
University of Alberta 

The Analysis of Hydroclimatic Variability and Predictability in 

Western Canada 

by 

Adam Kenea Gobena 

Vfe/ 

A thesis submitted to the Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in 

Water Resources Engineering 

Department of Civil and Environmental Engineering 

Edmonton, Alberta 

Spring 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45437-4 
Our file Notre reference 
ISBN: 978-0-494-45437-4 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

An analysis of the role of several large-scale climate anomalies in forcing low-

frequency variability in the precipitation and streamfiow data of Western Canada 

was carried out using an ensemble of statistical techniques. Wavelet and wavelet 

coherence analysis of precipitation data from stations across the region shows that 

at both regional and local scales, precipitation anomalies exhibit significant 

interannual oscillations that occurred haphazardly. At many stations, the temporal 

locations of these haphazard oscillations were different from those of large-scale 

climate anomalies, leading to weak and inconsistent relationships with climate 

indices. On a seasonal basis, winter precipitation shows modest correlations at 0-

to 3-season lead times with the El Nino/Southern Oscillation (ENSO) and the 

Pacific Decadal Oscillation (PDO) indices. Although there were fewer stations 

with statistically significant interdecadal oscillations, the relationship with 

interdecadal climate anomalies was much more consistent than at the interannual 

scale. 

Since the influence of ENSO on Western Canada's precipitation appears to be 

stronger than the other climate anomalies, it was used as a basis to investigate 

patterns in streamfiow response across the region. From statistical significance 

testing and cluster analysis, Western Canada was zoned into five spatially 

coherent streamfiow response regions. For each of these regions, a detailed 

correlation analysis was carried out to examine the value of various climate 



indices for predicting seasonal streamflow anomalies. This analysis showed that 

some of the response regions show better correlations with ENSO indices while 

others exhibit higher correlations with PDO or other indices. 

Based on the understanding derived from the diagnostic analysis, two seasonal 

ensemble streamflow forecasting models were developed and applied to the Bow 

and Castle rivers, both located in the headwaters of the South Saskatchewan River 

basin of Alberta. The first model is a statistical regression model based on the 

robust M-estimator and the nearest neighbor resampling algorithm, while the 

second one is based on the ensemble streamflow prediction (ESP) method. 

Results from the statistical model indicate that forecasts based on climate indices 

alone possess considerable skill (correlation of 0.65 and up for the Bow River) for 

forecasts issued early in the season and could thus extend the current forecast lead 

time by up to two months. In addition, ensemble forecasts were found to possess 

better skill than deterministic forecasts in terms of economic value because a wide 

range of forecast users with varying economic costs could potentially benefit from 

the probabilistic information contained in ensemble forecasts. While the ESP 

based forecasts also show promising results, they were generally found to be less 

skillful than the statistical forecasts partly because of hydrologic modeling 

uncertainties. 
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/ Dimension of a feature vector 

M Number of predictors in a model 

m Number of misses 

N Number of cases for a variable 

o Observation probability of an event (either zero or one) 

o Climatological relative frequency 

p cumulative probability; also Pressure (Pa) 

P Precipitation (mm) 

P' Precipitation anomaly 
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Temperature climatology 
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Relative economic value 

Vertically integrated zonal moisture flux (Kg nf's"1) 

Vertically integrated meridional moisture flux (Kg m" s") 

Wavelet spectrum 

Wavelet power spectrum 
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Wavelet band-pass filtered signal 
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Ensemble member 

Geopotential height 
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Parameters for weight kernel 

Regression coefficient 

Translation parameter 

Factor for scale averaging 

Sampling interval 
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Mother wavelet 

Frequency 

Nondimensional frequency (Morlet wavelet) 



Acronyms 

AGCM3 CCCma third generation atmospheric general circulation model 

AHCCD Adjusted historical Canadian climate data 

BC British Columbia 

CCCma Canadian Centre for Climate Modeling and Analysis 

CNP Central North Pacific sea level pressure anomaly index 
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CRPC1 Leading principal component of Central Region precipitation 
anomalies 

CRR Conceptual rainfall-runoff 
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ENSO El Nino-Southern Oscillation 

EP East Pacific pattern 

ERPC1 Leading principal component of Eastern Region precipitation 
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ESP Ensemble streamflow prediction 

GCM General circulation model 

GCV Generalized cross-validation 

GEM Global Environmental Multiscale model 

HFP Historical Forecast Project 

ITS Index time series 

K-NN K nearest neighbors 

LWP Locally weighted polynomial 

MLR Multiple linear regression 

MOS Model output statistics 

NCEP National Centers for Environmental Prediction of the U.S.A. 

Nino3 Sea surface temperature anomaly averaged over 150°W-90°W, 5°S-

5°N 

NOAA National Oceanic and Atmospheric Administration of the U.S. A 

NPO North Pacific Oscillation 

NWP Numerical weather prediction 



PC Principal component 

PCA Principal components analysis 

PDF Probability density function 

PDO Pacific Decadal Oscillation 

PNA Pacific/North American pattern 

RHBN Reference Hydrometric Basin Network 

ROC Relative operating characteristic 

RPS Ranked probability score 

RPSS Ranked probability skill score 

SAC-SMA Sacramento soil moisture accounting model 

SAWP Scale-averaged wavelet power 

SLP Sea level pressure 

SOI Southern Oscillation index 

SSA Standardized streamflow anomalies 

SSRB South Saskatchewan River basin 

SST Sea surface temperature 

SWE Snow water equivalent 

SWEI Sub-basin snow water equivalent index 

VIMF Vertically integrated moisture flux 

WP West Pacific pattern 

WRPC1 Leading principal component of Western Region precipitation 
anomalies 



Chapter 1 Introduction 

1.1. Statement of the Problem 

Rivers in Western Canada are the primary sources of water for a variety of uses. 

For instance, Over 57% of the water allocated to date in Alberta originates in the 

South Saskatchewan River basin (SSRB) although the basin covers only about a 

quarter of the provincial land surface area (Alberta Environment, 2006). On the 

west coast, British Columbia generates about 90% of its electricity by hydropower 

(Hsieh and Tang, 2001). The availability of water in Western Canada's rivers 

depends mainly on the air-sea interaction over the surrounding ocean basins that 

form the source of moisture for precipitation occuring over the region. The 

primary source of moisture for precipitation during the winter season is the 

Pacific Ocean (Liu et ah, 2004). Even though snowfall constitutes a minor 

proportion of the annual precipitation in parts of Western Canada, spring 

snowmelt can contribute up to 80% of the annual runoff in some rivers in the 

Canadian Prairies (Granger and Gray, 1990). Thus, a diagnostic analysis of 

Western Canada's hydroclimatic variability and its dependence on the dominant 

modes of Pacific climate variability can provide useful information on the timing 

and quantity of water availability, which is vital to efficient water resources 

management. 

The Pacific Ocean climate system exhibits strong low-frequency variability 

modes at both interannual and interdecadal scales. The most prominent source of 

interannual climate variability is the El Nino/Southern Oscillation (ENSO). ENSO 

is a coupled ocean-atmospheric circulation anomaly originating in the tropical 

Pacific but its impact extends into the extratropics. Other sources of interannual 

climate variability of interest to the Northern Hemisphere include teleconnection 

patterns that originate in the North Pacific basin such as the Pacific/North 

America (PNA) pattern, West Pacific (WP) pattern, and East Pacific (EP) pattern. 
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The primary mode of Pacific interdecadal climate variability is the Pacific 

Decadal Oscillation (PDO), which is related to sea surface temperature (SST) 

anomalies of the Pacific basin north of 20°N. 

During the last several decades, various studies have documented the 

relationships between ENSO and interannual hydroclimatic variability in the 

western regions of USA and Canada (e.g. Yarnal and Diaz, 1986; Ropelewski and 

Halpert, 1987; Kiladis and Diaz, 1989; Kahya and Dracup, 1993; Shabbar et al, 

1997). According to Shabbar et al. (1997), ENSO affects precipitation variability 

over a large portion of southern Canada extending from British Columbia, 

through the Prairies, and into the Great Lakes region. Annual streamflows across 

Western Canada have been correlated with two indices that are commonly used as 

a measure of the strength of ENSO, namely the Nino3 SST index (Coulibaly and 

Burn, 2004) and the Southern Oscillation Index (SOI) (Woo and Thorne, 2003). 

However, possible spatial patterns in the ENSO-streamflow relationships, and 

periods during which the ENSO information may provide predictive information 

for Western Canada's streamflow has yet to be objectively identified. 

The PNA pattern is characterized by opposite geopotential height anomaly centers 

over the Aleutian Islands and Western Canada. The anomalies associated with 

different phases of PNA alter the normal upper air flow, thus affecting 

hydroclimatic patterns over the North American region (Shabbar et al., 1997). 

The PNA pattern has been related to variations in Western Canadian streamflow 

(e.g. Moore, 1996; Moore and McKendry, 1996; Woo and Thorne, 2003; 

Coulibaly and Burn, 2004) and snow water equivalent (Hsieh and Tang, 2001). 

Interdecadal climatic variations in western North America have been related to 

interdecadal variations in the North Pacific climate, with the oceanic component 

described by the PDO (Mantua et al, 1997). Cayan et al. (1998) found that 

decadal precipitation variability in western North America could account for up to 

50% of the variance of annual precipitation. McCabe and Dettinger (1999) 
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showed that the strength of the relationships between western US precipitation 

and SOI closely resembles decadal variations in the PDO index. Similarly, 

Brown and Comrie (2004) found that spatial variations in the precipitation-ENSO 

relationships in western US are synchronized with the PDO phase shift. The PDO 

regime has also been shown to modulate winter temperature responses during El 

Nino and La Nina events across most of Western Canada (Bonsai et al., 2001). 

However, to date little attention has been given to the study of decadal to 

interdecadal variations in other hydroclimatic variables in Western Canada. 

While previous studies focusing on Western Canada have provided significant 

insights on various aspects of the region's hydroclimatic variability, there are still 

several areas which have not been addressed adequately. Most of the studies 

reported in the literature have heavily depended on stationary techniques such as 

harmonic analysis, event-based compositing and/or direct correlation analysis to 

establish relationships between anomalous ocean/atmosphere circulation patterns 

and hydroclimatic variables (e.g. Yarnal and Diaz, 1986; Ropelewski and Halpert, 

1987; Kahya and Dracup, 1993; Moore, 1996; Shabbar et al, 1997; Woo and 

Thorne, 2003) even though many large-scale climate variability modes such as 

ENSO are non-stationary (e.g. Torrence and Compo, 1998). Currently, there is a 

growing trend of using non-stationary approaches such as wavelet transforms for 

the analysis of hydroclimatic variability in different parts of the world. Wavelet 

transforms have recently been used to study the interannual variability of 

Canadian annual and seasonal streamflows and their relationships with some 

large-scale climate patterns (Coulibaly and Burn, 2004, 2005). 

Past research has primarily focused on establishing links between hydroclimatic 

variations and large-scale climate anomalies where climate anomalies are treated 

as independent of one another. This is generally not true because two climate 

anomalies with different characteristic time scales may have a synergetic or 

destructive effect on hydroclimatic variables depending on whether they are in 
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phase or out of phase with each other. Thus, it is necessary to understand the 

degree to which Western Canada's hydroclimatic responses to ENSO are affected 

by extratropical Pacific climate modes (e.g. PNA, PDO, etc). Understanding the 

interaction between variability at different scales is important because synergetic 

interactions between inter-decadal and interannual modes of variability may 

produce extreme hydroclimatic events such as droughts and floods. 

This research deals with a systematic analysis of interannual to interdecadal scale 

precipitation and streamflow variability in Western Canada, with the ultimate 

objective of developing long-range streamflow forecasting models that 

incorporate large-scale climate information. Essentially, the following questions 

will be addressed: Are there dominant spatial and/or temporal modes of low 

frequency variability in the precipitation and streamflow of Western Canada? If 

so, how are these modes related to large-scale ocean-atmosphere climate modes? 

What is the relative importance of each mode? How do hydroclimatic responses at 

one frequency interact with those at another frequency? To address these 

questions, the statistical characteristics of precipitation, streamflow and indices of 

various climate modes will be analysed using wavelets, statistical significance 

testing, compositing and correlation analysis. From these findings, the feasibility 

of using large-scale climate information for accurate prediction of basin-scale 

seasonal streamflow volumes will be examined. Two watersheds in the South 

Saskatchewan River Basin (SSRB) will be used to test and verify the skills of the 

various streamflow forecast models to be developed in this study. 

1.2. Research Objectives 

The objectives of this study -were: 

1. Identify the dominant spatial and/or temporal modes of low-frequency 

precipitation and streamflow variability across Western Canada; 
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2. Relate any detected precipitation and streamflow signals to large-scale 

climate modes using frequency and time domain analyses; 

3. Investigate the relative influence of the various large-scale climate modes 

on Western Canada's hydroclimatic variability; 

4. Develop and verify long-range streamflow forecast models that 

incorporate predictors identified from large-scale climate modes relevant 

to the Western Canadian region. 

1.3. Climatology of Western Canada 

For the purpose of this study, Western Canada refers to the southern portions of 

the three Canadian Prairie provinces of Alberta, Saskatchewan and Manitoba, and 

British Columbia (BC) (Figure 1.1). The climate along the BC west coast is 

controlled by Pacific westerlies, which must rise and condense upon encountering 

the Coast Mountains of BC. The Pacific coast of BC experiences moderate 

temperatures and high precipitation year round as a result of this airstream. Mean 

annual precipitation exceeds 3000 mm in some areas of the Pacific coast, with 

most of the precipitation occuring during the autumn and winter seasons. 

Although the westerly flow is still common in the interior of BC, precipitation 

decreases quickly as one moves eastwards, averaging about 400 mm annually, 

due to the rain-shadow effect of the coast mountains (Phillips, 1990). While the 

mountains and higher plateau surfaces in the interior of BC are moist, the valley 

systems are dry, because the Pacific westerlies must descend to reach them (Hare 

and Thomas, 1974). 

The Canadian Prairies (CP) experience a continental climate with bitterly cold 

winters, short and warm summers, and light precipitation regimes (Hare and 

Thomas, 1974). The Prairies are mainly flat and as such topography is not a key 

factor in climatic control. As a result, they are exposed to a variety of air masses 

originating in the Arctic (cold, dry air), Pacific (cool, moist air), American (dry, 
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continental air) and Gulf of Mexico (humid air). The interactions between these 

air masses are responsible for the wide variation of weather observed in this semi-

arid region. The Prairies generally receive less than 500 mm of annual 

precipitation. In winter, most of the moisture for precipitation in the Prairies 

comes from the Pacific Ocean (Liu et al., 2004). Although the Western Cordillera 

significantly reduces the frequency of cyclonic precipitation, some Pacific air 

streams succeed in penetrating past this obstruction, bringing a considerable 

fraction of the water vapor and heat from the Pacific to the Prairies. Winter 

precipitation is usually light, amounting to less than 25 mm during each of the 

winter months (Hare and Thomas, 1974). In summer, the primary moisture source 

for precipitation is the Gulf of Mexico (Liu et al., 2004). Precipitation is 

maximum in late spring or in summer when a thermal low is often present over 

the warm, sunny Prairies (Phillips, 1990). The eastern Prairies receive higher 

annual precipitation than the western parts due to a near humid type of climate 

resulting from frequent influxes of moist air from the Gulf of Mexico (Hare and 

Thomas, 1974). 

1.4. Thesis Outline 

The thesis is organized in seven chapters. Chapter 2 deals with diagnostic analysis 

of low frequency variability and teleconnection of precipitation data obtained 

from Western Canadian station observations. Chapter 3 focuses on the analysis of 

teleconnections between Western Canadian streamflow variability and large-scale 

climate anomalies. In Chapter 4, a basin-scale hydroclimatic variability and 

predictability analysis is carried out for the Alberta portion of the SSRB. On the 

basis of the understanding of the climate diagnostics gained from the previous 

three chapters, two different methods to forecast the seasonal streamflow of the 

SSRB are attempted in the next two chapters. In Chapter 5, a statistical modeling 

approach is explored, where a robust regression and a nearest neighbor 

resampling algorithm are used to generate ensemble seasonal streamflow 

forecasts. In Chapter 6, a hydrologic model based approach is explored, where a 
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technique for incorporating seasonal climate forecasts from numerical weather 

prediction models into the ensemble streamflow prediction (ESP) system is 

developed. Finally, the overall conclusions and suggestions for future work are 

presented in Chapter 7. 
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Figure 1.1. Location of the four Western Canadian provinces relative to the North 
American continent. 
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Chapter 2 Wavelet and Teleconnection Analysis of 

Western Canadian Precipitation 

2.1. Introduction 

Studies based on instrumented records show the existence of inter-decadal 

precipitation variability in western North America, e.g., regional dipole or 

seesawing of precipitation pivoting near 40°N (Dettinger et ah, 1998; Cayan et 

ah, 1998), Canadian Prairies (CP) (Bonsai et ah, 1999), and others. Low 

frequency fluctuations at decadal and higher time scales could give rise to large 

floods and extreme droughts that bring severe damages and grave economic 

losses. Examples of such extremes in western North America include droughts in 

the CP (Gan, 1998) and California (Rogers, 1994), and flooding in the west coast 

(Lott et ah, 1997). North America experiences low-frequency climate variability 

partly because of the Pacific Ocean that has sufficient storage for long-term 

memory. 

Precipitation processes are highly variable spatially and temporally and their 

properties, such as the intensity-duration-frequency relationship, are often based 

on the probability theory of stochastic processes that assume an infinite fractal 

dimension. However, recent discoveries of correlation dimensions (D2) of 

precipitation (e.g. Islam et ah, 1993), and multifractal features of precipitation 

(Lovejoy and Schertzer, 1985; 1990; Svensson et ah, 1996; Gan et ah, 2002), 

suggest that precipitation more likely follows a chaotic rather than a stochastic 

system. Precipitation exhibits multifractal properties whenever its D2 is 

associated with certain density functions h{Di), which alone does not describe its 

spatial or temporal singularities. Similarly, the classical Fourier power spectrum 

can identify the dominant frequencies in a stationary time series but cannot 

provide any information about the temporal locations of the dominant events. It is 

now well established that certain large-scale climate variability modes such as the 
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El Nino/Southern Oscillation (ENSO) are non-stationary (e.g. Torrence and 

Compo, 1998), and these non-stationary features are also manifested in 

hydroclimatic time series (e.g. Coulibaly and Burn, 2004; Mwale et al., 2004). 

Wavelets use fast decaying oscillating waveforms for signal decomposition, 

which makes them suitable for studying the power fluctuation in non-stationary 

time series in the frequency and time domains simultaneously. Wavelets have 

been used to study daily streamflow characteristics (Smith et al., 1998), daily 

rainfall-runoff relationships (Labat et al., 2000; Lafreniere and Sharp, 2003), 

annual and seasonal streamflow variability (Coulibaly and Burn, 2004; 2005), 

seasonal rainfall and sea surface temperature (SST) variability (Mwale et al., 

2004, Mwale and Gan, 2005), and the temporal characteristics of the southern 

oscillation index (SOI) and the Nino3 SST index (Torrence and Compo, 1998). 

This study has three objectives: (1) To identify the dominant oscillations of 

precipitation data from Western Canada and their temporal variations using 

wavelet transforms; (2) To relate the detected precipitation signals to some large-

scale climate anomalies or prominent teleconnection patterns found over the 

Pacific using both frequency and time domain analyses; and (3) from the above 

findings, attempt to address issues such as whether different precipitation time 

scales correspond to different teleconnection patterns, whether decadal or higher-

level precipitation variations arise from climate dynamics that are separate from 

interannual or lower-level variations, and the feasibility of seasonal precipitation 

predictions by teleconnection with climate indices. 

2.2. Data Description 

2.2.1. Precipitation 

The precipitation data used in the wavelet analysis were obtained from the 

Adjusted Historical Canadian Climate Data (AHCCD) database, which contains 

station observations statistically adjusted for known problems such as missing 

values, instrument changes, trace events, wind under-catch, evaporation and 

11 



wetting loss (Mekis and Hogg, 1999). Monthly precipitation data for 21 stations 

with long historical records were extracted from the AHCCD database (see Table 

2.1 and Figure 2.1). To avoid getting results that suffer from low elevation bias, 

we selected stations with elevations ranging from 8 m at Quatsino, British 

Columbia (BC) to 1073 m at Calgary, Alberta (see Table 2.1). The wavelet 

analysis was carried out on standardized seasonal precipitation anomalies of the 

21 stations for 1914-2001. Since our data cover both the CP and BC, we can 

compare results from precipitation under the direct influence of the Pacific 

westerly wind and that under the rain shadow effect of the Cordillera (Canadian 

Rockies). 

The CP consists of undulated grassy or cultivated plains with countless small 

ponds and few low hills. BC generally experiences much wetter climate because 

of the wet westerly flow from the Pacific. Some parts of BC receive over 1500 

mm of annual precipitation while the Prairies generally get less than 500 mm of 

precipitation because cyclonic precipitation rarely reaches these places from 

either west or east coasts, and partly because of the frequent visit of the dry Arctic 

air. Some Pacific air streams succeed in penetrating past the Cordillera, bringing 

a considerable fraction of the water vapor and heat from the Pacific to the 

Prairies. Precipitation is usually light in winter and maximum in late spring or in 

summer when a thermal low is often present over the warm, sunny Prairies, e.g., 

the Alberta lows ("Alberta clippers"), where there could be up to 30 days of 

thunderstorms per year (Phillips, 1990). 

Among the 21 climate stations selected, Princeton, BC, located in the Okanagan 

River basin receives the lowest mean annual precipitation of about 370 mm. 

Annual precipitation increases north and westward to well over 2000 mm at the 

Pacific coast stations of Quatsino, BC and Prince Rupert, BC and eastward to 598 

mm at Winnipeg, Manitoba. Agassiz and Bella Coola, BC, which are under the 

influence of moist Pacific westerly winds, also receive well over 1000 mm of 

annual precipitation (Table 2.1). In winter, northern Arctic air sweeps down over 
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the Prairies. At a relatively high altitude, southern Alberta has relatively less of 

the Arctic air than the Chinook (a foehn-type wind that occurs several times a 

year). While winter and autumn are wet in parts of BC, February is usually the 

driest month in the Prairies, with precipitation amounting to less than 25 mm per 

month. The eastern Prairies receive higher annual precipitation than the western 

parts due to a near humid type of climate resulting from frequent influxes of moist 

air from the Gulf of Mexico (Hare and Thomas, 1974). 

2.2.2. Large-scale Climate Indices 

Globally, ENSO is by far the most widely documented source of interannual 

climate variability. ENSO has its origin in the equatorial Pacific basin. The warm 

phase of ENSO (known as 'El Nino') is associated with an eastward spreading of 

warm ocean waters due to weakening and/or reversal of trade winds and ocean 

currents. El Nino occurrences affect fishing along the coast of Peru because the 

warm waters displace nutrient-rich cold water off the west coast of South 

America. There are also significant changes in precipitation patterns because of an 

eastward shift in the location of the equatorial convective loop. During the cold 

phase of ENSO (called 'La Nina'), anomalously cool ocean waters move from 

east to west and the convective loop shifts further westward. 

ENSO occurrences are near global climate phenomena because their effects have 

been linked to various climatic anomalies worldwide, e.g., precipitation patterns 

in western and continental USA, and east of the Rockies (Ropelewski and 

Halpert, 1986), Caribbean and tropical America (Rogers, 1988), and north-east 

Brazil (Kane, 1997). ENSO teleconnections to the extratropical Northern 

Hemisphere occur during winter, when its "mature phase" is often associated with 

anomalously deep central North Pacific lows (Rasmusson and Carpenter, 1982). 

Albeit ENSO occurs every 3 to 7 years, it also undergoes mysterious decadal 

variations - with a relatively large intensity in the late 1800s to early 1900s, 

followed by a relatively low intensity between 1920 and 1950, and then an 

increased activity after 1960 (Torrence and Compo, 1998). 
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In this study, we investigate the effects of ENSO through teleconnection of the 

Nino3 index, a time series of equatorial Pacific SST anomalies averaged over the 

equatorial Pacific (5°S-5°N, 150°W-90°W), and the Southern Oscillation Index 

(SOI), a time series of normalized monthly differences in sea level pressure (SLP) 

at Tahiti (« 150°W, 18°S) and Darwin (« 130°E, 13°S) (Allan et ah, 1991), which 

are commonly used as a measure of the strength of ENSO. We also study the 

effects of extratropical Northern Hemisphere ocean/atmosphere circulation 

through teleconnections of the Pacific/North America pattern (PNA), West Pacific 

pattern (WP), East Pacific pattern (EP), Central North Pacific sea level pressure 

index (CNP) and Pacific Decadal Oscillation (PDO). The PNA pattern represents 

a quadripole of 700 mbar geopotential height anomalies, with opposite anomalies 

centered over the Aleutian Low and Western Canada, and between the Hawaiian 

Islands and southeastern US (Wallace and Gutzler, 1981), 

PA^ = Z(170°W,20°N)-Z(165°W,45°N) + Z(115°W,58< 'N)-Z(98°W,30°N) (2.1) 

where Z is the geopotential height. PNA exhibits a wide range of variability in the 

Northern Hemisphere extratropics, and has been teleconnected to the Great Salt 

Lake levels (Moon and Lall, 1996) and streamflow along the US west coast 

(Cayan and Peterson, 1989). 

The WP pattern consists of a north-south dipole of anomalies centered over 

Kamchatka Peninsula, portions of southeastern Asia and the lower part of western 

North Pacific. The EP pattern reflects a north-south dipole of height anomalies 

over the eastern North Pacific, with its northern center located around Alaska and 

the west coast of Canada (Wallace and Gutzler, 1981). The CNP index is SLP 

anomalies averaged over central north Pacific window (35°N-55°N, 170°E-

150°W) (Cayan and Peterson, 1989). The PDO, which represents inter-decadal 

oscillations in the extratropical north Pacific climate system, is represented by a 

time series of the leading principal component of the North Pacific SST anomalies 

poleward of 20°N (Mantua and Hare, 2001). 
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Some of the selected climate indices are significantly correlated to one another, 

e.g., winter season PDO, CNP, PNA and WP indices are all significantly 

correlated to SOI and Nino3 (Table 2.2). Warm ENSO episodes are associated 

with negative mid-tropospheric geopotential height anomalies over the North 

Pacific, which should lead to strong SLP anomalies in the central and North 

Pacific regions (Horel and Wallace, 1981). In winter strong SLP anomalies at the 

central North Pacific consistently correspond to ENSO events with Nino3 > 2 

(Cayan and Peterson, 1989). The PNA index is significantly correlated to CNP for 

all seasons and to PDO except during summer. Although PDO is an oceanic 

(SST) variability mode, its signature extends through the depth of the troposphere 

and is manifested in the mid-troposphere as persistence in the PNA (Mantua and 

Hare, 2001). WP is significantly correlated to Nino3 and SOI in winter and 

spring, to CNP in spring and autumn and to PNA in spring. EP is linked to 

Nino3, SOI and CNP in spring. 

2.3. Research Methodology 

To extract the dominant oscillations for Western Canadian precipitation, we used 

the continuous Morlet wavelet. The relations between the detected oscillations 

and some large-scale climate anomalies that are known to exert influences on the 

climate of western North America were investigated using principal components, 

wavelet coherence and multi-scale correlation analyses. The relations between 

precipitation and climate indices were further explored on seasonal basis using 

composite and correlation analysis. The wavelet analysis is briefly described 

below. 

In the classical Fourier transform, one has only the frequency o as a parameter in 

the basis functions of the form em. These basis functions are globally uniform in 

time and as such the Fourier transform does not contain any time dependence of 

the signal. A wavelet transform overcomes the limitations of the Fourier 

transform by using fast decaying waveforms that can be dilated and translated to 
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reveal oscillations at both high and low frequencies. The wavelet transform is 

mathematically defined as 

ft- ^ 
Wtf,r) = r m \f(fV -f* {>0,ysR (2.2) 

where f(t) is a real signal, y/(x) is the basic wavelet function satisfying certain 

admissibility conditions, E, is a scale or dilation parameter, y is a translation 

parameter, and y/* is the complex conjugate of y/ (Lau and Weng, 1995). 

Visually, the dilation parameter £ controls the width and rate of the local 

oscillation of the basic wave and can intuitively be thought of as controlling the 

frequency scale, whereas the translation parameter y moves the wavelet through 

the time domain. By varying df and y, one can construct a picture of how the 

wavelet power spectrum of a signal varies in the time-frequency domain, thus 

making it suitable for studying non-stationarity in time and in frequency. Since 

the frequency resolution depends on the scale E,, both high and low frequency 

fluctuations of a process can be captured by varying either the frequency or time 

scale. The wavelet power spectrum is defined as | Wt{B,,y) |2. When comparisons 

of the power spectra across several time series are desirable, the wavelet power 

spectrum may be normalized by the variance of the original time series. 

An ideal wavelet for climate signal detection should have the ability to detect both 

time-dependent amplitude and phase changes for different frequencies in the time 

series (Lau and Weng, 1995). Due to its complex nature, the Morlet wavelet is 

adapted to such oscillatory behaviors and it has been employed in this study. The 

Morlet wavelet consists of a plane wave modulated by a Gaussian, 

y/0(t) = eia¥e-'2'2 (2.3) 

Figure 2.2 shows the Morlet wavelet transform of the seasonal precipitation 

anomaly (Figure 2.2a) at Calgary, Alberta. The thick contour lines in Figure 2.2b 
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enclose regions of statistically significant wavelet power in the time-frequency 

space at the 5% significance level of a white noise process. Significant 

interannual (« 2-8 year) oscillations at Calgary occurred in the early 1900s, 1930s 

and 1950s, while inter-decadal (« 10-32 year) oscillations were active from 1900s 

to 1960s. Since the wavelet transform is performed in the Fourier space, the ends 

of the time series are padded with zeros to bring it to the next higher power of two 

to reduce wraparound effects (Torrence and Compo, 1998). The wavelet power 

outside the cone of influence (dashed line in Figure 2.2b) is suppressed due to the 

zero-padding and should be interpreted with caution. 

Various quantities can be derived from the wavelet transform so as to condense 

the vast quantity of information contained in the wavelet spectrum and enhance 

further interpretation and statistical analysis. One such quantity is the global 

wavelet spectrum, which is the time average of all the local wavelet power spectra 

for each scale, 

W\i;) = \yd\WM,7)\2 (2-4) 

The global wavelet spectrum only shows dominant scales with no temporal 

information. The global wavelet spectrum for Calgary (Figure 2.2c) shows 

statistically significant oscillations at 1,12 and about 22 year scales. 

The scale-averaged wavelet power (SAWP) is used to examine the spatial and 

temporal fluctuations of the wavelet power in a given scale band. SAWP is 

defined as, 

r , w = M £ J * ^ £ (2.5) 
*-<s j=h £./ 

where Sj is a factor for scale averaging, Cs is a reconstruction factor, St is the 

sampling interval and j \ and j2 are the upper and lower cutoff scales. 
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Scale bands and time periods within which precipitation exhibits co-variance 

with climate indices can be identified from wavelet coherence, which is defined 

as (Torrence and Webster, 1999), 

Rt (£) = 7 — • ^Yl-T1 WY (2-6) 
rw;^,r) urwf&r) 

where Wt (J;, y) is the cross-wavelet spectrum of X and Y, Q is a smoothing 

operator, and 0 < Rf (£) < 1. Equation 2.6 is an accurate representation of the 

normalized covariance between two time series since the wavelet transform 

conserves variance. It has been used to study the relationships between Indian 

rainfall and ENSO (Torrence and Webster, 1999) and Baltic Sea ice conditions 

and the Arctic and North Atlantic oscillation indices (Jevrejeva et ah, 2003). 

Pearson's correlations between the principal components (PC) of band-pass 

filtered signals of precipitation and climate indices at multiple scale bands were 

also assessed. The band-passed signal x'(t) over a subset of scales can be 

recovered from the wavelet coefficients by the equation, 

where y/(0) is a factor to remove the energy scaling (Torrence and Compo, 

1998). 

In addition to wavelets, composite and correlation analysis were also used to 

examine the relationships between winter precipitation in Western Canada and 

large-scale climate anomalies. A composite is constructed by averaging individual 

cases of a quantity (e.g. precipitation) for years during which a selected climate 

anomaly has occurred (Barry and Perry, 1973). Composite analysis assumes that 

the selected climate anomaly is primarily responsible for any extreme conditions 

observed in the quantity of interest for those years included in the composite. 
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2.4. Discussions of Results 

2.4.1. Wavelet Analysis of Precipitation 

The wavelet power spectra for all 21 stations are presented using SAWP and 

time-longitude plots (also called Power Hovmoller) in Figure 2.3. The SAWP was 

computed for three scale bands (2-3 year, 3-8 year and 8-30 year). The 

precipitation variability in the first two bands could be related to the high and low 

frequency components of ENSO and extratropical modes of low frequency 

climate variability whereas the last band corresponds to decadal to inter-decadal 

oscillations that could be associated with decadal variations in the North Pacific 

climate. The solid contours in Figure 2.3 enclose statistically significant SAWP at 

the 5% level of a white noise process. 

At individual stations, the 2-3 year scale (Figure 2.3a(i)) accounts for up to 38% 

of the variance (e.g. in the 1910s at Regina and Indian Head, Saskatchewan; in the 

1980s at Vavenby, BC). At the regional scale, there appears to be some spatial 

coherency in the early part of the record, with the activities around the 1920s and 

1930s occurring at several stations across the Prairies and BC (Figure 2.3a(i)). 

This is followed by a period of little activity during 1940s to late 1950s with the 

exception of Victoria, BC in 1950. Significant activities since the late 1950s are 

observed for stations west of 117°W and east of 105°W, while those in eastern 

BC, Alberta, and most of Saskatchewan show little activity. Considering the 

space-averaged power, the proportion of variance explained by the 2-3 year band 

ranges from as low as 5% in the 1950s to about 15% in the 1910s (Figure 

2.3a(ii)). This is far below the maximum variance explained at individual stations, 

showing that significant precipitation activities tend to be not well organized in 

both space and time. Hence, significant precipitation activities in the 2-3 year 

scale band generally have short lifetime and seem to be haphazard in nature. 

The 3-8 year band (Figure 2.3b(i)) accounts for up to 30% of the precipitation 

variance at some stations (e.g. Prince Albert, Saskatchewan around 1920; 
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Quatsino, BC around 1950). As opposed to the 2-3 year band, the 1950s is the 

time during which the precipitation across the study area shows the largest 

significant power for the 3-8 year band. There are also scattered activities before 

and after 1950s, such as those in Saskatchewan in the 1920s, and in BC in the 

1960s and 1990s. Similar to the 2-3 year scale, these fluctuations have short 

lifetimes and show less spatial coherence (Figure 2.3b(ii)). The variability at the 

8-30 year scale (Figure 2.3c(i)) accounts for up to 20% of the variance at a few 

stations (e.g. from 1910 to 1930 at Calgary, Alberta; from 1920 to 1950 at 

Victoria, BC; from 1910 to 1940 at Agassiz, BC; and from 1985 to end of record 

at Creston, BC). Although there appears to be no spatial coherence except for that 

at Agassiz and Victoria, BC during 1920-1940, this scale shows persistent 

variability at those few stations exhibiting significant precipitation activity. 

2.4.2. Regional Precipitation Activities 

Visual inspection of the spatial climate pattern of the Hovmoller diagrams for the 

2-3 year and 3-8 year scales in Figure 2.3 suggests that the 21 precipitation 

stations can be grouped into 3 regions: (1) west of 117°W (9 stations), (2) 117°W 

to 107°W (6 stations), and (3) east of 105°W (6 stations). For simplicity, these 

three regions will be referred to as western, central and eastern regions, 

respectively in subsequent discussions. Stations in the western region tend to 

show more variability in the second half of the record period (i.e. after 1950) than 

in the first half of the record period whereas those in the central region essentially 

exhibit an opposite pattern, with very little activity during the second half of the 

record, especially for the 3-8 year scale. Stations in the eastern region appear to 

exhibit moderate activity in both halves of the record period. 

2.4.3. Wavelet Analysis of Climate Indices 

The wavelet power spectra of Nino3, SOI, CNP, PDO, PNA and WP indices are 

shown in Figure 2.4a-f. In agreement with previous studies (Torrence and 

Compo, 1998), the Nino3 index exhibits interannual (2-8 year scale) oscillations 

of large amplitude during pre-1920 and post-1960 periods, and a reduced level of 
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activity in between (Figure 2.4a). Nino3 also shows inter-decadal oscillations in 

the early 1900s that persisted with decreasing power until 1940s. Similarly, SOI 

shows interannual variability of 2-8 year scale during pre-1920s, and post-1970s, 

and few significant oscillations in between (Figure 2.4b). There is also some inter-

decadal variability in SOI that persisted up to the 1920s, and resumed in the 

1980s. 

CNP shows scattered interannual oscillations in the 1910s, 1940s, 1950s and 

1980s, and a strong 15 year oscillation mode during 1916-1947 (Figure 2.4c). 

Even though PDO shows relatively strong power near the 20 year scale, most of 

its power is concentrated at scales of 42 and 62 years, which are outside the cone 

of influence (Figure 2.4d). PNA shows statistically significant oscillations of 8 to 

12 year modes in the 1960s, and a 4 year oscillation from the second half of 1970s 

to mid 1980s (Figure 2.4e). According to Graham (1994), the PNA pattern 

changed from a negative phase in 1964-1967 to a positive phase in 1976-1988, 

which probably agrees with the southward shift and intensification of the Aleutian 

low noted in the mid-1970s. Its negative phase again dominated during 1989-

1990, followed by a prolonged positive phase from fall 1991 to spring 1993. WP 

shows significant interannual oscillation during 1950-1965, and 1985-1990s 

(Figure 2.4f). 

2.4.4. Influence of Large-scale Climate Anomalies 

2.4.4.1. Wavelet Coherence and Phase Difference 

A visual comparison of Figure 2.3 and Figures 2.4a-f indicates that the 

relationships between the wavelet powers of precipitation anomalies of individual 

stations and climate indices appear to be highly unstable. Using the wavelet 

coherence analysis, we could measure the links between regional precipitation 

signals and climate indices. Since the leading principal components of 

precipitation anomalies for the western, central and eastern regions account for a 

considerable percentage of the variance in regional precipitation (41.8%, 42.7% 

and 53.7%, respectively), we used these leading principal components as 
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surrogates for regional precipitation signals. In subsequent discussions, the 

western, central and eastern leading principal components will be referred to as 

WRPC1, CRPC1 and ERPC1, respectively. Their wavelet power spectra are 

shown in Figure 2.4g-i. 

Figures 2.5a-f show the wavelet coherence between the WRPC1 and six climate 

indices. The thick contours in Figure 2.5 enclose periods of statistically 

significant coherence of a red noise process as determined by a Monte Carlo 

experiment (Jevrejeva et ah, 2003). The phase differences between the two 

signals for coherences greater than 0.5 are plotted as vectors in Figure 2.5, where 

a right pointing arrow indicates that the two signals are in-phase while a left 

pointing arrow indicates an anti-phase relationship. Arrows deviating from the 

horizontal indicate that there is a lagged relationship between the two signals. 

At the interannual scale, WRPC1 and Nino3 show scattered coherences of over 

0.8 in the 1950s, 1970s, 1980s and 1990s (Figure 2.5a). Note that the existence of 

significant coherence between the two signals does not necessarily depend on the 

existence of significant wavelet power in both signals. For instance, both Nino3 

(Figure 2.4a) and the WRPC1 (Figure 2.4g) do not have significant power near 

the 5-year scale in the 1950s but still show significant coherence. Similarly, the 

WRPC1 power near the 2 year scale in the 1980s, albeit relatively strong, is not 

statistically significant but the coherence between WRPC1 and Nino3 for that 

time period and scale is statistically significant. The phase difference shows that 

there is generally an anti-phase relationship between Nino3 and WRPC1 for time 

periods of significant coherence. The phase distribution outside periods of 

significant coherence is less consistent. For instance, while the phase difference 

near the 15 year scale is anti-phase before 1950s, it is close to in-phase after 

1980's. 

For the post-1950 period, the coherence between SOI and WRPC1 (Figure 2.5b) 

mostly mirrors that of Nino3. Periods of scattered but high coherence between 
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WRPC1 and SOI are also observed near the 2-year scale during 1910s to 1920s, 

1930's and late 1940s. For time periods with significant coherence, the WRPC1 

and SOI are generally in phase. For CNP, the strongest coherence with the 

WRPC1 occurs at the interdecadal scale centered near 15 years up until 1960's 

(Figure 2.5c). This is not surprising since both CNP and WRPC1 have significant 

wavelet power at that scale (Figures 2.4c and 2.4g). For time periods of 

significant coherence, the CNP and WRPC1 are generally in phase, the only 

exception being the anti-phase relationship in the 2-3 year scale in the 1980s. The 

strength of the 15 year scale relationship between WRPC1 and the North Pacific 

ocean-atmosphere system is also supported by the relatively strong coherence 

between WRPC1 and PDO up until the 1940s (Figure 2.5d). 

Most of the high coherence between PNA and WRPC1 is found in the 1-2 year 

scale (Figure 2.5e). However, interannual scale coherence values of over 0.8 are 

also observed during the early 1970s, 1980s and late 1990s. A notable feature of 

the relation between WRPC1 and PNA is the phase change from anti-phase in the 

1970's to in-phase in the 1980s and then back to nearly anti-phase in the 1990's. 

Statistically significant coherence between WP and WRPC1 is observed during 

the early 1970s, 1980s and late 1990s (Figure 2.5f), with the relation being out of 

phase for all three periods. 

The CRPC1 shows relatively weak interannual scale coherence with Nino3 and 

SOI, with the only noticeable periods of significant coherence being the 1920s 

and 1980s at the 4-year scale (Figures 2.6a-b). Both Nino3 and SOI show 

relatively strong coherence with CRPC1 in the 1-2 year scale. The CNP index 

also has weak interannual scale coherence with the CRPC1 except in the 1920s 

and 1960s (Figure 2.6c). An interesting feature of Figures 2.6c-d is the anti-phase 

(in-phase) relationship between CNP (PDO) and CRPC1 for the interdecadal scale 

centered near 15 years for the earlier part of the record. This observation is in 

direct contrast to the phase distribution for the WRPC1 (Figure 2.5c-d). The PNA 

and WP indices appear to show better overall interannual scale coherence with the 
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CRPC1 than the remaining climate indices (Figures 2.6e-f). A phase shift in the 

coherence between WP and CRPC1 around 1980 is evident from Figure 2.6f. 

Significant interannual scale coherence between the ENSO indices and ERPC1 

exists only in the 1920s, 1950s and 1970s (Figure 2.7a-b). CNP and PDO lead the 

ERPC1 at the interdecadal scale centered near 15 years (Figure 2.7c-d). Again 

PNA appears to exhibit better interannual scale coherence with the ERPC1 

compared to the other indices (Figure 2.7e). For WP, the only periods of 

significant coherence occurred in the 1970s and 1980s, with the phase difference 

showing anti-phase relations between the two signals (Figure 2.7f). 

The above results show that the strength and consistency of interannual scale 

relations between Western Canadian seasonal precipitation anomalies and large-

scale climate indices changes in both the time and frequency domains. This is 

partly due to the haphazard nature of interannual oscillations in the seasonal 

precipitation anomalies (Figure 2.3 and Figure 2.4g-i). In other words, as 

compared to climate indices like Nino3 and SOI, seasonal precipitation anomalies 

have low overall signal-to-noise ratio, leading to scattered periods of high 

coherence with climate indices. 

Notwithstanding variations in phase differences seen in the coherence maps, 

decadal to inter-decadal precipitation variability in Western Canada appears to be 

linked mainly to CNP and PDO. Low-frequency precipitation variability should 

be linked to SST variations since the latter has distinct decadal fluctuations 

(Trenberth and Hurrell, 1994; White et a!., 1997). Cayan et al. (1998) found that 

the Prairies' precipitation fluctuations are associated with extensive shifts of SLP 

and SST anomalies, which they suggested are components of low-frequency 

precipitation variability from global scale climate processes. Weaver et al. (1991) 

showed that freshwater flux could excite decadal and inter-decadal oceanic 

variability that may be important in the observed decadal/ inter-decadal variability 

in our climate system. Ghil and Vautard (1991) suggested that inter-decadal 
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oscillation of global surface air temperature could be related to changes in the 

extratropical ocean circulations. From a coupled ocean-atmosphere model and 

observations, Latif and Barnett (1994) found that about one-third of the low 

frequency variability (mode of 20 year) over the North Pacific Ocean and North 

America can be attributed to unstable air-sea interactions between the sub-tropical 

re-circulation in the North Pacific and the Aleutian low system. They showed that 

a correlation of -0.5 to -0.6 exists between anomalies of atmospheric pressure 

south of the Aleutians and Prairies' air temperature. 

2.4.4.2. Correlations at Multiple Scales 

We also explored the relations between the PC of band-passed seasonal 

precipitation and band-passed climate indices at multiple scales. If a climate index 

consistently exerts significant influence on the regional precipitation at a given 

scale, we expect the band-passed climate index and the band-passed precipitation 

PC scores to show strong correlations. Table 2.3 shows Pearson's correlations 

between the first three band-passed precipitation PC scores of each region and 

climate indices for the 2-3 year, 3-8 year and 8-30 year scale bands, with 

statistically significant correlations at the 5% level indicated in bold text. 

Statistical significance of the correlations was estimated by the bootstrap re­

sampling approach as follows (Efron and Tibshirani, 1993). Given JVdata points, 

the bootstrap procedure for a single realization involves randomly re-sampling N 

rows of precipitation PC and climate index pairs with replacement, and computing 

the correlation coefficient. We estimated the 5th and 95th percentiles of 10,000 

bootstrap correlations. Positive (negative) correlations for which the 5th (95th) 

percentile is greater (less) than the 5% significance level from the standard 

significance test for correlation were deemed significant. Correlations significant 

at the 5% level are indicated in bold text in Table 2.3. 

From the correlations in Table 2.3, it is clear that no single climate index can 

explain more than 30% of interannual precipitation variability in Western Canada. 

The rather weak correlations for interannual scale bands corroborate the 
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inconsistencies observed in the wavelet coherence and phase difference presented 

in Section 2AAA. In general, it appears that regional precipitation shows better 

correlation with climate indices in the 2-3 year and 8-30 year scale bands than the 

3-8 year band. 

2.4.4.3. Composite Analysis 

Here, compositing is used to explore the impacts of the extreme phases of ENSO, 

PDO, CNP, PNA, WP and EP on the winter (December-January-February (DJF)) 

precipitation of Western Canada. The El Nino and La Nina composites were 

based on years during which the 5-month moving average of SOI remained in the 

lower (higher) 25% of the distribution for a period of 5 months or longer (Shabbar 

et ah, 1997). High (low) PNA, WP and EP phases were defined using a threshold 

of ±0.5 standard deviations based on the DJF standardized index. High (low) CNP 

phases were defined as those years where the standardized DJF CNP index is 

above (below) ±0.75 standard deviations. The years used for ENSO, CNP, PNA, 

WP and EP composites are listed in Table 2.4. Observational studies indicate that 

20th century PDO regime shifts have occurred around 1924/25, 1946/47, 1976/77 

and 1998/99 (Mantua and Hare, 2001). Therefore, our warm PDO composites are 

for 1925-1946 and 1977-1998 while the cool PDO composites are for 1914-1924 

and 1947-1976. It should be noted that the change in Pacific climate in 1976/77 

period has been identified as a regime shift (Nitta and Yamada, 1989; Trenberth, 

1990; Miller ef ai, 1994). 

The composite precipitation (e.g. for El Nino) for a given station was computed as 

the ratio of the mean of winter precipitation for anomalous years (e.g. the 21 El 

Nino years in Table 2.4) relative to the long-term mean winter precipitation of 

that station. The long-term means were computed from the period 1914-2001 for 

ENSO and PDO composites, 1914-1990 for CNP composites, 1948-2001 for PNA 

composites, and 1950-2001 for WP and EP composites. Figure 2.8 shows the 

composites for all 21 stations, where a composite value of greater than unity 

means that the climate anomaly is associated with positive winter precipitation 
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anomaly, and vice versa. Albeit the composite magnitudes show considerable 

variation from station to station, La Nina (El Nino), cool PDO (warm PDO), low 

PNA (high PNA) and low WP (high WP) are typically associated with positive 

(negative) winter precipitation anomalies across Western Canada (Figures 2.8a-c; 

Figure 2.8e). In addition, high (low) EP years are associated with positive (mainly 

negative) precipitation anomalies in the western region, though lately changes to 

low EP years is unclear (Figure 2.8d). 

In general, ENSO, PDO, PNA and WP appear to distinguish negative and positive 

precipitation anomalies better than CNP and EP. Low CNP winters (anomalously 

low central North Pacific SLP) are mostly associated with negative precipitation 

anomalies across the study area (Figure 2.8f). On the other hand, high CNP 

winters are associated with weak positive precipitation anomalies in the eastern 

half of the study area but mostly (seven of the nine stations) with negative 

precipitation anomalies in the western half. 

The composites for stations in the western, central and eastern regions were also 

averaged separately and for the entire study area in order to assess the 

characteristic response of regional precipitation to the extreme phases of the 

climate anomalies (see Table 2.5). Prince Rupert and Quatsino, BC were excluded 

from the regional aggregate composites since their ENSO and PNA composites 

had opposite signs to those of the remaining seven stations in the western region 

(see stations 1 and 2 of Figures 2.8a and 2.8b). Considering the average of the 

remaining 19 stations, El Nino (La Nina) is associated with a 14% decrease (20% 

increase) of winter precipitation, high (low) PNA is associated with a 12%) 

decrease (9% increase), warm (cool) PDO is associated with a 8% decrease (9% 

increase), high (low) CNP is associated with a 11% decrease (4% increase), high 

(low) WP is associated with a 8% decrease (9% increase), and high (low) EP is 

associated with a 12%> increase (1%> decrease) relative to the long-term mean 

winter precipitation. In general, regional precipitation responses to the opposite 

phases of a climate anomaly are not mirror images of each other. 
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The precipitation ENSO/PNA relations detected in this study generally concur 

with previous studies, e.g. Shabbar et al. (1997) showed that El Nino (La Nina) 

events are associated with below (above) normal precipitation anomalies across 

Western Canada. Cayan et al. (1998) indicated that ENSO could explain about 

10-20% of the annual precipitation variance for the CP, with the variance 

explained increasing to 20-30% towards the BC coast. Moore and McKendry 

(1996) indicated that winters dominated by an enhanced PNA pattern are 

associated with below normal spring snowpack in BC. Hsieh and Tang (2001) 

showed that El Nino (La Nina) and high (low) PNA years are associated with 

lighter (heavier) than normal April 1 snow water equivalent in the Columbia 

River basin, BC. 

Provided that the climatology of winter precipitation in Western Canada is 

influenced by large-scale climate anomalies, atmospheric circulation patterns that 

prevailed during anomalous winter seasons should provide supporting physical 

evidence for the relations revealed by the composite analysis. For example, 

during warm PDO phases, the SST field tends to be anomalously cool over the 

central North Pacific basin, but anomalously warm SST prevails along the west 

coast of North America (Mantua and Hare, 2001). These SST anomalies are 

accompanied by variation in the placement and strength of the Aleutian low 

during winter (Bond and Harrison, 2000). A deeper than normal Aleutian low 

favors enhanced cyclonic winds, which could reinforce the cool SST anomalies 

over the central North Pacific and inhibit latent and sensible heat release. Bond 

and Harrison (2000) showed that surface latent and sensible heat fluxes in the 

central North Pacific basin are suppressed (enhanced) by about 15 W/m2 during 

warm (cool) PDO phases for both ridge and trough events. They also showed that 

the meridional temperature gradient in the planetary boundary layer across the 

Pacific roughly north of 40°N is suppressed (enhanced) during warm (cool) PDO 

phases. These conditions would likely be associated with disturbances in the 

location and intensity of moisture bearing westerly flows over western North 

America. 
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Mature El Nino winters are typically associated with deepening of the Aleutian 

low and an amplification of the western Canadian ridge. The ridge causes 

enhanced anticyclones and a northward shift in the mid-latitude jet stream, 

leading to relatively dry conditions in Western Canada (Shabbar et ah, 1997). On 

the other hand, mature La Nina winters are typically associated with an erosion of 

the western Canadian ridge and enhanced westerly flow, resulting in relatively 

wet conditions in Western Canada. Like El Nino winters, high PNA winters are 

associated with deeper than normal Aleutian low and an enhanced ridge over 

Western Canada. However, the height anomalies over North America during El 

Nino winters exhibit pronounced meridional gradients whereas the gradients 

during high PNA winters are mainly zonally oriented (Straus and Shukla, 2002). 

Figure 2.9 shows the DJF 300-mbar geopotential and wind anomaly patterns 

associated with anomalous CNP winters. During low CNP winters (Figure 2.9a), 

the orientation of height anomalies around the Aleutian low has some superficial 

resemblance to that during mature El Nino winters (not shown). A closer scrutiny 

of the composite fields reveals that the Aleutian anomaly center during El Nino 

winters is shifted eastwards by 5 to 10 degrees relative to that during low CNP 

winters. In addition, the highs over western North America extend further south 

during low CNP winters than during El Nino winters. These differences are 

evident from Figure 2.9b, which is a difference field between El Nino and low 

CNP composites. The positive (negative) height fields over the central North 

Pacific (western North America and eastern Pacific) in Figure 2.9b shows that the 

anomalies near the centers of the Aleutian low and the western Canadian high are 

much stronger during low CNP winters than during El Nino winters. The 

difference in the wind patterns in Figure 2.9b suggests a more enhanced 

meridional flow during El Nino winters than during low CNP winters though both 

types of winters appear to be devoid of westerlies; hence both are associated with 

negative precipitation anomalies over Western Canada. 
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Figure 2.9c shows the 300-mbar level circulation patterns associated with high 

CNP winters. Again, the orientation of the height anomalies around the Aleutian 

low during high CNP winters has some similarity to that during La Nina winters 

(not shown). On the contrary, the orientation of the height anomalies over 

Western Canada during high CNP winters is considerably different from that 

during La Nina winters. First, the upper level flow during high CNP winters is 

predominantly meridionally oriented, whereas that during La Nina winters is 

mostly zonally oriented. Second, there is a southwestward displacement of the 

western Canadian anomaly center during high CNP winters compared to La Nina 

winters. The difference field between the wind patterns during La Nina and high 

CNP winters (Figure 2.9d) suggests an enhanced westerly flow over Western 

Canada during La Nina winters relative to high CNP winters, possibly due to a 

southward shift in the position of geotropic westerlies during the latter. To 

substantiate this argument further, we examined the 300-mbar zonal (U-) wind 

anomaly patterns during ENSO and CNP winters in Figure 2.10. 

The zonal wind patterns during El Nino (Figure 2.10a) and La Nina (Figure 

2.10b) winters show the familiar ENSO related upper level circulation (i.e. a 

southward displacement of the subtropical jet stream during El Nino winters; 

enhanced westerlies over western North America during La Nina winters). The 

zonal wind patterns associated with low CNP winters (Figure 2.10c) are broadly 

similar to those during El Nino winters, with the only major difference being an 

apparent weakening of the jet stream over the subtropical eastern Pacific during 

low CNP winters compared to El Nino winters. On the other hand, there is a clear 

southward displacement of the jet stream over western North America during high 

CNP winters (Figure 2.10d) compared to La Nina winters. In addition, the jet 

stream axis during high CNP winters is aligned in the southwest-northeast 

direction, as opposed to a northwest-southeast orientation during La Nina winters. 

Hence, with much of the storm track expected to be to the south, the western part 

of our study area would experience negative precipitation anomalies during high 

CNP winters. A significant implication of the non-linearity of Western Canadian 
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precipitation responses to anomalous CNP winters is that anomalous atmospheric 

circulation over the central North Pacific alone is not a sufficient condition for the 

prevalence of moisture deficiency (or surplus) over Western Canada. 

As noted earlier, the impacts of the EP pattern are more likely confined to the 

western parts of the study area. This result is also supported by composites of 

geopotential height and wind anomalies for high EP (Figure 2.11a) and low EP 

(Figure 2.11b) winters. Figure 2.11a exhibits the signature of a strong positive 

phase of the EP pattern, with a deeper than normal trough in the vicinity of the 

Bering Sea/ Alaska, and positive height anomalies to the northeast of Hawaii 

(Horel and Wallace, 1981). This phase of EP is associated with enhanced westerly 

flow over southwestern BC and the US Pacific Northwest. 

During low EP winters, negative height anomalies cover a large portion of the 

subtropical Pacific extending to the west coast of the US (Figure 2.1 lb). A similar 

anomaly center to that of the Pacific is also observed over a large portion of the 

polar region and the high latitudes (not shown). Positive height anomalies are 

centered over the Gulf of Alaska. The flow over the eastern central North Pacific 

is dominated by easterlies, which could lead to a split and/or displacement of the 

jet stream over North America (Figure 2.11b). This would lead to drier than 

normal conditions over southern BC. A similar circulation pattern dominated the 

region during the winter of 1992-1993, leading to drier than normal conditions 

across Canada, and wetter than normal conditions across southwestern and central 

US (Bell and Basist, 1994). 

2.4.4.4. Correlations with Raw Precipitation 

To assess the usefulness of large-scale climate anomalies for predicting seasonal 

precipitation, we computed Pearson's correlations between climate indices at zero 

to 3 season lead times and the dominant modes of regional precipitation. The 

regional precipitation signals for the western, central and eastern regions were 

separately represented by the leading PC's (PCI) of seasonal precipitation 
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anomalies from stations in each region. These leading PC's explain a large 

portion of the variance of regional precipitation. For the western region, the PC 1 

of each season (excluding data at Prince Rupert and Quatsino, BC) explains 50% 

of the variance for winter, 37% for spring, 53% for summer and 54% for autumn. 

The amount of variance explained by PCI of the central region stands at 49% for 

winter, 34% for spring, 42% for summer and 49% for autumn. For the eastern 

region, PCI explains 55% of the variance for winter, 52% for spring, 47% for 

summer and 58% for autumn. 

The winter season correlations, when teleconnections in the extratropical 

Northern Hemisphere are known to be relatively strong (Wallace and Gutzler, 

1981; Shabbar et al., 1997), are given in Table 2.6 (where correlations significant 

at the 5% level are indicated in bold text). The correlations between Nino3 and 

PCI of the eastern and central regions increase for one season lead time, and 

those between SOI and the PCI of all three regions increase up to one or two-

season lead times. Comparatively, the PDO and PNA indices show the strongest 

contemporaneous (lag-0) correlations with PCI of all three regions. The strongest 

lag-0 correlation of PDO and PNA is with the central region PCI (-0.54 for PDO 

and -0.52 for PNA). These results are in agreement with the composite analysis, 

i.e. El Nino (La Nina), warm PDO (cool PDO), high PNA (low PNA), low CNP 

(high CNP), high WP (low WP) and low EP (high EP) are generally associated 

with negative (positive) winter precipitation anomalies. However, for prediction 

purposes, only ENSO and PDO seem to provide useful information at one- to 

three-seasons lead-time. 

During spring, only CNP and PNA show significant lag-0 correlations with the 

central region PCI (p=0.23 with CNP and p=-0.38 with PNA) and the eastern 

region PCI (p=0.25 with CNP and p=-0.41 with PNA). During summer, CNP 

shows significant correlation at lag-0 with the central region PCI (p=0.25), and at 

lag-1 with the western region PCI also (p=0.36). In autumn, significant lag-0 

correlations exist between the western region PCI and PNA (p=-0.37), the 
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western region PCI and CNP (p=0.22), the central region PCI and PNA (p=0.44) 

and the eastern region PCI and WP (p=0.30). It appears that ENSO events affect 

Western Canadian precipitation mainly during winter but the influence of CNP, 

PNA and WP could extend to spring and autumn. 

It seems that the proportion of precipitation variance explained by individual 

climate indices is generally not strong enough to achieve consistently accurate 

prediction of precipitation anomalies in Western Canada. The unstable relations 

between climate indices and precipitation may partly be because teleconnection 

patterns mainly capture the large-scale features of variability while local changes 

in their anomaly centers can result in large differences in western North American 

surface climate (Yarnal and Diaz, 1986). In addition, some climate indices (e.g. 

CNP), being of limited area averages, may be too simplistic to capture the (non­

linear) dynamical links between large-scale circulation and Western Canadian 

precipitation. 

Inconsistencies in the strength of the links between a climate index and 

precipitation may also reflect the complicated relations between the tropical 

Pacific SST forcing and the internal dynamics of the North Pacific during the 

mature phase of ENSO (Bell and Basist, 1994). In particular, precipitation 

activities may be affected by constructive (destructive) interactions between two 

or more climate patterns operating at different characteristic time scales. For 

instance, using coupled general circulation model (GCM) experiments, Yeh and 

Kirtman (2004) argued that decadal scale central North Pacific SST variability 

can influence the midlatitude ENSO response on interannual time scales. Using 

historical data, several studies have shown that western North American surface 

climate and ENSO relationships exhibit interdecadal variations that are 

synchronized with PDO (McCabe and Dettinger, 1999; Gobena and Gan, 2006). 

Similar PDO-ENSO interactions are evident in Western Canadian precipitation 

response, with El Nino (La Nina) winters during warm (cool) PDO regimes being 

associated with enhanced negative (positive) precipitation anomalies relative to 
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the mean El Nino (La Nina) response (Figure 2.12). On the other hand, 

precipitation anomalies during El Nino (La Nina) winters conditioned on cool 

(warm) PDO regimes remain close to normal, suggesting that the opposite phases 

of these two climate anomalies could negate each other. The differences between 

the conditioned and unconditioned ENSO responses in Figure 2.12 are all 

statistically significant at the 5% level of the two sample t test. 

Precipitation climate relations could also be influenced by interactions between 

interannual modes such as ENSO and PNA. While there is a higher tendency for 

anomalous PNA years to be associated with mature ENSO phases (Trenberth and 

Hurrell, 1994), Table 2.4 shows that extreme phases of PNA can also occur 

without the ENSO forcing. Using ensemble GCM experiments, Straus and Shukla 

(2002) showed that tropical SST anomalies during El Nino events primarily force 

midlatitude circulation patterns that are distinctly different from the PNA pattern. 

From the analysis of Western Canadian streamflow anomalies, Gobena and Gan 

(2006) found that streamflow responses to high PNA years conditioned on Non-El 

Nino years were not symmetrical with streamflow responses to low PNA years 

conditioned on non-La Nina years. While the former produced responses that are 

similar to those during El Nino years, the latter were associated with streamflow 

responses that were significantly weaker than those during La Nina years. 

Precipitation processes are also affected by local factors such as topography, 

surface heating and friction, which will contribute significantly to precipitation 

spatial variability. In particular, orographic controls could exert significant 

influence on stations located in the valleys of the rugged terrains of inland BC, 

where the Pacific air stream has to descend to reach the valley stations. Canada's 

precipitation has been shown to be a high dimensional chaotic process with Di of 

8 to 9 (Gan et ah, 2002), implying that many independent variables are needed to 

describe the precipitation process. 
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2.5. Summary and Conclusions 

From the wavelet and composite analysis of 21 stations of long-term precipitation 

data of Western Canada, and their teleconnection to large-scale climate anomalies 

for atmospheric circulation and SST of the Pacific, the conclusions are: 

1) Using the Morlet wavelet, statistically significant (a=0.05) interannual 

oscillations that occurred haphazardly (even for stations located in the same 

region) have been detected in the precipitation data of Western Canada. Inter-

decadal fluctuations tend to be more persistent but significant oscillations were 

detected only at a few stations. 

2) Based on similarities in precipitation wavelet power at interannual scales, three 

regions were identified and the precipitation activities in each region were related 

to large-scale atmospheric circulation patterns (via climate indices). The wavelet 

coherence and phase difference between climate indices and the leading PC of 

precipitation for each region was found to be highly inconsistent in both time and 

frequency. In addition, Pearson's correlations between the PC's of band-pass 

filtered precipitation and climate indices were generally found to be weak, 

indicating that the strength of teleconnections changes in both time and frequency. 

3) In general, ENSO (Nino3 and SOI) exerted relatively strong influence on the 

winter precipitation data of Western Canada as compared to the other climate 

anomalies. At regional level, El Nino (La Nina) leads to a 14% decrease (20% 

increase) in mean winter precipitation. PNA, PDO, CNP, WP and EP also have 

their shares in forcing the precipitation over the region. Strong positive (negative) 

PNA leads to a 12% decrease (9% increase) in mean winter precipitation. The 

influence of PNA also extends to the spring and autumn seasons. PDO is 

associated with an 8% decrease (9% increase) whereas high (low) CNP is 

associated with a 11% decrease (4% increase) in mean winter precipitation. 

Strong positive (negative) WP leads to an 8% decrease (9% increase) in mean 

winter precipitation. The impact of EP tends to be confined to the western region 
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of the study area only, with strong positive (negative) EP leading to a 14% 

increase (4% decrease) in mean winter precipitation in that region. The detected 

teleconnections could occur at interannual or inter-decadal levels (depending on 

which anomaly index is used), and their strength changes in time and space, 

making their applications for seasonal precipitation prediction unreliable. Further, 

climate indices alone are too simplistic to capture the precipitation variability 

consistently. 

Gan et al. (2007) indicated that Western Canada's precipitation data are 

characterized as a high dimensional multifractal process with correlation 

dimensions (D2) of 8 to 9. This result corroborates the unstable interannual 

oscillations revealed by the wavelet analysis. Given the high Di and multifractal 

properties identified, we expect the climate systems for precipitation prediction to 

be very sensitive to the initial conditions, a basic characteristic of a chaotic 

system. In other words, any slight perturbation or errors will amplify 

exponentially in successive iterations. Furthermore, compounded by their 

haphazard low frequency oscillations, it will be difficult to get consistent seasonal 

predictions of the highly nonlinear precipitation processes in Western Canada by 

only teleconnecting with climate indices. Some selected SST and/or SLP 

predictor fields from the Pacific Ocean could be useful. The prediction result will 

likely be season and region dependent, with better results expected during winter 

(or autumn) seasons. This is also supported by the fact that lagged correlations 

between climate indices and precipitation that are significant are mainly found 

during the winter. 
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Table 2.1. Summary of the precipitation stations used in the study. 

Station 
No. 

Station 
Index 

Station name and 
province 

Lat, 
deg 

Long, 
deg 

Elevation, 
m 

Mean annual 
Precipitation, 

mm 

Western Region 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

1066481 
1036570 
1060840 
1092970 
101HFEE 
1096630 
1100120 
1126510 
1168520 

1173210 
1142160 
3031093 
3012208 
3034480 
4048520 

4057120 
4056240 
4016560 
4013480 
5010485 
5023222 

Prince Rupert A., BC 54.30 
Quatsino, BC 50.53 
Bella Coola, BC 52.37 
Fort St James, BC 54.45 
Victoria Phyllis, BC 49.45 
QuesnelA., BC 53.03 
Agassiz CD A, BC 49.25 
Princeton A., BC 49.47 
Vavenby.BC 51.58 

Central Region 
Golden, BC 51.30 
Creston,BC 49.10 
Calgary Int'l A., AB 51.12 
Edmonton M. A., AB 53.57 
Medicine Hat A., AB 50.02 
Waseca, SK 53.10 

Eastern Region 
Saskatoon, SK 52.23 
Prince Albert A., SK 53.22 
Regina A., SK 50.43 
Indian Head, SK 50.53 
Brandon CDA, MB 49.87 
Winnipeg Int'l A., MB 49.90 

130.43 
127.65 
126.68 
124.25 
123.27 
122.52 
121.77 
120.52 
119.78 

116.97 
116.52 
114.02 
113.52 
110.72 
109.50 

106.62 
105.68 
104.67 
103.67 
99.98 
97.23 

34 
8 
18 

695 
8 

545 
15 

700 
447 

787 
597 
1071 
668 
713 
644 

491 
426 
574 
583 
361 
237 

2588 
2464 
1555 
462 
780 
543 
1734 
371 
446 

473 
560 
472 
497 
383 
439 

419 
480 
455 
496 
532 
598 

Table 2.2. Cross-correlations between winter season climate indices 

Nino3" sor PDOc 
CNP" PNAe WP^ EP / 

Nino3 

SOI 

PDO 

CNP 

PNA 

WP 

EP 

1.00 -0.81 
1.00 

0.42 
-0.38 
1.00 

-0.31 
0.26 
-0.54 
1.00 

0.55 
-0.50 
0.70 
-0.76 
1.00 

0.63 
-0.55 
0.38 
-0.13 
0.24 
1.00 

-0.18 
0.23 
-0.03 
-0.23 
0.13 
0.13 
1.00 

Statistically significant correlations at the 5% level are indicated in bold fonts. 
a Data period used for correlation analysis is 1914-1997. 
bData period used for correlation analysis is 1914-1999. 
cData period used for correlation analysis is 1914-2001. 
dData period used for correlation analysis is 1914-1990. 
e Data period used for correlation analysis is 1948-2001. 
Data period used for correlation analysis is 1950-2001. 
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Table 2.4. Years included in composite analysis of winter precipitation for the 
extreme phases of ENSO, CNP, PNA, WP and EP patterns. 

Composite Years included in composites 
El Nino 1912, 1913, 1915, 1919, 1920, 1926, 1927, 1930, 1931, 1940,1942, 1952, 1954, 

1958, 1959, 1966, 1970, 1973, 1977, 1983, 1987, 1992,1998 
La Nina 1917, 1918, 1925, 1929, 1939, 1951, 1956, 1957, 1965, 1971,1972, 1974, 1976, 

1989, 1996, 1999 
High CNP 1915, 1916, 1922, 1932, 1937, 1949, 1950, 1952, 1955, 1956, 1968, 1969, 1972, 

1979, 1985, 1989 
Low CNP 1914, 1926, 1927, 1929, 1936, 1939, 1940, 1941, 1942, 1944, 1946, 1953, 1958, 

1963, 1964, 1970, 1978, 1980, 1986, 1987 
High PNA 1953, 1958, 1961, 1963, 1970, 1977, 1978, 1981, 1983, 1986, 1987, 1992, 1998 
Low PNA 1948, 1949, 1950, 1952, 1956, 1957, 1965, 1966, 1969, 1971, 1972, 1979, 1982, 

1988, 1989, 1997, 1999 
High WP 1964, 1966, 1975, 1979, 1983, 1987, 1988, 1989, 1992, 1998, 2001 
Low WP 1950, 1956, 1957, 1961, 1962, 1963, 1965, 1968, 1971, 1974, 1981, 1986, 1991, 

1996, 1997 
High EP 1953, 1954, 1964, 1967, 1971, 1974, 1975, 1999, 2000 
LowEP 1957, 1969, 1978, 1979, 1991, 1992, 1993, 1994, 1995, 1997 
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Table 2.6. Pearson's correlations at zero to 3-season lags between selected climate 
indices and winter precipitation PCI time series of western, central and 
eastern regions a 

Lag-0 
Lag-1 
Lag-2 
Lag-3 

Lag-0 
Lag-1 
Lag-2 
Lag-3 

Lag-0 
Lag-1 
Lag-2 
Lag-3 

Nino3 

-0.41 
-0.38 
-0.29 
-0.33 

-0.39 
-0.42 
-0.32 
-0.39 

-0.40 
-0.42 
-0.34 
-0.21 

SOI 

0.37 
0.43 
0.41 
0.22 

0.34 
0.39 
0.42 
0.20 

0.26 
0.26 
0.35 
0.03 

CNP 

Western 
0.27 
0.26 
0.11 
0.09 

PDO 

Region PCI 
-0.44 
-0.25 
-0.27 
-0.27 

Central Region PCI 
0.25 
0.24 
0.08 
0.00 

Eastern 
0.28 
0.25 
0.10 
-0.02 

-0.54 
-0.37 
-0.33 
-0.37 

Region PCI 
-0.51 
-0.33 
-0.25 
-0.26 

PNA 

-0.50 
-0.18 
0.22 
-0.01 

-0.52 
-0.18 
0.12 
-0.23 

-0.44 
-0.28 
0.13 
-0.31 

WP 

-0.24 
-0.10 
-0.07 
0.14 

-0.46 
-0.21 
0.18 
-0.13 

-0.35 
-0.34 
0.03 
-0.16 

EP 

0.31 
0.10 
0.12 
0.19 

0.09 
-0.01 
0.01 
0.10 

0.09 
-0.07 
0.00 
0.19 

Statistically significant correlations at the 5% level are indicated in bold fonts. 
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Figure 2.1. Location of the 21 precipitation stations selected for the study. The 
station numbers correspond to those given in column 1 of Table 2.1. 

a) Seasonal precipitation time series (anomalies) 

1900 1920 1940 1960 1980 2000 

b) Precipitation wavelet power spectrum c) Global wavelet spectrum 

1900 1920 1940 1960 
Time (year) 

1980 2000 

Figure 2.2. The continuous wavelet spectrum of seasonal precipitation at Calgary, 
Alberta, (a) Time series of standardized seasonal precipitation 
anomalies, (b) Morlet wavelet power spectrum of (a). The thick black 
contours depict the 95% confidence level of local power relative to a 
white noise background. The dashed line is the cone of influence 
beyond which the energy is contaminated by the effect of zero-padding, 
(c) Global wavelet power spectrum (solid line) with the 95% 
confidence level (dashed line). 
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Figure 2.3. SAWP (i) and space-averaged SAWP (ii) of seasonal precipitation 
anomalies at the 21 stations across SW Canada: (a) 2-3-year scale 
band, (b) 3-8-year scale band, (c) 8-30-year scale band. The solid 
contours enclose periods of statistically significant SAWP relative to 
white noise at the 5% significance level. The vertical line in the Power 
Hovmoller corresponds to the boundary between precipitation stations 
from the Prairies (right) and BC (left). 
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1900 

a) Nino3 

1950 
e)PNA 

2000 

WSOI 
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'•^Sl^teSJi 
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ERPC1 

2000 
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1 
Q. 

h) CRPC1 
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Time (year) 

1980 2000 

Figure 2.4. Wavelet power spectra of seasonal climate indices: (a) Nino3, (b) SOI, 
(c) CNP, (d) PDO, (e) PNA and (f) WP. Wavelet power spectra of the 
leading principal components (PCI) of seasonal precipitation anomalies: 
(g) western, (h) central and (i) eastern region. The thick black contours 
enclose statistically significant wavelet power at the 5% level of a red 
noise process, and the dashed line is the cone of influence. 
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a) Nino3-Western Region Precipitation PC1 b) SOI-Western Region Precipitation PC1 

1920 1940 1960 1980 2000 1920 1940 1960 1980 2000 

c) CNP-Western Region Precipitation PC1 

1920 1940 1960 1980 

fe^ 

0.5 

d) PDO-Western Region Precipitation PC1 

0.9 

? 2 

0.8 | 4 

0.7 ° 8 

\ V ^ 
h OJ 

/ 

1920 1940 1960 1980 2000 

e) PNA-Western Region Precipitation PC1 f) WP-Western Region Precipitation PC1 

1950 1960 1970 1980 
Time (year) 

1990 2000 1950 1960 1970 1980 
Time (year) 

1990 2000 

Figure 2.5. Wavelet coherence and phase difference between the western region 
precipitation PCI and (a) Nino3, (b) SOI, .(c) CNP, (d) PDO, (e) PNA, (f) 
WP. The thick black contours enclose periods of statistically significant 
coherence at the 5% level of a red noise process, and the dashed line is the 
cone of influence. The phase difference is plotted only for time periods and 
scales with coherence over 0.5. Right-pointing arrows indicate that the two 
signals are in-phase while left-pointing arrows are for anti-phase signals. 
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a) Nino3-Central Region Precipitation PC1 

1920 1940 1960 1980 2000 

b) SOI-Central Region Precipitation PC1 

.,». i». >. ww^^-»^v~^s^.-»~.v-W-^--v.^v ,*.::.» 
1920 1940 1960 1980 2000 

c) CNP-Central Region Precipitation PC1 d) PDO-Central Region Precipitation PC1 

1920 1940 1960 1980 1920 1940 1960 1980 2000 

e) PNA-Central Region Precipitation PC1 

1950 1960 1970 1980 1990 2000 
Time (year) 

f) WP-Central Region Precipitation PC1 

1950 1960 1970 1980 1990 2000 
Time (year) 

Figure 2.6. Wavelet coherence and phase difference between the central region 
precipitation PCI and (a) Nino3, (b) SOI, (c) CNP, (d) PDO, (e) PNA, (f) 
WP. All features are the same as in Figure 2.5. 
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a) Nino3-Eastern Region Precipitation PC1 b) SOI-Eastern Region Precipitation PC1 

1920 1940 1960 1980 2000 1920 1940 1960 1980 2000 
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d) PDO-Eastern Region Precipitation PC1 
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e) PNA-Eastern Region Precipitation PC1 f) WP-Eastern Region Precipitation PC1 
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^0.8 

0.7 

0.5 

Figure 2.7. Wavelet coherence and phase difference between the eastern region 
precipitation PCI and (a) Nino3, (b) SOI, (c) CNP, (d) PDO, (e) PNA, (f) 
WP. All features are the same as in Figure 2.5. 
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Figure 2.8. Composite winter precipitation associated with (a) El Nino and La Nina 
years, (b) High and low PNA years, (c) High and low WP years, (d) High and 
low EP years, (e) Warm and cool PDO years, (f) High and low CNP years. 
The composite for each station is computed as the ratio of the mean winter 
precipitation during anomalous years to the long-term mean winter 
precipitation. Station numbers correspond to those given in column 1 of 
Table 2.1. 
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Low CNP El Nino minus Low CNP 
75N 

60W 

60W 

Figure 2.9. The composite DJF 300-mbar geopotential and vector wind anomalies 
associated with (a) Low CNP winters, (b) El Nino minus Low CNP winters, 
(c) High CNP winters, (d) La Nina minus High CNP winters. In (a) and (b) 
height anomalies significant at the 1% level are shaded. In (c) and (d) 
difference fields significant at the 1% level are shaded. The units are m for 
geopotential height and ms"1 for wind speed. 
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Figure 2.10. The composite DJF 300-mbar zonal wind anomaly patterns associated with 
(a) El Nino winters, (b) La Nina winters, (c) Low CNP winters, (d) High 
CNP winters. Anomalies significant at the 1% level are shaded. Wind speed 
is inms"1. 
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Figure 2.11. Composite DJF 300-mbar geopotential and wind vector anomalies 
associated with (a) high EP winters, and (b) low EP winters. 
Geopotential height anomalies significant at the 1% significance level 
are shaded. The units are m for geopotential height and ms" for wind 
speed. 
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1 3 5 7 9 11 13 15 17 19 21 

Station 

2.12. Western Canadian winter precipitation responses to ENSO stratified 
by PDO phases. Station numbers are same as in column 1 of Table 2.1. 
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Chapter 3 Links between Low Frequency Variability in 

Western Canadian Streamflow and Large-

scale Climate Anomalies 

3.1. Introduction 

From hydropower generation and fisheries in British Columbia to agricultural 

production in the Prairie Provinces of Alberta, Saskatchewan and Manitoba, water 

resources play a prominent role in Western Canada's economic activities. Past 

studies and experience show that the Prairies' agricultural sector is highly 

susceptible to drought (Gan, 2000). The region's water resources managers are 

under increasing pressure from competing users such as hydropower production, 

municipality, recreation and others. For instance, Alberta has already reached the 

full allocation potential for which it has rights in the South Saskatchewan River 

basin. The problem of water availability is even more exacerbated during drought 

years. The vulnerability of the region to climatic extremes calls for a thorough 

understanding of the region's hydroclimatic variability to help in developing 

seasonal to long-range water supply forecasting models. 

Relationships between hydroclimatic variability and large-scale climate anomalies 

such as ENSO could provide predictive skills up to several months of lead time. 

The ENSO phenomenon is an interannual source of climate variability with its 

origin in the tropical Pacific but its impact extends into the mid-latitudes, 

particularly during its "mature" phase in winter (Horel and Wallace, 1981). 

Several studies have documented precipitation patterns during ENSO events over 

the US (e.g. Yarnal and Diaz, 1986; Ropelewski and Halpert, 1987; Kiladis and 

Diaz, 1989), and Canada (Shabbar et al, 1997; Gan et al, 2007). 

While streamflow characteristics should broadly reflect changes in the 

characteristics of the precipitation regime, the non-linear precipitation-streamflow 
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dynamics may give rise to a different spatial and/or temporal picture of climate 

related signals in streamflow from that of precipitation (Kahya and Dracup, 

1993). Streamflow may be preferred over precipitation for studying the impacts of 

climate variability on regional hydrology because of two reasons: (1) The fact that 

streamflow temporally integrates climatic forcings may intrinsically emphasize 

the low-frequency components of the climate system (Rajagopalan et al., 1998), 

and (2) Unlike precipitation data, streamflow is less prone to contamination by 

noise in space and time since it is a naturally filtered product of precipitation 

(Piechota et al., 1997). Even though streamflow represents an integrated response 

to various climatic inputs and catchment hydrologic processes (Zhang et al, 

2001), Yue and Gan (2004) found that annual average streamflow of Canada 

generally exhibits simple spatial scaling properties. 

The relationships between US streamflow and ENSO have been extensively 

studied (e.g. Cayan and Peterson, 1989; Kahya and Dracup, 1993; Dracup and 

Kahya, 1994, Piechota et al, 1997) and possible ENSO related response seasons 

have been identified. The understanding achieved from such studies has 

subsequently led to improved long-range forecasting capabilities (e.g. Hamlet and 

Lettenmaier, 1999; Piechota and Dracup, 1999; Piechota et al., 2001). A few 

studies (Woo and Thorne, 2003; Coulibaly and Burn, 2004) have also explored 

the relationships between ENSO indicators and Canadian streamflow. 

Gan et al. (2007) showed that in addition to ENSO, interannual precipitation 

variability over Western Canada is affected by several large-scale climate patterns 

that originate in the extratropical Pacific, including the Pacific/North American 

(PNA), West Pacific (WP) and East Pacific (EP) patterns. The PNA pattern is a 

natural, internal mode of variability which appears in differing types of 

diagnostics of the Northern Hemisphere winter atmospheric data such as in the 

correlation analysis of Wallace and Gutzler (1981) and the rotated principal 

components analysis of Barnston and Livezey (1987). The pattern shows little 

sensitivity to the choice of which particular winters in the record are used for the 
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analysis (Straus and Shukla, 2002). Although the high (positive) phase of PNA 

appears to be favored during El Nino events (Moore, 1996; Trenberth and Hurrell, 

1994), extreme phases of PNA can also occur during years with no anomalous 

tropical sea surface temperature (SST) forcing. The dynamics relating the PNA 

pattern and the dominant mid-latitude response associated with the equatorial SST 

forcing is still a major research subject in climatology. While some researchers 

(e.g. Molteni et ah, 1993; Palmer, 1993; Blade, 1999) argue that the effect of the 

ENSO-like forcing is to reorganize the preferred internal modes of variability 

such as the PNA pattern, others (e.g. Straus and Shukla, 2000; 2002) argue that 

the ENSO forcing can produce mid-latitude circulation responses that are 

distinctly different from the internal modes of variability. Both groups of 

researchers used observed and ensemble GCM simulations of atmospheric data to 

support their respective arguments. Relationships between the PNA pattern and 

Canadian streamflow have been investigated at the regional scale (e.g. Moore and 

McKendry, 1996; Woo and Thorne, 2003; Coulibaly and Burn, 2004) and the 

local scale (e.g. Moore, 1996). 

The WP pattern consists of a north-south dipole of height anomalies centered over 

the Kamchatka Peninsula, portions of southeastern Asia and the lower part of 

western North Pacific, whereas the EP Pattern reflects a north-south dipole of 

height anomalies over the eastern North Pacific, with its northern center located 

around Alaska and the west coast of Canada (Wallace and Gutzler, 1981). The 

high (low) phase of WP has been associated with drier (wetter) than normal 

winter precipitation over Western Canada. On the other hand, the EP pattern was 

linked only to winter precipitation variability over southwestern BC, with its high 

(low) phase being associated with wetter (drier) than normal conditions (Gan et 

al., 2007). In this study, we consider the impacts of ENSO, PNA and WP patterns 

on interannual streamflow variability. 

At the interdecadal scale, variations in the climate of western North America have 

been related to interdecadal oscillations in the North Pacific climate, with its 
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oceanic component depicted by the PDO (Mantua et al., 1997). The PDO is 

indexed by the leading principal component mode of the North Pacific SST 

poleward of 20°N (Mantua et al., 1997). Although the dynamics of the PDO are 

not yet fully understood, the mode shows remarkable persistence over a span of 

several years. Only 2 complete cycles of PDO occurred between 1890 and 1998, 

with alternating cool and warm PDO regimes during 1890-1924, 1925-1946, 

1947-1976 and 1977-1998. Western North American climate responses to the 

different phases of PDO are broadly similar to that of ENSO, with warm PDO 

being associated with warm, dry conditions and cool PDO being related to cool, 

wet conditions (Mantua and Hare, 2001). The modulating effects of PDO on 

western US precipitation-ENSO relationships have been reported in McCabe and 

Dettinger (1999), and Brown and Comrie (2004). 

While previous studies on Canadian streamflow variability have provided 

significant insights into various aspects of the streamflow-climate relationships 

(e.g. Moore, 1996; Moore and McKendry, 1996; Woo and Thorne, 2003; 

Coulibaly and Burn, 2004), none of these studies has explicitly investigated the 

impacts of the different phases of ENSO, which is necessary to objectively 

identify seasons during which large-scale climate anomalies may provide 

potential prediction skills. In addition, interdecadal streamflow variability and its 

(possible) interaction with the variability at interannual scales have not been 

explored in any of the previous studies. Because of the slow evolution of 

interdecadal modes of variability such as the PDO, possible relations with 

streamflow will have far reaching implications for long-range forecasting efforts. 

Therefore, using a number of well established statistical techniques, this study 

addresses the following three objectives: (1) To investigate ENSO teleconnections 

to Western Canadian streamflow anomalies during the lifetime of El Nino and La 

Nina events, and identify periods when ENSO indicators would likely provide 

skill for long-range forecasting; (2) To investigate the relative importance of the 

equatorial (ENSO) forcing and the extratropical climate variability (the PNA and 

WP patterns) on inter-annual streamflow variability; and (3) To identify and 
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attribute interdecadal streamflow variability and investigate whether ENSO 

related responses are modulated by such interdecadal oscillations. Upper air wind 

data were used to provide physical explanation for anomalous streamflow 

behaviors observed in association with the different phases of ENSO and the PNA 

pattern. This study contributes to an understanding of the hydroclimatic 

variability of the Western Canadian region on a broad scale and the potential 

predictability of streamflow anomalies based on large-scale atmospheric patterns. 

Details of the data and analysis techniques used in the study are described in 

sections 3.2 and 3.3, followed by the results in sections 3.4 through 3.7. A 

discussion of the results is presented in section 3.8, followed by concluding 

remarks in section 3.9. 

3.2. Data Description 

A total of 60 basins distributed over Western Canada were used in the study 

(Figure 3.1 and Table 3.1). Monthly mean, minimum and maximum streamflow 

data for 33 basins were obtained from the Reference Hydrometric Basin Network 

(RHBN) dataset (Harvey et al., 1999) and the remaining 27 were obtained from 

Environment Canada's hydrometric data CD-ROM (HYDAT, 2001). The RHBN 

consists of hydrometric data for a collection of 255 basins for Canada that are 

pristine or have stable land use conditions, and have record length of at least 20 

years. The 27 basins taken from the HYDAT data have also been identified by 

Woo and Thorne (2003) as either unregulated or moderately regulated. As a 

compromise between data length and spatial coverage, only stations having 

records beginning prior to or by 1960 and with relatively few missing data were 

selected. The data for the RHBN basins were updated to 2001 with data from the 

HYDAT CD-ROM. As shown in Figure 3.1, the data coverage in the Prairies 

Provinces is minimal because of flow regulations. Therefore, interpretation of the 

results for the Prairies should be handled with caution. 
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As shown in Table 3.1, the basins selected for the study have drainage areas 

varying from below 200 km2 to over 50,000 km2 and span 4 climatic zones (as 

used in the RHBN database), namely the Pacific Maritime, Montane Cordillera, 

Boreal forests and Prairies. As such, the raw streamflow values exhibit 

considerable spatial and seasonal variation. For the analysis involving ENSO, 

PNA and WP, the streamflow data were first subjected to logarithmic 

transformation to reduce the disparity in the magnitudes, from which monthly 

standardized streamflow anomalies (hereafter abbreviated as SSA) were 

computed so as to remove the effect of differences in drainage size and the annual 

cycle in streamflow. The use of the SSA instead of the raw values also facilitates 

inter-comparisons between basins and/or regions. The monthly SSA was 

constructed by subtracting the mean and dividing by the standard deviation for 

each month separately. For the study of interdecadal variability, we used the 

average April-September streamflow, partly because a major proportion of the 

annual flow occurs during this period and smaller streamflow stations are 

generally shut down during late autumn to winter months because of freeze-up. 

The El Nino and La Nina years used in this study are similar to those of Shabbar 

et al. (1997) and contain moderate to strong El Nino and La Nina episodes where 

the 5-month moving average of the SOI index remained in the lower (higher) 25% 

of the SOI distribution for a period of 5 months or longer. This definition leads to 

8 El Nino events between 1960 and 2001 (with onset years in 1965, 1969, 1972, 

1976, 1982, 1986, 1991 and 1997) and 8 La Nina events (with onset years in 

1964, 1970, 1971, 1973, 1975, 1988, 1995 and 1998). The monthly SOI time 

series was obtained from the Climate Research Unit of the University of East 

Anglia, UK. 

The definition of a high (low) PNA year was based on that of Hsieh and Tang 

(2001), who used a winter season PNA index of ±0.5 standard deviation as a 

threshold to define high (low) PNA years. With this definition, 11 high PNA 

years (1961, 1963, 1970, 1977, 1978, 1981, 1983, 1986, 1987, 1992 and 1998) 

63 



and 11 low PNA years (1965, 1966, 1969, 1971, 1972, 1979, 1982, 1988, 1989, 

1997 and 1999) were identified for the period of 1960-2001. Six of the 11 high 

PNA years (1970, 1977, 1983, 1987, 1992 and 1998) coincided with the mature 

phase of El Nino whereas 5 of the low PNA years (1965, 1971, 1972, 1989 and 

1999) coincided with the mature phase of La Nina. The definition of high (low) 

WP was also based on the winter index value of ±0.5 standard deviation as the 

threshold, resulting in 11 high WP years (1963, 1965, 1974, 1978, 1982, 1986, 

1987, 1988, 1991, 1997 and 2000) and 12 low WP years (I960, 1961, 1962, 1964, 

1967, 1970, 1973, 1980, 1985, 1990, 1995 and 1997). The PNA and WP indices 

were obtained from the NOAA Climate Prediction Center website. The monthly 

mean upper air data on a 2.5°x2.5° grid were obtained from the NOAA-CIRES 

Climate Diagnostics Center website. The winter anomaly field was defined as the 

seasonal deviation from the seasonal climatology based on 42 years (1960-2001). 

3.3. Analysis Techniques 

An appraisal of ENSO impacts on the streamflow was first obtained by applying 

the nonparametric Mann-Whitney test (see Appendix) to examine if streamflow 

distributions during El Nino (La Nina) years are significantly different from that 

of non-ENSO years. Since the test uses the rank of the data instead of real data 

values, it is robust to outliers and the underlying distribution of the data is 

irrelevant (Wilks, 1995). This property makes it more suitable for our purpose 

than the traditional t-test because the normality of streamflow distribution cannot 

be guaranteed even after log-transformation. The statistical test was applied on a 

month-by-month basis for 36 months beginning with the January of the onset year 

(abbreviated as Jan(0)) and ending with the December of the 2nd year after onset 

(abbreviated as Dec(2)). 

Regional patterns in the streamflow response to ENSO events were identified 

using cluster analysis following an approach similar to that of Piechota et al. 

(1997). For each ENSO event, a 24-month SSA, beginning with Jan(0) and 

64 



ending with Dec(l) was extracted. The 24-month period was chosen because 

earlier studies (Shabbar and Khandekar, 1996; Shabbar et al, 1997) showed that 

anomalous precipitation and temperature regimes in Western Canada following 

ENSO events occur within that time period. Streamflow data for only 16 of the 24 

months (Mar(O) to Oct(0) and Mar(l) to Oct(l)) were selected for the cluster 

analysis because preliminary results from the Mann-Whitney test showed that 

significant differences between ENSO and non-ENSO years are observed during 

those months. Thus, the time series used in the cluster analysis consisted of 128 

data points corresponding to the 8 El Nino (La Nina) events. We applied several 

hierarchical clustering methods based on the algorithms of Murtagh (1985), and 

by visual inspection, we selected spatially coherent clusters obtained by using 

Ward's minimum variance method (see Appendix). The cluster analysis was 

applied to the time series corresponding to El Nino and La Nina episodes 

separately. Based on the regional patterns identified from the cluster analysis, 

aggregate composites for a 36-month period (beginning with Jan(O) and ending 

with Dec(2)) were used to identify possible ENSO response seasons for each 

region. 

Confidence intervals for the aggregate composites were established using a 

bootstrap re-sampling procedure (Efron and Tibshirani, 1993; Ntale and Gan, 

2004). The bootstrap procedure involves constructing the El Nino (La Nina) 

database by randomly selecting 8 years from the record period (1960-2001) and 

constructing the aggregate composite. The procedure was repeated 1000 times 

and the empirical distributions of the random samples were used to establish the 

90% confidence limits. Following previous studies (e.g. Ntale and Gan, 2004), the 

ENSO related streamflow response periods were then identified as those months 

during which the SSA was in the lower (upper) 5% of the distribution. Because 

spring snowmelt in several basins in the study area may be completed in a 

relatively short period, no threshold was set for the length of the response season. 

The consistency of the ENSO related response for each region was evaluated 
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using an index time series (ITS) constructed by temporally averaging the SSA for 

months which were identified as ENSO related response periods. 

Regionally averaged streamflow anomaly composites for ENSO, PNA and WP 

years were used to discriminate streamflow responses associated with the ENSO 

forcing from that of the extratropical Pacific climate variability. The relative 

importance of each phase of ENSO, PNA and WP in forcing regional streamflow 

variability was assessed by comparing the respective composites. Finally, a 

combination of wavelet transforms and principal components analysis (PCA) was 

used to identify decadal to interdecadal scale (> 8years) streamflow variability 

and relate it to the North Pacific low frequency oscillation. A composite analysis 

was used to investigate interactions between the interdecadal and interannual 

responses of streamflow. Partial correlation analysis provided further insight into 

the potential of using the large-scale climate anomalies for long-range streamflow 

forecasting. 

3.4. Interannual Variability: ENSO Teleconnections with 

Streamflow 

3.4.1. Significance Test for Differences in Distribution 

ENSO events predominantly affect the climate of Western Canada during their 

mature phase in the winter and early spring (Shabbar and Khandekar, 1996; 

Shabbar et ah, 1997). Most of the winter precipitation in the study area occurs in 

the form of snow. Therefore, major ENSO related responses of streamflow are 

expected to occur during and/or after spring snowmelt. The Mann-Whitney test 

was performed on a monthly basis. However, interpretation of the results should 

take into account the variation in the timing of snowmelt among different 

environments in the region (Woo and Thorne, 2003). Table 3.2 shows the 

statistical test results for the monthly mean, minimum and maximum SSA during 

March to October for the onset year (left), the following year (middle) and the 2n 

year following the onset (right). The results are based on a 2-sided test at a 
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significance level of 10%. Assuming independent samples, at least 7 of the 60 

basins should have significant differences for field significance in any given 

month. 

For La Nina events, basins with significant above-normal SSA emerge in Apr(l) 

and extend into early autumn, with the number peaking in Aug(l) (Table 3.2). 

Figure 3.2 shows the spatial distribution of basins with significant above-normal 

SSA during Apr(l) to Sep(l) of La Nina events for the monthly mean flow. 

During Apr(l) to May(l), basins with statistically significant above-normal 

anomalies (Figure 3.2, solid circles) are found in the Prairies, Vancouver Island, 

Central BC Plains and Southern BC Coast. In the spring, basins in these regions 

receive runoff predominantly from seasonal snowmelt. Between Jun(l) and 

Aug(l), the region of statistical significance mainly shifts to basins in the 

Canadian Rockies and Southern BC Interior, which receive the major portion of 

their runoffs from a combination of summer rain/mountain snowmelt and glacier 

melt. Given that there are very few basins with above-normal SSA for all 3 flow 

variables during the onset year and the second year following the onset (Table 

3.2), the effect of La Nina is clearly evident. It is worth noting that for all three 

flow variables, more basins exhibit significantly above-normal anomalies during 

Aug(l) than during Jun(l) or Jul(l) of La Nina events. This is in contrast to 

previous studies for the region (e.g. Woo and Thorne, 2003) that are mainly 

limited to the relationships between ENSO and spring snowmelt runoff covering 

the periods of April to June. 

For the sake of comparison, the results from the standard t test for La Nina are 

shown in parenthesis in Table 3.2. The null hypothesis of no difference between 

the two methods was tested using the binomial distribution in the following 

manner (see Appendix for a description of the binomial distribution). First, one of 

the methods (e.g. Mann-Whitney test) was assumed to give the 'true' number of 

basins with significant differences between La Nina and non-ENSO years. Then 

the 95% confidence region on the other value (e.g. t test) was constructed using a 
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Gaussian approximation of the binomial distribution (Wilks, 1995). The null 

hypothesis of no difference was accepted for all months since the results from the 

Mann-Whitney test for each month fell within the bounds of the 95% confidence 

region of the t test results. 

The numbers of basins with significantly below-normal anomalies during El Nino 

events are also given in Table 3.3. Although there is a tendency for more basins 

with below-normal SSA during the summer and fall months following the onset 

year, the impacts of El Nino are not as strong as that of La Nina events. These 

results were also confirmed by the standard Mest (not shown). Perhaps, the 

negative impacts of El Nino events may be appreciated by looking at the number 

of basins that transited from above-normal conditions during the onset year to 

normal or below-normal conditions during the following year (see Table 3.4). 

3.4.2. ENSO Related Spatial Patterns and Response Periods 

Using the Ward's minimum variance cluster analysis, five spatially coherent 

patterns were identified from both the La Nina (Figure 3.3) and El Nino time 

series (not shown). The number of clusters was subjectively determined using the 

inflection point on the plot of the dissimilarity measure versus the number of 

clusters. In 55 of the 60 basins, the clusters for El Nino events agreed with that of 

La Nina events. Exceptions are observed for 4 basins located in Northern BC and 

one basin in Northern Manitoba (see Table 3.1). The clusters may reflect 

differences in ENSO response periods due to local influences (e.g. topography) or 

spatial variations in the atmospheric conditions that prevailed over the region 

during individual ENSO episodes, particularly the relative location with respect to 

the western Canadian height anomaly center. Some of the clusters include basins 

from more than one climatic region, e.g. basins in the Montane Cordillera fall into 

3 different clusters. For the purpose of this study, those regions identified from 

the La Nina time series (Figure 3.3) were used as a basis for further regional 

analysis of the streamflow response to a 'typical' ENSO event. The remainder of 

the discussion will be based on the monthly mean flow variable since the spatial 
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patterns obtained using the maximum and minimum flows are similar to that of 

the mean flow. 

1. Region 1 (Canadian Prairies): This region encloses basins in the central and 

southern Prairies, where the Mann-Whitney test showed significant differences 

between the SSA of ENSO and non-ENSO years during the Apr(l) to May(l) 

period (see Figure 3.2) . Figure 3.4a shows the regional aggregate composite for 

this region. The horizontal lines in Figure 3.4a correspond to the lower 5% (upper 

95%) of the distribution based on the bootstrap confidence interval. From Figure 

3.4a, La Nina events are associated with significant positive anomalies from 

Apr(l) to Jun(l). The result is consistent with the positive precipitation anomalies 

during the winter season following La Nina events (Shabbar et ah, 1997; Gan et 

al., 2007), with the delay in the streamflow response due to the timing of spring 

snowmelt. Although only about a third of the precipitation in the Canadian 

Prairies occurs in winter, spring snowmelt contributes as much as 80% of the 

annual surface runoff in some areas (Granger and Gray, 1990). The index time 

series (ITS) associated with La Nina events for this region was constructed by 

averaging the Apr(l) to Jun(l) SSA (3-month period) and is shown in Figure 

3.4b. Six of the 8 La Nina years recorded positive SSA. The horizontal lines in 

Figure 3.4b correspond to the 10th and 90th percentiles of the ITS distribution. For 

the purpose of this study, periods with ITS values in the lower (upper) 10% of the 

distribution will be designated as extremely dry (wet). Two of the 4 extremely wet 

years are La Nina years, with the wettest year in the record (1974) associated with 

the 1973/74 La Nina event. 

The regional composite for El Nino events (Figure 3.4c) shows a tendency for 

negative anomalies during Apr(l) to Jun(l) but the anomalies are not significant 

and so no ITS is constructed for category. However, these results should be used 

with caution because of the sparse data coverage. 
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2. Region 2 (Southern BC Interior and Rockies): This region comprises basins 

in the Southern BC Interior and the Canadian Rockies, where the Mann-Whitney 

test showed significant differences in the distribution of SSA during La Nina and 

non-ENSO years during Jun(l)-Aug(l) (see Figures 3.2 and 3.3). Basins in this 

region receive runoff from summer rain, mountain snowmelt and glacier-melt. 

Mountain snow and glaciers contain a memory of prior precipitation and 

temperature regimes (Vaccaro, 2002). Thus, above-normal snowpack conditions 

during winter/spring would likely lead to above-normal SSA during the summer 

period. During La Nina events (Figure 3.5a) significant positive anomalies are 

observed from Jun(l) to Aug(l), with a pronounced peak in Aug(l). The ITS 

constructed from the Jun(l) to Aug(l) period (Figure 3.5b) also shows the 

positive effects of La Nina, with 7 of the 8 years experiencing above average 

anomalies. All 4 extremely wet years in the record (those anomalies in the upper 

90 percentile of the ITS data) have occurred following La Nina events. 

Significant negative responses during El Nino years emerge in Jun(l) and extend 

to Oct(l) for this region (Figure 3.5c). The El Nino response period is longer than 

that of La Nina but the anomalies are not as pronounced as that of the latter. The 

result basically agrees with that of Hsieh and Tang (2001) who suggested that La 

Nina events may have far more impact on the snow water equivalent anomalies of 

the Columbia River basin than El Nino events. For the Pacific Northwest region 

of the USA, which lies immediately below this region, Dracup and Kahya (1994) 

showed that the La Nina signal has larger magnitudes than the El Nino signal. 

However, the length of the response season identified in Region 2 is shorter than 

that for the Pacific Northwest. The ITS based on the Jun(l) to Oct(l) response 

season (Figure 3.5d) shows that 7 of the 8 El Nino years are associated with dry 

conditions. Three of the five extremely dry years (anomalies in the lower 10 

percentile) are associated with El Nino events. In terms of the temporal 

distribution, the impact of El Nino seems to be evenly distributed over the record 

period whereas that of La Nina dominated during the early part of the record, 

especially in the 1970's. 
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3. Region 3 (Central Boreal Plains): This region includes basins in the Boreal 

plains of western central Alberta and central BC (see Figures 3.2 and 3.3). The 

regional composite shows that following La Nina events, significant positive 

anomalies are observed during the Apr(l) to Aug(l) period (Figure 3.6a). From 

Figure 3.6b, the ITS based on this season shows that 7 of the 8 La Nina years are 

associated with wet SSA. With 3 of the 5 extremely wet years in the record also 

being associated with La Nina years, the result seems to confirm the positive 

effect of La Nina in this region. On the other hand, the composite for El Nino 

(Figure 3.6c) shows a shorter response period when compared to that of La Nina, 

with Jun(l) to My(l) being in the lower 5% of the distribution. The ITS for El 

Nino (Figure 3.6d) shows that 6 of the 8 El Nino years are associated with dry 

anomalies and 3 of the 5 extremely dry SSA in the record are associated with El 

Nino events. 

4. Region 4 (Vancouver Region): This region comprises basins in the Greater 

Vancouver area that experience the Pacific Maritime climate, with 5 basins from 

the Vancouver Island and one basin from the Southern BC Coast (see Figure 3.3). 

The composite for La Nina in this region shows that significant wet anomalies 

exist during Apr(l) and Jul(l) (Figure 3.7a). The La Nina response season for this 

region is selected to be Apr(l) to May(l) since the May(l) composite is also close 

to the significance level. As shown in Figure 3.7b, the ITS constructed from the 

Apr(l) to May(l) SSA shows that 7 of the 8 La Nina events are associated with 

above average anomalies, with 2 of the 5 extremely wet anomalies being 

associated with La Nina. For El Nino, significant dry conditions are observed 

during Apr(l) to Jun(l) and Aug(l) (Figure 3.7c). The ITS based on the Apr(l) to 

Jun(l) SSA shows that 7 of the 8 El Nino events are associated with dry 

anomalies, with 3 of the 5 extremely dry years being associated with El Nino 

(Figure 3.7d). There appears to be intensification in the streamflow response to El 

Nino in the latter part of the record while La Nina responses were dominant in the 

early 1970's. The interdecadal variation in the strength of ENSO related responses 

appears to be well organized across Western Canada (see section 3.6). 
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5. Region 5 (Northern BC): This region that comprises basins in the Boreal 

Cordillera of Northern BC, shows a tendency of below-normal anomalies during 

the early periods of La Nina events, with significant negative anomalies being 

observed during Oct(0) to Dec(O) and then reverses its sign in Jun(l) but there are 

no significant positive anomalies observed (Figure 3.8a). During El Nino events, 

no significant response exists during the onset and the following year, with 

significant negative anomalies being observed only during Dec(l) to Jan(2) 

(Figure 3.8b). Since no significant response period exists during the 

spring/summer following the onset of both La Nina and El Nino events, the 

impacts of ENSO on the streamflow anomalies of this region are deemed 

insignificant and no ITS is constructed. This result is mostly in agreement with 

the Mann-Whitney test result for basins in this region except at three stations 

(Skeena, Morice, Bulkley) that show significant differences in the distribution of 

SSA during La Nina and non-ENSO years. 

3.5. Effect of ENSO Forcing Versus Extratropical (PNA and WP) 

Variability 

In this section, composite analysis is used to distinguish between Western 

Canadian streamflow anomaly responses to ENSO and PNA. A similar analysis 

for ENSO and the WP pattern was also performed. In order to capture the overall 

picture of the similarity/difference between responses related to ENSO and PNA 

over the study area, regionally averaged composite streamflow anomalies were 

constructed excluding basins in Region 5 (Northern BC) since no ENSO related 

response was identified for that region (see Section 3.4). Two types of regionally 

averaged composites were formed for the PNA pattern: (1) all high (low) PNA 

years irrespective of whether El Nino (La Nina) occurred or not, abbreviated as 

High PNA (Low PNA); and (2) high (low) PNA years conditioned on non-El 

Nino (non-La Nina) years, abbreviated as High PNA/non-El Nino (low PNA/non-

La Nina). The exclusion of ENSO years from High PNA/non-El Nino and low 

PNA/non-La Nina composites ensures that any anomalous streamflow responses 
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during those years are primarily due to internal atmospheric variability over the 

North Pacific/North American sector (e.g. see Straus and Shukla, 2002). Note that 

only 6 (5) of the 11 high (low) PNA winters during the period of 1960-2001 

coincide with El Nino (La Nina) years. 

The composite anomalies for El Nino, High PNA, and High PNA/non-El Nino 

years are shown in Figure 3.9a. Both El Nino and High PNA years are associated 

with below normal SSA over Western Canada during the spring and summer 

following the occurrence of the events. There is apparently no significant 

difference between the El Nino, High PNA, and High PNA/non-El Nino 

composites during most of the response season. However, the impacts of High 

PNA/non-El Nino tend to be of shorter duration than those of El Nino and High 

PNA years. 

The regional composite anomalies for La Nina, Low PNA, and Low PNA/non-La 

Nina years are shown in Figure 3.9b. The Low PNA, and Low PNA/non-La Nina 

composites show a modest above-normal SSA during spring. On the other hand, 

La Nina events produce stronger positive anomalies that last for a longer period 

extending from the spring to summer. Application of the f-test showed that the 

spring and summer La Nina composites are significantly different from both the 

Low PNA, and Low PNA/non-La Nina composites at the 5% level. These results 

suggest that at the regional scale, the high phase of the PNA pattern may be 

associated with below-normal streamflow responses that are distinctly different 

from that of the ENSO forcing. On the other hand, streamflow responses 

associated with La Nina events dominate above normal anomalies and thus the 

role of the Low PNA years is not clear. This result agrees with the atmospheric 

analysis of Straus and Shukla (2002) in that both ENSO and PNA can produce 

anomalous responses independently of each other, particularly following their 

warm phases. The consequence of this result is that the presence of significant 

impacts of the internal mode of variability limits our ability to make successful 

long-range streamflow forecasting because of the unpredictability of the internal 
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variability. However, more work using other hydroclimatic variables and 

preferably longer datasets is needed to confirm these findings. 

To understand the atmospheric flow patterns that prevailed over Western Canada 

during the different ENSO and PNA categories considered above, a composite 

analysis of the 300-mbar wind anomalies and the vertically integrated moisture 

flux (VIMF) was performed for the El Nino, High PNA/Non-El Nino, La Nina, 

and Low PNA/non-La Nina winters. The VIMF is a measure of the flux of 

precipitable water in a column of unit area and is described by the magnitude and 

direction computed from vertically integrated zonal and meridional moisture 

fluxes: 

\ h \ Pi 

Vx = — juqdp; Vy- — jvqdp 
g p, gp. 

where g is the acceleration due to gravity (ms"), u is the zonal wind speed (ms"), 

v is the meridional wind speed (ms-1), q is the specific humidity (kg/kg), p is the 

pressure (Pa), and Vx and Vy are the vertically integrated zonal and meridional 

moisture fluxes (Kgm'V1), respectively. For our study, the VIMF composite was 

evaluated using 8 discrete pressure levels extending from the surface to the 300-

mbar level. To show the relative strength of one field with respect to the other, the 

differences between El Nino and High PNA/Non-El Nino, and between La Nina 

and Low PNA/Non La Nina, are presented in Figures 3.10 and 3.11. 

Figure 3.10a shows the wind anomaly difference composite between El Nino and 

High PNA/non-El Nino winters. Similarly, the VIMF difference composite 

between El Nino and High PNA/non-El Nino winters is shown in Figure 3.10b. It 

is well known that El Nino events can lead to a split in the jet stream and a 

subsequent southward displacement of the subtropical branch (e.g. Shabbar et ah, 

1997). The strength of the net northwesterly flow over the eastern Pacific region 

in Figure 3.10a is consistent with this observation. Figure 3.10a suggests that the 
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dominant flow pattern over Western Canada and the Pacific Northwest regions 

would be directed in the northwest-southeast direction. The southeasterly flow 

would bring to the region warm dry continental air that has already lost its 

moisture content over the southwestern USA whereas the northwesterly flow 

would bring to the region a cool dry Arctic air. There is also little difference 

between the VIMF fields of the two categories over Western Canada (Figure 

3.10b). Thus, both El Nino and High PNA/non-El Nino years would lead to 

below-normal winter snowpack over Western Canada. This explains the 

similarities of the streamflow responses observed from Figure 3.9a for these two 

categories. 

Figure 3.11a shows the vector wind anomaly difference composite between La 

Nina and Low PNA/non-La Nina winters whereas Figure 3.1 lb shows the VIMF 

difference composite between La Nina and Low PNA/non-La Nina winters. La 

Nina winters are associated with an erosion of the western Canadian ridge and 

strengthening of the Pacific westerlies. The net westerly flow in Figure 3.11a 

suggests that the westerlies over the eastern North Pacific and western Canada are 

stronger for La Nina winters than for Low PNA/non-La Nina winters. The 

associated VIMF difference field also shows a net eastward flux of moisture over 

the eastern North Pacific and Western Canada (Figure 3.11b). Thus, the greater 

moisture supply during La Nina winters would result in better winter snowpack 

and spring/summer streamflow than during Low PNA/non-La Nina winters 

(Figure 3.9b). 

The streamflow composite analysis was repeated for all high (low) WP years and 

high (low) WP years conditioned on non-El Nino (non-La Nina) years (Figure 

3.12). A comparison of Figures 3.9 and 3.12 suggests that unlike for ENSO and 

PNA, the effect of WP is mainly felt during winter and early spring months. 

However, most of the streamflow in Western Canada occurs during spring and 

summer months and as such the WP pattern does not seem to contribute much to 
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the variability during the major flow season. Hence, the effects of WP are not 

discussed further. 

3.6. Interdecadal Streamflow Variability 

Most of the basins used in the foregoing sections have short records that were not 

suitable for identifying low frequency variability at interdecadal scales without 

ambiguity. As a first step, only 13 basins with more than 60 years of data were 

selected to study the general characteristics of the decadal or higher scale 

variability in streamflow of the region. The April-September mean flow of each 

basin was subjected to a continuous (Morlet) wavelet transform to determine if 

there are significant fluctuations at the interdecadal scale. Then the signal 

corresponding to the interdecadal (> 8 years) scale was lowpass filtered using 

Equation 2.7 (Torrence and Compo, 1998). The lowpass signals were then 

subjected to PC A to retain the dominant low frequency mode of streamflow 

variability across the region. The leading PC mode (explaining 48.1% of the 

variance) was then compared to three lowpass filtered North Pacific climate 

indices, namely the PDO, NPO (North Pacific oscillation) and CNP (Central 

North Pacific) indices (Figure 3.13). Although both CNP and NPO indices also 

depict the variability in the streamflow at decadal scales (p = 0.61 for CNP and p 

= 0.73 for NPO), the streamflow-PDO relationship appears to be stronger than 

with the two indices (Figure 3.13). There is an inverse relationship between the 

filtered PDO and streamflow signals (p = -0.75), with warm (cool) PDO being 

associated with below- (above-) normal streamflow. It is interesting to note that 

the short-lived sign reversal of the PDO index between 1959 and 1961 was 

associated with a similar sign reversal in the streamflow PC. The sign reversal is 

due to the presence of significant power at a near 20-year scale for some of the 

basins used in the analysis as well as for the PDO index. This scale happens to be 

one of the two periodicities at which PDO has tremendous concentration of 

power, with the other being at 50-70 years (Mantua and Hare, 2001). 
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The strength of ENSO related streamflow responses should be related to the 

decadal PDO variability since we expect similar (opposite) phases of PDO and 

ENSO to complement (negate) each other. One way to investigate the interactions 

between the PDO and ENSO related responses is to stratify the streamflow into 

climate categories defined by a combination of the ENSO and PDO states (e.g. 

Bonsai et ah, 2001). Following this approach, 8 climate categories were defined: 

warm PDO, cool PDO, El Nino, La Nina, El Nino/warm PDO, La Nina/warm 

PDO, El Nino/cool PDO, and La Nina/cool PDO. For each basin, the April-

September mean flow data in each category was composited and the ratio of each 

composite with respect to the 1947-1998 mean streamflow was computed. The 

composite analysis included 49 basins with data starting prior to or by 1957. 

Figure 3.14 summarizes the ratios for the 8 categories, where the ratios for pairs 

of ENSO/PDO categories are plotted against each other for easy comparison (e.g., 

La Nina vs. El Nino, cool PDO vs. warm PDO, La Nina/warm PDO vs. El 

Nino/warm PDO, and La Nina/cool PDO vs. El Nino/cool PDO). The 10th and 

90th percentiles of the ratios for each climate category are also given in Table 3.5. 

The horizontal and vertical lines on Figure 3.14 correspond to a ratio of unity. A 

shift towards any of the four quadrants is assumed to be due to the climate 

anomalies of the associated category. In agreement with the results obtained in 

Section 3.4.2, the majority of the ratios for La Nina vs. El Nino fall in the lower 

right quadrant of Figure 3.14. Similarly, most of the ratios for cool PDO vs. warm 

PDO lie in the lower right quadrant. This confirms that over Western Canada, 

both El Nino and warm PDO years are generally associated with below normal 

streamflow (ratio less than 1.0) whereas both La Nina and cool PDO years are 

associated with the opposite condition (ratio greater than 1.0). 

When the El Nino and La Nina years are stratified according to the PDO phase, 

considerable changes occur in the strength of the streamflow response, especially 

during the warm phase of PDO. For several basins, the ratios for La Nina/warm 

PDO vs. El Nino/ warm PDO fall in the lower left quadrant of Figure 3.14. This 
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means that during a warm PDO regime, not only El Nino but also La Nina events 

can, on average, be associated with below normal streamflow. Figure 3.14 also 

suggests that drier than normal responses associated with the El Nino/warm PDO 

category appear to be enhanced as compared to the typical El Nino related 

response. On the other hand, during cool PDO regimes, El Nino related responses 

are near neutral at several basins as the ratio is close to unity while wetter than 

normal responses in the La Nina/cool PDO category are on average almost 

identical to the typical La Nina response. As given in Table 3.4, the 10th and 90th 

percentiles of the ratios for the La Nina/warm PDO and El Nino/cool PDO 

categories are almost equally spread around unity, showing that the wetter (drier) 

than normal effect of La Nina (El Nino) is offset by the drier (wetter) than normal 

effect of warm (cool) PDO. 

The interdecadal variations in the ENSO related responses observed in Figures 3.4 

to 3.7 can now be explained in the context of the PDO modulation. The near-

normal/positive streamflow responses during the 1965/66 and 1969/70 El Nino 

events occurred during the 1947-1976 cool PDO regime that suppressed the 

impact of the interannual El Nino signal. The enhanced La Nina impacts during 

the early 1970s are due to the same cool PDO regime that amplified the 

interannual La Nina signal. Similarly, the enhanced (reduced) El Nino (La Nina) 

related responses of the 1980s and 1990s appear to be due to the constructive 

(destructive) interference from the 1977-1998 warm PDO regime. 

3.7. Correlations with Climate Indices 

In this section we use correlation analysis to assess the potential of using 

information from the three climate anomalies (indexed by the SOI, PNA and PDO 

indices, respectively) for use in long-range streamflow forecasting. Since the three 

indices are correlated to one another, we computed the partial correlation between 

the streamflow and a climate index because partial correlations can help identify 

if a climate index contributes independent information at a site or not (Pizarro and 
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Lall, 2002). Our analysis focuses only on the periods identified as La Nina-related 

response seasons in Section 3.4.2, i.e. April-June for Region 1, June-August for 

Region 2, April-August for Region 3 and April-May for Region 4. We will not 

consider basins in Region 5 since no ENSO-related response season was 

identified. We will use standardized anomalies constructed from the 

untransformed streamflow data and the non-parametric Spearman rank correlation 

since it is resistant to outliers (Wilks, 1995). The partial correlation (r) between 

two variables x and y given variable z is computed from 

rxy]z=(rxy-rxzxryz)/[(l-rxz
2)(l-ryz

2)r2 . 

For each climate index, the average of a 3-month window was considered as the 

candidate predictor, beginning with March-May of the year preceding the 

streamflow season (MAM(O)) and ending with January-March of the streamflow 

season (JFM(l)). Thus a total of 11 predictor windows were considered. For a 

streamflow season beginning in Apr(l), this provides lead times of up to 10 

months. Detailed results are presented for Regions 2 and 4 in Figures 3.15-3.17 

since the correlations observed for several basins in these regions appear to be 

promising. The correlations were computed for a common period of 40 years 

(1960-1999). With 37 degrees of freedom, partial correlation coefficients of 0.31 

and 0.40 are statistically significant at the 5% and 1% level, respectively. The 1% 

and 5% significance levels are shown in Figure 3.15-3.17 by the solid and broken 

horizontal lines, respectively. 

In a statistical forecasting exercise, one would choose a predictor that maximizes 

the amount of variance explained in the predictand that is attributable to the 

selected predictor. This could be achieved by choosing predictors from a time 

window where the correlation between the predictor and predictand is the highest. 

In Figure 3.18, we show the spatial distribution of the statistical significance 

levels for the highest partial correlation (in the absolute sense) of the 11 values for 

each basin computed using the 11 predictor windows considered in the analysis. 
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Only positive correlations with SOI and negative correlations with PNA and PDO 

are included in the maps. 

Figure 3.15 shows the temporal evolution of the correlations between streamflow 

and SOI|PDO and PDO|SOI. The patterns in Figure 3.15a suggest that three types 

of basins are lumped together in this region: (1) Four of the 23 basins, namely 

Lillooet, Mistaya, Chilko and Oldman, show no significant correlations with 

SOI|PDO (the first two have glacierized flow regimes); (2) Six basins, namely 

Elk, Crowsnest, Waterton, Belly, Squamish and Salmo, show significant 

correlation with the summer to autumn SOI|PDO; and (3) The remaining thirteen 

basins show significant correlation with SOI|PDO for an extended period from 

spring to winter. The ENSO phenomenon commences in the equatorial Pacific 

during the summer to autumn period and reaches its mature phase in winter. Since 

previous studies (e.g. Shabbar et ah, 1997; Gan et al., 2007) have showed ENSO 

teleconnections to occur during the boreal winter, it seems that only basins in the 

third group are directly affected by the mature phase of ENSO. Thus, winter SOI 

would be a more appropriate predictor choice for basins where snowmelt 

dominates the seasonal streamflow whereas for some other basins summer or 

autumn SOI would give better skill. 

For Region 2, correlations with PDO|SOI are significant during the autumn to 

winter period except at two glacierized basins (Lillooet and Mistaya) (Figure 

3.15b and 3.18b). Relatively strong correlations with the November-January 

PDO|SOI (significant at the 1% level) are observed for basins originating in the 

Rocky Mountains (e.g. Bow, Belly, Waterton, Crowsnest, Kootenay, Columbia 

and Elk), which also show significant correlations with the summer-autumn 

SOI|PDO. The fact that three of these basins (Columbia, Kootenay and Bow) 

receive some of their flow from glaciermelt in addition to the contribution from 

spring-summer snowmelt suggests that decadal scale climate oscillations (i.e. 

PDO) that affect the glacier balance also play a more important role than 

interannual climate variability (i.e. ENSO). Regarding Region 4, only SOI 
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appears to play a significant role in the streamflow variability (Figure 3.15c-d and 

3.18a-b). The spatial pattern of the partial correlations with SOI|PDO (Figure 

3.18a) for the Mountains (Region 2) and Plains (Region 3) is in general agreement 

with that reported by Woo and Thorne (2003) who computed correlations 

between the October-March SOI and annual streamflow. However, Woo and 

Thome's analysis did not show statistically significant correlations for basins in 

Region 4. 

The temporal evolution of the partial correlations between streamflow and 

PDO|PNA and PNA|PDO are shown in Figure 3.16. For Region 2, PDO|PNA 

shows significant correlation with all but three basins, with the highest 

correlations observed again for basins in the Rocky Mountains area (Figure 3.16a 

and 3.18c). On the other hand, correlations with PNA|PDO turn out to be not 

statistically significant (Figure 3.16b and 3.18d). The reverse is true for Region 4 

where the correlations with PNA|PDO are significant during winter (Figure 3.16d 

and 3.18c) but not with PDO|PNA (Figure 3.16c and 3.18d). In fact, the 

correlations with PDO|PNA show a tendency to move in the opposite direction 

(Figure 3.16d). 

Figure 3.17 shows the evolution of the partial correlations between streamflow 

and SOI|PNA, and between streamflow and PNA|SOI. The partial correlations 

with SOI|PNA for both Regions 2 and 4 (Figure 3.17a, 3.17c and 3.18e) 

essentially show a similar pattern to that of SOI|PDO (cf. Figure 3.15a, 3.15c and 

3.18a). The PNA pattern (Figure 3.17c-d and 3.18e-f) appears to exert statistically 

significant influence on several basins in all four regions (see Figure 3.18) but at 

different scales (see next paragraph). However, the connection with PNA appears 

to be weaker than that with SOI and PDO. 

The correlation analysis can also be interpreted in terms of the dominant time 

scales at which the three climate anomalies operate. Since the dominant mode of 

variability of ENSO is at interannual time scales, these results confirm that 
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interannual variability in streamflow in several Western Canadian basins is 

teleconnected to ENSO (Figure 3.18a and 318e). On the other hand, the dominant 

mode of variability of PDO is at decadal to interdecadal scale and so decadal 

fluctuations for basins in Region 2 are teleconnected to the PDO regime (Figure 

3.18b and 3.18d). The PNA pattern exhibits both interannual and inter-decadal 

scale fluctuations (e.g. Gan et ah, 2007). Thus, PNA exerts significant influence 

on the interannual variability in several basins across the study area (Figure 

3.18f). The fact that the partial correlations with PNA|PDO are statistically 

significant for basins in Region 4 (Figure 3.18c) suggests that decadal fluctuations 

of streamflow in this region are likely connected to the PNA pattern but not to the 

PDO regime. The correlation analysis also confirms our earlier assertion that the 

effects of ENSO are modulated at the decadal scale by the PDO and at interannual 

scale by the PNA. 

For Regions 1 and 3, the partial correlations between streamflow and SOI, and 

between streamflow and PNA are generally found to be stronger than those with 

PDO (e.g. cf. Figure 3.18a and 3.18b). However, the predictor window with the 

highest partial correlation for all three indices varied from basin to basin without 

exhibiting any clear spatial pattern. The lack of sufficient data coverage makes it 

difficult to make a definitive interpretation of these results. 

3.8. Discussion of Results 

Statistical significance test and composite analysis showed that ENSO related 

streamflow responses in certain regions of Western Canada occur during the 

spring and/or summer seasons following the onset of the ENSO events. While the 

length of the response seasons varies from one region to the other, basins in 

Regions 2, 3 and 4 typically experience wet (dry) conditions following La Nina 

(El Nino) events. Basins in Region 1 showed above average conditions following 

La Nina events but their response to El Nino events could not be clearly detected. 

The regional composites for Regions 2 and 3 show that El Nino onset years are 
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associated with above-normal streamflow anomalies. This could be due to the 

biennial tendency associated with the Southern Oscillation, which has also been 

found in streamflow signals elsewhere (Dracup and Kahya, 1994). 

The regional streamflow conditions during individual ENSO events are 

summarized in Table 3.5. The extremely wet (dry) years indicated in Table 3.5 

generally agree with those during which the precipitation anomalies for the 

January-March (JFM) period following the onset of ENSO events were in the 

lower (upper) 10% of the distribution (Shabbar et ah, 1997). For instance, the 

precipitation for JFM 1973 (following the 1972 El Nino) was in the driest 10% of 

all JFMs whereas those of JFM 1972 and 1974 were among the wettest 10%. A 

one-on-one comparison with the results of Shabbar et al. was not possible because 

their study was based on a longer dataset covering 1910-1994 and most of the 

extreme precipitation cases occurred prior to 1960. 

The relatively low number of ENSO related extreme streamflow conditions 

(Table 3.5) and modest correlations with SOI (Figure 3.15 and 3.17) suggest that 

while the ENSO forcing may have an impact on shifting the distribution of 

streamflow anomalies, it may not always dictate the occurrence of individual 

extreme events. This is also supported by the finding that the internal variability 

of the North Pacific climate (i.e. the PNA pattern) may produce anomalous 

streamflows that are distinctly different from that of El Nino events. In addition, 

ENSO related responses were found to be modulated by interdecadal oscillations 

in the North Pacific climate as depicted by the PDO. The interaction between 

ENSO and PDO was found to be constructive when the two are in phase (i.e. 

during El Nino/warm PDO, La Nina/cool PDO) and destructive when they are not 

in phase (i.e. during El Nino/cool PDO and La Nina/warm PDO). These 

interferences would lead to a nonlinear ENSO-streamflow relationship, and hence 

weak correlations with SOI. Investigation on the role of other internal modes of 

variability such as the Arctic Oscillation (AO) and North Atlantic Oscillation 

(NAO) may also reveal additional interactions and warrants further research. 
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Apparently, successful long-range forecasting of streamflow requires the state of 

the PDO and PNA in addition to that of ENSO. Whereas skillful predictions of 

ENSO have been achieved at lead times of several months (e.g. Tang et ah, 

2000), the PNA pattern is a result of the nonlinear internal dynamics of the North 

Pacific and can not be skillfully predicted at present. Similarly, long-range 

forecasts for the PDO are currently not available. However, the slow evolution of 

the North Pacific climate system at decadal scales means that the future PDO state 

may be anticipated using analogs from past observations (McCabe and Dettinger, 

1999). Regardless of the state of the PNA pattern, the consistency of the signs of 

ENSO related responses in certain regions and the persistent behavior of PDO 

means that categorical water supply outlooks may be issued for certain basins 

based on the state of these two climate regimes. 

The identification of ENSO related spatial patterns and response seasons in this 

study assumed that there is a 'typical' ENSO event. However, it is known that the 

climate of western North America is sensitive to relatively small changes in the 

location of the height anomaly centers (Yarnal and Diaz, 1986). Thus, the 

associated variation in the storm track position may lead to significant variations 

in regional precipitation (and streamflow) response during individual ENSO 

events. For instance, during the 1988/89 La Nina event, there was a major 

amplification and eastward extension of the Pacific ridge that spanned over a 

large landmass of western North America (Molteni et al., 1993). Western Canada 

was dominated by a northwesterly flow which would bring cool dry Arctic air 

into the region. Thus, several basins experienced below-normal streamflow 

instead of the usual wet conditions associated with La Nina years (see Table 3.5). 

Similarly, the 1965/66 El Nino event was associated with streamflow responses 

that were contrary to that of a typical El Nino event, with above-normal 

conditions observed in several basins (Table 3.5). As shown in Section 3.6, these 

variations result from decadal modulations of the strength of ENSO-streamflow 

relationships. 
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It should be noted that a different set of spatial patterns and ENSO response 

seasons may be identified if the analysis is carried out on ENSO events sorted by 

the PDO phase. This approach has not been explored in the current study due to 

the limitation in the length of the streamflow record. However, the stability of the 

results was examined for the extreme scenario by excluding the two ENSO events 

with the weakest streamflow responses. Accordingly, the exclusion of the 1965/66 

El Nino event from the analysis did not affect the length of the response periods 

identified in Section 3.4.2. When the 1988/89 La Nina event was left out, the 

response season for Regions 1 and 2 extended to Aug(l) and Sep(l), respectively 

whereas that of Regions 3 and 4 remained unchanged. The boundaries between 

Regions 3 and 4 were also found to be sensitive to the exclusion of a particular 

ENSO year from the cluster analysis. The ENSO sample size of only 8 events is 

one major limitation of this study. 

3.9. Summary and Conclusions 

By applying an ensemble of statistical methods to 42 years of streamflow data for 

60 basins in Western Canada, this study investigated the spatial and temporal 

characteristics of streamflow anomalies during the lifetime of ENSO events and 

their interactions with other climate anomalies such as PNA and PDO. The 

nonparametric Mann-Whitney test for distribution and composite analysis showed 

that basins in certain regions of Western Canada exhibit strong response to ENSO 

forcing. From cluster analysis on streamflow anomalies during the life cycle of 

ENSO events, five spatially coherent regions were identified. The response 

seasons for each region were objectively identified from aggregate composite 

streamflow anomalies. While the lengths of the response seasons exhibited 

regional variations, 3 of the 5 regions (Regions 2, 3 and 4) exhibited wet (dry) 

conditions with a consistency better than 75% during the spring and/or summer 

period following the onset of La Nina (El Nino) events. The response seasons 

correspond to the period when forecasts based on ENSO indicators are likely to 
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have useful skill. Region 5 (Northern BC) does not show clear response during 

the year following the onset of both El Nino and La Nina events. 

Streamflow variations associated with the PNA pattern and the PDO regime were 

investigated as possible sources of interference in ENSO-related responses. It was 

shown that high PNA years conditioned on non-El Nino years can also produce El 

Nino-like streamflow responses over Western Canada. On the other hand, there 

was no clear response during low PNA years, probably because over Western 

Canada the west-east air flow during low PNA years was weaker than that 

associated with La Nina years. At decadal scale, it was found that the strength of 

ENSO related responses varied as a function of the PDO phase. The interaction 

appears to be constructive when ENSO and PDO are in phase and destructive 

when they are out of phase. These interferences have important implications for 

long-range forecasting based on ENSO indicators because the current generations 

of climate prediction models do not offer skillful long-range predictions for PNA 

and PDO. The potential of using the three large-scale climate anomalies for long-

range forecasting was assessed by computing partial correlation coefficients at 

lead times of up to 10 months between the La Nina ITS for each basin and SOI, 

PNA and PDO indices. The results showed that basins with flows dominated by 

spring snowmelt show better correlations with SOI than with PDO while basins 

dominated by spring-summer snow/glacier melt exhibit an opposite trend. 

Although partial correlations with SOI are statistically significant at several 

basins, ENSO was found to explain less than 30% of the variability in streamflow 

at most of the basins considered. 

A number of techniques may be explored for seasonal forecasting of streamflow 

for certain basins that were found to be moderately correlated to one or more of 

the large-scale climate anomalies. Piechota and Dracup (1999) developed a 

methodology for probabilistic seasonal forecasts conditioned on streamflow 

persistence and two ENSO indicators. Piechota and Dracup stratified the 

streamflow and predictor (SST, SOI, or persistence) data into three categories and 
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used a univariate kernel density estimation to fit the probability density function 

(PDF) for each of the three categories for a predictor. A Bayesian framework was 

then used to estimate the posterior probability of each streamflow category 

conditioned on the predictor variable. The probabilistic forecasts from the three 

models were then combined into a consensus forecast by linear regression. For 

cases where streamflow variability is affected by two or more climate regimes 

such as ENSO and PDO, such a method could be extended to incorporate 

information from multiple predictors using a multivariate framework that takes 

into account the interdependence between the climate anomalies. In addition, the 

ENSO and PDO information can be used to sample appropriate historical data as 

surrogates for future climate in the ensemble streamflow prediction (ESP) 

framework using deterministic hydrologic models (e.g. Hamlet and Lettenmaier, 

1999). Finally, it is noteworthy that the major portion of streamflow in Western 

Canada comes from spring-summer snow/glacier melt, which lags the 

atmospheric circulation by about 2-3 months. Hence, for certain regions of 

Western Canada, information on the PNA pattern could still improve forecasting 

by up to one season lead time. 
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Table 3.5. The 10th and 90th percentiles of the ratios of the April-September 
composite mean streamflow to long-term mean streamflow for each 
climate category. 

Climate Category Ratio 
(10%, 90%) 

Climate Category Ratio 
(10%, 90%) 

La Nina 
Cool PDO 
La Nina/Cool PDO 
La Nina/Warm PDO 

1.036, 1.328 
1.003,1.141 
1.027, 1.398 
0.849, 1.195 

El Nino 
Warm PDO 
El Nino/Warm PDO 
El Nino/Cool PDO 

0.763, 1.004 
0.844, 0.996 
0.547, 0.983 
0.905, 1.137 

Table 3.6. Summary of streamflow conditions associated with ENSO events. Dry 
(wet) conditions are relative to the regional ITS based on the ENSO 
response periods. 

Region 1 
Region 2 

Region 3 

Region 4 

Region 1 

Region 2 

Region 3 

Region 4 

El Nino and wet anomaly 
-

1966 

1966, 1977 

1966 

La Nina and wet anomaly 

1965, 1971, 1972,1974a, 1976, 
1996a 

1965, 1971, 1972a, 1974a, 
1976a, 1996, 1999a 

1965a, 1971, 1972a, 1974, 
1976a, 1996, 1999 

1971, 1972a, 1974a, 1976, 1989, 
1996, 1999 

El Nino and dry anomaly 
-

1970a, 1973, 1977a, 1983, 1987a, 
1992, 1998 

1970, 1973, 1983, 1987a, 1992a, 
1998a 

1970, 1973a, 1977, 1983, 1987, 
1992a, 1998a 

La Nina and dry anomaly 

1989, 1999 

1989 

1989 

1965 

ITS values in the lower (upper) 10 percentile of the distribution. 
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Provinces 
AB - Alberta 
BC-British Columbia 
MB - Manitoba 
SK - Saskatchewan 

Figure 3.1. Spatial distribution of basins used in the study. 

Figure 3.2. Spatial distribution of basins with statistically significant above-normal 
SSA (solid circles) following the onset of La Nina events based on a 2-
sided Mann-Whitney test at the 10% significance level: (a) Apr(l), (b) 
May(l), (c) Jun(l), (d) Jul(l), (e) Aug(l) and (f) Sept(l). 
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Clusters 
• Region 1 
D Region 2 
• Region 3 
A Region 4 
O Regions 

Figure 3.3. ENSO-related spatial patterns identified from cluster analysis of the La 
Nina time series. 
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Figure 3.4. The aggregate composites and ITS for Region 1. (a) La Nina composite. 
(b) La Nina ITS. (c) El Nino composite. The horizontal lines in (a) and 
(c) are the 90% confidence intervals based on the empirical distribution 
of 1000 random samples obtained by bootstrap sampling. The solid 
blocks in (b) correspond to the La Nina years. 
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Figure 3.5. The aggregate composites and ITS for Region 2. (a) La Nina composite, 
(b) La Nina ITS. (c) El Nino composite, (d) El Nino ITS. The horizontal 
lines in (a) and (c) are the 90% confidence intervals based on the 
empirical distribution of 1000 random samples obtained by bootstrap 
sampling. The solid blocks in (b) and (d) correspond to the La Nina and 
El Nino years, respectively. 
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Figure 3.6. The aggregate composites and ITS for Region 3. All features are the 
same as in Figure 3.5. 
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Figure 3.7. The aggregate composites and ITS for Region 4. All features are the 
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Figure 3.8. The aggregate composites for Region 5. (a) La Nina composite, (b) El 
Nino composite. The horizontal lines in (a) and (b) are the 90% 
confidence intervals based on the empirical distribution of 1000 random 
samples obtained by bootstrap sampling. 

99 



< W O Z Q ^ ^ < to o z § ^ ^ < « o z 

Figure 3.9. (a) Regionally averaged SSA response associated with El Nino, High 
PNA and High PNA/non-El Nino years, (b) Same as (a) but for La Nina, 
Low PNA and Low PNA/non-La Nina years. The composite anomalies 
are smoothed using a 3-month moving average filter. 
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Figure 3.10. (a) The 300-mbar wind anomaly difference pattern obtained as the 
composite anomalies for El Nino winters minus High-PNA/non-El 
Nino winters, (b) The VIMF difference pattern obtained as the 
composites for El Nino winters minus High-PNA/non-El Nino winters. 
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Figure 3.11. (a) The 300-mbar wind anomaly difference pattern obtained as the 
composite anomalies for La Nina winters minus Low-PNA/non-La 
Nina winters, (b) The VIMF difference pattern obtained as the 
composites for La Nina winters minus Low PNA/non-La Nina winters. 
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Figure 3.12. Regionally averaged SSA response associated with high WP, High 
WP/non-El Nino, low WP and low WP/non-La Nina years. The 
composite anomalies are smoothed using a 3-month moving average 
filter. 
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Figure 3.13. The leading PC time series of the lowpass filtered (> 8 years) 
streamflow signals in Western Canada. The lowpass filtered time series 
of the PDO, CNP and NPO indices are also plotted alongside the 
streamflow PC. 
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Figure 3.15. The temporal evolution of the partial correlations between streamflow and 
(a) SOI|PDO for Region 2, (b) PDO| SOI for Region 2, (c) SOI|PDO for 
Region 4, and (d) PDO|SOI for Region 4. The solid and dashed horizontal lines 
indicate the 1% and 5% significance levels, respectively. 
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Figure 3.16. Continued 
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Figure 3.17. Same as in Figure 3.15 for (a) SOI|PNA for Region 2, (b) PNA|SOI for 
Region 2, (c) SOI|PNA for Region 4, and (d) PNA|SOI for Region 4. 
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Figure 3.18. Statistical significance of the highest partial correlation out of 11 
values for each basin computed using seasonal streamflow and lagged 
climate indices. Correlations are for (a) SOI|PDO, (b) PDO|SOI, (c) 
PNA|PDO, (d) PDO|PNA, (e) SOI|PNA, and (f) PNA|SOI. The 
streamflow seasons are defined by the La Nina-related response season 
identified from the composite analysis. 
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Chapter 4 Analysis of Hydroclimatic Variability and 

Predictability in the South Saskatchewan River 

Basin (Alberta) 

4.1. Introduction 

The South Saskatchewan River Basin (SSRB) provides over 57% of Alberta's 

allocated water even though it contains only about 6% of the water resources of 

the province (Alberta Environment, 2006a). A considerable portion of the annual 

flow in the basin comes from spring and summer snowmelt originating from the 

eastern slopes of the Canadian Rockies. As the Pacific Ocean is a primary 

moisture source for precipitation during the cold season (when most of the snow 

accumulation takes place), diagnostic analysis of low-frequency hydroclimatic 

variability and its relationship with the primary modes of Pacific climate 

variability such as the El Nino-Southern oscillation (ENSO), the Pacific/North 

American (PNA) pattern and the Pacific decadal oscillation (PDO) could provide 

vital information for Alberta's water resources managers, particularly with regard 

to long-range streamflow forecasting. 

ENSO teleconnections to Western Canada's hydroclimatic variability are well 

documented (e.g. Shabbar et al., 1997; Woo and Thorne, 2003; Coulibaly and 

Burn, 2004; Gobena and Gan, 2006; Gan et al., 2007). Several studies have also 

investigated the relationships between hydroclimatic data and the PNA pattern 

(e.g. Moore, 1996; Woo and Thorne, 2003; Coulibaly and Burn, 2004; Gobena 

and Gan, 2006; Gan et ah, 2007). The ENSO and PNA climate anomalies exhibit 

most of their variance at interannual time scales. Apart from the work of Bonsai et 

al. (2001) who investigated the impacts of the PDO on Canadian surface 

temperature, little attention has been paid to decadal to interdecadal hydroclimatic 

variability in Western Canada and its association with the Pacific climate decadal 

variability. As described in Chapter 3, the strength of ENSO-streamflow 
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relationships in Western Canada appears to be influenced by interdecadal 

variations in the PDO mode (Gobena and Gan, 2006). The present study focuses 

on the interannual to interdecadal precipitation and streamflow variability in the 

South Saskatchewan River basin (SSRB) of southern Alberta. 

This study has two main objectives: (1) to identify the dominant inter-annual to 

inter-decadal modes of variability in the hydroclimatic data of the SSRB using 

wavelet analysis, and (2) to investigate the links between the low-frequency 

components of the basin's hydroclimate and Pacific climate variability using 

wavelet coherence and rank correlation. By analyzing streamflow and 

precipitation independently, our study provides a comprehensive picture of the 

low frequency features of the hydroclimate of the basin. We will also investigate 

the interactions between interannual and interdecadal modes of variability. The 

reader is referred to Section 2.3 for description of the wavelet transform 

methodology used in this chapter. A description of the study area and data is 

presented in section 4.2. Hydroclimatic variability in the SSRB and its relation to 

large-scale climate anomalies are discussed in sections 4.3 and 4.4, followed by 

summary and conclusions in section 4.5. 

4.2. Study Area and Data Description 

The study area covers that portion of the SSRB lying within the province of 

Alberta (Figure 4.1). The Alberta portion of the SSRB includes the Red Deer, 

Bow, Oldman and South Saskatchewan River sub-basins with a combined 

drainage area of 121,095 km2, which is about a quarter of the surface area of the 

province. As per the 1996 census, the SSRB is home to 46.7% of the population 

of Alberta, of which 68% reside in the Bow River sub-basin, which constitutes 

only 21% of basin area (Alberta Environment, 2002). All four sub-basins 

originate in the Rocky Mountains and generally flow eastwards through the 

foothills and semi-arid prairies of southern Alberta and into Saskatchewan. The 
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basin elevation ranges from about 600 m at the Alberta-Saskatchewan border to 

well over 3400 m in the Rocky Mountains. 

The precipitation and streamflow data used in the study were extracted from the 

"South Saskatchewan River Basin Historical Weekly Natural Flows" CD-ROM 

obtained from Alberta Environment. The database contains weekly natural flows 

and weekly precipitation at a number of gauging stations. The natural flows were 

developed by adjusting recorded daily streamflow for known manmade 

modifications such as municipal use of water, historical irrigation diversions and 

return flows, and modifications of streamflow by hydroelectric power projects 

(Alberta Environment, 1998). The weekly precipitation data were derived from 

Environment Canada's climatic record, with missing values filled from nearby 

stations. Details of the procedures used to prepare the weekly data are available in 

the technical report provided with the CD-ROM (Alberta Environment, 1998). 

For our study, we selected 13 hydrometric stations (Figure 4.1 and Table 4.1) and 

16 precipitation stations (Figure 4.1 and Table 4.2) with data covering the 1913 to 

2001 period. 

Annual precipitation in the SSRB increases from about 265 mm at Empress near 

the Alberta-Saskatchewan border to 658 mm at Lake Louise in the foothills of the 

Rockies. The total precipitation during the November to March period - when 

precipitation mostly occurs as snowfall - accounts for about 20% of the annual 

precipitation in the plains (e.g. at Calgary and Red Deer) to about 48% at Lake 

Louise. All of the 16 stations selected for our study are located either in the plains 

or at the foothills of the Rocky Mountains (Table 4.2) and so the data may not 

properly reflect the precipitation fields in the mountains. 

Peak flows in the major rivers of the SSRB occur between mid June and early 

July. Although the eastern slopes of the Rocky Mountains and the adjacent 

foothills constitute only about 25% of the entire area of the basin (Environment 

Canada, 1974), annual peak flows in the major rivers are generated by a 
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combination of mountain snowmelt and summer rainfall from higher altitudes. 

The April-September flow makes up over 75% of the annual flow for each of the 

13 hydrometric stations, thus acting as an integrator of the winter to summer 

precipitation. In order to focus on those variables relevant to the major flow 

season, we considered the November-March (hereafter Nov-Mar) total 

precipitation (29 October - 2 April), the November-August (hereafter Nov-Aug) 

total precipitation (29 October - 27 August), and April-September (hereafter Apr-

Sep) average streamflow (3 April - 1 October). Note that because the original 

data were at weekly time steps, the start (end) dates of the aggregation periods do 

not necessarily coincide with the first (last) day of the month in question. 

To investigate the relationships between SSRB's hydroclimatic variables and the 

Pacific climate, we used the Nino3, PDO and PNA indices. Nino3, a time series 

of equatorial Pacific SST anomalies averaged over the window of 5°S-5°N and 

150°W-90°W, is commonly used as a measure of the strength of ENSO. The 

PDO regime represents inter-decadal oscillations in the North Pacific climate 

system. Observational studies indicate that only 2 complete cycles of PDO have 

occurred between 1890 and 1998, with alternating cool and warm PDO phases 

during 1890-1924, 1925-1946, 1947-1976 and 1977-1998 (Mantua and Hare, 

2001).The PDO index is a time series of the leading principal component of the 

North Pacific SST anomalies poleward of 20°N (Mantua and Hare, 2001). The 

PNA pattern represents a quadripole of 700 mbar geopotential height anomalies, 

with opposite anomalies centered over the Aleutian Low and western Canada, and 

the Hawaiian Islands and southeastern US (Wallace and Gutzler, 1981). In this 

study, we used the November-March average Nino3 and PDO indices, and the 

December-February average PNA index. 

4.3. Hydroclimatic Variability of SSRB 

For interdecadal scales, the time periods of locally significant streamflow and 

precipitation wavelet power are listed in Table 4.1 and Table 4.2, respectively. 
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For each period of significant wavelet power, the scale corresponding to the peak 

global wavelet spectrum is shown in parenthesis in Table 4.1 and Table 4.2. For 

streamflow, the dominant scales are consistently near 19-22, 41—42 and 62 years 

(Table 4.1 and Figure 4.2), while the dominant scales of precipitation exhibit a 

higher degree of variability than streamflow (Table 4.2). The dominant scales of 

precipitation are also found to be season dependent. 

For interannual (2-8-year) scales, the scale-averaged wavelet power (SAWP) 

computed from the normalized wavelet power spectrum is shown in Figure 4.3. 

Figure 4.3a is the station-time diagram of the streamflow SAWP for the 13 

stations. Figure 4.3b shows the time-averaged SAWP at individual stations 

whereas Figure 4.3c is the 'basin-averaged' SAWP. The peaks in the streamflow 

SAWP in Figure 4.3c correspond to periods during which statistically significant 

activities were observed at several hydrometric stations in the basin. Spatially 

coherent streamflow activities occurred with peaks in 1915, 1927, 1950, 1974 and 

1993. Significant activities in the 1910s and 1970s occurred at a lesser number of 

stations than in the 1920s and 1950s, resulting in a suppressed basin-averaged 

SAWP for the former two time periods (Figure 4.3c). Although some activity in 

the 1990s is evident, the power was not significant at any of the 13 stations. 

Clearly, there was more streamflow activity before 1950s as the streamflow 

power is seen to decrease significantly during the second half of the twentieth 

century. 

The 'basin-averaged' precipitation SAWP for the 2-8-year scale is also shown in 

Figure 4.3c. Similar to streamflow, coherent activities in the Nov-Mar and Nov-

Aug precipitation were observed in the 1920s, 1950s, 1970s and 1990s. A 

comparison of the Nov-Mar and Nov-Aug precipitation SAWPs reveals that the 

former exhibited more variance in the 1920s and 1990s whereas the latter 

exhibited more variance in the 1920s and 1950s. The temporal fluctuation in the 

streamflow SAWP shows better agreement with the Nov-Aug precipitation 

SAWP (Pearson's correlation coefficient, p = 0.77) than with the Nov-Mar 
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precipitation SAWP (p = 0.55). However, there are some mismatches between the 

temporal locations of significant precipitation and streamfiow activities (e.g. in 

the 1950s, 1970s and 1990s). 

The peaks of the streamfiow and precipitation SAWP in Figure 4.3 appear to be 

organized on a background scale of approximately 20-25 years. These peaks 

correspond to years when streamfiow records at the majority of gauging stations 

were in the upper 25% of the distribution. On the other hand, the low points on 

the SAWP correspond to periods with streamfiow in the lower 25% of the 

distribution. Those years during which at least two-third of the stations recorded 

streamfiow (precipitation) in the extreme 25% of the distribution (i.e. at least 9 

stations for streamfiow and 11 stations for precipitation) are listed in Table 4.3. 

The decrease in streamfiow/ precipitation variance during the 1920s, 1930s, 1960s 

and 1980s was coincident with periods of extensive drought episodes in western 

Canada (Godwin, 1986; Gan, 2000). The gradual ascension and recession of the 

SAWP over the quasi 20-25 year cycle means that the SAWP may be used as an 

early indicator of whether an extended drought period is likely to occur several 

years in advance. For instance, observation of the continuous recession of the 

SAWP at the end of the time series since 1996 could be used as an indicator for 

the onset of extensive drought conditions that occurred in SSRB during 2001-

2002. 

4.4. Wavelet Analysis of Teleconnections 

4.4.1. Scale Averaged Wavelet Power (SAWP) 

The SAWP for the Nino3 and PNA indices is plotted alongside the streamfiow 

and precipitation SAWP in Figures 4.3c. As has been described elsewhere 

(Torrence and Compo, 1998), Nino3 exhibited inter-annual oscillations of large 

amplitude during the pre-1920 and post-1960 periods, and a reduced level of 

activity in between. In spite of the weak amplitudes of Nino3 between 1920 and 

1960, sixteen moderate to strong ENSO events (10 warm and 6 cool) have been 
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recorded during the same period (e.g. Shabbar et ah, 1997). While the ENSO 

events during 1939-43 may be attributed to moderate Nino3 activities observed 

from the SAWP, the remaining episodes can not be explained by the Nino3 

SAWP. 

The temporal locations of the peaks of the streamfiow/precipitation SAWP in the 

1910s and 1970s generally agree with significant Nino3 activities (Figure 4.3c). 

Significant streamfiow/precipitation activities centered on 1927 and 1950 

coincided with ENSO episodes that occurred during 1925-31 and 1951-54. The 

power fluctuations of the PNA index since 1948 closely follow the intense ENSO 

activities of the 1970s and 1980s and do not seem to offer additional information 

to that of Nino3. 

4.4.2. Wavelet Coherence and Phase Difference 

To provide a more quantitative picture of the links between climate indices and 

SSRB's hydroclimate, the wavelet coherence between the leading principal 

component (PCI) of the April-September streamfiow and each of the indices were 

computed (Figure 4.4). The contours in Figure 4.4 enclose periods of statistically 

significant coherence based on a red noise process as determined by a Monte 

Carlo experiment (Jevrejeva et al., 2003). Note that the existence of significant 

wavelet power is not a necessity for the two signals to exhibit significant 

coherence. The phase differences between the two signals for coherences greater 

than 0.5 are plotted as vectors in Figure 4.4, where a right pointing arrow 

indicates that the two signals are in-phase while a left pointing arrow indicates an 

anti-phase relationship. In spite of the generally weak Nino3 activities between 

1920s and 1960s, streamfiow and Nino3 show high coherency in the 2-8 year 

scale prior to 1940s, in the 1950s, 1970s and 1980s (Figure 4.4a). The 

inconsistency in the relationship between streamfiow and Nino3 is clearly evident 

from the phase distribution in the interannual scale, where the phase difference 

changes from near 210° prior to 1940s to near 0° in the 1950s and 180° in the 

1970s and 1980s (Figure 4.4a). Albeit not as strong as for the interannual scale, 
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Nino3 and streamflow also show significant covariance near the 20-year scale. 

The coherency between streamflow and PNA is shown in Figure 4.4b. Relatively 

strong covariance is observed around 1960 and 1970 near the 2-year scale, and in 

the 1980s near the 5-year scale. The phase distribution appears to be even more 

inconsistent than that of Nino3. 

The coherency between PDO and streamflow is shown in Figure 4.4c. The 

strongest and most consistent covariance between streamflow and PDO occurs for 

scales greater than about 20 years. This is not surprising as the PDO regime is an 

interdecadal oscillatory mode with two dominant scales centered at 15-25 years 

and 60-75 years (Mantua and Hare, 2001). The phase difference for the 

interdecadal scale is rather stable near 180° (Figure 4.4c). There are also periods 

of significant coherence in the interannual scale but with less consistent phase 

distribution e.g. 1920s to 1940s near the 2-year scale. McCabe and Dettinger 

(2002) stated that the unfiltered PDO index reflects important ENSO episodes in 

addition to the interdecadal variability of the North Pacific climate. Indeed, some 

of the time periods of significant coherency in the interannual scale appear to 

coincide with ENSO events recorded in earlier studies. 

4.4.3. Wavelet Filtered Time Series 

We further investigated the PDO-streamflow/precipitation relationship using a 

low-pass filtered time series. To emphasize the inter-decadal components, the 

streamflow, precipitation and PDO time series were filtered by using a low-pass 

cutoff scale of 15 years in Equation 2.7. To facilitate comparison among different 

time series, the filtered signals were normalized by the standard deviation of the 

respective original time series. For streamflow and precipitation, the first principal 

components of the filtered signals were used as the interdecadal signals. The 

proportion of variance accounted for by PCI is 87.5%, 36.7% and 52.5% 

respectively for the Apr-Sep streamflow, Nov-Mar precipitation and Nov-Aug 

precipitation. 
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As shown in Figure 4.5, there is a strong agreement between the PDO and 

streamflow PCI since 1930, with an increase in PDO associated with a decrease 

in streamflow and vice versa (Pearson's p = -0.93). Between 1930 and 2001, the 

historical drought years of 1936, 1941, 1977, 1983-85 and 1988 (Table 4.3) 

occurred when the PDO signal was in its extreme warm phase. In contrast, the 

anomalously wet periods of 1948-54 and 1972 (Table 4.3) coincided with years 

when the PDO was in its extreme cool phase. It is also noteworthy that the 

negative interdecadal streamflow signal in 1961 (e.g., the historical drought of 

1961) was associated with a temporary warming of the PDO signal in the midst of 

the cool PDO phase of 1947-1976. Using Equation 2.7 with a low-pass cutoff 

scale of 8 years, Gobena and Gan (2006) found a similar sign reversal in 

southwestern Canadian streamflow that closely followed a sign reversal in the 

inter-decadal PDO signal between 1959 and 1961. The PDO-precipitation 

relationship after 1930 is broadly similar to that of streamflow (Pearson's p = -

0.72 for Nov-Aug and p = -0.76 for Nov-Mar). 

El Nino (La Nina) episodes coinciding with extreme positive (negative) values of 

the interdecadal PDO signal seem to have an enhanced negative (positive) effect 

on the hydrology of SSRB (cf. Table 4.3 and Figure 4.5). For instance, the mature 

El Nino years of 1931, 1940, 1941, and 1983 coincided with periods when the 

interdecadal PDO signal was over 0.5 standard deviations above normal. 

Similarly, the mature La Nina years of 1951 and 1972 coincided with interdecadal 

PDO signal in excess of 0.5 standard deviations below normal. On the other hand, 

the impacts of mature El Nino (La Nina) years that occurred during a cool (warm) 

PDO phase appear to be either muted or are in opposition to the expected 

response. A good example for the latter case is the 1954 El Nino event which was 

associated with one of the wettest years in the basin. Hence, hydroclimatic 

responses to ENSO and PDO could interfere with one another constructively or 

destructively depending on whether the two climate modes are in phase or out of 

phase. 
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Figure 4.5 suggests that a quasi 22-year drought cycle is superimposed on a quasi 

42-year cycle. Given that the late 1880s to early 1890s drought was described as 

the worst on record (Godwin, 1986), one may argue that multiple-year droughts 

similar to the 1930s and 1980s could be organized on a time scale of 40-50 years. 

Since the PDO phase shift occurs every 20-30 years, this means that the region 

could experience a severe inter-decadal drought during every warm PDO phase. 

Using diatom-inferred lake water salinity levels in the Chauvin Lake of eastern 

Alberta (52.69°N, 110.10°W) and the 1988-89 regional droughts as a benchmark 

measure, Leavitt and Chen (2001) predicted that the probability of occurrence of a 

drought as severe as the 1988 drought by 2030 was 45%, with a mean inter-arrival 

time of 60 years and an average duration of a decade. An extension of the 

oscillation in Figure 4.5 into the future also suggests that the region could face the 

next major multiple-year drought between 2020 and 2030. It is noteworthy that 

Leavitt and Chen characterized the 1930s droughts as among the mildest on 

record while our results show that the signature of the 1930s drought in the SSRB 

hydroclimatic variables is at least comparable to that of the 1980s (Figure 4.5). 

4.5. Correlation with Climate Indices 

In this section, we use the Spearman rank correlation to examine the value of 

ENSO and PDO in long-range forecasting. The Spearman correlation is chosen 

because it is robust to outliers as it finds the correlations between the ranks of the 

data instead of the values of the data (Wilks, 1995). Rank correlations are 

computed between the streamfiow/winter precipitation at each station and the 

Nov-Mar Nino3 and PDO indices. Since the climate indices are correlated to one 

another, partial correlations were also computed so as to assess the relative 

influence of each climate index. Correlations were assessed for 1913-2001, 1930-

2001 and 1950-2001 periods in an attempt to examine the temporal stability of 

any monotonic relationships. The correlations for the period of 1950-2001 are 

shown in Figure 4.6a. Table 4.4 shows the number of stations with statistically 
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significant correlations at the 5% and 1% levels. Also shown in Table 4.4 are the 

lowest, median and highest correlations. 

From Table 4.4, it is clear that the PDO shows better correlations with the 

streamflow of SSRB than Nino3, both in terms of the number of stations with 

statistically significant correlations and the correlation magnitudes. The median 

partial correlations between streamflow and PDO|Nino3 (read as PDO given 

Nino3) for the 1913-2001, 1930-2001 and 1950-2001 periods are -0.36, -0.46 

and -0.46, respectively. On the other hand, the median partial correlations 

between streamflow and Nino3|PDO for all three data windows are close to zero 

(Table 4.4). These results are consistent with that of Gobena and Gan (2006) who 

showed that basins originating in the Rocky Mountains were more strongly 

correlated to PDO than to SOI. The lack of significant partial correlation between 

streamflow and Nino3|PDO means that tropical Pacific SST conditions during the 

mature phase of ENSO provide redundant information once the PDO-streamflow 

relationship is accounted for. 

The correlations between the Nov-Mar precipitation and PDO are also stronger 

than those with Nino3 (Table 4.4). In general, the correlations between the two 

climate indices and SSRB's precipitation are weaker than with streamflow, 

underlining the influence of the spatial and temporal noise in precipitation as 

compared to streamflow. With respect to precipitation, the distribution of stations 

with significant partial correlations with both PDO|Nino3 and Nino3|PDO suggest 

that the winter season indices of both climate modes provide important 

information on the precipitation variability in the basin. However, it should be 

noted that for the Nov-Mar precipitation, the indices are from the same time 

window with the precipitation season and as such their value for prediction 

purposes is limited. 

As mentioned in Section 4.2, the precipitation data used in this study come from 

stations located in the plains or at the foothills of the Rocky Mountains. Could the 
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apparent weakness of the relationship between SSRB's streamflow and Nino3 as 

compared to the modest precipitation-Nino3 relationships be due to failure of the 

precipitation data to capture the mountain snowpack variability? A preliminary 

analysis of Alberta Environment snow course data from 14 stations (see Appendix 

B for list of stations) shows that the partial correlations between the April 1 SWE 

and PDO|Nino3 are stronger than those between SWE and Nino3|PDO (Figure 

4.6b). The calculations in Figure 4.6b were based on snow data for the period of 

1970-2004 and obtained at locations shown in Figure 4.1. From these results, it 

seems that mountain snowpack, which plays an important role in runoff 

generation in the major rivers of the SSRB, is primarily forced by the North 

Pacific winter SST than by the equatorial Pacific SST. These results concur with 

that of McCabe and Dettinger (2002) who indicated that PDO, not ENSO, is the 

primary driving force for the April 1 snowpack variability in the western United 

States. It should be noted that the lack of strong correlations with an ENSO index 

does not necessarily indicate the lack of ENSO impacts on hydroclimatic 

variability of the SSRB, but rather that the unfiltered PDO index could reflect the 

role of the North Pacific decadal climate variability and that of important ENSO 

episodes. Newman et al. (2003) indicate that to first order, PDO can be 

considered as a reddened response to both ENSO and atmospheric noise, resulting 

in more decadal variability than either phenomenon. 

4.6. Summary and Conclusions 

This study has used wavelet transforms and rank correlation analysis to 

investigate low-frequency hydroclimatic variability in the SSRB of southern 

Alberta and its dynamical links with the Pacific climate variability. The results of 

the study are summarized as follows: 

1) Dominant modes of streamflow variability occur at inter-decadal scales 

oscillating near 19-22, 41-42 and 62 years. Clusters of significant 

streamflow activities at inter-annual scales were also observed at intervals 
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of approximately 20-25 years. The intensity of the inter-annual 

oscillations has been on the decline since 1950. The spatially averaged 

SAWP of streamflow revealed that the clusters of significant activities at 

the inter-annual scales coincide with years when streamflow was in the 

upper quartile of the distribution and in between were years when 

streamflow was in the lower quartile of the distribution. The precipitation 

variability was also dominated by inter-decadal oscillations although the 

dominant oscillatory modes show more spatial variability than that of 

streamflow. 

2) As expected, the strongest coherence between streamflow and Nino3 

occurs in the interannual scale. In spite of the generally weak Nino3 

activities between 1920s and 1960s, SSRB's streamflow and Nino3 

showed high coherency in the 2-8 year scale prior to 1940s, in the 1950s, 

1970s and 1980s. However, the relationship is highly inconsistent as 

observed from the shifting phase distribution in the interannual scale, 

where the phase difference changed from near 210° prior to 1940s to near 

0° in the 1950s, and close to 180° in the 1970s and 1980s. On the other 

hand, PDO and streamflow exhibited consistently strong covariance with a 

rather stable phase difference of 180° for scales greater than about 20 

years. 

3) Streamflows in the lower and upper quartiles showed inter-decadal 

variations that were synchronized with the PDO phase. There were more 

years with flows in the lower (upper) 25% of the distribution during the 

warm (cool) PDO phase than during the cool (warm) phase. To a lesser 

extent, this was also true for winter precipitation. A comparison of the 

inter-decadal components of basin streamflow and precipitation to that of 

PDO also revealed that there is a strong agreement between the leading 

precipitation/streamflow PC and the PDO time series. Since 1930, 

droughts in the region have occurred at quasi 22-year and 42-year modes. 
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The multiple-year droughts of the 1930s and 1980s were part of the quasi 

42-year mode that occurred when the inter-decadal PDO signal was in its 

extreme warm phase persistently for several years. The role of PDO in the 

initiation and/or maintenance of drought in this region deserves further 

investigation. 

4) The Spearman rank correlation analysis with climate indices averaged 

over the November-March season showed that SSRB's streamflow is 

highly influenced by the PDO regime, with all 13 stations having 

significant correlations at the 1% level. Even though streamflow 

correlations with Nino3 were also significant at 5 of the 13 stations, partial 

correlation analysis showed that tropical Pacific SST during the mature 

phase of ENSO did not add substantial new information to that already 

contained in the PDO index. Preliminary analysis indicates that mountain 

snowpack, which plays a major role in runoff generation in SSRB, is more 

strongly correlated to PDO than to Nino3, thus partly explaining the weak 

ENSO-streamflow relationship. Even though correlations between SSRB's 

winter precipitation and Nino3 (PDO) were generally weaker than with 

streamflow, there are still statistically significant correlations observed at 

some precipitation stations. 

Alberta Environment uses the current antecedent soil moisture, snow water 

equivalent, precipitation, snow pillow information and temperature to determine 

seasonal runoff by statistical techniques (Alberta Environment, 2006b). Currently, 

water supply outlooks for the March-September runoff volume are issued in the 

first week of each month beginning in February. The improved understanding of 

the relationships between Pacific climate variability and basin 

streamflow/precipitation could be used as a basis to objectively incorporate large-

scale climate dynamics into long-range stream flow forecasting in the SSRB. The 

inclusion of this information into flow forecasting frameworks may lead to 

improved forecast lead times and/or skills. 
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One approach to include large-scale climate information in long-range flow 

forecasting is to predict statistically precipitation and temperature at the desired 

lead time and then use the predicted values to drive a hydrologic model (e.g. see 

Mwale et ah, 2004; Mwale and Gan, 2005). With regard to the SSRB, the 

applicability of this approach seems limited because of a number of reasons. First, 

significant wavelet power fluctuations at the inter-annual scale were mainly 

observed at intervals of about 20-25 years. In the absence of strong interannual 

persistence of precipitation power, the climate-precipitation relationship may not 

be strong enough to produce precipitation forecasts that are accurate enough for 

driving a hydrologic model. Second, modest correlations between precipitation 

and large-scale climate anomalies are observed only during the winter season (e.g. 

Shabbar et ah, 1997; Gan et ah, 2007) whereas SSRB's streamflow integrates 

precipitation over the winter to summer period and thus the effect of the winter 

precipitation alone, even if accurately predicted, may not yield a marked 

improvement in streamflow forecasts for the major flow season. Thirdly, the 

precipitation data from the foothill stations - where sufficiently long and reliable 

records are available - do not seem to accurately represent the mountain 

snowpack variability. 

A second and more straightforward approach is to use indices of climate patterns 

as predictors in statistical regression models provided that the indices have a lag 

relationship with hydroclimatic data. For the SSRB, the use of the winter season 

PDO, plus PNA and Nino3/SOI from earlier seasons (beginning with the initiation 

of ENSO) as predictors may yield some improvement in the skill and/or lead time 

of the current regression models. Although tropical Pacific SST conditions during 

mature ENSO periods do not add new information to that contained in the PDO 

index, the influence of the early stages of ENSO on SSRB's streamflow 

variability cannot be ruled out and warrants further consideration. One limitation 

of regression-based forecasts is that they do not contain information about 

forecast uncertainty. In Chapter 5, a robust regression model based on M-
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estimators is used as a basis to develop ensemble forecasts using a modified 

nearest neighbors resampling algorithm. 

A third approach could be to use the large-scale climate information as a 

conditioning variable for resampling appropriate historical precipitation and 

temperature data as surrogates for future climate and then use the re-sampled 

historical data as multiple scenarios for input to a hydrologic model in an 

ensemble streamflow prediction (ESP) framework (e.g. Hamlet and Lettenmaier, 

1999). One attractive feature of the ESP approach is that probabilistic statements 

can be attached to streamflow forecasts. However, the mismatches in the temporal 

locations of the streamflow and precipitation powers as revealed by the S AWP at 

the interannual scale may pose problems with regard to the validity of this 

approach. A case by case analysis of the power fluctuations in the streamflow and 

precipitation in each sub-basin is required to establish its applicability to SSRB. 

The ESP approach will be explored in Chapter 6. 
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Table 4.3. List of years with streamflow and precipitation in the lower or upper 
25% of the distribution at least at two-third of the stations considered in 
the study. The years are arranged according to the PDO phase. 

Lower 25% Upper 25% PDO phase 
April-September streamflow 

1919e, 2001 1916, 1948, 1951', 1953, Cool PDO (1890-
1954e, 1965', 1972' 1924, 1947-1976, 

1999-present) 
1926e, 1931e, 1936, 1940e, 1927e 1928, 1995 Warm PDO (1925-
1941e, 1944, 1977e, 1983e, 1946, 1977-1998) 

1984, 1985, 1988 
November-March precipitation 

1917,2001 1947,1948, 1951', 1972', Cool PDO 
1974' 

1926e, 1929;, 1931e,1942e, 1925' Warm PDO 
1988, 1992e, 1995 

November-August precipitation 
1918', 1919e, 2000, 2001 1915e, 1948, 1951', 1953, Cool PDO 

1954e, 1965' 
1929/ 1931g 1936 1927e, 1978, 1993, 1998e Warm PDO 

e Mature El Nino year; Mature La Nina year. 
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Table 4.4. Number of streamflow and precipitation stations that exhibit 
statistically significant Spearman rank correlations with climate 
indices. The lowest, median and highest correlations with each index 
are also shown in parenthesis. Correlations significant at the 5% (1%) 
level are indicated in italics (boldface). 

Data 
period 

1950-
2001 

1930-
2001 

1913-
2001 

Climate 
index 
Nino3 

PDO 

Nino3|PDO 

PDO|Nino3 

Nino3 

PDO 

Nino3|PDO 

PDO|Nino3 

Nino3 

PDO 

Nino3|PDO 

PDO|Nino3 

Streamflow 
5% level 1% level 

5 1 
(0.12,-18,-0.38) 
12 12 

(-0.25,-0.50,-0.57) 
0 0 

(-0.14,0.07,0.35) 
13 13 

(-0.35, -0.46, -0.53) 
4 3 

(0.03,-0.18,-0.36) 
13 12 

(-0.29,-0.50,-0.57) 
0 0 

(-0.15,0.04,0.24) 
13 13 

(-0.34, -0.46, -0.51) 
5 4 

(0.03,-0.18,-0.38) 
13 12 

(-0.23, -0.43, -0.49) 
1 0 

(0.19,0.00,-0.27) 
13 13 

(-0.27,-0.36,-0.42) 

Precipitation 
5% level 1% level 

7 3 
(-0.06, -0.24, -0.50) 

12 7 
(-0.08,-0.57,-0.63) 

6 2 
(0.05,-0.14,-0.30) 

3 0 
(0.06, -0.25, -0.51) 
10 5 

(-0.03,-0.25,-0.50) 
11 6 

(-0.13,-0.27,-0.56) 
4 2 

(-0.05,-0.15,-0.34) 
6 2 

(-0.02,-0.18,-0.44) 
8 4 

(-0.06,-0.27,-0.41) 
11 4 

(-0.09,-0.25,-0.50) 
3 1 

(0.04,-0.13,-0.34) 
5 1 

(0.01,-0.16,-0.40) 
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Figure 4.1. Location of precipitation, streamflow and snow course stations used in the 
study. 

a) April-September streamflow anomaly 
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Figure 4.2. Wavelet decomposition of the April-September average streamflow of 
Belly River near Mountain View, (a) Streamflow anomaly time series, (b) 
Wavelet power spectrum, (c) Global wavelet power spectrum. The solid 
lines in (b) enclose regions in the time-frequency domain where the 
streamflow power was statistically significant against a red-noise spectrum 
at the 10% level. The dashed line in (b) is the cone of influence outside 
which the effect of zero-padding may suppress the wavelet power. The 
dashed line in (c) is the 90% confidence level for the global wavelet power 
spectrum. 
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Figure 4.3. (a) Station-time diagram of the Apr-Sep streamflow SAWP for 13 stations 
in the SSRB. The station numbers follow the listing in Table 4.1. (b) Time-
averaged Apr-Sep streamflow SAWP. (c) Basin-averaged SAWP of the 
Apr-Sep streamflow, Nov-Mar precipitation and Nov-Aug precipitation for 
the SSRB. The wavelet power was averaged over the 2-8-year scale. 
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Figure 4.4. Wavelet coherence between streamflow PCI and (a) Nino3, (b) PNA, 
(c) PDO. The contours indicate the 95% confidence level. The vectors 
show the phase difference between the two signals where phase 
difference is shown for coherence greater than 0.5. 
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we 4.5. The leading PC of inter-decadal Apr-Sep streamflow (A-S Q), Nov-
Aug precipitation (N-A P) and Nov-Mar precipitation (N-M P) and the 
inter-decadal component of the PDO index. A low-pass wavelet filter 
with a cutoff scale of 15 years was used to reconstruct the signals. 
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Sep streamflow and Nov-Mar PDO and Nino3 indices (1950-2001); (b) 
April 1 SWE and Nov-Mar PDO and Nino3 indices (1970-2004). The 
horizontal lines are the 5% and 1% significance levels. 
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Chapter 5 Statistical Ensemble Streamflow Forecasting in 

the South Saskatchewan River Basin with 

Robust M-Regression and Modified Nearest 

Neighbors Resampling 

5.1. Introduction 

In Alberta, a Canadian Prairie province, rivers have served as the primary source 

of water supply for most users since the dawning of the 20th century. By the year 

2005, the South Saskatchewan River Basin (SSRJB) alone provided over 57% of 

the water allocated in the province (Alberta Environment, 2006a). The SSRB, 

which is home to about 47% of the provincial population, occupies about a 

quarter of the surface area of the province, but it contains less than 6% of the 

province's water resources. As stipulated in the Master Agreement on 

Apportionment, Alberta can use only up to half of the natural flow of the basin 

and pass the remaining flow to Saskatchewan (Alberta Environment, 2006a). 

There is clear evidence that the water resource of the SSRB is under stress from 

demands exerted by fast population increase and an expanding economy. For 

instance, the Bow, Oldman and South Saskatchewan sub-basins have already 

reached their allocation potentials and thus the new Water Management Plan for 

the SSRB contains recommendations to suspend allocation of new water rights in 

these sub-basins until the Minister of Environment specifies how water not 

currently allocated is to be used (Alberta Environment, 2006b). In the face of 

increased uncertainty due to climate variability, sustaining existing water rights 

and meeting new water demands in southern Alberta will undoubtedly become a 

formidable challenge in the immediate future. Long-range streamflow forecasts 

that take into account the effects of climatic variability will be instrumental for 

proper planning and management of water resources in the basin. 
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Seasonal streamflow forecasts in Alberta are currently produced by statistical 

techniques using antecedent conditions (e.g. soil moisture, snow course/snow 

pillow data, precipitation and temperature) and assumed future scenarios (Alberta 

Environment, 2006c). Water supply outlooks for the March-September runoff 

volume of major rivers in the SSRB are usually issued within the first ten days of 

each month beginning in February. The probable forecast is produced by 

assuming normal weather in the future. Three additional forecasts are made by 

assuming that precipitation will be in the lower 10th, 25th and 75th percentiles 

(Alberta Environment, 2006c). 

The links between western Canadian hydroclimatic variables and large-scale 

climate anomalies such as the El Nino-Southern Oscillation (ENSO), 

Pacific/North America pattern (PNA) and Pacific Decadal Oscillation (PDO) have 

been a subject of several previous studies (Moore, 1996; Moore and McKendry, 

1996; Shabbar and Kandekar, 1996; Shabbar et al, 1997; Bonsai et al, 2001; 

Hsieh and Tang, 2001; Woo and Thorne, 2003; Gan et al., 2007; Gobena and 

Gan, 2006a, 2006b). The incorporation of large-scale climate information into 

forecasting models for basins with strong climate signals should provide 

improvement in forecast skill and/or lead times. However, such information has 

rarely been used for long-lead streamflow forecasts for western Canadian basins. 

A notable exception is the study of Hsieh et al. (2003), who used a linear 

regression model based on local precipitation signal and indices of ENSO, PNA 

and PDO climate anomalies up to the end of November to forecast the April-

August streamflow of the Columbia River at Donald, BC. 

Regardless of the type of predictors used, deterministic statistical forecasts have a 

limited value since they do not provide information about the error distribution of 

the forecasts (Day, 1985). However, deterministic forecasts can be used as a basis 

to generate ensemble forecasts by way of local estimators such as nonparametric 

kernel density estimators and K-nearest neighbor (K-NN) bootstrap methods. In 

the original K-NN bootstrap method developed by Lall and Sharma (1996), the K 
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nearest neighbors of the point of interest (based on some distance metric) are 

selected from historical record and then the ensemble members are generated by 

resampling the neighbors via a kernel that assigns large weight to the nearest and 

small weight to the furthest neighbors. While this approach can easily be extended 

to include large-scale climate information for conditionally selecting the K-NN, 

ensemble members not seen in historical record can not be simulated (Prairie et 

ah, 2006). To overcome this limitation, Grantz et al. (2005) used a modified K-

NN bootstrap method to generate ensemble streamflow forecasts from 

deterministic local polynomial regression forecasts. They generated ensembles by 

resampling from the residuals of the K-NN and adding them to the "mean" 

forecast obtained from the local regression. Prairie et al. (2006) combined the 

modified K-NN bootstrap method with a lag-1 local polynomial regression for 

stochastic streamflow simulation. 

The objective of this study is to develop a statistical ensemble streamflow 

forecasting model for two watersheds in the SSRB. The model uses both 

antecedent conditions and large-scale climate information as predictors as well as 

conditioning vectors for generating ensembles by a modified K-NN resampling 

approach. Our study differs from previous studies on streamflow forecasting (e.g., 

Grantz et al., 2005; Prairie et al., 2006) in the following aspects: (1) We introduce 

the recently developed robust M-regression model for obtaining the mean 

forecast, (2) We use a kernel function that is entirely driven by the predictor data 

using the Mahalanobis distance metric for resampling from the K-NN, and (3) the 

number of nearest neighbors (K) and the weights attached to each neighbor are 

optimized. The paper is organized as follows. Section 5.2 presents a description of 

the study area and data. In section 5.3, the development of the forecast model and 

criteria used to evaluate the performance of the forecasts are described. The 

results are discussed in section 5.4 followed by conclusions in section 5.5. 
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5.2. Data Description 

The Bow River at Banff (WSC Station 05BB001) and Castle River near Beaver 

Mines (WSC Station 05AA022), both located in the headwaters of the SSRB were 

selected for this study (Figure 5.1). These watersheds are representative of the 

upper parts of the basin where roughly 90% of the annual flow is generated. The 

Bow River at Banff (hereafter referred to as "Bow River") is located in the 

headwaters of the Bow River sub-basin and has a drainage area of about 2210 

km , with elevation ranging from around 1200 m at the outlet near Banff to over 

3000 m in the mountains. About 36% of the drainage area of the Bow River lies 

below an elevation of 2000 m whereas about 17% of its drainage area has 

elevation greater than 2500 m. There are two meteorological stations with long 

historical records located in the watershed, namely Banff (Elevation: 1397m; 

Location: 51°11'N, 115°34'W) and Lake Louise (Elevation: 1534 m, Location: 

51°26'N, 116°13'W). The mean annual flow of Bow River (05BB001) is about 

562 mm whereas mean annual precipitations at Banff and Lake Louise are about 

473 mm and 658 mm, respectively. The small difference between annual 

precipitation and streamflow does not necessarily imply negligible 

evapotranspiration losses but rather emphasizes the effect of topography in 

enhancing precipitation. The monthly climatologies of precipitation at Banff and 

Lake Louise stations and streamflow of the Bow River at Banff are shown in 

Figure 5.1. Peak flows in major rivers of the SSRB typically occur between mid 

June and early July. 

The Castle River near Beaver Mines (hereafter referred to as "Castle River") is 

located in the headwaters of the Oldman River sub-basin and has a drainage area 

of 823 km2. The watershed elevation ranges from 1200 m at the outlet to over 

2500 m. About 85% of the drainage area of the watershed lies below an elevation 

of 2000 m. The only meteorological station in the watershed with long record is 

found at Beaver Mines near the basin outlet (Elevation: 1286m, Location: 

49°28'N, 114°10'W). The mean annual flow of Castle River (05AA022) is about 
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600 mm whereas the mean annual precipitation at Beaver Mines is about 617 mm. 

The monthly precipitation and streamflow for the Castle River at Beaver Mines 

are also shown in Figure 5.1. 

Natural weekly streamflow data for the two watersheds were extracted from the 

"South Saskatchewan River Basin Historical Weekly Natural Flows" CD-ROM 

obtained from Alberta Environment (Alberta Environment, 1998). The seasonal 

average flow was computed from the weekly streamflow data. Snow water 

equivalent (SWE) data were extracted from snow course data, also obtained from 

Alberta Environment (Chacko Abraham, Personal communication, 2004; See 

Appendix B for list of stations). The earliest available snow course record dates 

back to 1937 but most of the stations have data only since the 1960's. The highest 

snow course station is located at an elevation of 2380 m. 

5.3. Forecast Model Development 

5.3.1. Model for Mean Forecast 

Statistical forecast models describe the empirical relationships between the 

predictor and response variables by a function of the form y = f(X) + s where 

y is an N x 1 vector of observations, X is an NxM matrix of predictors, and s 

is the error vector. The function / is fitted to a set of training examples by 

minimizing some cost function. Because of its computational efficiency and 

simplicity, multiple linear regression (MLR) has been widely used for forecasting 

hydroclimatic time series. For optimal performance of MLR models, the error 

terms should be independent, normally distributed and have a constant variance. 

However, such requirements may not always be met in hydroclimatic time series 

where outliers are more likely to be observed. The class of M-estimators on the 

other hand, have a good efficiency over a wide range of distributions (Huber, 

1981) and can be made robust against outliers. In M-estimators, the squared 

residuals in the linear regression estimators are replaced by a general cost function 

of the form, 
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N 

/? = argmin£/?(>,) (5.1) 

where rt = yt -XtP is the il residual, and p is a symmetric and non-decreasing 

function (Rousseeuw and Leroy, 1987). A weighting scheme that gives less 

importance to outliers can be achieved by choosing a bounded (e.g. convex) loss 

function (Serneels et al., 2005). The weight attached to observation i can be 

written as, 

w;=p(r ;.)/r,2 => pir,) = wtf . (5.2) 

Substituting Equation 5.2 into Equation 5.1, we have 

/? = a rgmin2>; ( .y , -X, /? ) 2 . (5.3) 

Thus, the M-estimator is a weighted least squares estimator but with weights 

depending on (3. For the special case of p(r) = r2, Equation 5.3 reduces to the 

traditional least squares estimator. 

Equation 5.3 provides robustness only against outliers in the residual terms (or 

vertical outliers). Serneels et al. (2005) have introduced additional algorithm to 

provide protection against outliers in the predictor space (also called leverage 

points). The idea is to multiply the loss function in Equation 5.3 by a second 

weight w*: 

^ = a r g m i n | ; « U . - Z ^ ) 2 (5.4) 
p /=i 

For observations close to the center of the data cloud, the leverage weights wf 

take on a value close to one whereas for outliers, they receive a value close to 

zero. Since Equation 5.4 protects against all kinds of outliers, it is called robust 

M-estimator (Serneels et al., 2005). The weights w. and w* are estimated by an 
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iterative reweighted least squares scheme, with the starting values computed from 

the residuals using the following equations, 

(r \ 

V° J 

z = • 
(5.5) 

1 + 

< = A mediani \Xt - med,A (X)\\' 
(5.6) 

where/is called the "Fair" function, & is an estimate of the residual scale (taken 

as the median absolute deviation), c is a tuning constant (usually set to 4), |.j| is 

the Euclidean norm, and medu is the Li-median computed from the pool of 

predictor variables. The Li-median minimizes the sum of Euclidean distances to 

all points in the predictor set. For more details and a MATLAB script on robust 

M-estimators, the reader is referred to Serneels et al. (2005). 

In this study, we used the traditional MLR and robust M-regression models to 

obtain the mean forecast of the seasonal flow. We found that the robust M-

regression model performs at least as well as MLR, if not better. Hence, we will 

only consider mean forecasts produced by the former model in subsequent 

discussions. 

5.3.2. Selection of Predictors 

In addition to the already established links between standard climate indices and 

streamflow, correlations between the April-September streamflow and gridded 

global ocean/atmosphere (SST, SLP, geopotential height and wind) data were 

evaluated at different lead times. Regions of high correlations with the global 

climate data generally collapsed onto the standard ENSO (equatorial central 

Pacific) and PDO/PNA (North Pacific/North American) regions (not shown). Use 

of new indices constructed from spatial averages from regions of high correlations 
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offered no obvious advantage over standard indices. Therefore, the more readily 

available standard climate indices, and antecedent precipitation, temperature and a 

sub-basin now water equivalent (SWE) index (SWEI) are chosen as candidate 

predictor variables for use in the forecasting exercise presented here. 

In this study the robust M-estimator is combined with a generalized cross-

validation (GCV) algorithm (Loader, 1997) to automatically select the best subset 

of predictors that provide the least GCV score. The GCV function is defined as 

1 N 

GCV(M) = ^ — (5.7) 
( l -M/JV) 

where M is the number of predictors in the model, such that M « N. The GCV 

function introduces a penalty for each predictor added to the model, thus 

minimizing the risk of using too many predictors that could artificially inflate the 

model skill at development stage. In a predictive environment, the GCV criterion 

is more appropriate for model selection than the least squares criterion because 

the former estimates the average squared prediction error (Loader, 1997) whereas 

the later estimates the average squared estimation error. 

The climate indices presented to the GCV algorithm consist of rolling 3-month 

averages of PDO, SOI/Nino3 and PNA indices. Although PDO is the primary 

climate mode of importance to streamflow variability in the SSRB (see Chapter 

4), correlation analysis indicates that there are modest relationships between the 

April-September streamflow and Nino3/SOI indices starting from late spring of 

the previous year. Thus, the 3-month averages for Nino3/SOI start with May-

June-July (MJJ) of the previous year and end with January-February-March 

(JFM) of the runoff year. For PNA and PDO indices, the 3-month averages start 

with August-September-October (ASO) of the previous year and end with JFM of 

the runoff year. Forecasts are issued on the first day of each month beginning in 

November and ending in August. Thus, the candidate predictors for November 

include 6 time series (MJJ SOI, JJA SOI, JAS SOI, ASO SOI, ASO PNA, and 
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ASO PDO) and so on, where the season is abbreviated using the first letter of 

each of the 3 months forming the average. Climate indices beyond JFM of the 

runoff year were not entered as candidate predictors. 

For temperature and precipitation, different averaging windows, beginning from 

as early as October and ending with the month immediately prior to the forecast 

issue date, were tried using data from Lake Louise for the Bow River and from 

Beaver Mines for the Castle River. By trial and error, a two-month averaging 

window immediately prior to the forecast issue date was generally found to give 

better results. 

For each sub-basin, the SWEI for a desired date (e.g. April 1) was derived as 

follows. The SWE data from each snow course station was first expressed as a 

fraction of the long-term mean SWE at that station. These fractions were averaged 

to form the sub-basin SWEI. In an attempt to utilize as many data points as 

possible, all snow course stations with 20 years of data or more were included in 

sub-basin averaging irrespective of their record starting dates. Thus, the number 

of sites used to derive the SWEI for each watershed is generally higher for recent 

years. We opted for SWEI because it slightly improved skill over the raw average 

SWE. Where available, the SWEI on the first day of the forecast season is used. 

For forecasts issued after April 1, the April 1 SWEI was entered as a candidate 

predictor. SWE data are not available for forecasts issued before February 1. 

5.3.3. Ensemble Forecast Method 

The ensemble forecasting framework used in this study is similar to K-NN 

methods used in Grantz et al. (2005), Regonda et al (2005) and Prairie et al 

(2006). The main difference from those methods is the use of a kernel function 

that is entirely driven by the selected predictors. In addition, we determine the 

optimum number of nearest neighbors that maximize the ensemble forecast skill. 

The methodology is described as follows. 
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1) For the best combination of predictors selected by the GCV algorithm, 

generate robust M-regression ("conditional mean") forecasts for each data 

point in a leave-one-out cross-validation mode. Consider a station for 

which data are available for N years. In the leave-one-out cross-validation, 

the model is fitted using N-\ points excluding the data for a single year 

t. The fitted model is then used to generate the streamfiow forecast for the 

holdout year t. Compute the model residuals for each forecast and save 

them. 

2) Compute the Mahalanobis distances between the predictors of the forecast 

year t and the predictors of year j , where j - 1, ..., N-\. The 

Mahalanobis distance metric is defined as, 

* , = [ ( * , - * y ) C - I ( * , - * , ) r ] , / 2 (5-8) 

where C is the inverse of the covariance matrix of the predictors and T 

stands for the 'transpose' operation. This distance metric has the 

advantage that it accounts for the redundancy in information content in the 

case of correlated variables (Wilks, 2006), which is not the case with the 

Euclidean distance metric. In addition, it does not require pre-

standardization of variables. 

3) Sort the JV-1 Mahalanobis distances for forecast year t in ascending 

order and store them as dtQ). 

4) Assign weights to the first K nearest neighbors of forecast year / in step 4 

according to one of the following kernels, 

Mi 
w, = — 

;K = 4N (5.9) 

w, = 
*•'" > 0 ; £ = int ^ — i , a>\. (5.10) 

V a ) 
1 1(0 

V ' < * ) ) 
,7 

147 



The kernel in Equation 5.9 was originally proposed by Lall and Sharma 

(1996) and has been implemented in Grantz et al. (2005) and others. 

Werner et al. (2004) used Equation 5.10 to assign probabilities to 

ensemble traces where the distance metric was taken as the absolute 

difference between the November-January Nino-3.4 index of the forecast 

year and all other years. The use of the Mahalanobis distance metric 

provides a simple way to extend the method to the case of multiple 

conditioning vectors. In this study, a and rj are determined by maximizing 

the ranked probability skill score (RPSS) using the Simulated Annealing 

algorithm. The weights wt are normalized so as to sum up to unity, 

w,=-P-. (5-11) 

For each of the K nearest neighbors, compute the cumulative probability 

metric pt, 

Pi=iwj> »' = U , * . (5.12) 
7=1 

5) The probability metric pi is used to generate ensemble members for 

forecast year t from the model residuals of the K nearest neighbors as 

follows. Generate a uniform random number w<z(0,l). If u<px, the 

residual corresponding to p\ is selected and added to the conditional mean 

forecast of year t. If px<u < pK, the residual corresponding to the 

minimum of the absolute value of the difference between pt and u is 

selected and added to the conditional mean forecast for year t. If u> pK, 

the residual corresponding to p& is selected and added to the conditional 

mean forecast of year t. Repeat this step as many times as desired to obtain 

a stable probability density function (PDF). In this study, we generate 100 

ensemble members for each forecast year. 
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6) The ranked probability skill score (RPSS) is used as the objective function 

to optimize a and r\ (and hence K) using the simulated annealing 

algorithm. Steps 4 and 5 are executed with a trial value of a and rj, and the 

RPSS is computed for the 100-member ensemble. The algorithm is 

repeatedly executed until the RPSS is maximized. 

7) For short datasets, repeated residual resampling from the K nearest 

neighbors (step 5) leads to limited variety in the ensembles and may not 

model the error distribution properly. Grantz et al. (2005) and Singhrattna 

et al. (2005) simulated the perturbation terms by generating random 

normal deviates using the standard errors of a local polynomial regression 

model. In this study, we first fit a nonparametric kernel density estimator 

to the residuals of the K nearest neighbors and then simulate the 

perturbation terms from this density function as follows. A random variate 

is sampled from the kernel slice with variance x2sK as 

yt,e=y,+^K
m^e (5-13) 

where yt is the conditional mean forecast for year t, X is the reference 

bandwidth of the Gaussian kernel, SK is the sample variance of the 

residuals of the K nearest neighbors, zt,e is a random normal variate and 

yt e is the ensemble member e for forecast year t. One hundred ensemble 

members are generated for each forecast year. The Gaussian reference 

bandwidth for an /-dimensional feature vector is computed as (Silverman, 

1986) 

taJ^bs] (5.14) 
1 + 1 

5.3.4. Forecast Verification Criteria 

For the best combination of predictors selected by the GCV algorithm, the model 

performance was evaluated in a leave-one-out cross-validation mode for the 
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period 1964-2001. Although streamflow data are available for a longer period, the 

length of data used in the model development is constrained by the availability of 

SWE data. Retrospective forecasts (hereafter simply called "forecasts") are issued 

at the beginning of each month starting in November prior to the runoff year and 

ending in August of the runoff year. For the April-September target season, 

forecasts begin on November 1 (at 5-month lead) and are updated at the beginning 

of the month until April 1 (0-month lead). For all other target seasons, forecasts 

are issued at 0-month lead, e.g. forecasts for the May-September target season are 

issued on May 1; forecasts for the June-September flow are issued on June 1, and 

soon. 

Forecast performance was evaluated in terms of the correlation coefficient, ranked 

probability skill score (RPSS), relative operating characteristic (ROC) and 

potential economic value. For correlation coefficient, the ensembles have to be 

reduced to a single value (which is the median in our case). Thus, we use the 

correlation coefficient as a measure of the correspondence between the median 

forecast and observations. The remaining three criteria directly quantify the skill 

of the ensemble forecast. To do this, the ensemble forecasts are first converted 

into forecast probabilities as follows. For each forecast year, the ensemble 

members were grouped into "below normal", "near-normal" and "above normal" 

categories based on terciles determined from the distribution of the observed 

flows. The forecast probability if) in each category is equal to the fraction of 

ensemble members falling in that category. 

The ranked probability score (RPS) for a forecast year is given by (Wilks, 1995) 

m=\ 

(5.15) 

where J is the number of categories (here J - 3), and o is the observation 

probability (o equals 1 if the event occurs in the 7th category and zero otherwise). 

The RPSS for a collection of RPS values is computed as (Wilks, 1995) 
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RPSS = l-^==^- (5.16) 
RPSrf 

where "ref' refers to the reference forecast (usually taken as the climatological 

probability) and the overbar represents averaging of RPS values for each 

forecast/event pair. For the 3-category forecast, the climatological forecast 

probability in the j l category is 1/3. Thus, the RPS for the climatological forecast 

is computed using fj =1/3 in Equation 5.15. For a perfect forecast with respect to 

climatology, RPS is equal to zero and RPSS is equal to 1. Forecasts that are worse 

than the climatology receive negative RPSS values. Hence, positive RPSS values 

indicate improvement over climatological forecasts. 

From management perspective, the forecaster's ability to forewarn the right 

category of an event (e.g. below normal, above normal) is of paramount 

importance. The RPSS only measures the overall performance of the ensemble 

forecast system, not its performance for specific conditions. Here we use the 

relative operating characteristic (ROC) to assess the performance of the median 

and ensemble forecasts for the "below normal" and "above normal" categories. 

Even though ROC has been used to evaluate the performance of meteorological 

forecasts (Harvey et al., 1992; Mason and Graham, 1999), it has rarely been used 

for evaluation of hydrologic forecasts. Consider the "below normal" category. A 

warning is issued if the forecasts indicate that streamflow will be below-normal. 

The forecasts are converted into a binary format (e.g. "yes" or "no") depending on 

whether a warning has been issued or not issued. For the median (deterministic) 

forecast a warning is issued if the forecast anticipates an event to occur in that 

category. For ensemble (probabilistic) forecasts, a warning can be issued when 

the forecast probability for an event exceeds a certain cutoff probability (Mason 

and Graham, 1999). The four possible outcomes are given in Table 5.1. Two of 

these are correct outcomes: a hit (h: a warning was issued for a subsequent event) 

and a correct rejection (r: a warning was not issued for a subsequent nonevent). 

The remaining two are errors: a false-alarm (f. a warning was issued for a 
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subsequent nonevent) and a miss (m: a warning was not issued for a subsequent 

event). 

The ROC is a graphical display of the hit rate (the proportion of events for which 

a warning was provided correctly) against the false-alarm rate (the proportion of 

nonevents for which a warning was provided incorrectly) (Mason and Graham, 

1999). Hit rate (H) and false-alarm rate (F) are computed as follows: 

H= h/(h + m) (5.17a) 

F=f/(f+r) (5.17b) 

For probabilistic forecasts, a set of hit rate and false-alarm rate can be computed 

by using different probability thresholds. A plot of the false-alarm rate against hit 

rate generates the ROC curve. For a random forecast, hit rate and false-alarm rate 

are equal and the ROC curve falls on the 45° line. For skillful forecasts, hit rate 

exceeds false-alarm rate and the ROC curve falls above the 45° line; for a forecast 

with negative skill false-alarm rate exceeds hit rate the ROC curve falls below the 

45° line. The area beneath the curve is often taken as the ROC score. 

For an end-user of the forecast system, the ultimate measure of the utility of a 

forecast is its economic value and other benefits associated with its use in day-to­

day decision making (Zhu et al., 2002). Suppose that a hypothetical user of a 

forecast decides to protect or not protect against the possibility of a potential loss 

based on the warnings issued by the forecaster. The potential economic value 

associated with the use of a forecast can be estimated using a simplified decision 

model called the cost-loss ratio problem (Murphy, 1977; Richardson, 2000; Zhu 

et al., 2002). If the event occurs and the user is not protected (a miss), the user 

incurs a loss L. If the user takes protective action against this potential loss 

(assuming that the protection is completely effective), the user will incur a cost C 

irrespective of whether the event occurs subsequently (a hit) or not (a false alarm). 

In the forecast correctly identified the non-occurrence of an event, the user 

doesn't incur any cost since no action is taken. 
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The optimal course of action for an end-user is to take protective action whenever 

the cost of protection is less than the loss incurred by lack of protection. Thus, a 

meaningful range for the cost-loss ratio (C/L) is 0 to 1. If only climatological 

information is available, i.e. the event occurs with a relative frequency o , the 

optimal course of action is to protect if C < oL and not to protect otherwise. The 

expected expense for the climatological forecast, rescaled by L, is given by 

C 
4uma,oiogy = m i n ( - , o) (5.18) 

The minimum possible expense is obtained for a perfect forecast, in which case 

the end-user would protect only on those occasions when the event occurred. 

_C 
E

Perfecl=°J ( 5 - 1 9 ) 

For a user who acts every time a forecast is issued, the expected expense is 

obtained from the 2x2 expense table (Table 5.1) as follows: 

h*C + f*C + m*L „ ^C / c ^ 
Eforeca, = ~ r = (h + f ) - + m ( 5 . 2 0 ) 

L L 

where h,f and m are now expressed as relative frequencies. Noting that h + m = o 

and / + r = 1 - o , Equation 5.20 can be expressed in terms of hit rate and false-

alarm rate as follows: 

Eforeca,=Fx^(l-o)-Hxo(l-j) + o (5.21) 

The economic value (V) relative to the climatology can then be expressed as, 

E -E 
•TT forecast climatology ,r r\r\\ 

~ E -E• ' 
perfect climatology 
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For a perfect forecast, V is equal to 1 whereas for the climatological forecast, V is 

equal to zero. Thus, positive values of V indicate an improvement over the 

climatological forecast. For perfectly reliable forecasts (where the conditional 

relative frequency of occurrence of an event is equal to the forecast probability), V 

has a lower bound of zero (Wilks, 2001). If the forecast is taken at face value, V 

may be negative, which means that the user would be better off by discarding the 

forecast and adopt the climatological forecast. This happens because the 

conditional event relative frequency is seldom equal to the forecast probability 

due to conditional or unconditional biases in the model. Ideally, this requirement 

is satisfied by recalibrating the forecast probabilities using data from independent 

verification periods. Since we do not have independent verification data, the 

forecasts in our study are taken at face value. 

For a deterministic forecast system, the computation of V is straight forward since 

there is only one set of hit rate and false-alarm rate for a dichotomous forecast. By 

varying C/L over the allowed range, an economic value curve can be generated. 

For ensemble forecasts, the hit rates and false-alarm rates corresponding to 

different warning thresholds are used to generate a set of economic value curves. 

The envelope of these curves, obtained by choosing the optimal warning threshold 

for each C/L, is an indicator of the overall value of the ensemble forecast system 

(Richardson, 2000). Murphy (1977) states that the best decision that minimizes 

the forecast user's expected expenses for perfectly reliable forecasts is to protect 

when the probability (p) of an event occurring is p>CIL. However, for 

miscalibrated forecasts such a decision criterion may give suboptimal estimates of 

the economic value. The envelope curves presented in our study are based on the 

decision threshold p that maximizes the economic value irrespective of whether 

p>C/L or not. Thus, calibration is implicitly built into the evaluation of the 

optimum economic value. 
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5.4. Results and Discussion 

The predictors selected using the GCV criteria are given in Table 5.2 for all lead 

times considered in this study. Among climate indices, the PDO seems to provide 

better information about the spring to summer season streamflow. Thus, the 

predictor selection corroborates our results on climate diagnostics discussed in 

section 3. For the Bow River, antecedent conditions other than SWE enter the 

model only for forecasts issued after June. For the Castle River, the same occurs 

only for forecasts issued after April. This means that forecasts issued prior to 

February, when there are not enough observed snow course data, are entirely 

based on climate indices alone. 

Figure 5.2 provides a comparison of observations to median forecast of the 

standardized April-September streamflow issued on Apr 1 for both the Bow and 

Castle Rivers. Also shown in Figure 5.2 are the 5th and 95th percentiles of the 

ensemble forecast. Visually, there appears to be a good agreement between 

observations and forecasts, particularly for the Bow River. The overall skill of the 

forecasts as measured by the correlation coefficient at all lead times is shown in 

Figure 5.3. For the Bow River, the median forecast issued on Nov 1 has a 

correlation coefficient significant at the 10% level (Figure 5.3a). Median forecasts 

of the Bow River issued on Dec 1 or later all have correlation coefficient 

significant at less than the 1% level. The forecast skills for the Castle River are 

generally not as good as those for the Bow River. For Castle River, only median 

forecasts issued on Jan 1 or later do have correlation coefficients significant at 

less than 1% level. 

Also shown in Figure 5.3 are the correlation coefficients for median forecasts 

issued on Feb 1, Mar 1 and Apr 1 using SWE data alone. These correlations 

indicate that the addition of large-scale climate information leads to better 

forecast skill for all three lead times for both rivers (the remaining skill measures 

were not shown since they lead to similar conclusion). 
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The effect of the choice of kernel on ensemble forecast skill was evaluated by 

comparing the RPSS based on weights assigned to the nearest neighbors 

according to Equations 5.9 and 5.10. With the exception of the forecast issued on 

Nov 1 based on Equation 5.9, the RPSS for the Bow River were all above zero. 

For the Castle River, the RPSS based on Equation 5.10 were all positive but those 

based on Equation 5.9 were negative for forecasts issued on Nov 1 and Dec 1. 

Using Equation 5.10 improves the RPSS for the Bow River by 7% (Apr 1) to 18% 

(Dec 1). Similarly, the improvement in the RPSS for the Castle River ranges from 

19% (Apr 1) to 73% (Jan 1). It is noted that the importance of the choice of kernel 

decreases with a decrease in the forecast lead time. All subsequent presentations 

on ensemble forecasts are based on the kernel in Equation 5.10. One disadvantage 

is that the optimum number of nearest neighbors (K) selected for generating 

ensemble members using the kernel in Equation 5.10 was generally found to vary 

from one basin to the other as well as from one forecast issue date to another. For 

the Bow River, A" varied from 7 (e.g. for Nov 1) to 18 (e.g. for Mar 1) whereas for 

Castle River, K varied from 6 (e.g. for Jan 1) to 8 (e.g. for Apr 1). 

In agreement with the median forecast skill, the ensemble forecast of the Bow 

River issued on Nov 1 has RPSS close to zero, showing negligible improvement 

over the climatology. The Bow River ensemble forecasts for all remaining 

forecast issue dates have positive RPSS, indicating a 33% (Dec 1) to 59% (Apr 1) 

improvement over the climatology (Figure 5.3a). This means that water resources 

managers can derive some useful information as early as December about the 

coming spring to summer streamflow of the river from large-scale climate 

information alone. Since issuance of water supply outlooks in the SSRB begins in 

February, the inclusion of large-scale climate information can increase the lead 

time by two months. Ensemble forecasts for Castle River issued prior to Jan 1 

show little overall skill with respect to climatology. In terms of RPSS, the Jan 1 

ensemble forecast skill is about 22% better than climatology. The maximum 

RPSS value of 48.6%) is obtained for the forecast issued on May 1, after which 

there appears to be a slight loss of skill (Figure 5.3b). 
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The areas beneath the ROC curve for median forecasts issued on Dec 1, Apr 1 and 

Jun 1 are given in Table 5.3. Areas above 0.5 are indicative of the skillfulness of 

the forecasts for that specific flow category when compared to climatology. 

Unlike the correlation measure which showed no skill for the Dec 1 median 

forecast of the Castle River, the ROC shows that there is some useful skill when 

the forecast is stratified into three categories. Figure 5.4 shows the ROC curves 

for "below normal" and "above normal" categories for ensemble forecasts issued 

on Dec 1 and Apr 1 for both the Bow and Castle rivers. The hit rate and false-

alarm rate used to generate the curves in Figure 5.4 are based on warnings issued 

when the forecast probability of an event occurring in a category exceeds 10%, 

20%, ..., 90% (for clarity only a few of these cutoff probabilities are shown along 

the curves). The top right corner of the ROC curve corresponds to perpetual 

warnings whereas the bottom left corner corresponds to perpetual no warnings. 

Between these two extremes, warnings are issued at successively increasing 

cutoff probabilities towards the bottom left corner of the curve. The more the 

ROC curve bends towards the top left corner, the higher the skill. 

For ensemble forecasts of the Bow River issued on Apr 1 (Figure 5.4c), all events 

were successfully forewarned when as low as 10% of the ensemble members 

anticipated below-normal conditions but false alarms were also issued 23.1% of 

the time that conditions were not below normal. The percentage of successful 

forewarnings drops to 83.3% (66.7%) when 30%) (50%>) of the ensemble members 

anticipate below-normal conditions, with the false alarm rate also dropping to 

7.7% (3.8%). In contrast, when 30% (50%) of the ensemble members anticipate 

above-normal conditions, 84.6% (84.6%>) of the events were forewarned correctly 

but false alarms were also issued 16%> (12%>) of the time that conditions were not 

above-normal. This shows that the ensemble forecast system is slightly better at 

simulating dry conditions than wet conditions for this watershed. The Apr 1 

forecasts for Castle River (Figure 5.4d) have a similar trend to that of the Bow 

River except that there are fewer hits and more false-alarms at each cutoff 

probability. For instance, when 30% (50%) of the ensemble members anticipate 
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below-normal conditions, 58.3% (50.0%) of the events were forewarned correctly 

but a false alarm was issued 15.4% (7.7%) of the time that conditions were 

normal or above normal. 

As expected, the forecasts issued on Dec 1 for both the Bow (Figure 5.4a) and 

Castle (Figure 5.4b) rivers generally have a lower rate of correctly anticipating an 

event in both below-normal and above-normal categories. For instance, for the 

Bow River, 58.3% (41.7%) of the events were forewarned correctly when 30% 

(50%) of the ensemble members anticipate below-normal conditions, and with 

false alarm rates of 15.4% (3.8%). The corresponding figures for above-normal 

forecasts are correct forewarnings of 76.9% (61.5%) and false alarm rates of 20% 

(16%). From Figure 5.3b, the overall skill of the Castle River forecasts issued on 

Dec 1 was not better than the climatology in terms of RPSS. The use of a single 

skill measure like the RPSS across the whole spectrum of forecasts does not 

reveal how the forecast system performs in different parts of the spectrum. In fact, 

Castle River forecasts issued on Dec 1 contain considerable probabilistic 

information for both above-normal and below-normal conditions (Figure 5.4b). 

For instance, 58.3% (25.0%) of the events were forewarned correctly when 30% 

(50%) of the ensemble members anticipate below normal conditions. Similarly, 

61.5% (30.8%o) of the events were forewarned correctly when 30% (50%) of the 

ensemble members anticipate above-normal conditions. However, the percentage 

of times false alarms were issued is higher when compared to forecasts issued on 

Apr 1. 

Also shown in Figures 5.4e and 5.4f are the ROC curves for ensemble forecasts 

issued on Jun 1. For the Bow River, there is a decrease in ROC skill from that of 

Apr 1 for both below- and above-normal forecasts. On the other hand, the ROC 

skill shows an increase between Apr 1 and Jun 1 for the Castle River. 

The potential economic value curves for below-normal and above-normal 

forecasts are presented in Figure 5.5 for median and ensemble forecasts at four 
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forecast issue dates. For the Bow River ensemble forecasts, the economic value 

generally shows an increasing trend from Dec 1 (Figure 5.5a) to Apr 1 (Figure 

5.5c) but Jun 1 (Figure 5.5d) shows slightly less value than that of Apr 1. For the 

Castle River ensemble forecasts, the value increases from Dec 1 (Figure 5.5e) 

through Apr 1 (Figure 5.5g) to Jun 1 (Figure 5.5h), thus corroborating the trends 

in the ROC skill (Figure 5.4). 

A perusal of Figure 5.5 also reveals that the ensemble forecasts outperformed 

single-value forecasts for both below- and above-normal categories, in terms of 

the overall value and the range of users that can benefit from the respective 

forecast system. The value curves for ensemble forecasts lie above those of 

median forecasts in all but one case (Figure 5.5e). In addition, the maximum 

economic value, which is attained when the C/L ratio is equal to o (Richardson, 

2000), is higher for ensemble forecasts except for the case of the Bow River Apr 1 

forecasts for the above-normal category (Figure 5.5d), in which case it is the same 

for both ensemble and median forecasts. 

In general, the range of C/L for which the economic value is positive, increases 

with decrease in the lead time. For longer lead times, the forecast lacks sharpness, 

i.e., forecasts with extreme probabilities are rarely issued. As a result, only users 

within a narrow band of C/L (e.g. approximately between 0.2 and 0.6 for the 

Castle River Dec 1 forecasts (Figure 5.5e)) can benefit from the ensemble 

forecast. As the lead time decreases, the forecast becomes sharper, leading to an 

increase in the range of C/L over which V is positive. While the trend is similar 

for median forecasts, the range of useful C/L is narrower. As an example, for the 

above-normal category of the Castle River Dec 1 forecasts (Figure 5.5e), the 

median forecast offers virtually no economic benefit while the ensemble forecast 

offers a benefit for users with C/L of 0.2 - 0.6. It is also interesting to note that 

even in those cases when the benefits attained from both types of forecasts are 

similar for C/L close to the climatological relative frequency (e.g. above-normal 

forecasts of the Bow River issued on Apr 1 (Figure 5.5c)), the range of useful C/L 
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is still wider for ensemble forecasts. For example, users with C/L less than 0.1 

(greater than 0.8) can not derive any benefits from below-normal (above-normal) 

forecasts of the Bow River Apr 1 median forecasts whereas ensemble forecasts 

still offer positive economic value for these C/L ratios (Figure 5.5c). 

More often than not, there are more than one downstream users of a forecast. 

Ideally, each user will have a decision criterion based on an economically viable 

C/L for his investment. One advantage of probabilistic forecasts over single-value 

forecasts is that they naturally provide the basis for such multiple decision criteria 

(Zhu et al., 2002). Consider the case of two users who own properties in a flood 

prone area. Consider also that the cost of protection required for flood mitigation 

is the same for both users but their potential losses are somehow different, 

resulting in C/L of 0.1 and 0.9, respectively. Assuming that both of them have 

access only to the Bow River Apr 1 median forecasts (Figure 5.5.c), the user with 

much to lose (C/L = 0.1) will benefit from protection but the user with less to lose 

(C/L = 0.9) will opt for the climatological forecast and will never protect. On the 

other hand, if probability forecasts are accessible to both users, the later will also 

realize benefits from protection when over 90% of the ensemble members 

anticipate above-normal conditions. Together, the ROC and economic value 

curves for ensemble forecasts provide a comprehensive tool for conveying the 

forecast information, which may be used as a basis for making risk-based 

management decisions. 

The skill assessment presented above may also provide useful information 

regarding the optimum time for issuance of forecasts that can be used as a basis 

for water resources planning in the two watersheds considered in the study. For 

the Bow River, it appears that forecasts issued in the spring (e.g. April 1) are 

generally more appropriate than those issued later in the flow season. On the other 

hand, water resources planning for the Castle River can successively be refined 

with each subsequent forecast until June 1. The two watersheds are typical of flow 

conditions in the headwater regions of the Bow and Oldman sub-basins but 
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whether these findings will apply to the mainstreams of the two sub-basins is yet 

to be determined. 

5.5. Summary and Conclusions 

A modified K-NN resampling approach has been used for ensemble seasonal 

streamflow forecasting of two rivers in the SSRB of southern Alberta based on 

large-scale climate information and antecedent conditions. The approach differs 

from earlier studies in that the weight function used for resampling from the K-

NN is entirely driven by the predictor data using the Mahalanobis distance metric. 

In addition, the optimum number of the K nearest neighbors for each forecast lead 

time is selected by maximizing a probabilistic skill measure. The mean forecasts 

used to generate the ensemble members were produced by a robust M-regression 

model where the subset of predictors was selected by a GCV criterion to avoid 

over-fitting. In general, SWE and winter season PDO were found to be the most 

important predictors of the spring to summer streamflow in the SSRB. In the 

presence of SWE and climate index data, other antecedent conditions (e.g. 

temperature and precipitation) become insignificant predictors for forecasts issued 

in winter and spring months. 

Forecast skills progressively increased with decrease in lead time until April 1 for 

the Bow River and until June 1 for the Castle River. Even though snow course 

data are not available for forecasts issued prior to Feb 1, ensemble forecasts based 

on large-scale climate information alone possess considerable skill for forecasts 

issued as early as Dec 1. The ensemble forecasting scheme presented here offers 

several advantages over the current forecasting practice used for the SSRB. First, 

our results indicate that forecast lead times can be increased by up to two months 

since forecasts are currently issued beginning in February. Second, ensemble 

forecasts increase the range of downstream users that can benefit from the 

probabilistic information compared to single-value forecasts. Third, ensemble 

members may be used to produce probabilistic forecasts for user-defined quantiles 
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other than the four percentiles for which forecasts are made currently. In fact, 

ensemble forecasts provide a venue for running downstream planning models on 

each ensemble member and generate a PDF of management scenarios, from 

which end-users can quantify the risks and benefits associated with alternative 

scenarios. 
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Table 5.1. A 2x2 contingency table for verification of dichotomous forecasts and 
associated expected cost of protection (Q or loss (L) for lack thereof. 
The expected expense for a correct rejection is zero. 
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Table 5.2. Streamflow predictors selected using the GCV criteria. The forecast 
target season is indicated in parenthesis in column 1. 

Forecast issue date Bow River' Castle Rivera 

Nov 1 (Apr-Sep) 

Dec 1 (Apr-Sep) 

Jan 1 (Apr-Sep) 

Feb 1 (Apr-Sep) 

Mar 1 (Apr-Sep) 

Apr 1 (Apr-Sep) 

May 1 (May-Sep) 

Jun 1 (Jun-Sep) 

Jull (Jul-Sep) 

Aug 1 (Aug-Sep) 

SOI (JJA) 

PDO (SON, ASO), SOI (JJA) 

PDO (OND, ASO), SOI (JJA) 

SWEI, PDO (NDJ, ASO) 

SWEI, PDO (NDJ, DJF) 

SWEI, PDO (NDJ, DJF) 

SWEIb, PDO (NDJ, DJF) 

SWEIb, PDO (OND) 

SWEIb, TMPC, PDO (NDJ) 

TMPC, SWEI 

SOI (JJA) 

PDO (SON) 

PDO (OND) 

SWEI, PDO (NDJ) 

SWEI, PDO (NDJ) 

SWEI, PDO (NDJ), SOI (OND) 

SWEIb, TMPC, PDO (NDJ) 

SWEI1, PCPC 

PDO (DJF), PCP°, SWEI 

TMPC, PCPC, SOI (ASO) 

a For climate indices, the selected predictor is abbreviated using the first letter of each of the 3 
months forming the average. 
b The April 1 SWEI is used for all forecasts issued after April 1. 
c Precipitation (PCP) and temperature (TMP) are averages of the two months preceding the 
forecast issue date. 

Table 5.3. Area beneath the ROC curve for median forecasts (BN = Below-
normal, AN = Above-normal) 

Forecast 
category 
BN 
AN 

Dec 1 
0.69 
0.75 

Bow River 
Apr 1 
0.81 
0.86 

Jun 1 
0.71 
0.73 

Dec 1 
0.61 
0.52 

Castle River 
Apr 1 Jun 1 
0.67 0.61 
0.71 0.82 
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Figure 5.1. Location of the Bow and Castle rivers in the SSRB in southern Alberta. 
The lower panel shows Bow River (05BB001) annual hydrograph and 
precipitation climatology (at Lake Louise and Banff), and Castle River 
(05AA022) annual hydrograph and precipitation climatology (at Beaver 
Mines). 
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Bow River at Banff (1964-2001) 

Castle River near Beaver Mines (1964-2001) 

1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 

Year 

Figure 5.2. A comparison of observed and forecast streamflow for forecasts issued 
on April 1. The solid diamonds represent historical How. The median 
forecast is shown by the broken lines. The 5th and 95th percentiles of the 
ensembles are shown by the solid lines. 

167 



2 0.5 

v> 
to o 
2 n 
o 0 

-0.5 

Bow River at Banff (1964-2001) 

• Correlation • RPSS • Correlation (SWE) 

O Q) 

? Q 
c 
03 Li­

ra Q. 
< 

03 c 
- 5 

3 
~3 

< 

Forecast issue date 

Castle River near Beaver Mines (1964-2001) 

• Correlation • RPSS D Correlation (SWE) 

Forecast issue date 

ure 5.3. Forecast skill measures for (a) Bow River, and (b) Castle River. 

168 



Bow River (Dec 1) 

0.2 

Below Normal (A=0.79) 
Above Normal (A=0.81) 
No Skill (A=0.50) 

0.4 0.6 

False alarm rate 

0.8 1 

1 

0.8 

$ 0.6 
S 

I 0.4 

0.2 

0-, 

Castle River (Dec 1) 

-

/ • ' 

- y^o%/7 

\^ * 

'[ 10°/o/ tk^****"*^S 
,*\^J>^**^S^ 

/"^ b 

/ ^ ± — Below Normal (A=0.74) 

- HI- - Above Normal (A=0.65) 

0.2 0.4 0.6 0.8 

False alarm rate 

Bow River (Apr 1) 

0.2 

- Below Normal (A=0.95) 
- -•- - Above Normal (A=0.91) 

No Skill (A=0.50) 

0.4 0.6 

False alarm rate 

0.8 1 

Castle River (Apr 1) 

Below Normal (A=0.79) 

i- - Above Normal (A=0.80) 

— No Skill (A=0.50) 

0.2 0.4 0.6 0.8 

False alarm rate 

1 

Bow River (Jun 1) 

i— Below Normal (A=0.86) 
- - Above Normal (A=0.87) 
— No Skill (A=0.50) 

0.2 0.4 0.6 

False alarm rate 

0.8 1 

Castle River (Jun 1) 

Below Normal (A=0.90) 

Above Normal (A=0.95) 

No Skill (A=0.50) 

0.2 0.4 0.6 0.8 

False alarm rate 

1 

Figure 5.4. ROC curves for ensemble streamflow forecasts of the Bow and Castle rivers 
issued on December 1, April 1 and June 1. Results are shown for streamflow 
forecasts in the lower (solid line) and upper (broken line) terciles. The open 
markers on the curves indicate the 10%, 50% and 90% warning thresholds, 
which are circled for above-normal forecasts. The areas beneath the curves, 
A, are given the legend. 
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Figure 5.5. Optimal economic values of the deterministic (light lines) and ensemble 
(heavy lines) forecast systems for below-normal (BN, solid lines) and 
above-normal (AN, dashed lines) forecasts issued on December 1, January 
1, April 1 and June 1 for the Bow River (a to d) and Castle River (e to h). 
The curves for ensemble forecasts are obtained by choosing the warning 
threshold that maximizes V for each C/L. Economic values less than zero 
are not plotted. 
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Figure 5.5. Continued 
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Chapter 6 A Technique for Incorporating Seasonal 

Climate Forecasts into the Ensemble 

Streamflow Prediction System 

6.1. Introduction 

Seasonal streamflow forecasts in western Canada are mostly produced by 

regression techniques that use current and/or antecedent conditions as predictors. 

For instance, Alberta Environment uses information on antecedent soil moisture, 

snow course/snow pillow data, precipitation and temperature to determine 

seasonal runoff volumes for rivers in the SSRB by statistical techniques (Alberta 

Environment, 2006). In British Columbia (BC), the Columbia River Treaty 

stipulates that BC Hydro produce seasonal runoff forecasts of the Columbia River 

inflow to the Mica Reservoir using a linear regression model (Druce, 2001). 

Recognizing the influence of the El Nino-Southern oscillation (ENSO) and 

Pacific/North American pattern (PNA) climate anomalies on the interannual 

variability of snowpack in the Columbia Basin in BC (Hsieh and Tang, 2001), 

Hsieh et al. (2003) used a linear regression model based on local precipitation and 

indices of ENSO, PNA and the Pacific Decadal Oscillation (PDO) to forecast 

streamflow of the Columbia River at Donald for the April-August target season. 

Regardless of which predictors are included in forecast models, statistical 

forecasting is often criticized for it ignores basin rainfall-runoff dynamics that are 

important in controlling runoff generation. Moreover, Day (1985) states that 

deterministic statistical forecasts do not provide information about the uncertainty 

of predictions. Day (1985) introduced the ensemble streamflow prediction (ESP) 

method as a means to objectively incorporate uncertainties into deterministic 

hydrologic model forecasts. In the climatic ESP method, streamflow forecasts are 

produced by forcing a hydrologic model with current initial conditions and 

weather data from past observations. Given N years of observed weather data, the 
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method produces N possible runoff forecasts (also called 'ensemble traces') for 

the current forecast year. This means that the ensemble traces are produced by 

assuming that the weather sequence of each historical year in the record has an 

equal likelihood of occurrence in the current forecast year (e.g. Day, 1985; Druce, 

2001; Franz et al, 2003). The uncertainty about the forecast is then estimated 

from the probability density function (PDF) constructed from the ensemble traces 

based on the assumption that each ensemble trace is a sample from the PDF. BC 

Hydro uses an approach similar to the climatic ESP method to generate forecasts 

of the Columbia River inflow to Mica Reservoir for the operation planning of 

non-Treaty storage (Druce, 2001). 

There are some limitations in climatic ESP approach. First, for relatively small N, 

the range of variations captured by the PDF may be too small. Secondly, basins 

with highly variable flow regimes may exhibit flat PDFs as a result of too much 

dispersion in the ensemble traces (e.g. Franz et al., 2003). In addition, the 

assumption that each historical year has an equal likelihood of occurrence during 

the forecast year does not take into account the forecaster's knowledge about the 

climate system from other sources such as the present state of large-scale climate 

anomalies and seasonal climate outlooks. 

A number of approaches have been proposed to include large-scale climate 

information into the ESP method. Based on the observed relationships between 

streamflow and ENSO, Werner et al. (2004) examined the performance of 

different schemes for weighting the climatic ESP flow traces (i.e. post-ESP 

adjustment schemes). Hamlet and Lettenmaier (1999) restricted ensemble traces 

to years that are analogous to the forecast year in terms of ENSO and PDO 

phases. While ENSO-PDO climate categories may lead to improved ensemble 

spread, statistical problems may arise in the interpretation of the PDF when the 

number of years in a particular ENSO-PDO category is too small. 
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Efforts to include seasonal climate outlooks from numerical weather prediction 

(NWP) models into the ESP system have also been reported in the literature. For 

instance, in the U.S. National Weather Service (NWS) ESP system an adjustment 

is made to temperature and precipitation inputs to the hydrologic model based on 

climate forecasts (Werner et al., 2004). Wood et al. (2002) describe a strategy for 

using monthly ensemble climate forecasts produced by the Global Spectral Model 

(GSM) of the National Centers for Environmental Prediction (NCEP) as inputs to 

a macroscale hydrology model for long-range hydrologic forecasting in the 

eastern U.S. Their strategy involves bias-correcting the forecasts, followed by 

downscaling to spatial and temporal scales suitable for running the hydrologic 

model. To disaggregate monthly forecasts into daily time steps, a year was 

randomly selected from the climatology period and then the daily data of the 

forecast month in the selected year were adjusted in such a way that the 

magnitude of the monthly forecast is maintained. Clark and Hay (2004) 

demonstrated that for forecast lead times of less than 2 weeks, using downscaled 

forecasts from the NCEP Medium Range Forecast (MRF) outputs significantly 

improved forecast skill when compared to the climatic ESP approach. 

6.2. Research Objective 

The primary objective of this study is to develop a technique for incorporating 0-3 

month lead ensemble climate forecasts from Canadian NWP models into the ESP 

system for seasonal streamflow forecasting. Our study differs from that of Wood 

et al. (2002) in two aspects: (1) the raw NWP outputs are used to produce 

temperature and precipitation forecasts at station locations through downscaling 

by the model output statistics (MOS) approach; and (2) temporal disaggregation 

of the MOS-based forecasts from monthly to daily time steps is performed using 

the K-nearest neighbors (K-NN) resampling algorithm, where a year is selected 

among years in the climatology period that are closest to the forecast year in terms 

of the PDO index. Unlike the climatic ESP method, our technique does not suffer 

from statistical problems for stations with relatively short records since as many 
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different ensemble members as desired can be generated using the K-NN 

algorithm. 

Our study also explores the applicability of input data generated from daily 

historical observations by the K-NN algorithm (i.e. pre-ESP). In the pre-ESP 

scheme, daily weather data resampled from historical observations are used to 

drive the hydrologic model without any forecast guidance. By comparing the 

performance of the MOS-based scheme to that of the pre-ESP and post-ESP 

schemes, our study addresses the question of whether the added computational 

burden of the MOS-based scheme could lead to an improvement in forecast 

performance over those using historical data alone. The three schemes are applied 

to two snowmelt dominated sub-basins in the SSRB of southern Alberta. The rest 

of the paper is organized as follows. Section 6.2 describes the 

hydrometeorological data for the selected watersheds and the technique used to 

produce monthly climate forecasts at station locations. The re-sampling 

algorithms used to generate daily input weather data for the hydrologic model are 

presented in Section 6.3. This is followed by a brief description, set up and 

calibration of the hydrologic model in section 6.4. Section 6.5 discusses the 

criteria used to evaluate forecast performance. The discussion of the results in 

section 6.6 is followed by a comparison with results obtained from a statistical 

forecast model in Section 6.7. Finally, the summary and conclusions are presented 

in section 6.8. 

6.3. Data 

6.3.1. Hydrometeorological Data 

The Bow River at Banff and Castle River near Beaver Mines, both located in the 

headwaters of the SSRB were selected for this study (Figure 5.1). These 

watersheds were selected due to low level of development above the respective 

gauging stations (e.g., minimal regulation effect on streamflow) and the 

availability of long-term hydrometeorological data. Natural daily streamflow data 
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for both the Bow and Castle rivers were extracted from the Canadian hydrometric 

data database (HYDAT, 2001). Daily precipitation and mean temperature data 

were extracted from the Canadian Daily Climate Data CD-ROM of Environment 

Canada. Snow information used to calibrate the snowmelt component of the 

hydrologic model was obtained from Alberta Environment (Chacko Abraham, 

Personal communication, 2004). The earliest available snow course record dates 

back to 1937 but most of the stations have data only since the 1960's. 

6.3.2. Seasonal Climate Forecasts 

The Canadian Meteorological Centre produces 0-3 month lead climate forecasts 

for Canada using two NWP models, namely the Global Environmental Multiscale 

model (GEM) and the Canadian Centre for Climate Modeling and Analysis 

(CCCma) second generation atmospheric general circulation model (AGCM2). 

The operational seasonal forecasts for temperature and precipitation are based on 

a 12 member ensemble, with 6 members produced by each model. The model 

climatology comes from a 26 year hindcast (1969-1994) of the seasonal Historical 

Forecast Project (HFP). The HFP hindcast data are provided on a Gaussian grid of 

approximately 3.75° lat x3.750 Ion resolution and are generated four times a year 

for standard seasons only (i.e., DJF, MAM, JJA, SON). 

Our study utilizes more comprehensive hindcast data from the Historical Forecast 

Project 2 (HFP2) obtained from the CCCma website. The HFP2 hindcast data are 

available on a 128x64 Gaussian grid of approximately 2.81° lat x 2.81° Ion 

resolution. The database contains hindcasts produced by four NWP models, with 

each model producing 10-member ensembles of 4-month hindcasts for 12 rolling 

seasons (JFMA, FMAM, MAMJ, etc). The integrations are initialized from the 

NCEP/NCAR reanalysis spaced at 12-hour intervals prior to the forecast period. 

This means that the first member is initialized at 12 hours before the forecast 

period, while the 10th member is initialized at 5 days prior to the forecast period. 

In our study we utilize a 35 year (1969-2003) hindcast from the GEM and 

AGCM3 (third generation CCCma climate model). We opted for AGCM3 instead 
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of the operational AGCM2 because the former contains some improved 

parameterizations (e.g. its land surface scheme) over the latter. Besides being of 

higher resolution than the HFP hindcasts, the HFP2 dataset is suitable for 

continually updating forecasts at the beginning of each month. 

The temperature and precipitation data to be used for hydrologic modeling in our 

ESP system are taken from observations at Lake Louise and Beaver Mines 

stations. Thus, the NWP model grid point nearest to each of the two stations is 

used to forecast the temperature and precipitation at that station. As a first step, 

the following bias-correction and downscaling approach was used to translate the 

temperature and precipitation forecasts from the nearest grid to the station 

location. Let the precipitation and temperature climatologies for month m at 

station S be represented by Ps m and Ts m. The bias-correction, to be applied to 

each NWP model grid separately, proceeds as follows: 

1) For each grid g and month m, the NWP model climatologies for forecasts of 

precipitation (P ) and temperature (T ) are computed from the entire hindcast 

period. 

2) For each ensemble member e, the precipitation forecast at each grid, Pg,m,e is 

expressed as a ratio relative to Pgm, the model precipitation climatology (i.e. it is 

scaled) while the temperature forecast, T&m>e is expressed as an anomaly with 

respect to T , the model temperature climatology (i.e. it is shifted): 

g,m,e g>w,e g>m ^ ' 

Pg,m,e=Pg,m,eIPg,m (6-lb) 

3) These anomalies are translated to monthly forecasts at station S through 

shifting (scaling) the monthly observed temperature (precipitation) climatology at 

the station as: 
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T
w=T

s,m+T'g,m,e (6.2a) 

P =P * P' (6 2b1 
s,m,e s,m g,m,e yv**<-*j 

where Ts m e and P̂  m e are respectively, the monthly average temperature and total 

precipitation forecasts for ensemble member e. In other words, the station 

forecasts are produced by replacing the monthly climatology of the grid by that of 

the station. 

The skill of the station forecasts produced by this simple downscaling approach 

was assessed using the ranked probability skill score (RPSS) in Figure 6.1. As 

described in Chapter 5, RPSS is a skill measure for multi-category probability 

forecasts. The results in Figure 6.1 are based on equiprobable terciles (below 

normal, near normal and above normal categories), with the climatological 

forecast being used as the reference forecast. Station forecasts from both NWP 

models mostly exhibited RPSS less than zero, indicating that for these two 

stations the simple bias-correction and downscaling scheme employed above does 

not lead to improvement over the climatological forecast. Thus, a more elaborate 

downscaling approach using the model output statistics (MOS) technique is 

attempted in the next section to further improve the NWP forecasts before using 

them in a hydrologic prediction environment. 

6.3.3. Downscaling NWP Forecasts Using MOS 

Forecasts from NWP models are generally more skillful for upper air variables 

than for surface weather variables such as precipitation and temperature (e.g. see 

Clark and Hay, 2004) partly because the NWP model grids are too coarse to 

resolve small-scale effects such as topography that are important to local weather 

(Wilks, 2006). In operational weather forecasting, statistical relationships are 

developed between NWP model outputs and observational data to produce 

forecasts for variables and/or locations not explicitly represented by the NWP 

model. One of the most commonly used statistical post-processing techniques is 

the MOS, in which empirical relationships are developed between observational 
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data (i.e. the predictand) and the NWP forecast outputs (i.e. the predictors) 

(Wilks, 2006). Development of MOS requires sufficiently long historical data for 

the predictand, and an archive of NWP forecast outputs for the same period as 

that of the predictand. 

The HFP2 archive contains 35 years of hindcasts for 23 forecast variables for 

each ensemble member. There are three surface variables (near-surface daily 

mean air temperature, precipitation flux and surface temperature) and 4 

atmospheric variables at 5 pressure levels (each of geopotential height, air 

temperature, eastward wind and northward wind at the 200-, 500-, 700-, 850- and 

1000-hPa levels). In this study, we employ MOS to downscale NWP model 

forecasts to a station location from the nearest grid point. The objective is to 

forecast monthly near-surface air temperature and precipitation at the desired 

station using a subset of predictors selected from the pool of 24 variables 

including the 1000-850 hPa thickness. 

Our study employs a two-step procedure to arrive at the forecasts. First, 

preliminary forecasts for each lead time and ensemble member are produced by 

the robust M-regression model described in Chapter 5. To minimize the risk of 

over-fitting, the subset of predictors is automatically selected among the 24 

candidate variables through minimization of the generalized cross-validation 

(GCV) score (see Equation 5.7). 

In cases where the predictor-predictand relationship is weak, the ensemble 

members may be regressed towards the climatology, leading to shrinking of the 

ensemble spread, which is not desirable. To avoid this pitfall, the empirical 

cumulative probabilities of the preliminary forecasts (based on ranks in the 

forecast time series) are matched with empirical cumulative probabilities of the 

observed time series. The preliminary forecast is then replaced with the 

observation with the same cumulative probability. This method also preserves 

both the mean and variance of the distribution. In practice, observations are not 

179 



available for the forecast year and thus the distributions for the observations are 

defined by less than or equal to N-l data points. Hence, a linear interpolation is 

generally required since the cumulative probability of a preliminary forecast lies 

between that of two observations. In cases where the cumulative probabilities of 

the forecasts fall outside the range of the cumulative probabilities of observations, 

the forecasts are estimated with theoretical distributions fitted to observations. In 

this study, the two-parameter gamma distribution is used for precipitation whereas 

the Gaussian distribution is used for temperature. To assess the improvement in 

skill over the bias-corrected NWP forecasts, the RPSS for the MOS-based 

forecasts is computed using the bias-corrected NWP forecasts as the reference 

forecast in Equation 5.16. A perusal of Figure 6.2 reveals that the MOS-based 

forecasts lead to improvement of up to 40% in terms of RPSS. However, there is 

no clear increasing or decreasing trend in skill improvement with respect to lead 

time. 

6.4. Generation of Input Weather Data 

6.4.1. K-NN re-sampling 

Parametric models have traditionally been employed as a convenient method for 

the generation of synthetic weather sequences for assessing risk in water 

resources planning and management. Parametric models require a priori 

assumption of the underlying PDF of the variable to be modeled and as such the 

accuracy of the method depends on how well the sample statistics characterize the 

assumed PDF. Moreover, there is often a need to fit separate models for each 

season and thus the technique needs too many parameters to be specified. The use 

of seasonal models also means that proper representation of the low-frequency 

components of the simulated data becomes a problem. Recently, interest has 

shifted towards nonparametric approaches as a better alternative for synthetic 

weather generation. A nonparametric approach that has found wide application in 

hydrology is the nearest neighbor resampling algorithm in which data are 

simulated by bootstrap resampling from historical observations. The method 
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makes no assumption about the PDF of the variables, can reproduce any arbitrary 

function, and can easily be extended to condition the simulation on exogenous 

variables (e.g. ENSO, PDO, etc) (Yates et al, 2003). 

In the K-NN re-sampling algorithm, first the K-NN of the point (e.g. day, year, 

etc) of interest are selected from historical observations and then one of these 

neighbors is re-sampled (with replacement) via a kernel function with the 

property that the nearest neighbors receive the largest weight while the furthest 

ones receive the least weight. Originally developed by Lall and Sharma (1996) for 

the simulation of monthly streamflow with dependence structure, the K-NN re­

sampling technique has in recent years received wide application in stochastic 

simulation and downscaling of geophysical time series, and forecasting. 

Rajagopalan and Lall (1999) used a multivariate K-NN re-sampling scheme with 

a lag-1 dependence for the simulation of daily weather data for six variables. 

Gangopadhyay et al (2005) used a similar model for downscaling of the National 

Centers for Environmental Prediction (NCEP) medium range forecast model 

outputs for four basins in the USA. Yates et al. (2003) used a modified K-NN 

method to simulate regional daily weather sequences that are suitable for 

assessing a variety of climate change scenarios. Their modification involves an 

algorithm to introduce bias to the re-samples in order to simulate hypothetical 

climate scenarios, e.g. drier-warmer winters, wetter-colder springs and so on. The 

K-NN method is essentially a bootstrap technique and so values not seen in 

historical data can not be simulated. To overcome this limitation, Sharif and Burn 

(2006) improved up on the algorithm of Yates et al. (2003) by introducing a 

perturbation term based on the statistics of the nearest neighbors. 

The use of the K-NN algorithm to date in the forecasting literature has mainly 

focused on generating ensembles from single-value forecasts produced by 

statistical models. Singhrattna et al. (2005) used a K-NN re-sampling scheme to 

generate ensemble forecasts of the Thailand summer monsoon from locally 

weighted polynomial (LWP) regression estimates and their residuals. Their 
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method involves re-sampling one of the residuals of the regression model fit and 

adding it to the LWP estimate to generate an ensemble member. Grantz et al. 

(2005) used the same approach for ensemble streamflow forecasting while Prairie 

et al. (2006) used a lag-1 LWP regression for stochastic simulation of streamflow. 

6.4.2. Selection of Conditioning Vectors 

In regions where the climate is significantly affected by large-scale circulation 

patterns such as ENSO, PDO, etc, the selection of the K-NN should be 

conditioned on relevant climate indices. Previous studies have shown that the 

Pacific Decadal Oscillation (PDO) exerts more influence on the streamflow 

variability of the SSRB than the El Nino-Southern Oscillation (ENSO) and the 

Pacific/North America (PNA) climate anomalies (e.g., Gobena and Gan, 2006). In 

fact, as shown in Chapter 4, partial correlations between the April-September 

runoff at 13 hydrometric stations in the SSRB and the November-March 

Nino3|PDO, were found to be not statistically significant at the 5% level. 

Figure 6.3 shows lagged Spearman rank correlations between the April-

September runoff and rolling 3-month averages of selected climate indices for the 

two selected basins, based on the period 1964-2001. Correlations are shown for 

the year of the runoff (e.g., JFM) and the previous year (e.g., JFM(-l)). The 5% 

and 1% significance levels based on the standard significance test for correlation 

are indicated by the thick and thin horizontal lines, respectively. Correlations with 

PDO are consistently above the 1% significance level during SON(-l) to JFM for 

the Bow River and during SON(-l) to MAM for the Castle River. Thus, the 

average of the PDO index beginning with November and ending with the month 

immediately prior to the forecast issue date (e.g. ND for a January 1, NDJ for 

February 1, ND JF for March 1, and ND JFM for April 1 forecast dates) is used for 

determining neighborhoods. 
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6.4.3. Synthesis of Daily Input Data from MOS-based Forecasts 

Consider a streamflow target season of April to September inclusive. For this 

target, a forecast issued at the beginning of January involves generation of nine 

months of input data for running the hydrologic model. Forecasts of monthly 

temperature and precipitation are available from the MOS procedure for 0-3 

month lead (i.e. for January, February, March and April). Our intention is to 

assimilate these forecasts for the first four months of the hydrologic simulation 

period, and use resampled historical data for the remaining part of the simulation 

period. Suppose that historical daily weather data are available for N years. First, 

the input data for each month of the simulation period (January to September) are 

populated using a block K-NN resampling from K e N neighbors of the forecast 

year, where the PDO index is used as the criterion for selection of neighborhoods. 

Then, the daily data for each of the first four months are scaled so that their 

monthly average temperature (total precipitation) is equal to the MOS-based 

monthly forecast values. In our case, K includes all N-l years excluding the 

forecast year. The complete algorithm is as follows: 

1) One of the K years is resampled with replacement according to the 

following weight function proposed by Lall and Sharma (1996): 

2>' 
/=i 

This function assigns more weight to the closest neighbor and least weight 

to the furthest neighbor. The weights are first converted to cumulative 

probabilities p/. 

?,=£*>„ J = U.K (6-4) 
/=i 

Then a uniform random number u c (0,1) is generated and compared to 

Pj. If u < px, the year corresponding to p\ is selected. Let us refer to the 

selected year as the "base" year. If px <u < pK, the year which minimizes 
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the absolute value of the difference between /?. and u is selected. If 

u> pK, the year corresponding to p& is selected. 

2) Let the hydrologic simulation period start with January of the forecast 

year. The daily data of the January of the selected "base" year are used to 

populate the data for January of the forecast year. 

3) Steps 1 and 2 are executed for each month in the hydrologic simulation 

period (e.g., January to September). 

4) For each of the first four months (e.g., January to April), the populated 

daily temperature (precipitation) values are shifted (scaled) so that the 

monthly average temperature (total precipitation) is equal to the MOS-

based forecast monthly average temperature (total precipitation). For the 

remaining part of the simulation period (e.g., May to September), the daily 

data synthesized in steps 1-3 are adopted without modification. 

Since the MOS-based forecasts contain 10-member ensembles, a single execution 

of steps 1 through 4 produces only 10 streamflow traces, which may be too small 

to obtain a stable PDF. In order to circumvent this problem, steps 1 though 4 were 

repeated 5 times for each member of the climate forecast, thus producing a total 

of 50 streamflow traces from the 10-member climate forecasts. 

6.4.4. Synthesis of Daily Input Data from Historical Observations (Pre-ESP 
Scheme) 

Synthesizing daily data in the Pre-ESP scheme involves applying the K-NN 

algorithm twice - first to select years that are similar to the forecast year in terms 

of the conditioning vector(s), and then to obtain days that are similar to the day of 

interest in terms of the weather variables of interest. A "base" year for a given 

month is selected following the procedure explained in Section 6.4.3. The rest of 
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the algorithm is similar to the one used in Sharif and Burn (2006) and is described 

below: 

1) Let the weather generation start on day i of the forecast year. All days 

of the K e N years within a temporal window of width w and centered on 

day i are potential candidates for the weather of day i. For instance, if / is 1 

January, K is 34 and w is 14, all days within the temporal window of 25 

December to 8 January (i.e. Kx(w + Y)-l = 509 days) are potential 

candidates for the weather of 1 January. 

2) The weather for day i of the forecast year is initialized as the weather of 

the same day of the "base" year. The algorithm proceeds as follows to 

generate the weather for day i+l. First, Mahalanobis distances between the 

initial weather of day i and the remaining (w +1) x K - 1 potential 

candidates are computed using Equation 5.8. The distances are sorted in 

ascending order and the first K' = ^(w + fyxK-l nearest neighbors are 

retained using the heuristic rule proposed by Lall and Sharma (1996). In 

our case, this produces K = 23 days. Then Equations 6.3 and 6.4 are used 

to assign weights and cumulative probabilities to each of the IC neighbors 

and also to select one of these neighbors. Once the neighbor is selected, 

the weather for day i+\ is adopted as the observed weather for the day 

subsequent to the selected neighbor. 

3) The re-sampling procedure described above produces a sequence of 

weather data mostly not seen in the historical record even though the 

values are not new. However, the procedure may also produce an exact 

replica of the weather sequence of the reference year under rare 

circumstances. Another limitation is that values not seen in the historical 

record cannot be simulated. In order to overcome these limitations, the re-

sampled data are perturbed by innovations derived from the statistics of 

the neighborhood as follows (Sharif and Burn, 2006). First, a 
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nonparametric kernel density distribution is fitted to the IC nearest 

neighbors of day i. Then, a random variate is sampled from the kernel 

slice with variance A2SK: as 

VM =IXM+^K''2ZM (6-5) 

where xi+\ is the re-sampled weather for day i+1 (from step 3), A, is the 

reference bandwidth of the Gaussian kernel (Equation 5.14), SJC is the 

sample variance of the K' nearest neighbors of day i, zi+\ is a random 

normal variate and yj+l is the final weather for day z'+l. 

4) Since zt+\ is unbounded, Equation 6.5 may produce a negative (and 

hence unacceptable) value when xt+l lies on or close to the zero boundary. 

Sharma and Lall (1997) propose generating a new z,+i until yM becomes 

positive. However, such a procedure may not reproduce the statistics of 

wet and dry days properly. Sharma and O'Neill (2002) used a "variable 

kernel" to minimize the effect of this problem. The idea is to reduce the 

bandwidth of the kernel depending on the distance of xi+l from the zero 

boundary. Let the threshold probability for the precipitation being less 

than or equal to zero be a. The largest value of X corresponding to 

generating a negative value with a probability of exactly a is given by 

1/7 

K ~xi+i^za^K' where za is the normal variate corresponding to a. 

Following Sharma and O'Neill (2002), we use a = 0.06 (za= -1.55). If the 

value of X is greater than Xa, then Xa is used in Equation 6.5. Note that if 

xM is zero, Aa will also be zero and thus a dry day will be simulated for 

day z'+l. If the precipitation generated for day z'+l is still negative, a new 

value of zi+i is generated until the precipitation becomes positive. 

Steps 1 through 4 are repeated for each day of the forecast year to generate a 

single sequence of input data to the hydrologic model. The algorithm is then 
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reinitialized with the selection of a new "base" year to generate another sequence 

of inputs. In our case, input sequences were generated for 50 members. Since data 

are resampled at daily time steps, the pre-ESP scheme is convenient for 

generating a sufficient number of ensemble members to get a stable PDF even 

from stations with relatively short records. 

6.4.5. The Post-ESP Scheme 

The post-ESP scheme involves some form of post-model adjustment to the flow 

traces produced by the climatic ESP method. In this study, this adjustment was 

effected by using the K-NN resampling algorithm where the final ensemble 

members were assembled by resampling from years closest to the forecast year in 

terms of the PDO index. In order to avoid biases due to differences in ensemble 

size among the three schemes considered in the study, it was necessary to have 

the same number of ensemble traces for each method. Since we only have 35 

years of data (i.e. 34 traces for each forecast year if we use the climatic ESP 

system), resampling with replacement was used to produce 50 ensemble members 

from the 34 traces for each forecast year. This means that some of the flow traces 

appear more than once in the ensemble members. 

6.5. Setup and Calibration of the Hydrologic Model 

In this study, we use the Sacramento Soil Moisture Accounting (SAC-SMA) 

model for simulating daily runoff, mainly because only precipitation and 

temperature data are available and partly because SAC-SMA is one of the most 

studied conceptual rainfall-runoff models (CRR) in the past several decades. 

SAC-SMA is a deterministic, lumped parameter, CRR model developed by 

Burnash et al. (1973). The model requires mean areal precipitation (MAP) and 

potential evapotranspiration (PET) inputs at daily or sub-daily time step. As a 

lumped conceptual model, SAC-SMA only accounts for water fluxes for 

evaporation, runoff and soil moisture in conceptual storages of "free moisture" 

and "tension moisture" types in two soil layers (Gan and Burges, 1990). 
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The soil moisture accounting framework the SAC-SMA model is shown in Figure 

6.4. Rain falling on an impervious area produces direct runoff whereas rain falling 

on pervious areas goes on to fill up the tension water storage in the upper zone 

(UZTWM). Water in excess of the upper zone tension storage requirement fills up 

the upper zone free water storage (UZFWM), which in turn will feed lateral 

inflow (through UZK) or vertical percolation to the lower zone (through PERC 

and REXP). When the rainfall rate is greater than the sum of upper zone free 

water storage capacity, lateral inflow and vertical percolation, excess surface 

runoff is generated from the upper layer. Water reaching the lower zone first 

satisfies the lower zone tension requirement (LZTWM) and then fills up the 

primary (LZFPM) and secondary (LZFSM) free water storage reservoirs. The 

primary and secondary free storage reservoirs generate baseflow, the withdrawal 

rates of which respectively depend on the lower zone recession parameters LZPK 

and LZSK. Evapotranspiration extracts water from both types of storage in the 

upper and lower zones. The parameters controlling the partition of moisture 

between the various conceptual storages and fluxes must be calibrated to 

reproduce observed hydrographs. 

The SMA process described above assumes that precipitation occurs in liquid 

form, which will end up in one of the conceptual storages or fluxes without much 

delay. For snow covered basins, precipitation is stored in the basin in the form of 

snow for an extended period of time. Thus, the input to the SMA process requires 

estimation of liquid precipitation using a snow accumulation and ablation model. 

In this study, the SNOW 17 model is used to handle the snowmelt processes. The 

SNOW17 model is also a lumped conceptual model that uses air temperature as 

an index to estimate energy exchange across the air-snow interface (Anderson, 

1973). For our purpose, SNOW17 was modified to handle snow accumulation and 

ablation in a semi-distributed mode, where the watershed is subdivided into a 

desired number of elevation bands (3 in our case). The primary input data to 

SNOW17 are raw daily precipitation and daily mean temperature. 
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A simple water balance calculation for the Bow River at Banff shows that 

precipitation recorded at both Banff and Lake Louise underestimates the sub-

basin precipitation. Thus, a correction for elevation bias was necessary for proper 

representation of the precipitation distribution across the watershed. A 

comparison of long-term monthly mean precipitation at Banff and Lake Louise 

shows that most of the difference in precipitation between the two stations occurs 

during the cold season (Figure 5.1, inset), suggesting that orographic effects are 

more enhanced during the cold season than during the warm season. However, 

preliminary analysis showed that using precipitation gradients (i.e. of 

precipitation with respect to a change in elevation) derived from these two 

stations (i.e. 1.35mm/m) would lead to unreasonably high precipitation at higher 

elevations. Initial estimates of monthly precipitation gradients used in this study 

were derived from monthly precipitations at Banff (elevation 1397m) and two 

mountain stations (Skoki and Sunshine Village). The later two stations are located 

at elevations above 2000 m but data at these stations are available only for the 

period 1997/98 to 2002. Initial estimates of monthly precipitation gradients for the 

Castle River watershed were derived from precipitation observations at Beaver 

Mines (elevation 1286m), Pincher Creek (elevation 1145m) and Coleman 

(elevation 1341m) stations. A correction value for each elevation band, which is 

established through calibration against SWE, was then applied in the SNOW 17 

model. 

Area-elevation curves derived from a 9-arc seconds digital elevation model 

(DEM) are shown in Figure 6.5. For Bow River, the precipitation and temperature 

observed at Lake Louise and monthly precipitation gradients were used to 

estimate the SNOW17 input data at the hypsometric elevation of each band. 

Likewise, the SNOW17 input data at the hypsometric elevations of the Castle 

River were estimated from observed precipitation and temperature at Beaver 

Mines and the respective monthly precipitation gradients. The area-weighted rain-

plus-melt outputs from the SNOW17 model constitute the MAP input to SAC-

SMA. 
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The daily PET input to SAC-SMA was estimated using the Hamon PET model. 

Oudin et al. (2005) demonstrated that for CRR applications, simple temperature-

and radiation-based models such as the Hamon and Thornthwaite models are 

more efficient than PET models based on the energy balance approach. The 

Hamon model requires daily temperature and length of day (which is a function of 

latitude, slope and aspect) (Hamon, 1961; Oudin et al, 2005). PET was computed 

for each elevation band and then area-weighted to produce the input to SAC-

SMA. 

SAC-SMA was calibrated with daily weather data for 1981-1995 and validated 

for 1966-1980. For Bow River, the coefficient of determination (R ) and the 

Nash-Sutcliffe efficiency (Ef) for the calibration and validation periods are R2 = 

0.944, Ef = 0.889 and R2 = 0.933, Ef = 0.868, respectively. For Castle River, R2 = 

0.898, Ef = 0.801 for the calibration period and R2 = 0.877, Ef = 0.768 for the 

validation period. Figure 6.6 shows the observed and simulated monthly 

hydrographs of the Bow and Castle rivers for the validation period. With 

comparable calibration and validation results which both demonstrate good 

agreements with the observed data (high R2 and Ef), we have the basis to use the 

calibrated SAC-SMA to generate ensemble runoff forecasts, which will be used 

for assessing the forecast skill in Section 6.7. 

6.6. Forecast Verification Criteria 

The forecast performance was evaluated using hindcasts produced by a leave-one-

out cross-validation approach. In this approach, the data for a retrospective 

forecast year are excluded from the database that constitutes the candidate 

weather data for that forecast year. For the April-September target season, 

forecasts begin on January 1 (3-month lead) and are updated on February 1 (2-

month lead), March 1 (1-month lead) and April 1 (0-month lead). For all other 

target seasons, forecasts are issued at 0-month lead. For instance, forecasts for the 
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May-September target season are issued on May 1 whereas forecasts for the June-

September target season are issued on June 1, and so on. 

Four criteria were used to provide a quantitative assessment of the forecast skills, 

namely the correlation coefficient, root mean square error (RJVISE), ranked 

probability skill score (RPSS) and relative operative characteristic (ROC) 

diagram. The RMSE (expressed as a percentage relative to the long term observed 

mean) is obtained as, 

RMSE 
(,. „ M / 2 ^ ( \ N \ 

^(y.-y.r xlOO (6.6) 
y 

where y is the observed flow, y is the mean of the observed flow, and y is the 

median forecast. The RMSE expressed in this form allows direct comparison 

among forecasts issued on different dates as well as across basins. For correlation 

and RMSE analysis, the ensemble forecasts must be reduced to deterministic 

forecasts. In this study, the median of the ensembles is used to compute these skill 

measures. RPSS and ROC are probabilistic skill measures and are suitable for 

assessing ensemble forecast performance at different levels of probability. The 

reader is referred to Chapter 5 for the description of the other skill measures. 

6.7. Discussion of Results 

To evaluate the forecast skills of the MOS-based scheme for seasonal streamflow 

forecasting, 50-member ensembles of hindcasts were produced for each year in 

the period of 1969-2003. These hindcasts are simply referred to as forecasts in 

subsequent presentation. The skills of median and ensemble forecasts based on 

the two NWP models (AGCM3 and GEM) are compared to the pre-ESP and post-

ESP schemes (the later two schemes use no forecast guidance from NWP 

models). The skills of the median forecast as measured by the correlation 

coefficient and RMSE are shown in Figure 6.7. For the Bow River, MOS-based 

median forecasts based on either AGCM3 or GEM showed better correlation than 
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the other schemes in three of the eight forecast issue dates. For the Castle River, 

MOS-based median forecasts based on both AGCM3 and GEM have better 

correlations than the other schemes for all eight forecast issue dates. The 

correlation coefficient shows an increasing trend towards summer, with values 

peaking for forecasts issued on June 1 for Castle River and on July 1 for Bow 

River. On the other hand, the lowest RMSE (as % of the mean) occurs for 

forecasts issued on April 1 for both rivers. 

Also shown in Figure 6.7 are the RPSS for ensemble forecasts. For the Bow 

River, forecasts based on AGCM3 and GEM produced positive RPSS for all issue 

dates, indicating improvement over climatological forecasts. In four of the eight 

issue dates, the RPSS for forecasts based on either AGCM3 or GEM is better than 

the other schemes. For the Castle River, all schemes produced negative RPSS for 

forecasts issued on July 1 and August 1, indicating that these forecasts would be 

worse than one that is based on climatology alone. While forecasts for the 

remaining issue dates offer positive RPSS values, the improvement is marginal, 

with RPSS peaking at 32.5%. Only in two out of the eight forecast issue dates is 

the RPSS for forecasts based on either AGCM3 or GEM better than the other 

schemes. 

Figures 6.8 and 6.9 show ROC diagrams for ensemble forecasts of the Bow and 

Castle rivers. These curves are for "below normal" and "above normal" categories 

for forecasts issued on January 1, April 1 and June 1. The hit rate and false-alarm 

rate used to generate the curves in Figures 6.8 and 6.9 are based on warnings 

issued when the forecast probability of an event occurring in a category exceeds 

10%, 20%, ..., 90%. Warnings are issued at successively increasing cutoff 

probabilities from the top right to the bottom left corner of the curve. Near the top 

right corner of the curve, warnings are issued more frequently and hence the hit 

rate increases but at the expense of increased false-alarm rate. Forecasts with high 

skill have larger hit rates and smaller false-alarm rates and thus the curve bends 
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towards the top left corner. Curves falling below the diagonal line indicate that the 

forecast is worse than a climatological forecast. 

Consider the ROC curves for the below-normal forecast category of the Bow 

River (Figure 6.8). For ensemble forecasts issued on January 1 (Figure 6.8a-d), all 

schemes show marginal skill up to an exceedance probability of 90%. Above this 

probability, the ROC curves for AGCM3 (Figure 6.8a) and Pre-ESP (Figure 6.8c) 

coincide with the no-skill line. For forecasts issued on April 1 (Figure 6.8e-h) and 

June 1 (Figure 6.8i-l), the ROC curves lie above the diagonal line, indicating 

improvement over climatology. For all schemes, there is a marked increase in the 

skill of the below-normal forecast category between January 1 and April 1 but the 

change in skill between April 1 and June 1 is minimal. For the above-normal 

forecast category, the ROC curves for all three issue dates lie above the diagonal 

line (Figure 6.8a-l). Above-normal flows appear to be forecast more successfully 

than below-normal flows, particularly for the January 1 (Figure 6.8a-d) and June 1 

(Figure 6.8i-l) issue dates. 

For the Castle River, the ROC curves for below-normal forecasts issued on 

January 1 (Figure 6.9a-d) exhibit marginal skill up to an exceedance probability 

of 40%. Beyond this threshold, forecasts based on the Pre-ESP (Figure 6.9c) show 

no skill at all whereas GEM (Figure 6.9b) looses skill for exceedance probabilities 

above 60%. For below-normal forecasts issued on April 1 (Figure 6.9e-h), GEM 

has the best performance with a hit rate of 27% at an exceedance probability of 

90% (Figure 6.9f). At the higher end of the warning threshold, forecasts issued on 

June 1 (Figure 6.91-1) are only marginally better than those issued on April 1. For 

the above-normal forecast category, forecasts issued on January 1 (Figure 6.9a-d) 

possess marginal skill across all exceedance probabilities but they also exhibit a 

much more variable skill among the various schemes. Compared to below-normal 

forecasts, above-normal forecasts issued on April 1 (Figure 6.9e-h) are much 

more skillful at higher warning thresholds, with a hit rate greater than 40% at an 

exceedance probability of 90%. Above-normal forecasts issued on June 1 (Figure 
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6.9i-l) exhibit a similar characteristic to those issued on April 1 for higher 

exceedance probabilities. 

Figures 6.10 and 6.11 show plots of the hit rates and false-alarm rates against 

forecast issue dates at four exceedance probabilities (10%, 30%, 70% and 90%) 

for the below-normal and above-normal forecasts of the Bow River. These plots 

are helpful to track the evolution of the ensemble forecast skill for extreme flows 

as a function of forecast season and the forecaster's confidence. For below-normal 

forecasts, the hit rates at the 10% warning threshold remain above 70% for all 

forecast issue dates (Figure 6.10a). However, as the forecaster's confidence 

increases (i.e. as the warning threshold is increased), a reduction in the hit rate 

across the forecast period is observed. This is not surprising because as the 

forecaster's confidence increases, beating the climatology becomes more and 

more difficult. In addition, a trend emerges where forecasts issued at later dates 

become more accurate than those issued at earlier dates (Figure 6.10b-d). At 

higher warning thresholds (e.g. Figure 6.10d), the hit rates for below-normal 

forecasts peak out in the summer months. The hit rates for above-normal forecasts 

generally show similar characteristics to that of below-normal forecasts (Figure 

6.10e-h). 

For below-normal forecasts of the Bow River, the false-alarm rates at the 10% 

warning threshold show a minimum between April 1 and June 1 forecasts (Figure 

6.11a). As the warning threshold is increased, the forecast with the minimum 

false-alarm rate moves more and more towards forecasts issued in the spring 

(Figure 6.11b-d). For above-normal forecasts, the minimum false-alarm rate 

consistently occurred for forecasts issued in the summer (Figure 6.11e-h). For 

above-normal forecasts, the peaking of hit rate in the summer, combined with a 

minimum false-alarm rate leads to the high ROC skill for the June 1 forecasts as 

shown in Figure 6.8f. As far as the issuance of false alarms is concerned, a 

comparison of Figure 6.11a-d and Figure 6.11e-h indicates that all schemes 

exhibit more skill for above-normal forecasts than for below-normal forecasts 
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across the range of exceedance probabilities considered. A diagnosis of the model 

bias for each forecast category revealed that the hydrologic model underestimated 

low flows much more than it overestimated high flows for this watershed. 

Figures 6.12 and 6.13 show the evolution of hit rates and false-alarm rates at the 

10%, 30%, 70% and 90% exceedance probabilities for Castle River forecasts. For 

below-normal forecasts issued on or before June 1, the hit rates change from a 

slightly negative trend for lower warning thresholds (e.g. Figure 6.12a) to a 

positive trend for higher warning thresholds (e.g. Figure 6.12c). In the case of 

above normal forecasts, the hit rates exhibit a local minimum for forecasts issued 

on May 1 at lower warning thresholds (Figure 6.12e-f). At the higher end of the 

warning threshold, hit rates show an increasing trend as the forecast season 

progresses (Figure 6.12h). The higher hit rates for the July 1 and August 1 

forecasts are accompanied by higher false-alarm rates (Figure 6.13e-h), indicating 

that the forecast issues too many false warnings of wet conditions. This is a 

consequence of a wet bias in the hydrologic model for the late target seasons. 

The general increase in forecast skill towards the summer months and its tapering 

off in July and August could be explained by the relative contributions of initial 

conditions and meteorological forecasts to the forecast uncertainty. At the 

beginning of the season, the future meteorology is the major source of uncertainty 

(Franz et ah, 2003 and references therein). As the season progresses, the 

contribution of meteorological uncertainty decreases because more and more 

snow gets accumulated in the basin, leading to more accurate specification of 

initial conditions. Since snowmelt runoff constitutes the major portion of the 

streamflow during the spring and early summer target seasons, the forecasts 

issued between April 1 and June 1 show better skills than the others. As the 

summer progresses, the contribution of snowmelt to the actual streamflow 

progressively decreases, and thus the accuracy of individual rain forecasts 

becomes the major source of uncertainty. The absence of the dampening effect of 

snowmelt runoff on individual rain events would lead to ensemble members with 
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too much dispersion, thus resulting in reduced forecast skills for late forecast 

dates (Franz et ah, 2003). 

While the use of ensemble of meteorological inputs to the hydrologic model is 

meant to mimic uncertainties in the future meteorology, hydrologic modeling 

system uncertainties (due to initial conditions, calibration data, model structure) 

are not resolved by the ESP system. Under perfect model assumptions (i.e., a 

perfect model structure and error-free calibration data), a grasp on the "potential" 

forecast skill of the ESP system could be obtained by evaluating the forecast skill 

with respect to the model simulated streamflow instead of the historical flow. The 

RPSS measure based on this approach is shown in Figure 6.14. Averaged over all 

eight forecast issue dates, the actual RPSS (Figure 6.7) is about 50% and 25% of 

the "potential" RPSS for the Bow and Castle rivers, respectively. 

Given that the "potential" RPSS is, at the current level of meteorological forecast 

skill, generally higher than the actual RPSS, the poor performance of the ESP 

forecasting system is attributed to uncertainty in hydrologic modeling. In our 

case, the major part of this uncertainty could be attributed to model inputs, 

particularly problems with elevation-adjusted input weather data from foothill 

stations to reflect the actual spatio-temporal distributions of weather variables in 

the mountains from where the bulk of the streamflow originates. 

Another input error of minor importance may be the contribution of glacier melt, 

which has not been taken into account in this study. For the Bow River at Banff, 

glacier melt contributions make up only about 1.8% of the long term annual mean 

flow (Hopkinson and Young, 1998). However, glacier contributions may be 

considerably more than the long-term average during low flow years as well as 

late in the summer. For instance, Hopkinson and Young (1998) noted that the 

glacier contribution during the low flow year of 1970 increased to 13%, and to 

around 56% for August of the same year. The Castle River watershed has no 

glacier cover. As SAC-SMA is a simplified conceptual representation of nature, 
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limitations in the model structure also contribute to uncertainties in the forecasts. 

Therefore, further improvement in the actual ESP forecast skill requires 

improvements in local-scale precipitation and temperature forecast skills, better 

spatial distribution of inputs, and accurate streamflow simulation. 

6.8. Skill Comparison with Statistical Forecasts 

In Chapter 5, ensemble forecasts produced by the robust M-regression model and 

K-NN resampling algorithm were presented for the two sub-basins. The subsets of 

predictors used in the M-regression model were selected among a pool of large-

scale climate indices, SWE, antecedent precipitation and temperature using the 

GCV criterion explained in Chapter 5. Here, the skills of the ESP median and 

ensemble forecasts are compared to those produced by the statistical model. For 

each forecast issue date, the ESP scheme with the best skill (among AGCM3, 

GEM, Pre-ESP and Post-ESP) was selected for the comparison. 

For forecasts issued between January and August, the correlations for median 

forecasts, and RPSS for ensemble forecasts for both sub-basins are compared in 

Figure 6.15. For the Bow River, median forecasts by the statistical model show 

better correlations for forecasts issued between January and June whereas ESP 

median forecasts are marginally better for forecasts issued after June (Figure 

6.15a). That the difference in correlation decreases with forecast issue date 

suggests that the median forecasts by the statistical model are more reliable than 

any of the ESP median forecasts at long lead times. For the Castle River, only the 

ESP median forecast issued on June 1 has marginally better correlation than 

statistical median forecasts (Figure 6.15b). In terms or RPSS, ESP ensemble 

forecasts for the Bow River are also less skillful than statistical ensemble 

forecasts for the entire forecasting season (Figure 6.15c). Differences in RPSS 

between the two methods are greatest for forecasts issued before June 1. While 

statistical ensemble forecasts for the Castle River are also more skillful than ESP 

197 



ensemble forecasts (Figure 6.15d), the difference in skill is more modest 

compared to that of the Bow River. 

6.9. Summary and Conclusions 

A framework for incorporating 0-3 month lead temperature and precipitation 

forecasts from two Canadian NWP models into the ESP system was presented. 

The framework involves improving the NWP forecasts by the MOS technique and 

then modifying input weather data generated by a block K-NN resampling from 

historical observations so as to reproduce the magnitudes of monthly forecasts of 

the desired variable. The technique was applied to two snowmelt dominated 

headwater basins in the SSRB of southern Alberta. Seasonal ensemble streamflow 

forecasts based on the two NWP models (AGCM3 and GEM) were compared to 

forecasts produced by pre-ESP and post-ESP K-NN resampling schemes. 

Forecast performance was assessed using hindcasts produced by a conceptual 

rainfall-runoff model for a 3 5-year period. Forecasts were evaluated in both 

deterministic and probabilistic settings. The median forecast was selected as the 

deterministic ESP forecast and its performance was evaluated in terms of 

correlation coefficient and RMSE. For the Bow River, the correlations of the 

median forecasts based on AGCM3 and GEM were generally comparable to those 

produced by the pre-ESP and post-ESP resampling schemes. For Castle River, 

both AGCM3 and GEM produced better correlations than the pre-ESP and post-

ESP schemes. In terms of overall ensemble forecast skill, all schemes gave 

modest improvement over climatology as measured by RPSS. 

The streamflow forecast skills reported in this study are lower than the potential 

skill that could be achieved with the same meteorological input data, primarily 

due to uncertainties in hydrologic modeling. One possible source of hydrologic 

uncertainty is that the calibration data for the hydrologic model were based on 

single station observations located close to the watershed outlet. We have 
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attempted to take into account elevation effects through gradients estimated from 

station observations but the gradients themselves are not expected to be free of 

elevation bias as they were also derived from stations located at relatively lower 

elevations. This is particularly the case for the Castle River, where all stations 

used to estimate precipitation gradients with elevation were located at < 1400m 

while the basin elevation ranges from 1200 to 2500m. 

Estimates of the temperature distribution should be fairly accurate because 

temperature varies with elevation at a more or less uniform rate (e.g. 

environmental lapse rate). On the other hand, the actual precipitation distribution 

(particularly in higher elevation parts of the watersheds) could be highly variable 

due to the complex topography and orographic effects. The forecasting system 

performed slightly better for the Bow River, where the two mountain stations, 

albeit with short data records, provide some information about the precipitation 

fields in the mountains. Provided that data issues are properly resolved, future 

research should evaluate the methods presented in this study at additional 

watersheds of less complex topography in the SSRB, and watersheds of different 

climatic regimes. 

In addition to input errors, CRR models like SAC-SMA are expected to incur 

some degree of uncertainty in watersheds of complex topography. For instance, 

snowmelt computation by the degree-day approach could contribute some 

uncertainties given that air temperature doesn't quite accurately represent the 

energy budget associated with snowmelt. Even though a semi-distributed 

approach was adapted in computing snowmelt, using lumped parameters for the 

soil moisture accounting routine also contributes to model uncertainties. While 

moving from conceptual to more physically based approach, from lumped to 

semi-distributed or fully distributed approach may improve hydrologic 

simulation, it could also mean requiring more input data to drive the hydrologic 

model. Therefore a pertinent question is how to strike a balance between input 

data requirement and model structure. 
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The MOS-based scheme involves downscaling and disaggregating NWP forecasts 

to produce suitable data for ESP. Similarly, the Pre-ESP scheme has a 

considerable computational demand because it involves random resampling of 

weather data for each day during the forecast period. For instance, for a forecast 

to be issued on January 1, the simulation period contains 273 days (1 Jan - 30 

Sep). The random resampling and all associated steps (see Section 6.3) are carried 

out 273 times for a single ensemble member, as compared to a single time for the 

Post-ESP scheme. 

Generally speaking, the increased computational burdens of both the MOS-based 

and Pre-ESP schemes do not appear to produce a pronounced improvement in 

forecast skills over the Post-ESP scheme. However, the decision about which of 

the three schemes to implement should also take into account the potential for 

further improvement of the forecast skill. While all three schemes can benefit 

from more accurate streamflow simulation, only the MOS-based scheme can gain 

additional improvement from more accurate local temperature and precipitation 

forecasts. Future work should also consider using an ensemble of hydrologic 

models so as to reduce the dependence of the results on specific model structures. 
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Figure 6.1. RPSS for bias-corrected NWP (AGCM3 and GEM) monthly 
temperature and precipitation forecasts at Lake Louise and Beaver 
Mines stations. The reference forecast is the climatology. 
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Figure 6.2. RPSS for MOS-based monthly temperature and precipitation forecasts 
at Lake Louise and Beaver Mines stations based on AGCM3 (a to d) 
and GEM (e to h). The reference forecast is the bias-corrected NWP 
forecast. 
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Figure 6.3. Spearman rank correlations between April-September average stream flow 
and four climate indices. Averages of 3-month moving windows starting with 
May-June-July of the previous year (MJJ(-l)) and ending with February-
March-April (FMA) of the runoff year were used for the climate indices. 
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Figure 6.5. Area-elevation curves for the Bow and Castle rivers. The open circles on the 
curves indicate the location of the meteorological stations used to derive 
input weather data. 
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Figure 6.6. Observed and modeled monthly hydrographs for the validation period 
(1966-1980). (a) Bow River (05BB001). (b) Castle River (05AA022). 
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Figure 6.7. Correlation coefficient, RMSE and RPSS skill measures for forecasts of the 
Bow and Castle rivers 
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Figure 6.8. Bow River ROC diagrams for ensemble forecasts issued on 1-Jan, 1-Apr and 
1-Jun for below-normal and above-normal flows based on AGCM3, GEM, 
Pre-ESP, and Post-ESP. The diagonal line indicates the no-skill line. The 
open markers on the curves show the 10%, 50% and 90% warning thresholds, 
which are also circled for above-normal forecasts. 
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Figure 6.8. Continued 
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Figure 6.9. Castle River ROC diagrams for ensemble forecasts issued on 1-Jan, 1-Apr 
and 1-Jun for below-normal and above-normal flows based on AGCM3, 
GEM, Pre-ESP, and Post-ESP. The diagonal line indicates the no-skill line. 
The open markers on the curves show the 10%, 50% and 90% warning 
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211 



Pre-ESP: Castle River (1-Apr) Post-ESP: Castle River (1-Apr) 

- A — Below-normal 

-H- - Above-nromal 

Random 

0.4 0.6 
False-alarm rate 

£ 0.6 

ZmvJt 
1 0 4 

Below-normal 

Above-nromal 

Random 

0.4 0.6 
False-alarm rate 

AGCM3: Castle River (1-Jun) GEM: Castle River (1-Jun) 
•;io%'. 

—A— Below-normal 
- -»- - Above-nromal 

Random 

0.4 0.6 
False-alarm rate 

0.4 0.6 
False-alarm rate 

0.8 

.SB 0.6 

1 0 . 4 

0.2 

Pre-ESP: Castle River (1-Jun) 

C"i6% 

f J t ^ ° % 

k|T5o% / 
/ / s^ 

-90% / 

1/^ 

___ ^ — —• —' " ^ — — * ^ \ / r 

s^ k 

- -m- - Above-nromal 

Random 

0.2 0.4 0.6 
False-alarm rate 

0.8 

•8 0.6,-dn 

Post-ESP^ Castle River (1-Jun) 
Cl2% 

Below-normal 

•*• - Above-nromal 

Random 

0.4 0.6 
False-alarm rate 

Figure 6.9. Continued 
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Figure 6.10. Temporal variation of hit rates for below-normal (a to d) and above-normal 
(e to h) forecasts of the Bow River at exceedance probabilities of 10%, 30%, 
70% and 90%. 

213 



Bow River (Below normal, p > 10%) Bow River (Above normal, p > 10%) 

1 

0.8 

0.6 

Z °-4 

0.2 

0 

-AGCM3 - » - - G E M • -Pre-ESP -Post-ESP 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Bow River (Below normal, p > 30%) 

& 

1 

0.8 

| 0.6 

1 °-4 
in 

S. 0.2 

0 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Bow River (Below normal, p > 70%) 

^^^sH^ 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Bow River (Below normal, p > 90%) 

1 

a 0.8 

1 
E 0.6 

— 
T 0 .4 <u 
tn 

s. 0.2-1 

0 

-AGCM3 • GEM - Pre-ESP -Post-ESP 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

o, 0.8 -
j8 
E 0.6 -

! 0-4-
m 

u. 0.2 -

0 -

Bow River (Above normal, p > 30%) 

x T '^»-^5«s;^fe^^ ^ — S - ^ ^ ^ ^ ^ f b ^ 

f 

M 
^-* 

1 

o> 0.8 

E 0.6 -

I 04 

(A 

5. 0.2 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Bow River (Above normal, p > 70%) 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Bow River (Above normal, p > 90%) 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 

Forecast Issue Date 

Figure 6.11. Temporal variation of false-alarm rates for below-normal (a to d) and 
above-normal (e to h) forecasts of the Bow River at exceedance probabilities 
of 10%, 30%, 70% and 90%. 
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Figure 6.12. Same as Figure 6.10 but for Castle River. 
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Figure 6.13. Same as Figure 6.11 but for Castle River. 
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Figure 6.14. RPSS of ESP forecasts for an error-free hydrologic model. In the RPSS 
computation, the SAC-SMA simulated flow was used instead of the observed 
flow. 
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Figure 6.15. Skills comparison of ESP and statistical model forecasts. The statistical 
forecasts are produced by a robust regression model and K-NN resampling. 
'Best ESP' stands for the ESP scheme (among AGCM3, GEM, Pre-ESP and 
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Chapter 7 Summary, Conclusions and Recommendations 

7.1. Summary and Conclusions 

The theme of this research is the analysis of the role of large scale climate 

anomalies on Western Canadian hydroclimatic variability and its applicability for 

seasonal streamflow forecasting. The findings of the research are summarized in 

the following paragraphs. 

In Chapter 2, wavelet and teleconnection analysis was performed on Western 

Canadian seasonal precipitation time series obtained from 21 stations with long 

historical record. It was found that statistically significant interannual oscillations 

in seasonal precipitation occurred haphazardly while interdecadal fluctuations, 

albeit detected only in a few stations, were found to be more consistent than 

interannual fluctuations. In order to facilitate regional analysis, Western Canada 

was qualitatively zoned into three regions based on the similarities in the 

precipitation wavelet power at interannual scales. These three zones - referred to 

as western, central and eastern regions - were used for teleconnection analysis 

with several large-scale oceanic/atmospheric circulation patterns (via climate 

indices). In particular, the precipitation signal for each of the three regions was 

represented by the leading principal components (PCI) of the precipitation data 

from each of the three regions. 

Climate anomalies considered for the teleconnection analysis are the El 

Nino/Southern Oscillation (ENSO), Pacific/North America pattern (PNA), West 

Pacific pattern (WP), East Pacific pattern (EP), Central North Pacific (CNP) SLP 

index, and Pacific Decadal Oscillation (PDO). Teleconnections between regional 

precipitation signals and large-scale climate anomalies were investigated by using 

several statistical techniques including wavelet coherence and phase difference, 

wavelet filtering, compositing and correlation analysis. At interannual scales, the 

wavelet coherence and phase difference between all of the climate indices and the 

precipitation signal for each region was found to be highly inconsistent in both 
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time and frequency. In addition, Pearson's correlations between the PC's of band­

pass filtered precipitation and climate indices were generally found to be weak, 

indicating that the strength of teleconnections changes along both time and 

frequency dimensions. These observed inconsistencies corroborate the haphazard 

nature of interannual oscillations in the precipitation data. The consistency and 

strength of the relationships between regional precipitation and the PDO and CNP 

indices was much better at interdecadal scales. 

Given that teleconnection effects are relatively stronger during boreal winter 

(Horel and Wallace, 1981; Shabbar et al., 1997), composites of raw winter 

precipitation were analyzed for each of the six climate anomalies at all 21 

stations. Considering the study area as a whole, it was found that ENSO exhibits 

relatively stronger influence on winter precipitation than the remaining climate 

anomalies. It was also observed that in terms of the sign of the anomaly, 

precipitation responses to opposite phases of ENSO, PNA and PDO are relatively 

more consistent across the study area than responses to opposite phases of WP, 

EP and CNP. The fact that the detected teleconnections could occur at interannual 

or inter-decadal levels (depending on which anomaly index is used), and their 

changing strength in time, frequency and space makes their applications for 

seasonal precipitation prediction by statistical techniques unreliable. Spatial 

variations in the multifractal properties of precipitation across the region were 

reported by Gan et al. (2007). 

In Chapter 3, teleconnections between Western Canadian streamflow anomalies 

and ENSO, PNA and PDO were investigated using a suite of statistical tools on 

42 years of monthly streamflow data (Gobena and Gan, 2006). Five coherent 

regions were identified based on cluster analysis of streamflow anomaly time 

series constructed from 8 El Nino and 8 La Nina years. Periods of significant 

streamflow response to El Nino and La Nina events exhibit spatial variations. The 

periods of significant response for rivers in the Prairies and the Greater 

Vancouver region correspond with spring snowmelt. On the other hand, the 

219 



response period for rivers in the BC interior and Rocky Mountains predominantly 

occurs during late spring to summer months due to the fact that the dominant 

runoff regime for basins in those regions is mountain snowmelt/glacier melt and 

summer rain. Basins in Northern BC do not show significant response to ENSO. 

Streamflow Index Time Series, constructed by spatial averaging of the streamflow 

anomalies for each region, were used to study the consistency of streamflow 

response to El Nino and La Nina events. It was found that that while El Nino (La 

Nina) events are generally associated with negative (positive) streamflow 

anomalies, there were cases when opposite conditions were observed. 

The role of extratropical Pacific interannual (PNA and WP) and interdecadal 

(PDO) variability modes as possible sources of interference in the ENSO-

streamflow relationship was studied by stratifying ENSO events according to 

different phases of PNA and PDO. It was found that high PNA years conditioned 

on non-El Nino years could be associated with streamflow anomalies that are 

similar in magnitude and duration to streamflow anomalies that are observed 

during El Nino years. On the other hand, streamflow anomalies during Low PNA 

years, regardless of the La Nina state, appear to be much more suppressed than 

those observed during La Nina years. Composite analysis of the 300-mbar wind 

flow patterns over Western Canada provided evidence for the existence of 

favorable conditions that support the findings of this study. It was also found that 

the strength of ENSO-related streamflow response varied as a function of the 

PDO phase, with the relationship being synergetic when the two climate 

anomalies are in phase (i.e. El Nino/Warm PDO and La Nina/Cool PDO) and 

destructive when they are out of phase (i.e. El Nino/Cool PDO and La 

Nina/Warm PDO). 

The current generations of climate models are capable of producing skillful 

forecasts of the SST in the equatorial Pacific where ENSO originates (Barnston et 

ah, 1994; Latif et ah, 1994). Although ENSO may provide useful long-range 

forecast skills for streamflow anomalies observed during the major flow season in 
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Western Canada, possible non-linear ENSO-streamflow relationships resulting 

from interferences by PNA and PDO will likely affect the skill of the forecast. 

Partial correlations computed at different lead times indicate that ENSO indices 

provide better predictability for basins that are dominated by spring snowmelt 

runoff regimes while the winter season PDO provides better predictability for 

basins originating in the Rocky Mountains, whose flow regimes are dominated by 

summer snowmelt/glacier melt. Since current climate prediction models do not 

offer skillful long-range predictions for PNA and PDO as they do for ENSO, the 

use of PNA and PDO for prediction purposes hinges on the time lag between 

atmospheric circulation and streamflow response due to snow accumulation. 

In Chapter 4, wavelet analysis of streamflow and precipitation variability and 

teleconnectivity was performed for the SSRB using 89 years of streamflow and 

precipitation data. Besides having a sufficiently long dataset to resolve 

interdecadal oscillations, SSRB is of key interest to Alberta primarily because it 

provides over 57% of the water allocated in the province. The results of this 

analysis are consistent with those reported in the previous two chapters. 

Significant streamflow variance was observed at interdecadal scales with periods 

of 19-22, 41^42 and 62 years whereas significant variance in the 2-8-year scale 

was observed at intervals of 20-25 years. The intermittency in the interannual 

streamflow variance leads to inconsistent relationships with ENSO indices as 

observed from changes in the wavelet phase difference with time. On the other 

hand, PDO and streamflow exhibited consistently strong covariance with a rather 

stable phase difference of 180° for scales greater than about 20 years. 

Corroborating the results reported earlier for basins originating in the Rocky 

Mountains, the winter season PDO, not ENSO, provides the primary predictive 

information for the major streamflow season (April-September) in the SSRB. This 

is partly because mountain snow accumulation, which is a significant source of 

basin runoff during the major flow season, is more strongly correlated to PDO 

than to ENSO. 
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In Chapters 5 and 6, two ensemble seasonal streamflow forecasting models that 

incorporate large-scale climate information were developed and applied to two 

watersheds in the SSRB. The first used a statistical approach (Chapter 5), where 

single-value forecasts generated by a robust M-regression model are perturbed by 

ordinates resampled from a Gaussian kernel density function fitted to the K-NN 

residuals of the M-regression model. The method produces skillful forecasts of 

the April to September streamflow from as early as December prior to the runoff 

season. Given that forecasts are currently issued beginning in February, the 

inclusion of large-scale climate information enables us to extend the current 

forecast lead time by up to 2 months. The ultimate objective of a forecasting 

system is to help downstream users in making optimum decisions that will 

maximize their benefits. In terms of potential economic value, ensemble forecasts 

were found to provide better positive return for a wide range of hypothetical 

downstream users (i.e. users with a wide range of cost-loss ratios) as compared to 

single-value forecasts. 

In Chapter 6, a technique for incorporating 0-3 month lead temperature and 

precipitation forecasts from two Canadian NWP models into the ESP system was 

presented. The skills of bias-corrected NWP forecasts, downscaled to Lake Louise 

and Beaver Mines stations, were generally found to be worse than the 

climatology. Therefore, the MOS technique was used to improve the NWP model 

forecasts before using them in a predictive environment. The robust M-regression 

model was used to forecast monthly precipitation and temperature, where the 

GCV criterion was used to select the subsets of predictors from a pool of forecasts 

of surface and atmospheric variables included in the HFP2 archive. The MOS 

forecasts were then replaced by observations having the same quantile values as 

the forecasts so as to preserve the ensemble spread, and the mean and variance of 

the distribution. The MOS-based forecasts showed up to 40% improvement in 

RPSS over the bias-corrected NWP forecasts. Since our hydrologic simulations in 

the ESP system are performed at a daily time step, a K-NN resampling algorithm 

was used to temporally disaggregate the sequence of MOS-based monthly 
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temperature and precipitation forecasts to daily time steps for the first four months 

in the hydrologic simulation period. 

In addition to the MOS-based scheme, two other schemes (Pre-ESP and Post-

ESP) were considered where the weather data used to force the hydrologic model 

are entirely generated from historical observations (i.e. without any forecast 

guidance from NWP models). In the Pre-ESP scheme, ensemble members were 

obtained by forcing the hydrologic model with daily weather sequences generated 

by K-NN resampling from historical data. 

Unlike the climatic ESP method, the number of ensemble members that can be 

generated by both the MOS and Pre-ESP schemes is not constrained by the length 

of historical records. Thus, these schemes are suitable for basins with relatively 

short historical records as well. In the Post-ESP scheme, ensemble members were 

obtained by K-NN resampling from the climatic ESP traces. Forecast skills 

computed from a 35-year hindcast indicate that the three schemes generally 

exhibit comparable performance. In spite of the improved temperature and 

precipitation forecasts with respect to bias-corrected NWP forecasts, in general 

the MOS-based scheme did not lead to noticeable improvement in forecast skill 

over the Pre-ESP and Post-ESP schemes. The only exception where the MOS-

based scheme outperformed the other schemes is in the case of median forecasts 

for the Castle River. 

We found that all three ESP schemes improved on climatological forecasts for 

most of the forecast issue dates, which is encouraging. However, compared to 

ensemble forecasts produced by the robust regression model, our ESP forecasts 

were found to be less skillful, both for median and ensemble forecasts. The fact 

that higher skills could be achieved under perfect model assumptions suggests 

that the relatively poor performance of ESP forecasts can partly be attributed to 

hydrologic modeling errors. Thus, any further improvement in the accuracy of 

local precipitation and temperature forecasts should be accompanied by a more 
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comprehensive modeling of hydrologic processes if improvement in ESP forecast 

skill is to be pursued. 

Both the regression and ESP methods require long historical observations of 

hydroclimatic data for model calibration and forecast verification. The regression 

model requires data to be available at monthly or coarser time steps. On the other 

hand, the ESP approach involves running a hydrologic model, which is usually 

executed at much finer time steps (e.g. daily frequency in our case). While the 

latter has an added complexity of understanding the basin rainfall-runoff 

dynamics, it has the advantage that streamflow forecasts can easily be partitioned 

into monthly or other desired time scales whenever such is required for 

operational purposes. When seasonal volume forecasts are the quantity of interest, 

ensemble forecasts produced by the more straightforward regression models can 

be used without loss of accuracy. 

7.2. Suggestions for Future Work 

Even though the systematic analysis carried out in this work has added substantial 

new insights to existing knowledge on Western Canadian hydroclimatic 

variability, there still remain a number of issues that require further investigation. 

1) Our study addressed only the relationships between the hydroclimate and large-

scale climate anomalies without regard to the influence of local factors. There is a 

need to investigate possible effects of Western Canada's complex topographic 

features on the regional and seasonal variations observed in hydrologic responses 

to ENSO and other climatic anomalies. 

2) An investigation into the effect of other climatic anomalies (e.g. the Arctic 

oscillation and the North Atlantic oscillation) on regional climate variability will 

be helpful to provide a complete picture of climate systems at play in Western 

Canada. 
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3) Regarding statistical seasonal streamflow forecasting, a comparison of the 

robust regression model with other statistical forecasting methods such as local 

regression and kernel based approaches is warranted. A multi-model ensemble 

strategy could be pursued so as to exploit the strength of each modeling approach. 

4) Further improvement in the accuracy of local temperature and precipitation 

forecasts and hydrologic simulation are necessary to improve ESP forecasts. The 

downscaling method used to improve the raw NWP forecasts should also consider 

other derived variables such as specific humidity and vertically integrated 

moisture flux as candidate predictors in the MOS technique. In addition, use of 

multiple hydrologic models in a multi-ensemble framework is recommended so as 

to reduce the effect of model structure uncertainty on the ESP forecast skill. 

5) Before going operational with the seasonal streamflow forecast models 

proposed in this study, there is a need to evaluate the techniques in additional 

watersheds within the SSRB and other basins with different climatic regimes such 

as the North Saskatchewan and Athabasca river basins. 
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Appendix A Statistical Methods 

This appendix contains brief mathematical descriptions of some of the standard 

statistical methods used for diagnostic analysis in the study. 

Binomial Distribution 

Consider a random variable X that can take on one of two mutually exclusive and 

continuously exhaustive (MECE) outcomes in a success/failure experiment. The 

probability of realizing x success outcomes from a collection of N independent 

trials is given by (Wilks, 1995) 

Pr(X = x) = 
v x j 

px(l-pY, x = 0,l,2,....N (A-1) 

where p is the probability of occurrence of the event of interest (success) on any 

one of the N independent trials. For cases where 0 < p ± [p(l - p) I Nf2 < 1, i.e. 

N is sufficiently large, the random variable X can be approximately characterized 

by a Gaussian distribution with 

ju = Np (A.2a) 

cr = [Np(\-p)Y2 (A.2b) 

Equation A.2 can be used to estimate the confidence interval around the observed 

estimate of the binomial x. The (I-a) confidence interval around x is given by 

V±azx_a (A.3) 

Mann-Whitney Test 

Given two independent data samples, the non-parametric Mann-Whitney test uses 

the rank of the data to test for possible difference in location (e.g. mean) of the 

two samples (Wilks, 1995). Unlike the traditional t test, the Mann-Whitney test 

does not make any assumption about the underlying distribution of the data and is 
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resistant to outliers. The null hypothesis is that the two data samples are drawn 

from the same distribution and the labeling of the individual values as belonging 

to one or the other sample is arbitrary. In order to compute the test statistic, the 

two samples are pooled together under this null hypothesis and ranked. Then the 

sums of the ranks held by the original data samples 1 and 2 are calculated 

separately as S\ and S2. The Mann-Whitney {/-statistic is computed from 

U, =S,-n,(n. + l ) /2 1 l ' ' (A.4) 
U2 = S2 - n2 (n2 +1) / 2 

For moderately large values of n\ and n^, the null distribution of the U statistic is 

approximately Gaussian and can be estimated from 

Z= . U - n ^ 1 2
 (A.5) 

^]nln2(nl +n2 +1)/12 

where, for a two-sided test, U is taken as the minimum of U\ and U2 (Wilks, 

1995). 

Principal Component Analysis (PCA) 
PCA is an orthogonal transformation method for reducing multidimensional data 

sets into lower dimensions through linear combinations of the original variables 

(Wilks, 1995). Let X be an N*p matrix of mean-centered data where N is the 

number of observations and p is the number of variables. The / h principal 

component of the data is obtained as the projection of the data vector onto they 

eigenvector e, of the covariance matrix £, 

Y
J=

eT,x=1Le
lJ

x,> j=i>2 * ( A - ? ) 

where k < p. The transformation is subjected to two conditions: (1) the 

eigenvectors are orthogonal to one another and hence the principal components 

are mutually uncorrelated; (2) the principal component associated with an 

eigenvector accounts for the maximum joint variability in the original data set in 
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the direction of that eigenvector (Wilks, 1995). The proportion of the total 

variance in the original data accounted for by the / h principal component is given 

by 

R]=—^-xl00% (A.8) 

7=1 

where lj is the eigenvalue associated with e7, where X\ > I2 > ••• > ^ >• • •> V 

Ward's Minimum Variance Clustering 

Ward's method is an agglomerative hierarchical clustering algorithm which uses 

an ANOVA-type approach to evaluate the distance between clusters. Given an 

Nxp data matrix, it begins with N single-member groups, and merges two groups 

at each step until all the data are in a single group after JV-1 steps (Wilks, 1995). 

The pair to be merged at each step is chosen as the one that minimizes the sum of 

squared Euclidean distances between each point in a group and the centroids of 

their respective groups. Mathematically, the criterion to merge two of G + 1 

groups to form G groups can be expressed as 

G »s P 2 

Minimize E X E (*/,; _ xgj) (A-9) 
«=1 <=1 i=l 

where ng is the number of members in a group, p is the number of variables, and 

xgj is the group centroid for t h e / variable. Ward's method minimizes within-

group variances (Wilks, 1995). 
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Appendix B Snow Course Stations 

This appendix includes a table showing the list of mountain snow course stations 

in the South Saskatchewan River basin from which snow data used in the study 

were derived. The data were obtained from Alberta Environment (Chacko 

Abraham, Personal communication, 2004). 

Station 

Akamina Passb 

Allison Pass a>b 

Bow River a 'b 

Bow Summitb 

ChatteauLawna'b 

Cutheadb 

Gardinerb 

Highwood Summita 

Katherine Lake b 

Larch Valleyb 

Marmot-Jaspera 

Mirror Lakea> b 

Nigel Creek" 
Pipestone Upper"'b 

Ptarmigan Huta ,b 

Skoki Mountainb 

Sunshine Villagea,b 

Sunwapta Fallsa 

West Castle Bush a b 

Wilkinson Busha 

Wilkinson Opena 

ID Code 

05AD803 
05AA803 
05BA801 
05BA813 
05BA808 

15X07 
05AA809 
05BL802 
05BA814 
05BA812 
07AA803 
05BA806 
05DA804 
05BA802 
05BA810 
05CA805 
05BB803 
07AA802 
05AA801 
05BL804 
05BL805 

Elevation 
(m) 
1800 
1980 
1580 
2080 
1740 
2180 
1970 
2210 
2380 
2230 
1830 
2030 
1920 
1615 
2190 
2040 
2230 
1400 
1520 
1980 
1980 

Basin 

Oldman 
Oldman 

Bow 
Bow 
Bow 
Bow 

Oldman 
Bow 
Bow 
Bow 

Athabasca 
Bow 

N. Sask. 
Bow 
Bow 
Bow 
Bow 

Athabasca 
Oldman 
Oldman 
Oldman 

Record 
starts 
1980 
1963 
1937 
1979 
1940 
1979 
1984 
1963 
1980 
1979 
1970 
1940 
1968 
1937 
1967 
1979 
1967 
1968 
1967 
1963 
1965 

Lat 
(deg) 
49.03 
49.73 
51.42 
51.70 
51.42 
51.45 
49.35 
50.60 
51.68 
51.32 
53.80 
51.42 
52.20 
51.43 
51.47 
51.53 
51.08 
52.55 
49.28 
50.20 
50.20 

Lon 
(deg) 

-114.05 
-114.60 
-116.18 
-116.47 
-116.28 
-115.77 
-114.52 
-114.98 
-116.38 
-116.22 
-118.08 
-116.23 
-117.08 
-116.17 
-116.10 
-116.05 
-115.78 
-117.65 
-114.37 
-114.55 
-114.55 

a Snow course data used in Chapter 4 
b Snow course data used in Chapter 5 
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