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With the rapid growth of population, more diverse crowd activities, and the rapid development of socialization process, group
scenes are becoming more common, so the demand for modeling, analyzing, and understanding group behavior data in video is
increasing. Compared with the previous work on video content analysis, factors such as the increasing number of people in the
group video and the more complex scene make the analysis of group behavior in video face great challenges. Therefore, a group
behavior pattern recognition algorithm based on spatio-temporal graph convolutional network is proposed in this paper, aiming
at group density analysis and group behavior recognition in the video. A crowd detection and location method based on density
map regression-guided classification was designed. Finally, a crowd behavior analysis method based on density grade division was
designed to complete crowd density analysis and video group behavior detection. In addition, this paper also proposes to extract
spatio-temporal features of crowd posture and density by using the double-flow spatio-temporal map network model, so as to
effectively capture the differentiated movement information among different groups. Experimental results on public datasets show

that the proposed method has high accuracy and can effectively predict group behavior.

1. Introduction

The growth of population and the diversity of crowd ac-
tivities make group scenes become common. Group be-
havior [1-3] contains many important clues in
interdisciplinary fields. Understanding the formation
mechanism of group behavior has long been one of the
important research topics in sociology and natural science.
When the number of people in the video increases and the
crowd scene becomes more complex [4], how to automat-
ically and effectively model, analyze, and understand the
group behavior data so as to better serve human beings
becomes an important challenge. Research on group be-
havior analysis can provide support and corresponding
solutions for many key engineering applications, such as
intelligent video surveillance, crowd anomaly monitoring,
and public facility planning. From the perspective of the
cognitive mechanism of group behavior, this paper studies

the effective computational framework and algorithm model
of group behavior, trying to mine the dynamic group pattern
and behavior in the real scene video data [5, 6], so as to solve
the practical problems in the field of computer vision.

At present, the problem of group behavior analysis [7, 8]
in video is based on ordinary surveillance video, and it uses
computer vision technology to understand and analyze
group behavior and events in the monitored scene. This
changes the problem that traditional video surveillance relies
too much on manpower. It can automatically realize the
analysis and description of group behavior and realize the
intelligent monitoring of large-scale crowd scenes. Group
behavior analysis and understanding has become an im-
portant research branch of video surveillance, which has
been widely applied in many fields such as public security,
transportation, and facility planning. At the same time, the
vigorous development of artificial intelligence [9-12], ma-
chine vision [13-15], cognitive science, and other cutting-
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edge technologies also provides a guarantee for intelligent
understanding of video content. Previous behavior under-
standing work [16] in video content analysis mainly focused
on understanding individual behaviors, such as motion
detection, target tracking, and object recognition, while
ignoring the understanding of large-scale group behaviors.
Compared with the analysis and recognition of individual
behavior, group behavior is more real and complicated.

In the detection of crowd density [17, 18] and crowd
behavior [19] by a computer, the movement of the crowd is
complex and the scene is changeable. Due to the change of
illumination, the blocking of the crowd, the perspective
effect, the different shooting angles, and other factors, it will
bring difficulties to the detection by the computer. Crowd
behaviors have different semantics in different scenes. It is of
great significance to quickly and effectively understand and
distinguish the semantics of normal and abnormal behaviors
of crowds and realize effective judgment, which is an urgent
problem to be solved in the field of computer vision [20].

The processing of video images through computer vision
can further replace manual monitoring to perform real-time
and efficient monitoring of crowd density and crowd be-
havior. Recently, many scholars have used deep learning-
based methods to conduct research on multiple tasks such as
pedestrian detection, face recognition, and group behavior
recognition and have made major breakthroughs. At pres-
ent, when computer vision performs crowd detection, there
are problems such as large crowd, poor detection accuracy,
variable scenes, and high complexity. The existing tech-
nology can effectively overcome the abovementioned diffi-
culties on the basis of deep learning and affect the
distribution of the population. As well as by real-time
monitoring of behavior, it provides solutions for crowd
supervision, which has great practical significance and ap-
plication value.

The main innovations and contributing points of this
paper is to propose a group behavior pattern recognition
algorithm [21, 22] based on spatio-temporal graph con-
volutional network, which can effectively recognize group
behavior. The paper also proposed to use the dual-stream
spatio-temporal map network model to extract spatio-
temporal features of the crowd posture and density to ef-
fectively capture the differentiated movement information
between different crowds.

The paper is organized as follows. Section 2 represents
briefly the related work to the proposed research. Section 3
elaborates the methodology of the paper with details in
sections. Experiments and results of the paper are given in
Section 4. The paper is concluded in Section 5.

2. Related Work

The initial population research is mainly based on the de-
tection of the crowd. The image is segmented before the
target detection of the crowd using a sliding window, and
finally, the crowd is counted based on the classifier. De-
tection-based methods include detection based on the whole
[23] and detection based on parts of the human body [24].
The typical traditional method uses random forest matrix,

Scientific Programming

SVM detector, and other methods to train the classifier and
extracts various features such as pedestrian direction gra-
dient histogram, edge, texture, and whole body wavelet. In
scenes with highly dense crowds, crowds are severely oc-
cluded, and the method of detecting parts of the human body
such as the head and shoulders is used instead of the method
based on overall detection. The effect is improved, but the
robustness of human detection is still not high.

Crowd density analysis and crowd counting based on
regression are mainly used to learn the mapping relationship
between image features and number of people [25]. Image
segmentation is based on the regression method first, the
image, texture, edge, and the prospect of gradient low-level
features such as extraction and then the linear regression,
Gaussian regression, ridge regression, and regression
function are studied, such as learning exists in the mapping
function of the number of low-level features and the image,
generating a static background model, which is sensitive to
illumination changes. The model needs to be retrained each
time the scene is transformed, which is costly in terms of
time and computation. Regression-based methods usually
believe that the relationship between the number of people
in the image and the foreground area can be approximately
linear. However, such linear relationship is difficult to be
established because of the problems of occlusion, overlap,
and perspective of the crowd in the real scene.

In densely crowded images, deep learning usually uses
convolutional neural networks to generate end-to-end
models to extract features of different scales of pedestrians in
the image, so as to generate crowd density maps through
Gaussian kernel functions to achieve the effect of crowd
counting [26]. The crowd density map can not only realize
crowd counting but also provide rich spatial information,
detect crowd density distribution, and further analyze crowd
behavior through crowd density detection. Zhang et al. [27]
proposed a multicolumn deep convolutional neural network
MCNN model, which used different subnetworks with
different convolutional kernel sizes to realize crowd count in
the scene of serious crowd occlusion and height transfor-
mation. In the latest research, Sam et al. [28] proposed a
switching network based on MCNN, which has multiple
CNN subnetworks with different depths and different
convolution kernel sizes of each subnetwork, thus improving
the accuracy and robustness of crowd density analysis and
crowd count results of high occlusion and multiscale scene
transformation. Sindagi and Patel [29] proposed a context
pyramid model CP-CNN. In order to extract global and local
context information, the network learns the MCNN network
of multicolumn architecture, designs two subnetworks to
map the input image or video frame data to a high-di-
mensional feature map, and uses the CNN network to es-
timate the context at all levels. To reduce technical errors and
generate higher quality density maps, Li et al. [30] proposed
the deep neural network [31-35] model CSRNET, which
abandoned the multicolumn framework, and believed that
the multicolumn framework had no obvious advantages
compared with the single-column framework. The front end
of the model was the VGG-16 model, which abandoned the
full connection layer and only retained the convolutional
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layer and pooling layer, followed by the void convolution to
expand the receptor field and obtain the features of different
levels of images. Generate the population density distribu-
tion map, and obtain better detection results.

3. Methodology

3.1. Overall Framework. Crowd flow in video has the
characteristics of time dynamic, space correlation, and
uncertainty. Aiming at these characteristics, this paper
proposes a kind of spatio-temporal dynamic graph con-
volutional network [36, 37] to study and predict crowd flow.
Figure 1 shows the framework of spatiotemporal dynamic
graph convolutional network (STDGCN) proposed in this
paper. The STDGCN model consists of an input transfor-
mation layer, an STDGCN layer, and an output layer
composed of a full connection layer.

The model uses the spatio-temporal data collected by the
crowd flow sensor in the video and external factors to predict
the crowd flow and other parameters in the future and
comprehensively obtain the spatio-temporal network [38]
prediction output. The input conversion layer embeds and
converts crowd flow attribute data and exogenous factor
data, among which three types of data are used for exoge-
nous factors. The STDGCN layer contains a graph convo-
lution module and a time-dimensional encoder-decoder
structure. The output layer generates the prediction result of
each node through a fully connected layer.

The core ideas of the STDGCN model can be summa-
rized in the following two points. First, regard the sensor
data at the same time as a graph data, connect the nodes and
neighbor nodes to represent the spatial correlation of the
crowd flow, and use the graph convolutional network to
capture traffic. Second, treat the data at different moments of
the same node as a time series and use the gated recurrent
unit and attention mechanism to deal with the time dy-
namics of the traffic flow. The STDGCN layer structure is
shown in Figure 2.

The spatio-temporal dynamic graph convolution module
consists of two parts: graph convolutional network (GCN)
and attention encoder network (AEN). Graph convolutional
network is used to deal with the spatial dependence of crowd
data, and attention encoder network is used for capture time
dimension dynamics.

3.2. Spatial Feature Extraction of Crowd. Compared with the
use of two-dimensional image convolution to obtain the
patterns and characteristics of the crowd, the pedestrian
sensor data with the characteristics of map data can obtain
more primitive and real spatial attributes. In the proposed
model STDGCN, graph convolution is directly applied to
graph structure, and highly meaningful patterns and features
are extracted in the spatial domain. Traditional convolu-
tional neural networks can effectively extract local features of
data, but they are not suitable for general graph structures.
There are two types of methods to generalize convolutional
neural networks to graph structures. One method is to
expand the spatial definition of convolution, and the other is

to use the Fourier transform of the graph to operate in the
spectral domain.

The spectrogram method of graph convolution is to use
the diagonalized linear operator defined in the Fourier
domain to convolve the graph signal and use the convolution
kernel g,. The convolution operation on the graph signal G,
can be expressed as

go X G, = ge(U/\UT)V =Ugy(NU", (1)

where U is the Fourier basis composed of eigenvectors and
go (N) is the diagonal matrix composed of eigenvalues of L.
Because the scale of the graph becomes larger, that is, when
the crowd is large, the computational complexity of
eigendecomposition of the Laplace matrix in equation (1) is
very high, which can be approximated by Chebychev
polynomial:

K-1

9o %G, =go(Lyv= Y 6T (D). (2)
k=0

3.3. Time Feature Extraction of Crowd Flow. As shown in
Figure 2, after the crowd flow data is extracted through the
graph convolutional network for spatial feature extraction,
the spatial feature sequence and the embedding represen-
tation of exogenous factors are used as the input of time
dimension modeling. The AEN module is composed of two
GRU networks with independent parameters. The GRU
network on the left is the encoder module, and the GRU
network on the right is the decoder module. The encoder
encodes the input time sequence and initializes the decoder
through the last moment of the encoder. Module, the de-
coder generates prediction output from the context vector in
time steps:

hi, = GRU( [)’i,t§ ei,t]’hi,t—l)’ (3)

where h;, is the output representation of sensor node i at
time ¢, y;; is the feature sequence obtained by the graph
convolution operation, and e;; is the exogenous factor.

A potential problem of the encoder-decoder model is
that the model needs to be able to compress the context
information of the source sentence into a fixed-length
vector. This makes it difficult for the model to handle long
sequences, especially those longer than the feature se-
quences in the training data. In other words, the encoder-
decoder model may be difficult to grasp the longer pe-
riodic features in the crowd flow, such as weekly
regularity.

3.4. Semantic Relevance of Group Behavior. In this paper, a
spatio-temporal correlation model of video is designed to
infer the behavioral semantics of group figures in video
sequences. The model is composed of two layers of GRU. The
first layer of GRU predicts feature mask sequence
E={E,E,,...,Ey} to encode. The second layer GRU
decodes the hidden codes of the first layer output one by one
and outputs the action semantics of the characters and the
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FIGURE 1: Schematic diagram of spatio-temporal dynamic graph convolutional networks.
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FIGURE 2: STDGCN layer structure.

behavior semantics of the group characters in the corre-
sponding time sequence after spatio-temporal correlation.
The model can be divided into two stages: encoding stage
and decoding stage in the process of spatio-temporal cor-
relation of group character behavior.

In the coding stage, the first part of the GRU structure of
the first layer has a value of code}, and the hidden layer
information H, is calculated. H, includes the hidden layer
information h, = {h},H, ..., h!} of a single person and the
hidden layer output g, of the group of people. The equation
for calculating the output of each character in the tth video
frame is as follows:

pi = x; ®hj, @)
where x! is the predicted feature mask input of the person i
in the tth frame of the first-layer encoding stage, h is the
output result of the hidden layer of the person i in the tth
frame of the video frame in the first-layer encoding stage,
and @ is the fusion function. The calculation equation of the
hidden layer output structure of group character behavior is
as follows:

G =pPVPV P (5)
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where p! represents the character feature after fusion and v
is the maximum pooling operation.

In the decoding stage, H, is output according to the
semantic description of the action of the previous character
and the hidden layer of the previous moment. Analyze the
behavioral semantics of the group characters so that the
group characters’ behaviors after the GRU structure have
temporal sequence information.

The obtained group character behavior semantic pre-
diction probability set is calculated by a maximization
equation, and the group character behavior semantics with
the largest prediction probability is taken as the video group
character behavior semantics:

Group = arg max( ptgmup), (6)

where pty,,, is the set of semantic prediction probabilities
of group character behavior we obtained.

4. Experiments and Results

4.1. Experimental Setup. The Volleyball data set is selected to
verify the semantic extraction method of sparse group be-
havior based on the spatio-temporal trajectory of video. The
Volleyball data set contains 55 real volleyball match videos
and 4380 frame labels. The image size of each frame is
720 x 108, and each frame label contains the number of the
current video frame. So, the position information of the
player is composed of the coordinates of the upper left
corner of the character’s bounding box and the height and
width of the bounding box. 3493 frame labels of the first 39
videos were used as the IJ} L training set, and 1137 video
frames of the last 16 frames were used as the test set.

In the experiment, the length of the input video sequence
is T, the individual action and group behavior semantics of
N players are extracted, and T = 10 is defined. The first 4
frames and the next 5 frames, including the labeled video
frames, are, respectively, taken as a video sequence fragment,
and N = 12 is defined according to the characteristics of the
volleyball match in the data set. All experiments in this
section were developed using TensorFlow and run on Linux
platform.

4.2. Evaluation Standard. In order to extract the semantics
of sparse group behavior based on the spatial-temporal
trajectory of video, the test is conducted with Volleyball data
set and the mask position matching feature F_ code-B is used
to complete the matching of people. The experimental re-
sults are compared with Inception and HDTM. It includes
the comparison of the semantics of human action and the
semantics of group action and takes the accuracy of the
extracted semantic of group action and the semantic of
individual action as the evaluation standard.

4.3. Experimental Results. Table 1 shows the accuracy
comparison results of Inception, HDTM, and our algo-
rithm, including two parts: group behavior semantics and
individual action semantics. It can be seen from Table 1 that
the algorithm in this paper is superior to the above two
algorithms in terms of semantics of people’s actions and
group behaviors. Compared with the above two algorithms,
the semantic accuracy of individual actions increases by
4.5% and 2.1%, and that of group actions increases by 8.3%
and 1.8%. After integrating the related movement track of
the group figures, the complete movement clues of the
figures in the video sequence can be grasped by the accurate
tracking of the group figures. Figure 3 is an example of
successful semantic extraction of character actions and
group behaviors in some videos of the data set. In Figure 3,
the bounding box information and individual action se-
mantics of each player in this video frame are specifically
drawn, and the current group behavior semantics are
marked.

4.4. Group Anomaly Recognition Experiments. Aiming at the
evaluation of the detection effect of abnormal motion
behavior in dense groups, this section uses the PETS 2009
data set containing sequence activities of different groups
of people. The data set is divided into five parts: calibration,
training, counting, density estimation, and crowd track-
ing. The video frame image has a resolution of 576 x 768,
contains 9 videos, and has 152 abnormal data. The first
1134 frames of the experiment in this section are used as
the training set, and the last 378 frames are used as the test
set.

For the detection of abnormal gathering behaviors of
dense groups, the experiments in this section are divided
into image-level detection and pixel-level detection. Image-
level detection gives abnormal aggregation detection results,
and pixel-level detection can locate the abnormal gathering
place and calculate the number of gatherings. Adopt the
same data input and processing methods as the abnormal
dispersion behavior.

The detection results of the abnormal dispersion be-
havior of dense groups on the PETS 2009 data set were
quantitatively detected with the DBM algorithm based on
optical flow and the D-IncSFA method based on deep
learning. The results are shown in Table 2.

Experiments show that this paper has a good detection
effect based on the abnormal dispersion behavior of crowd
density distribution images and can detect abnormal
video frames more accurately. Only when the movement
speed exceeds a certain threshold can it be judged as
abnormal. The specified movement speed is not less than
0.5 meters per second and more than 1.2 meters is ab-
normal dispersion behavior. The qualitative evaluation of
abnormal dispersion behavior detection in dense groups is
shown in Figures 4 and 5.
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TaBLE 1: Comparison of the accuracy of semantic extraction.

Methods Personal action (%) Group behavior (%)
Inception 78.1 75.5
HDTM 80.2 81.9
Ours 85.6 86.2
Mz Omana (ﬂ\ o i
5 N Standing
FIGURE 3: Successful example of group behavior semantic extraction.
TaBLE 2: Comparison of detection results of abnormal scattered behaviors of dense groups.
Methods AUC
DBM 0.8770
D-IncSFA 0.9797
Ours 0.9899

(a) (b) ()

FIGURE 4: Detection results of abnormal crowd behavior. (a) Test image. (b) Population density distribution map. (c) Density analysis and
positioning.

(a) () (©

FIGURE 5: Results of detection of abnormal scattered behaviors of dense groups. (a) Normal behavior, (b) abnormal aggregation behavior,
and (c) abnormal dispersion behavior.
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5. Conclusion

With the speedy growing population, various crowd activ-
ities, and the rapid development of the socialization process,
group scenes are becoming more common. Due to this, the
demand for analyzing, modeling, and understanding group
behavior data in video is increasing. In this paper, we take
group density analysis and group behavior recognition in
video as the goal and propose a group behavior pattern
recognition algorithm based on spatio-temporal graph
convolutional network. We designed a crowd detection and
positioning method based on density map regression guided
classification and, finally, a crowd behavior analysis method
based on density level division to complete crowd density
analysis and video group behavior detection. In addition,
this paper also proposes to use the dual-stream spatio-
temporal map network model to extract spatio-temporal
features of the crowd posture and density to effectively
capture the differentiated movement information between
different crowds. We have conducted experiments on public
data sets, and the experimental results show that the method
has high recognition accuracy and can effectively predict
group behavior. The experimental results of the study have
shown the effectiveness of the proposed research.
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