
Reinforcement Learning Algorithmic Adaptation to Machine
Hardware Faults

by

Sheila Ann Schoepp

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Sheila Ann Schoepp, 2021

Abstract

On July 20, 1969, the Apollo 11 lunar module, with Astronauts Neil Armstrong

and Buzz Aldrin aboard, landed on the moon. It was a great achievement in

space exploration. Most people know of this mission’s success; yet, there is an

untold story about this mission that many people are not aware of, and that

ultimately led to its success. In the moments prior to landing on the moon,

the astronauts’ attention was disrupted by loud alarms, notifying them of a

problem with their on-board computer systems. The moment intensified as an

error, unknown to the astronauts, was identified - error 1202. After relaying

the error code to mission control, the cause of the error was determined; the

computer was overloaded and memory was low. Thanks to the software created

by a young NASA engineer, Margaret Hamilton, the software controlling the

computer system began to handle the error, re-initializing and re-assigning

tasks with the highest priority, while dropping those of low priority. Margaret

Hamilton, a visionary of her time, had planned for unexpected situations, and

in doing so, she had created software that was able to detect, identify, and

recover from errors.

Creating systems that can detect, identify, and subsequently recover from

their failures are three important areas of engineering and artificial intelli-

gence research. Respectively, these three research areas are known as fault

detection, fault diagnosis, and fault tolerance. This thesis examines one of

ii

these areas - fault tolerance. With added fault tolerance, a machine recovers

from a fault through either pre-engineered or artificial intelligence learning

techniques; we explore the latter, empirically evaluating the e�ectiveness of

two reinforcement learning algorithms in enabling a machine to adapt to a

hardware fault. In this work, our machines are simulated robots; the faults

experienced include joint damage, e�ector damage, and sensor damage, all

of which cause the robot to be either partially immobile or to behave in an

unexpected, sometimes erratic, manner. Many of the faults examined would

be considered terminal, if not for algorithmic adaptation. The two reinforce-

ment learning algorithms that we investigate are Proximal Policy Optimization

(PPO) and Soft Actor-Critic (SAC). We demonstrate that algorithmic adap-

tation to hardware faults does indeed occur and that, for one simulated robot

task, it occurs very quickly (i.e. within hours). Our results establish that re-

inforcement learning algorithms are successful in adding algorithmic hardware

fault tolerance to simulated machines, and that added algorithmic hardware

fault tolerance (with reinforcement learning) has the potential to be applied

to real-world machines. This is particularly true for special cases, where a

repair cannot be performed immediately, and where it is more favourable to

have a machine re-learn to perform its task in the presence of a fault, than it

is to terminate or proceed with reduced task performance. Example use cases

include space, where specialized experts are not immediately available to make

machine repairs, and disaster zones, where machines (e.g. robots) are sent to

areas that are dangerous or inaccessible to humans, making their immediate

repair more challenging or impossible.

iii

Imagination is more important than knowledge. For knowledge is limited,
whereas imagination embraces the entire world, stimulating progress, giving

birth to evolution.

– Albert Einstein, 1924.

iv

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Dr. Osmar Zaiane,

for his guidance, support, and trust in my capabilities. He has encouraged

me to push beyond my self-imposed limitations; in challenging times, he has

graciously provided me (and many others) with his support; and he has assisted

me in the realization of my goals. All of these wonderful things make him one

of the most influential people in my life.

I would also like to thank my co-supervisor, Dr. Johannes Gunther, who

always has always challenged me, pushing me to think for myself and to become

a better researcher. I have truly appreciated his guidance in this journey.

I would like to thank the wonderful people from Mitsubishi Electric Co.,

whom I have worked closely with in this project. This includes Yuto Ya-

manaka, Shotaro Miwa, and Yoshihiro Mitsuka. I have greatly appreciated

the creative ideas they have proposed to me and the passionate interest they

have shown in this project. I also o�er my deepest gratitude to Mitsubishi

Electric Co., for funding this research, and for providing me with the oppor-

tunity to work with closely their researchers.

Finally, I would like to give thanks to Andy Patterson, who has guided me

through many challenging moments in this project. His assistance and ideas

have been invaluable to this work.

v

Contents

1 Introduction 1
1.1 Statement of the Problem . 2
1.2 Need & Gaps . 5
1.3 Thesis Statement . 8
1.4 Manuscript Organization . 10

2 Background 11
2.1 Reinforcement Learning . 11

2.1.1 Markov Decision Process 12
2.1.2 Unified Discounted Return 14
2.1.3 Value Functions and Policies 15
2.1.4 Neural Networks . 17
2.1.5 Policy Gradient Methods 18
2.1.6 Proximal Policy Optimization 19
2.1.7 Soft Actor-Critic . 22

2.2 Related Work . 25
2.2.1 Faults in the Real-World 25
2.2.2 Meta-Reinforcement Learning 27
2.2.3 Select-Test-Update . 29
2.2.4 Environment Perturbations 30
2.2.5 A Robot Reinforcement Learning Task 32

2.3 Robots . 33
2.3.1 OpenAI Gym Ant-v2 & MuJoCo 33
2.3.2 SoftBank Robotics NAO & Webots 37
2.3.3 NAO Kinematics . 42

3 Experimental Setup 44
3.1 Hardware and Software . 44
3.2 Faults . 46
3.3 Reinforcement Learning Problem 51
3.4 Algorithms . 57
3.5 Experiments . 58
3.6 Additional Considerations . 65

vi

4 Results and Discussion 70
4.1 OpenAI Gym Ant-v2 . 71

4.1.1 Results . 71
4.1.2 Discussion . 72

4.2 SoftBank Robotics NAO in Webots 79
4.2.1 Results . 79
4.2.2 Discussion . 92

5 Conclusion and Future Work 103
5.1 Conclusion . 103
5.2 Future Work . 105

Appendices 115

A NAO V6 116
A.1 Specifications . 116

B NAO Kinematics 129
B.1 Transformation Matrices . 129
B.2 Denavit–Hartenberg Method 131
B.3 New Kinematic Calculations 136

C Hyper-Parameter Search 140

D Challenges 145
D.1 Sony AIBO ERS-7 . 145
D.2 SoftBank Robotics NAO V6 149

vii

List of Tables

3.1 Python version & added libraries for Stable Baselines imple-
mentations. 45

3.2 Python version & added libraries for our implementations. . . 46
3.3 Hyperparameters used in Ant with Stable Baselines implemen-

tations of PPO and SAC. Parameters names match those used
by the Stable Baselines library in [26]. 59

3.4 Best performing hyperparameters in NAO task for our imple-
mentation of PPO and SAC. 60

3.5 Data saved and loaded for two-part learning process. 60
3.6 Task learning time for each robot and policy evaluation frequency. 65
3.7 Translation of imaginary box in Webots (meters). 66

4.1 PPO. Performance immediately after the onset of a fault. For
each run, the severity of the drop in performance is measured
as the di�erence between the mean performance in the 10 eval-
uations before a fault was applied and the mean performance
in the 10 evaluations after a fault was applied. The mean is the
average performance drop across 30 runs. Lower bound (LB)
and upper bound (UB) 95% confidence intervals are shown. . . 86

4.2 PPO. Performance after partial adaptation to a fault. For each
run, partial fault adaptation is measured as the di�erence be-
tween the mean performance in the 10 evaluations before a fault
was applied and the mean performance in the 10 evaluations
after learning for 2.0 million time steps with the fault present.
The mean is the average change in performance across 30 runs.
Lower bound (LB) and upper bound (UB) 95% confidence in-
tervals are shown. 87

4.3 PPO. Performance after full adaptation to a fault, where full
adaptation is defined as 5.9 million time steps of learning with
the fault present. For each run, full fault adaptation is mea-
sured as the di�erence between the mean performance in the
10 evaluations before a fault was applied and the mean per-
formance in the final 10 evaluations conducted with the fault
present. The mean is the average change in performance across
30 runs. Lower bound (LB) and upper bound (UB) 95% confi-
dence intervals are shown. 88

viii

4.4 SAC. Performance immediately after the onset of a fault. For
each run, the severity of the drop in performance is measured
as the di�erence between the mean performance in the 10 eval-
uations before a fault was applied and the mean performance
in the 10 evaluations after a fault was applied. The mean is the
average performance drop across 30 runs. Lower bound (LB)
and upper bound (UB) 95% confidence intervals are shown. . . 89

4.5 SAC. Performance after partial adaptation to a fault. For each
run, partial fault adaptation is measured as the di�erence be-
tween the mean performance in the 10 evaluations before a fault
was applied and the mean performance in the 10 evaluations
after learning for 300,000 time steps with the fault present.
The mean is the average change in performance across 30 runs.
Lower bound (LB) and upper bound (UB) 95% confidence in-
tervals are shown. 90

4.6 SAC. Performance after full adaptation to a fault, where full
adaptation is defined as 1.498 million time steps of learning
with the fault present. For each run, full fault adaptation is
measured as the di�erence between the mean performance in
the 10 evaluations before a fault was applied and the mean per-
formance in the final 10 evaluations conducted with the fault
present. The mean is the average change in performance across
30 runs. Lower bound (LB) and upper bound (UB) 95% confi-
dence intervals are shown. 91

4.7 Summary of the performance immediately after the onset of a
fault. 95% confidence intervals are shown. Original data in
Tables 4.1 and 4.4. 93

4.8 Summary of the performance immediately after the onset of a
fault. 95% confidence intervals are shown. Here, discard replay
bu�er refers to the algorithm initialization condition where the
replay bu�er is discarded and the models are retained. Original
data in Table 4.4. 94

4.9 Summary of the performance after partial adaptation to a fault.
Replay bu�er is indicated by RB. 95% confidence intervals are
shown. Original data in Tables 4.2 and 4.5. 95

4.10 Summary of the performance after full adaptation to a fault.
Replay bu�er is indicated by RB. 95% confidence intervals are
shown. Original data in Tables 4.3 and 4.6. 96

4.11 Summary of the performance after full adaptation to a fault.
Replay bu�er is indicated by RB. Computed t-values are shown.
For our sample size (30), a t-value greater than the critical value
of 2.045 indicates that the di�erence between our two variables
is significant. Original data in Tables 4.3 and 4.6. 98

ix

4.12 Summary of the performance during adaptation to a fault. Re-
play bu�er is indicated by RB. 95% confidence intervals are
shown. Original data in Tables 4.1-4.6. 100

A.1 NAO V6 arm kinematic chains. 119
A.2 NAO V6 motor types. Table adapted from [66]. 121
A.3 NAO V6 left arm links. Table from [65]. 123
A.4 NAO V6 pre-defined o�sets. Table from [65]. 124
A.5 NAO V6 finger joint o�sets. Table adapted from [65]. 125
A.6 Range of NAO V6 left arm joints. Table from [63]. 126
A.7 Range of NAO V6 right arm joints. Table from [63]. 127
A.8 NAO V6 finger rotations [65]. 128

B.1 DH parameters for the NAO V6 left arm kinematic chain. Table
adapted from [34], [44]. 134

B.2 DH parameters for the NAO V6 right arm kinematic chain.
Table adapted from [34], [44]. 135

B.3 New DH parameters for the NAO V6 left kinematic chain to
inner fingertip. 139

B.4 New DH parameters for the NAO V6 right kinematic chain to
inner fingertip. 139

x

List of Figures

2.1 PPO algorithm. Figure adapted from [55]. 22
2.2 SAC algorithm. Figure adapted from [24]. 25
2.3 The ant model in the simulated OpenAI Gym Ant-v2 environ-

ment. 34
2.4 A segment of the default OpenAI Gym Ant-v2 XML file. . . . 35
2.5 The NAO V5 in the Webots simulator. The Webots coordinate

system is displayed in the lower right. 38
2.6 A segment of the default PROTO file for the NAO. 40
2.7 A Webots Hinge2Joint with two degrees of freedom. Figure

from [15]. 41

3.1 Hip and ankle joints within ant’s target leg. Target leg is
coloured red. 48

3.2 Ant with broken ankle in target leg. The target leg is coloured
red. 48

3.3 NAO reaching task. An imaginary 3D box is in front of the
NAO’s body. At the start of each episode, a 3D point is ran-
domly generated from within the imaginary box’s boundaries.
The NAO is tasked to touch the point with its fingertip. . . . 50

3.4 Shoulder abduction and adduction. Figure from [2]. 51
3.5 The NAO manipulator. 52

4.1 Hip range of motion decreased (from [-30, 30] to [-5, 5]). The
red marker indicates the onset of a fault. Labels indicate the
data retained after learning the task with the normal ant, if
applicable. The shaded areas correspond to a 95% confidence
interval. 73

4.2 Ankle range of motion decreased (from [30, 70] to [65, 70]). The
red marker indicates the onset of a fault. Labels indicate the
data retained after learning the task with the normal ant, if
applicable. The shaded areas correspond to a 95% confidence
interval. 74

4.3 Lower limb severed. The red marker indicates the onset of a
fault. Labels indicate the data retained after learning the task
with the normal ant, if applicable. The shaded areas correspond
to a 95% confidence interval. 75

xi

4.4 RShoulderRoll range of motion decrease (range decreased to
[0.0, 0.0] radians). The red marker indicates the onset of a
fault. Labels indicate the data retained after learning the task
with the normal NAO, if applicable. In (b), the brown and blue
lines overlap most of the time. Later, the green line overlaps
them both. The shaded areas correspond to a 95% confidence
interval. Zoomed plots do not show confidence intervals. . . . 83

4.5 RShoulderPitch frozen position sensor (always reading -2.0 radi-
ans). The red line marker indicates the onset of a fault. Labels
indicate the data retained after learning the task with the nor-
mal NAO, if applicable. In (b), the brown and blue lines overlap
in the first half of the experiment. After the fault is applied, the
green line mostly overlaps the brown line. Eventually, all lines
converge. The shaded areas correspond to a 95% confidence
interval. Zoomed plots do not show confidence intervals. . . . 84

4.6 Broken inner finger (finger joints stuck at 0.0 radians despite
commands to move them). The red marker indicates the onset
of a fault. Labels indicate the data retained after learning the
task with the normal NAO, if applicable. In (b), the brown and
blue lines overlap for most of the experiment. Eventually, all
lines converge. The shaded areas correspond to a 95% confi-
dence interval. Zoomed plots do not show confidence intervals. 85

A.1 Joint locations within the NAO V6 body. Figure from [66]. . . 120
A.2 NAO V6 coordinate system. Figure from [65]. 122
A.3 Rotation axis of joints for NAO V6 in zero pose. Figure from

[60]. 122
A.4 NAO V6 pre-defined o�sets. Figure from [65]. 124
A.5 NAO V6 finger links. Figures from [65]. 125
A.6 NAO V6 left arm joint o�sets. Figure from [63]. 126
A.7 NAO V6 right arm joints. Figure from [63]. 127
A.8 NAO V6 finger joints. Figure from [65]. 128

B.1 NAO V6 finger joint reference frames and DH parameters. Fig-
ure adapted from [27]. 137

C.1 PPO hyperparameter search for NAO task: gamma, number
of samples, and mini-batch size. Best found parameters are
gamma = 0.94, number of samples = 256 and mini-batch size
= 32. 142

C.2 SAC hyperparameter search for NAO task: target smoothing
coe�cient (tau) and gamma. Best found found parameters (so
far) are gamma = 0.96 and tau = 0.005. 143

xii

C.3 SAC hyperparameter search for NAO task: learning rate. Gamma
is 0.96 and target smoothing coe�cient is 0.005 (best from Fig-
ure C.2). Best found learning rate is 0.00045, but di�erences
across the learning rates are negligible. 144

D.1 Sony AIBO ERS-7 robot. 146

xiii

List of Acronyms

3D Three Dimensional

AI Artificial Intelligence

DH Denavit-Hartenberg

DOF Degree of Freedom

GAE Generalized Advantage Estimator

GPU Graphics Processing Unit

GrBAL Gradient-Based Adaptive Learner

LED Light-Emitting Diode

MAML Model-Agnostic Meta-Learning

MB Model-Based RL

MB+DE Model-Based RL with Dynamic Evaluation

MDP Markov Decision Process

MP Megapixel

MRE Magnetic Rotary Encoders

MSE Mean Squared Error

NN Neural Network

PPO Proximal Policy Optimization

RB Replay Bu�er

ReBAL Recurrence-Based Adaptive Learner

ReLu Rectified Linear Unit
xiv

RL Reinforcement Learning

ROM Range of Motion

ROS Robot Operating System

SAC Soft Actor-Critic

SDK Software Development Kit

TRPO Trust Region Policy Optimization

UGV Unmanned Ground Vehicle

XML Extensible Markup Language

xv

Chapter 1

Introduction

The rapid advancement of technology has led to widespread automation - a

movement towards smart, autonomous technologies that remove the need for

human intervention [11]. Industry, for example, is evolving from comput-

erized, semi-automated systems (Industry 3.0) to fully-interconnected, fully-

automated, real-time data-driven, intelligent systems (Industry 4.0) [3], [25],

[36], [75].

For a moment, let us ponder on what such an advanced technological evo-

lution might look like. Imagine, for example, a modernized assembly line com-

posed of an intricate network of advanced machines, all cooperatively working

together to produce and deliver products. Often, an assembly line has inter-

dependent segments - the output of one segment of the assembly line is input

into another segment of the assembly line. Now consider that one of the ma-

chines along the line experiences a failure, degrading its ability to perform its

task. (In today’s systems, such an event could force the entire assembly line

to shut down until a repair is completed by an expert.) In our modernized,

fully-automated system, a sophisticated, fully-connected network of sensors

and devices detect and diagnose this failure, sharing the failure data with the

1

other machines in the network. A supervisory artificial intelligence (AI) al-

gorithm responds to the detected failure, temporarily adjusting the speed of

each a�ected segment of the assembly line; meanwhile, the machine’s AI algo-

rithm processes the failure data, enabling the machine to adapt and modify the

method of performing its task, while accounting for its failure. Once adapted,

the supervisory AI control system is notified and each a�ected assembly line

segment is returned to normal speed. The intricate network of machines is

able to produce and deliver in perfect synchronicity once again.

In this high-tech vision, machines are self-aware, self-learning, and adapt-

able. An unanticipated perturbation in a machine, such as a component fail-

ure, is immediately identified using real-time data. The AI algorithm control-

ling the machine extrapolates the machine’s fault from this data and identifies

the consequential limitations of the machine. Using this knowledge, the AI

algorithm controlling the faulty machine initiates adaptation, learning a new

strategy for the machine to complete its tasks in the presence of a failure. Is

such an AI controlled machine a fantastical notion? A potential possibility

of the future? Or has technology su�ciently advanced to make these type of

machines a realization today?

1.1 Statement of the Problem

Employing techniques to identify a machine failure, extrapolate the cause of

the failure from machine data, and subsequently enable a machine to adapt

are all objectives of current AI research [9], [12], [51], [81]. Each of these three

objectives (i.e. identification, extrapolation, and adaptation) can be consid-

ered independently. Respectively, they are widely known as fault detection,

fault diagnosis, and fault tolerance [30], [35]. Although all three of these re-

2

search areas are essential to complete machine autonomy, their combined focus

is broad. In this thesis, we focus on one of these three areas - fault tolerance.

We investigate the ability of one AI paradigm, reinforcement learning (RL), to

enable adaptation in a machine experiencing a hardware failure. In this work,

our machines are robots. Robots, like all machines, are susceptible to failures

[5]–[7], [68]. It has been shown that, in robots, the mean time between failures

ranges from 6 to 20 hours in a field environment, and from 19 to 90 hours

in an indoor environment [5]–[7]; thus, their low reliability makes them an

excellent platform on which to implement and assess adaptation to hardware

failure using AI techniques.

By definition, a fault is a technological imperfection that causes a failure

[38]. In robots, faults can typically be traced to either their hardware, which

consists of their physical components, or their software, which is the internal

programming that controls the robot (i.e. algorithms) [22], [68]. A robot’s

fault tolerance is defined as its ability to mitigate a fault, thereby preventing

it from being unable to perform its task [22], [77]. Most current methods to

add fault tolerance to a robot require intervention at the design stage, adding

fault tolerance through hardware redundancy [22], [76], [77]. One method of

redundancy involves the duplication of the robot’s physical components, such

as its motors and sensors [22], [50], [76], [77]. Other methods of redundancy

involve the addition of extra joints per DOF, extra DOF per manipulator arm,

and extra manipulator arms per robot [50], [70], [79]. In all cases, when one

component fails, it can be stopped and the other component(s) can take over,

ensuring task completion.

Although redundancy is an e�ective method for adding fault tolerance, it

is a costly solution. It not only requires additional parts, but also increased

space and power; in addition, it may add volume and weight to the robot,

3

and consequently, has the potential to alter the robot’s dynamics [22], [77].

In addition, for many robots that are already designed and produced, adding

fault tolerance through the use of redundancy is not an available option. So

how can we add hardware fault tolerance to robots without redundancy?

Within computer systems, there are several approaches to creating fault

tolerant systems. These include recovery and algorithmic reconfiguration [22],

[76], [77]. In recovery, the system is put into a safe state when a fault is present.

With algorithmic reconfiguration, an algorithm modifies the computer’s soft-

ware and hardware usage to account for the presence of a fault within one part

of the system; in computers, this may involve slowing down processes so that

the remaining functional components can handle the system load [22], [76],

[77]. These two methods can not only be incorporated into computers at the

design and development stage, but also after. Unfortunately, these methods

of adding fault tolerance are rarely used in robots [22], [77]; this is mostly due

to the fact that "work in robotics is still focusing on the robot function devel-

opment rather than dependability" [22, p. 48]. This is where AI techniques

are relevant; the field of AI, particularly RL, has many di�erent algorithms for

learning from interaction. A robot experiencing a hardware fault can interact

with its environment and, using an RL algorithm, learn a new way to com-

plete its assigned task. AI techniques may provide a solution to the problem

of adding hardware fault tolerance to new robots, without the need for redun-

dancy, and to existing robots, where adding redundancy is not an available

option.

4

1.2 Need & Gaps

There are many uses of robots that could be improved if robots were adaptable

to their failures, thereby necessitating the need for this work. Consider, for

example, the use of robots in disaster zones. Currently, autonomous robots

are being designed and tested for, as well as applied to, rescue operations

[7], [19], [42], [43], [56]. Carlson and Murphy [7] found that in the 2001 World

Trade Center rescue operation, the unmanned ground vehicles (UGVs) needed

human assistance an average of 2.8 times per minute; the noted problems

included serious failures, traction slippage, and camera occlusion. In addition,

the average downtime of a robot after a failure ranged from 177 to 207 hours

[7]. This is a serious shortcoming in disaster zone robot technology. Robots

are typically used for these tasks to avoid the risk to human life. Often, these

areas are dangerous, or even inaccessible, to humans. If a robot fails in these

areas, either a human is forced to enter the dangerous zone to retrieve or

repair the robot, at an increased risk to their life, or the robot is deemed

irretrievable, resulting in both property loss and financial loss for those who

employed in it. Robots that could adapt to their failures, rather than require

human intervention, would have tremendous utility in these operations. When

a failing robot is situated in a location that is hazardous to humans, added

fault tolerance may enable it to regain functionality, and if opted, enable it to

return to a human-safe zone for repair.

Another place in which autonomously adapting robots would be useful is in

space. In space, some robots are placed on planets where they autonomously

collect and analyze data, never to be retrieved again [78]. Some advanced

space robots independently maintain space equipment and are even capable of

performing self-maintenance [1], [10]; others provide assistance to the astro-

5

nauts by performing routine tasks [1]. In space, the presence of an expert to

perform maintenance on a faulty robot is much less probable than on earth,

and in many cases, not at all feasible. If a space robot fails, and no expert

is available to perform a repair, its utility in space is significantly decreased.

For example, a robot that is sent to autonomously collect data, with no future

intention of its retrieval, would no longer be capable of collecting data. A

space robot designed to make repairs, would no longer be able to make the

required repairs; this would force the astronauts to make the repairs them-

selves, and would potentially require dangerous spacewalks to reach the site

of a fault. A space robot that assists the astronauts with daily tasks would be

disabled, no longer able to perform its duties, thereby forcing the astronauts

to take over the tedious and time consuming work the robot was designed to

perform. Overall, the loss of a space robot’s function in the presence of a fault

adds the need for autonomously adapting robots. In space, while no expert is

available and there is no immediate opportunity to return the robot to earth

for complete repair, added fault tolerance may enable a robot to continue to

perform its tasks (i.e. collecting data, making repairs, and assisting humans).

In some cases, it may even extend the robots expected end-of-life.

Overall, we believe that the utility of fault tolerant robots in society is

horizonless. There are many uses of robots (and machines) today that could

benefit from added algorithmic, hardware fault tolerance. This work suggests

using RL algorithms (i.e. AI techniques) for adding hardware fault tolerance

to a robot. A robot, experiencing a hardware fault that a�ects its task per-

formance, would be expected to find a new way to complete its task; this

may mean that non-faulty hardware takes on a compensatory role to allow the

robot to continue its activities. Finding a new way for a robot to achieve its

task in the presence of a fault can be characterized as a RL control problem.

6

It is important to note that the applications of this work may be limited to

circumstances in which a human expert is not readily available to perform a

robot’s repair. If a human expert is available, the robot could be returned

to its full performance without the need for adaptation. In addition, we may

also limit this work to circumstances where the result of having a robot adapt

to a failure is safe and more beneficial than continual depressed task perfor-

mance or task termination. When a robot experiences a fault, it can display

unusual, sometimes erratic, behaviour. Adaptation through learning requires

new experiences, and so the robot may behave in an undesirable manner until

it starts to learn to account for its fault.

Recent research has informed on how AI techniques can incorporate al-

gorithmic, hardware fault tolerance into robots; despite this recent research,

significant gaps are still prevalent. The research that has been conducted has

used either few simulated robots [57], a single real-robot [12], or a combination

of these two [9]. This leaves the generalization of their techniques and results

to other robots unanswered. In addition, most research has examined a single

algorithm or algorithm class, leaving the fault adaptation ability of other AI

algorithms unanswered. Cully et al. [12] stated that in their experiments, raw

robot sensor data, such as position sensor readings, was not su�cient to enable

adaptation to faults; rather, high level behaviours had to be extracted to en-

able adaptation. Additional research that excludes this behaviour extraction

step and uses only the robot’s raw sensory data would be highly beneficial, as

it would generalize adaptation across tasks.

Our intention for this work is to add to the current knowledge base for

building algorithmic, hardware fault tolerance into robots, and that this later

be extended to di�erent types of machines, including real-world machines.

Here, we examine the ability of two state-of-the-art, model-free RL algorithms

7

to enable adaptation to di�erent failures using the robot’s raw sensory data

as input. We test these algorithms on two simulated robots: OpenAI Gym’s

Ant-v2 and the SoftBank Robotics NAO, simulated in Webots. To the best of

our knowledge, PPO and SAC have not been previously examined in regards

to their utility in building algorithmic hardware fault tolerance into robots.

1.3 Thesis Statement

The problem of added hardware fault tolerance in robotics is a research prob-

lem that has immense value if solved. This is especially true for situations

in which human assistance is delayed or non-existent. RL is a framework

that may provide a solution to the problem of developing robots that can au-

tonomously adapt to hardware failure. Having a robot autonomously adapt

to a failure can be described as the robot independently (without human in-

put) finding a new way to perform its tasks when a limiting hardware fault is

present.

This thesis evaluates two state-of-the-art, model-free RL algorithms in their

ability to enable adaptation to failure: Proximal Policy Optimization (PPO)

and Soft Actor-Critic (SAC). Prior research has been performed on detecting

malfunction in machines [29], [51] and diagnosing this malfunction [21], [30],

[35], [81]; so, we assume that a failing robot is able to detect the presence of a

fault and that the robot has some contextual knowledge about the fault and

its specific limitations. This knowledge may alter the allowable actions of that

robot.

We will answer the following questions:

• Can PPO and SAC enable a robot to adapt to a hardware fault (i.e. add

fault tolerance)?

8

• How does adaptation to a fault with PPO compare to that with SAC,

and vice versa?

• How do the di�erences in the faults a�ect a robot’s adaptation?

Both PPO and SAC use neural networks; SAC also employs a replay bu�er.

At the onset of fault, the robot’s task is changed. Although the primary goal

is the same (i.e. walk fast or reach a target), it must now learn to achieve its

task with new limitations. When a fault is applied to the robot, we can con-

sider di�erent initializations of each algorithm’s neural networks as a di�erent

learning problem. In one case, we can retain the parameters learned with the

normal functioning robot; in another case, we can randomly re-initialize the

parameters, thereby throwing away all knowledge of the normal functioning

robot and learning the new task from scratch. In addition, in the case of SAC,

the initialization of the replay bu�er at the onset of a fault can be considered

a di�erent learning problem. At the onset of a fault, the replay bu�er contains

past experiences for a normal functioning robot. The contents of the replay

bu�er may be inapplicable to the new task, and have the potential to tem-

porarily impede the learning of the new task. Thus, we formulate di�erent

algorithm initializations and answer the following questions:

• How does retention (or random re-initialization) of the learned neural

network parameters (i.e. models) a�ect a robot’s adaptation to a fault?

• In the case of SAC, how does retention (or disposal) of the replay bu�er

contents a�ect a robot’s adaptation to a fault?

Answering these questions will provide more information on how to incorporate

fault tolerance into robots.

In summary, this research study informs on the capability of two state-of-

the-art model-free RL algorithms to add algorithmic, hardware fault tolerance
9

to new and pre-existing robots. It also informs on how to best initialize the

learning process with these algorithms, once a fault has been detected. We

also provide insight into whether the initialization process should be di�erent

for di�erent faults.

1.4 Manuscript Organization

The introductory chapter has outlined the motivation and need for this re-

search study. The remaining chapters are organized as follows: Chapter 2

provides background information on RL and presents a RL task setup for a

real-robot. We discuss common robot faults and elaborate on existing ap-

proaches to the problem of building hardware fault tolerance into robots using

AI techniques. Chapter 2 also includes a description of the two simulated

robots models used in experiments, and briefly discusses how these models are

defined within the simulation software. In Chapter 3, the design of the exper-

iments are described in detail. In Chapter 4, the results of the experiments

are presented and discussed. Chapter 5 summarizes our findings and proposes

future research directions. We have additionally included an appendix. In

Appendix A, we present the specifications for the SoftBank Robotics NAO

that were relevant to our learning problem. In Appendix B, we present our

kinematic calculations for the NAO robot. In Appendix C, we show the results

of our hyperparameter search for our task with the NAO robot. In Appendix

D, we present various hurdles that we encountered throughout this project,

describing how each di�culty contributed to the development of this work.

10

Chapter 2

Background

This chapter introduces the background information for the contributions of

this thesis. First, the reinforcement learning paradigm is introduced. Addi-

tionally, two state-of-the-art reinforcement learning algorithms are introduced,

highlighting their main features. Furthermore, relevant previous works are re-

counted, and the relation of each work to the the problem of adding hardware

fault tolerance is disclosed. Finally, the two simulated robots are presented,

and a description is provided on how each robot model is defined.

2.1 Reinforcement Learning

Reinforcement Learning [69] is a paradigm that can be used to teach a learner,

or agent, a task through interaction with its world, or environment. RL

uses numerical rewards to reinforce good behaviours or to discourage bad be-

haviours in an agent; these reinforcers aid the agent in learning a good method

to achieve its task.

11

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is framework to model a problem in which

an agent, or learner, interacts with its environment over a series of discrete

time steps, t = 1, 2, 3, An finite MDP consists of:

• a finite set of states, S,

• a finite set of actions, A,

• a finite set of rewards, R, and

• the environment dynamics model, p.

At each time step t, the environment provides the agent with its current state,

St œ S. Using the information of the environment’s current state, the agent

selects an action, At œ A(s). The selected action is executed and the time

step is incremented. The execution of the action results in the environment

updating its state, St+1 œ S, and additionally computing a numerical reward,

Rt+1 œ R. The agent is provided with the state and reward resulting from its

action, and the agent-environment interaction cycle repeats.

The reward and state resulting from the execution of an action in a given

state is determined by the environment dynamics model. The environment

dynamics model, p, is defined as:

p(sÕ, r|s, a) .= Pr{St+1 = sÕ, Rt+1 = r|St = s, At = a}. (2.1)

In reinforcement learning, an MDP is assumed to have the Markov prop-

erty; that is, the resultant reward and state, after taking an action, has a

probability distribution that depends only on the previous state and action,

and not on the entire history of all previously visited states and all previously

12

executed actions within these states. It is assumed that the current state rep-

resentation encapsulates all the historical interaction information necessary for

the agent to make future action choices.

The interaction between the agent and environment results in a sequence

of states, actions, and rewards defined as a trajectory:

S1, A1, R2, S2, A2, R3, S3, (2.2)

For a continuing task, the trajectory continues indefinitely. An episodic

task, in contrast, does not continue indefinitely. An episodic task divides into

episodes, or sequences that terminate. In an episodic task, the trajectory is

terminated if the agent reaches a termination state, ST œ S. In some tasks,

episodes are given set time limits; for these tasks, an episode is also terminated

when the number of time steps in the episode has reached the set limit. After

termination of an episode, the environment state is reset to a start state and

a new agent-environment interaction cycle may begin.

In a reinforcement learning problem, the agent is considered to be the

learner and decision-maker. The environment, in contrast, is everything that

is external to the agent and outside the realm of its control. For example,

consider a robot that is learning a reaching task. This robot contains joint

motors, linkages, and various sensors. If the task requires learning how to

control the joint positions to be successful at the reaching task, and the agent

is given direct control over the motors that control the joint positions, then

the robot’s motors are considered to be a part of the agent. Everything else

inside the robot, such as the linkages and sensors, would then be considered

to be a part of the robot’s environment and outside the realm of its control.

13

2.1.2 Unified Discounted Return

A reinforcement learning agent learns how to act through goal-directed learn-

ing. The goal of the agent is to select actions that maximize the expected

return. The return, denoted by Gt, is defined as the sum of rewards obtained

across a trajectory. For a episodic task, in which the trajectory terminates at

time T, this is:

Gt
.= Rt+1 + Rt+2 + Rt+3 + ... + RT . (2.3)

For a continuing task, the trajectory does not terminate; rather, it contin-

ues indefinitely. The sum of rewards obtained across such a trajectory is

unbounded, with the potential to grow infinitely large. For this reason, dis-

counting is introduced and acts to bound the return by discounting the value

of future rewards. For a continuing task, the agent aims to select actions that

maximize the discounted return, which is defined as:

Gt
.= Rt+1 + “Rt+2 + “2Rt+3 + ... =

Œÿ

k=0
“kRt+k+1, (2.4)

where “ is the discount rate and 0 Æ “ Æ 1.

The discount rate parameter can be introduced to episodic tasks as well. A

unified notation for both episodic and continuing tasks is formulated by mod-

ifying the description of a terminal state for an episodic task. As previously

mentioned, an episodic task terminates when it reaches a terminal state. To

utilize discounting and obtain a unified notation, the terminal state is changed

to a special absorbing state, from which all transitions lead to itself and obtain

a reward of 0. The unified discounted return is written as:

Gt
.=

Tÿ

k=t+1
“k≠t≠1Rk, (2.5)

14

where “ = 1 or T = Œ, but not both.

2.1.3 Value Functions and Policies

A policy fi defines an agent’s behaviour in a state. A deterministic policy maps

each state s to a single action, and is represented as:

fi(s) = a. (2.6)

A stochastic policy, in contrast, defines a distribution over actions for a

given state s; an agent’s action in state s is selected from this distribution. A

stochastic policy is represented as:

fi(a|s) .= Pr{A = a|S = s}, (2.7)

where
ÿ

aœA(s)
fi(a|s) = 1. (2.8)

The value of a state, denoted by vfi(s), is a measure of how good it is for

an agent to in state s. Formally, it is defined as the expected return, given

that an agent starts in state s and follows the policy fi thereafter. In formal

terms, this is written as:

vfi(s) .= Efi[Gt|St = s] = Efi

S

U
Œÿ

k=0
“kRt+k+1

St = s

T

V, ’s œ S. (2.9)

The value of a state can be formulated recursively as follows:

vfi(s) = Efi[Rt+1 + “vfi(St+1)|St = s], ’s œ S. (2.10)

The value of a terminal state is 0.
15

The action value of a state-action pair, denoted by qfi(s, a), is a measure of

how good it is for an agent to start in state s, take action a, and then follow

the policy thereafter. Formally, this is written as:

qfi(s, a) .= Efi[Gt|St = s, At = a]. (2.11)

An action value can also be formulated recursively:

qfi(s, a) = Efi[Rt+1 + “qfi(St+1, At+1)|St = s, At = a] (2.12)

The agent and environment interaction cycle creates a sequence of experi-

ences, or state, action, reward, and next state tuples. Values and action values

are estimated from these experiences; as the agent gains more experience, these

estimates converge to their true values.

Values and action values are interrelated. These relationships are defined

as:

v(s) =
ÿ

a

fi(a|s)qfi(s, a), (2.13)

and

q(s, a) = r + “
ÿ

sÕ,r

p(sÕ, r|s, a)v(sÕ) (2.14)

One of the tasks in a reinforcement learning problem is to find the best

policy, thereby maximizing the expected return for a given task. Through an

iterative process, known as generalized policy iteration, the policy is gradually

improved through policy evaluation and policy improvement. A policy that is

greater than or equal to all other policies is an optimal policy, denoted by fiú.

16

2.1.4 Neural Networks

An neural network (NN) is composed of several layers. The first layer is called

the input layer. The input layer is followed by one or more hidden layers. The

final layer is the output layer.

Each layer is a neural network is comprised of one or more nodes. In a fully-

connected neural network, each node in a layer is connected to every node in its

neighbouring layer(s). Each of these connections has an assigned weight, which

is responsible for controlling the contribution of each input node to the output

value. When an observation, x, is passed into the input layer, the output of

the input layer is computed as the matrix product of the observation and the

weights, plus an added bias term. The hidden layer modifies this output by

passing it through an activation function. Subsequent layers go through the

same process; the weighted sum of the input is computed, passed through an

activation function, and subsequently output to the following layer. Activation

functions are usually applied to hidden layers; however, there are some cases

in which the output layer also has an activation function applied to it.

In our target algorithm SAC, the activation function applied to hidden lay-

ers was the rectified linear unit (ReLU). Given an input, the ReLU activation

function will output the input value, if it is positive; otherwise, it will output

0. In the hidden layers of PPO’s neural network and the output layer of the

SAC policy network, we used the hyperbolic tangent activation function, or

tanh. Given an input of any value, the tanh function will compress this input

into the range [-1, 1]. The mathematical formulation for the tanh activation

function is:

tanh(z) = sinh(z)
cosh(z) = ez ≠ e≠z

ez + e≠z
. (2.15)

Neural networks are trained using an objective function. The objective

17

function is a measure of the error in a neural network’s prediction. For exam-

ple, one commonly used objective function, used in both PPO and SAC, is the

mean squared error (MSE), defined by the formula:

MSE = 1
n

nÿ

i=1
(Yi ≠ Ŷi)2, (2.16)

where Yi is the target value and Ŷi is the predicted value.

When a neural network is being trained, the weights of the network are be-

ing modified and learnt. It is common to randomly initialize the weights before

training. Then the training cycle begins. First, the weights are used to com-

pute the neural network’s prediction. The cost function takes this prediction

and provides a measure of the error in the neural network’s prediction. This

error is then backpropogated through the neural network, and the weights are

adjusted. This process is repeated until training is complete, and the weights

are no longer being updated.

2.1.5 Policy Gradient Methods

Policy gradient methods model a policy without the use of a value function.

The policy itself is a parameterized function:

fi◊(a|s, ◊) = Pr{At = a|St = s, ◊}, (2.17)

where ◊ œ Rd is the policy’s parameters.

The policy parameters are evaluated using a performance measure, denoted

by J(◊). To maximize the performance, the gradient of this performance

measure, with respect to ◊, is used to update the weights through gradient

18

ascent:

◊t+1 = ◊t + –\ÒJ(◊t) (2.18)

Although value functions are not used to model the policy, they are often

used to learn the policy’s parameters. Methods that learn both the policy’s

parameters and a value function are known as actor-critic methods. The policy

is the actor and the value function is the critic. The addition of the critic (or

baseline) stabilizes training and improves the speed of learning.

Policy gradient methods are useful in continuous action spaces. Here, the

policy network learns the parameters for a probability distribution, such as a

Gaussian. When an action is to be chosen, it is selected from this parameter-

ized distribution.

2.1.6 Proximal Policy Optimization

Introduced by Schulman et al. [55], Proximal Policy Optimization (PPO) is

"a new family of policy gradient methods for reinforcement learning, which

alternate between sampling data through interactions with the environment,

and optimizing a surrogate objective function using stochastic gradient ascent"

[55, p. 1].

One of the challenges with policy gradient methods is the size of the policy

update, which is controlled by the learning rate. When the learning rate is set

too small, the policy is learnt very slowly. When the learning rate is set too

large, there is increased variance; additionally, there may be a risk of moving

to a policy that is poorly performing and where recovery is not possible. The

key feature of PPO is that it restricts how much the policy can change at each

update, thereby stabilizing training. This is done through the use of a clipping

19

objective function, LCLIP . This objective function is defined as:

LCLIP (◊) = Êt[min(rt(◊)Ât, clip(rt(◊), 1 ≠ ‘, 1 + ‘)Ât], (2.19)

where

rt(◊) = fi◊(at|st)
fi◊old

(at|st)
. (2.20)

rt(◊) is a probability ratio and Ât is an estimation of the advantage.

In rt(◊), the numerator is the probability of selecting action at in state st

under the new policy, parameterized by ◊. The denominator is the probability

of selecting action at in state st under the old policy, parameterized by ◊old.

When rt(◊) = 1, the probability of selecting an action is unchanged in the new

policy. In state st, when 0 < rt(◊) < 1, the probability of selecting action at

is less probable under the new policy, and when rt(◊) > 1, selecting action at

is more probable under the new policy.

The advantage is represented as:

A(s, a) = Q(s, a) ≠ V (s), (2.21)

and can be expanded to

A(s, a) = Efi[
Tÿ

k=t+1
“k≠t≠1Rk|St = s, At = a] ≠ Efi[

Tÿ

k=t+1
“k≠t≠1Rk|St = s].

(2.22)

In the expansion of the advantage, the di�erence between Q(s, a) and V (s) is

more visible. The di�erence between Q(s, a) and V (s) is that, for Q(s, a), the

first action taken from state s is action a, and for V (s), the first action taken

from state s is fi(a|s). Taking two di�erent actions can result in a di�erent

sequence of rewards along a trajectory. Overall, the advantage is a measure of

20

how good it is to take an action a, compared to the action that is defined by

the policy fi. Said another way, it measures whether it is beneficial to change

the policy to action a. The advantage can be both positive or negative.

In the LCLIP objective function (equation 2.22), the minimum is taken over

two values. The first value is rt(◊)Ât and the second is clip(rt(◊), 1≠‘, 1+‘)Ât.

If the estimated advantage, Ât, is positive, then action a is better than the

current policy’s action. In this case, we would want to update the policy such

that action a becomes more probable; so, rt(◊) should be increased. However,

the PPO objective function limits how much we can change the policy by

clipping the value of rt(◊); the maximum change in this case is 1 + ‘. If

the estimated advantage is negative, then action a is worse than the current

policy’s action. Here, we would want to make this action less probable in

the new policy. To do this, rt(◊) should be decreased. Once again, the PPO

objective function will limit how much rt(◊) can be decreased by limiting its

change to 1 ≠ ‘. In all other cases, such as when the advantage is positive and

rt(◊) is less than 1, clipping does not apply.

When the policy network and the value network share the same parameters,

the objective function is modified to:

LCLIP +V F +S(◊) = Êt[LCLIP
t (◊) ≠ c1LV F

t (◊) + c2S[fi◊](st)], (2.23)

where c1 and c2 are coe�cients, LV F
t is the squared error loss (v◊(st) ≠ vtarg

t)2,

and S is an entropy bonus.

In our implementation of PPO, we use the LCLIP +V F +S objective func-

tion. Additionally, we use a generalized advantage estimator [41], where the

21

Algorithm PPO, Actor-Critic Style
for iteration=1,2,... do

for actor=1,2,...,N do
Run the policy fi◊old

in environment for T time steps
Compute advantage estimates Â1, ..., ÂT

end for
Optimize surrogate L wrt ◊, with K epochs and minibatch size M Æ NT
◊old Ω ◊

end for

Figure 2.1: PPO algorithm. Figure adapted from [55].

advantage is computed as:

Ât = ≠V (st) + rt + “rt+1 + ... + “T ≠t+1rT ≠1 + “T ≠tV (sT). (2.24)

Here, T is a parameter that represents the time steps in a sampled trajectory.

It is recommended that T be much smaller than the episode length [55].

2.1.7 Soft Actor-Critic

Haarnoja et al. [23], [24] introduced Soft Actor-Critic (SAC), an algorithm

that is considered to be useful in real-world applications due to its low sample

complexity and its robustness to di�erent hyperparameter settings. Unlike

PPO, which uses each experience only once for an update, SAC reuses past

experiences by saving them in a replay bu�er. For each network update, SAC

draws a sample of the experiences from the replay bu�er and uses these samples

to perform an update. SAC is considered to be an o�-policy algorithm; the

samples that are retained in the replay bu�er were collected under numerous

di�erent policies. (PPO, in contrast, is an on-policy algorithm; each experience

used in an update was generated under the same policy.)

One unique feature of SAC is that it is said to be robust to model error

22

and estimation error, due to the use of the maximum entropy framework in

defining its objective [24]. This framework adds an entropy bonus to the

standard RL objective, the expected return. The relative importance of the

entropy is controlled by a parameter, –, known as the temperature. So, the

optimal policy will maximize the sum of the expected return and the entropy

bonus, given by:

fiú = argmax
fi

ÿ

t

E(st,at)≥flfi [r(st, at) + –H(fi(·|st))]. (2.25)

With this objective, if more than one policy leads to optimal performance,

each policy will be assigned equal weight (i.e. multi-modal behaviour can be

found); additionally, learning speed is increased [24].

Our implementation of SAC utilizes two twinned Q-networks, each of which

is composed of two soft Q-networks. For one twinned Q-network, parameter-

ized by ◊, its comprising soft Q-networks are trained by minimizing the soft

Bellman residual:

JQ(◊) = E(st,at)≥D

C
1
2(Q◊(st, at) ≠ (r(st, at) + “Est+1≥p[V◊̃(st+1)]))2

D

. (2.26)

The remaining twinned Q-network, parameterized by ◊̃, is an exponential mov-

ing average of the first twinned Q-network’s weights. These weights are up-

dated using Polyak averaging. The target network is used to stabilize training

[24].

In addition to the twinned Q-networks, SAC utilizes a policy network. At

each update, the policy is updated to the exponential of the soft Q-function,

normalized by a partition function Zfiold(st). The new policy is restricted to a

set of policies �, which in our case, is the set of Gaussians. The new policy is

23

defined by:

finew = argmin
fiÕ œ�

DKL

A

fi
Õ(·|st)

exp(1

2Qfiold(st, ·))
Zfiold(st)

B

, (2.27)

where DKL is the Kullback-Leibler divergence.

The policy network, parameterized by „, is trained using the objective

function:

Jfi(„) = Est≥D[Eat≥fi„
[–log(fi„(at|st)) ≠ Q◊(st, at)]], (2.28)

where at is sampled using the re-parameterization trick:

at = f„(‘s; st). (2.29)

Here, ‘ is an input noise vector, sampled (in our case) from a Gaussian distri-

bution. This changes the objective to:

Jfi(„) = Est≥D,‘t≥N[–log(fi„(f„(‘s; st)|st)) ≠ Q◊(st, f„(‘s; st))] (2.30)

In the first published version of SAC [23], the temperature parameter was

set to some constant value. According to Haarnoja et al., this was the only

hyperparameter that needed tuning [23]. In the more recent version of SAC,

Haarnoja et al. [24] removed the need to manually set the task-specific tem-

perature parameter; rather they introduced a new method for automatically

tuning the temperature. This new method restrained the entropy across all

states to a predefined minimum value, thereby adding the flexibility to update

the entropy for individual states based on the uncertainty of the policy in these

states. For states that have been explored very little (or never), the entropy

could be increased; meanwhile, for states that have already been well explored,

24

Algorithm Soft Actor-Critic
Input: ◊1, ◊2, „

◊̃1 Ω ◊1, ◊̃2 Ω ◊2
D Ω ÿ
for each iteration do

for each environment step do
at ≥ fi„(at|st)
st+1 ≥ p(st+1|st, at)
D Ω D fi (st, at, rt+1, st+1)

end for
for each gradient step do

◊i Ω ◊i ≠ ⁄QÒ̂◊iJQ(◊i) for i œ {1, 2}
„ Ω „ ≠ ⁄fiÒ̂„Jfi(„)
– Ω – ≠ ⁄Ò̂–J(–)
◊̃i Ω ·◊i + (1 ≠ ·)◊̃i for i œ {1, 2}

end for
end for

Output: ◊1, ◊2, „

Figure 2.2: SAC algorithm. Figure adapted from [24].

the policy can behave more deterministically. The temperature parameter at

each time step t was found by solving:

–ú
t = argmin

–t

Eat≥fiú
t
[≠–tlogfiú

t (at|st; –t) ≠ –tH̃]. (2.31)

2.2 Related Work

2.2.1 Faults in the Real-World

Carlson and Murphy [7] conducted a series of studies on how unmanned ground

vehicles (UGVs) fail in the real-world. Their collected data included faults

experienced in one real disaster response (2001 World Trade Center disaster),

faults experienced over two years in regular-use UGVs, and faults experienced

in field tests of UGVs. Their studies included 24 robots from 7 di�erent
25

manufacturers, ranging in size from 8 lbs to 60,000 lbs. The majority of

failures across all studies were found to be physical failures. The most common

physical failure was e�ector failure (50%), followed by control system failure

(33%), the power source failure (9%), and sensor failure (9%). E�ector failure

was found to be caused by exposure to the environment, allowing for the

collection of dust and debris within the components.

Steinbauer [68] conducted a survey on the types of faults experienced in

the RoboCup competitions. In these competitions, research robots are typi-

cally used to demonstrate algorithmic and hardware advancements in robotics.

The 17 robots included in the study varied, including both custom-built robots

(80%) and commercially available robots (20%). From the survey responses,

it was determined that motor drivers and batteries are the components that

experience failures most frequently. The number one cause for these faults

was the connector; physical impact, wear and damage were other contribut-

ing factors. Sensors failures were found to be caused primarily by connector

problems. Sensor failures led to no data or inaccurate data being read by the

sensor. Finally, a robot’s manipulator was found to be the most vulnerable

robot component, and most important component, with 45% of faults being

terminal. The primary causes of manipulator faults were physical impact and

damage. Robots experiencing a fault were found to experience immobility,

erratic behaviour, and reduced control capability.

Visinsky et al. [77] identified critical robot components and their failure

modes. These components included sensors, joint motors, the power supply,

and the control computer. This work listed various failure models for a sensor,

including the failure mode frozen, which was defined as a sensor that failed

and continuously returned its last known value.

Gao et al. [21] identifies three fault classifications: 1) actuator faults (e.g.

26

a blocked actuator), 2) sensor faults (e.g. a sensor reading a constant value),

and 3) plant faults (e.g. the disconnection of a component).

For our work, we aimed to simulate real-world faults, drawing inspiration

from these studies that examined the type and frequency of faults a�ecting

real-world robots. From these studies, we selected a subset of commonly oc-

curring faults that included blocked or damaged joints, e�ector damage, and

sensor failure.

2.2.2 Meta-Reinforcement Learning

Clavera et al. [9] used model-based meta RL to enable a robot to quickly

adapt to changes in the environment, such as changes in the terrain, broken

or missing legs, and sensor miscalibration.

Clavera et al. [9] introduced a new algorithm that used two di�erent types

of learners - a gradient-based adaptive learner (GrBAL) and a recurrence-based

adaptive learner (ReBAL). Their algorithm utilized model-agnostic meta-learning

(MAML) [20] to learn an initial set of parameters for a generalized dynam-

ics model. For GrBAL, the dynamics model was represented using a neural

network and updates were performed using gradient descent; for ReBAL, the

dynamics model was represented using a recurrent neural network and updates

were performed using an update rule learned by the recurrent network.

To obtain the initial dynamics model using the MAML formulation, [9] had

both simulated robots and a real robot learn a gait while being exposed to a

variety of di�erent environments; the resulting dynamics model was general-

ized and easily adaptable to new tasks. Clavera et al. [9] found that when their

robots experienced new, never-seen environments, the learning agent’s dynam-

ics model adapted very quickly to the new environment. They showed that

model adaptation did indeed occur, as the incidence of model error was less

27

post-update compared to pre-update. They also showed that their methods,

GrBAL and ReBAL, were more sample e�cient than two traditional, model-

free methods: Trust Region Policy Optimization (TRPO) and MAML-RL.

[9] defined adaptation as reaching the asymptotic performance of the model-

free methods. Their methods required approximately 1.5-3 hours of real-world

experience to achieve adaption. The two model-free methods required approx-

imately two days of real-world experience to achieve adaptation. In addition,

for a small, predefined number of time steps equivalent to approximately 1.5-

3 hours of real-world experience, their methods showed a higher return after

a disturbance than the model-free TRPO, and two other model-based meth-

ods, Model-Based RL (MB) and Model-Based RL with Dynamic Evaluation

(MB+DE).

The results obtained with the GrBAL and ReBAL algorithms were very

favourable. Simulated experiments were conducted with OpenAI Gym’s Ant

and HalfCheetah. All real robot experiments were conducted with a single,

six-legged robot - millirobot.

In the work by Clavera et al. [9], reinforcement learning was used to enable

fast adaptation to faults (and changing environments). This is very similar to

our work, with the exception of the learning method. The work by Clavera

et al. [9] involved learning a generalized dynamics model for model-based RL.

We do not use model-based RL; our two target algorithms, PPO and SAC,

are model-free.

We have not included a comparison of the performance of [9] to our tar-

geted algorithms, PPO and SAC, in this work. Clavera et al. [9] already

compared their algorithm’s performance to the performance of the model-free

TRPO, showing that it performs far better (i.e. adaptation occurs significantly

quicker). We expected similar results when compared to our two targeted

28

model-free algorithms; that is, we expected that both GrBAL and ReBAL

would enable quicker adaptation to faults than both PPO and SAC. Clavera

et al. [9] showed extremely fast adaptation; in some cases, within time steps.

Our target algorithms do not adapt this quickly.

2.2.3 Select-Test-Update

Cully et al. [12] proposed a trial and error approach to recovery from failure.

In this approach, a robot simulator was used to automate the computation of a

behaviour performance map for a selected robot. The behaviour performance

map consisted of millions of di�erent simulated robot behaviours (e.g. di�erent

gaits with varying amounts of time that each leg touched the ground). Each

behaviour was associated with a predicted performance value and was assigned

a high level of uncertainty since the behaviour was not yet experienced by the

real robot. The behaviour performance map creation was considered to be a

time consuming process; however, it only needed to be created once for any

given robot.

Before taking an action, a real robot, with or without damage, would con-

sult the behaviour performance map to select a behaviour that had the highest

estimated performance. This behaviour would be executed in the real robot,

resulting in an actual performance rating for the behaviour. The estimated

performance of the behaviour and (nearby) similar behaviours within the be-

haviour performance map would be updated with the new performance value,

and the uncertainty estimation of the specific behaviour-performance entry

and nearby neighbours would be decreased. This trial-and-error search pro-

cess (select-test-update) would be repeated until a high-performing behaviour

was found. A high-performing behaviour was defined as "a behaviour whose

measured performance is greater than 90% of the best performance predicted

29

for any behaviour in the behaviour-performance map" [12, p. 2].

Cully et al. [12] found that by reducing the search space from a high-

dimensional parameter space (e.g. all joint positions and velocities) to a low-

dimensional behaviour space (e.g. gait patterns), the trial and error approach

was very successful. Their robot, a hexapod, was able to perform new tasks

better than their reference method, and adaptation to faults occurred on very

fast timelines (e.g. within minutes). Although attempted, no solution was

found when using the high-dimensional parameter space.

The work by Cully et al. [12] used AI techniques to adapt to faults through a

select-test-update method. This is similar to our work, in that their algorithm

adds hardware fault tolerance to a robot. However, their algorithm for adding

fault tolerance is not a reinforcement learning algorithm. Additionally, Cully

et al. [12] was unable to learn the adaptation task using the high-dimensional

parameter space; in our work, we show that our two target algorithms can

learn the adaptation task with the high-dimensional parameter space.

2.2.4 Environment Perturbations

Selfridge et al. [57] explored the ability of a reinforcement learning algorithm

to adapt to disturbances in the classic pole-balancing problem.

The pole balancing environment contains a vertical pole attached to a cart

on a 1 dimensional track. A force can be applied to either side of the cart,

moving it along the 1 dimensional track. The problem is initiated with the pole

in an upright (vertical) position and the cart centered along the 1 dimensional

track. When the problem starts, gravitation forces are applied to the pole,

causing it to fall to either the right or left. The learning agent’s task is to keep

the pole from falling by applying the appropriate force at either side of the

cart at each time step. The task continues until either the pole falls to one

30

side, the cart reaches the end of the track, or the problem time limit has been

reached.

A simple evaluation feedback was used on each task - if the problem ended

before 10,000 time steps, the task was considered to be a failure, and if the

pole was balanced for a minimum of 10,000 time steps, it was considered to

be a success.

Selfridge et al. [57] performed several experiments. In the first experiment,

the pole balancing task was first learnt under normal conditions. After learn-

ing this task under normal conditions, they then applied disturbances to the

problem and continued the learning process. The disturbances applied in-

cluded increasing the weight of the pole, shortening the pole, adding a bias to

the force that could be applied to each side of the cart, and adding a penalty

when the pole was nearly vertical. In the second experiment, they did not

learn the pole balancing task under normal conditions; the disturbances were

immediately applied to the pole and this was considered to be the learning

task.

Selfridge et al. [57] found that when the system was first trained on the

pole balancing task under normal conditions, subsequent adaptation to the

task with the mass and length disturbances would happen quickly, with fewer

failures than having to learn the task with disturbances from scratch. When

the system was exposed to a series of perturbations, such as a series of slight

changes in the biases of the force, the learned algorithm parameters were found

to be more generalized (thus, adaptable) to the continually changing task.

The work by Selfridge et al. [57] was a toy problem that added faults to the

system, described as perturbations; their algorithm subsequently facilitated

recovery, thereby showing it could add algorithmic fault tolerance. Although

useful, their task was a low-dimensional toy problem with faults that may not

31

necessarily be classified as real-world faults. Our tasks are higher-dimensional

and, although simulated, are more geared towards real-world robots. OpenAI

Gym’s Ant-v2, although a simulated four legged ant, is similar in some ways

to a hexapod robot. The SoftBank Robotics NAO is a real-world robot, but

we chose to first apply our methods in simulation, before applying them to a

real-world robot.

2.2.5 A Robot Reinforcement Learning Task

Mahmood et al. [37] set up a reinforcement learning task on a real-world

robot, and subsequently evaluated how di�erent components of the experi-

mental setup a�ected task performance; these included components such as

the medium of transmission, the action cycle time, and the action space.

In their experiments, Mahmood et al. [37] used a UR5 robot, which is

an industrial robot with 6 joints. The task with this robot was a reaching

task, utilizing either two or six actuated joints. For the task with six actuated

joints, namely UR5 Reacher 6D, an imaginary three dimensional box was

designated as the task space. This box had dimensions of 0.7 meters times 0.5

meters times 0.4 meters. At the start of an episode, the robot end e�ector was

positioned in the middle of the imaginary box. A target, three-dimensional

point was randomly selected from within the box boundaries. In each episode,

the robot’s end e�ector was tasked to reach the newly selected target point.

In this work, the observations, actions and rewards for the UR5 Reacher

6D task were derived from OpenAI Gym’s Reacher problem, with slight mod-

ifications. An observation included the position and velocity of each actuated

joint, the previous action, and the vector di�erence between the UR5 robot’s

end e�ector and the target. The reward function was defined to be the negative

of the Euclidean distance between the end e�ector and the target.

32

The choice of an action was one of the experimental components exam-

ined. The two choices included velocity control, where an action was composed

of target joint velocity commands, and smoothed position control, where an

action included smoothed target joint position commands. Mahmood et al.

[37] showed that velocity control resulted in better task performance than

smoothed position control.

The work by Mahmood et al. [37] was used to formulate the RL problem

setup for our NAO task. We used the same definition for states, actions and

rewards; in addition, we chose to use velocity control because it was shown to

have better task performance.

2.3 Robots

We will test our ideas on two simulated robots - OpenAI Gym’s Ant-v2, sim-

ulated with the MuJoCo physics simulator, and the SoftBank Robotics NAO

V5, simulated with Webots simulation software. This section will introduce

these two robots, briefly describing how their models are built and how the

model’s physical characteristics are defined. We will also introduce the setup

of the reinforcement learning problem for each robot.

2.3.1 OpenAI Gym Ant-v2 & MuJoCo

OpenAI Gym is an open-source collection of reinforcement learning environ-

ments. These environments are made accessible to the public so that new and

existing reinforcement learning algorithms can be evaluated and compared [4].

MuJoCo is a paid subscription physics simulator that is required to simulate

a sub-collection of the OpenAI Gym environments. MuJoCo was developed

to provide fast physics simulation, thereby furthering research in robotics and

33

Figure 2.3: The ant model in the simulated OpenAI Gym Ant-v2 environment.

other areas [73]. Our target environment, Ant-v2, is an OpenAI Gym envi-

ronment that requires MuJoCo physics simulation.

MuJoCo Ant-v2 Model

The OpenAI Gym Ant-v2 simulation [48] contains a four-legged ant model

(shown in Figure 2.3). MuJoCo defines the ant model using an XML file in

MJCF format. In this work, many of the malfunctions applied to the ant

robot required manual modification of this file. Here we introduce important

elements of the default OpenAI Gym Ant-v2 XML file; additional information

can be found in [53], [54]. Figure 2.4 displays a segment of the default Ant-v2

XML file.

In an XML file, there are a hierarchy of parent-child body relationships.

These parent-child relationships are expressed as a sequence of nested bodies.

At the highest level (top-level parent) is the world body, which is considered

to be the world frame. Nested within the world body is one or more children

bodies. In the case of Ant-v2, there is a single child of the world body, assigned

the name torso. Each of the world body children can also act as a parent and

34

Figure 2.4: A segment of the default OpenAI Gym Ant-v2 XML file.

35

may have child bodies of their own. In Ant-v2, the torso body has four child

bodies, two of which are shown in Figure 2.4 and are named front_left_leg

and front_right_leg. These child bodies can also act as parent bodies; nested

within the front_left_leg body are two children bodies, one named aux_1 and

the other unnamed.

Each child of the world body defines a segment of the model. For example,

the torso body defines the torso segment of the ant. The front_left_leg and

front_right_leg bodies define additional segments (i.e. the front legs) of the

ant.

Within all bodies, with the exception of the world body, there may be

additional elements which define linkages and joints within the body, and

each may contain special attributes. Linkages are defined by a geom element

and joints are defined by a joint element. In Ant-v2, each geom element (or

link) has attributes that include a name, a geometric shape (e.g. capsule),

a size (e.g. radius of the capsule geometry), and a fromto attribute defining

the link’s length, position, and orientation. In Ant-v2, each joint element has

attributes such as a name, a type (e.g. hinge), a position, an axis of rotation,

and a range. All measurable attributes have metric units; range angles are in

degrees.

Joint elements within a body are used to enable motion between the defined

parent-child linkages by adding one or more degrees of freedom, dependant on

the joint type. For example, a hinge joint adds one degree of freedom (DOF)

of rotation between a parent link and a child link. If no joint element exists

between a parent and child link, the two links are welded together. In the

Ant-v2 XML, the top-level child leg bodies are welded to the parent torso

body; in Figure 2.3, these welding are hidden as they are contained inside

the torso. Within each leg body, are three nested bodies, each assigned a

36

geom element, establishing that they are links; in addition, there are two joint

elements, allowing for motion between the links. For example, in Figure 2.4,

within the front_left_leg body, we see two joints assigned the names hip_1

and ankle_1. These are the ant’s hip joint, with attachment right at the torso,

and ankle joint, with attachment at the ant’s knee. In the Ant-v2 model, all

joints are hinge joints with a single DOF.

There are several optional, non-default attributes for both links and joints

that can be added to the Ant-v2 XML elements manually by a user. For

example, the limited attribute can be added to a joint element; this attribute

interacts with the range attribute and, according to [54], is required to restrict

the joint to the range set within the range attribute. If this attribute is not set,

then the joint element’s range attribute is ignored. For linkages, an optional

attribute is the rgba attribute, which is used to assign a non-default colour to

a link.

Modifications can be made to the XML file easily, while maintaining the

stability of the simulation. Modifications include adding additional links and/or

joints, and adding or altering geom element and joint element attributes. We

made slight modifications to the default XML file to ensure that our added

faults were functional and easily visible. For all joints within the XML file, we

added the limited attribute and set it to true, ensuring that the joint limits

were enabled. We also added the rgba attribute to some links to highlight

their importance (e.g. a link a�ected by a fault). When added, these links

were coloured red.

2.3.2 SoftBank Robotics NAO & Webots

The SoftBank Robotics NAO is a humanoid robot that was developed for

robotics research. The NAO is fully programmable and autonomous [59]. The

37

Figure 2.5: The NAO V5 in the Webots simulator. The Webots coordinate
system is displayed in the lower right.

standard NAO V6 model has 25 degrees of freedom, including two degrees of

freedom in the head, five degrees of freedom in each arm, one DOF in the hip,

and five degrees of freedom in each leg. There is an additional DOF in each

hand, allowing for the opening and closing of the fingers.

Webots is an open-source robot simulator that provides users the ability to

develop, program and simulate robots [17], [40]; Webots simulation software

has been used for projects in both academia and industry [13]. The current We-

bots distribution includes the NAO V5 robot and provides a well-documented

API for controlling the simulated NAO robot.

Webots NAO Model

Webots defines the NAO V5 model using a PROTO file [16]. Figure 2.6 shows

a segment of the default NAO PROTO file included in the Webots software.

The first section of the PROTO file, enclosed in square brackets, contains mod-

38

ifiable fields for the NAO. These include fields such as the robot’s translation

and rotation within the Webots world frame; the robot’s name, version and

degrees of freedom; control levels, such as setting the robot to a supervisor

mode, where it is capable of retrieving environment data not normally acces-

sible to a real NAO; physics attributes, such as the enabling or disabling of

self-collision; and sensor properties. The second part of the PROTO file, con-

tained within curly brackets, is the PROTO body. This section contains the

robot definition, which defines the robot’s constituent parts, including sensors,

linkages and joints, and describes the physical properties of these parts.

In a PROTO file, the highest-level definition, aside from the robot defini-

tion, is a joint type definition. A joint type definition has one or more child

devices, dependent on the joint type. In Figure 2.6, definition (DEF) RShoul-

derPitch is shown to be a Hinge2Joint. A Hinge2Joint, shown in 2.7, has two

degrees of freedom. Accordingly, DEF RShoulderPitch Hinge2Joint has two

child devices, one named RShoulderPitch and the other named RShoulderRoll.

Each child device is a joint and contains both a rotational motor and a posi-

tion sensor. For each child device (joint) in the PROTO file, device attributes

are specified - these include the maximum angular velocity, the minimum and

maximum joint positions, and the maximum torque. If a device attribute is

not specified, then this attribute takes on a default value of zero. Although

not shown in Figure 2.6, a PROTO file also contains links and link physical

attributes. A link’s physical attributes include density, mass, centre of mass,

and an inertia matrix. Within the PROTO file, all measurable attributes use

metric units and angle attributes use radian units.

Simple attributes within the PROTO file, such as the aforementioned child

device attributes, can be manually modified by a user and will be properly

expressed in the NAO simulation. Modifications to complex link attributes

39

Figure 2.6: A segment of the default PROTO file for the NAO.

40

Figure 2.7: A Webots Hinge2Joint with two degrees of freedom. Figure from
[15].

(e.g. mass) can cause instabilities in the simulation software.

There are some restrictions to the values that attributes can have within

a PROTO file. For device attributes, all minimum values must be less than

or equal to zero, and all maximum values must be greater than or equal to 0.

This restriction is important for two reasons: 1) for a single NAO joint, LEl-

bowRoll, with a small negative maximum joint angle, this restriction forces the

maximum joint angle within the PROTO file to be set to 0 (and thus, deviates

from the published value for the real NAO robot), and 2) for the application

of malfunction to the robot’s joints, this restriction limits the available mal-

function choices and their severity.

The NAO PROTO in Webots has additional deviation from the real world

NAO. The NAO PROTO file defines three separate motors to actuate the

three joints within each finger. In the real NAO, these joints are actuated

with a single motor.

Aside from the minor modification to the LElbowRoll joint’s range (and

matching modification to the RElbowRoll’s joint range), and the number

of motors controlling the NAO finger, all the devices, links, and attributes

listed within the Webots NAO V5 PROTO file are equivalent to the SoftBank

Robotics’ published data for the NAO V6 in [64]. (Few changes have been

made to the NAO structure across versions.)

41

2.3.3 NAO Kinematics

Kinematics is the study of motion in objects, without consideration of the

forces and mass causing the motion [39]. Kinematics is a useful tool when

working with robots. Robot kinematics can be classified into two related, but

distinct subcategories: forward kinematics and inverse kinematics. Forward

kinematics can inform on the position and orientation of a robot’s end e�ector,

given the positions of the robots joints, particularly those that contribute to the

end e�ector’s position and orientation. For example, one may want to know the

three dimensional position and orientation of a robot’s finger. To calculate this

using forward kinematics, one would input the current positions of all the arm

joints and finger joints into a forward kinematics solver. Inverse kinematics, in

contrast, can take a target position and orientation for a robot’s end e�ector in

three dimensional space and attempt to find a solution for the required joint

positions, such that the robot’s end e�ector attains the target position and

orientation. For the scope of this work, we are primarily focused on forward

kinematics and we use the forward kinematics to obtain the position of the

robot’s end e�ector. We are not concerned with the end e�ector’s orientation.

Kofinas et al. [34] presented a solution for the problem of forward and in-

verse kinematics for the NAO robot. The forward kinematics for both the

right and left arms of the NAO robot are included in their work. The forward

kinematics are computed to the NAO hand; the kinematics for the NAO fin-

gers are not included. [34] originally presented the kinematics for the NAO

V3; however, subsequent additions to their work have added the kinematics

for the NAO V4 and are available in [44]. Although their most recent kine-

matics calculations are for the NAO V4 model, they remain valid for the NAO

V6 model as there are minimal changes to the NAO’s structure across these

models.
42

Iberahim et al. [27] solved the forward kinematics of a virtual, four-joint

finger. They presented their step-by-step process for computing the forward

kinematics. These steps were utilized to extend the forward kinematics work

done by [34], [44] and compute the kinematics for the NAO to the inner fin-

gertip.

For this work, we extended the kinematic calculations done by Kofinas et

al. [34] by computing the kinematics to the NAO inner fingertip. We have

included these calculations in Appendix B.

43

Chapter 3

Experimental Setup

In this chapter, we introduce our experimental setup. We start by describing

the hardware on which our experiments were performed and the software we

used. We have chosen a subset of real-world faults to add to our robots. We

present each selected fault and describe how we applied the fault to our simu-

lated robots. We also introduce some new terminology, to be used throughout

the remainder of this work. We define a normal robot to be a robot with no

fault and a faulty robot as a robot with a fault. Finally, we describe impor-

tant elements of the two RL algorithms we use in this work, including added

algorithm features and the best performing hyperparameter settings.

3.1 Hardware and Software

Hardware. Our experiments were performed on Linux servers, running Ubuntu

20.04 and CentOS 7.8.2003. Each server was equipped with Tesla V100 GPUs.

Simulation software. For simulation of OpenAI Gym’s Ant-v2, we used

MuJoCo Pro version 1.50. For simulation of the SoftBank Robotics’ NAO,

we used the Webots R2020b revision 1 distribution. The Webots software

44

requires a machine with a display to run a simulation. To use the software

headless, on a remote server, we had to complete a few steps. Immediately

after installation of the Webots software on the server, we used Xpra [80],

an open-source remote display server and client, to forward the display to a

local machine. This step was required to initialize the software by closing the

in-built tutorial. (Webots could not be used headless without this step being

completed.) After this, we no longer needed to forward the display to a local

machine. To run our experiments, we used Xvfb [18], a display server, to run

the software headless through the terminal interface.

Environments. We conducted two distinct sets of experiments. For each set

of experiments, we created a unique virtual environment. These environments

were created using Anaconda 3 for the x86_64 architecture, version 4.9.1.

All virtual environments were setup with Python 3. The Python version and

added libraries for each environment are shown in Tables 3.1 and 3.2.

Table 3.1: Python version & added libraries for Stable Baselines implementa-
tions.

Ant-v2 Virtual Environment
Python 3.7.6
gym 0.16.0
stable-baselines 2.9.0
tensorflow-gpu 1.14.0

Algorithms. Stable Baselines [26] is a library that includes implementations

of popular RL algorithms. In our preliminary OpenAI Gym Ant-v2 experi-

ments, we used the Stable Baselines implementations of PPO and SAC. In

our later experiments, for the NAO, we used our own implementation of these

algorithms. Our implementations included additional features not included in
45

Table 3.2: Python version & added libraries for our implementations.

NAO Virtual Environment
Python 3.7.9

matplotlib 3.3.2
numpy 1.19.4
pandas 1.1.4
termcolor 1.1.0
torch 1.7.0+cu110

the Stable Baselines library.

3.2 Faults

The faults that were applied to our robots were intended to closely mimic real-

world faults. The faults that we applied fell into three categories: 1) blocked or

damaged joints, 2) e�ector damage, where an e�ector is any device on a robot

that interacts with its environment (e.g. a robot’s arms, legs, and fingers) and

3) sensor failure. To demonstrate successful adaptation, we aimed to apply

faults that would have a considerable e�ect on the robot’s abilities; if not for

adaptation, the robot would not be able to perform its task. Only a single

fault was applied to a robot at any given time.

OpenAI Gym Ant-v2 & MuJoCo

In OpenAI Gym’s Ant-v2, the ant is tasked to learn a gait that propels it

forward as fast as possible. (Specific details are provided in Section 3.3.) For

this reason, we apply our faults to the ant’s legs. We decided to target a single

leg on the ant. To choose the target leg, we opted to view the gait learned by

the ant with our two algorithms, PPO and SAC. We observed that the learned
46

gait primarily used two legs for forward motion, while the remaining two legs

were used for stability. To maximize damage, and severely reduce the ant’s

ability to perform its task (i.e. propel forward), we chose to target one of the

two legs primarily responsible for forward motion. Within the Ant-v2 XML

file, our target leg is named right_back_leg. The target leg is shown in Figure

3.1.

Blocked or damaged joint. When foreign material enters a joint, it can

cause the joint’s range of motion (ROM) to become restricted. Alternatively,

a joint can become damaged by some other means, and the normal ROM

reduced. Our first and second faults in Ant-v2 were blocked or damaged joints.

To simulate this type of fault, we reduced the ROM for a joint in the ant’s

target leg. Our first fault was applied to the hip_4 joint within the XML file.

For this joint, we changed the range attribute from [≠30, 30] degrees to [≠5, 5]

degrees. In a separate XML file, our second fault was applied to the ankle_4

joint. For this joint, we changed the range attribute from [30, 70] degrees to

[65, 70] degrees. Figure 3.1 shows the two joints within the target leg.

Broken, severed e�ector. In robots, it is common for end e�ectors to

become damaged. For this reason, the third fault we examined was a broken,

severed end e�ector. To simulate this fault within Ant-v2, we reduced the

length of the lower link within the target leg (i.e. the link in contact with

the floor). In the Ant-v2 XML file, this link (or geom element) is named

fourth_ankle_geom; we modified its fromto attribute, changing it from "0.0

0.0 0.0 0.4 -0.4 0.0" to "0.0 0.0 0.0 0.2 -0.2 0.0". Figure 3.2 shows the ant with

a broken, severed ankle link.

47

Figure 3.1: Hip and ankle joints within ant’s target leg. Target leg is coloured
red.

Figure 3.2: Ant with broken ankle in target leg. The target leg is coloured
red.

48

SoftBank Robotics NAO & Webots

In Webots, the NAO’s task is an arm reaching task (shown in Figure 3.3).

(Specific details on this task are provided in Section 3.3). This task actuates

the NAO’s arm joints and, in some cases, its finger joints. For this reason, we

applied our faults to the NAO’s actuated joints and their position sensors.

Blocked or damaged joint. A robot joint (or joint motor) can experience a

terminal fault. A terminal fault would stop all motion within the joint, leaving

the joint fixed in some position. (ROM is unchanged for all other arm joints.)

There are many possible causes for this type of behaviour. For example, this

could occur if the joint’s motor driver is faulty. Our first NAO fault is a

terminal fault in its ShoulderRoll joint. To simulate this type of fault in the

NAO’s right arm, we restricted all motion within the RShoulderRoll joint,

changing its range within the NAO PROTO file from [≠1.32645, 0.314159] to

[≠0.00, 0.00]. This type of fault restricts all shoulder adduction and abduction.

The restricted movements are shown in Figure 3.4.

Sensor failure. A robot’s sensors are susceptible to damage. The most com-

mon cause is faults in the connectors. A sensor fault can cause a inaccurate

reading (i.e. a random, biased or constant value), or no reading. Our second

fault is a frozen sensor; the sensor reads a constant value - its last recorded

position. We chose to have the ShoulderPitch sensor reading record a con-

stant value of ≠2.0 radians. This type of fault did not require modification of

the NAO’s PROTO file. Rather, within our code, we overwrote the position

sensor’s reading with this constant value.

Broken e�ector. A robot’s manipulator is the most sensitive part of the

robot. According to [68], damage to a robot’s manipulators results in terminal
49

(a) Front view.

(b) Side view.

Figure 3.3: NAO reaching task. An imaginary 3D box is in front of the NAO’s
body. At the start of each episode, a 3D point is randomly generated from
within the imaginary box’s boundaries. The NAO is tasked to touch the point
with its fingertip.

50

Figure 3.4: Shoulder abduction and adduction. Figure from [2].

failure of a robot 45% of the time; the robot is no longer able to perform its

task. Our third and final fault is damage to the NAO’s finger joints, resulting

in its finger (i.e. manipulator) being unable to extend normally. This is shown

in Figure 3.5. Again, this fault did not require modification to the NAO

PROTO. Rather, we altered the code by overwriting action commands for the

three finger joints. In the NAO RL problem, actions are velocity commands.

We set the target velocity and target position for the three finger joints to

0.0 meters/second and 0.0 radians, respectively. (Specific details on how we

implemented velocity control in the NAO are provided in Section 3.6.)

3.3 Reinforcement Learning Problem

OpenAI Gym Ant-v2

The task to be learned in OpenAI Gym’s Ant-v2 is to move the ant model

forward as quickly as possible through the actuation of its joints, while min-

imizing a control cost and a contact cost. In the Ant-v2 model, there are a

total of 8 controllable joints, including a hip joint and an ankle joint for each

of the four legs.

The Ant-v2 task can be formulated as a finite MDP. In the Ant-v2 en-

vironment, observations, actions and rewards are predefined; however, they

51

(a) Normal finger. All three finger joints are

free to move within their normal range.

(b) Faulty finger. All three finger joints are

locked at 0.0 radians.

Figure 3.5: The NAO manipulator.

52

can be manually edited by a user. For this work, we mostly used the default

observations, actions, and rewards, with one exception, where we modified the

structure of an observation. We now present the default Ant-v2 setup; later

we will outline the changes we made to an observation for one special case.

According to [47], a default Ant-v2 observation is expressed as an 111-

element array, consisting of:

• the z position of the torso (height),

• the orientation of the torso (quaternion x, y, z, w),

• 8 joint angles,

• the x, y, z velocity of the torso,

• the x, y, z angular velocity of the torso,

• 8 joint velocities, and

• the 84 external forces (cfrc_ext) applied to the links - this includes the

x, y, z forces and the x, y, z torques for each of the 14 links.

Within this array, the joint positions and joint velocities are ordered ac-

cording to their vertical order within the complete XML, which can be found

in [49]. Using names similar to those found in the XML file, this ordering is

as follows: front left leg hip, front left leg ankle, front right leg hip, front right

leg ankle, back leg hip, back leg ankle, right back leg hip and right back leg

ankle.

A default action, a, in OpenAI Gym’s Ant-v2 is an 8-element array con-

taining a torque command for each of the 8 joints. The ordering of the joint

torque commands contained within an action follow the same ordering as the

vertical ordering of joints within the complete XML file.
53

The reward function for Ant-v2 is the sum of the following:

• forward reward = v, where v is the velocity of torso (i.e. the change is

distance divided by the length of a time step),

• control cost = ≠1 ú 0.5 ú q
a2,

• contact cost = ≠1 ú 0.5 ú 1e≠3 ú q
clip((cfrc_ext), ≠1, 1)2, and

• survive reward = 1.0

In Ant-v2, there are two primary episode termination conditions; if either

occurs, an episode is terminated and the agent-environment interaction cycle

can be reinitiated. The first termination condition is in the episode length.

By default, episode lengths are limited to a maximum of 1000 time steps.

The second termination condition restricts the height of the ant model’s torso;

when the centre of mass of the ant torso falls below 0.2 meters or rises above

1.0 meters, the episode is terminated.

NAO Reinforcement Learning Problem

The task to be learned with the NAO robot is an arm-reaching task. Using a

single arm, the NAO is tasked to position its fingertip on a randomly generated

target goal in 3D space. In each NAO arm, there are a total of 5 actuated arm

joints that contribute to the position of its finger. Within the finger, there are

a total of 3 joints. For this work, we mostly left the finger joints unactuated

and set their position to 0.999 radians (or 57.29 degrees); this resulted in the

finger being fully extended. For a single experiment, we actuated the finger

joints, allowing them to take on any value within their normal range. We

first present the RL problem setup for the experiments with unactuated finger

joints; then we present the setup for the special case where we actuated the

finger joints.
54

The NAO reaching task can be formulated as a finite MDP. We base our

choice of the structure of states and actions, as well as the formulation of our

reward function, on the work done by [37]. In addition, we choose velocity

control, as [37] showed a higher average return with velocity control than

position control.

For the NAO reaching task, we defined a state to be an 18-element array,

composed of:

• 5 joint angles,

• 5 target joint velocities,

• the previous action (i.e. the previous step’s 5 target joint velocities), and

• the vector di�erence between the fingertip’s current 3D position and the

target 3D position.

Within this array, the joint angles and joint velocities are ordered according

to their their order in the arm kinematic chain: ShoulderPitch, ShoulderRoll,

ElbowYaw, ElbowRoll, and WristYaw.

An action in the arm reaching task is a 5-element array, composed of a

velocity command for each of the five arm joints. The ordering of the velocity

commands within this array followed the ordering of the arm kinematic chain.

The reward function for the NAO reaching task is defined as: Rt = ≠dt,

where dt is the Euclidean distance between the fingertip’s current 3D position

and the target 3D position.

There were two termination conditions in the NAO reaching task. The

first termination condition was the maximum episode length, which we set

to 1000 time steps. The second termination condition checked if the target

position had been reached. If the Euclidean distance between the NAO inner

55

fingertip’s 3D position and the target 3D position was less than 0.001 meters

(1 mm), we considered the target to have been reached, and the episode would

be terminated. After episode termination, the environment would be reset and

the agent-environment interaction cycle could be re-initiated.

Special Case. The third NAO malfunction of a broken e�ector, or damaged

manipulator, required us to actuate the NAO’s finger joints. In the normal

NAO, these joints had a full range of motion and could take on any value

within their normal range. In the faulty NAO, these joints no longer worked

as expected, and were locked at 0.0 radians. The addition of the three actuated

finger joints to our RL problem resulted in the action vector being assigned

an additional three elements, changing its size from 5-elements to 8-elements.

Our state vector was also a�ected by this change. Each joint is assigned two

elements within the state array - one for its velocity and one for its position.

The addition of three joints to the RL problem resulted in the addition of

three velocity elements and three position elements to the state vector. In

addition, because the action vector size had now increased by three elements,

three additional elements were required in the state vector for the previous

action component. Our new state vector was defined to an 27-element array,

composed of:

• 8 joint angles,

• 8 target joint velocities,

• the previous action (i.e. the previous step’s 8 target joint velocities), and

• the vector di�erence between the fingertip’s current 3D position and the

target 3D position.

56

The ordering of the joints angles and velocities within the state array, as

well as the ordering of the target velocities within the action array, followed

the ordering of the arm kinematic chain, with the addition of the three inner

finger joints, starting at the knuckle and ending at the finger tip. The reward

function was unchanged.

3.4 Algorithms

Added features. Our implementations of PPO and SAC included addi-

tional features not included in the Stable Baselines implementations. For

SAC, we added the option to automatically tune the entropy [24]. For PPO,

we added added options to linearly decay the learning rate, to clip the value

function, and to use a generalized advantage estimator (GAE) [41]. In our

experiments, we used some of these optional additional features, while others

we did not use. For SAC, we opted to automatically tune the entropy. For

PPO, we opted to decay the learning rate linearly and to use a generalized ad-

vantage estimator; however, we decided to not use the added feature of value

function clipping as it was shown to lead to lower rewards [28].

Neural networks. Both PPO and SAC use neural networks for learning.

In our implementation of PPO, we used an actor critic network that was

composed of two networks - a policy network and a value network. The policy

network had a di�erentiable parameter - the policy distribution’s log standard

deviation. Bot the policy network and the value network were feed-forward

networks, each consisting of an input layer, two hidden layers with 64 nodes

each, and one output layer. We added two code-level optimizations which

were shown to result in greater rewards with PPO; we used hyperbolic tan

activations, and orthogonal initialization of the networks [28]. To select an
57

action, we sampled from a multivariate normal distribution, using the policy

network’s output as the distribution mean, and a diagonal matrix, with the

distribution variance along the diagonal, as the co-variance.

For SAC, we used two twinned Q-networks, each of which was composed

of two Q-networks. All Q-networks were feed-forward networks with the same

architecture; each had an input layer, two hidden layers with 256 nodes each,

and one output layer. Actions were sampled from a Gaussian policy network,

using the outputs of the policy network as the distribution mean and distri-

bution standard deviation.

For both algorithms, we used the Adam optimizer [33].

Hyperparameters. The experiments with Stable Baselines were intended

to be preliminary, giving us a rough idea of the performance of PPO and SAC

in a faulty robot. For these experiments, we used the published hyperparame-

ters for PPO and SAC in [55] and [23], respectively. For later experiments, we

performed a hyperparameter search to find the best performing hyperparame-

ters. We assumed that machines are primarily optimized for use under normal

conditions, and not under faulty conditions. For this reason, a hyperparameter

search was conducted for each algorithm using the normal robot only. We then

used the same set of best-performing hyperparameters for experiments with

our faulty robot. The selected hyperparameters are shown in Tables 3.3-3.4.

Our hyperparameter plots are shown in Appendix C.

3.5 Experiments

Instead of having a single, continuous learning process, we structured some

of our experiments as a two-part process to minimize the time to complete

our experiments. By having each algorithm first learn with the normal robot,
58

Table 3.3: Hyperparameters used in Ant with Stable Baselines implementa-
tions of PPO and SAC. Parameters names match those used by the Stable
Baselines library in [26].

PPO
gamma 0.99
n steps 128
learning rate 0.00025
ent coef 0.01
vf coef 0.5
max grad norm 0.5
lam 0.95
nminibatches 4
nooptepochs 4
cliprange 0.2

SAC
gamma 0.99
learning rate 0.0003
bu�er size 1000000
train freq 1
batch size 256
tau 0.005
target update interval 1
gradient steps 1

then saving the learned data, we were able to use this saved data to continue

our training for many di�erent faults (without having to repeat the learning

with the normal robot more than once). We saved all data, such that the only

di�erence between running the algorithm continuously versus running it as a

two-part process, was the early termination of a single episode (i.e. the final

episode in the first half of the learning process). The data that was saved and

loaded is shown in Table 3.5. Webots, unfortunately, is unable to provide the

current seed state, so we were unable to save and load this. For continuation

of learning within a Webots experiment, we were forced to reset the seed state

to the experiment seed.

Proximal Policy Optimization (PPO)

PPO experiment 1. The learning algorithm was applied to the task with

the normal robot first, stopping the learning after a set number of time steps

59

Table 3.4: Best performing hyperparameters in NAO task for our implemen-
tation of PPO and SAC.

PPO
learning rate 0.00025
linear lr decay True
gamma 0.94
number of samples 256
mini-batch size 32
epochs 4
epsilon 0.1
vf loss coef (c1) 0.5
policy entropy coef (c2) 0.01
clipped value fn False
max grad norm 0.5
use gae True
gae lambda 0.95
hidden layers 2
hidden dim 64
log std 0.0

SAC
gamma 0.96
tau 0.005
alpha 0.2
learning rate 0.00045
hidden layers 2
hidden dim 256
replay bu�er size 1000000
batch size 256
model updates per step 1
target update interval 1
auto-tune entropy True

Table 3.5: Data saved and loaded for two-part learning process.

Saved/Loaded Data
experiment parameters
evaluation and loss data
seed states: random, numpy, torch, and torch cuda
(Ant-v2 only) Gym env seed states: seed and action space seed
algorithm models, optimizers, and parameters (if any)
number of updates
(SAC only) log alpha, replay bu�er contents
(PPO only) memory contents

60

(potentially terminating the final episode early). We applied a fault to the

robot. If policy evaluation was performed, we first evaluated the policy in

the task with the faulty robot. Then, we resumed training with the faulty

robot, retaining all the algorithm’s knowledge. This knowledge included all

the neural network data (i.e. model weights and parameter values) and all

the experiences stored in memory, if any. We stopped learning with the faulty

robot after a set number of time steps.

PPO collects a small number of experiences under the current policy and

saves these experiences in memory. Once the memory is full, the experiences

contained within it are used to update the model (i.e. update the policy).

After, they are discarded, and a new batch of experiences are collected under

the updated policy. We chose to not perform an experiment where we cleared

the memory for PPO before initiating the learning with a faulty robot. We

believed that retaining the experiences in memory would have a very short-

lived impact on the task performance immediately after the onset of a fault.

Mnih et al. [41] proposed a policy gradient implementation in which a finite set

of experiences are collected before each model update; the number of samples

collected should be fixed at a value that is much less than the episode length.

In our parameter search, described in Appendix C, when searching for the

parameter number of samples (i.e. memory size), we found that the best

memory size for the NAO task was 256. This is relatively small. At the start

of learning with the faulty robot, if any old, non-representative experiences

remained in memory (or, in the worst case, if the memory was full of old, non-

representative samples), the samples would be used in only one network update

to improve the model, then they would be discarded permanently. They would

be entirely replaced by new samples that are representative of the changed task.

61

For example, in our NAO task, complete replacement would occur within a

maximum of 256 time steps. So, these few retained old experiences in memory

would not impact performance for a long period of time. Experiments could

have be performed in which the memory was cleared at the onset of a fault,

but we did not believe that the results would have been very di�erent from

those obtained when the memory was retained. We felt that this was a trivial

choice.

PPO experiment 2. We immediately applied a fault to the robot. If policy

evaluation was performed, we evaluated the randomly initialized policy in the

task with the faulty robot. Then we ran the learning algorithm with the faulty

robot, stopping learning after a set number of time steps. There was no prior

learning with the normal robot.

Soft Actor-Critic (SAC)

One of the primary features of SAC is its use of a replay bu�er. The replay

bu�er used in our experiments with SAC contained 1 million experiences. We

initially chose this size because it was shown to do well in OpenAI Gym tasks

[23]. Additionally, Haarnoja et al. [23] stated that the only SAC hyperpa-

rameter that needed tuning was the reward scale, which was responsible for

controlling the policy’s entropy. Ideally, if time and resources were unlimited,

we would have tested this statement and tuned all our hyperparameters; how-

ever, we had to select a subset of parameters to tune. We were not certain

of the impact that a large replay bu�er would have on our problem, so we

decided to put it to the test.

We believed that for some cases, retaining a large replay bu�er may aid

fault adaptation, particularly if the robot’s dynamics were relatively unchanged

62

after the application of a fault. If we retained the replay bu�er in this case,

its contents could act like a model for the changed dynamics.

For other cases, we believed that a large replay bu�er might have hindered

adaptation, particularly if a fault caused the robot’s dynamics to change dra-

matically. In this case, at the onset of a fault, we would have a replay bu�er

containing 1 million experiences from the robot’s old dynamics; many, if not

all, experiences would no longer be representative of the changed task. At each

time step, SAC would draw samples from the non-representative replay bu�er

and uses these samples to update the networks, which includes the policy net-

work. In addition, only one entry of the replay bu�er would be replaced with

a new experience (generated from a biased policy). Overall, it would take 1

million time steps to completely replace the contents of the replay bu�er. The

e�ects of the prolonged network updates using the non-representative replay

bu�er contents could last longer than 1 million time steps. So, we believed that

retaining the replay bu�er could have have a detrimental e�ect on learning the

task with the faulty robot (i.e. adapting) for some faults.

To examine the e�ects of the large SAC replay bu�er on the problem of

adding fault tolerance to a robot, we added added experiments 1 and 2.

SAC experiment 1. The learning algorithm was applied to the task with

the normal robot first, stopping the learning after a set number of time steps.

We then applied a fault to the robot. If policy evaluation was performed, we

immediately evaluated the policy with the faulty robot. Then, we resumed

the learning algorithm with the faulty robot, retaining all the algorithm’s

knowledge from its experience with the normal robot. This knowledge includes

the algorithm’s replay bu�er contents and neural network data (i.e. model

weights). We stopping learning with the faulty robot after a set number of

63

time steps.

SAC experiment 2. We did the same procedure as in experiment 1 but

instead of retaining all the algorithm’s knowledge, we retained only some of

its knowledge. We discarded the replay bu�er contents but retained the neural

network data.

SAC experiment 3. We applied a fault to the robot. If policy evaluation

was performed, we evaluated a randomly initialized policy in the task with

the faulty robot. We then ran the learning algorithm with the faulty robot,

stopping the learning after a set number of time steps. There was no prior

learning with the normal robot.

Time steps & policy evaluation. Each algorithm was run for a di�erent

number of time steps. Similarly, if policy evaluation was performed, each

algorithm was evaluated at di�erent intervals. These settings are shown in

Table 3.6. For the NAO task, learning and evaluation could not be performed

concurrently due to limitations within the Webots software (i.e. only one robot

could be created per controller program and the seed state could not be saved

or loaded). To rectify this, we saved the current model at each evaluation point

during the learning process. After learning was complete, we began evaluating

all the saved models. At the start of each evaluation, we set the Webots

seed to the experiment seed, then we evaluated the deterministic policy for 10

episodes, calculating the average return across these episodes.

64

Table 3.6: Task learning time for each robot and policy evaluation frequency.

Time Steps Eval Frequency (Time Steps)
Stable Baselines implementations
PPO 10000000 No evaluation
SAC 3000000 No evaluation
Our implementations for NAO
PPO 6000000 10000
SAC 1500000 2000

3.6 Additional Considerations

Runs. Our experiments with Ant-v2 and Stable Baselines were intended to

be preliminary. For this reason, we only performed 5 independent runs for

these experiments. These experiments are included in this work as they were

part of the process that led us to the decision to implement our own versions

of the two algorithms. For all experiments with our own implementations, we

performed 30 independent runs.

Robot in Webots. When we initially attempted the learning task with

the NAO robot in Webots, the robot would rotate quite severely due to all

movement being limited to a single arm. This rotation made the learning task

very di�cult, and potentially impossible. (We did not see improvement in the

NAO’s capability to perform the task). To resolve this, we added a physics

plugin within the Webots software that attached the NAO frame to the world

frame, thereby preventing any rotation.

Imaginary box. The dimensions of our imaginary box were 0.055 meters

x 0.15 meters x 0.125 meters (or x=5.5 cm, y=15 cm, and z=12.5 cm). We

refer to this box as imaginary because it was not defined as an object that

65

Table 3.7: Translation of imaginary box in Webots (meters).

arm x y z
right 0.2125 0.43 0.0875
left 0.2125 0.43 -0.0875

could collide with the NAO and it was not assigned any physics properties.

Although it is part of our simulation, it was only added visually to ensure that

the task was being performed correctly. It is essential to know its positioning,

however, because all target positions were randomly generated from within its

boundaries. The coordinates for the centre of the imaginary box, for both the

left and right arms, are shown in Table 3.7.

Our final box was significantly smaller than we originally intended. We

found that with a larger box, many of the randomly generated points were

unreachable by the NAO (with a rigid finger). Thus, we limited ourselves to

a box in which all randomly generated points were reachable, which resulted

in a box with highly restricted dimensions. Later, after actuating the finger

joints, we found that the reachable area was increased and that the box di-

mensions could have been slightly expanded for this case. We did not test to

see how much the box could be expanded, nor did we expand the box for this

work, as our problem was already formulated and other experiments had been

completed.

Velocity control. Although the Webots software does allow for velocity

control, when velocity control is implemented as instructed in [14], restrictions

on the joint angle ranges are no longer maintained; rather, joints can rotate

freely with 360 degrees of motion. This behaviour was not acceptable for this

work, so we had to find an alternative method for velocity control. We decided

to use a modified version of position control, that we believe is equivalent to

66

pure velocity control. To implement our control method, we had to make two

changes. First, within our code, we changed the velocity range for an actuated

joint from [0, maxV elocity] to [≠maxV elocity, maxV elocity]. Webots does

not accept negative velocity commands, so the second change we made was

to convert our positive/negative velocity to a (Webots acceptable) position

and velocity command. If our target velocity was zero, we sent a command to

Webots to maintain the joint’s current position and to set the joint’s (angular)

velocity to 0.0 radians/second. If our target velocity was less than zero, we

sent a command to Webots to move to the joint’s minimum position and we

set the joint’s velocity to the absolute value of the target velocity. If our target

velocity was greater than zero, we sent a command to Webots to move to the

joint’s maximum position and we set the joint’s velocity to be the same as the

target velocity.

Target positions and velocities. Commands sent to a robot are target

positions or target velocities. For the NAO task, we observed that target

positions and velocities were never reached; rather, the (noisy) sensors would

read positions that were close to our target, but not exact. For this reason, we

had to define target ranges rather than exact target positions or velocities. For

example, if our target position was 0.2 radians for some joint, then a position

sensor reading in the range [0.2 ≠ 0.00005, 0.2 + 0.00005] radians would be

su�cient to indicate that our target position was reached. To simplify this

expression, we identified the position sensor readings to have a limit of 1e≠5,

or 0.00005. Velocity measurements, which relied on position sensor readings,

were assigned a similar limit of 1e≠5 radians/second. A limit also had to be

assigned for the computation checking to see whether the goal state had been

reached; the goal was considered reached if the Euclidean distance between

67

the NAO’s inner finger and the goal’s 3D position was less than or equal to

1e≠3 meters (1 mm). The accuracy of each position sensor in the NAO is 0.1

degrees; for all 5 arm joints combined, this was equivalent to approximately 1

mm of accuracy. This justified our decision to use the limit of 1 mm for the

goal computation.

Webots with Xvfb. In Section 3.1, we included a description of how we

used the Webots software headless on a remote server using Xvfb [18]. When

running Webots headless, we found that for some seeds, we would see an

unusual, severe degradation of performance. Our code was entirely repro-

ducible on our local machine (i.e. when we started experiments with the

same seed, we see the same trajectory of states, actions and rewards through-

out the entire experiment). However, when we would repeat experiments on

the remote server for a seed which displayed this degraded performance, we

would obtain di�erent results; the repeated experiments would behave as ex-

pected, with no severe degradation. This behaviour was unexpected and un-

explainable, and was not reproducible on our local machine. We believe it

may be linked to one commonly observed error. Many remote server experi-

ments signaled a non-terminal error, reported as "AL lib: (EE) ALCpulsePlay-

back_streamStateCallback: Received stream failure!". This error was present

for most remote experiments and did not always lead to degraded performance.

We can only hypothesize that this error may have led to some non-terminal

problem occurring within Webots, which a�ected the learning process for some

seeds. We observed this problem in experiments for a total of 23 seeds, drawn

from all our experiments with the NAO in Webots; ultimately, we opted to

repeat the experiments for these seeds, as they greatly influenced the learning

curve. For this reason, we believe that for future work it would be advisable

68

to not run Webots headless on a remote server with no display, if resources

are available. For us, due to limitations in our available local hardware, it was

absolutely necessary to run experiments remotely.

69

Chapter 4

Results and Discussion

In this chapter, we present our results for our targeted RL algorithms, SAC

and PPO, examining each algorithm’s ability to enable adaptation to faults

in the Ant-v2 walking task and the NAO reaching task. For the first time,

we show that adaptation to faults does indeed occur, and that performance

is regained after a period of learning. We also discuss the e�ect of di�erent

algorithm initializations on task performance after the onset of a fault. After

learning the task with the normal robot, each algorithm has knowledge of

the task. Here, by algorithm initialization, we mean the knowledge that is

retained at the start of the learning task with the faulty robot. The possible

combinations of retained knowledge are: 1) (for SAC only) retaining the replay

bu�er contents and model(s) learned in the normal robot task, 2) retaining

the model(s) learned in the normal robot task, and 3) discarding all learned

knowledge from the normal robot task.

70

4.1 OpenAI Gym Ant-v2

4.1.1 Results

We now present our preliminary experiments with Ant-v2, in which we used

the Stable Baselines [26] implementations of our two target algorithms, PPO

and SAC. These experiments were intended to be preliminary only; however,

they are included here because the results that we obtained with the Stable

Baselines implementations led us to re-evaluate our choice to use these im-

plementations, and consequently, implement our own versions of these two

algorithms. These experiments were also responsible for us changing the for-

mat for future experiments. The preliminary Ant-v2 experiments did not

include policy evaluation; rather we recorded the return for each episode. Our

goal was to compare adaptation for each algorithm after learning for a fixed

number of time steps; running learning for a fixed number of time steps of-

ten resulted in seeds with di�erent episode lengths. For these experiments,

we ran each experiment for a fixed number of time steps, however, we were

forced to truncate our plots to the seed with the minimum episodes so that

we could average our data across runs. These preliminary experiments were

our first experiments that showed adaptation to faults with a reinforcement

learning algorithm. Unfortunately, the number of runs was minimal (five) and

as such, the 95% confidence intervals, computed with a t-distribution (ideal for

small samples), are visibly very large. This prevents us from drawing defini-

tive conclusions about the di�erences in performance across each algorithm

initialization and each fault.

The results of the preliminary Ant-v2 experiments are shown in Figures

4.1-4.3. In these plots, we shifted the learning curves for PPO experiment 2

and SAC experiment 3 to the right. These experiments were performed with

71

no prior learning in the normal robot task, so the onset of a fault occurred at

episode 0. We considered this learning task to be identical to a learning task

where, after learning with the normal robot, the replay bu�er contents were

discarded (for SAC only) and the model weights were randomly re-initialized.

For comparison purposes, we have shifted this curve such that its origin is

inline with the onset of a fault for the other experiments. For PPO, this was

episode 18586. For SAC, this was episode 3359.

In each plot, the red marker indicates the onset of a fault. The shaded area

represents a 95% confidence interval. Each algorithm had di�erent initializa-

tions, which are indicated by the colour of the lines in each plot. Each PPO

plot shows two di�erent algorithm initializations: the retention or disposal of

the learned models. Each SAC plot shows three di�erent algorithm initial-

izations: the retention of the learned models and the replay bu�er contents,

the retention of the learned models and disposal of the replay bu�er contents,

and the disposal of all learned knowledge (i.e. learning from scratch). For the

discussion of our results, we will refer to performance on an algorithm often.

Here, we define the performance to be the average return in an episode. A

higher performance is equivalent to a higher average return.

4.1.2 Discussion

The results we obtained with the Ant-v2 task were surprising; this was partic-

ularly true for the observed contrast in performance between PPO and SAC.

When learning the task with the normal ant, SAC did significantly better,

achieving an average reward per episode of 5300. In contrast, PPO did not do

well at the task with the normal robot. The average reward attained by PPO

was, at its highest point, approximately 1000. When observing the learned

gait for each algorithm (by rendering the OpenAI Gym task), we observed

72

(a) PPO.

(b) SAC.

Figure 4.1: Hip range of motion decreased (from [-30, 30] to [-5, 5]). The
red marker indicates the onset of a fault. Labels indicate the data retained
after learning the task with the normal ant, if applicable. The shaded areas
correspond to a 95% confidence interval.

that the SAC gait was highly specialized. Two of the four legs were primarily

used for forward movement, while the remaining two legs were used to balance

the ant. The gait learned by SAC propelled the ant forward very quickly. In

73

(a) PPO.

(b) SAC.

Figure 4.2: Ankle range of motion decreased (from [30, 70] to [65, 70]). The
red marker indicates the onset of a fault. Labels indicate the data retained
after learning the task with the normal ant, if applicable. The shaded areas
correspond to a 95% confidence interval.

contrast, the gait learned with PPO appeared to have random, less-specialized

motion. All four legs were being used with the PPO gait, but there was no

apparent pattern and the learned gait was not as successful at propelling the

74

(a) PPO.

(b) SAC.

Figure 4.3: Lower limb severed. The red marker indicates the onset of a fault.
Labels indicate the data retained after learning the task with the normal ant,
if applicable. The shaded areas correspond to a 95% confidence interval.

ant forward; in fact, there was very little forward movement. One possible

(very likely) cause for this poor performance by PPO in the task with the

normal ant could be the fact that no hyper-parameter search was conducted

for this task. The hyperparameters used in the preliminary experiments were

75

those presented in each algorithm’s introductory paper [23], [55] for MuJoCo

tasks. For PPO, the performance for many MuJoCo tasks were included in

the introductory paper; however, the performance of PPO in the Ant-v2 task

was excluded.

When we examine the performance of each algorithm in the task with

the faulty ant, we once again see surprising results with the performance of

PPO. It appears that PPO was una�ected by the presence of a fault, as there

was no obvious degradation in performance. We believe that the gait learned

by the normal ant was too random and non-specialized to be a�ected. The

performance was already poor. In contrast, we see that the performance of

SAC was highly a�ected by each fault. We see a big drop in performance

after fault onset. We believe that, because the observed gait of SAC was

highly specialized, the application of a fault that targeted a leg responsible for

forward motion, caused the gait pattern to be significantly disrupted. This

led to a big drop in initial performance as the ant could no longer propel itself

forward as e�ciently. We confirmed our supposition by rending the OpenAI

Gym task. We saw that immediately after the application of a fault, the

ant that learned with SAC could not move forward as e�ectively, and in the

initial stages of learning, appeared to be staying near its initial (x, y) position

within the world frame. The fault severely disrupted its motion. In contrast,

immediately after the onset of a fault, the ant that learned with PPO appeared

to have no change in its seemingly random pattern of movements.

The 95% confidence intervals in these experiments are large, and as a re-

sult we cannot definitively draw conclusions about the statistical significance

between di�erent algorithm initializations. However, we will still try to dis-

tinguish a pattern from the results for SAC. Unfortunately, for PPO, the

performances after the onset of a fault are visually indistinguishable, so we

76

will refrain from looking for a pattern within these plots.

When comparing the results for each SAC initialization, across all three

faults, the results are somewhat inconclusive. For example, in the ankle range

of motion decrease fault (Figure 4.2b) and the lower limb severed fault (Figure

4.3b), it appears that learning from scratch leads to poorer final performance

than the other two algorithm initializations (within the allotted time frame).

In contrast, for the hip range of motion decrease fault, learning the task with

the faulty ant from scratch results in the best final performance. While our

results are not statistically significant, the cause of this observation may be

that the hip range of motion decrease fault causes the task to be dramatically

changed, and that all prior knowledge of the old task hinders the ant’s perfor-

mance. If this were certainly true, we would expect that the more knowledge

we have of the old task, the more severe the degradation in performance; how-

ever, this is not what we see. Retaining the replay bu�er contents and the

models leads to better performance that only retaining the models. So, the

replay bu�er contents, immediately after the onset of a fault, helped the ant

adapt to the fault. We may be able to understand what is happening here if

we consider the contrary case, and think about how emptying the replay bu�er

contents may impact performance. Immediately after the replay bu�er con-

tents are cleared, the replay bu�er begins to fill up with new experiences once

again. Initially, these new experiences are limited and are only representative

of a small portion of the overall task (i.e. relatively few states have been vis-

ited and few actions have been taken). Since the ant task is high-dimensional

(and complex), this may hinder its overall performance, when these limited

samples are being used to update the policy. It is possible that by clearing

the replay bu�er contents, actions are taken and updates are made, that ulti-

mately lead to a poorly performing policy. So why would a full replay bu�er

77

be better? Although the task is changed, it is possible that some of the expe-

riences contained within the replay bu�er are still valid. This would lead to

better network updates and a better performing policy than the case where we

empty the replay bu�er contents, and use only a small sample of experiences

to perform updates.

In the other two faults, ankle range of motion decrease fault and lower

limb severed fault, we once again see slightly contradictory results when we

examine the two algorithm initializations where some (or all) knowledge is

retained. For the ankle range of motion decrease fault, retaining the replay

bu�er and models led to a larger drop in performance immediately after the

onset of a fault than only retaining the models. In contrast, for the lower

limb severed fault, retaining the replay bu�er contents and models led to a

higher performance immediately after the onset of a fault than retaining only

the models. There may be an explanation for this observation. When we

rendered each of these faulty ants in OpenAI Gym, we observed that the

initial movement pattern of the ant with the lower limb fault was the least

di�erent from the normal ant’s movement pattern. If we think about how this

fault a�ected the ant, it makes sense. All the joints in the ant still had a

full range of motion. The only e�ect caused by the fault was a shorter leg.

In contrast, the ankle range of motion decrease fault caused the ankle to be

angled in an usual manner (at one end of the normal range of motion) and this

caused the movement pattern to be quite di�erent. Since the normal ant task

is similar to the lower limb severed task, we could reasonably assume that the

replay bu�er contents would be representative of this task. It contains state,

action, reward, next state transitions that are unchanged; in other words,

the underlying dynamics of the problem are unchanged. As a result, the

replay bu�er contents are still representative of this problem. By discarding

78

the replay bu�er contents, we lose valuable information for this fault, thus

we see a reduced performance when only the models are retained. For the

ankle range of motion decreased fault, the underlying environment dynamics

changed. Since we had restricted the range of motion, actions that would have

normally led to joint positions outside of the restricted range, now led to joint

positions within the restricted range. So, some of the experiences contained in

the replay bu�er were inaccurate. Using these inaccurate, non-representative

samples to make updates could have degraded the policy learned with the fault

present.

There is one more observation that further justifies how the replay bu�er

contents and models can aid adaption to a task where the underlying dynamics

are unchanged. We have already pointed out that for the lower limb severed

fault (Figure 4.3b), discarding all learned knowledge led to very poor perfor-

mance. Here, we see that by discarding this highly beneficial knowledge, the

performance attained after the onset of a fault is very poor. This shows that

the learning task with the fault present is more di�cult and may not even

be completely learnable without prior knowledge. The performance attained

after discarding all learned knowledge is similar to that attained with PPO.

4.2 SoftBank Robotics NAO in Webots

4.2.1 Results

We now present our results for the experiments with the SoftBank Robotics

NAO, simulated in Webots. Here, we use our own implementations of the

two target algorithms, PPO and SAC. We perform all experiments using the

NAO’s right arm. The arm used in the arm reaching task was a trivial choice;

our work allowed for either arm to be used.
79

In PPO experiment 2 and SAC experiment 3, there was no prior learning

in the task with the normal robot, so the onset of a fault occurred at time

step 0. To make the data from these experiments comparable to the data

obtained from the other experiments, we have once again shifted the learning

curves for these two experiments such that their origin lies at the fault marker,

positioned at time step 6.0 million for PPO and time step 1.5 million for SAC.

Figures 4.4, 4.5, and 4.6 show the learning curves for PPO and SAC for each

NAO fault. In each plot, the red marker indicates the onset of a fault. The

shaded area represents a 95% confidence interval, which we computed with a

t-distribution. Each algorithm has di�erent initializations, which are indicated

by the di�erent line colours. Within these plots, we measure performance as

the median return in a policy evaluation. A higher performance is equivalent

to a higher (more positive) median return.

We also present our statistical results, in tabular form. We performed a

series of paired t-tests. T-tests are used to determine if there is a significant dif-

ference between two variables for the same subject. For each t-test, our subject

was the robot. Here, we defined the robot’s task performance as the average

return computed in a single policy evaluation. We considered two variables for

our robot. The first variable was the robot’s average task performance before

a fault was applied. The second variable was the robot’s task performance at

some point after a fault was applied. For each algorithm initialization and

fault, we identified three critical periods after a fault was applied, using each

one as a second variable in a separate t-test. These included:

• the average performance in the 10 episodes after the onset of a fault;

• the average performance after partial adaption to a fault, where partial

adaptation for PPO was defined as 2 million time steps of learning with

80

the fault present, and partial adaptation for SAC was defined as 300,000

time steps of learning with the fault present; and

• the average performance after full adaptation to a fault, where full adap-

tation for PPO was defined as 5.9 million time steps of learning with the

fault present and full adaptation for SAC was defined as 1.498 million

time steps of learning with the fault present.

For each run, we computed the di�erence in performance between these two

variables. In each table we present the average di�erence across 30 independent

runs. We additionally provide the standard error, as well as the upper bound

and lower bound for a 95% confidence interval.

In many experiments, we had the normal NAO learn the arm reaching task

for some number of time steps before applying the fault; then, learning was

continued with the fault present. For each algorithm (and seed), the learning

of the normal NAO task was performed only once and all important data

was saved. Thus, for all t-tests, the performance prior to the application of a

fault is the same. This is assumed to be true for PPO experiment 2 and SAC

experiment 3, in which there was no prior learning (i.e. all learned knowledge

was discarded).

Two of the critical periods that we have defined for our t-tests define a set

number of time steps. The number of time steps chosen for each definition of

partial adaptation was intentional and was selected to highlight the di�erence

among the di�erent initializations for an algorithm. The number of time steps

chosen for each definition of full adaptation was based on the need for 10

policy evaluations to occur after full adaptation; thus, for each algorithm, we

obtained the number of time steps for full adaptation by subtracting 10 ◊

policy evaluation frequency from the total number of time steps allowed for

81

learning after the application of a fault.

The statistical results for PPO are shown in Tables 4.1, 4.2, and 4.3. The

statistical results for SAC are shown in Tables 4.4, 4.5, and 4.6.

82

(a) PPO.

(b) SAC.

Figure 4.4: RShoulderRoll range of motion decrease (range decreased to [0.0,
0.0] radians). The red marker indicates the onset of a fault. Labels indicate
the data retained after learning the task with the normal NAO, if applicable.
In (b), the brown and blue lines overlap most of the time. Later, the green
line overlaps them both. The shaded areas correspond to a 95% confidence
interval. Zoomed plots do not show confidence intervals.

83

(a) PPO.

(b) SAC.

Figure 4.5: RShoulderPitch frozen position sensor (always reading -2.0 radi-
ans). The red line marker indicates the onset of a fault. Labels indicate the
data retained after learning the task with the normal NAO, if applicable. In
(b), the brown and blue lines overlap in the first half of the experiment. After
the fault is applied, the green line mostly overlaps the brown line. Eventually,
all lines converge. The shaded areas correspond to a 95% confidence interval.
Zoomed plots do not show confidence intervals.

84

(a) PPO.

(b) SAC.

Figure 4.6: Broken inner finger (finger joints stuck at 0.0 radians despite com-
mands to move them). The red marker indicates the onset of a fault. Labels
indicate the data retained after learning the task with the normal NAO, if
applicable. In (b), the brown and blue lines overlap for most of the experi-
ment. Eventually, all lines converge. The shaded areas correspond to a 95%
confidence interval. Zoomed plots do not show confidence intervals.

85

Ta
bl

e
4.

1:
PP

O
.P

er
fo

rm
an

ce
im

m
ed

ia
te

ly
af

te
r

th
e

on
se

t
of

a
fa

ul
t.

Fo
r

ea
ch

ru
n,

th
e

se
ve

rit
y

of
th

e
dr

op
in

pe
rfo

rm
an

ce
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

af
te

r
a

fa
ul

t
wa

s
ap

pl
ie

d.
T

he
m

ea
n

is
th

e
av

er
ag

e
pe

rfo
rm

an
ce

dr
op

ac
ro

ss
30

ru
ns

.
Lo

we
r

bo
un

d
(L

B
)

an
d

up
pe

r
bo

un
d

(U
B

)
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
sh

ow
n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

Fa
ul

t
O

ns
et

P
P

O
M

ea
n

St
an

da
rd

E
rr

or
LB

U
B

R
Sh

ou
ld

er
R

ol
lr

an
ge

of
m

ot
io

n
de

cr
ea

se
(r

an
ge

de
cr

ea
se

d
to

[0
.0

,0
.0

]r
ad

ia
ns

)
re

ta
in

m
od

el
s

-2
1.

27
72

2.
66

77
-2

6.
73

27
-1

5.
82

17
no

pr
io

r
le

ar
ni

ng
-1

25
.5

29
2

4.
85

11
-1

35
.4

49
7

-1
15

.6
08

7
R

Sh
ou

ld
er

Pi
tc

h
fro

ze
n

po
sit

io
n

se
ns

or
(a

lw
ay

s
re

ad
in

g
-2

.0
ra

di
an

s)
re

ta
in

m
od

el
s

-2
0.

59
86

2.
52

23
-2

5.
75

67
-1

5.
44

05
no

pr
io

r
le

ar
ni

ng
-2

04
.1

54
9

8.
75

09
-2

22
.0

50
5

-1
86

.2
59

3
B

ro
ke

n
in

ne
r

fin
ge

r
(fi

ng
er

jo
in

ts
st

uc
k

at
0.

0
ra

di
an

s
de

sp
ite

co
m

m
an

ds
to

m
ov

e
th

em
)

re
ta

in
m

od
el

s
-2

9.
35

69
10

.2
90

7
-5

0.
04

77
-8

.6
66

1
no

pr
io

r
le

ar
ni

ng
-2

4.
32

01
16

.7
43

1
-5

7.
98

42
9.

34
4

86

Ta
bl

e
4.

2:
PP

O
.P

er
fo

rm
an

ce
af

te
r

pa
rt

ia
la

da
pt

at
io

n
to

a
fa

ul
t.

Fo
r

ea
ch

ru
n,

pa
rt

ia
lf

au
lt

ad
ap

ta
tio

n
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

af
te

r
le

ar
ni

ng
fo

r
2.

0
m

ill
io

n
tim

e
st

ep
s

w
ith

th
e

fa
ul

t
pr

es
en

t.
T

he
m

ea
n

is
th

e
av

er
ag

e
ch

an
ge

in
pe

rfo
rm

an
ce

ac
ro

ss
30

ru
ns

.
Lo

we
r

bo
un

d
(L

B
)

an
d

up
pe

r
bo

un
d

(U
B

)
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
sh

ow
n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

P
ar

ti
al

A
da

pt
at

io
n

P
P

O
M

ea
n

St
an

da
rd

E
rr

or
LB

U
B

R
Sh

ou
ld

er
R

ol
lr

an
ge

of
m

ot
io

n
de

cr
ea

se
(r

an
ge

de
cr

ea
se

d
to

[0
.0

,0
.0

]r
ad

ia
ns

)
re

ta
in

m
od

el
s

-4
.2

81
3

1.
34

81
-7

.0
38

1
-1

.5
24

5
no

pr
io

r
le

ar
ni

ng
-2

6.
01

91
0.

76
62

-2
7.

58
6

-2
4.

45
22

R
Sh

ou
ld

er
Pi

tc
h

fro
ze

n
po

sit
io

n
se

ns
or

(a
lw

ay
s

re
ad

in
g

-2
.0

ra
di

an
s)

re
ta

in
m

od
el

s
-0

.9
88

0.
43

64
-1

.8
80

5
-0

.0
95

5
no

pr
io

r
le

ar
ni

ng
-2

8.
83

28
11

.1
16

8
-5

1.
56

66
-6

.0
99

B
ro

ke
n

in
ne

r
fin

ge
r

(fi
ng

er
jo

in
ts

st
uc

k
at

0.
0

ra
di

an
s

de
sp

ite
co

m
m

an
ds

to
m

ov
e

th
em

)
re

ta
in

m
od

el
s

-1
46

.8
02

2
18

.9
80

5
-1

84
.9

64
9

-1
08

.6
39

5
no

pr
io

r
le

ar
ni

ng
49

.9
38

3
14

.8
80

2
20

.0
19

7
79

.8
56

9

87

Ta
bl

e4
.3

:P
PO

.P
er

fo
rm

an
ce

af
te

rf
ul

la
da

pt
at

io
n

to
a

fa
ul

t,
w

he
re

fu
ll

ad
ap

ta
tio

n
is

de
fin

ed
as

5.
9

m
ill

io
n

tim
es

te
ps

of
le

ar
ni

ng
w

ith
th

e
fa

ul
tp

re
se

nt
.F

or
ea

ch
ru

n,
fu

ll
fa

ul
ta

da
pt

at
io

n
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

fin
al

10
ev

al
ua

tio
ns

co
nd

uc
te

d
w

ith
th

e
fa

ul
t

pr
es

en
t.

T
he

m
ea

n
is

th
e

av
er

ag
e

ch
an

ge
in

pe
rfo

rm
an

ce
ac

ro
ss

30
ru

ns
.

Lo
we

r
bo

un
d

(L
B

)
an

d
up

pe
r

bo
un

d
(U

B
)

95
%

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

sh
ow

n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

Fu
ll

A
da

pt
at

io
n

P
P

O
M

ea
n

St
an

da
rd

E
rr

or
LB

U
B

R
Sh

ou
ld

er
R

ol
lr

an
ge

of
m

ot
io

n
de

cr
ea

se
(r

an
ge

de
cr

ea
se

d
to

[0
.0

,0
.0

]r
ad

ia
ns

)
re

ta
in

m
od

el
s

-0
.3

55
4

0.
24

99
-0

.8
66

3
0.

15
55

no
pr

io
r

le
ar

ni
ng

-1
1.

85
44

1.
27

24
-1

4.
45

66
-9

.2
52

2
R

Sh
ou

ld
er

Pi
tc

h
fro

ze
n

po
sit

io
n

se
ns

or
(a

lw
ay

s
re

ad
in

g
-2

.0
ra

di
an

s)
re

ta
in

m
od

el
s

0.
61

54
0.

24
14

0.
12

18
1.

10
9

no
pr

io
r

le
ar

ni
ng

-1
2.

86
51

11
.6

28
8

-3
6.

64
59

10
.9

15
7

B
ro

ke
n

in
ne

r
fin

ge
r

(fi
ng

er
jo

in
ts

st
uc

k
at

0.
0

ra
di

an
s

de
sp

ite
co

m
m

an
ds

to
m

ov
e

th
em

)
re

ta
in

m
od

el
s

-1
67

.3
41

7
20

.3
30

2
-2

08
.2

18
3

-1
26

.4
65

1
no

pr
io

r
le

ar
ni

ng
-4

4.
97

94
25

.6
39

7
-9

6.
53

12
6.

57
24

88

Ta
bl

e
4.

4:
SA

C
.P

er
fo

rm
an

ce
im

m
ed

ia
te

ly
af

te
r

th
e

on
se

t
of

a
fa

ul
t.

Fo
r

ea
ch

ru
n,

th
e

se
ve

rit
y

of
th

e
dr

op
in

pe
rfo

rm
an

ce
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

af
te

r
a

fa
ul

t
wa

s
ap

pl
ie

d.
T

he
m

ea
n

is
th

e
av

er
ag

e
pe

rfo
rm

an
ce

dr
op

ac
ro

ss
30

ru
ns

.
Lo

we
r

bo
un

d
(L

B
)

an
d

up
pe

r
bo

un
d

(U
B

)
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
sh

ow
n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

Fa
ul

t
O

ns
et

SA
C

M
ea

n
St

an
da

rd
E

rr
or

LB
U

B
R

Sh
ou

ld
er

R
ol

lr
an

ge
of

m
ot

io
n

de
cr

ea
se

(r
an

ge
de

cr
ea

se
d

to
[0

.0
,0

.0
]r

ad
ia

ns
)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-5
.6

07
5

0.
53

98
-6

.6
92

9
-4

.5
22

1
di

sc
ar

d
re

pl
ay

bu
�e

r
&

re
ta

in
m

od
el

s
-3

.4
83

9
0.

40
58

-4
.3

13
8

-2
.6

54
no

pr
io

r
le

ar
ni

ng
-1

28
.4

20
7

4.
20

46
-1

37
.0

19
2

-1
19

.8
22

2
R

Sh
ou

ld
er

Pi
tc

h
fro

ze
n

po
sit

io
n

se
ns

or
(a

lw
ay

s
re

ad
in

g
-2

.0
ra

di
an

s)
re

ta
in

re
pl

ay
bu

�e
r

&
m

od
el

s
-4

9.
70

94
3.

71
9

-5
7.

31
48

-4
2.

10
4

di
sc

ar
d

re
pl

ay
bu

�e
r

&
re

ta
in

m
od

el
s

-3
2.

92
39

2.
64

29
-3

8.
32

86
-2

7.
51

92
no

pr
io

r
le

ar
ni

ng
-1

20
.2

05
4

2.
86

71
-1

26
.0

68
7

-1
14

.3
42

1
B

ro
ke

n
in

ne
r

fin
ge

r
(fi

ng
er

jo
in

ts
st

uc
k

at
0.

0
ra

di
an

s
de

sp
ite

co
m

m
an

ds
to

m
ov

e
th

em
)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-1
8.

89
85

1.
69

01
-2

2.
23

75
-1

5.
55

95
di

sc
ar

d
re

pl
ay

bu
�e

r
&

re
ta

in
m

od
el

s
-1

8.
35

93
1.

07
48

-2
0.

44
44

-1
6.

27
42

no
pr

io
r

le
ar

ni
ng

-1
81

.8
42

8
4.

34
99

-1
90

.2
81

9
-1

73
.4

03
7

89

Ta
bl

e
4.

5:
SA

C
.P

er
fo

rm
an

ce
af

te
r

pa
rt

ia
la

da
pt

at
io

n
to

a
fa

ul
t.

Fo
r

ea
ch

ru
n,

pa
rt

ia
lf

au
lt

ad
ap

ta
tio

n
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

af
te

r
le

ar
ni

ng
fo

r
30

0,
00

0
tim

e
st

ep
s

w
ith

th
e

fa
ul

t
pr

es
en

t.
T

he
m

ea
n

is
th

e
av

er
ag

e
ch

an
ge

in
pe

rfo
rm

an
ce

ac
ro

ss
30

ru
ns

.
Lo

we
r

bo
un

d
(L

B
)

an
d

up
pe

r
bo

un
d

(U
B

)
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
sh

ow
n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

P
ar

ti
al

A
da

pt
at

io
n

SA
C

M
ea

n
St

an
da

rd
E

rr
or

LB
U

B
R

Sh
ou

ld
er

R
ol

lr
an

ge
of

m
ot

io
n

de
cr

ea
se

(r
an

ge
de

cr
ea

se
d

to
[0

.0
,0

.0
]r

ad
ia

ns
)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-1
.0

13
0.

10
04

-1
.2

14
9

-0
.8

11
1

di
sc

ar
d

re
pl

ay
bu

�e
r

&
re

ta
in

m
od

el
s

-0
.5

81
8

0.
06

24
-0

.7
09

4
-0

.4
54

2
no

pr
io

r
le

ar
ni

ng
-0

.9
84

3
0.

07
66

-1
.1

40
9

-0
.8

27
7

R
Sh

ou
ld

er
Pi

tc
h

fro
ze

n
po

sit
io

n
se

ns
or

(a
lw

ay
s

re
ad

in
g

-2
.0

ra
di

an
s)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-1
.5

36
1

0.
16

7
-1

.8
77

5
-1

.1
94

7
di

sc
ar

d
re

pl
ay

bu
�e

r
&

re
ta

in
m

od
el

s
-0

.7
94

9
0.

51
38

-1
.8

45
7

0.
25

59
no

pr
io

r
le

ar
ni

ng
-0

.3
88

4
0.

04
25

-0
.4

75
3

-0
.3

01
5

B
ro

ke
n

in
ne

r
fin

ge
r

(fi
ng

er
jo

in
ts

st
uc

k
at

0.
0

ra
di

an
s

de
sp

ite
co

m
m

an
ds

to
m

ov
e

th
em

)
re

ta
in

re
pl

ay
bu

�e
r

&
m

od
el

s
-1

2.
15

77
3.

83
52

-1
9.

73
47

-4
.5

80
7

di
sc

ar
d

re
pl

ay
bu

�e
r

&
re

ta
in

m
od

el
s

-8
.7

36
8

0.
62

31
-9

.9
45

6
-7

.5
28

no
pr

io
r

le
ar

ni
ng

-8
.1

90
9

0.
54

95
-9

.2
56

9
-7

.1
24

9

90

Ta
bl

e
4.

6:
SA

C
.P

er
fo

rm
an

ce
af

te
r

fu
ll

ad
ap

ta
tio

n
to

a
fa

ul
t,

w
he

re
fu

ll
ad

ap
ta

tio
n

is
de

fin
ed

as
1.

49
8

m
ill

io
n

tim
e

st
ep

s
of

le
ar

ni
ng

w
ith

th
e

fa
ul

tp
re

se
nt

.
Fo

re
ac

h
ru

n,
fu

ll
fa

ul
ta

da
pt

at
io

n
is

m
ea

su
re

d
as

th
e

di
�e

re
nc

e
be

tw
ee

n
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

10
ev

al
ua

tio
ns

be
fo

re
a

fa
ul

t
wa

s
ap

pl
ie

d
an

d
th

e
m

ea
n

pe
rfo

rm
an

ce
in

th
e

fin
al

10
ev

al
ua

tio
ns

co
nd

uc
te

d
w

ith
th

e
fa

ul
t

pr
es

en
t.

T
he

m
ea

n
is

th
e

av
er

ag
e

ch
an

ge
in

pe
rfo

rm
an

ce
ac

ro
ss

30
ru

ns
.

Lo
we

r
bo

un
d

(L
B

)
an

d
up

pe
r

bo
un

d
(U

B
)

95
%

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

sh
ow

n.

P
er

fo
rm

an
ce

D
ro

p
A

ft
er

Fu
ll

A
da

pt
at

io
n

SA
C

M
ea

n
St

an
da

rd
E

rr
or

LB
U

B
R

Sh
ou

ld
er

R
ol

lr
an

ge
of

m
ot

io
n

de
cr

ea
se

(r
an

ge
de

cr
ea

se
d

to
[0

.0
,0

.0
]r

ad
ia

ns
)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-0
.5

23
5

0.
05

84
-0

.6
41

-0
.4

06
di

sc
ar

d
re

pl
ay

bu
�e

r
&

re
ta

in
m

od
el

s
-0

.5
12

6
0.

05
71

-0
.6

29
4

-0
.3

95
8

no
pr

io
r

le
ar

ni
ng

-0
.5

27
4

0.
05

77
-0

.6
45

5
-0

.4
09

3
R

Sh
ou

ld
er

Pi
tc

h
fro

ze
n

po
sit

io
n

se
ns

or
(a

lw
ay

s
re

ad
in

g
-2

.0
ra

di
an

s)
re

ta
in

re
pl

ay
bu

�e
r

&
m

od
el

s
-0

.1
12

5
0.

03
48

-0
.1

83
7

-0
.0

41
3

di
sc

ar
d

re
pl

ay
bu

�e
r

&
re

ta
in

m
od

el
s

-0
.0

7
0.

00
67

-0
.0

83
8

-0
.0

56
2

no
pr

io
r

le
ar

ni
ng

-0
.0

71
6

0.
00

73
-0

.0
86

5
-0

.0
56

7
B

ro
ke

n
in

ne
r

fin
ge

r
(fi

ng
er

jo
in

ts
st

uc
k

at
0.

0
ra

di
an

s
de

sp
ite

co
m

m
an

ds
to

m
ov

e
th

em
)

re
ta

in
re

pl
ay

bu
�e

r
&

m
od

el
s

-1
5.

30
37

6.
39

05
-2

7.
92

91
-2

.6
78

3
di

sc
ar

d
re

pl
ay

bu
�e

r
&

re
ta

in
m

od
el

s
-6

.3
31

3
0.

50
18

-7
.3

04
7

-5
.3

57
9

no
pr

io
r

le
ar

ni
ng

-5
.7

80
7

0.
47

43
-6

.7
00

9
-4

.8
60

5

91

4.2.2 Discussion

It would be ideal for an algorithm to be robust to a dynamic environment,

and to see only small perturbations in performance after a fault occurs. Large

changes in performance could easily equate to irregular behaviour. Irregular

behaviour, even that which is temporary, could lead to further damage to a

robot and potentially to surrounding objects or persons. To evaluate each al-

gorithm’s ability to enable adaptation to faults, we considered three evaluation

conditions:

• its performance immediately after the onset of a fault,

• its performance after partial adaptation to a fault, and

• its performance after full adaptation to a fault.

We will first focus on two faults: RShoulderRoll range of motion decrease

and RShoulderPitch frozen position sensor. The remaining fault, broken inner

finger, is an outlier. We reserve our discussion of this fault for last.

Visually, our results (for the two faults) show that the retention of learned

knowledge generally leads to less degradation in performance in the initial

stages of adaptation that disposal of the learned knowledge. For PPO, the

learned knowledge is the model weights, while for SAC, the learned knowledge

is both the model weights and the replay bu�er contents.

Retained models are beneficial in the early stages of learning because, from

the experience of the learning task with the normal robot, the models have

learned to define good behaviours in the robot’s di�erent states and have well-

formed estimates of the values of these states (or state-action pairs). When

our faults are applied, the dynamics may change; if the dynamics change, they

only change to some degree, while much of the dynamics remains the same.

92

Table 4.7: Summary of the performance immediately after the onset of a fault.
95% confidence intervals are shown. Original data in Tables 4.1 and 4.4.

Performance Drop After Fault Onset
PPO SAC

RShoulderRoll range of motion decrease
retain models [-26.7327, -15.8217] [-4.3138, -2.654]
no prior learning [-135.4497, -115.6087] [-137.0192, -119.8222]
RShoulderPitch frozen position sensor
retain models [-25.7567, -15.4405] [-38.3286, -27.5192]
no prior learning [-222.0505, -186.2593] [-126.0687, -114.3421]

Although the policy and value estimates may now be incorrect for the new

task, it is likely that they are incorrect to a smaller degree than when we

throw away all knowledge. When we throw away all knowledge, we start with

randomly initialized networks; so, our policy initially behaves randomly and

our value estimates are highly inaccurate. It takes time to re-establish a good

policy and good value estimates, so in the initial stages of learning, we would

expect poor performance. The statistical analysis of our data (summarized in

Table 4.7) supports the visual results. Immediately after the onset of a fault,

retention of the models is better than no prior learning for both PPO and

SAC.

Visually, our results also show that, for SAC, disposal of the replay bu�er

contents generally leads to better performance in the initial stages of learning

than retention of the replay bu�er contents. At the start of learning the task

with the faulty robot, the experiences contained within the replay bu�er are

non-representative of the changed task. With a large replay bu�er, it takes a

long time to replace the contents with new, representative samples; thus, at

each time step, the samples being used to update the policy and value functions

are based on old experiences. This can hinder adaptation in the initial stages.

93

Table 4.8: Summary of the performance immediately after the onset of a fault.
95% confidence intervals are shown. Here, discard replay bu�er refers to the
algorithm initialization condition where the replay bu�er is discarded and the
models are retained. Original data in Table 4.4.

Performance Drop After Fault Onset
SAC

RShoulderRoll range of motion decrease
retain replay bu�er [-6.6929, -4.5221]
discard replay bu�er [-4.3138, -2.654]
RShoulderPitch frozen position sensor
retain replay bu�er [-57.3148, -42.104]
discard replay bu�er [-38.3286, -27.5192]

In Table 4.8, we present our statistical results that support this claim; there is

a statistically significant di�erence in the initial performance between retention

and disposal of the replay bu�er for both faults, and among the two faults, the

most severely a�ected is the RShoulderPitch frozen position sensor fault. The

large initial degradation of the RShoulderPitch frozen position sensor fault may

be indicative that, initially, this fault is more severe than the RShoulderRoll

range of motion fault.

After learning the task with a faulty robot for a predefined amount of

time (i.e. 2.0 million time steps for PPO and 300,000 time steps for SAC),

partial adaptation was achieved. Similar to the initial adaptation stage, we

would want to ideally see a high performance at this stage. Visually, for PPO,

retention of the learned models shows obvious higher partial adaptation per-

formance than discarding the learned models. Our statistical results for PPO,

summarized in Table 4.9, support the visual results. For SAC, the di�er-

ent algorithm initializations start to converge at 1.8 million time steps, so it

is hard to di�erentiate their performances visually. Our statistical analysis

94

Table 4.9: Summary of the performance after partial adaptation to a fault.
Replay bu�er is indicated by RB. 95% confidence intervals are shown. Original
data in Tables 4.2 and 4.5.

Performance Drop After Partial Adaptation
PPO SAC

RShoulderRoll range of motion decrease
retain RB & models N/A [-1.2149, -0.8111]
retain models [-7.0381, -1.5245] [-0.7094, -0.4542]
no prior learning [-27.586, -24.4522] [-1.1409, -0.8277]
RShoulderPitch frozen position sensor
retain RB & models N/A [-1.8775, -1.1947]
retain models [-1.8805, -0.0955] [-1.8457, 0.2559]
no prior learning [-51.5666, -6.099] [-0.4753, -0.3015]

shows that for the RShoulderRoll range of motion decrease fault, discarding

the replay bu�er contents and retaining the models is better than all other

SAC initializations; the two remaining algorithm initializations are not statis-

tically di�erent and cannot be distinguished. It could be the case that, after

starting from scratch, SAC has learned enough such that the performance of

this algorithm initialization matches the slightly hindered performance of the

retention of a full replay bu�er (and models). For the RShoulderPitch frozen

position sensor fault, our statistical analysis shows a significant di�erence be-

tween the no prior learning initialization and the retention of the replay bu�er

and models initialization; all other algorithm initialization pairs are not statis-

tically di�erent. By this point, the robot has significantly adapted to the fault

and only minor subsequent adaptation occurs. Calculations on the percentage

of adaptation at the 1.8 million time step marker for this fault indicate that

over 96% of adaptation has occurred for all three algorithm initializations.

The fast adaptation to the RShoulderPitch frozen position sensor fault with

95

Table 4.10: Summary of the performance after full adaptation to a fault.
Replay bu�er is indicated by RB. 95% confidence intervals are shown. Original
data in Tables 4.3 and 4.6.

Performance Drop After Full Adaptation
PPO SAC

RShoulderRoll range of motion decrease
retain RB & models N/A [-0.641, -0.406]
retain models [-0.8663, 0.1555] [-0.6294, -0.3958]
no prior learning [-14.4566, -9.2522] [-0.6455, -0.4093]
RShoulderPitch frozen position sensor
retain RB & models N/A [-0.1837, -0.0413]
retain models [0.1218, 1.109] [-0.0838, -0.0562]
no prior learning [-36.6459, 10.9157] [-0.0865, -0.0567]

SAC is our first evidence that the overall learning task with this fault may be

easier than the learning task with the RShoulderRoll range of motion decrease

fault.

After learning the task with the faulty robot for an extended time (i.e. 5.9

million time steps for PPO and 1.498 time steps for SAC), full adaptation is

reached. Visually, for the RShoulderRoll range of motion decrease fault, it

is clear that for PPO, the algorithm initialization in which the models were

retained has a better performance than discarding the models. For the RShoul-

derPitch frozen position sensor fault, the performances of the two algorithm

initializations converge. Table 4.10 summarizes our statistical data for the

performance of each algorithm initialization after full adaptation. Here, we

can see that the di�erence in performance of these two PPO initializations for

the RShoulderPitch frozen position sensor fault are not statistically significant;

the confidence intervals overlap. The confidence interval for the disposal of the

models algorithm initialization is large. As a result, it would be beneficial to

96

perform more runs with this algorithm initialization to better distinguish its

performance.

For both PPO initializations with the RShoulderPitch frozen position sen-

sor fault, the upper bound 95% confidence intervals extended into positive

values, indicating the possibility that the true mean performance of the task

with the faulty NAO may be higher than that with the normal NAO. For the

retention of the models algorithm initialization, the lower bound of the 95%

confidence interval was also positive. There are a few possible explanations for

these observations. First, although the PPO learning curve with the normal

NAO appears to stabilize for a short time, it is possible that learning was

incomplete, and that a better policy could have been found with an extended

learning period; the extended number of time steps to learn with the faulty

robot may have helped in learning a better policy. Second, it is possible that

the learning task with this fault is easier for PPO to learn. (We have already

seen that, for this fault, SAC achieved over 96% adaptation at the partial

adaptation marker of 1.8 million time steps.) By overwriting the position sen-

sor reading, the models may begin to learn that this input is not useful; this

may result in the agent learning the reduced-dimension task slightly better.

For SAC, the di�erences in the full adaptation performance for each algorithm

initialization are visually indistinguishable and are not statistically significant.

We expect that a robot experiencing a hardware fault would have a slightly

degraded task performance, even after full adaptation. In most cases, the per-

formance drop after full adaptation was negative, verifying that performance

was slightly degraded. In Table 4.11, we summarize our statistical data in the

form of t-values. For SAC, these di�erences in performance were all statis-

tically significant, as their t-values were all greater than the critical value of

2.045. For PPO, two of the four combinations of algorithm initializations and

97

Table 4.11: Summary of the performance after full adaptation to a fault.
Replay bu�er is indicated by RB. Computed t-values are shown. For our
sample size (30), a t-value greater than the critical value of 2.045 indicates
that the di�erence between our two variables is significant. Original data in
Tables 4.3 and 4.6.

Performance Drop After Full Adaptation
PPO SAC

RShoulderRoll range of motion decrease
retain RB & models N/A 8.9640
retain models 1.4222 8.9772
no prior learning 9.3166 9.1404
RShoulderPitch frozen position sensor
retain RB & models N/A 3.2328
retain models 2.5493 10.4478
no prior learning 1.1063 9.8082

faults resulted in statistically significant di�erences, while the remaining two

were not statistically significant. That is, for two combinations there was no

significant di�erence between pre-fault and post-adaptation performance, in-

dicating highly successful adaptation to a fault. These two combinations are:

1) RShoulderRoll range of motion decrease, with the retention of the models

and 2) RShoulderPitch frozen position sensor, with no prior learning.

So, from our observations so far, we conclude that both PPO and SAC are

generally able to add hardware fault tolerance to our robot, NAO. Both algo-

rithms were very successful at this task, reaching a full adaptation performance

close to that attained without the fault present. Additionally, in two cases,

we have seen PPO reach a full adaptation performance with the fault present

that is not statistically di�erent from that attained without the fault present.

When we additionally consider the performance immediately after the onset of

a fault, we have mixed results that do not support that one algorithm is better

98

than the other. What we can suggest is that retaining the models and, for

SAC, discarding the replay bu�er contents leads to better initial performance.

When we consider the performance after partial adaption, for PPO, retention

of the models consistently performs better. For SAC, discarding the replay

bu�er contents and retaining the models performs better for one fault, while

for the other fault, adaptation for all algorithm initializations has already been

mostly achieved. If fast adaptation to a fault is required, then we conclude

that SAC may be a better algorithm choice. In this case, to achieve the best

initial performance after the onset of a fault, we recommend that the replay

bu�er contents are discarded and that the models are retained. However, if

complete adaptation to a fault is required, we would recommend the use of

PPO. We have seen half of our combinations of algorithm initializations and

faults result in a performance that is just as good as the task performance

with no fault present. In addition, to achieve the best initial performance

with PPO, we recommend that the model is retained.

Now we consider the final fault, a broken inner finger. We consider this

fault to be an outlier in our results for both algorithms. For PPO, the per-

formance severely degrades overtime after the onset of a fault. In fact, we

see that performance starts to degrade even before the onset of a fault. This

is unexpected. However, we believe that several factors (or a combination of

them) may contribute to this observation. First, one of the requirements for

PPO to learn a good policy is a good sample size (i.e. memory size) and the

required sample size increases with task complexity [24], [28]. We performed

a hyperparameter search for our original task, in which the finger joints were

not actuated; actuating the finger joints was a decision made towards the end

of our work. The task with actuated finger joints is much more complex as we

increased the number of actuated joints from five to eight. So, it may be neces-

99

Table 4.12: Summary of the performance during adaptation to a fault. Replay
bu�er is indicated by RB. 95% confidence intervals are shown. Original data
in Tables 4.1-4.6.

Broken Inner Finger Fault
PPO SAC

Performance drop immediately after the onset of a fault
retain RB & models N/A [-22.2375, -15.5595]
retain models [-50.0477,-8.6661] [-20.4444, -16.2742]
no prior learning [-57.9842, 9.344] [-190.2819, -173.4037]
Performance after partial adaptation to a fault
retain RB & models N/A [-19.7347, -4.5807]
retain models [-184.9649, -108.6395] [-9.9456, -7.528]
no prior learning [20.0197, 79.8569] [-9.2569, -7.1249]
Performance after full adaptation to a fault
retain RB & models N/A [-27.9291, -2.6783]
retain models [-208.2183, -126.4651] [-7.3047, -5.3579]
no prior learning [-96.5312, 6.5724] [-6.7009, -4.8605]

100

sary to increase the memory size to learn a good policy with PPO in this task.

The performance degradation prior to the onset of a fault, and with random

initialization of the networks after the onset of a fault, both provide evidence

to support this claim. Second, in our work with PPO, we commonly observed

that the entropy of the policy distribution would temporarily increase after

the onset of a fault. After a short time, it would once again start to decrease,

thereby taking less random actions; however, in this particular experiment,

the entropy of the policy distribution continually increased. This led to more

and more random action choices, drawn from a normal distribution with an in-

creasing standard deviation. Continually taking increasingly random actions,

rather than greedy actions, is likely to result in degraded performance. Finally,

we believe that with this particular fault, the environment dynamics change the

most drastically; commands to move the three finger joints result in no change

to the position and velocity of these joints. The resulting next state, which in

part contains the position and velocity of each actuated joint, is very di�erent

from that when the finger was not broken. It is possible that because of this

drastic change in the environment dynamics, the retained model (which is now

incorrect to the changed task) causes PPO to select poor actions and adapt

its policy such that it can never recover, even through increased exploration.

For SAC, the deviation with the broken inner finger fault is that, visually,

the algorithm initialization where the replay bu�er contents and the models

are retained appears to enable slightly faster adaptation than the algorithm

initialization where the replay bu�er contents are disposed and the models are

retained. Throughout the entire learning process, including immediately after

the onset of a fault, after partial adaptation, and after full adaptation, our

statistical analysis (summarized in Table 4.12) cannot di�erentiate the perfor-

mance between these two algorithm initializations; their performance was the

101

same. Again, this could be an indication that our hyperparameters were not

properly tuned to this task. Or, for both PPO and SAC, this may be our first

evidence that these two algorithms behave di�erently for di�erent faults in the

NAO arm reaching task.

Our overall findings indicate that the three NAO faults can be ordered in

terms of their severity, where a fault’s severity is defined to be the performance

after full adaptation to the fault; a fault with a lower performance after full

adaptation would be considered more severe. Listed in order of descending

severity, the faults are: 1) broken inner finger, 2) RShoulderRoll joint range of

motion decrease, and 3) RShoulderPitch frozen position sensor. The two most

severe faults a�ect the robot’s motion, and consequently a�ect the underlying

environment dynamics. We believe that the broken inner finger fault led to

the most severe change in environment dynamics. Three (of eight) joints were

a�ected with this fault. This is confirmed by the performance of both PPO

and SAC in the presence of this fault. PPO’s performance severely degrades

when the models are retained and slowly degrades when the networks are ran-

domly re-initialized. SAC’s performance after full adaptation is visibly lower

than that obtained prior to the onset of a fault; a degraded performance this

severe was not visible in our other SAC learning curves. With the RShoulder-

Roll joint range of motion decrease, only a single joint (of five) was a�ected;

thus, the environment dynamics were less changed than with the broken inner

finger fault. We do not believe that the RShoulderPitch frozen position sen-

sor fault changed the underlying environment dynamics. Rather, we believe

that this fault only a�ected the model; the networks learned that the RShoul-

derRoll position sensor reading was not useful, and they began to ignore its

contribution.

102

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis set out to answer several questions:

Can PPO and SAC enable a robot to adapt to a hardware fault?

How does adaptation to a fault with PPO compare to that with SAC, and vice

versa?

How do the di�erences in the faults a�ect a robot’s adaptation?

How does retention (or random re-initialization) of the learned models a�ect

a robot’s adaptation to a fault?

In the case of SAC, how does retention (or disposal) of the replay bu�er con-

tents a�ect a robot’s adaptation to a fault?

Overall, we have seen that both PPO and SAC can add hardware fault

tolerance to a robot; that is, both algorithms have shown that after a fault is

applied, task performance can be mostly regained after a period of adaptation.

SAC appears to be the fastest algorithm to adapt and has shown to be robust

to its hyperparameters. PPO, in contrast, appears to lead to better overall

adaption.

103

Based on our results, we would advise that when a fault occurs, the best

option would be to use SAC to recover, discarding the replay bu�er contents,

and retaining the models. This is the algorithm initialization for SAC that

led to the fastest recovery in our experiments. We believe that for real-world

tasks, where repair is possible after some short time delay, fast adaptation

is most important. In cases where repair is either not possible or there is a

longer time delay for repair by an expert (e.g. in space), PPO may be a better

option. In many cases, PPO was able to achieve a performance with the fault

present that was indistinguishable from the performance without the fault

present. However, adaptation with PPO did take longer, so if it were used,

one could expect undesirable machine behaviour for a longer period of time

than with SAC. In real-time, PPO took approximately 4-6 hours to achieve

full adaption to a fault when the models were retained. In contrast, SAC took

approximately 1.6-3.2 hours to achieve full task adaptation when the replay

bu�er contents were discarded and the models were retained, which strongly

highlights its advantage over PPO in real-world applications.

We have observed that the performance for each algorithm can vary for

di�erent faults. For example, the broken inner finger fault was an outlier.

However, we contribute this observation to the lack of a hyperparameter search

for this modified problem. It would be advisable to run a hyperparameter

search for this task, before validating that it is truly an outlier. If we only

consider the remaining two faults, we do see a pattern that is apparent and

could be useful in applications of this work and in future research. The e�ect

that the retention of the replay bu�er has on the subsequent adaptation has

a common pattern; retention of the replay bu�er leads to hindered initial to

mid training adaptation. The replay bu�er is full of experiences that are

representative of the old task, and as such, network updates that use these

104

experiences are biased. In almost all cases, retention of the learned models

led to better overall adaptation; the added knowledge aided adaption, even

when the policy and value estimates were inaccurate after the onset of a fault.

Learning from scratch was a slower process that resulted in poorer initial

performance, and in some cases (i.e. for PPO), poorer final performance.

Poor performance in real-world applications results in unplanned robot (and

machine) behaviour.

In this work, we have examined the ability of two RL policy gradient al-

gorithms to add hardware fault tolerance to a robot. With RL algorithms,

a robot learns to perform its task through interaction with its environment.

An added hardware fault changes the learning problem by adding restrictions,

such as a more restrictive joint range. Provided that the added restrictions do

not prevent a robot from performing its task, we believe that adaptation to

a hardware fault can occur through the interactive learning process. For this

reason, we believe that our work can be extended to other RL policy gradient

algorithms, and can likely be extended to value-based RL algorithms. Simi-

larly, we believe that we would see similar adaptation to hardware faults in

other robots. In summary, we believe that our work has added information

to the problem of adding algorithmic hardware fault tolerance to machines

through reinforcement learning and that our work is generalizable to other RL

algorithms, other robots (including real-world robots), and other hardware

faults.

5.2 Future Work

Re-adaptation to normal robot task. One of the limitations of our work

is that after adaptation to a fault occurs, an agent’s knowledge about how

105

to behave optimally in the normal environment is lost. RL research that

has examined adaptation to hardware faults [9], [12], [57] has not considered

the post-adaptation required to restore the system to a normal state after a

repair is complete. Although the post-adaptation is expected to be similar

to adaptation to faults, many questions do remain. Assume that prior to a

hardware fault, a machine is performing optimally. After its adaptation to a

fault, and subsequent post-adaptation once a fault is repaired, is it possible

to regain its optimal performance through learning? Or does post-adaptation

lead to sub-optimal performance? Do we need to save knowledge of the task

under normal conditions in memory prior to adapting to a hardware fault?

What knowledge needs to be saved?

Gradual faults. In this work, we examined sudden, severe hardware faults.

In the real-world, many faults occur gradually, and slowly increase in severity.

It would be useful to examine adaptation to gradual hardware faults and de-

termine how adaptation to gradual faults di�ers from adaptation to sudden,

severe hardware faults. It would also be of interest to know if better adapta-

tion can be attained with gradual faults, that slowly reach some pre-selected

severity, than that attained with sudden, severe faults of equal severity.

Real-world applications. Additionally, in our work, our robots were sim-

ulated and were not real-world robots. It is our intention to extend our work

into real-world robots. However, we believe that faster adaption is needed for

the real-world. Real robots are costly and easily broken; training for many

hours on a real-robot increases the likelihood of degradation or damage. The

two algorithms examined in this work, PPO and SAC, required hundreds of

thousands of experiences to adapt to a fault. This may not be su�cient for real-

world applications. Clavera et al. [9] showed exceptional progress with their
106

MAML-based algorithm, achieving very fast adaptation; the use of MAML

[20] on our problem is an avenue to be explored in future work.

107

Bibliography

[1] R. O. Ambrose, H. Aldridge, R. S. Askew, R. R. Burridge, W. Blueth-
mann, M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robo-
naut: Nasa’s space humanoid,” IEEE Intelligent Systems and their Ap-
plications, vol. 15, no. 4, pp. 57–63, 2000. doi: 10.1109/5254.867913.

[2] M. Assad-Uz-Zaman, M. R. Islam, S. Miah, and M. Rahman, “Nao robot
for cooperative rehabilitation training,” Journal of Rehabilitation and
Assistive Technologies Engineering, vol. 6, Aug. 2019. doi: 10.1177/
2055668319862151.

[3] M. Bahrin, F. Othman, N. Azli, and M. Talib, “Industry 4.0: A review
on industrial automation and robotic,” Jurnal Teknologi, vol. 78, Jun.
2016. doi: 10.11113/jt.v78.9285.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. arXiv: 1606 . 01540. [Online]. Available: http : / / arxiv . org /
abs/1606.01540.

[5] J. Carlson and R. R. Murphy, “Reliability analysis of mobile robots,” in
2003 IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 1, 2003, 274–281 vol.1. doi: 10.1109/ROBOT.2003.
1241608.

[6] J. Carlson, R. R. Murphy, and A. Nelson, “Follow-up analysis of mobile
robot failures,” in IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. 2004, vol. 5, 2004, 4987–4994
Vol.5. doi: 10.1109/ROBOT.2004.1302508.

[7] J. Carlson and R. Murphy, “How ugvs physically fail in the field,” IEEE
Transactions on Robotics, vol. 21, pp. 423–437, 2005.

[8] Carnegie Mellon University, Tekkotsu, http://www.tekkotsu.org/.
[9] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and

C. Finn, “Learning to adapt: Meta-learning for model-based control,”
CoRR, vol. abs/1803.11347, 2018. arXiv: 1803.11347. [Online]. Avail-
able: http://arxiv.org/abs/1803.11347.

108

https://doi.org/10.1109/5254.867913
https://doi.org/10.1177/2055668319862151
https://doi.org/10.1177/2055668319862151
https://doi.org/10.11113/jt.v78.9285
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/ROBOT.2003.1241608
https://doi.org/10.1109/ROBOT.2003.1241608
https://doi.org/10.1109/ROBOT.2004.1302508
http://www.tekkotsu.org/
https://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347

[10] E. Coleshill, L. Oshinowo, R. Rembala, B. Bina, D. Rey, and S. Sindelar,
“Dextre: Improving maintenance operations on the international space
station,” Acta Astronautica, vol. 64, no. 9, pp. 869–874, 2009, issn: 0094-
5765. doi: https : / / doi . org / 10 . 1016 / j . actaastro . 2008 . 11 .
011. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0094576508003627.

[11] F. Cugurullo, “Urban artificial intelligence: From automation to auton-
omy in the smart city,” in Frontiers in Sustainable Cities, 2020.

[12] A. Cully, J. Clune, and J.-B. Mouret, “Robots that can adapt like natural
animals,” CoRR, vol. abs/1407.3501, 2014. arXiv: 1407.3501. [Online].
Available: http://arxiv.org/abs/1407.3501.

[13] Cyberbotics, Portfolio, https://cyberbotics.com/#cyberbotics.
[14] ——, Velocity control, https://cyberbotics.com/doc/reference/

motor#velocity-control.
[15] ——, Webots reference manual: Hinge2joint, https://www.cyberbotics.

com/doc/reference/hinge2joint.
[16] ——, Webots reference manual: Proto, https://cyberbotics.com/

doc/reference/proto.
[17] ——, Webots: Robot simulator, https://cyberbotics.com/.
[18] David Wiggins and The Open Group Inc., Xvfb, https://www.x.org/

releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.
[19] A. Davids, “Urban search and rescue robots: From tragedy to technol-

ogy,” IEEE Intelligent Systems, vol. 17, no. 2, pp. 81–83, 2002. doi:
10.1109/MIS.2002.999224.

[20] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” CoRR, vol. abs/1703.03400, 2017. arXiv:
1703.03400. [Online]. Available: http://arxiv.org/abs/1703.03400.

[21] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques—part i: Fault diagnosis with model-based and
signal-based approaches,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3757–3767, 2015. doi: 10.1109/TIE.2015.2417501.

[22] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced
robots: A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–
52, 2017, issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.
2017.04.004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889016300768.

[23] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: O�-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” CoRR, vol. abs/1801.01290, 2018. arXiv: 1801.01290. [Online].
Available: http://arxiv.org/abs/1801.01290.

109

https://doi.org/https://doi.org/10.1016/j.actaastro.2008.11.011
https://doi.org/https://doi.org/10.1016/j.actaastro.2008.11.011
http://www.sciencedirect.com/science/article/pii/S0094576508003627
http://www.sciencedirect.com/science/article/pii/S0094576508003627
https://arxiv.org/abs/1407.3501
http://arxiv.org/abs/1407.3501
https://cyberbotics.com/#cyberbotics
https://cyberbotics.com/doc/reference/motor#velocity-control
https://cyberbotics.com/doc/reference/motor#velocity-control
https://www.cyberbotics.com/doc/reference/hinge2joint
https://www.cyberbotics.com/doc/reference/hinge2joint
https://cyberbotics.com/doc/reference/proto
https://cyberbotics.com/doc/reference/proto
https://cyberbotics.com/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://doi.org/10.1109/MIS.2002.999224
https://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/https://doi.org/10.1016/j.robot.2017.04.004
https://doi.org/https://doi.org/10.1016/j.robot.2017.04.004
http://www.sciencedirect.com/science/article/pii/S0921889016300768
http://www.sciencedirect.com/science/article/pii/S0921889016300768
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290

[24] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V.
Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic
algorithms and applications,” CoRR, vol. abs/1812.05905, 2018. arXiv:
1812.05905. [Online]. Available: http://arxiv.org/abs/1812.05905.

[25] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie
4.0 scenarios,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp. 3928–3937. doi: 10.1109/HICSS.2016.488.

[26] A. Hill, A. Ra�n, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, Stable baselines, https://github.
com/hill-a/stable-baselines, 2018.

[27] M. A. I. Iberahim, S. N. Shamsuddin, M. Makhtar, M. Rahman, and N.
Simbak, “Time-based simplified denavit-heartenberg translation (ts-dh)
for capturing finger kinematic data,” International Journal of Engineer-
ing and Technology(UAE), vol. 7, pp. 20–23, Aug. 2018. doi: 10.14419/
ijet.v7i3.28.20958.

[28] Ilya Kostrikov, Github: Pytorch-a2c-ppo-acktr-gail, https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

[29] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods
— an introduction,” Control Engineering Practice, vol. 5, no. 5, pp. 639–
652, 1997, issn: 0967-0661. doi: https://doi.org/10.1016/S0967-
0661(97)00046-4. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0967066197000464.

[30] R. Isermann, “Fault diagnosis systems an introduction from fault detec-
tion to fault tolerance,” SERBIULA (sistema Librum 2.0), Jan. 2006.

[31] Jens Fischer, Gitlab: Simspark, https://gitlab.com/robocup-sim/
SimSpark.

[32] Jon Watte, Github repository: Tekkotsu, https://github.com/jwatte/
Tekkotsu/tree/master/Tekkotsu.

[33] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2017. arXiv: 1412.6980 [cs.LG].

[34] N. Kofinas, E. Orfanoudakis, and M. G. Lagoudakis, “Complete analyt-
ical inverse kinematics for nao,” in 2013 13th International Conference
on Autonomous Robot Systems, 2013, pp. 1–6. doi: 10.1109/Robotica.
2013.6623524.

[35] J. Korbicz, J. Koúcielny, Z. Kowalczuk, and W. Cholewa, Fault diagnosis.
Models, artificial intelligence, applications. Jan. 2004. doi: 10.1007/
978-3-642-18615-8.

[36] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Ho�mann, “Industry
4.0,” Business & Information Systems Engineering, vol. 6, pp. 239–242,
Aug. 2014. doi: 10.1007/s12599-014-0334-4.

110

https://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://doi.org/10.1109/HICSS.2016.488
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.14419/ijet.v7i3.28.20958
https://doi.org/10.14419/ijet.v7i3.28.20958
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://doi.org/https://doi.org/10.1016/S0967-0661(97)00046-4
https://doi.org/https://doi.org/10.1016/S0967-0661(97)00046-4
http://www.sciencedirect.com/science/article/pii/S0967066197000464
http://www.sciencedirect.com/science/article/pii/S0967066197000464
https://gitlab.com/robocup-sim/SimSpark
https://gitlab.com/robocup-sim/SimSpark
https://github.com/jwatte/Tekkotsu/tree/master/Tekkotsu
https://github.com/jwatte/Tekkotsu/tree/master/Tekkotsu
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/Robotica.2013.6623524
https://doi.org/10.1109/Robotica.2013.6623524
https://doi.org/10.1007/978-3-642-18615-8
https://doi.org/10.1007/978-3-642-18615-8
https://doi.org/10.1007/s12599-014-0334-4

[37] A. R. Mahmood, D. Korenkevych, B. J. Komer, and J. Bergstra, “Set-
ting up a reinforcement learning task with a real-world robot,” CoRR,
vol. abs/1803.07067, 2018. arXiv: 1803.07067. [Online]. Available: http:
//arxiv.org/abs/1803.07067.

[38] Merriam-Webster, Fault, in Merriam-Webster.com dictionary. [Online].
Available: https://www.merriam-webster.com/dictionary/fault.

[39] ——, Kinematics, in Merriam-Webster.com dictionary. [Online]. Avail-
able: https://www.merriam-webster.com/dictionary/kinematics.

[40] O. Michel, “Cyberbotics ltd. webots™: Professional mobile robot simu-
lation,” International Journal of Advanced Robotic Systems, vol. 1, no. 1,
p. 5, 2004. doi: 10.5772/5618. eprint: https://doi.org/10.5772/
5618. [Online]. Available: https://doi.org/10.5772/5618.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning,” CoRR, vol. abs/1602.01783, 2016. arXiv: 1602.01783.
[Online]. Available: http://arxiv.org/abs/1602.01783.

[42] R. R. Murphy, “Trial by fire [rescue robots],” IEEE Robotics Automation
Magazine, vol. 11, no. 3, pp. 50–61, 2004. doi: 10.1109/MRA.2004.
1337826.

[43] R. R. Murphy, S. Tadokoro, and A. Kleiner, “Disaster robotics,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Cham:
Springer International Publishing, 2016, pp. 1577–1604, isbn: 978-3-319-
32552-1. doi: 10.1007/978-3-319-32552-1_60. [Online]. Available:
https://doi.org/10.1007/978-3-319-32552-1_60.

[44] N. Kofinas, Naokinematics, https://github.com/kouretes/NAOKinematics.
[45] Open Robotics, Ros, https://www.ros.org/.
[46] Open Source Robotics Foundation, Gazebo, http://gazebosim.org/.
[47] OpenAI, Descriptions of action spaces & observation spaces #585, https:

//github.com/openai/gym/issues/585, 2017.
[48] ——, Ant-v2, https://gym.openai.com/envs/Ant-v2/.
[49] ——, Ant.xml, https://github.com/openai/gym/blob/master/gym/

envs/mujoco/assets/ant.xml.
[50] C. J. J. Paredis and P. K. Khosla, “Designing fault-tolerant manipu-

lators: How many degrees of freedom?” The International Journal of
Robotics Research, vol. 15, no. 6, pp. 611–628, 1996. doi: 10.1177/
027836499601500606. eprint: https://doi.org/10.1177/027836499601500606.
[Online]. Available: https://doi.org/10.1177/027836499601500606.

111

https://arxiv.org/abs/1803.07067
http://arxiv.org/abs/1803.07067
http://arxiv.org/abs/1803.07067
https://www.merriam-webster.com/dictionary/fault
https://www.merriam-webster.com/dictionary/kinematics
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.1109/MRA.2004.1337826
https://doi.org/10.1109/MRA.2004.1337826
https://doi.org/10.1007/978-3-319-32552-1_60
https://doi.org/10.1007/978-3-319-32552-1_60
https://github.com/kouretes/NAOKinematics
https://www.ros.org/
http://gazebosim.org/
https://github.com/openai/gym/issues/585
https://github.com/openai/gym/issues/585
https://gym.openai.com/envs/Ant-v2/
https://github.com/openai/gym/blob/master/gym/envs/mujoco/assets/ant.xml
https://github.com/openai/gym/blob/master/gym/envs/mujoco/assets/ant.xml
https://doi.org/10.1177/027836499601500606
https://doi.org/10.1177/027836499601500606
https://doi.org/10.1177/027836499601500606
https://doi.org/10.1177/027836499601500606

[51] M. Riazi, O. Zaiane, T. Takeuchi, A. Maltais, J. Günther, and M. Lipsett,
“Detecting the onset of machine failure using anomaly detection meth-
ods,” in Big Data Analytics and Knowledge Discovery, C. Ordonez, I.-Y.
Song, G. Anderst-Kotsis, A. M. Tjoa, and I. Khalil, Eds., Cham: Springer
International Publishing, 2019, pp. 3–12, isbn: 978-3-030-27520-4.

[52] Ricardo A. Téllez, Generation of dynamic gaits in real aibo using dis-
tributed neural networks, http://www.ouroboros.org/evo_gaits.
html.

[53] Roboti LLC, Chapter 3: Modeling, http://mujoco.org/book/modeling.
html, 2018.

[54] ——, Mujoco xml reference, http://mujoco.org/book/XMLreference.
html, 2018.

[55] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.
arXiv: 1707.06347. [Online]. Available: http://arxiv.org/abs/1707.
06347.

[56] M. Schwarz, T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber,
N. Araslanov, I. Ivanov, C. Lenz, J. Razlaw, S. Schüller, D. Schwarz,
A. Topalidou-Kyniazopoulou, and S. Behnke, “Nimbro rescue: Solving
disaster-response tasks through mobile manipulation robot momaro,”
CoRR, vol. abs/1810.01345, 2018. arXiv: 1810.01345. [Online]. Avail-
able: http://arxiv.org/abs/1810.01345.

[57] O. Selfridge, R. Sutton, and A. Barto, “Training and tracking in robotics.,”
in Proceedings of the 9th International Joint Conference on Artificial In-
telligence - Volume 1, ser. IJCAI’85, Los Angeles, California, Jan. 1985,
pp. 670–672.

[58] SoftBank Robotics, Choregraphe suite, http://doc.aldebaran.com/2-
8/software/choregraphe/index.html.

[59] ——, Nao6, https://www.softbankrobotics.com/emea/en/nao.
[60] ——, Softbank robotics documentation: Actuator & sensor list, http:

//doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_
sensor_names.html.

[61] ——, Softbank robotics documentation: E�ector & chain definitions, http:
//doc.aldebaran.com/2- 8/family/nao_technical/bodyparts_
naov6.html.

[62] ——, Softbank robotics documentation: Joint position sensors, http://
doc.aldebaran.com/2-8/family/nao_technical/mre_naov6.html.

[63] ——, Softbank robotics documentation: Joints, http://doc.aldebaran.
com/2-8/family/nao_technical/joints_naov6.html.

112

http://www.ouroboros.org/evo_gaits.html
http://www.ouroboros.org/evo_gaits.html
http://mujoco.org/book/modeling.html
http://mujoco.org/book/modeling.html
http://mujoco.org/book/XMLreference.html
http://mujoco.org/book/XMLreference.html
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1810.01345
http://arxiv.org/abs/1810.01345
http://doc.aldebaran.com/2-8/software/choregraphe/index.html
http://doc.aldebaran.com/2-8/software/choregraphe/index.html
https://www.softbankrobotics.com/emea/en/nao
http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
http://doc.aldebaran.com/2-8/family/nao_technical/lola/actuator_sensor_names.html
http://doc.aldebaran.com/2-8/family/nao_technical/bodyparts_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/bodyparts_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/bodyparts_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/mre_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/mre_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/joints_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/joints_naov6.html

[64] ——, Softbank robotics documentation: Kinematics data, http://doc.
aldebaran.com/2- 8/family/nao_technical/kinematics_naov6.
html.

[65] ——, Softbank robotics documentation: Links, http://doc.aldebaran.
com/2-8/family/nao_technical/links_naov6.html.

[66] ——, Softbank robotics documentation: Motors, http://doc.aldebaran.
com/2-8/family/nao_technical/motors_naov6.html.

[67] ——, Softbank robotics documentation: Technical overview, http : / /
doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.
html.

[68] G. Steinbauer, “A survey about faults of robots used in robocup,” in
RoboCup 2012: Robot Soccer World Cup XVI, X. Chen, P. Stone, L. E.
Sucar, and T. van der Zant, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 344–355, isbn: 978-3-642-39250-4.

[69] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018, isbn: 0262039249.

[70] D. Tesar, D. Sreevijayan, and C. Price, “Four-level fault tolerance in
manipulator design for space operations,” Jun. 1990.

[71] The Learning Agents Research Group, Github: Utaustinvilla3d, https:
//github.com/LARG/utaustinvilla3d.

[72] E. Tira-Thompson, N. S. Halelamien, J. J. Wales, and D. S. Touret-
zky, “Tekkotsu: Cognitive robotics on the sony aibo,” in Proceedings of
the Sixth International Conference on Cognitive Modelling, Jul. 2004,
pp. 390–391.

[73] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2012, pp. 5026–5033. doi: 10.1109/IROS.
2012.6386109.

[74] D. Touretzky and E. Tira-Thompson, “Tekkotsu: A framework for aibo
cognitive robotics.,” Jan. 2005, pp. 1741–1742.

[75] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4.0 – a glimpse,” Procedia
Manufacturing, vol. 20, pp. 233–238, 2018, 2nd International Conference
on Materials, Manufacturing and Design Engineering (iCMMD2017), 11-
12 December 2017, MIT Aurangabad, Maharashtra, INDIA, issn: 2351-
9789. doi: https://doi.org/10.1016/j.promfg.2018.02.034. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S2351978918300672.

113

http://doc.aldebaran.com/2-8/family/nao_technical/kinematics_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/kinematics_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/kinematics_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/links_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/links_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/motors_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/motors_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html
https://github.com/LARG/utaustinvilla3d
https://github.com/LARG/utaustinvilla3d
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/https://doi.org/10.1016/j.promfg.2018.02.034
http://www.sciencedirect.com/science/article/pii/S2351978918300672
http://www.sciencedirect.com/science/article/pii/S2351978918300672

[76] M. Visinsky, J. Cavallaro, and I. Walker, “Robotic fault detection and
fault tolerance: A survey,” Reliability Engineering & System Safety, vol. 46,
no. 2, pp. 139–158, 1994, issn: 0951-8320. doi: https://doi.org/
10.1016/0951-8320(94)90132-5. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/0951832094901325.

[77] M. Visinsky, I. Walker, and J. Cavallaro, “Fault detection and fault
tolerance in robotics,” pp. 262–271, Jan. 1992.

[78] K. H. Williford, K. A. Farley, K. M. Stack, A. C. Allwood, D. Beaty,
L. W. Beegle, R. Bhartia, A. J. Brown, M. de la Torre Juarez, S.-E.
Hamran, M. H. Hecht, J. A. Hurowitz, J. A. Rodriguez-Manfredi, S.
Maurice, S. Milkovich, and R. C. Wiens, “Chapter 11 - the nasa mars
2020 rover mission and the search for extraterrestrial life,” in From Hab-
itability to Life on Mars, N. A. Cabrol and E. A. Grin, Eds., Elsevier,
2018, pp. 275–308, isbn: 978-0-12-809935-3. doi: https://doi.org/10.
1016/B978-0-12-809935-3.00010-4. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780128099353000104.

[79] E. Wu, J. Hwang, and J. Chladek, “A failure tolerant joint design for the
space shuttle remote manipulator system: Analysis and experiment,” in
[Proceedings 1992] The First IEEE Conference on Control Applications,
1992, 330–335 vol.1. doi: 10.1109/CCA.1992.269854.

[80] Xpra, Multi-platform screen and application forwarding system, https:
//xpra.org/.

[81] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning
model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals,” Sensors, vol. 17, no. 2, p. 425, Feb.
2017, issn: 1424-8220. doi: 10.3390/s17020425. [Online]. Available:
http://dx.doi.org/10.3390/s17020425.

114

https://doi.org/https://doi.org/10.1016/0951-8320(94)90132-5
https://doi.org/https://doi.org/10.1016/0951-8320(94)90132-5
http://www.sciencedirect.com/science/article/pii/0951832094901325
http://www.sciencedirect.com/science/article/pii/0951832094901325
https://doi.org/https://doi.org/10.1016/B978-0-12-809935-3.00010-4
https://doi.org/https://doi.org/10.1016/B978-0-12-809935-3.00010-4
http://www.sciencedirect.com/science/article/pii/B9780128099353000104
http://www.sciencedirect.com/science/article/pii/B9780128099353000104
https://doi.org/10.1109/CCA.1992.269854
https://xpra.org/
https://xpra.org/
https://doi.org/10.3390/s17020425
http://dx.doi.org/10.3390/s17020425

Appendices

115

Appendix A

NAO V6

This appendix chapter summarizes the NAO V6 specifications. We include

kinematics data that was published by SoftBank Robotics [64]. This data

includes a summary of all links and joints within the NAO V6 that were

relevant to our arm-reaching task. This information is included because it

was required to compute the forward kinematics to the NAO’s fingertip; these

computations are described in detail in Appendix B. We additionally define

the default NAO pose, zero pose, and briefly describe how we assign rotation

angles within the NAO frame.

A.1 Specifications

The standard NAO V6 weights 5.48 kilograms. It is 0.574 meters tall, 0.275

meters wide and has a depth of 0.311 meters [67]. The NAO has five kinematic

chains, which include the head, the left arm, the right arm, the left leg, and

the right leg. Each kinematic chain is composed of the joints necessary for

movement in that segment of the NAO body. The joints listed within a kine-

matic chain are ordered. Within the ordered list, two adjacent joints are either

1) directly connected, positioned alongside each other in the NAO body, or 2)
116

connected to each other through a rigid link. For this work, we focus solely on

the arm kinematic chains. The kinematic chains for the NAO’s left arm and

right arm are shown in Table A.1. [61] provides a complete description of all

the NAO kinematic chains. The location of the joints within each kinematic

chain are shown in Figure A.1.

The NAO has multiple sensory devices. These include two loudspeakers;

four omnidirectional microphones; two 5-MP cameras; multiple LEDs; eight

force sensitive resistors; an inertial unit, consisting of a 3-axis gyrometer and

a 3-axis accelerometer; four sonars; joint position sensors; and tactile sensors.

In this work, we utilized the joint position sensors within the NAO arms. The

remaining sensory devices were not required for our reaching task.

Each NAO joint contains a motor and a position sensor. The standard NAO

V6 has five di�erent types of motors, each with a di�erent speed limitation.

The motors that are used in each of the arm joints are listed in Table A.2. [66]

provides a complete list of the motor types for all the NAO joints. The NAO

joint position sensors are 36 to 2 MRE (Magnetic Rotary Encoders) with 12

bit precision; each joint position sensor has approximately 0.1° precision [62].

The NAO coordinate system is shown in Figure A.2. In this figure, the

NAO is in zero pose, with its arms fully extended in front, parallel with the

ground, and with its hands in a closed position. In zero pose, all arm and

finger joint positions are 0.0 radians. Figure A.3 shows the rotation axis of

each joint in zero pose.

In zero pose, the NAO’s joint names can be misleading. Each joint is named

according to its rotation axis when the arm is placed downward, at the side

of the NAO frame. Respectively, roll, pitch, and yaw are rotation about the

x, y, and z axes. What is considered to be rotation about the z-axis with the

arm placed at the side of the NAO frame (i.e. ElbowYaw) is rotation about

117

the x-axis in zero pose (i.e. roll).

The NAO has a pre-defined point on its body, which all other points are

relative to, assigned the name Torso. This point, located at the base of the

NAO torso, is 0.33309 meters from the ground and is horizontally centred

within the NAO frame. SoftBank Robotics has published data that includes

the x, y, z o�sets of all joints in the NAO robot. The x, y, z o�sets for the first

link within a kinematic chain are always defined relative to the Torso point;

subsequent o�sets of joints within a kinematic chain are relative to the previous

joint within the chain. Table A.3 shows the o�sets for links contained within

the left arm, while in zero pose. O�sets for the right arm are unpublished;

however, assuming that the NAO frame is perfectly symmetric, the o�sets for

the right arm would be identical to those for the left arm, with the exception

of the Y o�sets, which require a change in sign. (The Y-axis is positive to

the left of the NAO Torso point, and negative to the right of the NAO Torso

point.) Figure A.4 and Table A.4 show additional pre-defined link o�sets and

their values.

Figure A.5 shows the NAO finger joints for both the left and right hand.

Table A.5 includes the o�sets for each finger joint. In each finger, the first

joint’s x, y, z o�sets are relative to the WristYaw joint; subsequent finger joint

o�sets are relative to the previous joint within the finger. The values in Table

A.5 are consistent for both the left and right hand due to the numbering of

the fingers and finger joints (i.e. there is no need for a change in sign). On

the left hand, the outer (leftmost) finger contain the LFinger11, LFinger12,

and LFinger13 joints and the inner (rightmost) finger contains the LFinger21,

LFinger22, and LFinger23 joints. On the right hand, the outer (rightmost)

finger contains the RFinger21, RFinger22, and RFinger23 joints and the inner

(leftmost) finger contains the RFinger11, RFinger12, and RFinger13 joints.

118

[65] provides additional information on the joints contained within the thumb.

For this work, we focus solely on the inner finger joints of either hand.

Figures A.6 and A.7 show the rotation trajectory of each joint in the NAO

arm, as well as the range for each joint in degrees. Signs of the angles follow

the right-hand rule convention - the right thumb points along the rotation axis,

and rotation in the direction of the hand’s curled fingers is positive rotation,

while that in the reverse direction is negative rotation. Tables A.6 and A.7

summarize this information in tabular format, and additionally provide the

range of each joint in radians. Figure A.8 shows the rotation trajectory and

the range of each joint in a NAO finger. Table A.8 indicates which finger joints

have rotations, and informs on their degree of rotation and their rotation axis.

Table A.1: NAO V6 arm kinematic chains.

Kinematic Chain Joints
Left Arm LShoulderPitch

LShoulderRoll
LElbowYaw
LElbowRoll
LWristYaw

Right Arm RShoulderPitch
RShoulderRoll
RElbowYaw
RElbowRoll
RWristYaw

119

Figure A.1: Joint locations within the NAO V6 body. Figure from [66].

120

Ta
bl

e
A

.2
:

N
A

O
V

6
m

ot
or

ty
pe

s.
Ta

bl
e

ad
ap

te
d

fro
m

[6
6]

.

M
ot

or
T

yp
e

2
M

ot
or

T
yp

e
3

M
ot

or
T

yp
e

4
M

od
el

17
N

16
G

T
D

C
X

16
S

N
o

lo
ad

sp
ee

d
84

00
rp

m
±

12
%

10
70

0
rp

m
±

10
%

11
40

0
rp

m
±

10
%

St
al

lt
or

qu
e

9.
4

m
N

m
±

8%
14

.3
m

N
m

±
8%

22
.4

m
N

m
±

10
%

N
om

in
al

to
rq

ue
4.

9
m

N
m

m
ax

6.
2

m
N

m
m

ax
2.

6
m

N
m

m
ax

Sp
ee

d
R

ed
uc

ti
on

R
at

io
A

50
.6

1
15

0.
27

15
0.

27
W

ris
tY

aw
El

bo
w

Ya
w

Sh
ou

ld
er

Pi
tc

h
Sp

ee
d

R
ed

uc
ti

on
R

at
io

B
36

.2
4

17
3.

22
H

an
d

Sh
ou

ld
er

R
ol

l,
El

bo
w

R
ol

l

121

Figure A.2: NAO V6 coordinate system. Figure from [65].

Figure A.3: Rotation axis of joints for NAO V6 in zero pose. Figure from [60].

122

Table A.3: NAO V6 left arm links. Table from [65].

From ... To ... X (mm) Y (mm) Z (mm)
Torso LShoulderPitch 0.00 98.00 100.00
LShoulderPitch LShoulderRoll 0.00 0.00 0.00
LShoulderRoll LElbowYaw 105.00 15.00 0.00
LElbowYaw LElbowRoll 0.00 0.00 0.00
LElbowRoll LWristYaw 55.95 0.00 0.00

123

Figure A.4: NAO V6 pre-defined o�sets. Figure from [65].

Table A.4: NAO V6 pre-defined o�sets. Table from [65].

Main length (mm)
ShoulderO�setY 98.00
ElbowO�setY 15.00
UpperArmLength 105.00
LowerArmLength 55.95
ShoulderO�setZ 100.00
HandO�setX 57.75
HandO�setZ 12.31

124

Figure A.5: NAO V6 finger links. Figures from [65].

Table A.5: NAO V6 finger joint o�sets. Table adapted from [65].

From ... To ... X (mm) Y (mm) Z (mm)
WristYaw Finger11 69.07 11.57 -3.04
Finger11 Finger12 14.36 0.00 0.00
Finger12 Finger13 14.36 0.00 0.00
WristYaw Finger21 69.07 -11.57 -3.04
Finger21 Finger22 14.36 0.00 0.00
Finger22 Finger23 14.36 0.00 0.00
WristYaw Thumb1 48.95 0.00 -26.38
Thumb1 Thumb2 14.36 0.00 0.00

125

Figure A.6: NAO V6 left arm joint o�sets. Figure from [63].

Table A.6: Range of NAO V6 left arm joints. Table from [63].

Joint name Range (degrees) Range (radians)
LShoulderPitch -119.5 to 119.5 -2.0857 to 2.0857
LShoulderRoll -18 to 76 -0.3142 to 1.3265
LElbowYaw -119.5 to 119.5 -2.0857 to 2.0857
LElbowRoll -88.5 to -2 -1.5446 to -0.0349
LWristYaw -104.5 to 104.5 -1.8238 to 1.8238
LHand Open and close Open and close

126

Figure A.7: NAO V6 right arm joints. Figure from [63].

Table A.7: Range of NAO V6 right arm joints. Table from [63].

Joint name Range (degrees) Range (radians)
RShoulderPitch -119.5 to 119.5 -2.0857 to 2.0857
RShoulderRoll -76 to 18 -1.3265 to 0.3142
RElbowYaw -119.5 to 119.5 -2.0857 to 2.0857
RElbowRoll 2 to 88.5 0.0349 to 1.5446
RWristYaw -104.5 to 104.5 -1.8238 to 1.8238
RHand Open and close Open and close

127

Figure A.8: NAO V6 finger joints. Figure from [65].

Table A.8: NAO V6 finger rotations [65].

Left
LFinger11 RotX(10.0)
LFinger21 RotX(-10.0)
LThumb1 RotX(180.0)*RotY(-60.0)
Right
RFinger11 RotX(10.0)
RFinger21 RotX(-10.0)
RThumb1 RotX(180.0)*RotY(-60.0)

128

Appendix B

NAO Kinematics

In this appendix chapter, we introduce the NAO kinematics calculations. First,

we provide a brief summary of the background material required to understand

the kinematics calculations. This includes a basic understanding of transfor-

mation and rotation matrices. Next, we introduce the Denavit-Hartenberg

(DH) method, which is a technique for computing the kinematics of a robot.

We briefly describe prior work that has computed the forward kinematics to

the NAO hand. Lastly, we provide a detailed explanation on how we modified

and extended the prior work to compute the forward kinematics to the NAO

inner fingertip.

B.1 Transformation Matrices

A point p in three dimensional space has the coordinates (px, py, pz). This

point can be represented as the vector p̨, where:

129

p̨ =

S

WWWWWWWWWWU

px

py

pz

1

T

XXXXXXXXXXV

An translation matrix translates a point in three dimensional space by

a fixed distance. The translation distance along the x, y, and z axes are

represented by dx, dy, and dz, respectively. A translation matrix has the form:

A =

S

WWWWWWWWWWU

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

T

XXXXXXXXXXV

A three dimensional point, p, can be translated by multiplying the translation

matrix by the vector p̨:

p̨Õ =

S

WWWWWWWWWWU

pÕ
x

pÕ
y

pÕ
z

1

T

XXXXXXXXXXV

= Ap̨ =

S

WWWWWWWWWWU

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

T

XXXXXXXXXXV

S

WWWWWWWWWWU

px

py

pz

1

T

XXXXXXXXXXV

The new point has coordinates (pÕ
x, pÕ

y, pÕ
z). We represent a translation matrix

as A(dx, dy, dz).

An rotation matrix rotates a point in three dimensional space. Rotation

around the x, y, and z axes by “, —, and – degrees (or radians) is represented

by Rx(“), Ry(—), and Rz(–), respectively. Rx(“), Ry(—), and Rz(–) are defined

as:

Rx(“) =

S

WWWWWWWWWWU

1 0 0 0

0 cos(“) ≠sin(“) 0

0 sin(“) cos(“) 0

0 0 0 1

T

XXXXXXXXXXV

130

Ry(—) =

S

WWWWWWWWWWU

cos(—) 0 sin(—) 0

0 1 0 0

≠sin(—) 0 cos(—) 0

0 0 0 1

T

XXXXXXXXXXV

Rz(–) =

S

WWWWWWWWWWU

cos(–) ≠sin(–) 0 0

sin(–) cos(–) 0 0

0 0 1 0

0 0 0 1

T

XXXXXXXXXXV

A three dimensional point, p, can be rotated about the x, y, or z axes

by multiplying Rx(“), Ry(—), or Rz(–) with the vector p̨, respectively. For

example, to rotate a point p about the x axis, we would perform the following

matrix multiplication:

p̨Õ =

S

WWWWWWWWWWU

pÕ
x

pÕ
y

pÕ
z

1

T

XXXXXXXXXXV

= Rx(“)p̨ =

S

WWWWWWWWWWU

1 0 0 0

0 cos(“) ≠sin(“) 0

0 sin(“) cos(“) 0

0 0 0 1

T

XXXXXXXXXXV

S

WWWWWWWWWWU

px

py

pz

1

T

XXXXXXXXXXV

To rotate a point first about the y axis, then about the z axis, the following

matrix multiplication would be performed:

p̨Õ = Rz(–)Ry(—)p̨

B.2 Denavit–Hartenberg Method

The Denavit-Hartenberg (DH) method is a standardized technique for com-

puting the kinematics of a robot. Forward kinematics involves computing

the position and orientation of a robot end e�ector, given the position of the

robot’s actuated joints within the end e�ector’s kinematic chain.
131

To compute the forward kinematics for a robot kinematic chain, each link

i in the chain is sequentially assigned a reference frame, Fi. Four parameters,

namely the DH parameters, are extracted by comparing each link’s reference

frame, Fi, to that of the preceding link, Fi≠1. The reference frame of the first

link in a chain, F1, is compared to a fixed link (base) frame, F0. The four

DH parameters extracted are ai, –i, di, and ◊i. Once the DH parameters have

been extracted, they are input into a transformation matrix, Ai, where:

Ai =

S

WWWWWWWWWWU

cos(◊i) ≠sin(◊i) · cos(–i) sin(◊i) · sin(–i) ai · cos(◊i)

sin(◊i) cos(◊i) · cos(–i) ≠cos(◊i) · sin(–i) ai · sin(◊i)

0 sin(–i) cos(–i) di

0 0 0 1

T

XXXXXXXXXXV

The final representation of the robot’s end e�ector is found multiplying each

sequential transformation matrix:

T 0
n = A1...An (B.1)

In the Denavit-Hartenberg method, reference frames for each link are as-

signed according to a set of rules:

1. The z-axis is assigned to be the joint’s axis of rotation.

2. The x-axis, or the common normal, is perpendicular to both zi and zi≠1.

3. The y-axis is assigned using the right-hand rule.

The four DH parameters for a link i are defined as follows:

ai is the length of the common normal, or the distance between zi≠1 and zi,

↵i is the angle between zi≠1 and zi, around the common normal xi,

di is the distance between xi≠1 and xi, along zi≠1, and

✓i: the angle around zi between xi≠1 and xi.
132

[34], [44] provided the DH parameters from the NAO base frame to the

hand end e�ector. These are summarized in Tables B.1 and B.2.

133

Ta
bl

e
B

.1
:

D
H

pa
ra

m
et

er
s

fo
r

th
e

N
A

O
V

6
le

ft
ar

m
ki

ne
m

at
ic

ch
ai

n.
Ta

bl
e

ad
ap

te
d

fro
m

[3
4]

,[
44

].

Fr
am

e
(J

oi
nt

)
a

↵
d

✓

B
as

e
A

(0
,S

ho
ul

de
rO

�s
et

Y
,S

ho
ul

de
rO

�s
et

Z)
LS

ho
ul

de
rP

itc
h

0
≠

fi 2
0

◊ 1

LS
ho

ul
de

rR
ol

l
0

fi 2
0

◊ 2
+

fi 2

LE
lb

ow
Ya

w
El

bo
w

O
�s

et
Y

fi 2
U

pp
er

A
rm

Le
ng

th
◊ 3

LE
lb

ow
R

ol
l

0
≠

fi 2
0

◊ 4

R
ot

at
io

n
R

x
(≠

fi 2)
,R

z
(≠

fi 2)
En

d
E�

ec
to

r
A

(L
ow

er
A

rm
Le

ng
th

+
H

an
dO

�s
et

X
,0

,-
H

an
dO

�s
et

Z)

134

Ta
bl

e
B

.2
:

D
H

pa
ra

m
et

er
s

fo
r

th
e

N
A

O
V

6
rig

ht
ar

m
ki

ne
m

at
ic

ch
ai

n.
Ta

bl
e

ad
ap

te
d

fro
m

[3
4]

,[
44

].

Fr
am

e
(J

oi
nt

)
a

↵
d

✓

B
as

e
A

(0
,-

Sh
ou

ld
er

O
�s

et
Y

,S
ho

ul
de

rO
�s

et
Z)

R
Sh

ou
ld

er
Pi

tc
h

0
≠

fi 2
0

◊ 1

R
Sh

ou
ld

er
R

ol
l

0
fi 2

0
◊ 2

+
fi 2

R
El

bo
w

Ya
w

-E
lb

ow
O

�s
et

Y
fi 2

U
pp

er
A

rm
Le

ng
th

◊ 3

R
El

bo
w

R
ol

l
0

≠
fi 2

0
◊ 4

R
El

bo
w

Ya
w

0
fi 2

0
◊ 5

R
ot

at
io

n
R

x
(≠

fi 2)
,R

z
(≠

fi 2)
En

d
E�

ec
to

r
A

(L
ow

er
A

rm
Le

ng
th

+
H

an
dO

�s
et

X
,0

,-
H

an
dO

�s
et

Z)

135

B.3 New Kinematic Calculations

SoftBank robotics’ published kinematic data includes o�sets for the finger

joints, as shown in Table A.5. The WristYaw joint is used as the initial refer-

ence point. For this reason, we had to reverse the translation to the hand that

was done by [34], [44]. To do this, we removed HandO�setX and HandO�setZ

from the end e�ector translation matrix, replacing:

A(LowerArmLength+HandO�setX, 0, -HandO�setZ)

with

A(LowerArmLength, 0, 0).

The output matrix for the work done by [34], [44], with this one minor

modification, was then used as a base matrix for our kinematics computations.

We label this matrix as Abase.

We determined that the first step to be taken was to perform a translation

from the WristYaw joint to the first finger joint (i.e. knuckle joint). For the

left and right arms, this translation matrix was defined as:

Aleft
0 =

S

WWWWWWWWWWU

1 0 0 XW ristY aw_to_LF inger21

0 1 0 YW ristY aw_to_LF inger21

0 0 1 ZW ristY aw_to_LF inger21

0 0 0 1

T

XXXXXXXXXXV

Aright
0 =

S

WWWWWWWWWWU

1 0 0 XW ristY aw_to_RF inger11

0 1 0 YW ristY aw_to_RF inger11

0 0 1 ZW ristY aw_to_RF inger11

0 0 0 1

T

XXXXXXXXXXV

,

136

Figure B.1: NAO V6 finger joint reference frames and DH parameters. Figure
adapted from [27].

[27] presented steps for computing the kinematics for a virtual, four-jointed

finger. This work included a visual image of the reference frame required

for their finger kinematics computation. The final reference frame for the

WristYaw joint, computed by [34], [44], had the same orientation as the NAO

coordinate frame, as shown in Figure A.2. To match the orientation presented

by [27], we had to modify the output reference frame; a rotation of ≠fi
2 radians

about the x-axis was required. This rotation is indicated by Rx(≠fi
2).

Next, the DH parameters for each of the three finger links were found.

Figure B.1 shows the reference frame for each link within the NAO inner

finger. The orientation of the reference frame for the base link (not shown)

is equivalent to the orientation of the reference frames for these three links.

So, the z-axes of all four reference frames are parallel. With parallel z-axes,

one DH parameter is given an automatic assignment. Each di can take on

any value because parallel axes have an infinite number of common normals

(we set di to zero). Each finger link has the same length, therefore, each ai

is the same, and is given a value of 0.01436 (meters). The DH parameter –i

represents the rotation around each xi, or link twist. As shown in Table A.8,

RFinger11 has a slight rotation: RotX(10.0). Therefore, –1 for the first right

finger link (RFinger11) is radians(10.0), where radians() indicates a conversion

137

from degree to radian units. The remaining links in the right inner finger have

no twist, thus –2 and –3 are both zero. Finally, we consider the value of ◊i

for each link. ◊i represents the rotation around axis zi required to align the

previous x-axis, xi≠1, with the current x-axis, xi. From the figure, it may

appear that ◊i is equal to ◊1, ◊2 and ◊3 for the first, second, and third link,

respectively. However, the NAO position sensor does not read the angle as

shown in Figure B.1. In Figure A.8, it can be seen that when the finger joint

sensor reading is at its maximum value of 57.29 degrees, the finger is fully

extended and the value for each ◊i is 0. When the finger joint sensor reading is

at its minimum value of 0.0 degrees, the finger is fully contracted and the value

of each ◊i is at its maximum value of 57.29 degrees. Therefore, each ◊i must

be defined as radians(57.29) - ◊i. The DH parameters are used to formulate

three transformation matrices: A1, A2, and A3.

The final reference frame was not oriented with the NAO coordinate frame.

To change the orientation of this frame to match the NAO coordinate frame,

a rotation of fi
2 about the x-axis was performed, indicated by Rx(fi

2).

The final step was matrix multiplication:

T = AbaseA
right/left
0 Rx(≠fi

2)A1A2A3Rx(fi
2)

The position of the end e�ector (fingertip) was extracted from the matrix T.

For this work, we only required the position of the end e�ector and not the

orientation. Therefore, no additional calculations to compute the end e�ector’s

orientation were performed.

The DH parameters, and all required rotations and translations, are sum-

marized in Tables B.3 and B.4.

138

Ta
bl

e
B

.3
:

N
ew

D
H

pa
ra

m
et

er
s

fo
r

th
e

N
A

O
V

6
le

ft
ki

ne
m

at
ic

ch
ai

n
to

in
ne

r
fin

ge
rt

ip
.

Fr
am

e
(J

oi
nt

)
a

↵
d

✓

B
as

e
A

ba
se

K
nu

ck
le

A
le

f
t

0

R
ot

at
io

n
R

x
(≠

fi 2)
LF

in
ge

r2
1

0.
01

43
6

ra
di

an
s(

-1
0.

0)
0

ra
di

an
s(

57
.2

9)
-◊

6

LF
in

ge
r2

2
0.

01
43

6
0

0
ra

di
an

s(
57

.2
9)

-◊
7

LF
in

ge
r2

3
0.

01
43

6
0

0
ra

di
an

s(
57

.2
9)

-◊
8

R
ot

at
io

n
R

x
(fi 2)

Ta
bl

e
B

.4
:

N
ew

D
H

pa
ra

m
et

er
s

fo
r

th
e

N
A

O
V

6
rig

ht
ki

ne
m

at
ic

ch
ai

n
to

in
ne

r
fin

ge
rt

ip
.

Fr
am

e
(J

oi
nt

)
a

↵
d

✓

B
as

e
A

ba
se

K
nu

ck
le

A
ri

g
h

t
0

R
ot

at
io

n
R

x
(≠

fi 2)
R

Fi
ng

er
11

0.
01

43
6

ra
di

an
s(

10
.0

)
0

ra
di

an
s(

57
.2

9)
-◊

6

R
Fi

ng
er

12
0.

01
43

6
0

0
ra

di
an

s(
57

.2
9)

-◊
7

R
Fi

ng
er

13
0.

01
43

6
0

0
ra

di
an

s(
57

.2
9)

-◊
8

R
ot

at
io

n
R

x
(fi 2)

139

Appendix C

Hyper-Parameter Search

Both PPO and SAC have a large number of hyperparameters. We chose

to be selective in our hyperparameter search and target parameters that we

believed would have the most significant impact on learning. If we felt that a

hyperparameter setting was good, then we would not necessarily target that

hyperparameter within our search. We started our hyperparameter search

with values that were already known to do well within other people’s work

[28], or with published values [23], [55].

To compare hyperparameter settings, we computed the average return

across the last 100 evaluations in a run, then we averaged the computed aver-

age return (for a single run) across 30 runs.

For PPO, we first performed a hyperparameter search for gamma, then

once we found a good value for gamma, we performed a search for the param-

eters number of samples and mini-batch size. We chose to target the number of

samples parameter because Minh et al. [41] stated that, for their GAE estima-

tor, the number of samples should be significantly less than the episode length.

We wanted to see how learning would be a�ected by this setting, especially

considering that our episode lengths shortened as learning progressed. We did

140

not search for a clipping hyperparameter; we believed that our clipping hyper-

parameter (set at 0.1) was at a good value as the number of clippings dropped

exponentially, to near zero, quite quickly. This reflected that our learning

algorithm was not making large updates to the policy. Our hyperparameter

search for the NAO task is shown in Figure C.1.

For SAC, we first performed a hyperparameter search for the target smooth-

ing coe�cient, tau, and gamma (combined). In SAC, this value is used to

update the target network using Polyak averaging. Haarnoja et al. [23] pre-

sented the performance for di�erent values of tau, showing that large values of

tau could cause lead to very poor performance (i.e. instabilities), while small

values of tau could slow the learning speed. After searching for the best value

of tau and gamma for our problem, we additionally searched for a value the

learning rate.

Haarnoja et al. [23] claimed that SAC was robust to all hyperparameter

settings, with the exception of the reward scale. The reward scale is responsible

for controlling the stochasticity of the policy. Since we added the feature to

automatically tuning the entropy [24], the reward scale no longer need manual

tuning. Our hyperparameter search for the NAO task is shown in Figures

C.2 and C.3. Based on our results for the NAO task hyperparameter search,

we can confirm that SAC is indeed robust to the hyperparameters that we

examined.

141

(a) Varying gamma.

Number of samples is

128 and mini-batch

size is 32.

(b) Varying mini-

batch size when

number of samples is

128. Gamma is 0.94

(best from (a)).

(c) Varying mini-

batch size when

number of samples is

256, Gamma is 0.94

(best from (a)).

Figure C.1: PPO hyperparameter search for NAO task: gamma, number of
samples, and mini-batch size. Best found parameters are gamma = 0.94,
number of samples = 256 and mini-batch size = 32.

142

(a) Varying gamma.

Target smoothing

coe�cient is 0.005.

(b) Varying gamma.

Target smoothing

coe�cient is 0.010.

(c) Varying gamma.

Target smoothing

coe�cient is 0.015.

Figure C.2: SAC hyperparameter search for NAO task: target smoothing
coe�cient (tau) and gamma. Best found found parameters (so far) are gamma
= 0.96 and tau = 0.005.

143

Figure C.3: SAC hyperparameter search for NAO task: learning rate. Gamma
is 0.96 and target smoothing coe�cient is 0.005 (best from Figure C.2). Best
found learning rate is 0.00045, but di�erences across the learning rates are
negligible.

144

Appendix D

Challenges

This appendix chapter describes challenges that were faced at the start of this

research project. We briefly describe our original goal and report on why this

goal was not attained. We justify the changes that had to be made to the

research project, thereby evolving our work into the form it is in today.

D.1 Sony AIBO ERS-7

At the start of our research, our objective was to use the Sony AIBO ERS-7

robot as a platform to test our ideas. The University of Alberta owned several

of these robots, including two that were faulty (shown in Figure D.1). Each

of the faulty robots had a single broken leg, where the lower limb was severed

and only the upper limb remained attached. We replaced the lower limb of one

robot with a half-pencil, firmly a�xing it to the robot using electrical tape,

and thereby creating a makeshift leg replacement.

AIBO task. Our original objective was to use a simulated Sony AIBO to

learn a gait using our chosen RL algorithms. We would then transfer this

learned gait to a normal Sony AIBO, and we would allow the real robot to

145

(a) AIBO with makeshift limb.

(b) AIBO with broken, severed limb.

Figure D.1: Sony AIBO ERS-7 robot.

146

continue this learning. Once a good gait had been learned in the normal AIBO,

we intended to transfer the learned gait to one of the two faulty AIBOs. We

would then allow this faulty AIBO to continue training, thereby learning a

new gait that accounted for its faulty leg (i.e. adapting).

ROS and Gazebo. Before working with the real robot, it was our intention

to find an accurate simulator for the Sony AIBO. Our first attempt at robot

control and simulation was with Robot Operating System (ROS) and Gazebo.

ROS is an open-source framework for writing control software for a robot [45].

Gazebo is a simulation tool that is compatible with ROS [46]. ROS packages

were publicly available for the Sony AIBO; however, they were very old, dating

back to 2002. These packages were intended to be used with ROS Kinetic. We

made numerous attempts to setup the AIBO within ROS using these packages,

however we were always unsuccessful. There were incompatibility errors that

we could not resolve.

Tekkotsu. After our failed attempt at simulation with ROS, we looked for

an alternative simulation option. This led us to Tekkotsu, an open-source

framework for the control and simulation of robots, developed at Carnegie

Mellon University [8], [74]. We chose Tekkotsu because of its in-built forward

and inverse kinematics solvers for the Sony AIBO robot [72]. The setup of

Tekkotsu was by far our most challenging task. First, we were unable to

download the most recent version of the Tekkotsu software; a missing file error

prevented the software from downloading from the CVS server. We found

an older version, Tekkotsu 5.0.4 (2016), in [32]. We attempted to install this

software version but were unsuccessful after repeated attempts. The most

significant problems were incompatible libraries; we had to downgrade many

libraries to make headway in the installation process. Ultimately, persistent
147

problems with the libxml2 library, and the fact that the Tekkotsu software had

not been maintained since 2010, led us to the decision to find an alternative

option.

Sony OPEN-R SDK. We decided to stop our attempts to find simulation

software for the Sony AIBO and instead use the real robot. Sony had re-

leased the OPEN-R software development kit (SDK) for the AIBO, written

in C++. This SDK gave developers complete control over the AIBO robot.

The OPEN-R SDK came with sample programs for the AIBO; these included

a ball-tracking program, a sensor observer program and various other sample

programs. We were able to run all the sample programs on the normal AIBO

successfully. We then opted to find a pre-existing learned walk for the Sony

AIBO robot, which we found in [52]. We tested this program on a normal

AIBO and found that it was able to walk with this program. Next, we decided

to test this walk on the faulty AIBO; this is where we discovered, for the first

time, that the faulty AIBOs would not run software. Immediately after turn-

ing on the faulty AIBO, it would begin its initialization process, extending its

legs and standing up. It would start walking, but then a few seconds into the

process, it would signal an error by emitting a loud beep, then collapse to the

ground, and subsequently shutdown. We found that the code controlling this

safety shutdown mechanism was not accessible to the public, potentially being

proprietary to Sony; therefore, we were not able to modify this behaviour.

After this realization, we decided to no longer use the Sony AIBO for our

work.

148

D.2 SoftBank Robotics NAO V6

A new robot was purchased for our work, with the intention of testing our

ideas on a real-world robot. Again, we wanted to find accurate simulation

software for our robot. Prior to purchasing the NAO, we investigated the

simulation options for the NAO and discovered that several di�erent simu-

lation options existed. These included Choregraphe [58], ROS and Gazebo

[45], [46], a RoboCup 3D soccer simulator named SimSpark [31], and Webots

[17]. Choregraphe, which was released by SoftBank Robotics, did not provide

physics simulation, and therefore was not an good simulator for our work.

ROS and Gazebo. We first chose to use ROS and Gazebo as our control

and simulation platform, given that we had prior experience working with it

(with the Sony AIBO). There were no available ROS packages for the NAO, so

we had to import the NAO model into the simulation software using SoftBank

Robotics’ published URDF file. We were able to successfully import the NAO

model into the Gazebo simulator and, without gravity enabled, control its

joints with ROS; to our disappointment, once gravity was enabled, the robot

model would break into its component parts and collapse to the ground. When

trying to resolve this issue, it was found that this was a persistent problem with

the SoftBank Robotics models (i.e. NAO and Pepper) in Gazebo. No solutions

to this problem were found, so we decided to move to another simulator. We

had two remaining options that we were certain worked, verified by others who

had used them.

SimSpark vs Webots. Before deciding which simulator to use, SimSpark or

Webots, we installed them both and examined them. [71] provided an open-

source implementation of a NAO agent, in C++, for SimSpark. We setup

149

the SimSpark simulator and ran the open-source code. Everything worked

as expected. The simulation software appeared aged, with the visuals being

less refined than modern simulators. The open-source implementation gave

us three options to setup our simulation. These included the option to add a

team of NAOs, a goalie NAO, or a third option that was not relevant to our

project. It was clear that this simulation software was targeted for RoboCup.

The Webots simulation software, in contrast, was modern and not RoboCup

specific. We found that Webots had been supported by SoftBank Robotics

up to and including the NAO V5 model. (The V6 model was the first model

that was not supported.) Webots was found to have many advantages, which

included its capability to run headless in the terminal interface, its ability to

simulate a wide range of robots (for future work), and its flexibility in pro-

gramming languages, allowing users to use Python, C++, or Java. Ultimately,

we decided that Webots would be the simulation software that we would use.

NAO task. Initially, we wanted our NAO task to be a gait task; however,

after careful consideration, we decided that we should first attempt a simpler

task, involving less complicated kinematics. We decided upon an arm-reaching

task, leaving our gait task for future work.

150

	Introduction
	Statement of the Problem
	Need & Gaps
	Thesis Statement
	Manuscript Organization

	Background
	Reinforcement Learning
	Markov Decision Process
	Unified Discounted Return
	Value Functions and Policies
	Neural Networks
	Policy Gradient Methods
	Proximal Policy Optimization
	Soft Actor-Critic

	Related Work
	Faults in the Real-World
	Meta-Reinforcement Learning
	Select-Test-Update
	Environment Perturbations
	A Robot Reinforcement Learning Task

	Robots
	OpenAI Gym Ant-v2 & MuJoCo
	SoftBank Robotics NAO & Webots
	NAO Kinematics

	Experimental Setup
	Hardware and Software
	Faults
	Reinforcement Learning Problem
	Algorithms
	Experiments
	Additional Considerations

	Results and Discussion
	OpenAI Gym Ant-v2
	Results
	Discussion

	SoftBank Robotics NAO in Webots
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	NAO V6
	Specifications

	NAO Kinematics
	Transformation Matrices
	Denavit–Hartenberg Method
	New Kinematic Calculations

	Hyper-Parameter Search
	Challenges
	Sony AIBO ERS-7
	SoftBank Robotics NAO V6

