Bibliotheque natlonale

' . National Library
du Canada

l* of Canaqa

Canadian Theses Service

Ottawa, Canada
K1A ON4

CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfiiming. Every
effort has been made to ensure the highest quallty of reproduc-
tion possible. - \

if pages afe missing, contact the university which granted the
Jegree. '

Some pages may have indistinct print especially if the original _

pages were typed with a poor typewriter ribbon or-if the Gniver-
- sity sent us an inferior photocopy.

_Previously copyrighted materials (journal articles, publishied
tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the
_Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read
the authorization forms which accompany this thesis.

~ THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 339 (r. 86/01)

Services des théses car.

;-

nnes

THESES CANADIENNES

AVIS

La qualité de cette microfiche dépend grandement de la qualité '
de la thése soumise au microfilmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction. :

S'il manque des pages, veuillez communiquer avec {'univer-
sité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiées
a l'aide.d'un ruban usé ou si 'université nous a fait parvenir
une photocopie de qualité inferieure.

Les documents qui font déja f'objet d'un droit d’auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimés.

La reproduction, méme partielle, de ce microfilm est soumise
4 la Loi canadienne sur le droit d’auteur, SRC 1970, c. C-30.
Veuillez prendre connaissance des formules d’ autonsatlon Qqui
accompagnent cette thése. :

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L’AVONS REGUE

. Canada

/<

o L

National Library‘
of Canada du Canada
Canadian Theses Division

Ottawa, Canada
K1A ON4

Bibliothéque natlonale

#-315-26748-8

Division des théses canadiennes

PERMISéION, TO MICROFILM — AUTORISATION DE MICROFILMER

e Please print or type — Ecrire en lettres moulé=s ou dactyiographier

Fuli Name of Author — Nom complet de |'auteur

:D_OUW* TJeanv FReEMONT

Date of Birth — Date de naissance

APRIL 13, 19948

Country of Birth — Lieu de naissance

C AvADA -

Permanent Address — Résidence fixe

CQ-YB-? 63)Q()el\u.e_ S L*)
C ALG-ARY, m:ra el
T3 ST

Title of Thesis — Titre de la these

Q METH'OODL.DC,‘/ -Qor “ﬂ\e. E\)PH.U.QT(OAJ

prCtHTc—:c.T URE <,

oFr "DATAFLOW QOMP@T&/{

AY

University — Université

|
(ANiveesiTy ALgerTh

OF

Degree for which thesis was presented — Grade pour lequel cette thése fut présentée

m . Se.

Year this degree conferred — Année d'obtention de ce grade

19%3

Name of Supervisor — Nom du directeur de these

DRI TARTAR

Permission is hereby granted to the NATIONAL LIFRARY OF
CANADA to microfitm this thesis and to lend or seli copies of
the fiim.

The author reserves other publication rights. and neither the
thesis nor extensive extracts from it may be printed or other-
wise reproduced without the author's written permission.

L'autorisation est, pz;r_la présente, accordée a la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette these et de
préter ou de vendre des exemplaires du film.

L'auteur se réserve les autres droits de publication; ni la these
ni de longs extraits de celle-ci ne doivent étre imprimés ou
autrement reproduits sans |'autorisation écrite de l'auteur.

Date

Signature.

L féémz’“

N

Ly L2, /953

NL-91 (4/77)

The University of Alberta

A METHODOLOGY FOR THE EVALUATION OF DATAFLOW
COMPUTER ARCHITECTURES .

by

D Donpa J. Fremont

~.-¢

A thesis .
submltted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master-of Scence

A

=
Department of Computing Science

Edzon. | . _uert:
wall, 1983

¢

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Donna J. Fremont

TITLE OF THESIS: A Methodology for the Evaluation of Dataflow Computer Architectures
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1983

Permission i- hereby granted to The Uniycmify of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copics for private, scholarly
f or scientific research purposes only.
The author rc;crvcs .other publication rights, and neithgr the thesis nor
\ \

- . extensive extracts from it may be printed or otherwise reproduced without the author’s

written permission.

Permanent Address:
2839 - 63 Avenue S.W.

Calgary, Alberta
Canada T3E 5J6

Dated 19 July 1983

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH ~

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Rmcﬁrch, for acceptance, a thesis entitled A Methodology for the Evaluation |
of Datrflow Computer Architectures submitted by Donna J. Fremont in partial fulfillment of the

requirements for the degree of Master of Scence.

ABSTRACT

Dataf'l’ow computer architectures are a new class of architbcﬁxra which employ paralle!
processing and are based on a data dnﬁ:n omn;;utation model. A\lthough meéc novel architéchwes
promise increased power and speed, they complicate an already difficult task, the design of
computer systems. The develop‘mcntb of tools to manage and simplify the design brqcrss :
important -because data flow architectures are both untried and inherently more complex than
traditional unibrooessbr computers.

Presented here is a methocology used to invmti_gatg properties of proposed dataflow
architectures based on their estimated performance. Fundamcnté] to the mcthodoloéy are a formal
language to dmbc the “architecture and a data-driven simulator to generate perfonx;ancc
statistics. The methodolygy is tested on two dataflow architecture dtsigm taken from the current
literature, showing sufficient experimental results to demonstrate its ‘applicability to divergent
designs within the dass f architectures. This work also contributes to the S3 (an architeciure
description language) dssign environment by extending its use to the class of dataflow computer

architectures.

iv

Admowlédgements

- I would like to thank my supervisor, John Tartar, for his constant guidance and support
throughout this research. Jeff n, Alan Wagner and Lisa Higham read a rough draft of the

thesis.and contributed helpful suggcstions for improvements. Steve Sutphen assisted in the use of

text and’ picture “processing facilities during the produciion of this thesis. Thanks to Darrel
Makarenko for his previous work on the sirulator and his help durin~ the programming of .the

e s !
modifications.

. '\v

o

TABLE OF CONTENTS

’ Page
Chapter 1 INtroduCHON «..ocoiviiiiiiiie ittt ettt ettt ee s e 1
i .
11 THE PYOBEITL v oooooosees s eseoeeee e oeeeeeeeeeseeeesoses e eeeseeseeeessseesesseean e 1
1.2 Froposed Methodologyiv.eeeeeenss e 1
13 Pt WOtk coososossoes oo ssesss s SO ST e ,. 2
1.4 Outline of Thesis .. e 3
Chapter 2 Dataflow Wta Architecture 5
2.1 Design GOals oo S R s 5
2.2 Dataflow Computing Modcj .. 7
2.3 Implications of the Dataflow Modelccccoooiiii 9
2.3.1 Program Orgamizationc..ceeeueiuieeiiniienmmiinmiiiieneriins rararenionrannionnenson 9
2.3.2 EXECUBON CYCIE «.vrveeieieeeeeeeeeeeeieses et ssaesenessesasass et esssasee s s s enseens ’ 16
i.3.3 Machiné OFBAMZABONvvveeeeeeeereeeseresesemeseseessssnseasss enesssssaseseseseees 11
2.3.4 SUMMATY ..ooo.vovorvereeereeeneesensesessnseen, Teetreeee et es s ettt s s 12
| 2.4 Survey of Dataflow Architectures TN e 13
2,41 MIT MBS <.vrerro e eeseeereessee e ccenreesnes et et 13
2,42 QDM MBCHIBE .o ees oo ettt ettt oo 15
243 1d (Trvine Dataflow) MAcHNE oo oo oo e 17
2.4.4 Systeme LAU ..ooooccccoscene e et 18
2.4.5 Manchester University (MU) MBEHINE ovvvvveeee oo e eeeeeeesereeseens oo 21
Chapter 3 EValuation MethodolOgyccseeeeeeeseeseeseeescssssssssmssesessessssssssssssonnonns 23
3.1 Experimental Model BSOSO OSSOSO 23

3.2 Performance Measures and Parameters
= 3.3 Architecture Description
3.4 The Simulation Faglitycocveueeee
Chapter 4 Experimental Validation
. 4.. Examples Using the Proposed Methodol

4.1.1 Construction of an S Descri~”

4.1.2 1A DESIBN coveervvrveerereeicneeeenn.

4.1.3 MIT Design ...o.overvenennnns S

..
..
PO
..
ogy e et
...
...

...

4.1.4 Test Programcccoeeiimniienieniniienieinineiesie e e eaeenenes dreeeeeanne e

...

L2 W (s 1B 0 3 1. « PP PP

4.2.2 MIT DESIZN ..oooovmine ittt ettt s o

4.2.3 A Comparison et er sttt sesr et tes Lovreerenen. e ———

Appendix A S*A Description of Id MAchincovveeiveieereevermsesneeresseesesennens .

Appendix B §*A Description of MIT Machine

...

38

)

50

‘58_

61

LIST OF TABLES

Table

4.1 Id InStruction FOTMALc.vvviiiiereraenieiiiineiieeiiiieneenes
4.2 1d Funcztional Unit Execution TiMeS ...cc.ocovvviiiiinieiiiinnnnns

4.3 MIT Functional Unit Execution Timesccccoveninninnnen

4)

. . N
4.4 Examples of Machine Code Instructionsco.coueeies
4.5 MIT Allocation of Test Pr,ogrém to Memory %

4.6 MIT Average Queue Wait Timecoovivriciininiiinnn

4.7 MIT Average Queue Wait Time with Two Operation Units

....................................

............ Pperissssaentascsntsencs

....................................

....................................

39
41-

45

52

- 53

LIST OF FIGURES 3
Figure) ' ’ R _ Page
2.1 Computation as a Directed Graph -..... e e e -8
2.2 MIT MACKINE +.eoeoerreeeeeveeeereeesessssesseesens s s sas enerssasasssass s srenes I 14
2.3 DDMI MACRINE ...ouvevivieveriiaierieeteeetesevetetesesesteeeesereanssssesesaessesessanas T 16
2.‘4 Id Machine et reerreeeie e e aaeeaeneas e et are s e e areta e e e e e ae s anreneeaaas 17
2.5 Td PrOCESSINg EIEMENt +vvvvovvooesssoeeeeoeesesseesseesess s sesesseesssees e seses 19
2.6 LAU Machine e 2
2.7 MU MACKINE .oe.veeerevaeeeeeiseas s sevesastsssess s seaesessssasssssss e ssesssnssessssessessssesanes)
31 The Modeling Processoooveeen.. o eveesgieeseniseeseseses ey
4.1 Id Machine Language Program: Integration :............... breenreseesiraa e rreeas celene 43
4.2 MIT Machine Langnage Program: Integration et s S 44
43 1d Execution Time et re e eeeeeeer s aes ee et et e er e e eee e eee e ne s euneaaees - @
8.4 Td UHZAON +vvvvlrerreesereseseesese eeseesfesesessesesssesesssesrens ST :
4.5 1d Execution Time with DOubled Bus THIE ~..vv.vvseverorcrsssosssssesssisens oo 49
4.6 MIT EXCCUUON THIE +vvvvvvornreererseeeeesesssssssssssessssinssssEoserseeseseeessiisenss s 51
07 MITUBIZAEON sttt A e 82
" 4.8 MIT Execution Time with Two O;éraﬁon Unim\.z....i-.,."f]:':i:.‘f..ﬁ ereeeereereeeen 53
4.9 MIT Memory Urilization ;/ 54
4.10 Average Execution Time perI’nst;ucnonEx \ .. 56
4.11 Speed-Up in Exedi%onffﬁﬁc‘i : . 51
. W e
4.12 Ffficiency of MIT and »Id,‘ﬁ;signs el 58
. N . B3 ’ .

CHAPTER 1

Introduction

Computer architecture design is a complex and arpcmlvc process. Multiprocessor computer.
systems are now being used to experiment with a variety of homogeneous and heterogeneous pro-
cessing units, allowing simultaneous use of many resources. Dataflow computer architéctura are a
newer class of architectures which utilize the multiprocessor concept and are based on a data
, driven computation model. Although' these new architectures promise incrcased ;;owcr and specd,l
: thcy complicate an already difficult task, the design of ncu} computer systems. “These architectures
are both untried and inherently more complex than the traditional uniprocessor th. What
tools can be dcvdopéd,m manage and simplify the design process of such complex and non-"
traditional machines?

’ The increased complexity of computer.systems demands a systcmat_ic and structur.cd approécﬁ
to design, and requires the use of automated tools. One desired clement in the computer architec-
ture design process is the evaluation and mpaﬁsm of different proposals Architects wish to

investigate the properties of proposals based on estimated performance. -
) N . ‘ ' .

1.2. Proposed Methodology
The goal of this thesis is to contribute towards a mcthodology for the evaluation and com- ,
parison of dataflow computer architectures. The proposed methodclogy o
\(1) Aidé.ntiﬁes‘ parameters vand pcrfox;méncc‘mmsurcs appropriate to the class :of dataflow -éom- |
| ‘puter architectures, ' o . - |

) ' describes the candidate architecture using a formal language, and

1.2 Proposed Mcthodology ' 2

(3) performs a deterministic simulation of the candidate architecture. e

Evaluation xmpha the sc]octlon of a set of pcrformanoe measures and a set of énramztm,
both appropriate to the comman characteristics and to the design goals of the class of architectures
under investigation. Since, the major goal- of a dataﬂow architecture is an u}oroasc in proccssmg
power through the cxplo:tauon of parallchsm, the quanufnas rmxst measure achieved pwallchsm
and lost processing power due to increased ication activity. Since evaluation can be con-
ducted only if the architecture designs are ngorously and unambiguously specified, the architecture
is dm:bod using a formal language. .

A detcrmuustlc sunu]at:on roqmrcs the sclection of appropnato test programs (coded in
machine languagc) and a simulation of the execution of these test programs. Input to this simula-

- tion will be thc architecture description, test program code and paramcter values. Output vanabla

- will be usod to calculate defined puformanoc measures. A data-dnvcn simulation, along with a

report gencrator and test recording facility, forms an automated environment for the specification

" and evaluation of proposed dataflow architectures.

'nus thesis attempts to validate thc proposed methodology by applymg it to the evaluat:on of

two dataﬂow architecture proposals descnbod in the current literature.

1.3. Past Work | S

Performance mws.orcs used to evaluate traditional uniprocessor oomputo- ordxitocmrcs
[FuB77] are not approoriatc to dataflow architocﬁue;. Two studies [GoT80,Pla76] of proposed
dataﬂow ardﬁtecturos identify rele;rant quantifiers, some of which are included in the set of meas-
: urm used in thls mcthodo]ogy . |

'Ihere are dlffercnt approaches to evaluation of architectures: analysxs simulation and con-
structlon Construction has been used to evaluate dataﬂow architectures [DBLSO] but is cxpcnswe |
b and therefore cannot be used to investigate decisions such as one thousand versus one hundred pro-

cessing units. Comstruction is not feasible until late in the design process. Analytical studies have

1.3 Past Work | ‘ | 3

" been performed-to evaluate dataflow architectures [Jen81,Mey76, Mis76]. Analysis is difficult for

complex and irregular systems and cannot react to spedfic input data. Simulation at the architec-

ture level cannot predict actual performance and cost but can be ysed to study throughput of a sys-

tem [DBL80]. Simulation is a very flexible tool applicable at many levels throughout the design
.

process. Data-driven simulation allows experimentation with the machine instruction set as well as

system structure and behavior.

Probably the most oompletc data-driven simulation facility is the ISPS [Bar79kchltecture
simulation facility at Camegxo—Me.llon University. It is part of a large automate{ desngnh{o?
ment which has been used for the comparison, evaluation and design of computcr ardutecturcs

[BaS77, VBHB1]. The ISPS facility has not been used for dataflow architecturm. .

Gostelow and Thomas report results of experiruents on a simulated version of a particular
dataflow architecture cxecuﬁng programs written in a high level dataflow language called Id
[GoT80]. The simulator is custom built for this particular machine and thus cannot be used to

P

evaluate other designs.

A data-driven simulation fadlity, based on the architecture description language S} [Des81]
has been developed at this university. S§ is one member of a family of languages which atternpts
to cover the different levels of absfraction possible in architecture descriptions. Since Sx can
describe asynchronous concurrent processes, a few restrictions on the use of constructs permit its
application to dataflow architectures. This research uses the S{ language and simulator (with
modifications and extensions), as the core of an experimental environment for the evaluation of

dataflow architectures.

1.4. Cutline of Thesls

In order to define the problem further, Ch; ter 2 discussml\in more detail dataflow architec-
5

tures. Besides a description of the dataflow~model of computation, resultant implications . for

dataflow architectures are dimsed and dataflow architecture proposals from the current research

1.4 OQutline of Thesis . 4

are surveyed.

» Chapter 3 proposes a methodology for evaluation of dataflow architectures. The components
of the method are discussed in turn, first the choice of performance measyres and parameters,
second the use of a formal language for architecture description and finally the data-driven simula-
,tion facility.

The practicality of the methodology is tested and assessed in dapter 4, where two dataflow

architecture proposals from the literature are evaluated.

Concluding remarks are presented in Chapter S.

CHAPTER 2

Dataflow Computer Architecture

2.1.\ D<o Goals

The demand for higher performance in computer systems has in the past been met by
increasing the speed and bandwidth of uniprocessor computer systems. Speed has been increased
through design solutions such as instruction pipelihing, VO channels and @c memories. Further
increases in speed are becoming more difficult to achieve and manufacturers are seriously consider-

ing alternative machine architectures. Jean-Loup Mier expresses the opinion,

In order to achieve computational rates of the order of 100 Mflops with adequate preci-

sion, the architecture of supercomputers will have to depart from the strict von Neumann

concept. ... Therefore, the decomposition of computations into tasks which can be exe-
" cuted ooncurrently will be mandatory. [Bae80]

Parallel processing computer systems, including multiprocessor and distributed systems, are a
recognized solution to the search for more computing power. 'Lhw.fommatcly a multiprocessor sys-
tem constructed simply by connecting multiple von Neumann uniprocessors encounters difficult

problems where synchronization is concerned.

a

New VLSI technology is promising greater. speed, reduced’ cost, increased reliability and
reduced power consumption; therefore the ébnstraims of VLSI technology must bc_ considered
when designing new architectures. Because of the high design cost of VLSI chips, an economic
advantage is Iatta’med only if a chip is produced in large volum&‘. This is achieved either if the
chip is widely used in a variety of products or if one computer system inoofporatts many identical
chips. These economic factors encourage the design of computer systems using many identical
complex-logic chips connected together in simple, regular structures. Traditional uniprocessor
designs do not exhibit these features, hence more emphasis is being placed on multiprocessor
designs. | |

£

2.1 Design Goals , : 6

~ John ABackus [Bac78] writes forcefully of the problems inherent to conventional programming
languages based on the von Neumann architecture. Besides being large and inflexible, prmdural
languages are difficult to prove (involve side effects) while parallel procedural languagts are even
worse. In short, "conventional languages rreate unnecessary confusion in the way we think about
programs” [Bac78,p. 614]. By contrast, functional languages are simpler, more powerful and pos-
sess mathematical properties which can be used to prove programs. Unfortunately, the main draw-
back has been that implementation of functional languages on von Neumann architectures is
grossly inefﬁcien-t. Therefore Backus conclud:,s that alternate architectures spedﬁmlly d&ignefib
for functional languages should be developed. Since dataflow computation is functional by nature,
dataflow architectures would directly support functional languages.

The above mentioned trends in computer design are consistent with current interest in the
dataflow computer as an aiternative to the von Neumnann uniprocessor. Research is presently being
conducted in the United States, Great Britain, France and Japan. The goals of dataflow architec-
ture as seen by these researchers are: | -

(1) increased computer performance through poncufrency;

(2) exploitation. of VLSI through a computer organization consisting of identical complex func-
tional units connected together in a regular structure with little off-chip oomfnunicatidn;

(3) direct support of functional programming languz>s resulting in increased reliability due to .
easier verification of functional programs. |

Research in Japan towards Fifth Generation Computer Systems is cohcentrating on four topics:
knowledge-based expert systems, very-high level programming languages, decentralized and paral-
lel computing, and VLSI technology [TrL&]. Knowledge-based expert systems will require high
| computer performance. It is likely that a dataflow or reduction architecture will be employed in) -
thé Fifth Generation computers as they dxrcctly support functional programming languages and

pursue higher performance through exploitation of concurrency and VLSI.

2.1 Design Goals 7

2.2. Dataflow éompuﬂng Modd

A ocomputer system is based on an @dcr]y'mg computing moécl. The components of th? sys-
tem, namely programming languages, operating system and machine architecture, maintain con-
sistency with one another because they are all based on the same computing model [DaDGO]. .

The von Neumann computer architecture is the most prevalent computing model on which
computer systems are based. Work began in 1946 at Harvard University to A&ign the IAS com-
puter. It is now ccmsidcrcd the prototype of all subsequent general purpose computers [Hay78].
John von Neumann headed the QQign tcam of the IAS, hence the term von Neumann architecture i.s

implicitly defined by the characteristics of the IAS computer. Those characteristics are:

(1) | Ix‘lstkn'xctions and data are stored in main memory (stored program concept).

(2) The computer is organized with one main memory gnd §nc central processing unit (CPU). A
fixed number of bits-form a word (IAS had forty bits to one word) and one word at a time is
transferred between main memory and the CPU.

(3) The CPU initiates all control signals ﬁﬁch are synchronized by a éentral clock.

(4) The instruction cycle consists of two consecutive steps: instruction fetch and instruction exe-

cute.

(5) An instruction does not explicitly contain the address of the next mstrucuonto be executed.
Unless .otherwise directed the next instruction to bc executed is the next scquentiai instruction
of the program. A program éountgr maintains the address A'of the next instruction and tlﬁs '

program counter is one of a number of registers within the CPU.
(6) Two's complement arithmetic is used.
(7) Instructions are composed of an opcode and an operand address.

Computer systems have certainly advanced since the IAS but the seven dxaractéxistim ated above

remain the basis of most computer systems.

2.2 Dataflow Computing Model | 8

The dataflow computing model [DaD80, TBHS2] is derived from a program representation,
not from a computer architecture as is the von Neumann model. A dataflow program can be
mapped to. a directed graph where the nodes represent operations to be pcrfomwd and the arcs
represent the data paths between nodes. A node (operation, ‘activity) acts (fires) only when each |
of its inpui arcs contains data values (tokens). On firing of a node, all input tokens are destroyed
and a result token is produccd and placed on all outgoing arcs. An arc operates as a first-in-first-
out queue, delivering one data token at a time to the consuming node. A node may have any
number of input and output arcs. All data flows forward in the dire.cted graph and each node fires
| when all of the data required by its input arcs is available. It is not possible to determine the ab;o
lute order of node firing; but nodes requiring input data tokens produced by other nodes always
fire after the latter. Therefore the sequencirg required is solely determined by data dependendies
within the program. An example of a computation represented ag a directed graph is shown in

Figure 2.1,

z-(a+b)*(c-5)

Figure 2.1 Computation as a Directed Graph

2.2 Dataflow Computing Model * 9

2.3. Implications of the Dataflow Modd
This abstract dataflow computing model forms the basis for ﬁe design of dataflow computer
\
afchitccturcs. Computer architecture may be informally defined as tiic structure and behavior of a
oomputcr; but a computer architecture can be examined at many lcv\gls from the detailed circuit-
level to the processor-memory-switch (PMS) level of Bell and Newcl\l\ [BeN71]. An appropriate

\
abstraction level during the initial design process is the endo-architecture level.

Endo-architecture typically includes the functional capabilities of a machine’s physical
components, their interconnections, the nature of the information flow between com-
ponents, and the means whereby this flow is controlled. [Da581]

The following discussion considers combutcr architecture at the endo-architecture level and is’
organized into three topics similar to those examined by Treleaven [TBHB2]: program organization,
execution cycle and machine organizatidn. Program organization includes the representation of
machine language programs. The execution cycle describes the sequencing and results of execu-

tion. Machine organization refers to the configuration of machine resources and their allocation to

_support program Organization. -

2.3.1.° Program Organization

In the‘ von Neumann model a variable is synonymous with a storage location, and an-opera-
tion normally involves fetching data values, performing a computation and updating a storage loca-
tion. In contrast, dataflow data values are not stored, but exist only as tokens in iransit from pfo-
ducer to consumer node. Theoretically, the value of a variable is never updated, therefore high
level dataflow programming laﬁguagm uphold a single-assigninent rule whereby a variable can be)
assigned a value only once. W’lth no updating possible, synchronization of access to variables is
not a préblem, and all instructions which are not data dependent can be executed simultaneously
thus allowing concurrent computation within one process.

As well as a value, a data token must contain the name or address of its destination instruc-

tion along with other information such as processor address, unique code block identifier, iteration

2.3.1 Program Organization : ‘ 10

number, argument number, number of arguments required and the name of the producing instruc-
tion.” Therefore data tokens require more space in transit than the equival_ent data value would
require in the memory of a von Neumann machine. If .dynamic concurrency as well as static con-
currency! is desired then more information' is required to i?sﬁre unigueness of destmatwn -

o

addresses.

Results of computations can be used as input by more than one instruction, hence a machine
language instruction must include names and information for all destinations. Othier information
required in instructions includes: opcode, opcode depcndent mformauon (deaswn ﬂags, alternate

routes), value of a constant and operand number, number of destinations, number of operands,
operand ﬂags, a_cknowledgement signals, number' of acknowledgzment signals required. As indi-
cated, dataflow instructions are complex and lcngthy c

Since dataflow programs do not explicitly control the sequcnce of execution, high level
language programs are sunpler to construct.- Data flow program orgamzanon is very effident for
evaluation of simple expressions and support of proeedures and functlons with - ml] by value param-
eters. [TBH&2]. On the other hand dataflow program organization is not good at manipulation of

v

shared data structures.

2.3.2." Execution Cycle

boglmlly, every msn'ucnon in a doia flow program is ‘active and has a processing element
allocated to it, waiting for argmnmts to arrive. When all arguments have arrived the computation
is performed, the arguments are destroyed and the result sent to each of its destmauons. The pro-
. cessing element then beoorhes#idlge. If all instructions are data-independent, then theoretically all
" instructions could execute sirmﬂtanem;Siy. No oentrol information is needed because execution is

initiated asynchronously upon the, arrival of data. No program counter is needed because all

IStatic concurrency refers to the concurrency made possible by data-independence. This con-
currency is evident at compile time. Dynamic concurrency refers to the concurrent execution of
different loop iterations or functxon invocations. Dynamic concurrency is determined during execu-
tion.

2.3.2 Execution Cycle 11

' sequencing is implicit through data dependency. A result token is the only result of execution. It
would appear then that the execution cycle of a dataflow architecture is extremely simple and since

no clock or synchrcnized activity is required a distributed environment is possible.

2.3.3. Machine Organization

. As previously stated, each instruction is in principle active with a processing clcm;nt allo-
cated to it. In feaiity, it would be wasteful of computing resources to allocate one processing ele-
ment to eachi instruction. Rather, the essential task of a dataflow computing system is to find exe-

cutable instructions and then to allocate them to the appropriate resources.

— Treleaven describes two ways of solving the problem of finding an cxecutabie instruction:
token storage and token matching. In token storage the values of the operands are stored with the
instruction in munory Production of a result token will cause an update of all destination instruc-
tions (i.e. the program itself is changed). Some mechanism must search memory to find complete
instructions and fetch them to ~ processor for execution. Alternately, token matching requires a
separate memory for result tokens. Each new result token is matched up with other tokens bound
for the same destination. When a set of instruction operands is complete, the set of operands is
rclwsed and activates execution of that instruction. Program code is not modified as it is in token
s"torage, therefore token matching supports reentrant code.

The asynchronous concurrent nature of dataflow programs suggests a computer system com-
posed of more than one processor, where each processor acts indepéndently and the whole system
has no central control. A distributed system of independent processors can be realized in many
ways. If each processor is spedalized then a communication network is needed to route an instruc-
tion to the appropriate processing element. If all processing elements are identicél then an idle
processor must be found. |

Instead of each processor performing all decsion making and computation, it is possible to

separate the processor into many units each with a particular function to perform within the

l;,

2.3.3 Machine Organization . 12

instruction cycle. Some funk:nons to bz performed are: token matching, insertion of operands into
' ’ : :
instructions, determining if an instruction is executable, fetching instructions, composing operation
packets, performing computation and constructing tokens from results. Separate units performing

different functions on different instructions can operate concurrently.

2.3.4. Summary .

The data flow computing model suggests certain characteristics in a data flow architecture.
The independent concurrent nature of instructions implies many processors (athcr identical or spo-
cialized) performing arithmetic and logical oomputatxons The asynchronous aspect of the execu-

tion cycle suggests specialized functional units (e.g. token matching, token production, token rout-

ing, memory updating) operating concurrently and communicating with each other asynchronously.

Since the results of computation are local and memory need not be shared, distributed contral and-
memory are possible. ihcreforc a dataflow ardﬁtecnlre is likely to be a multiprocessor system
with asynchronous communication and distributed control.
More specifically, the representation of programs must be concerned with:
¢))] m\e set of primitive operations (e.g. arithmetic, logical, data structure manipulation, token
seiection .a‘nd routing); '
(2) machine language Mt@m format;
(3) data token format;
(4) use of control tokens;
(5) appropriate high level languages and '.thcir translation to machine level ms&mﬁms.
The structure of the architecture must reﬂe(; decisions concerning:
(1) functional units required;

(2) identical or specialized functional and computing units; .

2.3.4 Summary | | .13
(3) communication paths between units; |
4 distriﬁution of program and data storage.
The behavior of the architecture rﬁust solve the following problems:
(1) determining if a node is ready tov fire (token stdragc and token matching are two current ‘
solutions); H |
(2) mapping of instructions to oomputing'clcmmts and programs to storage;

(3) dynamic node replication.

2.4. Survey of Dataflow Architectures

Researchers are currently investigating the feasibility of the dataflow computing model.
Many dataflow architectures have been proposed. The following is a brief description of five pro- .
posals, which are often dted and reveal the varicty of approaches to the [:;roblem. Both Treleaven

{TBHA&2] and Davis [DaD80] have produced ccxnprchcnsivclsun’_/eys of the current research.

2.4.1. MIT Machine

Extensive dataflow research has bem conducted at the Massachusetts Institute of Ted_}nology
(MIT) Computer Structures Group under Jack Dennis. Topics of research include‘ hxgh level
dataflow programming languages and translators, decomposition of programs, architecture, routing
networks and logic simulators [Mas80]. " |

The Dennis/Misunas proposed dataflow architecture [DeM75,DLM80] is composed of a
memory subsystem, a operatiém subsyﬁtem and three communications networks (see Figure 2.2).
The memory subsystem stores instructions and their operands in instruction cells. The operation
subsystem is composed of special purpose processing elements which perform arithmetic and logical
computations. The arbitration network is a switching network which receives executable instruc-
tién packets from the memory subsystem and sends them to the appropriate .procc:ssing element in

the operation subsystem. The distribution network is a switching network which receives data

2.4.1 MIT Machine

———

14

Operation Unit

Opl

Distribution
- Network

Control
Network

Instruction
Cell

Instruction

Arbitration

Network

Memory Unt »

" Figure 2.2 MIT Machine

packets and sends them to the memory subsystem. The control network'pe;'fmns a function simi-

lar to the distribution network, except that the oontrol" packets are cither data values of type

boolean bound for conditional or iterative éontrollinstructions or are acknowledgement signals sent

to producing instructions. The memoty subsystem receives data and control packets through the

respective networks, and stores these into appropriate instruction cells as they arrive. If the receipt

of a token makes an instruction executable, an instruction pAcket is created and sent to the opera-

tion unit through the arbitration network. All communication between the five units is

2.4.1 MIT Machine 4 : | 15

asynchronous

The structure of this dataflow architecture introduces parallelism by allowmg each cell in
memory ooncorrcnt access to the operation unit throog,h the arbitration network. Pz_lrallelism is
. also introduced by the spedalized processing elements in the operation subsfstem which allow con-
current execution of differen: primitive opcratiorrs.

A unique featurc of the MIT machine is-the firing rule. A node fires when it has received its:
complete specified firing set and its output arc is empty. Therefore each arc holds only one token,
an arc is not a queue. If an instruction cell has received its complete firing set and it has received
an acknowledgement signal signifying consumption of its previous result token, thcn it is execut-
able and will send an instruction padcét to the arbitration nctwmk. ’q[rc admoxyledgement vsignal is

necessary to enforce the one token per arc rule. "’ , ’

]

- 2.4.2. DDMI Machine ' \
The DDM1 (Data-Driven Machine #i) pro,ject "'rsides at the Univer'sigy of Utah under the
direction of A.L. Davis [DaD80]. *
fI};is machine is a tree-structured r’nultiproc\msor composed of identical processors each having
up to eight child processors. Communication between prooéssors is asynchronous. No control
tokenr are used in the system and ;m':s act as first-in-first-out queues. A processor (see Figore 2.3)
is composed of an atomic storage unit (stores instructions and operonds), an atomic“prooessor (per-
forms operations), an agenda queue (stores mmsages); an input and output queue'(communica;&s
‘with the parent processor) and a switch (communicates with child processors)
Program mstructnons are allocated to processors based on the follMg pnncple A proccss-
ing element receives a subprogram from its parent. If.the subprogram cannot be further decom-
. posed, it i; stored in }thc local atomic storage unit. Otherwise tho subprogram is divided and sent

to tae child proccssom‘._ .

2.4.2 DDM1 Machine . 16

' to parent
Input | | Output
Queue “Queue
Agenda - Atomic Atomic
Queue | Processor Storage
Switch
) to children

ﬁgm-e 2.3 DDMI1 Machine
’Ihe atomic processer_ performs arithmetic, list structuring and routing opera_tions. The
atomic processor takes messages from the switch, the agenda queue and the input queue in that
order of pn'orit;l. A.reoeivcd data‘token is either routed to another processor or if its destination
mstrucuon is in the local atomic storage unit it is inserted into the instruction. If the instruction is

executable, the appropnate operatxon is performed and the result token is placed in the output

queue, switch or agenda queue Concurrency is achieved through 1dent1cal processing elements.

A unique feature of this architecture is usyardum] structure. Data tokens are list struc-
tures and storage is orgamzed as a list structured file. Also, programs are decomposed to subpro-

v grams, not to mdxv:dual instructions.

2.4.2 DDMI1 Machine | 7

2.4.3. Id (Irvine Dataflow) Machine

The Id machine {AGP78,GoT80] is composed of many identical processing elements which
communicate through two token buses (sec Figure 2.4, the prooe;sing elements are iabclcd Pe, |
Pel, ...). An arbitrary number of processing elements (4) are grouped together to form a ;;hysiml
domain. As well as processing elements, the physical domain contains a memory oontrolleraﬁd
memory store. Each processing element communicates with its local memory, but all local
memories are connected by a global memory‘ bus The address space of the whole system is uni-
 fied.

Each processing element (see Figure 2.5) consists of special purpose functional units which
communicate asynchronously through data tokens. There are no control tokens. The token buses

act as shift registers and rotate in opposite directions. Each processing element accesses one slot of

Physical Domain ‘ Physical Domain

Token Bixses
- | “
Ped || Pel Pe2 Pe3 Pod Pes Pe6 J Pe7
Jocal | bus Tocal | bus
Memory , Memory
Controller Memory Controller Memory
(lobal bus

Flgure 2.4 Id Machine

2.4 7 74 (Irvine Dataflow) Machine _ . 18

cach token bus. The processing element examines .ne cata token in the slot and if it has its
adcr s, the data token is removed from the slot and .Qd&d .in an input queue to the sorter. The
sorter matches this data token with others bound for th Jsamc instruction and if the required
number of operands have arrived, the operands are packaged and sent to the code fetch unit. The
required instruction is fetched from local memory and the stated operation is pcrforrhed by the
arithmetic-logical unit (ALU). An output unit takes results from the ALU and forms result tokens
including the addresses of the dtstin.éﬁon processing elements. These result tokens are placed in
slots on the token buses. All functional units within the processing element maintain first-in-first-
out input and output queues. |

A unique feature of this architecture is the unfolding interpreter which dynamically replicates
program loops (iterations, procedures) to achieve more concurrency. More complex token identifi: -
cation (tags) and operators which alter tags are needed to support this interpretation. This i.dehtif-
ication scheme is used to assign activities to processinglelemcms with locality in mind, (i.e. a block
of program code is assigned to a physical domain) so that result tokens need not be transferred
great distancés. This machi;le also supports structured data types and accesses these by reference
rather than by value.

The Id machine achieves concurrency through the many identical processing elements,
independent functional units within each processing element, and through the unfolding inter-

preter.

2.4.4. Systeme LAU

Research on the Systeme LAU dataflow mdﬁte@e is pursued at the CERT Laboratory in
Toﬁ]ousc, France. The architecture is based on a high level language.LAU whidl is almost
directly executed.

The machine [Pla76, SCHT?] is cqmposed of a processor subsystem (thirty-tWo identical pro-

cessing units), a memory unit and a control unit (see Figure 2.6). The memory unit stores instruc-

2.4.4 Systeme LAU

19

input from

token buses

Sorter

Code Fetch

to

i

= Tocal bus Q Q
;
Data Fetch .ALU
Q
Output
Q|Q
v v
output to
token buses

Figure 2.5 Id Processing Element

2.4.4 Systeme LAU - ' 20

1

instructions ready ;

Control update Processing |, instructions | Memory
Unit acddc Unit Unit
read operand
PO...P31 X
update Cd write operand

Figure 2.6 LAU Mhachine
tions and data. The control unit contains the Instruction Control Memory and Data Control
Memory and uses these to determine which instructions are executable. The Instruction Control
Memory is served by two functional units which update and search the Instruction Control
Memory. The Instruction Control Memory contains three control .bits for each instruction in
memory and when these bits are set to all ones, indicating that all data operands are available; the
address of the corresponding instruction is sent to the memory unit and the control bits are reset. -
The memory unit fetches the inst-uction and puts it on the inpt\xt queue to the processor subsystem. .
An idle processor accesses this input queue and fetches the required operands and executes the
instructions. Afterwards, results are written to memory.and the appropriate bits in the control

)

' memory are set.
The unique feature of this architecture is the control unit which contrdls the -nabling of
instructions. Concurrency is supported through the thirty-two identical processing elements and

the independent control, memory and processar subsysterzs.

2.4.4 Systeme LAU 21

2.4.5. Manchester University (MU) Machine

The Manchester University (MU) dataflow computer is described in Watson [WaG79].
Research has included the design of a high level dataflow language called LAPSE, which is directly

supported by the architecture. j
- The machine is a ring composed of three units: matching store, instruction store and process-
ing unit. A switch manages external communications, and a token queue acts as a buffer to the

matching store (see Figure 2.7).

The matching store takes a token from the token queue and if this token is the only input
required for an i;iStrucﬁon, it passes it directly to the instruction store. If the token is one of a
pair, the matching store searches for its partner a:d packages them together and sends them to the
instruction store. If the partner is not present, the token is stored in the matching store. Upon
receipt of a token packet the instruction store fetches the instruction and passes the packet to the
processor unit. A distribution system w:thm the processor unit sends the instruction packet to any
idle processing element (a twenty.processing element unit is under construction). The processing
element performs arithmetic, comparison and token ;nanagemmt operations. After execution the
arbitration system within the processing unit produces one or two result tokens. The tokens
proceed through a switch which also mauages input and output with external sources and passes
tokens on to the token queue.

. All units operate asynchronously, thus parallelism is achieved through the independence of

these units and through the identical processing elements within the processor unit.

Besides the value and destination field, tokens also specify the process, argument number,
and iteration of the token. This tagging is similar to the Id machine and permits reentrant code.
The token matching scheme is also similar to the Id machine but the matching and instruction

7.3
stores are centralized rather than distributed.

2.4.5 Manchester University (MU) Machine

Matching
\ Store
i
‘\
-
Token Instruction
Queue Store
)
output
Switch
—r——
input
Processing
Unit
PO...P19

Figure 2.7 MU Machine

CHAPTER 3

0

Evaluation Methodology

- Although the dataflow computing model is conceptually simple, the dataflow architecture
proposals are often complex, involving separation and replication of function to an unusual extent. -

This complexity increases the need for evaluation during the early design stages.

\

3.1. Experimental Mode

Presented here is an experimental design for the evaluation of dataflow computer architec-
tures. In a more gt::xlcrz;lnsci)sc the object is to study a ;dmsw éomputcr erchitecture with the
intent of optimizing its predicted performance. To optimize performance, quantitéﬁvc performance
measures must be established and hypotheses made concerning which elements of the architecture
(i.e. parameters) have a causal effect on those measures. With parameters and performance meas-
ures defined, experiments to study the architecture must be designed. The most direct way to
sfudy the architecture would be to implement ﬂlc mdﬁm;nuc as a physical machine and conduct
tests by varying parameters. This approach is neither feasible Vnor desirable, because it would

introduce another variable, the .impleméntation. A more practical approach is the construction of a

model whose behavior can be examined by simulating it on a computer.

A model is a representation of the behavior and structure of a system. A computer program
uses this representation to generate behavior consistent with the model. This method of study is
repeatable and many tests can be conducted in a ‘'short period of time. Models can be expressed in

various ways: mathcmanml relationships, logical rules, formal languages, statnsuml probabilities.

The model which is proposed here (see Figure 3.1), describes the components of a computer
architecture and their interaction using an architecture description language. The components of a
computer architecture are the functional units and the data paths betweén them, while component

interactions refer to the data exchange and means of controlling communication between

23

3.1 Experimental Model 24

components. The architecture description is not at the gate or latch level but at the logical ﬁnc—
tional component level (i.e. endo-architecture).
The input variables of the model are a test corﬁputcr program coded in the instruction set of
‘rticular architecture, data required by that program and parameter values. The input vari-

srogram code and data) will determine the behavior of the modc], consequently this model

Arci: ture Par ers Test

T '

Data Driven
Simulation

B Output
OUTPUT: Variables

Performance -
Measures

Figure 3.1 The Modeling Process

3.1 Experimental Model 25

is data driven and deterministic, rather than stochastic.

A computer simulation program simulates the behavior of the computer architecture (i.c. it
executes the program code). This is the simulation of the execution of a single job on a computer
architecture not a multiprogramming job stream on a computer system. The simulation is moni-
tored to produce staﬁstics which summarize the behavior of the architecture and are used to ;ﬁo-

duce performance measures.

3.2. Performance Measures and Parameters

'Ihé choice of performance measures and parameters for this study was based on both a
review of previous research and an examination of the characteristics of dataflow architectures as
discussed in the preceding chapter.

"Ihc United States Army/Navy Computer Family Architecture (CFA) Committee [FuB77)
‘developed a methodology for quantifying relative performance ofl alternative architectures. They
wanted to compare architectures indepmdcnt of existing implementations. The comparison con-
sisted of three phases: an initial ranking based on a set of absolute and quantitative criteria, a test
progfam evaluation and consideration of software support and life-cycle costs. The first step
reduced the set of nine candidate architectures to ﬁucc acceptable architectures: IBM 370, PDP11
and Interdata 832. Those were evaluated using twelve test programs wrtten in machine code.

The following measures of performance were used:

S number of byté required for the test moéram in main memory

M- number of bytes transferred between main memor; and the CPU.

R- number of bytes transferred aﬁmg internal registers of the central processor.

The rationalization for these measures was that a higher S implied a higher cost for mors
hardware, a highcr M or R implied a longer execution time. Implementation details (cuche
memory, instruction pipelining) can of course affect these conclusions but they are not characteris-

tic of the architecture. Since a dataflow architecture achieves greater speed through simultaneous

3.2 Performance Measures and Parameters 26

execution of instructions, the CrA study assumption. of sequential execution is violated. There-
fore, M and R measures would not be indicative of execution time in a dataflow architecture.

It is important that any performance measures used to evaluate dataflow architectures con-
sider concurrency. A standard von Neumann. computer architecture does not specify instruction
execution time, because this is normally considered part of the implcrﬁentation. But it is irnposSi-
ble to evaluate dataflow architectures without estimates of relative time required by each functional
unit (cycle time). It is necessary to incorporate the concept of time to determine which functions
are being performed concurrently. Using these relative cycle times as parameters, the designer can
determine an optimal set of cycle times, which can then be sought during t}le hardware design
phase. | |

Ruby Lee [Lee80] of Stanford University describes an experiment which investigates th4eh.
optimal number of processor; in a pafa]lel processing system. The measures of performance usea
by Lee were of four types: speed of execution of a test program, utilization of resources, compres-
sion of the computation and quality of processing. Speed of execution was measured by the pérala
lel index (i.e. ratio of number of operations in the computation to execution time in steps) and by
speed-up (i.e. ratio of execution time of the serial computation to that of the paralle] computation). ‘
Utilization was measured by utilization (i.e. .rétio of processor busy time to execution time) and
effidency (i.e. ratio of number of operations in the serial computation to the product of execution
time and number of prdccssors). Compression was measured by redundancy (i.e. ratio of number
of 6pcrations in the para]iel computation to number of operations in the serial computation) and
compression (i.e. inverse of redundancy). Quzﬂity was a composite of other measures; defined as
the product of speed-up, effidency and mpre;sim. The parameters used by Lee were number of
processors and configuration of the system. ‘

‘Gostelow and Thomas [GoT80] report results of c:xpcnmmts conducted by simulating a pro-
posed dataflow architecture: The performance measures used were execution time of a program,

processar effidency (busy time / execution time) and mean cycle time. The parameters were

3.2 Performahce Measures and Parameters _ ‘ 27

number of processing dcmcxits, memory bus speed, problem size, different problems and assign-
ment functions (i.c. \mapping of operations to processing elements). With these performance meas-
ures and parameters it was possiblé to investigate optimal number of processing elements and
bottlenecks in the éystcm.
Iiélﬂt:. of simulation tests on the LAU dataflow architecture are reported by Plas [Pla76).
The performance measures used were execution time and average parallelism achieved. = The
parameters used were number of functional units (processors, memory units), cycle time of func-
tional units, parallelism of the problem and varying source programs. |)
The choice of performance measures and parameters is of course dependent on the purpose.
of the investigation. The prdcnt purpose is to help make dedsions regarding the mdo—archité;turc
of a proposed dataflow architecture. By re-é:xamining the &\madeﬁsﬁcs and architecture atﬁibuta_
presented in Chapter 2, it can be seen that the object is to help answer questions about the struc-
ture, behavior and program representation of the architecture. These are rather arbitrary divisions -
since all elements of the endo-architecture are interdependent. Usually the dsig”ncr makes ded-
sions about the program rcprcsentation. first and then attempts to find an appropriate structure.
Experimental invmtigﬁtion is required first at the structural and behavioral levels, where relevant
questions are: :
(1) What functional units ‘are required? A decision on the separation of function implicitly
defines the execution c}clc. The distribution of program and data storage determines the
ﬁaturc of memory (central versus distributed). |
(2) How many of each functional unit are required? The replication of function determines how
parallclism is achieved through the structure. Are identical or specialized functional and
computing elements desired? .
(3) What communication paths will connect the units? Are contral paths included as well as data

. paths?

3.2 Performance Measures and Parameters ‘ | 28

(4) How will dynamic mapping of instructions to computing élcmmt!; and static mapping of pro- .
| grams to storage be deténnined? '

(5) What will be the relative cycle times of functi and speed of buses?

(6) What préblems are best suited to the architccture?\

(7) I there a‘ speciﬁc. amount of ooncurrency~ which best fits the architecture?

Performance measures and parameters which are appropriate to both the class of dataflow
architectures and the goals of this thesis are listed below.
Performance Measures
(1) execution time (ET)
(2) utilization (U)
- of one functional unit (U= busy time/ET)

- of system (U=total busy time/n*ET
where n=number of functional units)

(3) speed-up (ET sequentiaI/E'i' parallel)
(4) effidency (ET sequentialn*ET parallel))
%) ;'m:rage wait time (the average time a mk@ waits for a functional unit)

Parameters |

(1) configuration: what and how many functional units ’ SN
(2) relative cycle tjmcs of.functional units
(3)'~ test programs

(4) degree of concurrency of the problem

3.3. Arckitecture Description S &

i

An important decision to make in the modeling. process is how\to represent the computer

architecture. The choice of a representation depends on both the purpose of the modeling process

3.3 Architecture Description | | - 29
and the level being investigated. 'Ihé purpose here is to represent an evolving design w1t.hm the
class of dataflow oom;mtc@'hardiitccmrcs, where modeling results will indicate possible improve-
ments to the design. These alterations will then be incorporated into t.hc‘:)alrrcnt' design for reex-
amination. Given this purpose, what characteristics are desired in a representation?

The representation must bc suitable for all proposals‘within the class of dataflow architec-
.turés, therefore a simulator developed for one particular architecture which implicitly describes the
érchitccturc throﬁgh its behavior is not appropriate.. The representation must be explicit, objective

\

' and suitable t& the whole class of dataflow architectures.
In order for a description to be easily changed it must be readable by humans. Humans find
it ea derstand descriptions which are represented familiarly, are modular in structure and

are presented)j

more than one manner (e.g. visually using diagrams and logically using ndtation).
Various points of\view and levels of abstraction (e.g.'overall structure and the detailed behavior
of one unit) also contribute to understanding.

' "Pfedsion is another required characteristic since an optiraizing process hopes to identify pre-
dsely the factors affecting performance.

As the optimizing phase is only one phase in an overall design process, it is reasonable to
expect the description in this ﬁhase to contribute to the construction of descriptions at later stages.
This description should translate into more detailed designs at the hardware level and therefore
éhou]d be understood by hardware dﬁigncrs as well as oomputervardﬁtccts. Also the representa-
tion should be machine readable so that translations and changes can bc-performgcl bly machine
thus contributing to an autﬁmated design process. |

Computer architectures are often informally described through block diagrams showing struc-
ture and interqonnections (as in Chapter 2) with accompanying natural language descriptions.
Although this mc\i.hod is appropriate for oyerall understanding of gen?ral principles, it is n‘pt pre-
cise and fails for complex designs. A more formal representation would use mathematical or logi-

cal notation or a programming language.

3.3 Ardﬁtecturc Description “ . ' » 30

Especially appealing is a computer programmiﬁé language since computing pro;msionals_ are
already familiar-with this form of representation. . The block structured programming languagm :
encourage modularity and allow alfcrnatc levels of abstractiox;. Computer mongg languages
are machine readable thus allowing easy translation to other design levels. Creating or changing a
description using a programming langﬁagc is fadlitated by many tools such as compilers and edi-
tors, which promote _automat.ed development. General purpose programming languages have been
used to describe computer architectures, but a better mapping between architectural components
and language constructs can be achieved using an architecture. description lahgmgc (alternately
called computer hardware .dmcriptiox{ language or computer design and description language). An
architecture description language is an appropriatc. representation for an architecture description in
an optimizing design proces:. '

Since the endo-architecturs is to be examined, it must be determined how this level affects
the choice of architecture description language. Within a single user dataflow computer system or
subsystem, under examination are the functional units, communication paﬂxs and execuﬁoﬁcycle
behavior. The basic entitié [Mak&] of such a systaﬁ are: instruction set, data tokens, control .
toicens, and a set of cooperating processes. A dataflow mstructxon set will contain ordinary arith-
metic, relatic;nal and logical operators, control constructs to control _cxécution paths ‘axid data struc--
ture manipulation opcratérs. ‘Data and control tokens may be of varia‘ble length, accessed by bit
rather than by word. ' A - |

A‘vdataﬂow architecture is fundamentally a set of cooperating proc;sses, execﬁtiné con-
currently, ir’litiated asynchronously by the flow of data tokens. A dataﬂo& process abstracts wsily.
to the concept of an asynchronous module as discussed by: Keller [Kel74]. An aSyndu'onoﬁs
module is independent and its "act.ivity is regulated by initiétioq and completion signals, with no
clocks being present” [Kel74, p. 21]. This abstraction to a set of asynchronous modules exists at
many levels, but the oonc;crn here is with the system architecture level wherg a processing element

—

(e.g. ALU, sorter, memory controller) is activated upon receipt of a data token. The result of this

3.3 Architectufe Description , 31
activation is a new data token sent to another processing element. The results of computation are

not affected by the order of arrival of tokens. Theoretically, there are no side effects and all glo-

bal variables are represented as data abstractions (i.e. protected within a monitor).

Processes are likely distributed throughout the system on independent physical components.
Tokcn] passing may therefore require external communication paths such as buses. Since processes
opcrétc concurrently, and independently send messages to other processes, fadlities must exist for
queuing messages upon arrival. A dataflow architecture is often a collection of identical processors
or subsystems, and processes may contain complex data objects such as assodiative incmoriés,

queues and stacks.

- In summary, a d&scdpﬁori'ﬁof a dataﬂow architecture at the endo-architectural level must
describe instruction set, tokens and processes executing concurrently. Particular properties of these
have been dted’above. Can existing architecture description languages accommodate such a
description?

- Mz architecture description languages have been developed. A comparison of computer
C. sscription languages is presented by Makarenko [Mak82] and a general discussion of-
description language research is presented by Dasgupta [Das82]. ISPS [Bar79] is the best known
hardware description language and was developed from ISP, first proposed in 1971 [BeN71]. It is
a general purpose language and forms the base of a computer-aided design facility at Carnegie-
Mellon University: ADL [Leu79] is a spedaﬁmd language designed to describe packet communi-
~ation systems which are systems composed of modules communicating by seﬁding hﬁoﬁﬁaﬁoﬁ
packets to &ch‘other. An ADL description is organized into modules, each with a specified input

éand output and further division into sub-modules whjcﬁ contain behavioral descriptions. Sharing
of data is controlled by monitgrs within a module. Sub-modules are easily replicated and the
number of replications can be based on a parameter data type. Since a dataflow archiécture is a

packet communication system, ADL would have been an acceptable choice for this study.

3.3 Architecture Description 32

The architecture; description language used in this study is Sy, a'general purpose language
developed as part of a family of description languages [DésSI,DasSZ,DasSB]. Sa was chosen
because an S; simulation‘ fadlity exists at this university, thus providing an opportunity to test and
extend the use of these tools to the class of dataflow computer architectures. Sy is a block struc-
tured language in the likeness of Pascal, whose highest lgvel modularization construct is the sys-
tem. A system may be composed of other systems but at the lowest level it.is composed of
mechanisms. The mechanism i the most important structuring oonstrucf. It acts as a critical sec-
tion and as a data abstraction block, such that ;/ari.ablm declared within the mechanism are accessi-
ble only to procedures within that mechanism. Mechanisms are initiated through calls to their pub-
lic procedures; the calls are queued‘if the mechanism is already active. Although S3 is basically ..
procedural, mechanisms can be initiated at start up and can continue execution without waiting for
the completion of other mechanisms which they have activated. Consequently, mechanisms will
execute concurrently. The primitive data type is the bit, but user defined types are aM& and

"can be composed of ‘e following data structures: sequence, érray, tuple, stack and associative
_array. As well as - sual Algol-like constructs, Sa includes an operator which dm&es con-
current execution of statements. Although synchronization constructs are available, there is no
way to refer to absolute time or to assodate - '!—elay time with any construct. The mapping of S}

constructs to dataflow components is discussed in G'téptér 4.

3.4. The Simulation Facility

The S3 simulation facility was developed by Makarenko in 1982 [Mak82] and has not previ-
ously been uscd as a research tool. Although the simulator does not implement all S constructs, it
does broﬁde an adequate subset. The simulator produces the following statistics: the number of
times a sequence Yariaf)le is ;md or written, and the number of times a mechanism is activated.
As a first stq; in the simulation process, an S} description is ihput to the compiler which produces
a parse tree. The parse tree 1s used as input to the simulator, whose execution is controlled by

user commands. Thus the user can assign values to variables within the description and introduce

3.4 The Simulation Facility ‘ 33

the code of a test program. During a simulation, concurrent execution of mechanisms is achieved
by executing each active mechanism in tum.for one tir step. The scheduler simply ad;/anocs
cyclicly through the list of mechanisms, and whenever an active mechanism is ‘enoountered, the
first executable statement on that mechanism’s executable statement list is executed. In this
manner, an appearance of conan‘rer;q is achieved. All calls to a procedurc whose encompassing
mechanism is already active are queued in incoming order.

The simulator described above did not provide stziFistiés which could be used to calculate the
measures specified previously as‘dairablc for the evaluation of dataflow architectures. The statis-
tics required were: itst program execution time, system and funf:tional. unit busy time and average
wait time for each functional unit. Also, the simulator implementation of the S activate construct

was not appropriate to dataflow asynchronous processes. Extensions and modifications to the
/""’:\

;

sirnu]aition fadlity were undertaken to incorporate the above requirements. The changes involved
new input and data collection within the simulator, a new implementation of the activate construct,
and a new scheduling algorithm. As well, the simulator command language was extended to gen- .
erate a report. 'Ihc modifications made to the simulator are described in the remainder of this sec-
tion. |

All-of the performance measures mentioned above reguire the concept of time and require
the maintcnanﬁc of cumulative elapsed time of each parallcl execution path during the simulation.
Time can be introduced by assodating an execution time with each statement, moPedme or
~echanism. Because a mechanism contains pr@dures, it is too gross for accurate timing. Assodi-
ating execution time with each statement would provide more detail than is needed at the endo-
architecture level and would require information too specific for this f)hase of the design proqesé.
The procedure appears to be the right level for txmmg because it provides a suitably ﬂexibie block
which the designer can subdivide if more detail is desired. ‘

The next consideration is how 'to incorporate time intb this facility. Should the language
itself be extended to assodiate a delay time with each procedure declaration or should the simulator

«?

3.4 The Simulation Facility _ 34

be modified to accept procedure execution times? Since relative cycle times are to be used as
parameters in the evaluation, it is reasonable that procedure times should be an input to the simu-
lator. Changing the times for tests will then be convenient since they will be together in a separate
input file rather than distributed throughout the S? description. There ore, it was decided to asso-
date a fixed execution time with each procedure and input this data as a scparate file to the simu-
lator.

In order to collect ﬁecution time, busy time and wait time statistiés, it was neccssary to add
data structures and variables within the simulator. First an extra field was added to the procedure
record ta. store procedure execution time. Next the mechanism record was extendad to store the
mechahiis.rn total busy time, total wait time, real time and earliest pending call (of current queued
calls). Every time the mechanism is activated (i.e. one of its procedures is invoked) the total busy
time is increased by the execution time of the called procedure. Total wait time is also updated at
this point to include the length of umc the procedure call waited for this mechanism. Real time is
calculated by selecting the larger of the mechanism’s current real time and the time this procedure
Qas called, and adding the procedure time. The real time is therefore the cumulative elapsed time
of that eAxecuu'on'path. The earliest pending call field is updated only when a new call is queued
for that mechanism or when a call is removed. The queued calls are a list of pending calls sorted
by time called, except that private procedure calls are always put on the front of the list. The exe-
cution of a call or activate statement inserts the real time of that mechanism as the time called field
on the pending call record attached to the called mechanism. When execution of a test program is
complete and simulation stops, statistics can be collected for reporting. Each mechanism record is
examined to determine the maximum real time, for this is the longest time required by any execu-
tion path and hence is the execution time of the test program. Mechanism busy time is directly
available and average wait time is calculated by dividing total wait time by number of activations.

A new method of scheduling mechanisms was required sino.c the previously used round robin

method would execute mechanisms in the wrong order and invalidate the real time of mechanisms.

3.4 The Simulation Facility o 35

For example, if two mechanisms each queued a call at five and ten time units respectively, then the
call at time five must be executed first because during its execution it\ could call the other pro-
cedure and this call should be put on that queue before the previous call at time ten. The new
scheduling algorithm maintains the list of mechanisms sorted in ascending order of earliest pending
call, those medmnisxﬁs with no pending calls are on the end of the list. The list is updated when a
procedure terminates and also when a new call is queued for any mechanism. Mechanisms are

selected from the front of the list for execution.

Another alteration to the internal operation of the simulator involves the implementation of
the activate construct. The call construct was implemented such that the caller became inactive
and waited for completion of the mﬂcd rguﬁnc which might return results through parameters. In
contrast, the activate construct suspended the caller until allocation (passing arguments and activat-
ing the mechanism) of the called routine, at which time the caller became active again and resumed
execution. No results could be passéd back at completion of the called routine. In both cases, the
caller was required to wait for allocation of the called routine. This implementation was not com-
patible with thc asynchronous initiation and concurrency of processes in the dataflow model, which
requires that the caller not wait for any length of tirme. Consequently, the activate implementation
was changed so that the caller does not wait for allocation. Instead, execution of the activate state-
ment creates a new record to hold the values of the arguments passed. This argument list record is
attached to the queued call and execution of the caller continues. In effect, the actual parameter is
no.v 50und to the formal parameter at the time of the call rather than at invocation. Makarenko -

chc/)se to bind parameters at the time of invocation because

There are very few hardware components that operate in a fashion where they can be
activated from a number of different spots, with no acknowledgement given to the caller.

[Mak82,p. 91}
However, this form of activation is precisely that of dam flow processes, consequently binding
must be done at the time of the call so that the caller can be released to continue execution. Oth-

erwise, mechanisms would not be executed in the correct order. -

3.4 The Simulation Facility _ ' ' 36

Given this implementation change and the above method of calculating elapscd‘limc, restric:
tions must be applied to the use of activate and call in the S} descriptions of dataflow architectures.
All calls on public procedures must be activate statements, so that concurrent execution of the two
mechanisms occurs and to insure the one way oomrpum'caﬁon (message passing) demanded by
dataflow, The call‘ statement can be used only to call private procedures (i.e. ldml'to the mechan-
ism). The constructs, signal and await, which allow synchronization of inechanisms, cannot be

used since the calculation of elapsca time would then be incorrect.

In addition to the above changes, the command language of the simulator was expanded in
order to request and calculate the required statistics. The new command will generate a report

surmmarizing the simulation test.

CHAPTLR 4

Experimental Valldation

4.1. Examples Using the Proposed Methodology

In the preceding chapter a methodology for evaluating dataflow computer architectures has
been described. This chapter shows iﬁ application to two dataflow computer architecture d&igm
taken from the current rdwnrg:h literature: the Id (Irvine Dataflow) machine and the MIT machine.
- Standard configurations of the machines have Been defined and- then described using S3. A test
| program was &xosm and coded in the machine language of each machine. This program code was
executed on the simulated standard machine and on variations of the standard configuration. Per-

formance statistics were collacted and the results are presented and discussed in Section 4.2.

Many papers have been published discussing the Id and MIT machines. Ongoing research
definitive MIT or Id machine. Through examination of published papers, reading between the
lines and making reasonable assu@imu where ;mforrnation is 4inoompletc or not precise, an MIT
design and an Id design have been asscmblcd to serve the purpCBCOf this experiment. A stén¢vd
configuration of each design has l‘)een defined. This configuration incorporates minimum con- -
currency and thus provides a basis for comparison of other configurations which do incorporate

The results presented in this cﬁapt‘ex cannot be used to compare the performance of the two
machines, Published papers are by‘neccssity usually brief and therefore details of d&sig:_us are not
- complete or precise enough to make direct comparisons between two designs. Rather, the results
demanstrate how the proposed methodology can be used to investigate characteristics of a design.

4.1 Examples Using the Proposed Mcethodology | ' 38

411 Constructlon of an S? Description

Each independent functional unit within an architectural design is mapped to a mechz.mism in
S:. The mechanism construct encapsﬁlatu a critical section, as described in Chapter 3. Only one
invocation of a procedure within a raschanism is active at any one time but many different
mechanisms can be active simultaneously. In these dataflow designs, a mechanism is activated by
an activate statement within some other mcdxgnism. All parameters are evaluated at the time of
the activate statement and the call queued if the r.ncchanism‘is already busy. Parameters are not
passed back at completion. Hence functional units are activated asynchronously and communicate
with each other only by passing tokens (parameters).

Execution times are associated with procedures within the mechanisms, hence’ thﬁ experi-
menter can determine the timing detail by the number of procedures used. Global variables are
used only when a variable is accessed by more than one mechanism. For the convenience of this

experiment, all variables have the same size (one word of thirty-two bits).

4.1.2. 1d Design

The Id machine is briefly dw:nbed in Section 2.4.3 (see Figures 2.4 and 2.5). The standard
configuration of the system used forjfsirmﬂaﬁm purposes is based on Gostelow and Thomas
[GoT80] and consists of one local memory, two tokcn buses and one processing element composed
of | |
(1) sorter unit - matches data tokz;n; and determines if an activity can be enabled
(2) code fetch unit - requests instruction code from memory
(3) ALU unit - executes instructions
(4) output unit - creates data tokens and communicates with token buses.

The only concurrency possible in thxs standard coziﬁgu?ation is tﬁrough pipelining of the
instruction cycle, within the one processing element. Additional concurrency can be introduced by

replicating processing elements. The Sy dzscn'pu'on of this oonﬁg\kaﬁon is shown in Appendix A

4.1.2 Id Design| . 39

The instruction set operators are as defined by ArvjpA [AUI’78], An instyction code format
(see Table 4.1) and data token format have been defineq Y 01 inormation in the samq report.
A data token is defined as the composition of the followiyy felgg: .

v

< processing element address, ‘dmt'mation activity name, yAI6 port, number of inPuts>

where the activity name is composed of

<context, code block, statement, iteration>.

Functiona! unit execution times are as stated in Mstdw and Thomas ,[601‘80] and are
shown together with the mapping of functicnal units A S\ mechanisms in T2le 4.3, The
Table 4.1 Id Instruction, YDt

Id Instruction Fornyp/A _

Feld Contenm%/\/vv\w_/
statement number

opeode

constant operand (0 or 1)

constant port (0 or 1)

constant value

or number of true destinations (PFNe= switch)

or code block value (opcode=Y)

number of destinations:

destination statement number

destination port -

number of inputs required by yi%on]
repeat fields 7,8,9 as reguirewm%

AL W -

L-N- IS -)

Table 4.2 Id Functional Unit By 8% Tines.

Id Functional Unit Executjod Tilves -
dUnit S Mechanism JAPCition Tome |
Mg st
Token Buses | ring 4
Memory mem read 6
Sorter sort v\/vv\,ﬁ\.\,._
Code Fetch fetch 1
: ' receive 1
ALU | alu 10
Output output 4
ring interface | 0 |

4.1.2 1d Design B 40

cxccution times used here may be unrealistic but the numbers themselves are irrelevant since the

purpose is to demonstrate the method, not to perform an actual evaluation.

No data structure operations are supported in this standard configuration.

4.1.3, MIT Design
- The MIT machine is briefly described in Section 2.4.1 (sec Figure 2.2). A standard confi-

guration has been defined based primarily on Dennis and Misunas [DeM75], i{lcluding conditionals

and iterations but excluding the multi-level memory system. Acknowledgement signals as

described in Dennis [Den80] are included. The standard configuration uséd to obtain simulation

results is as follows: o .

(1) one memory unit - not separated into instruction cell blocks, therefore no concurrency is ipos-
sible dufing the enabling of instructions

(2) one arbitration network | . ?

(3) one operation unit capable of performing all arithmetical, logical and control distribution
operations

(4) one distribution network

(5) one control network.

The S description of the standard MIT machine is shown in Appendix B. The standard con-
figuration incorporates no comcurrency except pipe.]inin\g of the instruction cycle. Cona;rrency can
be achieved by allowing each instruction cell in memory equal access to the switching nctworksl
ana through the ‘separation of the operation unit into one unit for each opcode. °

Assignment of execution times to functional units is arbitrary since relevant i.nformatior; has
not been published, but the assignment of times is such that the cycle time of the MIT machine is
equal to that of the Id machine. Cycle time refers to the minimum time required for a token to

complete one path through the system. Functional unit execution times are shown in Table 4.3.

4.1.3 MIT Design 41

Table 4.3 MIT Functional Unit Execution Times

MIT Functional Unit Fxecution Times
MIT Unit S: Mechanism Execution Time
(time steps)
Memory memory 6
Arbitration Network | arbitnet 6
Operation Unit operation 10
Distribution Network | dist net: 4
Control Network control net 4

A data token is composed of the following fields
| <destination instruction, value, producing instruction>.
A @Uol token includes an extra tag field to indicate whether it is to be used as a flag or as a
value. Operation packets and instruction formats are as described in Dennis and Misunas. [DeM75]

with the addition of fields to implement acknowledgement signals.

The MIT machine was chosen as the second experimental machine! because it differs in many
characteristics from the Id machine, thereby demonstrating the versatility of the proposed metho-
dol;)gy. The MIT machine differs from the Id machine in the following respects:

(1) The MIT machine has fixed size instructions with a fixed number of operands and destina- ‘
tions, This necessitates extra operators (link operators) to replicate data tokens.

(2) Token storage rather than token matching is used. Op;:tands are stored with instructions in
memory, therefore different instantiations of the same instruction cannot be active simultane-
ously.

(3) Acknowledgement signals are used rather than unique activity m, therefore each instruc-

tion must acknowledge each operand to its producer.

'The Id design was chosen as the first example for this research because a simulation study
has been repoarted in the literature [GoT80] and also because much information has been published
about the design itself. The second design was chosen as a contrast to the first. Both the Man-
chester and Utah dataflow architecture proposals were rejected because they employ behavior simi-
lar to the Id design. The LAU design was not considered because not enough detaﬂed information

is available about the design.

4.1.3 MIT Design a2

(4) Concurrency is ‘achicved by allowing each instruction cell in memory equal access to thc
s§vitching networks, and through t.l;c separation of the operation unit into one unit for each
opcode. Concurrency in the Id machine is achieved by replicating the whole prlooessing ele-

~ ment, not by replication and separation' of individual functional units within the whole.

(5) Since there is only one memory and only one system there is no need to assign instructions to

processing elements, as in the Id machine.

4.1.4. Test Program

The test program used to obtain experimental results integrates a function f, over. the interval
(a,b) using n int.. vals of size h, by summation of trapezoids. A high level language representation

is shown below.

sum ~ (f(a) + f(b)) /2
x~-a+h
fori-1to(n-1)do
y - f(x)
sum - sum + y
x-x+h .
endfor
sum -sum * h

The Id machine language program [AKP80] is shown in Figure 4.1. "Ihe operators which are
not self explanatory are L, L'!, D, and D', These operators change portions of the activity name,
which is oompbsed of a context, code block, statement number and iteration number. The code
block and statement number are statically assigned and the other two are dynamically altered dur-
ing execution. The L or loop operator creates a new and unique context by changing that part of
the activity name. The L' operator returns the oontcxf to its previous value. The D ahd D!
-operators ‘adjust the iteration number. The switdy operator merely routes data tokens depending
on the true or false value sent by a decision operétor. |

The MIT machine languagé program is ¢hpwn in Figure 4.2. The larg; black arcles

represent input values, The small black nodes represent the link operator which replicates a token

4.1.4 Test Prograh

\

SWITC SWITCH SWITCH SWITCH SWITCH <
I F T F I F I E I B/ -

new s .
) new x

new h

new i

new n

PRINT

e

Figure 4.1 1d Machine Language Program: Integration

4.1.4 Test Program

44

- o

-

7] X
-
<+ T)&
A
* f +
| | X
!]
PRINT +
S

Figure 4.2 MIT Machine Language Program:

Integration

P
1.

4.1.4 Test Program

45

™\ and sends it to two other operators. The large dircles (either True or Falsp) are gates which permit

the passage of a token depending on the value of a gate flag received as a control token from a

decider operator. In summary, thc machine language instructions are represented as rectangles,

diamonds or small black nodes.

Examples of actual machine code instructions for both the Id and MIT machines are shown

in Table 4.4.
Table 4.4 Examples of Machine Code Instructions
| Example of Id Machine Code Instrucions
destination
1| statement constat canstant number of | statement number
l nummber ~ opcode constant part vaue destinations | number part of inputs
! 4 divide yes 1 2 1 -8 0 1
3 <m no 5 18 -1 2
19 1 2
20 1 2
21 1 2
2 1 2
Example of MIT Machine Code Instructions
staternent acknow] edgements destination
~ mumber type farmat | received required opcode tag staternent
63 I 01 1 1 add -3
staternert gate dota e
number ope value flag ack. value flag ack.
64 D true - .
t 6 D constant - 1 - 1
stat crert acknowedgements destination .
number ope format | received required opcode tag statement
33 I 06 3 3 link gge 16
34 1 - - gate 64
staternert ' gate N contrd destination 3
number type value flag k. value flag ack. tag statement
35 D no - - - value 38

4.1.4 Test Program : 46

The iteration loop in this program demonstrates a fundamental difference between the Id
machine and MIT machine. Bemusc Id employs token matching rather than operand storage
within msn'uctnons more than one oopy of an'instruction can be active at one time. Therefore
instructions from different loop iterations can execute simultaneously. This is not possible in the
MIT machine since operands are stored with the instruction and a producer instruction must
receive acknowledgement of its result before it can be' enabled again (only .onc copy of an instruc-
tion is active at a time).

Within the for loop three operaﬁons can be performed simultaneously:

(y - f(x)) (x -~ x+h), and (i -i+1).
" The Id machine language program can also simultaneously compute (sum - sum +/y) from thc
previous for loop and prepare new data tokens for the variables h and n, thus allowing six simul-

t

taneous operation executions.
4.2. Results

4.2.1. 1d Design ' ' : : .

’fhe standard Id machine is used as a basis for the comparicon of three other system confi-
gxﬁations: system #2, #3 and #4, consisting respectively of two, three and four prooessing.ele-
ments.? Figure 4.3 shows execution time of the test program for the four systems. Systems #2 and
#3 both executed the test program in less time than the standard machine, with s}rstem #2 achiev-
ing the best performance. In the standard machine all cutput tokens are transferred directly to the
input queue of the sorter unit, thus bypassiﬁg the token busm Therefore, the token buses carry
tokens oniy during the start up phase of exccuti»én when inptlt tokens are present. As the number

of processing elements within the system increases, the probability that a token is consumed by the

A system including more than one processing element must assign each activity (enabled
instruction) to a particular processing element for execution. This is done using a simple assign-
ment function based on statement number and context. An activity with context u is assigned to
physical domain x where x = (¥ mod number of physical domains). The systems in this experi- -
ment include only one physical domain. Within a physical domain, statement number s is assigned
to processing element pe where pe = (s mod number of processing eicments).

4.2.1 Id Design . 47

80}
780 -
Execution 80
Time .
740 -
700
| { 1

N
¥

3
Number of Processing Elements

—t—
|y

Figure 4.3 Id Execution Time
prq:ssing element which produced it decreases, hence more tokens must travel on the token
buses. Concurrent execution thus exacts the price of time spent on the token buses. The execution
time of system #4 shows how token traveling time can ouiwcigh all ime gained by concurrent exe-
cution.

. Liilization (busy time/execution time) by system configuration is shown in Figure 4.4. Three
points are shown for each system configuration: overall system utilization, ALU utilization and
memory utilization. The ALU utilization shown is the maximum attained by a;ly one ALU unit.
The ALU utilization of the standard system is 86%, indicating that start up and data dependendies
prohibited ALU operation only 14% of the time. The decreased ALU utilization of the other sys-
tems reflects the decreased execution time of an individual ALU and the increased communication

time of tokens on the token buses,

4.2.1 1d Design 48

100% -

75
Utilization

| : | .
1 2 3

¥

P =N TN

Number of Processing Elements

Figure 4.4 Id Utilization

Remember that the functional unit execution times used here are rcasmab%c but arbitrary.
Functional unit execution time can be used as a parameter to investigate workload balance between
functional units within the system. By changing one functional unit - -ution time (token bus exe-
cution time was doubled), the communication costs are exaggerated. Figure 4.5 shows hbw bus
time is critical to the speed of the system. There are no gai‘ns in performance and in fact execution
“time increases with the addition of prooess'mg elements. Functional unit execution time is an-

important parameter in the evaluation of workload balance. |
No experiments were conducted Qith a system containing more than four processing ele-
ments. The Id design groups each set of four processing elements into a physical domain, there-
fore, a system of four to eight processing elements would contuin two physical domains. Activities
(enabled instructions) are assigned to physical domains based on their context, where each entry

into a loop or procedure creates a new context. The test program used here, contains one loop;

4.2.1 1d Design 49

)
1100 - /x Double
1000 |-
Execution
Time
900 |-
B n) / anderd
700 -
] |] -
2 3 4 =
Number of Processing Flements

\

Figure 4.5 Id Execution Time with Doubled Bus Time
therefore all statements outside the loop are assigned to context one and all activitirs within the
loop are assigned to context two. Because of this program organization, no activity would ever be
assigned to other than the first two physical domains. The addition of a second physical dqmain
would result in increased token travel txmc with no resultant savings in execution time. \\

|
i

Speed-up, effidency and average execution time per instruction executed will later be com-
J
pared to ‘those of the MIT machine.

Simulatica results reported by Gostelow and Thomas [GoT80] show execution times of dif-
ferent test programs (their figure 9). In four of the five test programs simulated, the addition of
more processing elements produces a reduction in execution time of an asymptotic form. The fifth
picblem, an iterative fast Fourier transform displays a.mrvc similar to the results shown here in
Figure 4.3. An initial reduction of execution time occurs but that is followed by an increase which

surpasses the serial execution time. Since these two algorithms (fast'Fourier transform and sum-

[

42.1 Id Design : 50

o
mation of trapezoids) are similar, the results suggest that this class of algorithms does not map well

to the Id machine configuration. These results deserve further investigation to determine what
class of algorithms best fits the Id machine configuration, but since automated language compilers

are not available this work will not be attempted here.

4.2.2. MIT Design

The standard MIT machine is defined to include five functional units. In order to investigate
the influence of system configuration on machine performance the memory unit has been parti-
tioned into progressively smaller units, called cell blocks. Each cell block can enable an instruc-
tion, thus allowing concurrent enabling of instructions in memory. The number of arbitration units
has been correspondingly increased to remain equal to the number of cell blocks, thus allowing
each cell block direct access to the operation unit. ’

Expcrimems'were conducted on five variations of the standard MIT machine \;Viﬂl the size of
memory cell blocks varying from 32 instructions per cell block to one instruction per cell block.
Table 4.5 summarizes the allocation of the test program (nineteen instructions) to the cell blocks
within memory. The number of cell blocks increased from one to nineteen.

Resulting execution times are shown in Figure 4.6. Execution nmc is reduced signifimntly:
by the first three memory partitions, but little gain is realized after that. The last memory parti-

tion produces the lower limit of one instruction per cell block, where all instructions could theoreti-

Table 4.5 MIT Allocation of Test Program to Memory

MIT Allocation of Test Program to Memory
' Allocation of Instructions to Cell Blocks

Partitioned
Cell Block Size | Number of Cell Blocks | Instructions per Block
2 1 19
16 : 2 16,3
\ 8 3 8,8,3
4 5 44443
2 10 2,2..2.1
1 19 1,1..1,1

4.2.2 MIT Design 51

Execution
Time

.
O
¥

Number of Memory Cell Blocks

Figure 4.6 MIT Execution Time
cally execute simultanecusly. Since decreasing the size of memory to this extreme is incffecﬁvc,
data depmdenci& and high utilization of other functional units must be preventing further gains,
their utilization (see Figure 4.7) and average queue wait time (see Tab].e 4.6) shov.ﬁd be examined.
The operation unit could be the limiting factor since it exhibits the highest utilization and its aver-
ége queue wait time has increased as a result of mcmory partitioning.

The operation unit can be partitioncd. by function into two units: an ‘arithmetic unit and a
boolean/control unit. The execution times resulting ﬁ'om this partition are shown in Figure 4.8. -
P&fmnanoe is not improved until the cell block size reaches four instructions per block, and then
the improvement is small. The average queue wait times are shown in Table 4.7. Comparison
with Table 4.6 shows that the operation unit average queue wait time has not changed significantly
but the control network average queue wait time has increased from three to five time units. If
analysis where to proceed further, a next step would be to partition the control network b{ func- -

/

4.2.2 MIT Design

52

100% |~

75+
Utilization

¢ —ealu
fal —&control net
S ~distribution

SE o \N‘ij

L : | .

] | |
2 3 5y 10 19

Number of Memory Cell Blocks

Figure 4.7 MIT Utilization

Table 4.6 MIT Average Queue Wsit Time

MIT Average Queue Wait Time

Number of Cell Blocks
Functional Unit 1 2 3 5 10 19

memory 20 (81412 2 2
operation 113121333
control network 313(3(13§ 3 3
distribution network 111111111 1
arbitration network 01010100 0

4.2.2 MIT Design . 53

800 |
Ex;_:téon : ' O Standard
700 - o Two Operati
600 |
| I | 1 | ~
1 2 3 5 10 19 -

Nurrber of Memory Cell Blocks

Figure 4.8 MIT Execution Time with Two Operation Units

Table 4.7 MIT Average Queue Wait Time with Two Operation Units

MIT Average Queue Wait Time with Two Operation Units
- Number of Cell Blocks
Functional Unit 1 2 3 S 10 19

memory 20 9 5 2 2 2
operation unit 1 1 |]1{11}3 2 3
operation unit 2 000} O 0 0
control network 415 5 4 5 5
distribution network 1 1 1 1 1 1
arbitration network 0 0 0 0 | O 0

tion or replicate it in order that each operation unit has a dedicated control network.

Memory cell block utilization is shown in Figure 4.9. There is a wide range between highest
and lowest cell block utilization. One of the reasons for this range is that instructions within the
program iteration loop are executed repeatedly, thus produdhg a high utilization in that cell block
med to other cell blocks. Perhaps more consistent utilization could be attained by a compiler

allocation of instructions to cells with an even distribution of loop -and non-loop instructions to cell

4.2.2 MIT Design ' 54

|1 o—
1 2 3 5 10 15

Number of Memory Cell Blocks

Flgure 4.9 MIT Memory Utilizatdon .

blocks. The Dennis suggestion [DeM75] of a cache memory where instructions are fetched into a
cell block upon the arrival of a token would also be a solution but this would involve more time
and resources to implement. Cell block utilization is also influenced by the number of instructions
allocated to a cell block. As was shown in Table 4.5, the first memory pagtition resulted in twé
cell blocks oon'taining sixteen and three instructions respectively. That .particular allocation pro-
duced a low uti_lization which becomes an anomaly in Figure 4.9. |

No. data driven simulation ot: the MIT machine has becn reported in the literature. The
Dennis/MIT group have studied a prototype machine which would émulaﬁ various dataflow archi-

. .
tecture proposals, but results have not been published [DBL80].

4.2.3. A Comparison
Insights can be gained by comparing the results of the two machines. The Id machine

\
language program contains thirty-one instructions and the simulation performed sixty-seven

v ¥
S =

-

4.2.3 A Comparison ' 55

instruction executions. The MIT machine language program is nineteen instructions and the simu-
lation performed forty-four instruction executions. The Id program is much longer because of the
unfolding interpreter. The program requires six loop operations and five iteration operations
(With'm the loop), and also all results of dedsions are sent through switch operations. The MIT
program requires none of the above operations since it employs gates on instructions rather than
separate switch operators and has no loop or iteration operators. On the other hand an MIT
instruction am .specify brﬂy one or two destinations; thcrcfo;‘c-extra control instyuctions are
required. By contrast, the Id instruction can speci{y any number of destinations. /

Because of the use ci acks -ledgement signals in the MIT machine the instruction enable
function is heavily used (131 activations to execute forty-four instructions). The Id machine

employs unique activity names rather than acknowlcdgancnt' signals and the sorter (instruction

enable function) unit is less busy (100 activations to-exécute sixty-seven instructions),. The Id

machine has more instructions to execute but as can be seen from Figure 4.10, it requires less time

(
i

, to process each.

&x:ed-ﬁp of .tl;c two machines is shown in Figure 4.11. Speed-up is the ratio of execution
time of the standard system to execution time of the parallel system. Without accurate functional.
unit execution times and complete machine descriptions, it cannot be concluded that one machine is
better than the other. It can be seen that the approaches of thé two machines produce radically

different results and require further investigation to determine the causes.

An overall measure of system performance is effidency (ratio of execution time of the stan-
dard system to total resource-time usage of the system). To further explain, a program can be exe-
cuted by the standard system (composed of N functional units) in time 7. Another system wity
parallel functional units (functional units) can execute the same problem in time f. A comparison
of N*T to n*t will indicate how well resources and time are used. Efﬁcicncy.is an attempt to com-

pare what has been gained to the increased cost of resources. Efficiency of the two machines is

- shown i Figure 4.12. The results are similar and pethaps indicate a general characteristic of the '

4.2.3 A Comparison : 56

|
18 |-
Average
Execution 16
Time B
per
Instruction 14|
T O & MIT
12} U\//ID
10
Lt | ‘ | .
23 4 5 10 ' 19 -

Number of Parallel Units

‘Figure 4.10 Avernge Execution Time per Instruction Executed

4.2.3 A Comparison ‘ 57

A\
1.50
—OMIT
Speed-up
1.25+
&
0]
ID
| N I I | :] - | -
1 2 3 4 5 10 - 19 -

Number of Parallel Units

Figure 4.11 Speed-Up in Execution Time
performance of dataflow computer architectures. Functional units in a dataflow_ architecture are
not always identical as is implied in the definition of efficiency above, thus efficiency is a gross
measure when applied to the evaluation of dataflow architectures. Efficiency is a m&e appropriate -
measure in a multiprocessor system where all proocssiﬁg elements are identical. For this reason,

 efficiency is not recommended for use in further dataflow architecture evaluations.
A major limitation of these results is that the investigation was not carried out with a wide
variety of test programs. This is reasonable only with automated program development tools

including high level language compilers. Those resources are not currently available.

4.2.3 A Comparison ' / 58

'/ 100% |-

sk
' Effid

|] J -
10 . 19 -

Number of Parallel Units

._._
o+
e
s
o

1Y

Figure 4.12 Efficiency of MIT and Id Designs

4.3. Coﬁxments .ox_l S? and the Simmlation Fumty

Although S} does not directly map to dataflow architectures as well as the architecture
description language ADL [Leu79), it does provi‘de the constructs to accomplish a valid description.
For example, an ADL module with specified input ‘and output ports, composed of submodules
" whose behavior is described using expressions can directly represent a dataflow functional unit.
An equivalent description in S uses a mechanism composed of procedures which accept only input
parameters and terminate after activating and émfi’ng parameters to another mechanism. Other
constructs in S3, call, signal and await, allow ;ynd;rorﬁzation between processes which is not
required in a strict dataflow architecture. But 6bvious]y dataflow architectures will evolve such
that control ﬂc;w and dataflow characteristics are intcgratcd to make the best us: >f both models;
therefore these synchronizing consmhs are necessary. For examplé, ADL, designed specifically -

for packet communication systems, includes mpabilities to define functions on data streams and to

4.3 Comments on S} and the lSimulation Fadility 59

protect shared data using monitors.

The queue is used often’ as a data structure in dataflow architectures therefore it would prove

useful to add a queue datzi typc and appropriate operations to S3. -

As was c]almcd by the dcvclopcr thc simulator oommand languagc was c&sy to expand.
Also, changes made to add data structures and modify internal operation of the simulator were not
difficult to achieve. Almost all changes were confined to the sunulator thh only minor definition
~ changes required in the compn]cr The modulanzzmon of thc sunu.]ator program proved most help-
ful.

A deficicncy.lof the simu]atvor' }s the lack of. ﬂexibi]'ity of the prqiroddssor which expands
identical mechanisrus. These mcd'namsms q:mnot be referenced by subscript, therefore one particu-

Jar mechanism cannot be selected from a sct of identical mex:hmnsms q?é‘&ﬁ‘referenccs are made
; Cowe ",

N

to the generic name and the first free’ mechanism is referenced. The ability to rdfcrcncc a partlcu-
lar mechahism should t:e pr&s"'}t and smuld be similar to an array elemcm ref’renoc wherc the *
index can be a vanab]c "ﬂus facility was required in the d&mptlons used in tfus study and was
aocomphshed usmg a text editor to replicate mechanisms and change names andj references to these

names. Also, the: abuty to cxpagd identical systems would be useful.

~ Some other minor deﬁaencxcs of the simulator are lack of real amhmeuc synonyms are lim-
ited to a maximum of thirty-two bits and private variables cannot be umquely idcntified from out-
side their scope, therefore initial loading of data before simulation is tricky. Bemusc many S, con
structs are not implemented and some construct implementations do not work properly (type, con
stant, parallel statements), Sx descriptions are not as easy to construct as they might be. Also, the
time modification p;&sented m this study does not allow a call to a public procedure or the use of
vt

. Although no error messages are produced, compiling an Sx description is relatively easy,
since a file is produced providing enough data to locate the error. Althougﬁ the sixnu}ator)itself is

- not of production quality, it atteropts to provide different levels of debugging information. - Since

4.3 Comments on S; and the ‘Simulation Fadility . 60

many simulz;tor opcrations are required to execute one S; statement, the amount of debugging
infonﬁation produced is often ovcrwhelm.ing. On the other hand, a higher debugging level fails to
identify the executing S statement. Debugging the test program itself is often the biggest problem
since nc; automated tools are available. FErrors in machine language programs must be found by

tracing data through the simulation and examining computation results.

CHAPTER §

Condusions

The ma)or contribution of this study is the development of a methodology for .Lhe evaluation
of dataflow computcrv architecture designs. Because dataflow designs are non-traditional and usu-
ally involve ‘many processing units, design and evaluation is a complex task. This complexity
demands a structured and systematic design process which utilizes automated tools. An automated
design facility at Carnegie-Mellon University, ISPS, has been used for real evaluation and design
problems. The back@c of that Ifadlity is the use of a formal language to describe the architecture
designs and 2 data-driven simulator. Although those two tools are fundamental to the evaluation

process presented here, parameters and performance measures appropriate to the class of dataflow

\\
\

éomputcr architectures are chosen.

Within the dataflow model of computation, operations can be performed concurrently and are
sequenced onlyby the a\;aﬂability of data operands. Bccthsc of this possible concurrency, one of
the l'most ,important.measures for evaluation is execution time. Execution time should be investi-
gated under the influence of architecture configurat'~ ' .umber and function of proc'cssing ele-
ments), component execution times and types of problem. Besides execution time, utilization and
average wait time can provide insight into workload balance. Speed-up p?'dvfde§' a comprehensive
measure of relative performance, but effidency seems to be 100 gross ;/ ;neasme to be used for

dataflow architecture eva]un;ion.

{

This study contributes to past work on the S; design environment by extending its previous

use 1o the class of dataflow architecture_. ..:e formal language used in this study, S% [Das81], is a

L.

gcncfél purpose architecture description language whose faclities for concurrent execution of

e . \

" 1“'~‘proc‘mss make it aménablé"zfo dataflow architectures.

5 Condlusions , a2

The S} simulator [Mak82] has been modified and extended to iﬂd.“gﬁ capabilities essential to
dataflow architecture evaluation. While the simulator provided ru.dimmtvary‘statistics collection
facilities, extensions were required to compute execution time of test progréms, busy time of pro-
cessing units and wait time. Because the simulator did not incorporate any concept of time, signifi-
cant modifications were required. By nssodating execution times with procedures within processes,
the execution time of a test program can be determined. Prcviox_xsly the simulator mut)af‘ed con-
currency by executing all active processes in a round robin order of equal priorities. Now the
order of process execution is based on earliest time called. In the dataflow model, prow:ses'are
initiated. asynchronously by the arrival of tokens, therefore an appropriate call mechanism is
needed in the simulator. Modifications were made to achieve parameter binding at the time of the
call, in order that the calling process may continue execution without waiting for allocation or com-

pletion of the called process. Further suggestions for improvements to S3 and the simulator were

Coree
b

detailed in Chapter 4. =
The practicality of the proposed evaluation mcﬁmdology has been tested on two dataflow
architecture ‘d&signs. Sufficient experimental results have been pre#ented to demonstrate the appli-- ’
cability of the method to divergent designs within this class. Although data-driven simulation can
provide many valuable insights, a major difficulty is the choice of test programs used as input to
the simulator. The experiments presented here have been limited by the necessity to manually
code m machine language each program for each machine. Besides the amount of time required to
produce machihe language programs,. other..c'ﬁffimltia are created. Humans tend to make mis-
takes. = .cnsing the amount of debuggmg time and mtroducmg a:réluctance to attempt complex
protiems. 4 -eal evaluation facility must prowdc high leve.l igWge compilers so that a variety,

inapp. ., algorithm, and size of test programs can be"’ﬁbd%ed quickly and correctly.

Further research to determine whether different algorifhms optimally fit diffcrcnt architec-
tures is important. - Positive results would call for an investigation on a more abstract lc;}el to

determine if particular architecture behaviors (e.g. dynamic nodc mphcﬁﬁ; _Yersus _ A
. : - - - TS

e

5 Conclusions 63

acknowledgement signals) produce consistently better performance on particular algorithms.

The example tests presented n Chapter 4 investigate only a few architecture characteristics.

The evaluation methodology could = nsec .0 investigate many other attributes such as machine

language representation and primitive data structures.

[AGPT78]
[AKP80]
[Bac78]

[Bae80]
[BaS77]

[Bar79]

[BeNT71]

[Dasti]
(Dast2]

[Das83]

[DaDS0]

[DeM75]
[DBLS0]

[Den80]

(DLMS80]

References

Arvind, K. P. Gostelow and W. Plouffe, The (Preliminary) Id Report: An
Asynchronous Programming Language and Computing Machine, Technical
Report #114, Department of Information and Computer Science, University
of California, Irvine, 1978.

Arvind, V. Kathail and K. Pingali, A Dataflow Architecture With Tagged
Tokens, MIT/LCSTM-174, Massachusetts Institute of Technology, 1980.

J. Backus, Can Programming be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs, Comm ACM 21, 8 (1978) 613-
641,

J. Baer, Computer Systems Architecture, Computer Science Press, 1980.

M. R Barbacci and D. P. Siewiorek, Evaluation of the CFA Test Programs
via Formal Computer Descriptions, IEEE Compuger 10, 10 (1977), 36-43.

M. R. Barbacxi, Instruction Set Processor Spedifications (ISPS): The Notation
and its Applications, CMU-CS-79-123, Department of Computer Science,
Carnegic-Mellon University, 1979.

C. G. Bell and A. Newell, Computer Structures: Readmgs and Examples,
McGraw-1i11, 1971,

S. Dasgupta, S3: A Language For Dmcn'bing Compute.r Architectures, in
Computer Hardware Description Languages and Their Applications, M. Bruer
and R. Hartenstein (ed.), North-Holland Publishing Company, 1981, 65-78.
S. Dasgupta, Computer Design and Description Languages, in Advances in
Compuaers Volume 21, Marshall C. Yovits (ed.), Academic Press, 19& 91-
154,

S. Dasgupta, A Definition of the Apchitecture Description Language S?,
Department of Computer Science,\ University of Southwestern Louxsxana
Lafayette, Louisiana, 1983.

A. L. Davis and P. J. Drongowski, Dataflow Computers: A Tutorial and
Survey, UUCS-80-109, Department of Computer Science, University of Utah,
Salt Lake Gity, Utah, 1980. ' ,
J. B. Dennis and D. P. Misunas, A Preliminary Architecture for a Basic
Data-Flow Processor, Procedings of the 2nd International Symposium on
Computer Architecture, 1975, 1126-132. _

J. B. Dennis, G. A. Boughton and C. K. C. Leung, Building Blocks for Data
Flow Prototypes, The Sevenrh Annual Symposiwn on Computer Arch"ecnlre,
1680, 1-8.

J. B. Dennis, Data Flow Supercomputers, IEEE Computer 13, 11 (1980),

56.

I. B. Dennis, C. K. Leung and D. P. Misunas, A Highly Parallel Processor

“ziy Using a Data Flow Machine Language, Computation Structures Group Memo

134-2, Massachusetts Institute of Technology, 1977, revised 1980.

[FuB77]
[GoT80)

[Hay78]
[Jen81]

~[Kt’.174]

[LeeS0}

[Leu79]

[Mak82]
[Masg80]
[Mey76]

Ms76]
[P1a76]

(SCHT7]

[TrL&2]

[VBHS1]

[WaG79)]

S. H. Fuller and W. E. Burr, Measurement and Evaluation of Alternative
Computer Architectures, IEEE Computer 10, 10 (1977), 24-35.

K. P. Gostelow and R. E. Thomas, Performance of a Simulated Dataflow
Computer, IEEE Transactions on Computers c-29, 10 (1980), 905-919.

I. P. Hayes, Computer Architecture and Organization, McGraw-Hilla 1978.

S Jennings, Petri Net Models of Program Execution in Data Flow Environments,

PhD Diss., Iowa State University, Ames, Iowa, 1981.

R. M. Keller, Towards a Theory of Universal Speed-Independent Modules,
IEEE Transactions on Computers C-23, 1 (1974), 21-33.

R. B. Lee, Empirical Results on the Speed, Effidency, Redundancy and
Quality of Parallel Computations, Proceedings of the 1980 International
Conference on Parallel Processing, 1980, 91-100.

C. K C. Leung, ADL: An Architecture Description Language for Packet
Communication Systems, Proceedings'of the 1979 International Symposium on
Hardware Description Languages and their Applications, Palo Alto, California,
1979, 6-13.

D. D. Makarenko, Simulating Computcr Architectures Using an Architecture

‘Description Language, TR82-5, Department of Computing Sdence, The
. University a(}lierta, Edmontagn, Alberta, 1982,

Massachusetts™Institute of Technology, Laboratory for Computer Science
Progress Reportl 17, Laboratory for Computer Scdence, Massachusetts Institute
of Technology, July 1979-June 1980.

S. C. Meyer, An Analytic Approach to Performance Aunalysis for a Class of

Data Flow Progessors, Proceedings of the 1976 Imemanonal Conference on
Parallet Processing, 1976, 106-115.

D. P. Misunas, Performance Analysis of aData-Flow Processor, Proceedings
of the 1976 International Conference on Parallel Processing, 1976, 100-105.

A. Plas et al., LAU System Architecture: A Parallel Data:Driven Processor
Based on Smgle Assignment, Proceedings of the 1976 Imerna;wnal Conference

' on Parallel Processing, 1976, 293-302.

I C. Syre, D. Comte and N. Hifdi, Pnpehmng, Parallelism and Asynchronism
in the LAU System, Proceedings of the 1977 International Conference on i~
Parallel Processing, 1977, 87-92. e

P. C. Treleaven and L G. Lima, Japan’ s anth Generatlon Computer Systems
IEEE Computer 15, 8 (1982), 79-88. -

P. C. Treleaven, D. R. Brownbridge and R. P. Hopkin, Data-Driven and /
Demand-Driven - Computer Arclutecture, ACM Computing Surveys 1, 3 (1982),
93-143.

A. Van Dam, M. Barbacd, C. Halatsis, J. Joosten-and M. Letheran,

Simulation of a Horizontal Bit-Sliced Processor Using the ISPS Architecture
Simulation Facility, IEEE Transactions on Computers ¢-30, 7 (1981), 513-519.

L Watson and J. Gurd, A Prototype Data Flow Computer with Token
Labeling, AFIPS Procedings of the National Conffrence, 1979, 623-628.

APPENDIX A
' /

S*A Description of Id Machine

.f“)

67

/+ 8nroge se uajasweued ,/
/s b-(1+dd 0ou),.g 03 g Ja)suweued s/
/+ J838weaed ,/

/s J338weued o/

/+ BUta ./ A yoswpua °
/e 33tus / fouadpus
11 %23
- _ ¥
()3¥3i4ys [1e (led <= (ad ou == 1unoD) 3}
'} o4+ JUNOD =@ IUNo3s
/+ $S8SSNQ u3>03)} OM]1 BY} O} SSBDDB SOZ1UOJYDUAS .\ t()3¥3tys ooud
|
/+ Sd@38weded ./ ooudpua
. 11 xa
/+ 8d yoes ajearyoe ,/ t()dnT3ue3s L O00x8DR a8 Ul Bula joe .
‘66 =: 8zys b o
o . ‘1 =: pd Jgad ad -
- : © '}y =: pd ou
.W) '} =: ad ou
/s UOLIE|NWLIS B3BAL}DE pue sualaweded 188,/ - t()s4@3ysuweaed ooud
ooudpus
uJanyadJ
P()peauj00%8dR IBIUL Buld 3oe
'O =: 3Iunod
()3srus 1 1e doud Apud
'311Q [0 " ielbas : junod aeajud
‘Bur y yosw b
‘319 [0 "~ 1g]bas Jeza”3ybt a b paueys Jeao|b
‘31g {0 " 1glbas : Jead 1j9| b padeys Jeaoib
‘319 {0 " i1eglbas 30 [66 " O)Aeaue : yBLu"b aeao|b
‘319 [0 i1c)bas 3o [66 OlAedue : 1331 b aeaob
31q {0 " ie)lbas jo (66 OlAedue : ino b ueaoB
) ‘319 [0 " 1e)lbas 30 [66 0)Aeuue : nite b Jeaoyb
‘319 [0 " 1e)bas 30 [66 O]Aeaue asuodssJ waw b ueaoib
‘31q [0 " ie)bas jo0 [g} glAedue : Buyua geaob
319 [0 ielbas j0 g} glheade : Buiruf{ aeaoib
’ '31q [0 ' ig)bas : 8zisTb ueao|b
‘319 [0 " ig)bas : pd asd ed ‘pd ou ‘ad ou JeaoiB
7/) ‘.
. ‘Pt 84S
/*
€861 Yodew

()sudrsweued Buyd 3 uyp ..

UO}3d} 4dsaQ 24NiID3IIUDUY (MO jeYed BULAUL) PI «/

68

Id

AmmeDUmlmLmv.me_v.mv.Uv.Jv.mumwulocVvmwconmleEmE.—OOxw>_mowL joe - -

/x 8po

t
{A + ndjwsw =: {uead)osuods
Il 4+ Jead =: Jeadd <= as|a

O =: JeaJ <= (8245 b 2=

op (((sisesp ou , g

‘[g+aad

/[LAY

/+ tpead wasw ,/
5 386 4/

11 %3

¥

(b == .Jay|ed) 3}

‘po
+ 4 =1
aJ4 waw b
‘3
Jead) 34

)+G) => M) 8{iym

He) =i

Juaw =: s3sap ou

‘{s)eigey =: uad

owsw ,/ !sAspua
yoawpua
ooudpua

*(Jdo11ed>'ssauppe Bues>'duall>*s>'0> ' 'n>)apod 186 ooud

‘31q [0 1e)bas

‘319 [0 " 1e]lbas :.us)|teD

‘31q9 [0 telbas : sigsp ou

Totaq [o telbas : ueau

‘11q [0 " ielbas :_a3d

‘319 [0 - ig)bas : ssauppe Bue

‘319 [0 " i1glbas : uda1y

‘319 [0 " teg)lbas : s

) ‘319 {0 " te}bas @ o
“ ‘319 {0 " telbas : n

319 [0 " ie)bas 30 [0y " O]Aeuae : s8iqe3
‘319 [0 " ie)bas 3o [OiE O]Aedae : waw

Jeajad

L3

Jeasad .
Jeatad

Jeatad

Jeatdd

JeAjad -
JdeaAjJd :

Jdeajuad

Jeajad

JeAjad

JeAyud

Jeadd

‘ypead waw yoow
Au—>LOEwE sAs
‘jutewop” [ed1sAud sAs

69

31gq [0 " i1eg)bas : uid
‘319 [0 " 1elbas - enjeay
‘319 {0 " tg)bas : 3juod
‘319 [0 " i1glbas : uay
‘319 {0 " iglbas : s

‘3ta [0 " jglbas : o

‘319 (0 - jelbas : n

P .
. 4
rdnypua
aidn} jo (00F " OlAedue : wew yses deao(B
‘349 [0 " eg)bas : u3d BupuatuidTBuLd; aeao(B
‘319 [0 " iclbas : pi ad ueaolb

L 100%xad sAs

70

/+ 100%X3dJOS ./ yosawpua

/s J33}J40Ss ./ soudpua
}ixo
_ ‘14
Auua,rm;_uv.Lm«mv.mv.Uv.vamUou.—OOxCUumw }oe '
<= (si¥ndujTou == 3uUNOD) 3} .
/+ Ud184 8pod 03 puss ‘ausy ade satiinjioe (e m_ «/
B
po L
X3
. : _ ‘UO
b = [uB3iutodpio}uid-waw 3sey
‘po
[@23urtod}uid waw 3sey =: Jajuyjod
‘yajutod =: usjuiodpio
‘L4 31UNOD =: junod

Op (I- =w Jajujod) BLIYymM
/+ S®3tAl1oe Butydlew 40 uBqUNU Byl IuUNOD ./

' =1 gadTasayg L
14 =0 usijutod’ R .
- : OPp <= a¥s|® -, -
. b--s: J81Ulod <= (} == H). 44
. ‘po-
) . b+ % =1y . o -
OP (((4931 == [r4]423! waw isey pue s
S == [v]s 'waw 3sey pue 9 . o
5 == [d]o waw ise; pue S
N == [A]n'wawTisey)) pue | >) aljym -
- o=t oo

OP <=_(3unod =c sindui ou) 44
/+ WBWTISEY UL SBI3LALIDR BULUdIRW PUYY L/

tyo=I 3unod o
b= =t [1]uaad waw 3sey ;
‘anieAal = [t]anieA} ‘wow isey '
‘juod =@ [t]idod waw 3sey

‘dary =@ [t]u@itcwaw isey

: = [t])s wau 3sey
= [1]owaw 3sey
.EwEl«mm&

Lua «mng

/s waw u%MV/c. cwxou 34BSUL s/ -

u.Awajac_ ou>‘31d4od>'an{eAls‘ud)Ls" mw/Uv Nn.)Jdaidos ooud
) /
. '1iq ~y © 1elbas : uidTisuyye wac.oap ‘_mucﬁoa
"A°1s3yndutTouanieay *3uod LW« Lm 2'n "jyunod Jgeajud
1400X3140s Yosu
L f
N

s

71

)

g /» _OOxw>_WUwL «/ yoawpua
/+ Bsuodsad waw ./ doudpus .
. 31%3
P (ssauppe Gue>'u811>°S> 0> N>'S3188p 0U>)daxa L 00XN| e D€
} . : . 3 -
. ‘po N
>
_ . bo+s =
‘[3uoay]asuodsay waw b =: [ueadu]lnie b
) ' . “h3
I + 1UOUdY =! JUOJ} <= TS|
O =: JUDJy <= (DZIS b == Juouay) 4}
. RS ¥
i+ JBBJ =: Jesd <= 8s|a ; v
O =: Jead <= (8Z}S b == ueda) 3}
Op ((S31S8P 0U 4« £ + G§) =>) BLIYM .
. 0 = %

! (ssauppe Bue>‘u831>'S>‘D> N> 's3158p Ou>) asuodsal waw soud

1319 {0 1e]bas : 1uocay ‘uesad’ 'y seajad

‘31 [0 " ie)bas :.ssauppe bHie aeajud
‘319 [0 " 1e)bas : sysep ou ueajud

‘319 [0 " ie)bas : dely ueajpud

'31q [0 " 1elbas : s aeaAjud

: ‘31q [0 "' 1e)}bas : o ueajpud
t31q [0 " i1c)lbas : n deajud

L 1O0X@AL808d yoauw

_.\. -OOx:u«wm .\ .cuwsvcw
/+ ©po2,/ ooudpua
. | 1ix8
”An_lwav.mwm;UUmlmLmv.me_v.mv.ov.:\.wuoulumm._UmmLIEwE 3oe
P A}
”Ammwuuumlmgmv.Lwy,v.mv.Uv.vaonoUOLQ

319 [0 " 1e)bas : ssadppe bBue aeajud

‘319 [0 ' 1e)lbas : usyy ueAjud

‘34q [0 ' 1elbas : s Jdeajud

> . - t34q [0 * - yglbas : o geajud
- : ‘319 [0 " 1glbas : n ageajud

- : ,. 1100XUs3193 yosw

72

e

e

. ; : ‘33
juRISUOD =: [1J4od 3isuod}bue <= (} == «RMamcoolm_ 3
. . ‘po”
{ssauppe bueluid -waw jsey =: ssa.Jppe Bue
![ssauppe BuelanieAy ‘waw 3sey = [[sseuppe Bue]iJod waw ise}}Bue

op (- = ssadppe Bue) oijym .
. . /+ siusunBue 1ab ./

R : {{dusi<)nie bejeisp |82
N t{i1ueisuoco<)nie baiaiap tied

t (14od dsuoo<)nie barsiap [(eo

: (YueisuooTsic)nje belajep (ies

» Ta,-t(epoodoc)nie bajeiap jeo

mmw, ! (dwsi<)nie baysiep (ied

‘0 =:.[}41Bae
: : {0]16ue
- [+ BZi(BIIIUL 4/ co 3t{nsaud

p 0 =: ysnpj
B

000
n

“nwmmgnnmlmpmv.Lma,v.mv.0vn:w.m«mmvlockumxw oodd

. . 4dpuas
uan:. !
t{3uouzlnie b =: <2y
Do
} + 3UC4y =: JUOJ3 <= BS|I
O =:! jUouy <= (@z1s" b == 1UouJy) 31
(dol<)nie bajajap soud A
- ooudpua
. - uJdn}ad
‘wolloq =: mmeLHvDOIU
) BN F I
} + Jesad =: Jead <= 3s|a !
0 =: JEBJ <= {9Z}S b == desdU) 3} J
(wo0330G>)3n0 bppe doudd Ajud
s ‘319 .[(0 "7 ielbas go [0] Keudge : Bae aeayad
'31q {0 "~ ‘ielbas ¥ ‘ssaJuppe Bue ‘483t ‘s ‘D ‘n ‘sisap ou JeApad
319 [0 ielbas : ysnj| 4 “3ueisuos ‘3jdao0d 3Suod

‘jueisuod’ sy ‘spoodo ‘dwal ‘3 (nsau ‘juody ‘dead ‘doy "woiioq aealad

L100xNnie yoaw

-

= .m - . po
o 2 jol}Bue =: 3nsad,

4 O
C o _pe
~{Q]Bd4e =: 3|nsaud

B +r¢w.~_
= . ’ . po
101Bu¥ 2: 3|nsau
S 13UBRISUOD = 0

R R

: . .+ po
o {ol}bue = 1insad
At E Y= 49t

/s LokmLmQQm

e AL

mAnsauA.J_mlcmumﬁwD t
op (3UeISUOD,E

13jURISUOD - S1S8p ou
» IUeISUOD”
JURISU0D - mymmul

. op

/e UDILMS L/

/+ P8bueydun juelsuod ssed ,/

/e 03 «/

I =1 1INS8Jd <=
[< of .

I =: 3{nsadJ <

[a >4/
I =i }fNnsad <=
/s UIAVAOS 4/ . [o
VRV ARV [
/i s w/ [
\- - r\ ——
s o+ a/ [

=! 431}’ op <= (10

=i 4831 op <= (00T

\

N = 1s0p <= (1014

wucmamcou = D
Nn~=: N op <t (00}

Yo+

bl
Leo
=> M) atiynm
o= o
= Ss3}sap ou
.. op
po
=! sysap ou
ou =: ysngj

<= == [

juelsuo

%w” 1tnsau
([11Bae ==

0=: 3lnsauy
= ({t]1Bae <

O=: }{Nnsad
([+]Bae =>
[0]16
[0)6
[0]6
(o016
folb

5
<
N .

oo
[
[V
+ 1

po™

_HoumLm =:

PO |
i3
po
f ﬂmv
<= @s|a
164e) "34 *
1INS8J Op <= 0§
2 =% jInsad <= (Op
V3 .
<= as|d
“[o)BJe) 34 <= (0T
1 X3 '
<= 8s|d ;
[olBue) 31 <L (6Y
43 .xvi
<=, 3s}a
[0]Bue) 44 <= (L)
Je =:! }|Nsad4 <= (g
Je = }[NS8J <= (p
Jde =: 3}{nsaJd <= (g
Jde =1 1{nsad <= (¢
Je = ypnsad <= ()

\-

.wmooaow Ad

.WUOUQOV __3
a

apoado) ||

apoodo) || ’ B

mUOUmOH {1

o

apoado) ||

apoodo)

8po2do)

apoodo)

apoodo)”’)

apoodo) .

apoodo) 4§} -

’ /+ S8poddo 8inoexs ./

74

. i
¥
a R
. 55
« -
PR3-
L4
<
> ’ -,
o ,
. . s - N -
a . .
)
- 5 an R ‘
- R M
N >
. e
. £} -
= N i
3, E
. . o
- T N -
EERIN - -
- s s
. A
3 .
G . 4
> -1
B
R .
3
T ‘
- -
n
ao DS .
- R E:
. N
o
k] . - "
- f
B -

(6666)Mead4q L L .
t(yrnsau)iulad :

‘[0)Bue =:-3}1NSBY Op] A.

75

e

o

e ~ <~.\,J ~
i I .-
. P 3 . .
» ;
. Il T
. » .
a
: - /+ LOOXN|R ./ - yoawpua
. . TV /. 28x® L/ soudpua 5
' . 11x3«
.) _ * W
()sua=no3l axew 100xindino joe B
<= (0 < §IsSdp ouU) 3}
NS o
Po, .
. . po g
L B ’
) ,:QEmuMVJ_m bajysiep 1€ R)
M. 1 (USNLd " £ => A} 8LIUM
EasE Wo=r o -
op <= (0 < usniy) 3\
) . . ¥ . -
. po - : C
: . Po CeNs
b4 =0
t{dwai»)ino bppe (|ed - }
Laswywvs_mlcwuw_wu f1eo -
. op (SiS8p 0ouU . £ => Y1) ILIym o
T - . _ N n”‘x R = ,
)) ”:_wagvzjoncuum 1Les . . } STy
!(J4831,)3n0 bppe (jes - ’ :
¥ . . ' (s>)Ino bppe |ed - ’ N 1
. 1 (25>)ino bppe {Lea
o ' (n»>)ino bppe ||€D
X t{sisap ous>)ino bppe les -’
S % pop <= (0 < sisep ou) 3}
% o /+ 3INdIno 0} SUBNO} PUBS 4/

76

“

..,

”Amklac, ocAvuso Umuwﬁwp‘_—mu
A«LoaAvuzo Uwum_wu,__uu

AwAV«:o “baiaap: Lieo

op (sisapTou =>) aLium,

) o=t
i “Au .meAwuno “bazs(ep {|eod.
e t{48311<)1n0 baiajsp {|ed
t (dwuai<)ino bayaisp {|ea
.AUAv~JOIUwuw—wU {1 Leo
!(n<)ino baiysiap |4Led . ,
Amumwc “ou<)ino beis|ep —Jno :

mavw:wawlwde ooud

RULNTY

. .54 ooudpus
uJdriied
'woy1oq =: [3uBju uead]iuybria b
¥
b+ 3ubBta gead =: 3ybru uead <= as|a R : e
0 1ybBya uesu <= (8z1s"b == jyBjraaead) 3} .
AEouuovaucm_L bppe ooud Ajud. "
, ooudpua
: udaniad .
‘woiioq =: [3143(s 4eda]148| b \
. . Y
. [uww_.lew,L =! 348 Jdesd <= e9s|a . o -
O =: 3391 Jed4 <= (2Z1S b == 3}48| deaud) 3}
(wo3lrog>)3se | bppe osoud Apud
S ’ . , 9oudpua
. g CUdN}ad .
£ ‘[3uoui]ino b =: dojy 1
o Y
b'+ 3UOJy 1 JUOJY <= BS|D ’ 4
O =: juouy <z (8Z1s b == IUOUF) 4} -
. v (doi<)ino bajraiep UOLn >.Ln
. 2, ¢ .
‘319 [0 1 ¢)bas dway 'y fuoiioaualp ‘A‘x ‘ssauppe ‘sindui ou La>vLm
‘319 [o jglbas 3} uod ‘1Lnsad _'aeyr 's ‘D ‘n ‘s3isap ou JeApyd
‘3119 [0 ¢]bas Auby a aeaa ‘31394 meL ‘woj o0q ‘doy Lw>_mw,

”_Oowu:awoo yoauw

77

- ’ - —
1381 Jeas =: daead 1ys| b paueys

po

t(Sinduiou>)y 381 bppe |ied
1(340d>)143| bppe [|ea
‘(3tnsaus)14a| bppe ||ea
‘(48311>)1)9| bppe |led

o
- : A
. : ¢ (

mv.uum_ucnum ti{eo
5>)31481_bppe fjes’

s

n>)349(bppe Tled

- ‘(ssauppe>)ijal bppe {|en
1348| Jead =@ -uead 148| b pa.eys

0]
O =:

Ty o=

<z ((Z / 8d ou) > (pt

-(sindutTous 'y uods 3 {NSBU, " UBY 1> 'Sy "

tX 4

S A
1 u”&w%wuqu_U <= aslo;
= g

¢ © U <: (iz / sdou) . (ssauppe -‘pi ad)) .34

OP <= (0 == UNL13ID8J4IP) 3§
N Sryne ‘i3
43

t3o841p-

<= 8S|e8
T4
Uo1108dIp <= asta
uoiL108U4tp .
ad - ssaJdppe)) 3§} ‘
~ <= (Pt ad < ssauppe) 4}

0> N>)UBIJOS | OOX} JOS 3oe

<z (p! @8d == mmw&b
((y - A) + pd uad ad) =: s
vy
pd ou - & =: A

op (pd7ou < 4)
pd ued 8d - x wm %
op (pd Jad ed-& x)

/s SS3uppe |ed}sAy

op <= 8sta’

RN A B

B4

1

RV

¥, '

pe
m ..

all
1 pd B
aliun

s =1 X
d aye|noten ,/

3

78

»g)

FRRZY
~
D

[3}

L

/+ 100OX3indyno ./

/+ SU9MO} avew ./

/+ SISBP OU => > BLIUYM ./
b+ =00
¥

-

‘3
. po
IybBtu uead =: uead 3B J b padeys
“i{sindu} ou>)iubi 4 bppe {|e2d
1(31dod.)1ybi u"bppe (jes’
Si{3nsad>)3ubi " bppe |[|ea
- nmmwu_vvucm_pwcuvm L1ea
. t(s>)3ubi 4 bppe | |eo
r t(9>)3ybia bppe |eo - o
t(n>)3yBLa bppe [|ed
‘(ssaJppes)iybLa bppe (|ed
Jtaybra ueau =: uead 3ybBia b padeys
) Op <= 8s|®

N

i xa
“'pa

ooudpus

ELae

- yosuwpua

79

e

. k3 P
- Py .
. o,
> .
- . 5 . : vi&
7 R
. 4y
= ’
_ /e dnTaueds Ly i~ ooudpua
}ive
3 IUAvumwg.—OOwamuLmvc_lmcﬁL.vun 0.
pr ad . 8 =: 23d Buidaa ‘aid Buid)) S
/+ Jeysweaed .,/ - 4 s: pl_ad <y '
» t(jdnTrueys ooud
) : 20JdpLY, *
o udniad A
t[aubra Juouy 3yBia b = doy]
N . . B -
B b+ 3yB1aT1uody = ybraTiuody <= as(ad "
0 =: 1ybBid yuouy <= (8zts"b ==z JUBLJ JUOUy) 3} L
(doi<)iyBru baralap soud Apud.
. P, T
, goudpua . i
ﬂ - N udaniyad ., L
‘(1#8171uoas)348| b =: doy - : o
. B B ‘ Y _
- b+ 3381 3uoay =1 33481 IUOJY <= BS|d - .
O =: 3481 3UOJ} <= (DZ45 b =z 31381 IUOUF) }} . B
(doi<)ije| bajeiep 2oud Ajd
‘314 [0 - 1elbes : doy ‘dwea ‘¥ JeAjud
1319 [0 " ielbas : juBiuTiuouy’ '8y «{ﬁ& JeAad

t1ooxaoej 231Ut TBUlJd ydaw
i

LR
CAM N .

80

po

b+ 3 =1 A . e ~

"QEww =0 (Y + J4ad Buldayf]BUay

! (dwaic)yso| bayaisp red
o op (L => %) aliym

O =1 0o .
op <= ((0 == [J41d Burd|]Butay) pue h o
(Jeau 3 j91 b padeys = 139, IU0JS)) 3} - T
. .) ‘ ¥ 2
. . po .
0 =: [u3d BuUya(])Buyuy . L e :
({2 + 93d Bupuy]Burags . o R :
‘{9 + 43d” mc_,:_mc_.:v . . T ’ =
‘[+ 43d Buru| JBUja> . ’ N . CoE
‘(v + 43d Bupay)burdar> L N . ?
‘[e + J43d Bura1Bulag> Lo o .
‘{z + 43d ButayBburay> - Ll < 2 . b
[y + 23d Buju]jBurap>)J4®) .10S * | ODX3 JOS vun . oo s
op <= Aowlwn == [J4¥d Buia JBuyay) m_ E)
/+ 301S @1epdn pue 431J4OS O} U0} PuadsS. 'Ssadppe Bujudiew | ./ ¢ . °
L T :
g8 - J3d Burap =: J3d Bujal <= 8sie . LN o
edou”, g =: 41d Bupu| <= (8 == aid Bur a3 L, T
/ dopw auo 31jo1° qur:ou a41us ./ 4o T N
\. sng usHo3 1421 pea /e

3 LRI

e . .4.; o ..:UmmL soud .

81

BT

-

/x PV %/

.) . /s Ulewop teotsAyd .,/
‘. _ /» 100xad ./

/» 100x82e mdiIul Buld 4/
/s PE3J ,/ ooudpua
31 x2
t()3stys Bura 3oe
/+ Pe8J4 sSNg uajol} .o uoilaldwod |eubts 03 331ys-Bura 1oe L/

i€ trs
. P po
. o E "+ po
R IR ’
tdwal =: {f + J43d Buypau]buidu
- t(dwai<)iybru bayalap |ed
op (L => A) aliuym .
0 =y \
== [J3d Buiuu]Buyad) pue ’
(vdedd 3ybia b pEsaeys = 3YBy U 3uOuy)) I

¥)

op <= ((O

po
O =@ [43d Buiraua]Buyag

(L + J3d Bupaa]Burads, P .
‘{9 + J43d Buyau]Buyau>

"6 + J43d Bupad]Bul au> \ .

“[b + 43d Buyaa]bujaa> .ﬁ ’ L

‘le + 43d Bupaa}buiaas R ﬁm

‘{z + 43d Bujaa)butau> ‘

Ty o+ Lwalmc*ggumcﬁggv)83 4CS " L 00X31J0S }De

op <= (P} ad == [J43d Burau]Bulag) 3y
/+ 3013 83iepdn pue ua31J40S 0} USY0} PUBSEH SSIJpPe Buiydolew i ./

‘< B
8 + Lwalmc_LL u“uL@C!m:_LL <= as|e B
8 =: J43d Dutda <= Ama\oc + 8 == 43d Bujpad) 4y
/+ 3013 ado 1ybra usiujod 13i1ys ./ -
/+ SNQ uaxdoy ybida pesd 4/ . .

=

£

u;.:;‘,-/.: .
APPENDIX B

U

S*A Description of MIT Machine

I

o

+

83

L33

)

..

A 13 E
/. Bery snrea 1assa ,/ . [} ’
: O=: [T+sP <= (€ =w [Z+ssmappPR]T) 3§ .
/v 3URISUOD jJou yt beyy enjea 3assd ,/ ! ! - .
. O=: [l+SS L} <= (€ = [1+Ss2uppe]Cy) 31 :
/+ sBvyy w.mm 18sa.a ,/ PO = f[e+ssauppreley ‘[1+sSauppelry .
/4« O 0O} Jad me 18s34a / 0 = “[ssadppelcy

/.« UOL1DNJISUL D{ABSIP ./

S Awwnp Lt Auwunp L CAuunp st Awwnps ‘ssauappe.[{ssoappe)L -

‘[T+ss@4pPR]GY> [14SS9.pPR]G (SS@UPPR]GY > [SSBUPPR]TY>)08 1By Jlque joe - X
/» (SS8uppe AMe’}131ss8p ‘glea ‘jea ‘sposdo ‘jewaoy) puds ./

Op «= ((} == [C+sSBuppr]L}) pue
/4 pueaado puosas 4oy jvaded ,/) ,
(([CcrosduppvlEy == [¢+SSduppegy) 19 (E == [Z+SSBUPPR]Z4)) pue . ﬂw
/. Ppetgeus st Deyy pueasdo [/ (1 == [v+ssouppelri) pue ’ d
. /y Bely 901eB = a3uvb 4o jueisuod = ajeb 31 ./)
(([t+sseappeles == [1+SS3IPPLJCTS) 4O (€ == [I+SSaappelzi))) 3t !
’ /v 10O = jrwaoy ,/ : <= (1O == [sSsauppe]ci) 3t
RN . Y
/e RBULNDBUT AMNY 2= POALIDSI ARE [/ }11x8 <= ([ssauppe)ti.[ssadppelei) 31

/+ iPBLQRUd B8Q Co_uUDLumLﬁ ued L/

: ‘b3
\.;CLLO.\..‘Awwww.;mm;ﬁnuAAmoAmmmLUUmvLcAOvmmeUUm.vw*

. i >

: (sseuppes)a| qeus ooud

vvﬂ%% . m ”u_nao.,.nuumm, “ >EE:U.mmm;UUmLm>_LQ
M‘N‘\ ‘) N

tAaowsw yo3uw

‘31q {0 " ie)bas jo |52 O)Aeuue : 64 Jeaolb

o -~ 1319 [0 - 1glbas 0 5L " 0)Aeaue © 84 Jeaoib

) : ‘319 [0 " 1e]bas Iy, 0)Aeade i L4 Jeao|b

319 {0 " iclbas o c0]1Aedae : 94-deao|b

] ‘31q {0 " ic|bas .wm€_>muum : g3 Jeao|f *

. c '31q {0 . ic]bas 0 1Aeaue : b4 Jeao|B

- 31q {0 ielbes 0OlAeuaue i g4 Jeaoib

'31q [0 " iclbas 0lAeuue 1 74 aeaolb

‘31 [o " rg)bas 0 JAedue : 13 Jeaob
A ‘31w sAs -
o \.

- £E86} yduew
:o_«Q_LUmwowL:«uwam:UL<zo_umymohHI.\

84

£
4
’ be
e . po
/+ Bely aniea 3jsosau s/ ’ [}
i O=: [z+Ssouppe]Ly <= (g =w.(C+5524ppelTs) 31
/+ IULISUOD jo0u 14 Beyy anjea jasad o/ : . HEW
E O=": ~—+mmwgv0muhu <=z (£ =v —*+mmm;UUm_Nu. 3t
/+ sBeyry ayeb jsesau ,/ = 'O =: mm+wmeUUm_mm)
N : R /1 O 01 D24 4ne yasaud L,/ ‘0. =. [ssauppelcs .
. /+ UOLIONJISUL B|qesip 4/ =
(O Awwnps CAmwnps C Awwnp: ‘SsSauppr. ._mmwpvvmuhuv.~mmeDDcuwwv
’ .Hw*mmmLUUmummv.__+mmmLUUm~mmv.~mmwgtnm_mmv.Hmmm;UUmumuv)340S 13U 31gue joe
. /v (Ssauppe ne'|3isep '6ey ‘TIRA 'jieA ‘apoodo "1RWJO)) puas / -
: ’ Op <= ((1} == [g+SSaJppe]L4) pue . : .
, /+ puedsdo puooes Joj jeadad ,/ —
. {([c+ss0ppe gy == [c+ssouppe]zy) uo (£ == [c+ssauppe]zs)) pue .
/. patgeus st Be| puedsdo Vi B (L == [1+SS3uppe]’s) pue K '
/s fvpy @3eb = s3eff 4o jueisuoco - ayeb 4t .
i ({[)+550uppefEes == [|+Ssouppefzs) 4o (£ == [t+ssauppe]zs)))} 3¢ . "
) /+ €0 = 3jewsoy ,/ <= (£0 == [ssauppelcs) ||
, . . L Y
: po
/1 3UelIsuoDd 10U 3t Bery snpea jasau v/ i . R w, 13 .
T O=: [¢+SSBUPpE]LY <= (€ =c [Z+SS24pPPE]Z4) 3]
¥ /. sbBely 21eb 18884 ,/ . ‘0 = [zrssouppelc
/+« O 03} D84 rHMe 3F3s8a ,/ S ‘0 = [Ssauppuelgy
- . “m\..:o—«UJme:_ ajqesip ,/
A

P Awwnp: C Amksps C Awwnps .>E&WUV 1SS8.UpPPEL [| +SSOUDRIZ] s>
.~mmeUU¢_huv.mw*nwmzmvmumuv.~mmm;DUmwmuv;Hmmmdtvmumuv }3dJos 38U 3igue 30e
- . /7 (Ssadppe Mne ‘zisap sap .ﬁ_m>4.wvcuao,.«MELOw) D:wm..\

.
i

A K
/v peigeus st Be(y pueuado , s S : op <= ((} == —m+wwm;vum_>m. pue ’ C . N
. ’ /. bByiy a3ed = ajel Jo PUTISUOD = a@jedb ../ :)
.¢i~m+mwwLUUn_m» == —n+mwwzvmmvwwv,@o (€ == [Z+ssauppelzi))) 31
- . /v TO = aewdoy /0) <= (20 == [sssuppeijzy) ||

1 N

85

/4

/, p81geus st

- » - 4
- Ry ,.m . - .
B ") . . .Jy, s
- _/) '
> - B “v
{ i .-
- i ~
- N./
., /\I}) nw
N . -
) » 7 A , /+ Auowsu ,/ ~Yosupua
. : ’ e’ /s BlQRUB ,/ osoudpua
) Lo . 1i~¥a .
.] . RNY
V3
.7 UO :
/s IURISUOD Jou jt Bupy anjea ’ N '3
, 0= (€ =v [Z+ssdUppR)zs) 31
/+ sBe s a1e0 ‘0 = [c¢+4ssauppelgy
/¢ 003 294 Hme O :: [ssa.uppulgs , o
/4 UvLlONAISUl 3lqesip / . :
: T mmwgbtmv.~w4mmw;tkummv .-
.Hm+mmwgvtc~mmwuﬁ_*meLDtc_h»\ ._—+www;DU¢uwuv.—mmwgsvcuth o
.Hmmm_:Dmuwu\.ﬁmemwvgcnc_muv._mwmguvm_m;v._mmeUUmHNuv)3dUs)8u 3i1qgue 3oe
(Ssauppe A4me ‘girsep ‘gbuy ‘Zisaep .wmwu.—ummu .—mmw ‘1.0 ‘aposdo .uwsmom) puas .\
Be) 3 puviedo ,/ ’ Op <= ((I == [Z4Ssouppe]Lj) pue
/. By eyeb - ajub uo jurlIsuod = oyed RPNy .)
AAﬂmammm;va_mu == _w‘wwm;UWmuwu.‘Lo (g nnm;w*mmenﬂmuwmvv) 31 . i
/v Y0 = jvwavy L/ © 1 <="(90 == (ssoupprlzs) ||

. T
. ry
s
- - S
../ (5
.)
- . - > o * <
. - \a. ! Lo
4) : ’ o -
. 7) /4 38U rigue ./ yoswpup
4y ddos o/ - doudpua
. = , . } X3 ’
- . e g Ty
(O1e>"ge>'ge-'fe.tae.'ges'tes'ges ‘spoodo: ‘tes>)indino-uotlieuado 3oe <= (00€ == apoodo) ’
(Ole-"ge-7ges " fes'ge. "ge: 'pes g, ‘apoddos ‘ter)ssed uoiieuado 3o <="(9} == apoosdo),
.o,m\.mmv.mm»whav.wmv.mcv.vwv.mmv ‘apoodo: ‘jes)ssa| cuolyeuado 30 <= (L} .== ®poddo)
Ao_mv.mmvmmmv.“mm.wmv.mmv.vmVNmmvp.wUOUQOv “lEs)3Iuapl Tuol jeu8do 308 <= (9 == 8poodo)
(Orex>‘ge>‘gues res'ges‘ges‘pes‘ges ‘spoodos ‘pes)dxa uoy yeaado }oe <= (G == apoddo)_ .
(Ote>"ge>'ges>es'ges 'ges ' pes ‘ges 'apoddos ‘tes>)AIpruotiedado 3oe <= (vt == ®poodo) : e B
. (Ole>'gexiges>’/esgestges pes Ry ‘8poodos ._mv_unJE.co_waon }0€ <= (g == 8pbodo):- ’
ero_my.mmvumx”.huv.omv.mmy.vmw.mm~ ‘®poddo, ‘jes>)ans-uotiedado joe. <= (g == apoodo)) | e
Jo(OlestgesfguL t fes vl tgesthes fge> ‘apoodous ‘tes)ppe uolledsdo 30e <= (} == 8poodo) 3 R
t(Ote-'gesges" L[> gy iges bes ges I'apoddost f18>) 1u0s soud
‘319 [0 1€)bas 8poodc ‘Qie'geye’se'ge’ge‘yetge e e Jgeardad J,._.m
' tyau) _DLW’QE

. .

<

87

‘31q [0

/v ans ./

) o 1t xa
P{MMEe>) MMe 38U [0uluoDd 3De
. i+ dmMe = me

(Me>) YmMe - 3au’ |0Jdluod joe

. 4 qME = wMe

(OMe >'3|Nsau >'|3)sap>) eiep 38U 1Sip 30
’ CZTIBA - | lBA =:! }|NSad

¥
: po
(co6)nesuq-
t (8poodo)t ud
) t(yewdoy)uyud -

Op <= ({20 =- bpwddo) 40 (40 =w3iBWJO4)) 4}

ooudpua

F(Ote»TBRL BRI, MEL 1 1S3P> T C1BAS V| BA> ‘BpoDdos *1ewuoy>)gns soud

‘31tq {o

N - /+ Ppe ,/
. 11 x3
TAMR>) Mme 38U |04luod 3DE
T+ M =D M
P(Mmen) mMe 313U’ |0Jluod joe

i) L4 MMe = Me
T(AME >3 nsBa >'issp>) eieptiauTisip j}oe
- ‘Tlen-+ JleA =: }|nsou
¥

" . po .\\

(006)1eauq

t(@poodo)ijuy ud

; 2 t{3ewdyoj)iuyud
Op <= ((10 = 8po0do) 4o (}0 =w3ewdoy)) EY

wouavcm

»

Aowmv.mmx.mmV.nmv.xzmv.FwwwuV.m_m>v._rm>v ‘8poddos> ‘jewdoy>)ppe ooud

-

/+ Indino ‘juapl .wa..r_U ‘qns ‘ppruv < a03jedado +/

te)bas: gisspzisap gbe) ghey | Bey B9 v tagnsad u apud

1€ }bas: ore’ge'ge’ /e e’ 1ysap gien’ | 1ea ‘apoodo ‘lewuoy deajad

‘uotjeusdo yoaw

88

“r

“w

(ote.

:po

b+ L=t
Th1eA . 3 INSBd =D 3iNSdy

o] SOP (kA => 1) Bltym

P o= 3tnsada it

F

po .

(506)neauq
(epoodo)iutad
. P(ivwaoy)yut ud

Op -~z ({(G0 <« ©®poddo) 40 (10 SLIBWJI0S)) 4}

TBUSTBR LR, THMEL TS8P T C1RAL L A L apoodo >'jewdo4>)dxe aouad

/e dinwoL/

D(MME.) MME 318U |0Jlund }De
1+ MR =z yme

(MEeL) AR 318U | 0JIUDD joe

L4 MR = Mme
T(AMEL, ‘3 (Nsud 5T 1SapL) elep 18U 31Sip 3oe
P tZEeA L L leA =@ 1insad
- . 1y
po

(€06)1e8.q
! (8posdo)yul ad
tyewdoyyyut ad
Op = ((£0 =« 9pO3dO} 10 (10 =viewiojy)) 41

/o AP 4/
}yixa
. D(ME>) MR 18U | 0.3U0D o8
is fME =0 fme
$(fMEL) MME 38U [0.3U0D 3De
L+ 4R = ne
(AmMe s T31INST) > 1S8p.) elep iau 31sIp joe
ZleA / j|eA = }|nsad
¥
po

(rO6)Heauq
t (spooddb)jutud
P(iewaoy)yu ud
Op <z ({10 =u. 8pOLdO) 4O (10 =ciwdo})) 3}

yixe

ooudpua

THOLes TGRS Tge LR s Res R8Py Tt eAS) | RA > apoddo >'31ewdoy>)y {nu ooud

souadpua

”AO_E..m«v.wc».hm‘.xzm\.—umwvv.n_c>v.—_m> > '9poodo >Tleudoys)AaLp ooud

B

Vs
rd
, o N /e 3uspL L,/ soudpua
) _ }ixa
“mirmvv AR 18U |0J4juod 39e
) 1T o+ Me = yme
TmMes> Cpteas ‘zisaps) eiep-iau 1sip j3oe
Tme> ‘peas ‘i1seps) eiep-iau 1sip joe
B)) ‘13
po
(906) %nesuq
t(@poodo)iuy ud
t{1ewdoy)ryut ad
Op <= ((90 =v 8pOoDdO) 4o (Z0O =L3ewdoyd)) 44
. ”Aopmy.mcv.mmv.hmv.xxm\.m«mwnv._uonv.w_m> > 'opoodo > "lewdoy> jjuept ooud
» R - /+ indino ./ soudpus
ad ’ . N !
}ix8
1 (666)1e0Uy
.:u..:mm{.:C..Li
tleA =@ 3|nse.
/ .
/ 3
. . po
(0E6)Ne8Uqg
{3poodo)iutad
. ‘(3ewdoy)iut ud
. Op <= ((00f = -8poddo) 4o (10 =-3BWUI04)) 3§
,“.oﬁmv.mm\.mmx.hmv.x:m:.,ummov.m_m>w.—_m> >"8p0oddo >'jewd04:)indino soud v
, , /s Oxo L/
:) 11xd
> F{MMeL) ME 38U (OujuoD joe
n_H MMe = yme
T{AME>) AME 18U 043 U0D }oe
T+ oMe = qme

Ames 1 Insads 'p1sap.) viep-iau 31si1p Aoe

ooudpua '

90

/. oLy

tMne.) wre

Tiome . fghey sty nsaas Tgissp.s) 18noed”

(A, " gDuy -ty nsads 'ZI1s9p.) 134qded
C(qme, yBeltiinsads Ciisopr) lexoed

(9

B E-Telole]

t(yewd

op <= ((9} == apoddo) Jo (

¢.ado ,/ Yoawpua

ssed ,/ . OoJdpua
1L xa
1ou | 0J3U0D }oe
LZ4 qmMe =1 Wme

18U | 0.43}UDD }De
}au’ | 0J4lUOD }DE
13U {0Jd3u0D 3j0E

8 11D = '} |INsad
. Y
po
16) 1eaudq
do)iutad
03)iulad

90 =c3iewuaoji)) 3t

L qAme st Eiseps ghuey.tgisep. gbelsisaps T 1beys)0 >*apoodo >'jewdoy)ssed doud

{oles

/.« ssed uoLINgQruIstp 1 0J43U0D

puv sJaojedaado cmm_oon ./

/s SSO{ ./ ooudpuas
Il X9
. t(Mmes) fme 38U [0J4Iu0D }De
T o mer =oone
(MBS) MMRT 318U | 0JIU0D }DE
T+ AMR = AME
“(me. tyBey.1insads> ‘1i1sap») 19-oed ey |0JIU0D 30E
s ’ ‘3
O = 311Ns8J4 <= B3SO
I =@ 3INS3J <= (ZleA > LleA) 3i
B)
po
(Li6)Me9.q
! (8posdo)yut ud
. D(yeuwdojyiut ad

Op «= ((L4 =. ®8pPLDIJO) 1O (

€0 =w-lkw.uoy)) 41}

cgeLtgentmes tpasap. 1 BelL T uAS I RA s 'epoddo »'1RWw.a0j >)SSa| ooud

-

/s SS3| :sdJaploap ./

91

o

7y @laeus

404 A38UD Auowaw 83vAL}DE

/+ PURIBJO SIK} 30 SS@JpPPE UOL}DNJISUl DjeD

J+ Ssauppu alba|mouxme 33s
/. Be} Bnpean ies

/e 1182 LUOLIONIISUL Ul 3N|eA JBjud
¥
‘3tq [0 " j¢)bas
‘11q {0 iclbas

&
L]

’ yoaupua

ooudpua
, 3 xa
‘(Usal il)algeus Adowaw joe
‘(@A 8m) L)a-grua Auowsw }oe
f(334yi>)8geus Agowsw 3joe
‘(ou8z,>)ajqeua Adowsw 3oe
!GL = Ue81Jty
tZV = aa|amy
e o= 8auayy
‘0 = oudZz

'()dn"1ae3s ooud

/s .Byep ,/ ooudpua
11 %83
v/ T{PPETUISUL>)3(geud Auowidaw 3De
v ‘€ 4 (E / 1S8P) =: ppe Jisul
o/ - me =: [3saplogy
o/ o=t [iseplLs
s/ ‘1Insag = [3isap)gy

(AMe>) nsaus>‘isap>) eyep ooud

uasiy ji 3 ‘a8Asmy "aauyl
ppe J1SuUL ‘Me’ y | nsay

‘ousr Jdeajud
‘1s3p Jeatud

t38u 1stp yoauw

Q
<y

=T - :

~ .
(<)) >
. bl
Y - .
J.rr ‘ - -
.\. ajqeus h%u HIBYD Acwaw 31eAL DR
/s PURIBDO sS4y 40 Lswuppe Uo13onJ3syii D es
/.« SS3uppe AmMe e j1os
‘ /. bely aijeb y18s
- u N /s Ysroed Beiy

/e B1Qron ari fdayd A.lowaw 831BA1}OE

/v purusdo Sty O ss3uppe UoL3IdNJ3IsSuL oteo

L ’ /+ SSBUPpE HME 185
/s Bery anfea jos
/s B8O CA Yas
199oed anjea

~ /.

‘31q {o le jbas

-

PP RS
NN NN NN S

ssappetbel ‘ppe’ d1sut Cyme’) | nsaug

/. ¥asxoed ,/

&

po
(PPE_ JISUL>)8 qrua” Adowsy }oe
€ . (£ / 3S8p) =: ppe Jisul
‘Me = [1sop]bs
g ¥
b = {3¥sepjes <= asys

o ¢ =1 [is8p]ey
<= (0 == 31I1Ns3ad) 1

op <= (0O} ==

po
(PPe™ J;SULL>)a | Qrua Adowaw joe

€ o« (£ / 3SOP) =: ppe Jisuy
tome =@ [3sap]94

. b=t [¥sep)Ll
tyInsaud = ﬂwwocumu

4 op <= (0T ==

osoudpua
11 x8

¥

ber) ||

T(nes>Beys) nsad. 3sap>)ienoed soud

'1S3p JeAjud

'

. t31aul (0J43u0D Yoauw

93

S

K

’

Y

O }DNAysSuUL

&|greus J4C,

fee Bugryiou op s

&

[

Adayo. ioweu . reALIE pue’,/

A

DULONPOJd 30 Dad AMe | 3ot uayl ,/
- W/ Bery, eyeb ¥ =i s oL/
: Jdaunpoad : Nt =y /
/s m_:mCWw Lew.\#wfmn\g fUHmaw syeAl o
o /. puedado oripen . .-

/+ uorionaisuy Bu.
< - R

\~ ucmwmcou e 10U puedado -/

-

. /% Jeonpouad € sey D:cgmao 3/

+

0
"
RIS LY :sAspua
., (Ydn 314e3}S 38U ISIp YU}’
/s uWCi—OLuCOU s/ Yyoauwpusa .
~ . /s MMe o/ ooudpua
- 31xd
¥
- po .
(SSaJppeltis) a8greua - Auowsw joe)
v+ [[sseuppelyy Jes =1 [[ssaappelry 1ci
- - op
<= Amm > [ssauppe]ci) pue (O < [sssuppe]zi)) m,
: Tha [
Y13 <= ((OO0} < [Ssodppu])pi) JO (O > [SSaJppelti)))
. A —/;4 N
; & . _
N . : -3
> b3
po
) ([ss®Jdppe}9s.) @|lurua Adowaw 3oe
WME JUSWBJUDUL OS ,/
[[sseuppelys Je4:=: [[ssouppelos 14
op
. <= (€ =- {[ssauppejzi) w. .
L <= | .ooo_ > HmmmLUUmumw. pue (0 =< [ssauppelgi)) 4!

croad 4o Dad

! (ssaJppes)Me soud

-

