestor[j] := critical ancestor[k];
14. while k /∈ CR do begin
15. w[k] := w[k] + w[j];
16. k := p[k];
17. end;

18. end
19. P := C;

20. end

Figure 4.5: The second phase of ENCAST.

The second phase of ENCAST (Figure 4.5) augments the partially constructed

tree by allowing critical nodes to become parent nodes of other off-tree sensors but

under the approximate enforcement of property (c) above. Let V = {0, 1, 2, . . . , N}
be the set of N nodes plus the sink, where index 0 stands for the sink. The network

topology can be described as the undirected graph G(V, E). Let T be the set of

nodes in the partially constructed spanning tree produced by the first phase. We

use CR to depict all critical nodes explored so far. Let Ni be the set of nodes

neighboring node i, that is nodes within transmission radius of node i. Additionally,

assume p[ ] is the array holding the index of the node selected as parent in the tree,

that is if p[i] = j then j is the parent of i. We use two sets, P , the potential new

parent nodes for C (P ⊂ T ) and, C the set of nodes accessible as children from

the nodes in P that are not already in T (C ⊂ V \ T ). An array w[ ] (initialized to

zeros) holds the current “workload” value for each critical node.

To initialize the second phase of ENCAST, we use another array critical ancestor[ ]
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to keep track of the traffic load on original critical ancestor node of the currently

visited node. For any on-tree node (rooted at the sink), its critical ancestor is its an-

cestor node which is in the same branch of the current node and also the sink node’s

direct child. Because in most network configurations, the traffic load of the nodes

close to (specifically one hop away from) the sink determines the system lifetime.

We start with those critical ancestor nodes and try to assign them as other off-tree

nodes’ parents. Line 8 produces the set of nodes that can be reached from the set

of potential parents and are not yet part of the spanning tree T . Line 10 demon-

strates that this parent assignment continues in a greedy way. After that, workload

information is updated (line 14-17). We note that line 19 suggests that the calcu-

lation progresses in “waves”: once a set of potential parents become parents of a

set of child nodes, then the new potential parents are the children explored in the

previous step. Before executing the second phase of ENCAST, only critical nodes

are included in P . After the first iteration, the potential parents set, P , can include

critical and non-critical nodes.

With minor modification, the second phase can be reused when the residual en-

ergy of some on-tree node with heavy traffic load drops below the threshold. Once

some node becomes energy critical due to fast energy depletion, it will force all its

children and offspring to transmit sensor data to the sink node through other relay-

ing nodes. After the construction of the first data gathering tree, tree adjustment will

be repeated once a energy critical node appears. Since rapid tree adjustment is nec-

essary to keep the current data gathering structure adaptive to dynamic unbalanced

energy consumption, it is desired to apply a distributed tree adjustment strategy in

order to minimize system overhead and manage tree adjustment as locally as pos-

sible. Finally, the second phase can be expressed in a distributed fashion, since all

relevant information is local (up to two hops away). Notice that during the execu-

tion of the second phase of ENCAST, only the nodes involved in the current “wave”

have to make wise decision based on updated workload knowledge, which means

the latest w[ ] does not need to be reported back to nodes in CR (critical node set).

The added complication is the need to employ synchronization in advancing the

calculation “wave”. We modify an approach from [4] to solve this problem.
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4.2.2 Dynamic ENCAST Adjustment

A newly deployed network may initially include no energy-critical nodes. As-

sume all nodes start with full energy reserves, E, and assume we start with either

a MinDist, WR, or arbitrarily calculated SPT tree. Sooner or later node failure

will occur. However, ENCAST allows for proactively adjusting the tree as nodes

become critical. An invocation of ENCAST operates on one (the current) instant of

the network with respect to which nodes are currently considered critical.

Once a node discovers itself energy critical, it first broadcasts DETACH REQ

message to all its children informing them their parent will not relay their sensor

data anymore. Upon receiving DETACH REQ message, each involved child node

checks its neighbor list and looks for an alternative parent node which is not criti-

cal and does not have critical ancestor nodes. No matter whether data aggregation

is performed or not, if all distributed sensor nodes start with equal initial energy,

the sink’s direct neighbor nodes usually have the most heavy workload and run out

of energy first. To evenly balance workload among those potential energy critical

nodes, each on-tree node also maintains its critical ancestor. Each DETACH REQ

message has to contain the sender’s ancestor node in order to avoid any child node

choosing as parent a node with the same ancestor as itself. The candidate with min-

imal ancestor workload will be first chosen and an ATTACH REQ will be sent to

it. Once the sender receives a confirmed ATTACH ACK message from its alternate

parent, it will report sensor data to the new parent from the next data collection

round. If the critical node’s child has no other parent candidates or receives a re-

fused ATTACH ACK message from all its alternative parent nodes, it will send

refused DETACH ACK back to the critical node. Meanwhile, it also identifies it-

self as a critical node and sends DETACH REQ to all its children in order to reduce

its original ancestor node’s traffic load. This process may continue and terminate at

the leaf nodes of the previous data collection tree.

Now an intelligent rule for characterizing nodes as critical and deciding when to

adjust the structure of ENCAST is necessary. We trigger ENCAST when the residual

energy of any sensor drops at or below αE, where E denotes the initial energy

assigned to each sensor and α ∈ [0, 1]. The event causes the first data collection
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structure adjustment. Likewise, we establish several subsequent thresholds. The

first node to cross the particular threshold triggers the adjustment. The series of

thresholds is defined as:

{αkE | k = 1, 2, ...} (4.10)

where k denotes the k-th time the data collection tree is going to be rebuilt. Nodes

below the corresponding threshold are defined as critical. Therefore, α determines

the timing for the adjustment of the data collection tree and is important to the

system lifetime. If α = 0, the system will never re-adjust the tree created at the

beginning. Adjusting the data collection tree based on an exponentially degraded

series of thresholds has two benefits. First, changing the tree too frequently is

avoided, especially early on in the lifetime of the network. Frequent changes could

cause the same energy critical node to be identified in successive re-adjusting phases

adding no real value since the algorithm has already attempted to place them as

leafs. Second, when the system is approaching the end of its lifetime, the data

collection tree will be checked and possibly changed much more frequently than

at the beginning of operation, thus potentially spreading the workload better over

low energy nodes. However, we will closely inspect the resulting overhead induced

by re-adjusting the data collection tree. We will subsequently measure the lifetime

extension via tree re-adjusting with consideration of energy consumption on control

message exchange.

To demonstrate how dynamic ENCAST adjustment works, we examine an ex-

ample of a small sensor network which is composed of 15 sensor nodes including

the sink. These 14 sensors are randomly placed within a 25 ∗ 25m2 area. The

sink is located at the left bottom corner. All nodes are assigned the same initial

energy except the sink. For the sake of simplicity, we assume all sensor nodes are

data resources with the same data generation rate and there is no data aggregation

performed for this simple case. Now each node’s traffic load is proportional to

the number of children included in its subtree. Without loss of generality, we set

α = 0.5. A sequence of data collection trees obtained by ENCAST are shown as

Figures 4.6(a)–4.6(d). We also present the residual energy percentage at each sen-

sor node. Data collection begins with tree 4.6(a). At that time, every sensor node
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has full energy. After a number of data collection rounds, node 8’s residual energy

drops to 50% (α = 0.5, k = 1, refer to Equation 4.10) and becomes critical due

to its heavy transmission workload. Then, it triggers ENCAST adjustment and the

data collection tree is transformed to 4.6(b). Here we use a solid square denote the

critical node in order to distinguish it from other nodes, and the residual energy ra-

tio is presented for each node. Figure 4.6(c) and 4.6(d) depict the second and third

ENCAST adjustment.
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(a) First tree constructed by ENCAST
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Figure 4.6: 15 node data collection trees derived from ENCAST.

4.2.3 Simulation Results

We use simulation to explore the performance of ENCAST. In the simulation, we

randomly distribute sensor nodes within a 100× 100(m2) area with the sink placed
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at corner. The transmission range of each node is Rt = 20m. After the distribution,

a data collection tree is built to gather the sensor data from each sensor at the sink.

We assume the application requires the data collection to be done every 5 minutes

(300s). For the sake of clarity and without loss of generality, we assume, in each

round, each sensor obtains the same amount of sensing data (1KB) from its sensing

components and reports to the sink.

The performance metric of most interest to us is system lifetime. The sink is

a special node that always has enough energy. The sensors are given an initial

(“full”) energy of E = 10J . We assume energy consumption due to data reception

and transmission is determined by the wireless communication environment and the

packet size [26]. The major parameters set for the simulations are listed in Table

4.2. To focus on the behavior of ENCAST, we still assume ideal MAC.

Table 4.2: Simulation Parameters
Parameter Value

Unit of lifetime second

D (flow data demand) 1Kb/300second
E (full initial energy) 10J
E ′ (low initial energy) 3J
size of area of interest 100 ∗ 100(m2)
Rs (sensing range) 10m

Rt (transmitting range) 20m

et 100nJ/bit

er 30nJ/bit

Control message size 0.1KB

α 0.5, 0.66 and 0.75
β 0.1

Lifetime for Critical Areas: Static ENCAST

In the first set of experiments we consider the case of designing data collection trees

for critical areas of sensor nodes. These areas could arise in a number of scenar-

ios. In some applications, a subset of sensor nodes have much less residual energy

because of the non-uniformity in the energy reserves of the deployed sensors, for

instance, heterogeneous sensor distribution [23]. In other cases, the same network

is used for both periodic sensing and query-based sensing. There may be particular
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nodes of more interest than others that are queried more often, causing potential

overuse of those nodes. Critical nodes may also be the result of imperfectly dis-

tributing nodes in space, resulting in uneven coverage and, thus, a proportionately

heavier traffic forwarding burden for some of the sensors.

To study the ability of ENCAST to handle critical areas, we evenly divide a

square area defined by the origin (0, 0) and (100, 100) into 2 equal-sized areas. Area

1 consists of the central nodes and Area 2 consists of the nodes in the four corner

triangles. The dotted outline of these areas is shown in Figures 4.7(a)–4.7(d). With a

uniformly random distribution of nodes these two areas will have the same expected

number of sensor nodes. We designate sensor nodes as non–critical or critical where

non–critical nodes are given full energy (E = 10J) and critical nodes are given low

energy (E ′ = 3J). Two cases are considered. In the first case, all sensor nodes in

the center are assigned low energy; while corner nodes are given full energy. In the

second case, all sensor nodes in the corner are designated as critical; while central

nodes are non–critical. In this way, we can evaluate the performance of ENCAST

under different scenarios in which critical and non-critical nodes are all deployed

over the entire area of interest. We apply the non-iterated (static) version of the

ENCAST algorithm (namely, no tree adjustments) to form the data collection tree

and then the sensors periodically collect data until one of the sensors runs out of

energy. We also compare these results with a collection tree based on MinDist

and WR which makes no distinction between critical and non–critical sensor nodes.

As we introduced before, WR [99] is a Weighted-Randomized parent selection

algorithm which tries to build a workload balanced data gathering tree. During

the process of the tree construction, for the current node, each potential parent is

assigned a weight according to that parent’s degree in the communication graph.

The probability for choosing a parent node is inversely proportional to its degree.

In this way, WR builds a balanced data collection tree. MinDist is one type of

hop-based SPT, which has been verified the most energy-efficient structure among

all the SPT heuristics presented in the previous subsection.

67



(a) ENCAST & interior critical nodes. (b) ENCAST & corner critical nodes.

(c) MinDist (no critical nodes). (d) WR (no critical nodes).

Figure 4.7: 100 node data collection trees.

In Figure 4.7(a) we show a particular example of a 100 sensor network when

ENCAST is utilized to create a data collection tree for critical central nodes (the

small solid squares within the central area stand for the critical nodes). Note that

the critical nodes mostly become leaves of the tree and the paths to the sink for

these nodes are sometimes much longer than the shortest path. In this way, less

traffic relaying burden will be imposed on the energy critical nodes. Figure 4.7(b)

shows a collection tree created by ENCAST for the case of critical corner nodes.

In this case, the nodes at the corners are energy critical and some nodes close to

the sink (which is assumed located at the origin) unavoidably have subtrees but the

algorithm tries to spread the load more evenly over these nodes. Trees created by

algorithm MinDist and WR are shown in Figure 4.7(c) and 4.7(d). From the trees

shown in Figure 4.7(a), we observe that ENCAST is capable of adjusting the sensor
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data collection tree according to the residual energy at each sensor node.

In Figure 4.8, the system lifetime is given for the two scenarios with increasing

size of network. The error bars represent 95% confidence intervals over 30 inde-

pendent runs. In both scenarios, the results show that system lifetime is improved

when the tree is designed with attention to critical sensors. That is, regardless of the

size of networks, the lifetime is longer for ENCAST than MinDist and WR. In ad-

dition, since WR considers workload balance during the process of tree construction,

it outperforms MinDist in both cases. When ENCAST is employed with critical

sensor nodes in the center, the density of the network has a large impact. As the

network becomes denser, the central sensor nodes connect through longer paths and

the nodes close to the sink corner (left-down corner of the area) become unbalanced

with large subtrees. This results in some sink corner nodes becoming critical and

eventually dying. In contrast, if critical sensor nodes are in the corners, ENCAST

spreads the load more evenly over the sink corner nodes resulting in less sensitivity

to density. Higher density means larger subtrees but also more sink corner nodes to

spread the load over. For denser networks, despite the fact that the critical corner

case starts with low energy in the crucial sink corner nodes, the balancing of their

subtrees by ENCAST provides longer lifetime than if the same number of critical

nodes were centrally located.
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Figure 4.8: Lifetime & different critical areas.

Dynamic ENCAST Adjustment

In the second set of experiments, we explore the effect of different threshold values

in the iterative application of ENCAST. In this scenario, all sensor nodes start with

full energy. As we described before, a hop-based Shortest Path Tree (SPT) with

MinDist tie breaking is constructed by ENCAST in a distributed fashion. Sensor

nodes then periodically collect and deliver data until the energy of some nodes be-

come critical according to the threshold or until one of the sensor nodes runs out of

energy. Once some node’s residual energy drops below the corresponding thresh-

old which is determined by α ∈ [0, 1), ENCAST will trigger data collection tree

adjustment in order to release the workload of the current critical node. Since fre-

quent tree adjustment may waste valuable energy on control message transmission,

we introduce another parameter β to stop dynamic ENCAST adjustment once some

node’s residual energy is too low. We compare the performance of the algorithm

with different threshold (α) values. We set β = 0.1, which means ENCAST will

assure the current critical node’s residual energy is above 10% of the initial energy
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before triggering itself.

First we consider the metric of system lifetime. Lifetime is measured for the

different algorithms as the number of sensor nodes increase. Adjusting the tree to

avoid overloading critical nodes provides significant extension in system lifetime

over the static MinDist and WR. To examine the system overhead induced by

dynamic ENCAST, we assume the size of a control message is 0.1KB. During

the process of data collection tree adjustment, energy consumption due to control

message exchange is also taken into account and treated the same way as energy

consumed on sensor data transmission. A large α will trigger the tree adjustment

more frequently than a small one. Thus, with the same number of sensors, a higher

α always has a larger amount of energy consumption due to system overhead during

the network operation time.

To see what happens inside a particular sensor network configuration under a

fixed α, we trace the total residual energy of all the nodes in the network versus

the system operation time. The summation of residual energy provides us with an

indication of how “similar” the depletion rate has been across nodes. We would

like the lifetime of a network to end when the sum of the residual energy over all

nodes is as close to zero as possible. Figure 4.9(a) displays the total energy for

the different algorithms in the sparse case of 100 nodes. Figures 4.9(b) and 4.9(c)

show the same metric for the denser cases of 300 and 500 nodes respectively. For

each algorithm, the total residual energy is calculated at the time of triggering the

data collection tree adjustment and this is given as a point on the graph for that

algorithm. The last point on each curve is the end of the network lifetime under the

corresponding algorithm. We use vertical arrows to identify those “last” points.

From Figures 4.9(a)–4.9(c) we find that with an increase in the node density, the

threshold,α, should be raised correspondingly in order to achieve a longer lifetime.

Since too frequent adjustment of the data gathering tree will introduce too much

system overhead, we set the upper bound of α to 0.75. However, we also find that

a higher α will not guarantee a longer system lifetime. This is because a large α

possibly labels a sensor node energy critical too early and the tree that is rebuilt

may waste too much energy by transmitting data along a circuitous route. If we
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Figure 4.9: Lifetime & total residual energy.
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assume the distribution of sensors is uniformly random, the number of the sensor

nodes close to the sink (placed at the corner) is small in a sparse network. Then

a large α means overload of other crucial nodes near the sink at an inappropriate

time. With more sensors employed in the fixed size region, the density of the sensor

nodes is also increased and our algorithm can find more candidates around the sink

to share the load.

To further explore the performance of our dynamic ENCAST, we also compare

against another proactive approach, Flow Augmentation (FA [13]) which routes

sensor data from each sensor to the sink along a shortest path set up according to

a particular link cost metric. To determine each link cost, energy consumption on

transmitting and receiving unit data packet, and the residual energy at two involved

end nodes are considered. By routing sensor data from each source node to the

sink along the currently shortest path, FA avoids overloading the nodes with low

residual energy, therefore extending the time to the first transmission failure because

of energy outage. During the execution of FA, all chosen shortest paths have to

update their link cost due to energy consumption.

FA is derived from the linear programming model formulated for maximizing

the system lifetime. This model helps FA obtain the closely maximized network

lifetime under a centralized framework. A simple distributed Bellman-Ford [19]

shortest path algorithm can be utilized over each link’s cost which may be updated

frequently. This makes FA can be implemented in a distributed fashion and an ideal

component algorithm for our distributed heuristic, ENCAST. However, to achieve

the nearly optimal performance, FA has to frequently update the cost of each link

along which the sensor data is routed recently (the residual energy at two end nodes

of each link decreases). This will impose a large amount of energy consumption on

transmitting control messages across the network. In order to evaluate how “bad”

the performance obtained by ENCAST, comparing with an ideal FA, we implement

FA as a centralized algorithm without system overhead on updating link cost. To

fairly compare ENCAST against FA, we update link cost information in FA at the

same time when ENCAST adjustment is triggered.

To examine the workload balancing effectiveness of dynamic ENCAST, we do
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Figure 4.10: System lifetime without data aggregation.

not perform any data aggregation for the first set of experiments. Figure 4.10 shows

system lifetime obtained from our dynamic ENCAST and opponent FA with differ-

ent α. We find that the performance of our distributed algorithm considering system

overhead is very close to the centralized FA, especially when α is small, namely link

cost knowledge update of FA is not frequent. For algorithm FA, with the increment

of α, the corresponding system lifetime derived is also improved. The reason be-

hind is that there is no energy consumed on network link knowledge update for FA.

In addition, routing decision made based on the recent node residual energy will

balance the transmission load among the entire network as even as possible, there-

fore extending system lifetime. We also compare with a static SPT (MinDist)

which outperforms other schemes in our previous experiments. The simulation re-

sults verify that applying dynamic tree adjustment to release heavy transmission

duty from energy-critical nodes will significantly extend system lifetime.

Although extending system lifetime is the key task of ENCAST, data collection

delay is also important to data collection, which represents the response speed to

a data gathering request. Therefore, we use diameter of data gathering tree (D)
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which is a reasonable indicator of delay in the absence of information specific to

the MAC, to evaluate the resulting data collection structure generated by ENCAST.

From Figure 4.11, we conclude that the data gathering trees generated by ENCAST

have almost the same maximum hops (to the sink) as SPT. On the other hand, FA

keeps choosing a less loaded path for routing data flow for the current pair of source

and destination, which consequently makes FA have a longer network diameter than

ENCAST.

In the second set of experiments, we compare ENCAST to FA again under the

same environment. However, data aggregation is considered at this time. Since FA

does not explicitly take into account the impact of data aggregation, we introduce

flow loss multiplier which will also be utilized in our flow-based data collecting

model, into the experiments. flow loss multiplier is a fraction number (mij ∈ (0, 1))

denoting the percentage of data volume (generated at source i) left after data aggre-

gation which can be performed at any on-path node j. Although ENCAST is a

tree-based data collection algorithm which benefits much more from data aggrega-

tion (lots of subtrees converge at a unique parent node) than FA, to fairly evaluate

the impact of aggregation on both algorithms, for each pair of source and destina-

tion, data aggregation is only performed once at the on-path (on-tree for ENCAST)

node j possessing the smallest mij where i is the data source. The simulation re-

sults are shown in Figure 4.12 and Figure 4.13. The ranking order is similar to

the previous result in terms of both lifetime and data collection structure diameter.

Since aggregation extends system lifetime, the gap between FA and ENCAST is en-

larged because with the extended operation time, FA distributes data flows with a

finer granularity and without any cost on system overhead. The diameter almost

remains the same as before, which indicates that aggregation has little effect on the

maximum hops of the generated data gathering structure.

4.3 Summary

Designing an efficient data collection tree is a key challenge in sensor networks. To

address this problem, we first described five distributed heuristic algorithms, which
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Figure 4.11: Averaged diameter of data gathering trees without data aggregation.

take into account the removal of data redundancy. Our results have indicated that

when restricted to heuristics that operate using exclusively local information, and if

the hardware complexity of the sensors is low (equivalently: using sensors that do

not possess location information, neither by GPS, nor by any other means), it is still

possible to effectively form the aggregate data tree in a way that exploits the reduced

data traffic from sensor data aggregation. The results are particularly encouraging

when one considers the fact that MaxSubset and MaxDegree require no com-

plexity beyond the piggybacking of N i on DV messages. At little added hardware

cost MinDist appears to outperform the rest, suggesting a possible potential for

greedy approaches, i.e., communicate with the node closest to you, since it repre-

sents the highest degree of overlap. On the other hand, distributed MST requires a

large number of control message exchanges and location knowledge of all sensors

as well. In addition, compared with our hop based SPT heuristics, MMST always

has much larger total hops which is directly proportional to the total data collection

delay. Despite its close optimality in energy cost, it is still desired to trade it for a

more practical and simple algorithm with scalability especially in WSNs.

When considering extending system lifetime, the intrinsic limits of gathering

data along fixed tree structure directs our efforts to release heavy traffic load on
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Figure 4.12: System lifetime with data aggregation.

some frequently accessed nodes so as to balance energy consumption across the

network. We propose ENCAST to construct data collection trees with energy-critical

nodes as the leaves. When this is not possible, the algorithm tries to balance the load

on the critical nodes. We also propose an iterative application of this algorithm to

handle cases where nodes become critical over time. Our performance study shows

that our distributed algorithm significantly improves system lifetime compared to

static tree-based data collecting schemes (e.g. SPT) with small amount of control

message transmission and short data collection delay.
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Figure 4.13: Averaged diameter of data gathering trees with data aggregation.
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Chapter 5

Flow-based Data Collection Schemes

Based on the simulation results of ENCAST shown in the last chapter, we have ob-

served that, besides minimizing total energy consumption across the network, wire-

less traffic balancing is another important aspect which has significant impact on

system lifetime. Any traffic load imbalance will result in biased energy consump-

tion among nodes along frequently used paths; while nodes not involved in relaying

large data volume for other sources retain high energy reserves. As we discussed in

Chapter 2, many flow-based multi-path data gathering schemes have been proposed

to alleviate heavy traffic concentration on “hot-spot” nodes. However, they all fo-

cus on routing flow segments along different transmission paths to the sink for the

sake of traffic balancing. It would be beneficial to introduce in-network aggregation

into flow-splitting approaches for traffic reduction as well as load balancing. In this

chapter, we combine these two techniques together.

We advocate a simple and powerful compromise by noting that on one hand,

aggregation is hindered when flows are split, while on the other, splitting flows fa-

cilitates balanced energy consumption across different paths, as opposed to single

path routing. The synthesis presented in this chapter is based on sending sensor data

one or several hops away from the sensor data source, performing the aggregation

there (which due to data correlation will probably be quite effective) and only then

split this flow across different paths for the sake of balanced network use. There-

fore, the proposed schemes perform both data aggregation and flow splitting (load

balancing) in order to benefit from both techniques.

In this chapter, we first explain how flow loss multiplier works in flow-based
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data collection schemes. A mixed linear/integer programming (LP/IP) model is

formulated for the problem of determining the optimal aggregation nodes that max-

imize network lifetime. Then, we provide a simplified but practical aggregation

approach, First Hop (FH) data aggregation. Heuristics for FH aggregation are pro-

posed to obtain significant redundant transmission reduction and to prolong the

system lifetime. To facilitate performance evaluation, we adopt a flow loss multi-

plier that depends on the spatial relationship among sensed areas. Simulation results

show that FH aggregation provides significant increase in network lifetime for both

flow-based and tree-based delivery schemes, and that flow-based mechanisms pro-

vide better network lifetime than tree-based but at the cost of added complexity and

overhead.

5.1 Maximum Lifetime Data Collection with Aggre-
gation

In order to introduce data aggregation into our flow-based data collection frame-

work, we propose several flow-based aggregation schemes in order to exploit rich

data correlation and reduce wireless data traffic in WSNs. To present our data ag-

gregation schemes, we first introduce some concepts which are also important to

the problem formulation for the flow-based data collection. For each data flow (Dc)

generated by sensor node c within each data collection round, it is desired to choose

an efficient aggregation node j as the reference information (Dj) source to reduce

data redundancy. Only the aggregated data volume D′
c, where D′

c < Dc, is sent out

from j after aggregation. Thus, along the data delivery path from j to the sink, all

nodes involved will save energy by relaying the reduced data volume, D′
c.

Since it is difficult to perform data aggregation after flow splitting, the routing

protocol has to guarantee the integrality of the raw sensor data at least up to the

point of aggregation for those data flows over which data aggregation is going to

be performed. Therefore each data flow is assumed to be routed along a single path

until it reaches the aggregation node. After that, for the sake of workload balance,

aggregated data is free to be split into several flow segments and each one may

80



be transmitted along a different path. To denote the impact of data aggregation on

original data flow Dc, we use flow loss multipliers which have been explained in our

tree-based schemes. If aggregation is performed at node j over Dc, D′
c = Dc ∗ mcj

is the data volume after aggregation.

We formulate the problem of Maximum Lifetime Data Collection with Aggre-

gation node Selection (MLDCAS) as an IP/LP optimization model as follows (Figure

5.1). We assume all sensor nodes are initially assigned the same amount of energy.

After the nodes have been deployed, a communication graph G = (V, E(Rt)) is

derived, where vertex set V contains all sensors plus the sink and edge set E(Rt)

is determined by sensor transmission range Rt. We also use Ni to denote all i’s

neighbors which are located around i within Euclidean distance Rt.

objective : min EC
s.t. :
Xc

c,sink = 1 (c ∈ Nsink) (1)

∑
k Y c

kj = 1 (c ∈ V \ (Nsink ∪ {sink})) (2)

∑
k Y c

kj × mcj +
∑

r∈Nj
Xc

rj −
∑

i∈Nj ,i�=c Xc
ji = 0 (c, j ∈ V \ {sink}) (3)

∑
c∈V \{sink},j∈Ni

et × Dc × Xc
ij +

∑
c∈V \{sink},k∈Ni

er × Dc × Xc
ki+

∑
pc

kq :i∈pc
kq ,i�=q(e

t + er) × Dc × Y c
kq +

∑
pc

kq :i=q(e
r × Dc × Y c

kq + et × Dc × Y c
kq × mcq)

≤ EC (i ∈ V \ {sink}) (4)

∑
(c,j)∈l

∑
k Y c

kj < |l| (l ∈ L) (5)

0 ≤ Xc
ij ≤ 1 (∀c, i, j) (6)

Y c
ki ∈ {0, 1} (∀c, k, i) (7)

Figure 5.1: IP/LP formulation of MLDCAS.

Besides the symbols we explained in the previous chapter (refer to Table 4.1),

we also introduce several new variables and list them in Table 5.1. In this model, we

enumerate all qualified paths from each source node c (c ∈ V \ (Nsink ∪ {sink}))
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to any of its possible aggregation node j (j ∈ Sc). We introduce Sc to denote

c’s correlation subset which contains any node possessing correlated sensor data to

c. Sc can be derived from a particular WSN scenario. Generally speaking, it may

contain any node except the sink and itself (j ∈ V \({sink} ∪ {c})). We use a 0−1

integer variable Y c
kj to represent whether path pc

kj is chosen or not. Here k is the path

index, j is the aggregation node of path pc
kj , and mcj is flow loss multiplier denoting

data correlation between c and j. Although index k identifies the exact path along

which data is routed until the end point (aggregation node j), we explicitly use j to

denote a path for convenience in the problem formulation (Figure 5.1). The other

group of variables are Xc
ij’s. Each of them is a fractional number between 0 and 1,

denoting the portion of data volume (before aggregation) generated at c and routed

from i to j.

Table 5.1: Summary of Notation

Notation Definition

pc
kj k-th path from c to j

Y c
kj integer variable, denoting whether path pc

kj is chosen or not

Xc
ij the portion of data volume (before aggregation) generated at c and

routed from i to j
EC sensor energy consumption within a time unit (energy consumption rate)

et energy consumption on transmitting a data unit

er energy consumption on receiving a data unit

Dc data demand (Kb/s) of sensor c

h(c) aggregation site of sensor c

l an element of L
L set of all the possible path loops resulting lost in data aggregation

Sj node j’s data correlation subset, any node within it will generate

correlated data with j

The optimization variable is EC, which is the minimal energy consumption

across the network within a time unit, for instance 1 second. By assuming unified

initial energy volume, we can figure out the maximized lifetime by dividing the

amount of initial energy by the minimized EC (over all sensor nodes) which is

determined by the node with the most heavy traffic load. Constraint (1) makes

sure every sink’s neighbor node have to transmit its sensor data directly to the sink.

Constraint (2) is used to limit each data source to only send out its sensor data once
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within a time unit. Y c
kj is an 0− 1 integer number denoting whether the sensor node

is routed along the path between source node c and its potential aggregation node j

which is indexed as k-th path within the path set of c. Constraint (3) is introduced

for flow conservation. Considering each data flow coming out of source c, for any

intermediate node i, if i is the aggregation node of c (i = j), flow loss has to be

taken into account after aggregation (the unit sensor data will be aggregated at i

and only a data fraction mcj flows out of i); otherwise flow conservation holds,

which means the total amount of flow out of i has to be equal to the total amount

of flow into i. Constraint (4) denotes that energy consumption rate on each sensor

node can not exceed EC. Dc is the data demand (Kb/s) generated by c. et and er

denote energy consumption on transmitting and receiving a data unit. In order to

avoid any data loss in aggregation, we add constraint (5) to restrict any loop from

forming in the aggregation node assignment. For example, if sensor data of source c

is aggregated at node j, then j’s sensor data can not be aggregated at c. Constraints

(6) and (7) are utilized to denote that all Xs are fractional numbers and all Y s are

either equal to 0 or 1.

We introduce function h : V \{sink} → V , which maps each data source c to its

aggregation node h(c). Consequently, a directed graph G′ = (V, A) can be derived

where A = {< c, h(c) > |c ∈ V \ {sink}} based on a particular aggregation node

assignment. On G′, each “logical edge” < c, h(c) > is possibly a path which is

composed of many physical edges. L is the logical loop set containing all possible

loop ls, and |l| is the number of hops in loop l. For instance, if c ∈ Sj and j ∈ Sc

then logical edges < i, j > and < j, i > do not belong to A at the same time. To

introduce this constraint into MLDCAS (Figure 5.1), Y c
kj and Y j

kc can not be set to 1

simultaneously.

5.2 First Hop In-network Aggregation

The number of qualified paths in the problem of MLDCAS exponentially increases

with the increment of the network scale. Therefore, it is desired to avoid enumer-

ating all possible aggregation sites for each data source and the large number of
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paths connecting this source and any particular aggregation node. To remedy this

problem, we propose that the aggregation node for a sensor (data source) be the

next hop node on the path to the sink node, called the First Hop parent. This is

motivated by the fact that physical phenomena monitored by WSNs tend to behave

in a localized fashion with respect to Euclidean distance. Spatial data correlation

exists in a wide range of WSN applications. In our first hop aggregation scheme,

the flow loss multiplier is a function of the Euclidean distance between data sources

which characterizes spatial correlation among sensor data. This is also verified by

the traces obtained from real WSN scenarios [41]. Another consideration for lim-

iting the scope of aggregation to one-hop neighbors is that identifying correlation

with distant sources usually involve non-trivial communication and computation,

and knowledge of application details as well. Additionally, first hop in-network

aggregation sharply narrows the number of paths down to the cardinality of each

sensor’s one-hop neighbor set, which makes it an appropriate candidate to balance

data redundancy removal and the feasibility of our solutions.

The process of selecting a first hop parent with which to aggregate in a pair-

wise fashion is essentially equivalent to choosing an upstream parent node in a tree

rooted at the sink. Many nodes can choose the same upstream parent but the per-

formed aggregation is considered to be pairwise at all times. Some redundancy

may be left in the aggregated data. This is acceptable because it means that one

data stream does not have to wait for another data stream to arrive in order to per-

form 3-way or n-way (n > 2) aggregation. Before the first hop parent forwards the

data, it reduces the volume of data by applying a data aggregation scheme suitable

to the particular application. After first hop aggregation, the aggregated data may

be split and delivered along several paths to the sink.

To extend the lifetime of a WSN where rich data correlation mainly exists be-

tween the source and its one-hop neighbors, we combine First Hop (FH) in-network

aggregation and load balanced data flow splitting and delivery together. Then, we

reformulate the optimization model of Figure 5.1 as the Optimal First Hop Aggre-

gation Routing (OFHAR) problem. This is shown in Figure 5.2 which simplifies but

approximates the problem of MLDCAS. By introducing OFHAR, the search space of
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the aggregation node for a data source i is narrowed from the entire network except

the sink (V − {sink}) down to the source node’s neighbor set (Ni). The optimiza-

tion variables include FH data routing decision variables Y ’s, edge flow variables

F ’s (within a time unit) and EC. Yij is a 0 − 1 integer variable, whose value is 1

if and only if source i chooses j as its FH parent. F c
ij denotes the flow generating

from c and going through the edge (i, j), which is always greater than or equal to

0. The objective is still to minimize EC. The first set of constraints are used to

denote that each commodity source i has to choose a unique node within Ni as its

FH parent. The second set of constraints ensure that once the FH parent is fixed, all

the information has to be totally transferred from the source to its FH parent.

The third set of constraints are derived from the commodity conservation. Each

data flow have to be routed to the sink node. Along each path, all the nodes (ex-

cept the sink) can be divided into 3 categories: the source node i, the FH parent

(aggregation node) and the nodes on the rest of the path. At source node, Di is

generated in each time unit. The flow is aggregated at the FH parent node and the

flow left after aggregation is determined by the flow loss multiplier. Flow com-

modity conservation is maintained on the other on-path nodes. The fourth set of

constraints are used to represent that the energy consumption rate (EC) of each

sensor node (i) is determined by its wireless transmission and reception. The fifth

set of constraints are utilized to avoid creating any loops during the process of FH

aggregation parent selection. Compared with the corresponding constraints in Fig-

ure 5.1, the constraints are much simpler because only 2-hop aggregation loop may

happen in FH data aggregation. The next set of constraints ensure all variable Y s

are 0 − 1 integers. At last, all flow segments has to be larger or equal to 0.

5.2.1 Maximum Lifetime with Explicit First Hop Aggregator
Selection

To tackle the problem of OFHAR in an efficient way, we can divide the problem

into two phases that are solved separately. In Phase 1, for each data source i, we

determine the FH parent h(i) ∈ V . The sensor data will be transmitted from each

i to h(i) and aggregated there (h(i) �= 0). Energy will also be reduced accordingly
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objective : min EC
s.t. :∑

k∈Ni
Yik = 1 (i ∈ V \ {sink})

F c
ci = Dc ∗ Yci (c ∈ V \ {sink}, i ∈ Nc)

∑
j∈Ni,j �=c F c

ij −
∑

k:i∈Nk,k �=c F c
ki =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Di

(i ∈ V \ {sink}, i = c)

0
(i ∈ V \ {sink}, i �∈ Nc)

mci ∗ Dc ∗ Yci

(i ∈ V \ {sink}, i ∈ Nc)

∑
c,j∈Ni

et ∗ F c
ij +

∑
c,k:i∈Nk

er ∗ F c
ki ≤ EC (i ∈ V \ {sink})

∑
(i,j)∈l Yij ≤ |l| l ∈ L

Yij ∈ {0, 1} (∀i, j)

F c
ij ≥ 0 (∀i, j, c)

Figure 5.2: LP/IP formulation of OFHAR.

at the transmitter and receiver. In Phase 2, given a concrete FH parent assignment,

FH aggregation can be performed. This phase can be viewed as a new multicom-

modity network flow problem with updated commodity sources and demands, and

the lifetime T can be obtained from solving the LP built on this updated model.

After FH data aggregation at node h(i) which is determined by the solution de-

rived from Phase 1, the aggregated commodity flow (originally generated at node i)

is potentially split into multiple flow fragments and each of them is routed through

a different path. Our objective is to figure out the maximum lifetime of the sen-

sor network which can be achieved in Phase 2. Based on the same parameters,

the formulation of the Maximizing Lifetime after First Hop Aggregation (MLFHA)

problem is shown in Figure 5.3.

The optimization variables include EC and F c
ij’s assuming h(i) have been pre–

determined. The first set of constraints are derived from a sensor node’s limited
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objective : min EC
s.t. :∑

c,j∈Ni
et ∗ F c

ij +
∑

c,k:i∈Nk
er ∗ F c

ki ≤ EC (i, c ∈ V \ {sink})

∑
j∈Ni

F c
ij −

∑
k:i∈Nk

F c
ki =

⎧⎨
⎩

Di (i ∈ V \ {sink}, i = c)
0 (i ∈ V \ {sink}, i �= c, c �∈ h−1(i))
mci ∗ Dc (i ∈ V \ {sink}, c ∈ h−1(i), k �= c)

∑
j∈Ni

F c
ij − mciF

c
ci = 0

F c
ci =

{
0
Dc

(i ∈ V \ {sink}, c ∈ Ni, c �∈ h−1(i))
(i ∈ V \ {sink}, c ∈ Ni, c ∈ h−1(i))

F c
ij ≥ 0 (∀i, j, c)

Figure 5.3: LP formulation of MLFHA.

energy budget. During a time unit, the total energy consumed at node i on receiving

and transmitting data flows should not exceed EC. The second set of constraints are

set up based on network flow conservation. For the commodity source node (i = c),

its net data volume sent out should be equal to Di. If it is just an intermediate node

for flow relaying (i �= c) and it is not the current commodity source’s FH parent

(c �∈ h−1(i)), its total data volume sent out is equal to the total amount of data

received. We use h−1(i) to denote the set of commodity sources that share i as their

common FH parent. If node i is commodity source c’s FH parent, the data volume

Dc generated at c will be reduced to mci∗Dc after FH data aggregation is performed

at i. To restrict the unique FH parent selection for source node c, a binary variable

F c
ci, i ∈ Nc is defined. That is, if h(c) = i, all the data flow generated at c will be

transported to i; otherwise, no data flow from c will be received by i. Obviously,

all variables are non-negative, while the commodity demands must be greater than

zero.

5.2.2 FH Parent Heuristics

In this subsection, we propose several heuristic algorithms to choose the FH parent

for each sensor node. First, we introduce several concepts to help describe the
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heuristics. As we presented before, Ni is the neighbor set of node i. In our FH

aggregation model, it is also the candidate set for FH parent selection for node

i. Based on the hop-count to the sink, each element of Ni can be classified into

one of 3 subsets: N−
i , N=

i and N+
i ; representing the subset of i’s neighbor nodes

with fewer (only one hop), equal and more (only one hop) hop-counts to the sink,

respectively.

Minimal Distance N−
i Neighbor (MinDistFH)

The first algorithm is to select a FH parent from nodes one-hop closer, that is, from

N−
i . If there exists more than one candidate, the minimal Euclidean distance is

employed to break the tie, i.e. the node in N−
i with minimal distance to i will be

chosen. Compared with other candidates, choosing FH parent from N−
i guarantees

sensor data is delivered one hop closer to the sink, which implies energy efficiency.

MinDistFH : h(i) = arg min
j∈N−

i

dij (5.1)

The benefit of choosing the FH parent out of N−
i is that we can guarantee there is

no loop in FH parent selection. In addition, no matter how effectively aggregation

can be performed, this method at least routes the data closer to the sink.

α–based N−
i ∪N=

i Neighbor (α-FH)

Selecting h(i) from N−
i limits the available choices. We propose another scheme,

α − FH, which uses a distance threshold α to determine whether to choose h(i) only

from N−
i or to consider N=

i as well. However, enlarging the size of the candidate

set will introduce potential FH loops. With the help of a sensor’s unique identifier,

we will avoid creating FH loops.

If Rs describes the radius around which the sensor senses the environment, and

dij is the Euclidean distance between sensors i and j, then if dij ≥ 2Rs, the prob-

ability that node i and j’s data are correlated is small. We therefore use α ∗ 2Rs

(α ∈ (0, 1)) as a threshold to determine if candidate node k is “close enough” to

i. For current node i, we first choose the closest node (k) from N−
i , if dik is less

than α ∗ 2Rs, then h(i) = k; otherwise we try to find a better candidate from N=
i .
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We assume each sensor node has a unique ID, which can be assigned before WSN

deployment. We also assume j is the node closest to i in N=
i . Compared with other

candidates in N=
i , there is a larger probability that node i and j monitor the same

target simultaneously, which implies better data aggregation can be performed at j.

This assumption assures the maximized benefit by enlarging the candidate set for

choosing FH parent. To avoid creating loops we force the node (i) with larger ID

to choose a smaller ID node (j) as its parent when the two nodes have the same

minimal hop-count to the sink, i.e. i > j, j ∈ N=
i . So, if dij < dik and i > j, then

h(i) = j; otherwise h(i) = k.

α − FH is a modified version of MinDistFH. Given a FH parent assignment

obtained from MinDistFH, for every node i, compare the distance di,h(i) with

threshold distance α∗2Rs. If di,h(i) ≤ α∗2Rs, leave h(i) as i’ FH parent; otherwise,

try to find another neighbor node k ∈ N=
i , if dik < di,h(i) and i > k, use k as the

new h′(i). We do not enlarge the candidate set to the entire Ni, because we do not

want to risk extra energy consumption by transmitting sensor data away from the

sink.

Modified MST FH Parent Selection (MMST)

We observe that the FH parent-child relationships of the previous methods form a

tree. They connect N + 1 vertices, using N edges (that is, each of the N non-sink

nodes connects to a parent) and they are constructed such that there are no loops.

The previous schemes consider only information that can be locally exchanged with

neighbors in constructing the tree. This motivates us to consider other spanning

tree constructs that minimize more global cost functions to represent parent-child

connections, namely a Minimal (distance) Spanning Tree, MST. Note that there are

distributed versions of MST [28].

To improve the energy-efficiency, we define a Modified Minimal Spanning Tree

(MMST) to form the FH parent tree. By modified, we mean we first assign sink (0)

as the parent to each of its neighbor nodes (located within Rt to the sink); then,

the MMST is built based on this star topology. During this latter process, the Eu-

clidean distance between two end nodes of each edge is used as the cost of that
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edge. The modification improves energy efficiency since the sink is the destination

for all commodities and it has no energy constraints, hence it will not be a node that

restricts system lifetime. MMST is expected to perform better than MST.

Random FH Parent Selection (RandomFH)

We also introduce another heuristic to select FH parent node for each data source

via uniformly randomly choosing the FH aggregation node among all the candidate

sensors (the neighbors of the current source node). We use it as a benchmark to

evaluate other heuristics to check if our heuristics with different “intelligence” will

outperform the random FH parent selection.

5.2.3 Performance Evaluation of First Hop Aggregation

In this subsection, we first briefly motivate the effectiveness of our FH aggrega-

tion heuristic algorithms by comparing our heuristics with the optimal solution of

OFHAR for small networks. Clearly, due to its computational complexity, the opti-

mal solution can only be determined for small “toy” network instances. Then, we

evaluate the performance of the heuristic FH aggregation tree building algorithms,

MinDistFH, α − FH, and MMST-FH in terms of maximum lifetime, message over-

head and maximum pathlength. Both flow-based and tree-based aggregation mech-

anisms are considered and a comparison is made to a flow-based non-aggregation

mechanism as well. We also compare our algorithms with a minimal cost matching-

based energy-efficient data aggregation scheme.

Effectiveness of FH Parent Heuristics

We use the first aggregation strategy and set the flow loss multiplier to a func-

tion of the Euclidean distance (mij = f(dij)) between the two nodes that non-

increasing, and satisfies f(0) = 0 and f(dij) = 1 when dij ≥ 2Rs. Specifically,

in the experiments described below, we assume the data aggregation parameter,

mij , is determined by the size of overlapped sensing coverage of node i and j, i.e.

mij =
(|Ai|∪|Aj |−|Ai|)

|Ai| , where Ai is the sensed disc of node i. We also restrict our

attention to WSNs distributed in 2-dimensional space. and perfectly circular (with
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radius Rt) transmission coverage, i.e., E(Rt) = {(i, j)|dij ≤ Rt, i �= j, i, j ∈ V },

that is E(Rt) contains all pairs of nodes (i, j) where the Euclidean distance between

them (dij) does not exceed Rt. Thus, the neighbor set is defined as Ni = {j|dij ≤
Rt, i �= j, j ∈ V }, i.e. any node j located within Rt distance is i’s neighbor. Here

symmetry is assumed, i.e., if j ∈ Ni then i ∈ Nj and vice versa. We also assume

that Rt ≥ 2Rs, thus ensuring that two sensors with overlapped sensing coverage

(potential data aggregation) are capable of communicating directly with each other.

We first compare the FH parent selection results obtained from our heuristics to

the optimal solution for small cases of 15 sensor nodes including the sink. The 14

sensors are randomly placed in a 25 ∗ 25m2 area. All nodes are assigned the same

initial energy except the sink. We use exhaustive search for parent choices to obtain

the optimal solution to OFHAR (refer to Figure 5.2). We find the FH parent trees

obtained from MMST-FH are exactly the same as the optimal solutions for more

than 20 out of a total of 30 network configurations. In the other cases, there is only

1 or 2 different edges between these two FH parent trees. Below we show the FH

parent trees for the optimal and heuristic cases for one of the 15-node networks.

The FH aggregation parent assignments obtained from MinDistFH, α − FH

and RandomFH are shown in Figure 5.4(a), 5.4(b) and 5.4(c).
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(a) MMST-FH(T ∗ = 546.4s)
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(b) Optimal Sol.(T ∗ = 612.1s)

Figure 5.5: MMST-FH vs. optimal FH parent assignment.

Here T ∗ represents the maximum lifetime obtained via the flow-based routing

scheme (refer to the LP model in Figure 5.3) after the corresponding FH aggrega-
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(a) MinDistFH (T ∗ = 403.6s)

8

7

1

14

9

5 3 6

1210

4 2

11
13

edge of X (m) 

ed
ge

 o
f Y

 (m
) 

 25 20 15 10 5 0

 25

 20

 15

 10

 5

 0

sensor location

(b) α − FH (T ∗ = 553.6s)
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(c) RandomFH (T ∗ = 389.3s)

Figure 5.4: MinDistFH, α − FH(α = 0.1) and RandomFH parent assignment.

tion. Figure 5.5(a) shows the FH parent tree obtained from MMST-FH; while Figure

5.5(b) shows the optimal FH parent tree. Note that the optimal FH tree chooses node

14 as 5’s FH parent instead of 9 (in MMST-FH) so as to relax the traffic burden on 9,

and the corresponding system lifetime (computed by the LP) is prolonged as well.

We observed that our heuristic algorithm MMST-FH and α − FH can provide a near

optimal FH parent selection for small networks.

To gain further insight into the behavior of the heuristics, the FH parent trees for

the different aggregation heuristics are shown for an example of 30 nodes in Figures

5.6. From these figures, we find that our heuristics show more structure than this

particular random FH parent assignment. MinDistFH tends to have higher in-

degree at nodes causing it to overload some nodes thereby reducing lifetime; while
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(a) RandomFH (T ∗ = 283.2s) (b) MinDistFH (T ∗ = 302.7s)

(c) α − FH (α = 0.1) (T ∗ = 424.5s) (d) MMST-FH (T ∗ = 594.4s)

Figure 5.6: FH parent assignments for 30 node networks.

the wider choice of parents of α − FH helps reduce load. MMST-FH tends to cause

more chain-like behavior due to its focus on distance. Both α − FH and MMST-FH

increase the gains from aggregation by choosing closer parents as demonstrated by

the existence of shorter line segments in the graphs compared to MinDistFH and

this example of RandomFH.

Then, we simulate the sensor network under different multi-hop data gathering

schemes with/without FH data aggregation. We assume N nodes are distributed

within a 25∗25(m2) plane area. The sink (0) is placed at the origin of the coordinate

system. All the other N−1 sensor nodes are uniformly randomly distributed within

the same area and assumed to have the same initial energy (10J), and each of them
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generates sensor data at a constant rate (1Kb/5min), which is same to Chapter 4.

We adopt a simple energy consumption model [34]. We assume each sensor node’s

sensing range is the area surrounding it up to 5 meters (Rs = 5m). Its wireless

transmission range is 10 meters (Rt = 10m). The results are averaged over 60 runs

of different sensor network configurations and the error bars are two sided 95%

confidence intervals.

For small devices such as sensor nodes, energy consumption on receiving and

transmitting a unit of data is close. For the convenience of analysis, we introduce a

ratio factor of er/et, γ, to describe the difference between them, where 0 < γ ≤ 1.

For almost all the on-path nodes of a data flow, their transmitting and receiving data

volume is same. Different γ only change the amount of their energy consumption

with a unified factor. On the data aggregation node, incoming data volume will be

reduced according to the corresponding flow loss multiplier. Compared with the

entire network, the flow changes on those aggregation nodes are minor. Therefore,

the substance of the simulation result is insensitive to γ. In our experiments, the

energy spent on sending and receiving sensor data are set to 100nJ/bit and 30nJ/bit,

respectively. The major parameters set for the simulations are listed in Table 5.2.

Table 5.2: Simulation Parameters
Parameter Value

Unit of lifetime second

D (flow data demand) 1Kb/300second
E (initial energy) 10J

γ 0.3
size of area of interest 25 ∗ 25(m2)
Rs (sensing range) 5m and 10m

Rt (transmitting range) 10m

et 100nJ/bit

er 30nJ/bit

α 0.1 and 0.5

Message Overhead for FH Parent Selection Heuristics

We first evaluate the message overhead of choosing parents for aggregation. This

is defined as the total number of control messages used during FH parent tree for-
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mation. MMST-FH starts from a star structure in which the sink is the center and

all the neighbors of the sink are connected to it. Then, the unexplored nodes are

selected and connected to this star one by one according to the principle of build-

ing an MST. This process continues until all nodes are connected. Since building

the initial star is no more complicated than building the MST, we use the num-

ber of control messages used during building the MST as the system overhead of

MMST-FH. A distributed version of Minimum-Weight Spanning Trees [28] requires

at most 5N log2 N + 2E message transmissions in a given graph with N nodes and

E edges. Each message consists of enough bits to represent the length of an edge,

log2N bits to represent the node’s ID and 3 additional bits to mark the message

type.

To build a MinDistFH tree, the sink first broadcasts a message to claim its

level is 0. After receiving that message, each neighbor node will choose the sink

as their parent and broadcast to inform their neighbors that their levels are 1. This

process will continue until every node sets up its level. During this process, most

of the sensors may receive multiple messages and its level is determined by the

message with the smallest level value. Each node only needs to send out one mes-

sage. As we have discussed in Chapter 4, during the process of building a hop-

based SPT, tie-breaking could be done by comparing the signal strength received

at each sensor. So MinDistFH only requires N message transmissions with the

same message size as MMST-FH. α-FH is a modified version of MinDistFH and

assuming each node obtains all its neighbor distance information based on signal-

strength measurements, its message complexity and its message size are similar to

those of MinDistFH.

Performance of Flow-Based Mechanisms

We evaluate the flow-based heuristics for different network configurations based on

the maximum lifetime obtained from the LP and the maximum pathlength (with

respect to hop-count). In the first experiment, we compare the lifetime of the

flow-based data delivery schemes including our aggregation heuristics with a non-

aggregation scheme called General. The results are shown in Figure 5.7. General
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Figure 5.7: Maximum lifetime for flow-based mechanisms

represents the maximum lifetime achieved from the general multicommodity net-

work flow-based LP where no data aggregation is performed. In this approach, data

flow can be split at every source node and each fraction is routed along a differ-

ent path. The most balanced energy consumption can be reached in the General

LP because there is no constraint on flow splitting due to FH aggregation. How-

ever, without considering in-network data aggregation, lots of energy is wasted

on transmitting and receiving redundant data and system lifetime is shorter than

other schemes. Both RandomFH and MinDistFH have poor performance in

terms of maximum lifetime. RandomFH performs similar to MinDistFH since

most neighbors have some correlation. The α − FH schemes perform better than

MinDistFH since they have larger candidate sets of parents. A smaller value

of α corresponds to a greater improvement since it causes the system to more of-

ten consider parents that are close to the node and the same hop-distance away.

However, a smaller α also requires accurate distance measuring capabilities. From

Figure 5.7, we also observe that with an increase of sensor deployment density, the

gap of maximum system lifetime between different α’s becomes wider. In sparse

WSNs, the cardinality of each node’s neighbor set is small. As the distribution den-

sity increases, each source node has a larger candidate set, and the value of α has
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a more notable impact. MMST-FH performs the best among all FH parent selec-

tion heuristics in terms of system lifetime. This algorithm makes the most effort

to choose nearby nodes as parents and therefore gains the most from aggregation.

This demonstrates that an intelligent selection for FH parent assignment will result

in significantly improved system lifetime particularly for denser networks. This

observation is also an incentive to propose intelligent heuristic FH parent selection

algorithms and evaluate their performance.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 50 45 40 35 30 25 20 15

N
um

be
r o

f H
op

s

Number of Sensors

General
MMST−FH
MinDistFH

a−FH(a=0.1)
a−FH(a=0.5)

RandomFH

Figure 5.8: Maximum pathlength for flow-based mechanisms.

In Figure 5.8, we compare the maximum pathlength with respect to hop-count of

the flow-based delivery schemes General, MMST-FH, MinDistFH, α-FH(0.1).

Maximum pathlength is defined as the maximum number of hops from any data

source to the sink along the data gathering structure. The results are quite similar,

since the LP decides the efficient delivery paths. The choice of a good FH parent can

cause somewhat larger pathlength, however. In all cases, the maximum pathlength

increases only slightly for more dense networks. In summary, aggregation does im-

prove lifetime with a slight increase in pathlength. MMST-FH has the best lifetime;

while α-FH also provides significantly longer lifetime than the mechanism with no

aggregation.
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Comparison with AFST

To further explore the performance of our heuristics, we compare with another

energy-efficient data gathering algorithm, Adaptive Fusion Steiner Tree (AFST)

[54]. It provides a near optimal solution to the problem of correlated data col-

lection in terms of minimized energy consumption both on data transmission and

aggregation. To build an data collection structure via AFST, minimal cost perfect

matching is iteratively performed to pair source nodes for aggregation. Within each

iteration, nodes are matched based on the edge weight determined by jointly consid-

ering energy consumption on data aggregation and transmission. For each non-sink

matched pair, an “aggregation benefit” is computed to decide if it is worth per-

forming aggregation. For each aggregation pair, one node is randomly chosen as an

aggregation node and the other transmits its data to the aggregation node. After data

aggregation, only the aggregation node is left for the next round of matching. For

those pairs that do not fuse, both nodes send data to the sink along the shortest path.

The process continues until all aggregated data converge at the sink node. In this

way, energy can be intelligently spent for data aggregation and routing, therefore

extending the operation time of the network. The reason behind choosing AFST

is two fold. First, we want to compare the lifetime obtained by our algorithms to

an aggregation-enabled data gathering scheme. Second, since AFST performs data

aggregation in an energy efficient fashion, we also use it as a benchmark to evaluate

the data aggregation efficiency integrated with our algorithms.

In AFST, energy consumption of data aggregation and wireless transmission are

assumed to be of a similar level. Data redundancy is assumed to linearly degrade

with the distance between two sensors until the distance exceeds a threshold (data

correlation range). To fairly compare against AFST, we assume data aggregation

is energy free. Therefore, for each matched pair of nodes, data aggregation occurs

with much higher probability than before. We examine the impact of data correla-

tion to the performance of the algorithms by varying the data correlation range (Rc)

from 10m to 20m.
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Figure 5.9: System lifetime comparison.

Since system lifetime is the performance metric of interest, we first show the

system lifetime achieved by tree-based MMST (MMST-FH-Tree), flow-based MMST

(MMST-FH) and AFST under different parameters in Figure 5.9(a) and 5.9(b). We
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find that even ignoring the energy consumption on aggregation, the flow split-

ting data gathering scheme (MMST-FH) outperforms the other tree-based schemes

(MMST-FH-Tree and AFST) because MMST-FH balances the load as well as

reduces wireless transmission via first hop data aggregation. For the tree-based

schemes, MMST-FH-Tree performs better even though AFST is capable of doing

further aggregation after FH in a large correlation range (20m). The reason behind

this behavior is twofold. First, AFST does not take full advantage of data correla-

tion existing between closely located sensors, as will be discussed later. Second,

due to the random choice of data aggregation node for each matched node pair,

AFST wastes valuable energy on transmitting data to some nodes which are unfor-

tunately further away from the sink. To remove the effect of the latter problem,

we also consider a modified version AFST-Mod that chooses as parent the node

that is closer (in hops) to the sink. The results come closer to the lifetime of the

MMST-FH-Tree mechanism.

We also show the total data collected at the sink in Figure 5.10(a) and 5.10(b) to

analyze the aggregation behavior of MMST-FH, MMST-FH-Tree and AFST. For

a N-node WSN, our first hop aggregation schemes (MMST-FH and MMST-FH-Tree)

perform aggregation over N − 1 edges (FH transmission) while AFST only utilizes

N/2 edges (a side-effect of its matching logic). Since the most significant aggrega-

tion exists within the FH transmission and inner node distance will be set apart after

first round matching, AFST can not make up the lost aggregation by using a large

correlation range to aggregate data further. So, AFST collects the largest amount

of data at the sink. In addition, MMST-FH-Tree aggregates data more effectively

than MMST-FH.
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Figure 5.10: Total volume of data collected.
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5.3 Summary

In this chapter, we combine multi-path (flow-based and load balancing) data deliv-

ery and data aggregation together to extend system lifetime. A mixed IP/LP model

is utilized to formulate the problem. A flexible and application-specific flow loss

multiplier is also introduced representing the impact from data aggregation. Due

to the computational complexity, we also presented several FH parent selection

heuristics to obtain significant redundancy removal. Our simulation results demon-

strate that, after appropriate FH data aggregation, the system lifetime can be greatly

extended.

There are many other lessons that can be drawn from our simulation results.

First, no matter whether we perform FH aggregation or not, splitting the data flow

can balance the traffic and result in prolonged lifetime, but it requires extra energy

for exchanging local or even global information and leads to a longer data collection

delay. Secondly, without data flow splitting, transmitting aggregated data through a

data gathering tree will also achieve a fairly satisfactory lifetime. Moreover, a tree-

based data gathering scheme simplifies data collection saving energy consumption

when it comes to system overhead. If the hardware complexity of the sensor device

is low, it is still possible to effectively perform data aggregation at a FH parent node

and prolong the system lifetime, because α-FH only requires local information of

correlated distance which can be detected based on signal strength. For some ap-

plications that require prompt reaction, data collection latency becomes the critical

issue. In this type of scenario, MMST-SPT provides a method to balance between

extended lifetime and reduced latency in data collection. Finally, when compared

with a complex perfect matching–based aggregation scheme (AFST), our FH ag-

gregation scheme is more efficient at obtaining a larger amount of data aggregation

in our studied scenarios.

When considering sensor data collection algorithms applied over a non-ideal

MAC protocol, the impacts of this practical MAC protocol need to be taken into

account during the design of all the tree-based and flow-based schemes presented

before. In tree-based schemes, dynamic tree adjustment is provided to deal with
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non-balanced energy consumption across the network. It can also handle the bro-

ken links or links with unacceptable latency, etc. In flow-based schemes, multiple

paths are utilized to route sensor data for each pair of source and destination nodes.

They are more robust to link failure or similar issues from un-ideal MAC protocols.

However, to implement flow-based schemes, a more complicated MAC protocol

has to be provided, which may cost much more energy on control packet overhead.
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Chapter 6

Contour Map Reconstruction

First hop (FH) aggregation as described earlier in the thesis exploits spatial data cor-

relation that exists between data sources within communication range. We note that

spatial correlation is not restricted to contiguous areas. In this chapter we will con-

sider contour maps. Different to the previous data aggregation model, for WSN ap-

plications of contour map reconstruction, measurements obtained at sensors spaced

far apart can still be strongly correlated (they may locate around the same contour

line and possess similar sensor readings). Thus, while typically measurements by

one sensor are expected to be highly correlated with those of nearby sensors, there

exists potential that they are also highly correlated with measurements of sensors far

away, i.e., multiple hops away in terms of routing. It is interesting to develop other

aggregation schemes for exploiting data correlation between data sources more than

one-hop apart to further eliminate redundant transmissions and extend system life-

time.

Compared with FH data aggregation, it becomes more complicated to intelli-

gently perform data aggregation in WSNs where the most efficient (“best”) aggre-

gation nodes for a particular data source may be located several hops away. How-

ever, chasing maximum data aggregation by delivering raw sensor data several hops

away may not necessarily lead to lifetime extension, because the energy spent on

the path (to the aggregation node) could be larger than in FH aggregation. If the

“best” aggregation node is not closer to the sink than the source node itself, we may

lose the benefit of better aggregation by having to travel longer paths to the sink.

In this chapter, we first investigate the impact of performing greedily data ag-
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gregation at the “best” aggregation site regardless where it is. The results of our

analysis indicate that, in general, to obtain the maximized lifetime by performing

data aggregation at the “best” site requires that the gain out of the resulting data

volume reduction has to be extremely high, and in inverse relation to the size of the

network. Motivated by this conclusion, we then provide an aggressive data aggrega-

tion scheme for a particular type of WSN applications, contour map reconstruction

[80, 46, 11, 92, 29], taking advantage of data correlation between more than two

source nodes. We use simulations to study its performance.

6.1 The Limits of Pairwise Aggregation Techniques

It is well known that in wireless sensor networks employing multi-hop forwarding,

the energy of nodes closer to the sink is depleted first [66]. Solutions that cluster

nodes into “neighborhoods” and perform intra–cluster aggregation do not funda-

mentally change this observation (think of the clusters as becoming “nodes”). Sim-

ilarly, performing pairwise aggregation between two neighboring nodes is also not

changing the nature of the observation (think of each pair becoming the equivalent

of a single “node”). An option is to consider performing aggregation not locally,

i.e., within a “neighborhood”, but globally, at a node, possibly distant, someplace

in the network, assuming the most beneficial site for performing aggregation is at

that distant node. Such an approach trades additional load to forward to the dis-

tant aggregation site, with a potentially better reduction of the traffic that eventually

marches from the aggregation site to the sink.

Assume all sensor nodes have the same transmission range, Rt, and are uni-

formly distributed within a 2-D area with a unique sink located at the origin. With-

out loss of generality, we assume the area of interest is a sector of angle π/2 (Figure

6.1). We divide the area into k sections A1, A2, ..Ak where the radii of each section

Ai is i ∗ Rt (i = 1, 2, ..., k). The area of each section Ai (i = 1, ..., k) is Ai =

π
4
(2i − 1)R2

t = (2i − 1)A1. For convenience we set A1 to be the area unit (A1=1).

The total area of the k sections is AT =
∑k

j=1 Aj = A1(1+3+5+...+2k−1) = k2.

Assume now that for each data unit generated at a sensor, there is a best aggregation
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Figure 6.1: Deployment model.

node/site for it and the location of the best aggregation site is uniformly distributed

across the whole network. We model the impact of the best aggregation by a factor,

m (0 < m < 1), which expresses traffic reduction caused by aggregation. Specif-

ically, for every unit of traffic (before aggregation) from two sources, we produce

1 + m units as a result of aggregation instead of 2. We assume, optimistically, that

this “best” m applies to the aggregation of traffic from any sensor (realistically, m

is not the same for all nodes). In addition, to capture the energy difference be-

tween transmitting and receiving, we define β as the ratio of the amount of energy

consumption for receiving one bit over that of transmitting a bit. We assume that,

typically, 0 < β ≤ 1.

Nodes within A1 do not gain from aggregation because a single transmission

delivers their data to the sink. Nodes in Ai (i > 1) impose energy cost on nodes in

A1, which depends on where the traffic from the node in Ai gets aggregated. For

example, for a node in A2, if its best aggregation node is in A1, then the energy

consumption it adds to nodes of A1 is β + m (the cost to receive it, β, and to

transmit, m, the resulting aggregation outcome). If its best aggregation site is in Aj

(j = 2, 3, ..., k) then the cost to nodes in A1 is (1 + β)m (since they receive and
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relay the already aggregated traffic). Assuming uniform distribution for the location

of the best aggregation site, the expected relay load for a node in A1 is:

L1 =

(
AT − A1

AT

m(1 + β) +
A1

AT

(β + m)

)
(AT − A1)

A1

= ((1 + β)mk2 + β(1 − m))(1 − 1

k2
) (6.1)

Next we generalize the definition of the energy cost to nodes in Ai (i > 1).

Besides transmitting their own sensed data1 they also need to relay “raw” data (data

before aggregation) and aggregated data for other sensors. We classify the other

nodes with respect to a node in Ai into into 3 categories: nodes in A1, A2, ...

Ai−1; nodes in Ai and in Ai+1, ... Ak, denoted respectively by A1 ∪ I , II , and

III . Within each category the best aggregation site could be in the same or in a

different category. If the aggregation site is in Ai, we assume the ideal (optimistic)

case that a single transmission delivers the data within Ai and costs the aggregating

node β to receive it and m to transmit the resulting aggregated traffic, for a total

of β + m. If the aggregation is performed in (A1, A2, ... Ai−1), then no node in

Ai serves as relay, and the load to nodes in Ai is 0. Finally, if the aggregation is

performed in (Ai+1, ... Ak) the data, after aggregation, has to travel to the sink and

hence it imposes an energy cost mβ to receive and m to transmit on a node in Ai,

for a total of m(1 + β). The summary of all the load seen by nodes in Ai for the

various categories to which the originator and the aggregator node reside is shown

in Figure 6.2. Invoking the uniform distribution of the nodes in the 2-D space we

can produce the weighted sum of costs, and we can determine the expected energy

cost for a node in Ai:

1We will not account for the load of data sourced/sensed at a node, because it is an inescapable

cost and it is equal to all sensors throughout the network.
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Type Source in Aggr. in Energy Cost Prob.

A1 ∪ I 0
∑i−1

j=1 Aj

AT

I A2, ..., Ai−1 II β + m Ai

AT

III (1 + m)(1 + β)
∑k

j=i+1 Aj

AT

A1 ∪ I 0
∑i−1

j=1 Aj

AT

II Ai II β + m Ai

AT

III m(1 + β)
∑k

j=i+1 Aj

AT

A1 ∪ I 1 + β
∑i−1

j=1 Aj

AT

III Ai+1, ..., Ak II β + m Ai

AT

III m(1 + β)
∑k

j=i+1 Aj

AT

Figure 6.2: Relay load vs. aggregation site.

Li =

(
Ai

AT

(β + m) +

∑k
j=i+1 Aj

AT

(1 + m)(1 + β)

) ∑i−1
j=2 Aj

Ai

+

(
Ai

AT

(β + m) +

∑k
j=i+1 Aj

AT

m(1 + β)

)

+

(∑i−1
j=1 Aj

AT

(1 + β) +
Ai

AT

(β + m)

+

∑k
j=i+1 Aj

AT

m(1 + β)

) ∑k
j=i+1 Aj

Ai

(6.2)

Clearly, the closer to the sink, the larger the energy cost. To achieve maximum

system lifetime nodes close to the sink should not deplete their energy any faster

than any other nodes that rely on them for relaying their traffic, and since only nodes

in A2 can directly feed the nodes in A1, the following must hold: L1 = L2. Solving

L1 = L2 for m, we get:

m =
(1 + β)k2 − (4 + 4β)

(2 + 4β)k4 − (1 + 9β)k2 − (1 + β)
(k ≥ 2) (6.3)

Hence, pairwise aggregation, performed at the best possible site that would re-

sult in the most reduction of data, is not scalable, because for increasing k (i.e.,

network scale expressed as multiples of Rt) and assuming uniform sensor deploy-

ment density, the cost is justified only for an extremely aggressive data aggregation
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Figure 6.3: Contour map example.

scheme (tiny m), and m must be decreasing at least as fast as k−2.

6.2 Contour Map Aggregation

Given the limitations of pairwise aggregation, we opt for an aggregation approach

which allows, in principle, aggressive n-way (n ≥ 3) aggregation. We also con-

sider how clusters could be “stringed” to facilitate further aggregation, i.e., without

restricting the application of aggregation to within individual “neighborhoods”. To

do so we define aggregation applicable to contour maps. We assume the reader is

already familiar with the data representation form of a contour map, which is com-

posed of “contour lines” (also called “isolines”), an example of which is shown in

Figure 6.3. The points and, by extension, the sensors residing between two suc-

cessive contour lines are said to belong to the same level set. Contour maps are a

widely utilized data representation method [80, 46, 11, 92, 29]. Between two suc-

cessive contour lines, the attribute values are considered to be the same or similar,

hence a contour map introduces an approximation which is bounded by the step

size between successive contour lines.

Contour map construction from sensor data has been already addressed in [46,

47], but whereas the interest in previous studies was toward discerning contour lines

in the presence of noise, we are interested in the interaction between routing and
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aggregation for contour map data with the intent to determining the most energy

efficient strategy. In summary, what we try to exploit is that given a step value

(or “tolerance”) that separates contour lines, sensors of the same level set could

report to the sink that they possess the exact same measurement. We assume that

the position of the sensors is known, and hence, based on their positions and the

attribute value they represent, the sink can reconstruct the complete contour map.

The reason for applying our devised approaches to contour data collection are

two fold: (1) Contour data extraction and contour map reconstruction (at the sink)

provides a simple but very efficient approach to obtain the global view of the entire

sensor field regarding the phenomenon of interest. A lot of environmental phe-

nomena can be well analyzed and understood by a spatial summary of an attribute

over the region of interest, for instance, the distribution of temperature, humidity,

radiation or pollutant levels. Example applications include event detecting [92, 82]

and environmental monitoring [63, 29]. (2) The space between two successive con-

tour lines represents points where the same attribute readings are observed. With a

given tolerance, sensors within two successive contour lines can report to the sink

that they possess the same measurement. The contour map reconstructed at the sink

from the data sent from the sensors possesses enough fidelity to the original data.

With the dedicated contour data aggregation techniques which will be discussed

later on, it is possible to get a larger volume of redundancy removed between nodes

many hops away.

6.2.1 Network Architecture

We use a hierarchical architecture for aggregation purposes. Nodes are grouped

into clusters, each with a cluster-head (CH) placed in charge of aggregating data

of all its members (plus itself) and with sending the aggregated data to the sink,

relaying the aggregated data through other CHs. As we will see, after intra–cluster

aggregation, there is potential for further, inter–cluster, aggregation to be performed

as well. Because of the burden to CHs, we assume a similar approach as in [34],

thus “rotating” the role of CH, to even out the energy depletion within clusters.

Namely, each sensor node (i) selects itself as a cluster-head (CH) with a probability
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Pch(i), which is between 0 and 1, and is set as:

Pch(i) =

{
pch

1−pch∗(r mod 1
pch

)
i ∈ G

0 otherwise

where r denotes the number of the current cluster formation round, pch is the de-

sired percentage of CHs, and G is the set of nodes that have not been CHs in the

last (r mod 1
pch

) cluster formation rounds. Cluster formation is triggered period-

ically. During round 0, every sensor has the same probability pch of becoming a

CH. After that, each round each node has a chance to be CH except those nodes

who have already been CHs in the last (r mod 1
pch

) rounds. We mark those nodes

(take them out of G) who used to be CHs, to avoid making them CHs again. After

1
pch

cluster formation rounds, all the marks are cleared and every node has the same

probability (pch) to select itself as a CH again. In this way, the heavy workload

of being a CH can be distributed across the entire network. The interval between

two successive cluster formations is determined by the data accuracy requirement

from the given application. This is because the data reporting is part of the cluster

formation process.

Once a node becomes a CH, it broadcasts an advertisement message announcing

its status of CH as well as its current sensor reading. Based on a given contour step-

value (which we assume is globally known) and the received CH advertisement

messages, each non-CH node selects as its cluster-head a CH whose sensor reading

is within the same range ([n ∗ step, (n + 1) ∗ step]) of its own reading. That is

clusters are formed from nodes that belong to the same level set and which are, of

course, within communication range of each other. If there are two or more such

CHs within its transmission range, the node selects the CH which is closer to it in

terms of Euclidean distance. A node may fail to join any cluster because its sensor

reading is not within the same range of any neighboring CH. In this case, it will

elect itself the CH of a single-node cluster. After cluster construction, each cluster

member reports its reading to the sink using the shortest path from the CH to the

sink. Figure 6.4 shows an example of the resulting logical topology.
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Figure 6.4: Cluster-based hierarchical framework for contour data collection.

6.2.2 Intra–Cluster Aggregation

Intra–cluster aggregation is performed in two steps:

Reading Suppression

We assume sensor locations are known. Each data unit is composed of the sen-

sor that produced it and the sensed attribute value. The objective is to collect the

readings from nodes belonging to the same level set, i.e., within the same value

range ([n ∗ step, (n + 1) ∗ step]). These readings can then be suppressed except for

sending out a representative one. To do so, we exploit the cluster structure. By con-

struction, all the sensor readings within a cluster are from the same level set. The

aggregation performed by the CH is to report only its own value and the IDs of all

its cluster members (plus its own), thus essentially approximating the data sensed at

the cluster members with its own. For example, in Figure 6.5, the CH, d, which has

sensed value 58, will aggregate the cluster’s measurements as < 58, Cd > where

Cd = {a, c, d, e}.
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Figure 6.5: Reading suppression.

Subset Construction

The readings can be further aggregated by choosing from the reporting set Ci a rep-

resentative subset C ′
i ∈ Ci. The selection of C ′

i can be performed by making sure

that all nodes in Ci are at most ε distance away from the set of nodes in C ′
i. This is

the Dominating Set (DS) [36] problem on the graph built with the vertices of Ci and

with edges between any two vertices whose distance are ε or less. That is, we seek

the DS of the graph G(Ci, E(ε)) where E(ε) = {(x, y)|dx,y ≤ ε, x �= y, x, y ∈ Ci},

and dx,y denotes the Euclidean distance between node x and y. Because the mini-

mum cardinality DS is NP–Hard we employ a greedy approximation [36] which can

be executed easily and locally, at the CH. The final outcome of intra–cluster aggre-

gation is < si, C
′
i ∪ {i} >, which includes the CH i (if not already in the DS), as it

is the CH’s value si that represents all the sensors in the cluster. Figure 6.6 provides

an example where all nine nodes are within range of each other and form a cluster

with CH the node a. The intra–cluster aggregation produces < sa, {a, c, d, f, h} >.

Note that edges in Figure 6.6 represent the set E(ε).

Note that, based on the C ′
i ∪ {i} received from each CH, and because the sink

is aware of ε and the locations of all nodes, the sink can determine which nodes are

dominated by each C ′
i assuming that nodes that belong to different level sets are at
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Figure 6.6: Subset construction.

least ε units away. If they are any closer, then the subset construction essentially

introduces a spatial approximation on top of the value approximation that resulted

from the reading suppression step. Moreover, if two CH, say i and g, formed by

nodes that are on the same level set, could coordinate their subset construction, they

could do so by determining the DS of their joint graph, i.e., the union of their two

ε–based graphs, plus edges of distance ε or less between vertices of the two clusters.

Naturally, the construction of the DS of the combined graph makes sense when the

clusters are close to each other, i.e., they have at least two nodes at a distance ε or

less. We exploit this possibility in the second part, that of inter–cluster aggregation.

6.2.3 Inter–Cluster Aggregation

In inter–cluster aggregation the task is to determine pairs of clusters, such that their

combined aggregated data can be aggregated further. In order for this to happen, the

two clusters must be formed by nodes that observed measurements that fall within

the same level set. In addition, if the clusters are close to each other, then the subset

construction outlined in the previous paragraph can also be applied, but its impact

is expected to be, in general, rather limited. Hence, for every two clusters, one

can define the potential of the aggregation outcome numerically. Namely, in order

114



to evaluate the amount of data reduction between a pair of CHs, we define a joint

flow loss multiplier (mxy) between CHs x and y, as the data reduction is possible

if the two node sets of the two CHs are combined and collectively represented by

the dominating set of the graph defined by their union. (For well–separated clusters,

this will be the union of their DS.) Thus, if the cluster with CH i sends its aggregated

data < si, Ci > to CH g which possesses the aggregated data < sg, Cg >, and if Di

represents the “size” of the aggregated data from i, i.e., Di = | < si, Ci > | then

the post–aggregation data at g will be of size D′g = (Dg + Di) ∗ mig.

At this point, the problem becomes an optimization problem: which clusters to

pair so that their aggregate traffic is the least possible. Furthermore, after aggre-

gating the traffic of two clusters, we can split it to multiple flows and forward it to

the sink, thus attaining a degree of load balance. Essentially, the problem becomes

one that we have already discussed in Chapter 5 where first the aggregation is de-

termined and then the resulting aggregated data are split using a flow model. To

reduce the computational complexity for solving the flow problem and make our

approach scalable, we consider CHs as nodes representing the collected aggregated

data. The particular flow fragments and the paths taken to the sink can be computed

via our IP/LP model outlined in Chapter 5. However, we first need to determine the

pairs of clusters, and to do so we employ a variety of heuristics:

Maximum Aggregation Perfect Matching (MAPM)

MAPM attempts to maximize the total inter–cluster data reduction across the entire

network. The joint flow loss multiplier is utilized to measure the benefit from inter-

cluster aggregation over each pair of CHs. We use (Di + Dg) ∗ (1−mig) to denote

the total joint volume reduction via aggregation and place it as edge weight on a

graph including as vertices only the CHs. We apply maximum aggregation perfect

matching [51] across the network. After perfect matching and inter-cluster aggre-

gation, each pair of matched CHs (i and g) is treated as a single data flow whose

data demand is (Di +Dg)∗mig generated at g. If the number of clusters is odd then

we are left with single CH that does not employ inter–cluster aggregation.
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Local Maximum Aggregation Perfect Matching (Local MAPM)

Local MAPM is a variation of MAPM where pairs have to be neighbors, on the

assumption that traveling a longer path to a better aggregation opportunity is ex-

pensive in terms of energy. Figure 6.7 and 6.8 denote the paired CHs obtained via

MAPM and Local MAPM over the same sensor location. In these two figures, each

node denotes a CH. In Figure 6.8, the two CHs of each matched pair are only one

hop away from each other, while in Figure 6.7, the distance between the two CHs

of each matched pair may be more than 1 hop apart.

Figure 6.7: Result of inter-cluster MAPM

Figure 6.8: Result of inter-cluster Local MAPM
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ENergy Critical node Aware Spanning Tree (ENCAST)

ENCAST has been introduced in detail in Chapter 4, and contrary to the previous

two schemes it does not split aggregated data into flows. Instead it builds a single

tree. The tree is reconstructed, i.e., a new “version” of the tree is built, as nodes

become critically low in terms of energy. Critical nodes become leaf nodes of

the tree. A parameter, α, is used to trigger tree reconstructions depending on the

energy depletion situation in the network. Specifically reconstruction occurs when

the residual energy of any node drops below the threshold given by αkE where E

is the initial energy and k = 1, 2, ... indicates the “version” of the tree. Thus the

longer the network operates (and the more times the tree is reconstructed) the lower

the threshold is pushed. Because the routing to the sink is restricted to the tree,

the inter–cluster aggregation is not performed as in the previous two schemes, but

progressively as the aggregated data travel to the sink from one CH to the next,

along the tree. When the aggregated data arrive at a CH of a cluster from the same

level set, they are aggregated and sent out. This form of aggregation can result in

more than two CHs aggregating their data together.

Finally, we also consider a benchmark scheme (we will call it General) which

represents intra–cluster aggregation alone without any inter–cluster aggregation

performed. Subsequent to intra–cluster aggregation, the data are split into multi-

ple flows and routed to the sink as per the solution of an LP flow optimization.

6.3 Performance Evaluation

We simulate a sensor network with anywhere from 60 to 140 nodes placed in a

25 × 25m2. The location of the 140 nodes is shown as dots in Figure 6.9. The

sink is placed at the origin (0,0). Nodes start with energy of 10 Joules and each

of them generates sensor data at a constant rate of 1 Kb/sec. We adopt the energy

consumption model of [26]. Energy spent on receiving and sending data packet is

determined by the wireless communication environment and the packet size. We as-

sume each sensor node’s wireless transmission range is 10 m. The contour data are

dynamically generated by the diffusion model presented in [63] which ensures the
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Figure 6.9: Without aggregation.

slow but continuous change of the contours. To show the quality of the contour data

collected (using 140 nodes) we present reconstructed contour maps (Figures 6.9 to

6.12) the way the sink would generated them. Namely, at the sink, the per-sensor

data are reconstructed from the received aggregated data, interpolated, smoothed,

and presented as a contour map using a data visualization tool [1]. The step-value

is 5 and ε = 2m. The major parameters set for the simulations are listed in Table

6.1.

Table 6.1: Simulation Parameters
Parameter Value

Unit of lifetime second

D (flow data demand) 1Kb/second
E (initial energy) 10J

size of area of interest 25 ∗ 25(m2)
grid network 51 ∗ 51sensorswith0.5mapart

Rt (transmitting range) 10m

ε (Euclidian distance tolerance) 2m

Step-value 5

et 100nJ/bit

er 30nJ/bit

α 0.5 and 0.66
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Figure 6.10: Intra–cluster aggregation only.

Figure 6.11: Inter–cluster aggregation.
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Figure 6.12: Inter–cluster ENCAST (α = 0.5).

6.3.1 Contour Map Example

First we look into the quality of the contour map approximation. Comparing Fig-

ure 6.9 to the benchmark of Figure 6.3, the degradation mainly comes from less

deployed sensors and random sensor placement (meaning poor sensing coverage

and coarse granularity). However, from Figure 6.10 and 6.11, we observe that our

aggregation schemes are visually similar to the non-aggregation schemes of Figure

6.9 despite their contour lines are not as smooth as the ones in Figure 6.9 because

of the data approximation introduced by aggregation. Compared to other recon-

structed contour maps, Figure 6.12 shows more accuracy loss because in ENCAST,

aggregation is potentially performed at each node on the path to the sink instead of

just pairwise.

From the Figures 6.9-6.12, we observe that random sensor node locations and

sensor data aggregation degrade the quality of the reconstructed contour map. How-

ever, with enough sensors deployed and intelligent data aggregation schemes, a

large amount of wireless traffic can be reduced and the reconstructed contour maps

remain sufficient data accuracy.
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6.3.2 System Lifetime

In our experiments, we generate dynamic contour data via periodically changing the

contour map. To benefit from data aggregation as much as possible, the data collec-

tion structure for each algorithm has to be reconstructed/adjusted correspondingly,

thus introducing energy consumption for transmitting control messages. The con-

tour data obtained from the area of interest may evolve very slowly, thus the current

data collection structure can be utilized for a long time without losing large data

aggregation opportunities. If this is the case, energy consumption for building data

collection structures is one time cost and negligible.

In order to balance unevenly distributed traffic load, ENCAST adjusts its data

collection tree in a proactive fashion. The cluster head whose residual energy

is below the predetermined threshold (energy critical) triggers a tree reconstruc-

tion which reassigns the children of the current energy critical CH to other CHs.

ENCASTwith two different tree adjustment triggering thresholds (α = 0.5 and 0.66)

are implemented in our simulations. The larger α indicates more frequent tree ad-

justment and more balanced workload distribution. In order to demonstrate the

benefit from the tree reconstruction, we also show the results for ENCAST without

any tree adjustments, which uses only one tree (the initial) throughout the lifetime

of the network.

The network lifetime results are shown in Figure 6.13. General lacks inter–

cluster aggregation and performs the second worst among all the schemes. From

Figure 6.13, we also observe flow-based schemes with data aggregation outperform

other heuristics. Local MAPM obtains the longest lifetime because it benefits from

balanced traffic load via flow-based traffic delivery and reduced traffic volume via

the perfect matching. In addition, the local perfect matching limits the energy con-

sumed on transmitting raw data from the source node to its aggregation site which

may be far away from the source. This is also the reason the lifetime achieved by

Local MAPM is longer than MAPM. MAPM performs perfect matching without any

constraints. It reduces larger traffic volume than Local MAPM with more energy

consumed along potentially longer paths.

ENCAST with various α’s attains lifetime similar to the flow-based schemes
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(a)

(b)

Figure 6.13: System lifetime.

despite not splitting the traffic flow. Tree reconstruction removes the heavy burden

of data routing from energy critical CHs, essentially balancing energy consumption

among all the CHs. Due to data aggregation, ENCAST (α = 0.66) and ENCAST

(α = 0.5) perform better than General in terms of lifetime. Among all the

schemes, ENCAST without tree adjustment achieves the minimum lifetime. This

confirms that ENCAST with tree adjustment is a very effective technique to extend

system lifetime. We also show the total data volume collected by each heuristic in

Figure 6.14. Aggressive on-tree aggregation, ENCAST (α = 0.66) and ENCAST

(α = 0.5) reduces the volume of data delivered to the sink compared to flow–based

approaches.

Since ENCAST starts with a hop-based shortest path tree the tree reconstruction

tends to increase the depth of the tree and therefore data traveling from its CH to

the sink have more chances to be aggregated at another CH along the way. The col-

lected data volume decreases (worsens) as α increases. MAPM and Local MAPM

perform perfect matching to pair CHs for aggregation and gather similar amount
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(a)

(b)

Figure 6.14: Data collected at the sink.

of data to ENCAST’s with tree adjustment (α > 0). Naturally, the total amount of

collected data increases as the sensor density increases.

6.3.3 Contour Discrepancy

To evaluate the collected data accuracy, we introduce another metric similar to [81]:

contour discrepancy. We examine the reconstructed (at the sink) data, s′i, for each

sensor, i, compared to the actual data, si, and formulate the average contour dis-

crepancy as: (
∑N

i=1 |s′i − si|)/N . Data from certain sensors that were eliminated

during the aggregation are replaced by the data values from sensors that dominate

them. If the missing sensor’s value is dominated by more than one node sensor,

then the value is chosen randomly from one of the dominators.

We present contour discrepancy for different aggregation strategies in Figure

6.15 where the units on the Y-axis are the same as those of the step-value. General

does not apply inter–cluster aggregation, so it maintains the largest data accuracy.

MAPM performs a more aggressive aggregation than Local MAPM and results in
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(a)

(b)

Figure 6.15: Contour discrepancy.

more accuracy loss. For tree–based schemes, they all perform aggressive data ag-

gregation and have large contour discrepancy. However, we observe that contour

data discrepancies for all aggregation schemes are below 2 or about 2, which is far

less than the step-value of 5.

6.4 Summary

We reviewed the limitations inherent in aggregation techniques where data is routed

to the best sensor in terms of aggregation potential. We first established that there

are limited opportunities for efficiently aggregating if data aggregation needs to be

performed far from the originating sensor. Instead, we argue that in many applica-

tions, the presentation of data as a contour map might be sufficient, and that such a

model opens the possibility to apply n-way (n ≥ 3) data suppression and contour

vector reduction techniques. This, in turn, helps us construct simple cluster-based

routing heuristics. We find evidence that the combination of contour-oriented ag-

gregation models, with the simple cluster-based routing heuristics, leads to scalable
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data collection.

There are many lessons that can be drawn from our simulation results. First,

both the flow-based data collecting schemes and the tree-based ENCAST’s (with

tree adjustment) extended system lifetime by balancing traffic workload. The other

lesson is that, flow-based schemes (with inter–cluster aggregation) outperform other

heuristics in terms of lifetime. ENCAST benefits both from aggressive data aggrega-

tion and the tree’s reconstruction, therefore obtaining similar lifetime to flow-based

approaches.
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

The research detailed in this thesis addressed the topic of maximizing system life-

time in resources constrained wireless sensor networks. Focus has been placed on

the development of different data collection algorithms and data aggregation strate-

gies by which energy can be saved on transmitting less data volume. During the

process of data collection, traffic load balancing is also considered to avoid ex-

hausting some sensors’ energy which usually causes the early termination of the

system’s functionality.

An extensive literature review of sensor data routing schemes, as well as data

aggregation techniques applied during data collection, have been provided. Three

widely applied data collection structures are reviewed. Tree-based data collect-

ing infrastructures are easy to construct and maintain because sensor data of each

source node are only routed upstream along a single path to the sink (root) node.

During the process of data collection, there is no flow splitting for each data along

its path, therefore data aggregation can be performed at any intermediate node along

the path. Since all the data (from different sources) have to be gathered at the sink,

large amount of data will converge at the nodes close to the sink. This inherent un-

even traffic load in tree-based structures induces unbalanced energy consumption

across the network and early network lifetime termination. Flow-based approaches

are proposed to split a data flow (originating at an individual sensor) into several

fragments and route each of them along a different path to the sink. Although work-
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load balancing is well handled, data flow splitting destroys the integrity of the data

and make data aggregation challenging. Cluster-based data collection protocols

have also been intensively studied. They provide scalability and the opportunity to

perform many-to-one aggregation at cluster heads over the data from cluster mem-

bers.

Inspired by the aggregation strategies reviewed, a simple proximity based data

aggregation model is raised and utilized to examine the impact of data aggregation

on different tree-based collecting schemes. To address the unbalanced workload in

tree-based schemes, a proactive tree adjusting algorithm has been designed to re-

lease traffic load from some node which relays large volume of data for its children.

Simulation results show that with intelligent adjustment triggering threshold, this

method significantly extends the network lifetime with small system overhead.

In order to reduce wireless transmissions, data aggregation has been also intro-

duced into flow-based collection frameworks. Data flow is delivered in its integrity

to one of its first hop neighbors where data aggregation is applied, then the re-

duced data flow is free to be spread in order to increase traffic load balancing. To

achieve maximum network lifetime and find optimal aggregation nodes, a mixed

integer/linear programming model is utilized to formulate the problem. Due to the

computational complexity, heuristics are proposed to obtain significant aggregation

and accordingly prolong system lifetime. Simulation results show that flow-based

mechanisms provide longer network lifetime than tree-based but at the cost of ex-

tra complexity and overhead. In addition, our first hop aggregation approaches

significantly increase network lifetime for both flow-based and tree-based routing

schemes.

The limitations inherent in pairwise data aggregation has been studied. Trans-

mitting data to and performing data aggregation at the most correlated source far

away the originating sensor node shows statically limited opportunities in obtain-

ing efficiency in terms of maximizing lifetime. More aggressive n-way aggregation

techniques are proposed for contour map reconstruction. Simple cluster-based rout-

ing heuristics are also proposed. Simulation results show that our schemes collect

largely reduced volume of contour data at the sink and retain reasonable data accu-
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racy as well.

7.2 Future Work

Although this thesis has successfully addressed the challenges for extending sys-

tem lifetime in WSNs, several questions remain. This section will present a few

directions for further research.

As we discussed before, some WSNs are based on complete aggregation, for

instance, applying query-based aggregate operators (min, max, avg) over sen-

sor readings in [57, 58]. In this case, the data volume to be transmitted by a single

sensor node does not increase with the number of other nodes which require the cur-

rent one relay data for them, because relay data does not accumulate along the path

to the sink. However, traffic load imbalance still occurs but not necessarily near

the sink node. Nodes with large degree (large number of neighbors) may receive

raw data packets from them and run out of energy faster than other small degree

nodes. Our algorithms still can be applied for this case but with a simpler version,

for example, the tree adjusting strategy ENCAST only need assign a critical node’s

one-hop children to other nodes for data relaying.

In this thesis, we focus on data routing and aggregating schemes by assuming

ideal MAC layer. However, sensor nodes and links are prone to failure due to harsh

environment where the wireless sensor network is deployed. Once considering the

sensor mobility, the network topology becomes even more dynamic. Additional

strategies for detecting and recovering node/link failures have to be provide espe-

cially to our static tree-based data collecting schemes to handle these unpredictable

topology changes. Otherwise, a link may cause a large amount of sensor data miss-

ing during transmission or even terminate the operation of entire network.

As the concrete contour map reconstruction example shown in Chapter 6, data

aggregation usually results in data accuracy loss. Flow loss multiplier is mainly

denoted as a function of Euclidean distance between correlated sensor nodes in

our previous simulations. However, it can also be determined by other features of

the application or an externally given parameter that quantifies the maximum data
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accuracy loss. Since we abstract data aggregation in different WSN data collecting

scenarios as flow loss multipliers, all the algorithms we provide can operate on flow

loss multipliers serving for different WSN applications.

For the same number of sensors within the same area of interest, deploying more

than one sinks for data collection is an promising approach to release heavy traffic

load on a single sink and its direct neighbors, and prolong the system lifetime. How-

ever, solid research work has to be done for determining the number and locations

of these sink nodes in order to optimize the overall system performance. Another

issue that needs to be carefully considered, regarding multi-sink data collection, is

data synchronization among multiple sink nodes. To ensure data consistency across

all the sinks, efficient communication strategies are required for sharing data among

the sinks. Otherwise, the sinks cannot cooperate to finish a unique monitoring task.
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