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Abstract

In this dissertation, I discuss several important problems in the area of bio-relation

discovery (BRD). Discovering bio-relations is an important problem that arises fre-

quently in bioinformatics. It involves identifying relationships (usually pairwise)

between bio-entities. These relationships can be categorized as undirected ver-

sus directed. I will investigate both types of BRD problems in this dissertation.

For undirected BRD, I will specifically discuss the gene-sample expression bi-

clustering problem. For directed BRD, I will focus on problems in gene regulatory

network inference and drug-target network inference. For all these problems I have

investigated both heuristic approaches and sparse learning based approaches from

machine learning.
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Chapter 1

Introduction

Over the past few decades rapid developments in genomic and molecular analysis

technologies have produced a tremendous amount of molecular biological infor-

mation. Bioinformatics researchers therefore are facing the challenge of develop-

ing semi-automated analysis tools (e.g., pattern recognition, data mining, machine

learning, and visualization tools) that can reliably and robustly interpret this in-

formation, to help improve our understanding of biological processes at a systems

level. Major research topics in bioinformatics includes sequence alignment, gene

finding, genome assembly, drug design, drug discovery, protein structure alignment,

protein structure prediction, prediction of gene expression and protein-protein in-

teractions, genome-wide association studies, and the modeling of evolution.

In this dissertation, I will investigate some important sub problems in these ar-

eas that involve bio-relation discovery (BRD). BRD is an important problem in

bioinformatics where relationships between bio-entities need to be inferred [49];

such as gene-gene relation [17], DNA-protein interaction [63], protein-protein in-

teraction [34], protein-compound interaction [93], etc. There are two categories of

bio-relations that we are interested in inferring: undirected relations and directed

relations. A relation is undirected if the two related entities are correlated to each

other under a certain measurement, but we do not attempt to infer their causal re-

lations. For example, genes that are regulated by a common transcription factor

(TF) have undirected relations. A relation is directed if the two related entities

have direct interaction or causal relation and the directedness is an important part

of the analysis. For example, a transcription factor and the genes it regulates exhibit
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directed relations.

In addressing these problems, I have investigated various heuristic approaches

and approaches that are based on sparse learning methods. Sparse learning methods

have recently attracted a lot of interest in areas of statistics, machine learning and

signal processing. It turns out that many bio-relations discovery problems, either

directed or undirected can also be represented as sparse learning problems. For

example, a standard sparse learning model for regression can be formulated as:

min
w

∑
i

L(yi,w
Txi) + λ∥w∥1 (1.1)

where the function L is a loss function and λ∥w∥1 is a sparsity inducing regularizer,

in this case the L1 norm regularizer. A well-known property of L1 norm regular-

ization is that it encorages sparse solutions leading to loading vectors with many

zeros, and thus performs model selection on top of regularization. Choosing differ-

ent loss functions leads to different machine learning models. For example, if the

least squares loss is chosen, (1.1) becomes a standard least absolute shrinkage and

selection operator (LASSO) model [85]. If the hinge loss is chosen, (1.1) becomes

a L1 norm support vector machine model [97]. In the work described below, I will

ultimately formulate many of the BRD problems as sparse learning problems by

exploiting sparsity inducing regularizers, and I will extend standard sparse learning

algorithms to provide solutions to these problems, which we expect will improve

on the quality of solutions produced by heuristic methods.

1.1 Undirected BRD

A very important undirected BRD problem in bioinformatics is to cluster genes

based on their expression profiles, ensuring that genes of the same cluster are similar

to each other and genes of different clusters are dissimilar to each other. Gene clus-

tering can facilitate many downstream applications, including cluster-based gene

selection and disease classification [9], and gene regulatory network inference [26].

A key question in gene clustering is how to define similarity between genes. Since

two similar genes may present similar expression profiles only under a subset of

observations (samples), one is often more interested in gene-sample bi-clustering
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where both a subset of genes and a subset of samples have to be selected to identify

a coherent clusters of activity. Bi-clustering, also known as co-clustering, or two-

mode clustering is a more general problem than traditional clustering. It is a data

mining technique that allows simultaneous clustering of the rows and columns of a

matrix. The term was first invented by Mirkin [58] and introduced by Cheng and

Church into gene expression microarray analysis [15]. In my work, I have investi-

gated two heuristic bi-clustering algorithms, LCBD [72] (linear coherent bi-cluster

discovery via line detection and sample majority voting) and an extension LinCoh

[74] (linear coherent bi-cluster discovery via beam detection and sample set clus-

tering), aiming to find genes that exhibit similar expression profiles over a subset of

samples. I also investigated re-expressing bi-clustering as a sparse learning prob-

lem, which I will subsequently describe.

1.2 Directed BRD

One of the ultimate goals in system biology is to reconstruct the regulatory networks

between genes. The regulatory relation discovery problem is an instance of directed

BRD. It is well known that genes and their products cooperate with each other in

the form of a dynamic gene regulatory network (GRN) that controls cell function.

With the emergence of high-throughput gene profiling technology and ChIP-on-

chip technology, GRN research has significantly advanced. A current goal of GRN

research is to improve the fundamental understanding of how biological processes

are coordinated in the cells. For this problem, I have developed a kernel-based

learning model with structured sparse regularization to discover the causal control

relationships between genes.

A second directed BRD problem I consider is drug-target prediction. In the

drug-target prediction problem, we want to infer the binary relation between drugs

and targets (proteins) based on known relations, drug structure information, and

target sequence information. Chemical drugs are small molecules that bind to target

proteins to change the protein conformation. Proteins usually operate as part of

highly interconnected cellular networks referred to as interactome networks. When

3



their conformation are changed, their functions are subsequently changed and can

result in treatment effects. Once an organism’s gene regulatory network is in an

abnormal state (e.g. via gene mutation, or environmental effect), disease can result.

Drugs can help restore gene regulatory network into a normal state by regulating

its targeted proteins. Therefore, the drug-target interaction discovery problem is

another important directed BRD problem I will investigate in my research. In this

dissertation, I will introduce a sparse learning method designed to address the drug-

target network inference problem that is based on feature selection support vector

machine classification which incorporates sparse learning and kernelization.

1.3 Overview

The remainder of this dissertation is organized as follows. Chapter 2 introduces the

undirected BRD problem of bi-clustering in gene microarray data analysis. Here I

present the two heuristic methods and one sparse learning based method. In Chapter

3, I investigate two directed BRD problems: the gene network inference problem

and the drug-target interaction inference problem. A kernel-based regression model

is proposed to address the gene regulatory network problem. A feature selection

support vector machine approach that incorporates sparse learning regularizer and

kernelization is investigated in the drug-target interaction inference problem.
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Chapter 2

Undirected Bio-relation Discovery:
Bi-clustering

DNA microarrays, also known as gene chips, DNA chips, or gene arrays, are a col-

lection of microscopic DNA spots (probes) attached to a solid surface (e.g. glass,

plastic or silicon chip). Expression profiling is a microarray technology that detects

the RNAs that may or may not be translated into active proteins. They are used for

the purpose of monitoring the expression levels of thousands of genes simultane-

ously over different conditions. In general, for a two-channel microarrays experi-

ment, there are six steps for gene profiling. (1) Cells are extracted from different

samples (for example, disease sample and normal sample) and cultivated in differ-

ent tubes for a period of time so that adequate amount of different kinds of cells

could be collected. (2) Messenger RNAs (mRNA) are isolated in different condi-

tions and extracted from them. (3) mRNAs from different conditions are reverse

transcribed into their corresponding cDNAs of different fluorescent dyes (cDNAs

are artificially synthesized DNAs from mRNA templates). (4) Different cDNAs are

mixed up together and a proportion of them are hybridized to a single microarray

chip. (5) The hybridized microarray chip is read by scanners in different color chan-

nels (red and green) and their fluorescence intensities are collected and quantified

by specific sensor and software. (6) The logarithmic ratios of the intensities from

the two channels are computed and considered to be the gene expression levels. The

one-channel microarray technique is similar to the two-channel technique, except

that only one fluorescent is used and a reference condition is not required for an
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experiment. Currently one-channel microarray techniques are more popular than

two-channel techniques.

Although the microarray technology enables the language of biology to be spo-

ken in mathematical terms, extracting useful information from the large volume of

experimental microarray data remains a difficult challenge. One important problem

in microarray analysis is to identify a subset of genes that have similar expression

patterns under a common subset of conditions. Standard clustering methods, such

as K-means clustering [31, 19], hierarchical clustering [79, 84] and self-organizing

maps [82], are usually not suitable for microarray data analysis for two main rea-

sons: (1) genes exhibit similar behaviors not over all conditions, but only over a

subset of conditions, and (2) genes may participate in more than one functional

processes and hence belong to multiple groups. Thus, traditional clustering algo-

rithms typically do not produce a satisfactory solution. To overcome the limitations

of the traditional clustering methods, the concept of bi-clustering was developed

where one seeks groups of genes that exhibit similar expression patterns, but only

over a subset of the sample conditions. Figure 2.1 illustrates a gene expression ma-

trix without any obvious bi-clusters (left) and an expression matrix with a salient

bi-cluster (right).

The term bi-clustering, also called co-clustering, or two-mode clustering was

first mentioned by Hartigan in [30] and latter formalized by Mirkin in [58]. Cheng

and Church [15] were the first to apply bi-clustering to gene expression analysis.

Since then, dozens of bi-clustering algorithms have been proposed for the gene

expression analysis. The general bi-clustering problem and many of its variants

were proved to be NP-hard in [15], and therefore most bi-clustering algorithms

comprise heuristic approaches unless special restrictions are made on the bi-cluster

type and(or) bi-cluster structure. Among such bi-clustering algorithms, the major-

ity assume that a expression matrix contains multiple bi-clusters rather than a single

bi-cluster. Under the multiple bi-cluster circumstance, different bi-cluster structures

can be considered, such as exclusive row and(or) column bi-clusters, checkerboard

structure bi-clusters, non-overlapping tree-structured bi-clusters, non-overlapping

non-exclusive bi-clusters, overlapping bi-clusters with hierarchical structure, arbi-
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Figure 2.1: Example of a constant row bi-cluster in gene expression matrix. The
left image shows a gene expression matrix without any obvious bi-clusters; the right
image shows an expression matrix with a constant row bi-cluster.

trarily positioned overlapping bi-clusters, and arbitrarily positioned overlapping bi-

clusters [55]. The specific form of bi-cluster that our algorithms are trying to detect

is the last form of bi-cluster structure; i.e., arbitrarily positioned overlapping bi-

clusters. This last form is a general structure that covers most of the other bi-cluster

structures.

Before designing a bi-clustering algorithm, one needs to determine what type

(model) of individual bi-clusters to be looking for. There are six primary types con-

sidered in the literature, illustrated in Figure 2.2: (a) the constant value model, (b)

the constant row model, (c) the constant column model, (d) the additive coherent

model, where each row or column is obtained by adding a constant to another row

or column, (e) the multiplicative coherent model, where each row or column is ob-

tained by multiplying another row or column by a constant value, and (f) the linear

coherent model proposed by Gan et al. [22] where each row/column is obtained

by multiplying another column by a constant value and then adding a constant. To

understand which type of bi-cluster structure makes the sense for gene expression

analysis, one should note that the ultimate purpose is to identify pairs of biologi-

cally related genes such that, under certain conditions [27, 2], one either activates or

deactivates the other, or being commonly regulated by other genes during a genetic

regulatory process. The goal of bi-clustering is to identify the undirected relations

between genes. The result of the gene bi-clustering can facilitate many downstream
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Figure 2.2: Examples of different bi-cluster types: (a) constant value model; (b)
constant row model; (c) constant column model; (d) additive coherent model; (e)
multiplicative coherent model; (f) linear coherent model

applications such as clustering-based gene selection and disease classification [9]

and gene regulatory network inference [26].

Because a gene may regulate (temporarily) a group of other genes, this problem

becomes identifying groups of such genes, i.e., bi-clusters. Housekeeping genes,

which are constitutively expressed over most conditions, are not biologically or

clinically interesting. The genes that the first two bi-cluster models, i.e., (a) and

(b) find tend to be this kind. Therefore, most existing algorithms are based on

either the additive model (d) or the multiplicative model (e) [22]. Since type (f) is

a more general type that unifies types (c), (d), and (e), I focus on seeking type (f)

bi-clusters in this dissertation. Most bi-clustering algorithms implicitly address non

time series microarray data and only few address time series microarray data [56].

For time series data, the time lag between mRNA transcription and transcription

factor translation needs to be considered. In this dissertation, I focus on non time

series data.
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2.1 Approach 1: Line Detection

The first bi-clustering algorithm I investigated, the Linear Coherent Bi-cluster Dis-

covering (LCBD) algorithm, is based on first detecting linear correlations between

pairs of gene expression profiles, then identifying groups by sample majority vot-

ing. This work was published in [72].

2.1.1 Method

The LCBD algorithm is composed of three major steps. First, the gene pairwise

linear relations are discovered based on the Hough transform [33], and the sample

sets under which the gene pairs exhibit linear relations are recorded. Then, for each

gene, a bi-cluster is constructed via sample majority voting based on the sample sets

corresponding to that gene. Finally, the bi-clusters are refined locally and redundant

bi-clusters are removed. A detailed description of the LCBD algorithm is given in

Appendix A.

To evaluate the LCBD algorithm, I compared its performance to six existing,

well known bi-clustering algorithms: Cheng and Church’s algorithm, CC [15];

Samba [83]; Order Preserving Sub-matrix Algorithm, OPSM [3]; Iterative Signa-

ture Algorithm, ISA [36, 35]; Bimax [66]; and Maximum Similarity Bi-clusters of

Gene Expression Data, MSBE [54]. The first five algorithms were selected and

implemented in the survey [66]. The last algorithm, MSBE, is the first polynomial

time bi-clustering algorithm that finds optimal solutions, but under certain con-

straints. To briefly explain each of the first five bi-clustering algorithms: in [15]

Cheng and Church defined a merit score, called mean squared residue, to evaluate

the quality of a bi-clustering, and then develop a greedy algorithm for finding δ-

bi-clusters. Yang et al. improved Cheng and Church’s method by allowing missing

values in gene expression matrices. Tanay et al. [83] and Prelić et al. [66] search

for bi-clusters of up-regulated or down-regulated expression values, while the orig-

inal expression matrices are discretized to binary matrices during a pre-processing

phase. Ihmels et al. [36, 35] used gene and condition signatures to evaluate bi-

clusters, and propose a random iterative signature algorithm (ISA) when no prior
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information of the matrix is available. Ben-Dor et al.[3] attempt to find the order-

preserving sub-matrix (OPSM) bi-clusters in which all genes have same linear or-

dering, based on a heuristic algorithm.

I tested the algorithm on both synthetic datasets and two real datasets Saccha-

romyces Cerevisiae and Arabidopsis Thaliana. For the synthetic datasets, I evaluate

the algorithms based on how well they identify the real bi-clusters embedded in the

expression matrix beforehand. The size of the synthetic matrices and the size of the

ground truth bi-clusters are chosen in consideration of (a) ensuring the gene/sample

ratio is similar to real data cases, and (b) avoiding overly long run times (since the

synthetic experiments are repeated many times).

I adopt the Prelić’s match score function [66] as a quantified evaluation of merit:

Let C, C∗ be two sets of bi-clusters. The gene match score of C with respect to C∗

is given by the function

scoreG(C, C∗) = 1
|C|
∑

(G1,S1)∈C max(G∗
1,S

∗
1 )∈C∗

|G1∩G∗
1|

|G1∪G∗
1|

(2.1)

where score∗G(C,C
∗) reflects the average of the maximum match scores for all bi-

clusters in C with respect to the bi-clusters in C∗. In our experiment, C∗ is one or

more reference (optimal) bi-cluster(s) embedded in the expression matrix before-

hand. For the parameter settings of the existing algorithms, I follow the previous

works [54] and [66].

2.1.2 Results on Synthetic Data.

Because most existing bi-clustering algorithms do not work on linear coherent bi-

clusters, I select two bi-clustering algorithms OPSM and ISA that seek additive bi-

cluster structures to compare to our LCBD algorithm, since an additive bi-cluster

is a special case of a linear coherent bi-cluster. For the MSBE algorithm, I found

in our testing that prior knowledge of a reference gene and reference sample for

recovering a synthetic bi-cluster had a great effect on its final result, I therefore

do not include the MSBE algorithm into the synthetic experiments because it is

assumed that this prior knowledge is blind to all the algorithms tested.

Constant bi-cluster. To produce an expression matrix with an additive bi-
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cluster, I first randomly generated an 100× 50 matrix. The values of the expression

matrix obey either a normal distribution (with mean 0 ad SD 1) or a uniform dis-

tribution (with minimum 0 and maximum 1), since a real data distribution could be

either [11, 48, 22]. Within the expression matrix, I randomly select a row and 10

columns to form a size 10 reference gene vector. I then randomly select 9 other row

vectors under the same samples and re-calculate their expression values based on

the equation A(i, Jr) = mi × A(i0, Jr) + bi, where A(i0, Jr) is the reference gene

vector, mi equals to 1, and bi is a random constant. Random noise is then added to

the synthetic bi-cluster: a certain percent of elements in the bi-cluster is randomly

selected and replaced with random values which obey the same distribution as the

background matrix. I tested noise levels of 0% to 25% with increasing steps of 5%.

At each noise level I generated 50 synthetic matrices with bi-clusters and reported

a final match score that is the mean over the 50 results. Figure 2.3 shows that our

LCBD algorithm obtained the highest match scores for all noise levels and distri-

butions, compared to the two additive bi-cluster type algorithms OPSM and ISA.

As one can see, the LCBD algorithm is robust to noise even at noise level 25%

to some extend, but not quite. This occurs when a line will be identified by the

Hough transform as long as it passes through at least 3 points (samples) and during

the majority sample voting. Although the expression value under some samples

is destroyed, there are sufficiently many others that their expression values under

these samples are not destroyed and thus these samples still obtain more votes than

random samples that are not within the linear coherence bi-cluster.

Linear coherent bi-cluster. Because the LCBD algorithm seeks bi-clusters of

the linear coherent type, I can then test it directly on the linear coherent bi-clusters.

In this experiment, I only use uniform distribution expression matrix, since the

normal distribution matrix shows similar results. To generate a linear coherent bi-

cluster in a expression matrix, I use the same procedure as in the constant bi-cluster

experiment, except that in the equation A(i, Jr) = mi ×A(i0, Jr) + bi, the mi’s are

no longer 1’s but random values. The left part of Figure 2.4 shows the match scores

of the LCBD algorithm under different noise levels and different bi-cluster sizes;

the right part of Figure 2.4 shows the corresponding gene discovery rates of the
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LCBD algorithm under the same noise level and bi-cluster size. From Figure 2.4,

one can see that the match score and gene discovery rates are generally higher on

larger bi-clusters. This is the case because whether a line can be identified during

the Hough transform depends more on the absolute number of points that a line

passes through than the proportion of points a line passes through. This suggests

that the LCBD algorithm should be better at discovering large bi-clusters.

Overlapping test. To test the LCBD algorithm on discovering multiple overlap-

ping bi-clusters, I generated two linear coherent bi-clusters in the expression matrix

and let them overlap to some degree. Figure A.2 in Appendix A shows the mean

match scores of the LCBD algorithm on discovering two overlapping bi-clusters at

noise level 10%. For the overlapping elements, I replace their original values with

the sum of the two overlapping values. The overlapping elements are not linear

coherent elements and can be viewed as noise elements.

2.1.3 Results on Real Data.

The documented descriptions of functions and processes that genes participate in

has become widely available prior knowledge. The Gene Ontology Consortium in

particular provides one of the largest organized collection of gene annotations. Fol-

lowing the idea in [83, 66], I investigate whether the genes identified in bi-clusters

produced by the different algorithms show significant enrichment with respect to

a specific Gene Ontology annotation. I use two web-servers, FuncAssociate [5]

and EasyGo [96], to evaluate the groups of genes produced in our bi-clustering

results. The FuncAssociate computes the hypergeometric functional enrichment

score, cf. [5], based on Molecular Function and Biological Process annotations.

The resulting scores are adjusted for multiple testing by using the Westfall and

Young procedure [87, 5]. The EasyGo calculates the functional enrichment score

in a similar way. In detail, based on availability, I tested the bi-clustering results

from the Saccharomyces Cerevisiae dataset on the FuncAssociate web-server and

the results from the Arabidopsis Thaliana dataset on the EasyGo web-server. The

Saccharomyces Cerevisiae dataset contains 2993 genes and 173 conditions and the

Arabidopsis Thaliana dataset contains 734 genes and 69 conditions. Figure 2.5
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shows the proportion of gene groups of bi-clusters of S. Cerevisiae and A. Thaliana

that are functionally enriched at different significance levels. The LCBD algorithm

demonstrates the best results (all 100%) on the Arabidopsis Thaliana dataset, com-

pared to other seven algorithms; the LCBD results are also competitive to the best

results derived from the MSBE algorithm on the Saccharomyces Cerevisiae dataset.

These results on real datasets indicate that linear coherent bi-clusters are a useful

form of bi-cluster structure to extract from gene expression datasets, and could be

a bi-cluster type that exists widely in other gene expression datasets.

2.1.4 Discussion

The experimental results on the synthetic data show that the LCBD algorithm can

accurately discover additive and linear coherent bi-clusters, while being robust to

the bi-cluster size. The results on the two real datasets revealed that the linear

coherent bi-clusters discovered by LCBD are functionally enriched and therefore

biologically meaningful. The limitation of the LCBD algorithm is that in the first

step, it only collect a line of samples along which a gene pair exhibits linear relation.

However, due to unpredictable noise level of microarray data [74, 27], it could

be problematic. Figure 2.6 shows that a gene pair’s linear correlation could be

exhibited by means of a wide beam. Moreover, a pair of genes participates in a

linear coherent bi-cluster must be evidenced by a non-trivial subset of samples in

which these two genes are co-up-regulated (or co-down-regulated). Therefore, the

scatter plot of their pairwise expression levels, see Figure 2.6, where every point

(x, y) represents a sample in which the two genes have expression levels x and y

respectively, must show a diagonal band with a sufficient number of sample points.

2.2 Approach 2: Beam Detection

To address the two limitations of the LCBD algorithm mentioned in Section 2.1.4,

I subsequently proposed the LinCoh algorithm. It starts with composing this non-

trivial supporting sample set for each gene pair, then clustering these so-called outer

sample sets. Each outer sample set cluster, together with the associated genes and
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inner samples, is filtered to produce a final bi-cluster. This work was published in

[74].

2.2.1 Method

The LinCoh algorithm is composed of two major steps. In the first step, we discover

the gene pairwise linear relations via a beam detection process, that, compared to

LCBD, is more robust to noise and discover samples under which gene pair is co-

expressed. In the second step, bi-clusters are constructed based on sample set clus-

tering, which we believe is more effective than the majority voting used in LCBD

for finding common sample sets under which a group of genes are co-expressed. A

detailed description of the LinCoh algorithm can be found in Appendix B.

2.2.2 Results on Synthetic Data

I investigated the LinCoh algorithm, and again made comparisons with the five pre-

viously mentioned bi-clustering algorithms, LCBD, CC, OPSM, ISA, and MSBE,

initially on synthetic datasets. On synthetic datasets, bi-clustering algorithms are

evaluated on their ability to recover the implanted (true) bi-clusters. Prelić’s gene

match score and overall match score [66] are again adopted. Let C and C∗ denote

the set of output bi-clusters from an algorithm and the set of true bi-clusters for

a dataset. The gene match score of C with respect to the target C∗ is defined as

scoreG(C, C∗) = 1
|C|
∑

(G1,S1)∈C max(G∗
1,S

∗
1 )∈C∗

|G1∩G∗
1|

|G1∪G∗
1|

, which is essentially the av-

erage of the maximum gene match scores of bi-clusters in C with respect to the

target bi-clusters. Similarly, the sample match score scoreS(C, C∗) can be defined

by replacing gene sets with the corresponding sample sets in the above. The overall

match score is then defined as their geometric mean, i.e.

score(C, C∗) =
√

scoreG(C, C∗)× scoreS(C, C∗). (2.2)

Noise resistance test. This experiment examines how well a bi-clustering al-

gorithm can recover implanted bi-clusters. I follow Prelić’s testing strategy to

first generate a 100 × 50 background matrix (i.e., 100 genes and 50 samples),

using a standard normal distribution for the matrix elements; I then embed ten
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10 × 5 non-overlapping linear coherent bi-clusters along the diagonal; later for

each vector of the five expression values, the first two of them are set to down-

regulated, the last two are set to up-regulated, and the middle one is non-regulated;

lastly, I add noise to the embedded bi-clusters at six different noise levels (ℓ =

0.00, 0.05, 0.10, 0.15, 0.20, 0.25) by perturbing the entry values so that the resultant

values are ℓ away from the original values. The generation is repeated ten times

to give ten matrices. The same simulation process is done to generate synthetic

datasets containing additive bi-clusters, when I compare the bi-clustering algo-

rithms on their performance to recover additive bi-clusters only (which is a special

case of linear coherent bi-clusters). Note that the linear coherence of the bi-clusters

we generated now is near the positive or negative diagonals of the gene pair 2D plot,

which is different from the linear coherence of the synthetic bi-clusters we gener-

ated for testing the LCBD algorithm where the linear coherence can be anywhere

on the gene pair 2D plot. Another difference compared to the synthetic data gener-

ation in LCBD is that 5 samples rather than 10 samples are used for each bi-cluster.

We do so by considering two reasons: first, to embed exactly 10 bi-clusters in each

background matrix; second, to make the bi-clusters more challenging for differ-

ent algorithms to discover because linear coherence evidenced by less samples are

harder to discover.

Figure 2.9 shows the gene match scores of all six bi-clustering algorithms at

six different noise levels, on their performance of recovering linear coherent bi-

clusters and additive bi-clusters, respectively. Their overall match scores and gene

discovery rates (defined as the percentage of genes in the output bi-clusters over

all the genes in the true bi-clusters) can be found in Figures 2.7 and 2.8. In terms

of match scores, Figures 2.9 and 2.7 clearly show that our LinCoh outperformed

all the other four algorithms, ISA ranked the second, and the other four performed

quite poorly. LCBD performs well on low noise level but quickly drops when noise

level increases. In terms of gene discovery rate, again LinCoh outperformed all the

other four algorithms. I remark that gene discovery rate can be trivially lifted up by

simply output more bi-clusters. It is not a main measure used in this work, but a

useful measure in conjunction with match scores.
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Figure 2.7: The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, at six different noise levels.
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Overlapping test. Individual genes can participate in multiple biological pro-

cesses, yielding bi-clusters that overlap with common genes in an expression ma-

trix. Bi-clusters might also overlap with a subset of samples. This experiment is

designed to examine the ability of different bi-clustering algorithms to recover over-

lapping bi-clusters. As before, I consider type-(f) linear coherent bi-clusters and

type-(d) additive bi-clusters, at a fixed noise level of ℓ = 0.1. Again, ten 100 × 50

background matrices are generated using a standard normal distribution for the ma-

trix elements; into each of them, two 10×10 bi-clusters are embedded, overlapping

with each other by one of the following six cases: 0× 0, 1× 1, 2× 2, 3× 3, 4× 4,

and 5 × 5. Previous simulation studies suggested to replace the matrix elements

in the overlapped area with a random value; I expect, however, these overlapping

genes to obey a reasonable logic such as the AND gate and the OR gate leading

to a union and an additive behavior. Therefore, in the union overlap model, the

matrix entries in the overlapped area preserve linear coherency in both bi-clusters

(consequently, the overlapped area extends its linear coherency into both bi-clusters

on those samples in the overlapped area); and in the additive overlap model, these

entries take the sum of the gene expression levels from both bi-clusters.

Figure B.1 in Appendix B shows the gene match scores of the five bi-clustering

algorithms in this experiment. Their overall match scores and gene discovery rates

under the union overlap model are plotted in Figures B.2 and B.3 in Appendix

B. The results of the additive overlap model are in Figures B.4, B.5, and B.6 in

Appendix B. From all these results, one can see that our LinCoh outperformed

the other four algorithms; OPSM and MSBE performed worse, but similarly to

each other; CC performed the worst; and ISA demonstrated varying performance.

LCBD again shows better performance on low noise level and worse performance

on high noise level. Note that he overall performance of LCBD on the overlapping

test is better than on the noise test because the bi-clusters in the overlapping test has

bigger sample size which makes the Hough transform easier to capture the lines.
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2.2.3 Results on Real Data

On real datasets, due to dataset availability, rather than using the servers FuncAsso-

ciate and EasyGo in LCBD, the bi-clusters discovered by an algorithm are mapped

to known biological pathways, defined in the more GO functional classification

scheme [1], the KEGG pathways [41], the MIPS yeast functional categories [68]

(for yeast dataset), and the EcoCyc database [46] (for E.coli dataset), to obtain their

gene functional enrichment score as implemented in [53]. The average absolute cor-

relation coefficients (aacc’s) of the discovered bi-clusters are also used to compare

different algorithms.

Two datasets Yeast and E.coli are used in the real dataset experiments and the

Arabidopsis Thaliana dataset used in LCBD is not used here due to its small number

of samples. The yeast dataset is obtained from [23], containing 2993 genes on 173

samples; the E.coli dataset (version 4 built 3) is from [21], which contains initially

4217 genes on 264 samples. Genes with small expression deviations were removed

from the second dataset, giving rise to 3016 genes. Such a process ensures that all

five bi-clustering algorithms can run on the dataset. In particular, it took two weeks

for LinCoh to run on each dataset using a 2.2GHz CPU node of 2.5GB memory.

The performance of an algorithm on these two real datasets is measured in gene

functional enrichment score [53]. First, the P -value of each output bi-cluster is

defined using its most enriched functional class (biological process). The probabil-

ity of having r genes of the same functional class in a bi-cluster of size n from a

genome with a total of N genes can be computed using the hypergeometric func-

tion, where p is the percentage of that functional class of genes over all functional

classes of genes encoded in the whole genome. Numerically [53],

Pr(r|N, p, n) = ( pN
r ) · ( (1−p)N

n−r )/(N
n ) (2.3)

Such a probability is taken as the P -value of the output bi-cluster enriched with

genes from that functional class [53]. The smallest P -value over all functional

classes is defined as the P -value of the output bi-cluster — the smaller the P -value

of a bi-cluster the more likely its genes come from the same biological process. For

each algorithm, I calculate the fraction of its output bi-clusters whose P -values are
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smaller than a significance cutoff α.

Figure 2.10 compares the six algorithms using six different P -value cutoffs,

evaluated on the GO database. Results on the KEGG, MIPS, and Regulon databases

are in Figures 2.11 and 2.12. All these results show that our LinCoh consistently

performed well; OPSM and ISA did not perform consistently on the two datasets

across databases; and that MSBE and CC did not perform as well as the other three

algorithms. The LCBD algorithm consistently performs worse than LinCoh under

these two datasets and these experimental settings. This is mainly because the linear

coherent relation it considers is not always close to the main diagonal its less robust

to noise.

One potential issue with the P -value based performance measurement is that P -

values are sensitive to the bi-cluster size [53]; in general, larger bi-clusters tend to

lead to smaller P -values (more significant). Table B.1 in Appendix B summarizes

the statistics of the bi-clusters produced by the five algorithms. The last column

in the table records the numbers of unique functional terms enriched by the pro-

duced bi-clusters. On yeast dataset, when measured by the gene enrichment signif-

icance test, OPSM performed very well (Figure 2.10, left); yet its bi-clusters only

cover one functional term on the GO and KEGG databases and two terms on MIPS

database. Such a phenomenon suggests that its bi-clustering result is biased to a

group of correlated genes, missed by the P -value based significance test. Further-

more, I generated all the gene pairs with absolute correlation coefficient greater than

or equal to 0.8 over all the samples for both the yeast and E.coli datasets. Table B.2

in Appendix B shows the numbers of common GO terms and their counts. Among

these strongly correlated gene pairs, many do not even have one common GO term.

Table B.2 in Appendix B shows the top 10 counted common GO terms (the full

table can be found at ‘http://www.cs.ualberta.ca/˜ys3/LinCoh’).

The above two potential issues hint that the P -value based evaluation is mean-

ingful but has limitations. I propose to use the average absolute correlation co-

efficient over all gene pairs in a bi-cluster defined in Eq. (B.1) as an alternative

assessment of the quality of a linear coherent bi-cluster. Figure 2.15 shows the box

plot of these correlation values for the bi-clusters produced by the five algorithms
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Figure 2.10: Proportion of discovered bi-clusters by the five algorithms on the two
real datasets that are significantly enriched the GO biological process, using six
different P -value cutoffs.
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Figure 2.11: Proportion of yeast bi-clusters that are significantly enriched over dif-
ferent P -values in the MIPS pathway and KEGG pathway.
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Figure 2.12: Proportion of E.coli bi-clusters that are significantly enriched over
different P -values in the KEGG pathway and experimentally verified regulons.
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Figure 2.13: The box plots of minimum absolute correlation coefficients of the
bi-clusters produced by the five algorithms on the yeast and E.coli datasets.
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Figure 2.14: The box plots of the 99% confidence thresholds of the average absolute
correlation coefficients of the bi-clusters, using the number of samples in each bi-
cluster, produced by the five algorithms on the yeast and E.coli datasets.
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on the two real datasets. From the figure, one can see that our LinCoh and OPSM

significantly outperformed the other three algorithms. Additionally, the minimum

absolute correlation coefficient over all gene pairs in a bi-cluster can also be adopted

as a quality measurement. Figure 2.13 shows these results.

Figure 2.15 shows that OPSM produced bi-clusters with very high linear coher-

ence. But the numbers of samples in its bi-clusters are much smaller than those in

LinCoh’s bi-clusters, as shown in Table B.1 in Appendix B (tens versus hundreds).

This suggests that very closely interacting gene pairs can have small empirical cor-

relation coefficients on a subset of samples, largely due to noise and measurement

errors. In fact, there is always a trade-off between bi-cluster coherence and its size.

Thus, to compare algorithms in a less sample-size biased way, I replaced for each

bi-cluster its average absolute correlation coefficient by the 99% confidence thresh-

old using the number of samples in the bi-cluster [71], and box plotted these values

in Figure 2.14. They show much more comparable performance between LinCoh

and OPSM.

2.2.4 Discussion

LCBD and LinCoh both identify linear-coherent bi-clusters that disclose undirected

relations between genes, while LinCoh is a more practical algorithm on microarray

datasets due to data noise. The experiments on synthetic and real datasets demon-

strate that LinCoh consistently performed competitively with other bi-clustering

algorithms. On real datasets, I showed some limitations of the widely adopted func-

tional enrichment measurement, and proposed to use average absolute correlation

coefficient as an alternative measure for bi-clustering quality. Given its outperfor-

mance of existing popular algorithms, LinCoh can serve as another useful tool for

microarray data analysis, including bi-clustering and genetic regulatory network

inference. A disadvantage of LinCoh are its large memory and compute time re-

quirements, due to constructing the outer and inner sample set matrices. It takes

O(n2mp) to compute the sample set matrices where n is the number of genes and

mp is the number of parameters θ, β and γ. The memory required for storing the

matrices is O(n2ms) where n is the number of genes and ms is the average size
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Figure 2.15: Box plots of the average absolute correlation coefficients obtained by
the five bi-clustering algorithms on yeast and E.coli datasets, respectively.
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of the sample set elements. It takes weeks and up to 1 Gigabyte memory to run

experiments on the E.coli dataset. Improvements in beam detection and sample set

clustering can also achieve significant speed-ups.

2.3 Approach 3: Sparse Learning

After introducing the above two heuristic approaches, I investigated the linear co-

herent bi-clustering problem from a sparse learning perspective. In doing so I ex-

ploited the experience I gained in modeling with sparse machine learning methods

in Chapter 3 below. The goal is to re-express the previous heuristic approaches as a

simple loss minimization problem, using sparse regularization to automatically per-

form gene-sample selection. The advantage of such an approach is that it decouples

the principle by which bi-clusters are identified from the algorithmic techniques

used to solve the optimization problem. In this way we can exploit state of the art

optimization tools and can concentrate our efforts on formulating good objectives.

2.3.1 Method

Let us first consider a pair of 1 × p observation vectors mi: and mj:. Here mi: is

defined as the ith row vector of matrix M . Other row/column vectors appearing later

in this section will be written in the same way. For a given subset of features we can

always find the linear regression of this pair of observations in a 2D space that gives

us least sum of residuals. We denote the linear regression by slope aij and intercept

bij . Now the problem is to select a subset of feature so that the sum of residuals

from the best regression is minimized. For the bi-cluster that is generated based on

the ith observation, we introduce a 1× p feature selection vector si ∈ {0, 1}, where

sik = 1 if the kth feature is selected and 0 otherwise. Without any constraint, this

problem will always give a trivial solution si = 0, yielding a zero sum of residuals.

Therefore, we add a regularizer β1∥1 − si∥1 to penalize any solution with too few

sik = 1 values, where 1 denotes a vector of all 1s. In the subsequent formulations

we choose the L1 norm because it gives us a sparse solution in 1 − si once si has

been relaxed to [0, 1]. For a single row i, the problem can then be formulated as an
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optimization as follows:

min
si,aij ,bij

∑
k

sik(mik − aijxik − bij)
2 + β1∥1− si∥1

s.t. sik ∈ {0, 1}
(2.4)

Now, consider the whole matrix M from which we want to detect a set of row-wise

linear coherent bi-clusters. We introduce a n× n binary matrix W , where wij = 1

indicates there is strong linear coherence between the observation pair (i, j) and

wij = 0 otherwise. By extending 2.4 in terms of the whole matrices M , S, A, B

and introducing W , we obtain the complete formulation:

min
W,S,A,B

∑
i,j

wij

∑
k

sik(mik − aijxik − bij)
2

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ {0, 1}, sik ∈ {0, 1}

(2.5)

where W can be interpreted as observation (data) selection matrix, and S can be

interpreted as the feature (sample) selection matrix. Here S is a n×p binary matrix

with the ith row corresponding to the feature selection vector for the ith observation.

Note that the sparse regularizer β1∥1− si∥1 becomes β1∥1 · 1T − S∥1,1. Similarly,

we add another sparse regularizer β1∥1 · 1T − W∥1,1 to penalize trivial solutions

where W is set too close to the identity matrix. We want to favor the case that

the scatter points (feature points) of a pairwise 2D plot do not stick together so

that to exhibit better linear coherence. Considering this, we introduce a n × n × p

matrix D, where dijk ∈ [0, 1] indicates the importance of the kth feature under the

observation pair (i, j). In the gene expression matrix case, because it is desired to

favor co-up-regulated and co-down-regulated gene expression samples, we assign

dijk = ed
′
ijk , where d′ijk is the Euclidean distance of the kth data point to the central

point (m̄i:, m̄j:). Different prior knowledge can be introduced to form D from other

data sources. Therefore, after relaxing W ∈ {0, 1} to W ∈ [0, 1] and S ∈ {0, 1} to

S ∈ [0, 1], we get:

min
W,S,A,B

∑
i,j

wij

∑
k

sik
1

dijk
(mik − aijxik − bij)

2

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ [0, 1], sik ∈ [0, 1]

(2.6)
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By introducing some new notation, we can re-express this problem in an equivalent

form that proves to be more convenient for formulating an efficient iterative proce-

dure below. Let ⊗ denote Kronecker product, let △(m) denote putting a vector m

on the main diagonal of a square matrix, and let ÷ denote component-wise divide.

Then 2.6 can be equivalently re-written in terms of si: and wi: as:

min
W,S,A,B

∑
i

∥∥△(wi:)
1/2(1⊗mi: −△(ai:)M −△(bj:)1⊗ 1T )÷D∗

i△(si:)
1/2
∥∥2
F

+β1∥1 · 1T − S∥1,1 + β2∥1 · 1T −W∥1,1

s.t. wij ∈ [0, 1], sik ∈ [0, 1]
(2.7)

where D∗
i has the same dimension as Di with each element equals to the square

root of the corresponding element in Di.

Unfortunately, 2.7 is not jointly convex in W , S, A and B, so we are currently

unable to formulate an efficient global optimization procedure. Nevertheless, an

efficient iterative procedure can be devised that finds a reasonable local solution.

Initialization: Because of the potential difficulty of local minima, initialization

of W , S, A, and B becomes very important for solving (2.7) iteratively. To simplify

the initialization, and allow a generally effective approach, we first normalize the

data matrix M so that each row mi: ∈ [0, 1]. In the case of gene expression analysis,

A is initialized to 1 · 1T since a gene pair that has strong correlation will have a

sufficient number of samples under which the gene pair has a co-up-regulated and

co-down-regulated pattern, which implies that on normalized data, the slope is near

1. The intercept bij is normalized in a way that the linear regression line for each

observation pair passes through the central point (m̄i:, m̄j:) with slope aij . After A

and B is initialized, si: is initialized such that sik = 1 if the distance d′ijk of kth data

point of the (i, j) pair to the line (aij, bij) is within some threshold. Since the data

is normalized, an appropriate threshold can be set for data of the same type and will

not affect the results to a large extent. In the case of gene expression data, since we

want to favor sample points that are far away from the central point (m̄i:, m̄j:), we

set the threshold as a monotonically increasing function of the distance d′′ijk between

(m̄i:, m̄j:) and the point (mik,mjk)’s projected point on the regression line. We do

not initialize W as it will be immediately determined from the initial S, A, and B.
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Iterative update of W , S, A and B:

Updating W. Denote the objective function in (2.7) by f(W,S,A,B). Assume

that S, A, and B are fixed (initialized as mentioned above for the first iteration).

Then the objective function is a convex (linear) function of W and we can optimize

W element by element in closed form. In particular, for each wij,, by ignoring

constant terms, the problem is equivalent to minimizing f(wij):

min
wij

wij

(∑
k

sik
dijk

(mik − aijmjk − bij)
2 − β2

)
s.t. wij ∈ [0, 1]

(2.8)

Because f(wij) is a linear function of wij , we obtain wij = 1 if
∑

k
sik
dijk

(mik −

aijmjk − bij)
2 < β2 and wij = 0 otherwise.

Updating S. When W , A, and B are fixed, f(W,S,A,B) becomes a convex

(linear) function of S, so similar to updating W , we can update S element by el-

ement in closed form. In this case, sik can be calculated by minimizing f(sik) as

follows:

min
sik

sik

(∑
j

wij

dijk
(mik − aijmjk − bij)

2 − β1

)
s.t. sik ∈ [0, 1]

(2.9)

Hence, sik = 1 if
∑

j
wij

dijk
(mik − aijmjk − bij)

2 < β1 and sik = 0 otherwise.

Updating A and B. When W and S are fixed, the minimization over A and B

becomes a standard least squares linear regression problem for each observation

pair. In particular, we have:

(aij, bij)
T = (XT

ij△(si: • dij:)Xij)
−1XT

ij△(si: • dij:)yij (2.10)

where • denotes inner product, xij = (1,mj:
T ), and y = m(i, :)′

Finally, each of W , S, A, and B are iteratively updated until the objective func-

tion converges. Algorithm 3 in Appendix C gives the details of the SLLB algorithm.

Note that the time complexity of the SLLB for one iteration is O(n2). Later exper-

iments on synthetic datasets shows that SLLB converges after 6-8 iterations, which

takes less than 10 seconds. On real datasets, good results can be obtained after

10-20 iterations, which take tens of hours.
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2.3.2 Results on Synthetic Data

I first compare SLLB with seven existing representative bi-clustering algorithms—

QUBIC, LinCoh, LCBD, CC, OPSM, ISA, and MSBE—on synthetic datasets.

The QUBIC method I add here is a recent bi-clustering algorithm, which finds bi-

clusters by a combination of (semi-) qualitative measures of gene expression data

and a combinatorial optimization technique [53]. The parameter settings for the

compared algorithms follow the previous works [66, 54, 74].

On synthetic datasets, Prelić’s observation (gene) match score and overall match

score [66] are adopted to evaluate the bi-clustering algorithms’ ability to discover

the implanted (true) bi-clusters. Let C and C∗ denote the set of output bi-clusters

from an algorithm and the set of true bi-clusters for a dataset respectively. The ob-

servation match score of C with respect to the target C∗ is defined as scoreG(C, C∗) =

1
|C|
∑

(G1,S1)∈C max(G∗
1,S

∗
1 )∈C∗

|G1∩G∗
1|

|G1∪G∗
1|

, which is the average of the maximum obser-

vation match scores of bi-clusters in C with respect to the target bi-clusters. The

feature match score scoreS(C, C∗) can be similarly defined by replacing observa-

tion sets with the corresponding feature sets in the above. The overall match score

is then defined as in (2.2).

As for the parameter setting of SLLB, we set β1 = 0.1, β2 = 0.05 on all the

noise resistance experiments, and we set β1 = 0.1, β2 = 0.3 on all the overlapping

experiments. Details of the parameter selection methodology are described in the

discussion section below.

Noise resistance test: This experiment investigates the different bi-clustering

algorithms’ ability to recover implanted bi-clusters under different noise levels. Fol-

lowing Prelić’s testing strategy, we first generate a 100 × 50 background matrix,

based on a standard normal distribution, and then embed ten 10×5 non-overlapping

linear coherent bi-clusters along the diagonal. Then, for each vector of the five

expression values, we set the first two to be down-regulated, the last two to be

up-regulated, and the middle one to be non-regulated. Lastly, we add noise of six

different levels (ℓ = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) to the embedded bi-clusters

by perturbing the entry values so that the resultant values are ℓ away from their

original values. The generation is repeated ten times. Based on the same simulation
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process, we generate additive bi-clusters on synthetic datasets when we compare

the bi-clustering algorithms with respect to their performance at recovering only

additive bi-clusters (which is a special case of linear coherent bi-clusters).

Figure 2.16 shows the observation match scores of the bi-clusters discovered

by the eight algorithms at six different noise levels. Figures C.1 and C.2 in the

Appendix C demonstrates the overall match scores and observation discovery rates

obtained (defined as the percentage of observations in the output bi-clusters over

all the observations in the true bi-clusters). From these figures, it is clearly shown

that SLLB outperformes all the other seven algorithms; QUBIC, LinCoh and ISA

rank the second, third, and forth, and the other three performed quite poorly. Note

that by simply outputting more bi-clusters, the observation discovery rate can be

trivially lifted, therefore it is only a useful measurement in conjunction with match

scores.

Overlapping test: Bi-clusters may overlap in terms of either observations or

features. Take gene expression as an example: some genes can participate in mul-

tiple biological processes, resulting in bi-clusters that overlap with common genes

in an expression matrix. The same is also true with respect to sample overlap-

ping. Therefore, this experiment intends to examine the ability of the bi-clustering

algorithms to recover overlapping bi-clusters. We again consider type-(f) linear co-

herent bi-clusters and type-(d) additive bi-clusters, at a fixed noise level of ℓ = 0.1.

We generate ten 100 × 50 matrices based on a standard normal distribution. In

each matrix, two 10 × 10 bi-clusters are embedded, with overlapping size: 0 × 0,

1 × 1, 2 × 2, 3 × 3, 4 × 4, and 5 × 5. In the case of gene expression, we assume

that these overlapping genes to obey a reasonable logic such as the AND gate and

the OR gate which leads to a union and an additive behavior. So the overlapped

entries in the union overlapping area preserve linear coherency in both bi-clusters

and in the additive overlap model, these entries are assigned by the sum of the gene

expression levels from both bi-clusters. The observation match scores of the eight

bi-clustering algorithms in this additive overlapping experiment are shown in Fig-

ure 2.17. Figures C.3 and C.4 in Appendix C plot the overall match scores and

observation discovery rates under the additive overlap model. The results of the
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Figure 2.16: The observation match scores of the eight algorithms on recovering
linear coherent bi-clusters and additive bi-clusters at six different noise levels.
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Figure 2.17: The observation match scores of the eight algorithms for recovering
the overlapping linear coherent and additive bi-clusters, under the additive overlap
model.
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additive overlap model are shown in Figures C.5, C.6, and C.7 in the Appendix C.

From all these results, we can conclude that SLLB outperforms the other seven al-

gorithms. LinCoh’s performance is slightly worse than SLLB; QUBIC, OPSM and

MSBE perform worse, but similarly to each other; LCBD and CC performed the

worst; and ISA demonstrates varying performance.

2.3.3 Results on Real Data

We then tested all of the algorithms on two real gene expression microarray datasets:

Saccharomyces cerevisiae (yeast) and Escherichia coli (e.coli) respectively. On real

datasets, the quality of bi-clusters are evaluated by known biological pathways, de-

fined in the GO functional classification scheme [1], the KEGG pathways [41], the

MIPS yeast functional categories [68] (for yeast dataset), and the EcoCyc database

[46] (for e.coli dataset), to obtain their gene functional enrichment score as imple-

mented in [53]. The average correlation coefficient is also used for evaluating the

generated bi-clusters on real datasets.

We obtain the yeast dataset from [23]. It contains 2993 genes on 173 samples;

the e.coli dataset is obtained from [21], (version 4 built 3). It contains initially 4217

genes on 264 samples. For the e.coli dataset, after removing genes that do not have

any significant expression deviations, we obtain 3016 genes. This pre-processing

step ensures that all eight bi-clustering algorithms can run on the dataset. Again, we

use the gene functional enrichment score [53] in (2.3) to measure the performance

of different algorithms. Such a probability is taken as the P -value of the output

bi-cluster enriched with genes from that functional class [53]. The P -value of the

output bi-cluster is defined as the smallest P -value over all functional classes. The

smaller the P -value of a bi-cluster the more likely its genes come from the same

biological process. We calculate for each algorithm the fraction of its output bi-

clusters whose P -values are smaller than a significance cutoff α. As for parameter

setting of SLLB, we set β1 = 0.3, β2 = 1.5 for yeast dataset, and β1 = 0.1, β2 = 0.5

for e.coli dataset. Details of the parameter selection methodology are described in

the discussion section below.

In Figure 2.18, the eight algorithms are compared using six different P -value
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cutoffs, evaluated on the GO database. Results on the KEGG, MIPS, and Reg-

ulon databases are in Figures 2.19 and 2.20. These results indicates that SLLB

performs consistently well; QUBIC and LinCoh performs stable but worse than

SLLB, OPSM and ISA does not perform consistently on the two datasets across

databases; and that LCBD, MSBE and CC does not perform as well as the other

three algorithms.

One potential issue with the P -value based performance measurement is that P -

values are sensitive to the bi-cluster size [53]; in general, this measurement favor bi-

clusters with larger size. For example, in Table C.1, it is shown that OPSM find bi-

clusters that contain an extremely large number of genes and very few samples. Bi-

clusters of this kind are close to trivial bi-clusters (gene or sample set size close to 0)

but with a large number of genes, its enrichment P value can be easily lifted. On the

contrary, although our SLLB algorithm generates bi-clusters with a large number

of genes, the number of samples it generates is also large, which indicates more

confident linear coherence. In the last column of Table C.1, the number of unique

functional terms enriched by the produced bi-clusters are listed. When measured

by the gene enrichment significance score, OPSM performed very well on yeast

dataset (Figure 2.18, left), but its bi-clusters only cover one functional term on the

GO and KEGG databases and two terms on MIPS database. This suggests that

the bi-clustering result can be biased to a group of correlated genes, missed by the

P -value based significance test.

Considering these two potential issues, we can see that the P -value based eval-

uation is meaningful but has limitations. So we propose to use the average absolute

correlation coefficient over all gene pairs in a bi-cluster as an alternative assessment

of the quality. However, note that the numbers of samples in the bi-clusters gener-

ated by some algorithms are much smaller than others; see Table C.1. Therefore,

to compare algorithms in a less sample-size biased way, we replace for each bi-

cluster its average absolute correlation coefficient by the 99% confidence threshold

using the number of samples in the bi-cluster [71, 74]. These values are plotted in

Figure 2.21.

Figure 2.21 shows that SLLB, LinCoh, and OPSM have similarly good perfor-
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Figure 2.18: Portions of discovered bi-clusters by the eight algorithms on the two
real datasets that are significantly enriched in the GO biological process, using six
different P -value cutoffs.
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Figure 2.19: Portions of discovered bi-clusters by the eight algorithms on the two
real datasets that are significantly enriched in the KEGG pathway, using six differ-
ent P -value cutoffs.
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Figure 2.20: Portions of discovered bi-clusters by the eight algorithms on the two
real datasets that are significantly enriched in the MIPS pathway experimentally
verified REGULONS, respectively, using six different P -value cutoffs.
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Figure 2.21: Box plots of the average absolute correlation coefficients obtained by
the eight bi-clustering algorithms on yeast and e.coli datasets, respectively.
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mance while QUBIC, LCBD, MSBE, CC, and ISA performs worse than these three.

Note that due to noise effect when profiling genes, itt is hard to reach a very large

value of the correlation coefficient.

2.3.4 Discussion

In this section, we proposed a novel bi-clustering algorithm, SLLB, that can dis-

cover linear coherent bi-clusters, based on a sparse learning optimization model.

The experimental results on both synthetic and real datasets indicate that SLLB is

not only able to discover linear coherent bi-clusters effectively, but able to discover

meaningful linear coherent bi-clusters that can be verified by biological ground

truth. Actually, for many bi-clusters discovered by SLLB, their corresponding gene

groups (with size 30-100) generally all belong to the same gene ontology term,

which is a striking result. The time complexity of the SLLB algorithm is O(n2k)

where n is the number of observations and k is the number of iterations that SLLB

takes to converge, which is very fast compared to algorithms like LinCoh. Note that,

while discovering linear coherent bi-clusters, SLLB favors data points correspond-

ing to features that are far from each other in the observation pair 2D space, which

is a nice property that can be used for downstream data analysis, for example, in

feature clustering, observation-feature relation studies and observation/feature se-

lection.

To set appropriate values for β1 and β2, I binary searched β1 ∈ [0, 1000] and

β2 ∈ [0, 1000] and found the value ranges that produce non-trivial bi-clusters are

β1 ∈ [0, 0.5] and β2 ∈ [0, 1.5]. I then tested different combinations of β1 =

[0.1, 0.5, 1] and β2 = [0.1, 0.5, 1, 1.5] and found the results are quite robust to dif-

ferent settings. The final β1 and β2 are chosen so that SLLB performs best. When

come to practice, considering that β1 actually controls the size of observation and

β2 controls the size of features in the result bi-clusters, β1 and β2 can be determined

when prior biological knowledge of bi-cluster size is available.

We suggest that the SLLB algorithm can be used in other machine learning

applications such as image clustering, document clustering, and other biology and

health care data clustering, as long as observations of a common group have linear
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coherence under a subset of features, whereas for different clusters, different feature

sets need to be selected. As for future work, we will test SLLB on other applications

such as document bi-clustering and image bi-clustering. We will also extend SLLB

to be able to consider other relations between observations in addition to linear

coherent relations.
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Chapter 3

Directed Bio-relation Discovery

The previous bi-clustering algorithms attempted to identify undirected relations be-

tween genes, while in other bio-network inference problems, we are interested in

identifying directed relations between objects. The bio-network discovery prob-

lems I have been investigated, have been in the areas of genetic regulatory networks,

drug-target networks, and metabolite networks. In the genetic regulatory network

problem, we want to recover the directional regulation relation between transcrip-

tion factors (TFs) and regulated genes; in the drug-target network problem, we want

to recover the directional drug-target binding relations. Here I will adopt and ex-

tend some existing methods such as least absolute shrinkage and selection operator

(LASSO) and the feature selection support vector machine (SVM) to address a key

challenge in bio-network discovery, the sparsity/feature selection problem.

3.1 Gene Regulatory Network Inference

Genes play a central role in controlling the function of cells. Rather than acting

individually, genes and their products cooperate with each other in the form of a

dynamic gene regulatory network (GRN). GRNs serve as the blueprints of life. Re-

vealing these complex blueprints is critical to understanding life at a system level

and helps the development of biological understandings, drug design, health care,

etc. One of the key mechanisms of gene regulation takes place at the RNA tran-

scription level. With the emergence and development of high-throughput gene pro-

filing technology and ChIP-on-chip technology, GRN research has been boosted to
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a large extent, but reliable GRNs are still being sought in the research community.

The goal of such research is to discover the causal control relationships between

genes, which would offer a fundamental understanding of how biological processes

are coordinated in the cells.

To model gene regulatory networks from expression data, various computational

approaches have been proposed in the literature during the past decade. Among

these approaches, many use linear models to express dependence between time se-

ries profiles. For example, D’Haeseleer et al. [17] proposed a straightforward linear

model; De Jong et al. [40] and Chen et al. [12] studied linear differential equations

for modeling gene regulatory networks. However, all of these methods suffer from

the risk of over-fitting, since the parameters their models fit are proportional to the

size of the data itself. Other linear approaches took advantage of sparseness of the

regulatory relationships between genes to overcome the risk of over-fitting. These

models employ the idea that any one gene is regulated by only a small subset of

the other genes. De Hoon et al. [32] proposed in the linear system to use Akaike’s

Information Criterion (AIC) to determine the nonzero coefficients. Similarly, Li

and Yang [52] used L1 regularization to select features of the linear parent set.

Learning different forms of (dynamic) Bayesian network structure is another

popular approach in gene regulatory network structure inference. Bayesian net-

works are graphical representations of the causal relationships of a set of variables.

A Bayesian network provides a well formed probabilistic framework for represent-

ing and inferring probabilistic relationships. Dynamic Bayesian networks are ex-

tension of standard Bayesian network models to represent time-series. Generally,

there are two approaches in learning the structure of a Bayesian network from data.

The first approach is a score-based approach where a heuristic search is performed

through the space of causal network structures to identify the most likely structure

explaining the data. The second approach is a constraint-based approach where

conditional independence tests are used to determine whether a direct causal rela-

tionship should be postulated between two variables. In the literature, many vari-

ants of these techniques have been applied to gene regulatory network inference,

including search-based approaches [29, 94, 86], information-theoretic approaches
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[13], parameterizing based approaches [70], and conventional dynamic Bayesian

network learning approaches [4, 99].

The above approaches have achieved some promising results, but their effec-

tiveness is severely constrained by the fundamental limitation of the amount of data

available relative to the large number of parameters estimated (e.g. distinct param-

eters used to predict the expression level of each gene given other genes). This

difficulty is inherent to the task because of lacking background knowledge and bi-

ologically relevant assumptions. More expression data of orders of magnitude is

required for naive estimation approaches.

Nearly all proposed approaches using either linear modeling or Bayesian net-

work structure learning have one common shortcoming that they attempt to deter-

mine the regulation structure for each target gene independently, while it is well

known that genes that share the same expression pattern are likely to be involved in

the same regulatory process, and therefore share the same (or at least a similar) set

of regulators [17]. Although a few investigators, such as van Someren et al. (2000),

have previously proposed to group genes with similar expression profiles into a sin-

gle prototypical ”gene”, and then model the relations between prototypical genes

instead of modeling the genes individually. This is a somewhat oversimplified ap-

proach that ultimately ignores the individual differences between genes in the same

group, and puts a particular high requirement on the clustering step. Guo et al. [26]

tried to employ biologically significant knowledge about co-regulation to improve

the inference of the underlying gene regulatory network from expression data, by

proposing a novel approach for predicting the regulators for a given group of genes

with similar mRNA expression patterns. They implemented this intention by min-

imizing a globally shared regularized prediction risk that encourages similar genes

to share regulators. The novelty of the approach is to first cluster the genes based on

their time series expression profiles, and then minimize a loss determined on a set

of global indicator variables associated with the common set of possible regulatory

variables. The performance of this approach on both synthetic data and the cell

cycle time-series gene expression data of [16] was quite promising that important

transcription factors (TFs) in the cell cycle genes were identified more accurately.
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In this work, I extend this previous work [26] in four aspects: 1) kernelize the orig-

inal linear models, 2) use cubic spline interpolation and clustering information to

more accurately address the time lag problem, 3) take the within-cluster gene com-

petition effects into account, and 4) use cross entropy loss as an alternative to the

L2 norm loss in the objective function.

3.1.1 Method

The core of this work is to use the kernel model instead of the linear regression

model to implicitly consider the non-linear relations among transcription factors so

that more accurate TF-gene causal relations can be discovered. The previous linear

model approaches implicitly admit that multiple transcription factors cooperate but

independently regulate target genes. This is not true in cases when multiple tran-

scription factors in the form of single protein complexes regulate target genes. I

therefore propose to kernelize the linear model to map the independent linear rela-

tions between transcription factors to more complex relations in high dimensional

spaces. To derive a good kernel model, three other approaches are adopted: first,

use cubic spline interpolation and gene clustering information to address the TF-

gene time lag problem; two, take the within-cluster gene competition into account;

three, use cross entropy loss as an alternative to the L2 norm loss in the objective

function. This work was published in [73].

The linear model and its kernelization. I first re-introduce the linear models

described in the previous work [26]. Consider an n× t matrix Y of time series gene

expression data, where each column corresponds to the expression levels of a single

gene measured over a series of n time points, and each row corresponds to a single

time point measured over a set of t. For each gene, I want to identify which other

genes measured in Y are likely to be it regulators. The fundamental hypothesis

here is that the expression levels of a regulator gene should be predictive of the

expression levels for a regulated target gene, possibly subject to time lag and the

presence of co-regulators or absence of inhibitors. The simplest linear prediction

approach assumes for a target expression profile yj given by an n×1 column vector

from Y , I have a set of candidate regulator profiles stored in an n × k matrix Xj
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consisting of k distinct columns selected from Y . The potential regulators can be

determined by solving for the combination weights of the regulator profiles that

best reconstruct the target profile

min
wj

∥Xjwj − yj∥22, (3.1)

where the k × 1 vector of combination weights wj describes how much each of the

k regulator genes in Xj contribute to best fit the target expression levels yj , and the

quality of the fit can be assessed by the residual error in (3.1).

Because the set of candidate regulators for a given gene is usually much larger

than the number of time points, a large set of combination weights wj need to

be inferred from a limited amount of data. Moreover, only a tiny fraction of the

candidate regulators are expected to be true regulators for any given gene, which

means most of the weights should be set to 0 to indicate non-regulation. Therefore,

I use the L1 norm regularization (rather than the traditional L2 norm) to perform

feature selection, which is well known in machine learning literature [61, 77, 26] for

its effectiveness. In this approach, one adds a penalty to the risk (the reconstruction

objective) which encourages small values for wj :

min
wj

∥Xwj − yj∥22 + α∥wj∥1, (3.2)

where α is a parameter that trades off the influence of the risk with the regular-

izer. The regularizer encourages many of the weights to become exactly zero in the

solution.

Considering that genes with similar expression patterns are likely co-regulated

and involved in the same functional process, I proposed to first cluster the target

genes based on their expression profiles. (A straightforward K-means method is

implemented in our case.) Then, for each cluster, I want to identify a set of regula-

tors that is shared among the entire set of genes in the cluster, while still allowing for

differences among the regulation of individual genes. Similar to [25], I introduced

a set of auxiliary indicator variables to control global feature selection, and used

a global regularization scheme on auxiliary selection variables to help identify the
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common candidate regulators among a group of target genes with similar expres-

sion profiles. Given that there is much more data available for sets of similar genes,

as opposed to individual genes, I hope that the common regulators can be more

accurately identified. Specifically, for a set of target genes Y = y1, ...,ym, I want

to identify a common set of regulators from the set of candidates X = x1, ...,xl.

Define a set of indicator variables η = η1, ..., ηl
T , corresponding to the candidate

set X = x1, ...,xl, such that each ηi ∈ {0, 1} indicates whether a regulator Xi is

selected as an active regulator. Let N = diag(η). Then, I can form a globally regu-

larized version of the minimization problem by introducing the selection variables

η and adding a new global regularization term on these variables:

min
η∈{0,1}n

min
wj

∑
j

(∥XNwj − ỹj∥22 + α∥wj∥1) + λuTη (3.3)

where u is a positive weight vector that allows one to incorporate prior knowledge

about the importance of each global feature (which is simply set to 1’s in our ex-

periments). The global regularization term λuTη is an L0 norm regularizer that

automatically forces a sparse solution that selects only a small set of global features

for the set of target genes in a cluster. The local L1 norm regularizer α∥wj∥, how-

ever, will still make individual choices of regulators for each target gene; choosing

these regulators from the globally selected features identified by η.

The linear models in (3.1) - (3.3) assume that if a target gene (or a set of target

genes) has multiple regulators, each regulator can independently regulate the target

genes and their overall regulation effect is a weighted addition of their individual

effects. This is not true in cases where different transcription factors need to form

a single protein complex and possibly cooperate with other such protein complexes

to regulate the target genes. Interpreted in another way, this means that the linear

models only consider the so called OR gates regulation, while in real cases, the reg-

ulation rules are likely obey the so-called canalyzing rules [43, 62, 65, 44], which

are combinations of OR gates and AND gates. It immediately follows that one needs

to consider more complex relations between transcription factors than the existing

linear models. However, to enumerate all the canalyzing rules over OR gates and

AND gates is computationally impractical, therefore, I propose to kernelize the lin-
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ear model to map the independent linear relations between transcription factors to

more complex relations in high dimensional space. I hope the kernelized model can

avoid the problem of enumerating all the canalyzing regulations and can discover

the non-linear relations between transcription factors to better construct the target

gene profile and more accurately infer the TF-gene causal relations.

To kernelize the L2 norm term in (3.3), let wj = NXTbj . To kernelized the L1

norm term, I consider the trick proposed in [57] as follows:

∥wj∥1 =
k∑

p=1

|wp| = min
γ≥0

1

2

k∑
p=1

w2
p

γp
+ γp (3.4)

Substitution wj into (3.4), we get:

min
η∈{0,1}n

min
bj

min
γj≥0

∑
j

∥XNNTXTbj − ỹj∥22

+ α
∑
j

(
1

2
bT
j XN △ (γj)

−1NTXTbj + γT
j 1)

+ uTη

(3.5)

Let Ψ = XN and Ψ̃ = XN △ (γj)
−1/2, (3.5) can be written as:

min
η∈{0,1}n

min
bj

min
γj≥0

∑
j

∥ΨΨTbj − ỹj∥22

+ α
∑
j

(
1

2
bT
j Ψ̃Ψ̃Tbj + γT

j 1) + uTη
(3.6)

Let K = ΨΨT and K̃ = Ψ̃Ψ̃T , so that each element Kij in matrix K is the inner

product of the i’th and j’th row of Ψ, namely Kij = Ψi:Ψ
T
j:. Similarly, K̃ij =

Ψ̃i:Ψ̃
T
j:. Because K and K̃ are both symmetric and positive semi-definite, according

to the Mercer’s theorem, K and K̃ can be expressed as dot products in a high

dimensional space. In our case, I use the widely adopted RBF kernel in whichKij =

e
−∥Ψi:−Ψj:∥

2

2σ2 , and similarly, K̃ij = e
−∥Ψ̃i:−Ψ̃j:∥

2

2σ2 . Substituting the two RBF kernel

matrices into model (3.6), we get its kernelized version:

min
η∈{0,1}n

min
bj

min
γj≥0

∑
j

∥Kbj − ỹj∥22

+ α
∑
j

(
1

2
bT
j K̃bj + γT

j 1) + uTη
(3.7)
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The feature selection parameter now becomes γj (not wj), where γj = 0 indi-

cates the corresponding regulator is not selected by the target gene. Equation (3.7)

encodes a min-min-min integer optimization problem. Unfortunately, integer op-

timization problems of this form are generally NP-hard. To attempt to solve the

problem efficiently, I first relax it into an optimization over continuous variables,

by relaxing each ηi ∈ {0, 1} to be continuous ηi ∈ [0, 1]. This leads to solve the

following relaxed min-min-min optimization:

min
η

min
bj

min
γj≥0

∑
j

∥Kbj − ỹj∥22

+ α
∑
j

(
1

2
bT
j K̃bj + γT

j 1) + uTη

s.t. 0 ≤ η ≤ 1.

(3.8)

This formulation has actually relaxed the original L0 norm regularizer over η into a

L1 norm regularizer. In this way we maintain feature selection ability, while gaining

computational efficiency.

In our implementation, I use two alternating steps: minw and minη for solving

(3.3). Each minw step is simply a minimization of least squares regression error

with L1 norm regularization, which can be implemented as a quadratic program

[8], or by using a fast grafting algorithm [77]. For the minη step, I use a quasi-

Newton BFGS method to perform the optimization [6]. For (3.8), because it is

not obvious how to calculate the gradients of ηj and bj , I simply use the Matlab

optimization toolbox fmincon to solve the problem.

Addressing time lags. Notice that neither of the above models account for

any time lag between the expression of a regulating gene and the expression of its

downstream target. In fact, they implicitly assumes that regulation occurs instanta-

neously, and would performs poorly at identifying any regulatory relationship that

exhibits delayed effects. To cope with this shortcoming, I previously proposed a

simple time-shifting method, in which, for each candidate regulator measured in

Xj , given by an n × 1 vector xij , I first computed an optimal shift back in time

that best aligns xij individually with the target yj .

s∗ij = arg min
s∈{1,2,3}

∥xij(1, ..., n− s)− yj(s+ 1, ..., n)∥22 (3.9)
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Repeating this for each candidate regulator profile in Xj yields a series of optimal

time lags. I then reformulated the expression matrix Xj for the candidate regula-

tors by applying the optimal shift to each column, and truncating the columns to a

common length based on the maximum shift, obtaining an (n− smax × k) time-lag

aligned matrix Φj . The target expression profile yj was then also truncated to a

corresponding (n− smax × 1) vector ỹj , where ỹj = yj(smax, ..., n).

The above approach has two major problems. First, it is unlikely that the practi-

cal time lag is exactly an integer number of time period, but happen anytime within

a time period. Second, because each transcription factor may regulate multiple tar-

get genes, it is more correct to consider the time lag between a TF and its whole set

of target genes rather than a single gene. The time lag between a TF and its whole

set of target genes can then be used as the time lag between the TF and each single

genes in the target set. Considering there is always noise in microarray data, the

TF-Gene set time lag is more meaningful. In practice, I first cluster the gene in dif-

ferent groups, then use cubic spline interpolation to represent all the gene profiles

in continuous cubic polynomial functions. The optimal time lag between a TF xij

and a target gene yj is then:

s∗ij = argmin
s

∫ n−s

s+1

∑
p∈j′scluster

|f(xij)− f(yjp)| (3.10)

where s can be arbitrarily small time step (I use 1/10 of the original time period). I

then use the same procedure to construct Φj for each target gene yj with time point

dense n inverse proportional to s.

Gene competition. To the best of our knowledge, when investigating the TF-

gene regulations, almost all the previous researches focus on the TF-gene relations

only, while the potential competition effects among genes that share the common

set of TFs are neglected. For example, if gene y1 and gene y2 are co-activated by a

common set of transcription factors X1, the expression profile of gene y1 may not

only depends on the expression profiles of X1, rather, the expression profile of y2

may play a negative role in constructing the expression profile of y1 in this case.

I therefore take this gene competition effect into account in our linear model (3.3)

since it is no obvious how to adopt this idea in the kernelized model.
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Specifically, consider (3.3), for a cluster of k genes, its corresponding weights

W is a l × k matrix, where each column weight vector indicates how much one of

the k genes select the l candidate regulators, and each row weight vector indicates

how much a regulator is selected by the genes. To consider the gene competition

effect, I can force the sum of each row vector of W to be smaller than a given

threshold. To determine the exact values of these thresholds requires prior knowl-

edge or some learning algorithms in the future, I simple set them to be all 1’s in our

implementation for a primary test.

Cross entropy loss. So far, the above linear model and kernel model all use L2

norm loss. In our implementation, I also tried the cross entropy loss in our kernel

model, as it is commonly used as an alternative to the L2 norm. For an observed

vector y and an estimated vector ŷ, the cross entropy loss is defined as:

lossCrsEtp(y, ŷ) = −
∑
i

yi ln ŷ
′
i − (1− yi) ln (1− ŷ′i)

where ŷ′i =
1

1+e−ŷi
.

3.1.2 Experimental Results

I conducted experiments on real cell cycle data to evaluate our approach. In partic-

ular, I compared our kernel method (both L2 loss and cross entropy loss) to global

regularization approach (with and without gene competition effect), the standard

independent local predication approach, and a prototype based linear regression

method adapted from [80]. I applied the methods to inferring the structure of the

regulatory network of the yeast cell cycle. In our experiments, I assumed all tran-

scription regulations work through activators, instead of inhibitors; that is, I as-

sumed the w parameters are nonnegative in the linear regressions.

Yeast contains more than 6000 genes, while only a subset of these genes are cell

cycle regulated. It is known there are 9 important transcription factors (TFs) that

regulate the cell cycle process [76], namely: SWI4, SWI6, MPB1, FKH1, FKH2,

NDD1, MCM1, ACE2 and SWI5. Because many gene regulatory relationships

in Yeast have already been identified, it is commonly used to evaluate learning ap-

proaches that attempt to infer gene regulatory networks from data. Here I use Cho et
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al.’s data [16], and focus on the task of identifying the subset of regulators from the

9 candidate TFs, for each yeast gene that is cell cycle regulated. I choose a subset

of 267 cell cycle regulated genes from the Cho et al. data [16] to clearly evalu-

ate our approach, while I could obtain confirmed regulatory relationships from the

previous literature [76, 37], or could obtain potential regulation relationships from

existing binding data [76] for 127 genes among them. I re-scaled the expression

data to values between 0 and 1, and then clustered the genes into 15 clusters using

K-means. (In the images shown in Figure 3.1 and 3.2, the genes are grouped verti-

cally into the clusters. The number of clusters is chosen by using visual judgment to

achieve a smooth clustering effect.) Finally, I tested our algorithms on each cluster.

After obtaining the w parameters from each algorithm, all the parents indicated by

w > 10−5 are determined as predicted regulators for the corresponding genes. For

a fair comparison, the regularization parameters (α and λ) were chosen to yield the

highest F-measure values in each case. Since the regulatory mechanisms are still

not known for a portion of the 267 genes, I therefore can only evaluate the results

over the 127 genes for which regulatory relationships are presumed known.

Figure 3.1 and Figure 3.2 show the prediction results on 127 genes for all the six

algorithms with and without applying the cubic spline interpolation for the time lag

problem respectively: locally regularized prediction, prototype based prediction,

globally regularized prediction without considering the within-cluster gene com-

petition effects, globally regularized prediction considering the within-cluster gene

competition effects, the kernel model prediction, and the kernel model prediction

with cross entropy loss. The images compare the performance of the six methods on

inferring regulators from among the 9 candidate TFs, and shows how they related

to the known TF-based regulatory relationships.

Table 3.1: Results after applying cubic spline interpolation.
Performance Local Prototype Global Global Kernel Kernel
comparison (no compete) (compete) (CE loss)
Accuracy(%) 59.9 55.7 68.3 70.6 66.9 54.1
Precision(%) 22.1 20.6 26.9 28.3 31.4 25.4

Recall(%) 42.5 45.2 37.1 33.9 60.2 71.0
F-measure 29.1 28.3 31.2 30.9 41.3 37.4
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Figure 3.1: Results after applying the cubic spline interpolation for regulation time
lag problem on the subset of the real gene expression data from [16], restricted to
genes where TF-based regulation information is known or can be inferred from
other sources [76, 37]. Rows denote target genes in the synthetic experiment.
Columns denote candidate regulators (transcription factors). A white cell denotes a
large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear
model, indicating that j is inferred to regulate i. A black cell denotes a small weight
(wij ≤ 10−5), indicating that j is not inferred to regulate i. Column 1: local predic-
tion output. Column 2: prototype prediction output. Column 3: global prediction
without gene competition output. Column 4: global prediction with gene com-
petition output. Column 5: Kernel method prediction. Column 6: Kernel method
prediction with cross entropy loss. Column 6: ground truth regulatory relationships.
Column 7: expression level data used as input.

Table 3.2: Results without applying cubic spline interpolation.
Performance Local Prototype Global Global Kernel Kernel
comparison (no compete) (compete) (CE loss)
Accuracy(%) 57.5 55.0 67.7 67.6 49.7 54.6
Precision(%) 22.1 20.9 29.7 29.2 25.1 22.2

Recall(%) 47.5 47.5 48.9 47.5 81.0 53.8
F-measure 30.2 29.0 36.9 36.2 38.4 31.4
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Figure 3.2: Results without applying the cubic spline interpolation for regulation
time lag problem on the subset of the real gene expression data from [16], re-
stricted to genes where TF-based regulation information is known or can be inferred
from other sources [76, 37]. Rows denote target genes in the synthetic experiment.
Columns denote candidate regulators (transcription factors). A white cell denotes a
large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear
model, indicating that j is inferred to regulate i. A black cell denotes a small weight
(wij ≤ 10−5), indicating that j is not inferred to regulate i. Column 1: local predic-
tion output. Column 2: prototype prediction output. Column 3: global prediction
without gene competition output. Column 4: global prediction with gene com-
petition output. Column 5: Kernel method prediction. Column 6: Kernel method
prediction with cross entropy loss. Column 6: ground truth regulatory relationships.
Column 7: expression level data used as input.
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Table 3.1 and Table 3.2 compare the performance of the six algorithms with

and without applying the cubic spline interpolation for the time lag problem. The

precision score measures true positive predictions (tp) divided by true positives plus

false positive predictions (fp). That is, precision = tp/(tp+ fp). Similarly, recall

score is measured in terms of the number of false negative predictions (fn), and

is given by recall = tp/(tp + fn). F-measure is a standard combination of both

precision (p) and recall (r), given by F −measure = 2pr/(p + r). The accuracy

score measures the proportion of the correct predictions. That is, accuracy = (tp+

tn)/(tp+ tn+ fp+ fn).

These results show that the kernel approaches improve the quality of the reg-

ulation relation inference in general. The globally regularized approaches has the

ability to share regulatory information between genes within a cluster, leading to

better noise robustness than the local approach. The kernel approaches outperform

the globally regularized approaches in terms of precision, recall and F-measure in

Table 3.1. For example, in Figure 1, in the group of genes indexed between 20-50,

one can see that a large set of TFs that were not picked out by any other approaches

are picked out by the kernel approach (Column 5). Considering the effect of within-

cluster gene competition does not lead to significant improvement in our case. But

with appropriate upper bound threshold setting and applied in the kernel methods,

I believe it would contribute to better prediction performance. The idea of using

cubic spline interpolation to better address the time lag problem works pretty well

as the overall performance of all the methods are improved.

Although some local errors remain in this region (and elsewhere), clearly the

overall quality of the parent prediction has been improved substantially in the kernel

method. Overall, the prediction quality achieved by these methods on this data is

still somewhat limited, but has improved significantly over the past few years, and

in some sense is remarkable given the noise exhibited in the expression profiles.

3.1.3 Discussion

I have proposed a new kernelized version of globally regularized risk minimiza-

tion objective for learning regulatory networks from gene expression data. Ex-
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ploiting the assumption that genes with similar expression patterns are likely to

be co-regulated, our approach first clusters the genes, then learns the regulatory

relationships by encouraging genes with similar expression patterns to share reg-

ulators. Considering in real cases, the TF-gene regulation rules likely obey the

so-called canalyzing rules [43, 62, 65, 44], I proposed to kernelize the linear model

to map the independent linear relations between transcription factors to more com-

plex relations in high dimensional space. I conjecture that the kernelized model can

avoid the problem of enumerating all the canalyzing regulations and can discover

the non-linear relations between transcription factors to better construct the target

gene profile and more accurately infer the TF-gene causal relations. To address the

regulation time lag problem, I proposed to use cubic spline interpolation to rep-

resent the discrete gene profiles to continuous profiles and look for the potential

time lag between transcription factor and a set of similar genes instead of a single

gene. This makes the time lag searching more robust to noise. I also considered

the within-cluster gene competition effect that is neglected by most GRN inference

methods in the literature.

Our experimental results on yeast cell cycle data show that the kernel approach

is more effective at identifying important (transcription factor based) regulatory

mechanisms than the standard independent approach, the prototype based approach,

and the globally regularized approach. Thus far, I have only considered using gene

expression data in the learning process. Further prediction improvements are likely

to come from incorporating further sources of biologically relevant data, such as

the within-cluster gene competition mRNA upper bound, binding information [76],

or other forms of prior knowledge beyond the co-regulation assumption made here.

Moreover, as an effective strategy, the kernel method combined with the L1 norm

feature selection might be extended to resolve other similar problems in bioinfor-

matics area and other research areas.
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3.2 Drug-target Network Inference

Proteins operate in highly interconnected networks (“interactome networks”) that

play a central role in governing cell function. If a protein’s conformation is changed,

its function can be altered—affecting cell function. Chemical drugs are small

molecules that bind to target proteins and change protein conformation, which can

ultimately achieve treatment effects. That is, the function of many classes of phar-

maceutically useful protein targets, such as enzymes, ion channels, G protein cou-

pled receptors (GPCRs), and nuclear receptors, can be modulated by ligand in-

teraction. Identifying interaction between compounds (drugs, ligands, molecules)

and proteins (targets) is therefore a key aspect of genomic drug discovery. Vari-

ous high-throughput technologies for analyzing the genome, the transcriptome, and

the proteome have enhanced our understanding of the spaces populated by protein

classes. Meanwhile, the development of high-throughput screening technology has

enabled broader exploration of the space of chemical compounds [18, 42, 81]. The

goal of the chemical genomics research is to identify potentially useful compounds,

such as imaging probes and drug leads, by relating the chemical to the genomic

spaces. Unfortunately, our understanding of the relationship between the chemi-

cal and genomic spaces remains insufficient. Consider, for example, the PubChem

database at NCBI [88], which records information on millions of chemical com-

pounds, yet the number of compounds with known target proteins is limited. The

lack of documented protein-chemical interactions suggests that many remain to be

discovered, which motivates the need for improved methods for inferring potential

drug-target interactions automatically and efficiently.

By elucidating the interaction between proteins and drug molecules, 3D-structure

based ”docking analysis” has been the principle method used in drug discovery

[39, 59, 75]. In this approach, drug-protein binding affinities are modeled by non-

covalent intermolecular interactions, such as hydrogen bonding, electrostatic in-

teractions, hydrophobic and Van der Waals forces. By establishing equations that

model the physical interaction between a receptor and potential ligand, the potential

energy of binding can be calculated. Interaction predictions based on docking anal-
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ysis are relatively reliable, hence many docking software tools have been developed,

such as DOCK [75], GOLD [39], and AutoDock [59]. Nevertheless, experimental

determination of the compound-protein interactions remains challenging [28, 50].

A major disadvantage of these methods is that they require complete 3D structural

information for the target, which is usually unavailable in practice, making docking

analyses infeasible for genome wide application. For example, only one mam-

malian member, bovine rhodopsin [64], is known among the GPCRs (G-protein

coupled receptors), the modulation of which underlies the action of 30% of the best

known commercial drugs [47].

Given the difficulty of experimental determination of compound-protein inter-

action, there is significant motivation to develop effective in silico prediction meth-

ods that can both provide new predictions for experimental verification as well as

supporting evidence for experimental results. To predict compound-protein interac-

tions, various computational approaches have been developed. Although docking

based prediction [14, 67] is most widely used, as in full docking analysis above, it

can only be applied when the complete 3D structure of a protein is already known,

hence it cannot be deployed widely. Keiser et al. [45] propose to use the known

structure of a set of ligands to predict target protein families. However, such predic-

tions do not take advantage of available protein sequence information, and are thus

limited to those between known ligands and different protein families. Campillos

et al. [10] propose to predict drug-target interaction based on similarities to side-

effects of known drugs. Some predictions of this approach have been verified by

in vitro binding assays, but the approach remains limited to predictions involving

drugs with known side-effects. Yamanishi et al. [91] have investigated the rela-

tionship between drug chemical structure, target protein sequence, and drug-target

network topology, and developed a regression-based learning method for predict-

ing unknown drug-target interactions. In particular, they integrate chemical and

genomic spaces in a unified space (referred to as the “pharmacological space”)

wherein chemical-chemical, protein-protein, and chemical-protein similarities can

be modeled.

Most recently, classification methods have been widely adopted in drug-target
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prediction [60, 38, 7]. These methods are based on first inducing similarities be-

tween targets and/or drugs, then using these similarities to provide kernel matrices

for classification methods, such as support vector machines (SVMs), which can

provide predictions for novel drug-target interactions. Such classification methods

have been developed from both the drug and the target perspective. For drug-side

prediction, drug-drug similarities are first obtained, based on structural or phar-

macological information and a known bipartite drug-target interaction graph. This

information is then used to predict whether a new drug with known structural or

pharmacological information interacts with one of the known target proteins. For

target-side prediction, target-target similarities are first obtained, based for exam-

ple on using the normalized Smith-Waterman score [78] to measure the similarity

of two amino acid sequences [91, 7, 92]. This information is then used to pre-

dict whether a new target with known similarity to existing targets interacts with

one of the known drugs. In this work, we focus on target-side prediction, since

this approach can be applied to predicting drug interaction for newly discovered

proteins—e.g., proteins for which only sequence information is available. How-

ever, when generalizing drug-target predictions from known to newly discovered

proteins, we note that overall sequence similarities between proteins masks impor-

tant interaction information: since drugs are usually much smaller molecules than

proteins, drug-target binding sites must comprise only small local regions of the

protein. With this in mind, instead of using an overall sequence similarity between

proteins, we first attempt to identify key local binding regions from common sub-

sequences of proteins that interact with the same drug. These key subsequences

are then used to provide a vectorized feature representation for a protein sequence

that can be used in the training and testing phases of a classification method (below

we focus on support vector machine classifiers). We believe that using key subse-

quences (i.e. potential binding regions) as features for the target proteins is a more

direct and meaningful representation for drug interaction prediction than previous

methods. An additional advantage of using an explicit vector representation of tar-

gets, as opposed to assessing similarity based on Smith-Waterman score as above,

is that these vectors can be implicitly mapped into higher dimensional spaces, thus
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increasing the effectiveness of a kernel-based prediction method. This work was

published in [90].

3.2.1 Method

Target Vectorization Our framework for solving the classification problem is sim-

ilar to Bleakley et al.’s approach [7]. There, the similarity between a pair of target

sequence is calculated based on the normalized Smith-Waterman algorithm [78]:

SWnorm(t, t
′) = SW (t,t′)√

SW (t,t)
√

SW (t′,t′)
, (3.11)

where t and t′ are two sequences and SW (·, ·) denotes the original Smith-Waterman

score [7]. Since the normalized Smith-Waterman algorithm is based on a local se-

quence alignment and only calculates the similarity based on the most similar se-

quence piece, such an approach might not include the key sequence regions that

interact with the drug compound. (Recall that drugs are small compounds and gen-

erally only interact with a few amino acids.) Our approach overcomes this draw-

back by considering all (long) common substrings between a sequence pair, and

computes their similarity based on these feature substrings.

In detail, suppose we are given a new target sequence and a training data set

consisting of m drugs and n targets, with the corresponding drug-target interaction

information, drug 3D structures, and amino acid sequences. The aim is to predict

which of the existing drugs in the training set interacts with a new target tc. Similar

to [7], our approach considers one drug at a time. For a drug di, we know the set of

targets (ti1, ti2, ..., tini
) it interacts with. By including/excluding the new target tc,

we obtain two target sets (tc, ti1, ti2, ..., tini
) and (ti1, ti2, ..., tini

) respectively. For

each target set, we calculate the set of pairwise common substrings and recover two

substring sets, the withSS set (si1, si2, ..., sip′) and the withoutSS set (si1, si2, ..., siq′)

from the two target sets respectively. Note that if the active region (i.e., the drug

binding region) of the new target is contained in at least 2 targets that interact with

di, then it will still appear in the withoutSS substring set. However, the withSS

substring set could be more important because it increases the chances that any key

active region is included in the substring sets. Although the withSS set increases
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the number of unimportant substrings to be included in the substring sets, this issue

will be addressed in the automated feature selection model shown below. Because a

substring may appear more than once in the withSS or withoutSS set, and some sub-

strings might be very similar, we cluster the substrings to obtain a reduced withSS

set (si1, si2, ..., sip) and reduced withoutSS set (si1, si2, ..., siq), additionally record-

ing the number of occurrences of each substring. For the withSS set, we vectorize

the training targets and the new coming target tc by computing the match scores

between their full sequences and each substring in the reduced withSS set. For a

target t and a feature substring s, the normalized match score is calculated as:

M(t, s) = L(t,s)·cds∑p
j=1 c

d
si

, (3.12)

where L(·, ·) is length of the longest common substring between the two sequences,

cs is the number of occurrence of substring s, and d is a constant used to increase

the importance of more frequent substrings. In practice we set d = 1 after trying

d = 1, .., 4. Thus, for the normalized match score M(·, ·), if the target contains a

substring that is long and occurs multiple times in the reduced substring feature set,

the score for this feature substring will be high. We then obtain an n × p training

matrix X and a p × 1 testing vector xc, along with the n × 1 binary training label

vector (with 1 indicating the target interacts with the drug and −1 otherwise). The

problem is now formulated as a standard classification problem. After classifying

the new target, 1 will indicate that it interacts with the drug di, and −1 will indicate

otherwise. The same procedure is repeated on the withoutSS substring set.

Classification with Feature Selection In any classification problem, the quality

of features used determines the accuracy of predictions. Here, features correspond

to substrings of target proteins, which comprise potential binding regions between

the proteins and drugs. Thus, selecting good features not only improves classifi-

cation accuracy, but also provides candidate drug-target binding sites for further

investigation.

I first investigated a feature selection SVM model developed based on classic

L2 norm regularized SVM. The primal form of a classic SVM problem can be
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formulated as follows:
min
w

β1

2
wTw + 1T ξ,

s.t. : ξ ≥ 1−△(y)Xw,
ξ ≥ 0.

(3.13)

Its dual form is:

max
λ

λT1− 1

2β1

λT△(y)XXT△(y)λ,

s.t. : 0 ≤ λ ≤ 1.
(3.14)

Similar to [51], I introduce the feature selection vector γ ≥ 0 and letting X̃ =

X△(γ)1/2. Let K̃ = X̃X̃T = X△(γ)XT =
∑

j γjX:jX
T
:j =

∑
j γjKj , we get:

min
γ≥0

max
0≤λ≤1

λT1− 1

2β1

λT△(y)(
∑
j

γjKj)△(y)λ+ β21
Tγ, (3.15)

Equation (3.15) can be reformulated and solved in the three approaches, i.e.,

semi-definite programming, quadratic constraint linear programming (QCLP), and

generic constraint generation, described in Appendix D. After implementation and

testing, we found none of these three approaches are either effective or efficient.

The inefficiency of the three approaches is due to the nature of the three approaches

and time spent on training two induced parameters β1 and β2. The ineffectiveness is

due to the lack of kernelization that are usually adopted in classic SVM classifiers.

To circumvent these disadvantages, we then investigated an approach that integrates

feature selection in L1-norm based support vector machine (SVM) classification

method.

The primal form of L1-norm SVM is:

min
w,b,ξ

β∥w∥1 + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − 1b),
ξ ≥ 0.

(3.16)

Here X ∈ Rn×p, y ∈ Rn, n is the number of data points, and p is the number of

features. The value of β affects the sparsity level of w and if prior knowledge is

available, an appropriate β can be chosen beforehand. Since

∥w∥1 = min
γ≥0

1

2

∑
j

(
w2

j

γj
+ γj) = min

γ≥0

1

2
(wTG−1w + γT1) (3.17)

[57], where G = △(γ), (3.16) becomes
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min
w,b,ξ,γ

β

2
(wTG−1w + γT1) + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − 1b),
ξ ≥ 0, γ ≥ 0.

(3.18)

By introducing Lagrangian multipliers λ ≥ 0 and µ ≥ 0, (3.18) becomes

min
w,b,ξ,γ

max
λ,µ

β

2
(wTG−1w + γT1) + 1T ξ

+λT (1−△(y)(Xw − 1b)− ξ)− µT ξ
s.t. : λ ≥ 0, µ ≥ 0.

(3.19)

Let the objective function of (3.19) be L1, and let ∂L1

∂γ
= 0, we get λ = 1 − µ.

Therefore, since µ ≥ 0, we conclude that λ ≤ 1, hence 0 ≤ λ ≤ 1. By substitution,

(3.19) becomes

min
w,b,γ

max
λ

β

2
(wTG−1w + γT1) + λT1

−λT△(y)Xw + λT△(y)1b
s.t. : 0 ≤ λ ≤ 1.

(3.20)

Let the objective function of (3.20) be L2, and let ∂L2

∂b
= 0. We get λTy = 0, so

(3.20) becomes

min
w,γ

max
λ

β

2
(wTG−1w + γT1) + λT1− λT△(y)Xw

s.t. : 0 ≤ λ ≤ 1,
λTy = 0.

(3.21)

Let the objective function of (3.21) be L3, and let ∂L3

∂w
= 0, we get βG−1w −

XT△(y)λ = 0, so that w = 1
β
GXT△(y)λ. By substitution, (3.21) becomes

min
γ

max
λ

λT1− 1

2β
λT△(y)XGXT△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,
λTy = 0,
γ ≥ 0.

(3.22)

Note that γ is the feature selection vector. Crucially, this problem is convex in

µ and has no local minima [51], hence it provides an optimal form of feature se-

lection that can be efficiently obtained in conjunction with SVM training. Because

a drug may bind to different regions of different proteins, i.e., different regions on
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different targets can bind to the same drug, each positive data points may corre-

spond to a different set of important features (substrings). Therefore, the nature of

this drug-target classification problem is essentially a multi-instance classification

problem. To address this, we consider two tricks: (a) Use a radial basis function

(RBF) kernel (Gaussian kernel), rather than a linear kernel since this addresses the

multi-instance classification problem more effectively after mapping data points to

an implicit infinite dimensional space. After Gaussian kernelization, the original

linear kernel matrix K = XGXT becomes K ′
ij = e

−1
2σ2 (xi−xj)△(γ)(xi−xj)

T

. (b) Be-

cause each positive data point may correspond to a unique set of important features,

in principle, N+ number of positive γ vectors and one negative γ vector should be

considered where N+ is the number of positive data points in the training set. So

we get K ′′
ij = e

−1

2σ2 ∥xi.∗γi−xj.∗γj∥2 , ∀i, j, where γi = γ+
i if yi = +1, and γi = γ−

if yi = −1 (same for γj). Trick (a) can be easily applied on (3.22) although it

may damage its convexity, while applying (b) into (3.22) will introduce too many

extra coefficients, corresponding to each γ+
i and make the model computationally

expensive. To circumvent this, we introduce a feature cost vector c ∈ Rp, where

cj =
1
n

∑
i aij , aij = 1 if xij ≥ y′i − ϵ and aij = 0 if xij < y′i − ϵ, where ϵ is a small

value. Note that for computing c, each column of X will be normalized to to [0,1],

and y′i = 0 if yi = −1. The intuition of introducing c is to penalize the features that

are false positive indicator of binding, which is exactly the case in multi-instance

learning where true positive indicators is not so much concerned while false posi-

tive needs to be strictly controlled. Therefore, we use X̃ = X ·△(1−c) in (3.22) to

encourage features that are less false positive indicators to be selected, which yields

min
γ

max
λ

λT1− 1

2β
λT△(y)K ′△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,
λTy = 0,
γ ≥ 0,

(3.23)

where here K ′
ij = e

−1
2σ2 (x̃i−x̃j)△(γ)(x̃i−x̃j)

T

.

We solve (3.23) using a combination of LBFGS and gradient decent method

over γ. After optimization, we get solutions for γ and λ, where a γj > ϵ indicates

the j’s features should be selected and otherwise not. λ is used to construct the
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hyperplane in the SVM and predict new data points. So for a testing data point x′,

we have ŷ′ =
∑

i λiyiK(x̃i△(γ), x̃′△(γ))−b (by removing the constraint λTy = 0,

b = 0). As a key step for solving (3.23), we demonstrate the derivation of the partial

derivatives with respect to γ. Let the objective function of (3.23) be L4, the partial

derivative of L4 with respect to the k’s feature γk is

∂L4

∂γk
=

1

2β

∑
ij

λiλjyiyj
∂K ′

ij

∂γk
+

β

2
,

where
∂K ′

ij

∂γk
= K ′

ij

[−1

2σ2
(x̃ik − x̃jk)

2
]
,

= e
−1

2σ2 (x̃i−x̃j)△(γ)(x̃i−x̃j)
T
[−1

2σ2
(x̃ik − x̃jk)

2
]
.

3.2.2 Experimental Results

Datasets

We used drug-target interaction information from [7], which was collected from

the KEGG BRITE [42], BRENDA [69], SuperTarget [24] and DrugBank [89] databases.

In particular, we used three data sets—nuclear receptors, GPCRS, and ion channel—

which have (54, 223, 210) drugs, (26, 95, 204) targets, and (90, 635, 1476) inter-

actions, respectively. The three data sets used in this dissertation are identical to

the three used in the state of the art study [7], to facilitate a comparison between

the two methods. Since we only focus on target-side prediction, we do not require

any drug structural or pharmacological information to obtain drug-drug similarity

information. The amino acid sequences of the target proteins were obtained from

the KEGG GENES database [42].

Comparison methods

We compare our method to the state of the art method proposed by Bleakley et

al. [7]. In particular, we only focus on target-side prediction of their method to make

the two methods comparable. The framework of the two methods is similar, except

Bleakley et al. use the normalized Smith-Waterman score in (3.11) to evaluate the

similarity between two target sequences. When using an SVM classifier, the target-

target similarity matrix is considered as a kernel matrix for classification, hence the
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kernel matrix is fixed in their method. In addition to the SVM classification method,

we also used the nearest neighbor (NN) classifier for both methods as a baseline.

We refer to Bleakley et al.’s approach as BLM SVM and BLM NN respectively. We

refer to the withSS feature set based L1-SVM (the main model of this chapter), SVM

(the classic L2 norm SVM) and nearest neighbor classification methods as SS L1-

SVM, SS SVM, SS NN FS, and SS NN noFS respectively, where SS NN FS is

the nearest neighbor classification based on the features selected by the SS L1-

SVM method and SS NN FS is the nearest neighbor classification based on all

features.

Classification results We use five measurements to evaluate the quality of drug-

target prediction: Area under the Precision-Recall Curve (AUPR), Area under the

ROC Curve (AUC), F-Measure, Precision, and Recall. Of the five measurements,

AUPR, AUC, and F-Measure are more robust measurements than the others. For

each prediction method, the Precision and Recall scores are obtained at the cutoff

point where F-Measure is maximized. Tables 3.3, 3.4, and 3.5 demonstrate the

effectiveness of the different drug-target prediction methods over the five evaluation

quantities. The training data are selected so that each drug has at least 2 binding

targets (i.e., degree at least 2). Figure 3.5 demonstrate the precision-recall curves

of SS L1-SVM and SS SVM compared to BLM SVM, BLM NN, SS NN FS, and

SS NN noFS on the Nuclear, GPCR, and Ion Channel data sets, respectively.
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Figure 3.3: The precision-recall curves of the four methods SS L1-SVM, SS SVM,
BLM SVM, BLM NN, SS NN FS, SS NN noFS on Nuclear dataset. The results
are based on training data with drug interacting with at least 2 targets.

Table 3.3: Evaluations of classification quality on Nuclear data set. For each pre-
diction method, the Precision and Recall scores are obtained at the cutoff point
where F-Measure is maximized. The results are based on training data with drug
interacting with at least 2 targets.

Performance AUPR AUC FMeasure Precision Recall
comparison
SS L1-SVM 0.8756 0.9512 0.8205 0.8205 0.8205

SS SVM 0.7635 0.9277 0.7111 0.8205 0.6275
BLM SVM 0.6163 0.8034 0.6353 0.7941 0.5294
BLM NN 0.7111 0.8347 0.6916 0.6607 0.7255
SS NN FS 0.6985 0.8680 0.6415 0.5075 0.8718

SS NN noFS 0.6743 0.8459 0.6308 0.5190 0.8039
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Figure 3.4: The precision-recall curves of the four methods SS L1-SVM, SS SVM,
BLM SVM, BLM NN, SS NN FS, SS NN noFS on GPCR dataset. The results
are based on training data with drug interacting with at least 2 targets.

Table 3.4: Evaluations of classification quality on GPCR data set. For each pre-
diction method, the Precision and Recall scores are obtained at the cutoff point
where F-Measure is maximized. The results are based on training data with drug
interacting with at least 2 targets.

Performance AUPR AUC FMeasure Precision Recall
comparison
SS L1-SVM 0.8039 0.9603 0.7840 0.8360 0.7381

SS SVM 0.7720 0.9600 0.7607 0.8013 0.7240
BLM SVM 0.6800 0.9435 0.6812 0.7152 0.6503
BLM NN 0.7287 0.8721 0.7209 0.6842 0.7618
SS NN FS 0.7155 0.8878 0.6997 0.6219 0.7996

SS NN noFS 0.7219 0.8875 0.7081 0.6365 0.7977
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Figure 3.5: The precision-recall curves of the four methods SS L1-SVM, SS SVM,
BLM SVM, BLM NN, SS NN FS, SS NN noFS on Ion dataset. The results are
based on training data with drug interacting with at least 2 targets.

Table 3.5: Evaluations of classification quality on Ion data set. For each prediction
method, the Precision and Recall scores are obtained at the cutoff point where F-
Measure is maximized. The results are based on training data with drug interacting
with at least 2 targets.

Performance AUPR AUC FMeasure Precision Recall
comparison
SS L1-SVM 0.8632 0.9666 0.8205 0.8260 0.8151

SS SVM 0.8450 0.9690 0.8045 0.8173 0.7921
BLM SVM 0.8561 0.9568 0.8088 0.7785 0.8416
BLM NN 0.8226 0.9075 0.8179 0.8101 0.8258
SS NN FS 0.7041 0.8542 0.6954 0.6647 0.7290

SS NN noFS 0.6702 0.8640 0.6497 0.5671 0.7606

Based on these evaluations, one can observe that the withoutSS feature set based

SVM approaches, i.e., SS L1-SVM and SS SVM outperform the others on all three
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datasets, including the current state of the art methods BLM SVM and BLM NN.

Moreover, the L1 norm feature selection method SS L1-SVM is more effective than

the traditional SVM method and it only use 72.85%, 85.02%, and 62.86% numbers

of features our of the original feature sets on Nuclear, GPCRs, and Ion Channels

datasets, respectively. The significant reduction in feature set size cannot only make

the classification more efficient and effective, it can also help one to more accurately

identify important features.

After investigating the prediction results generated by the SS L1-SVM and

BLM SVM methods, at the prediction cutoff where both methods attain their maxi-

mum FMeasure score, we find that there are 8, 127, and 78 true positive interactions

that can be identified by the SS L1-SVM method but cannot be identified by the

BLM SVM method (compared with 7, 16, 52 true positives that can be identified

by the BLM SVM method but cannot be identified by the SS L1-SVM method).

For example, on the Nuclear dataset, according to the normalized Smith-Waterman

scores, the two nearest neighbors of target protein RORB (KEGG Homo sapiens

protein ID ”hsa6096”) are RORA (”hsa6095”) and RORC (”hsa6097”), with scores

0.578 and 0.458 respectively. RORB and RORC share a common interacting drug

Tretinoin (KEGG drug ID ”D00094”) while RORB and RORA do not. Using the

BLM method, when predicting the interactions of target RORB, it is predicted to

have no interaction with Tretinoin, since its nearest neighbor RORA does not inter-

act with Tretinoin. On the contrary, our method can correctly identify the interaction

between RORB and Tretinoin because the withSS feature set based method can dis-

cover two important substrings ”EVVLVRMCRA-N” and ”N-TV-FEGKYGGM”

that exist in both RORB and RORC. Therefore, although the overall match score

between RORB and RORC is not the highest, their scores feature vectors with re-

spect to the two feature substrings are the most similar pair among all the others.

On the GPCR dataset, according to the normalized Smith-Waterman scores, the

5 nearest neighbors of the target protein CHRM1 (KEGG Homo sapiens protein ID

”hsa1128”) are CHRM5 (”hsa1133”), CHRM3 (”hsa1131”), CHRM4 (”hsa1132”),

CHRM2 (”hsa1129”), and HRH3 (”hsa11255”), with scores 0.4707, 0.4536, 0.4237,

0.4228, and 0.2446 respectively. CHRM1 is supposed to bind drug Metoclopramide
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(KEGG drug ID ”D00726”), but none of its 5 nearest neighbors bind to this drug un-

til its 6’th nearest neighbor HRH2 (”hsa3274”) with SWnorm score 0.2137. There-

fore, in the BLM methods, CHRM1 is not predicted to bind Metoclopramide. On

the contrary, our method can correctly predict the interaction between CHRM1

and Metoclopramide because the important substrings ”KRTPRRAA”, ”Y-AKRTP-

RAA-MI-L-W”, ”WL-Y-NS-INP”, ”NYFL-SLA-AD”, and ”PL-YR-K-TP-R-ALM-

G” are present in both CHRM1 and the proteins that binds to Metoclopramide, e.g.,

HTR1A (”hsa3350”), HTR1B (”hsa3351”), HTR1D (”hsa3352”), HTR1E (”hsa3354”),

HTR1F (”hsa3355”), HTR2A (”hsa3356”), HTR2B (”hsa3357”), HTR2C(”hsa3358”),

HTR4(”hsa3360”), HTR5A(”hsa3361”), and HTR6(”hsa3362”), which are all con-

sidered as far away neighbors based on the SWnorm scores. These kind of observa-

tion can be found across all the three datasets.

3.2.3 Discussion

In this section, we proposed a novel drug-target interaction prediction method based

on identifying potential drug-target binding regions. According to the evaluation

metrics, the proposed method significantly outperforms the current state-of-the-art

methods on this task. More importantly, the proposed method can identify a number

of drug-target interactions that were missed by previous methods. We believe that

the poor recall of previous methods is due to the use of a target kernel matrix based

on Smith-Waterman score: a low overall similarity between two protein sequence

sequences does not mean they do not share common drug binding regions. This

drawback is avoided in our approach by collecting a large number of candidate

binding regions (i.e., common substrings) that subsequently play the primary role

in interaction prediction. In addition, the use of an explicit vector representation,

as opposed to implicit similarity measure, enables the easy use of non-linear kernel

expansions that are not possible for fixed kernel methods like BLM.

We presented a feature selection L1-norm SVM based method that can not only

predict the binding relations more accurately, but also find important candidate

binding regions (features). It integrated feature selection directly into an L1-norm

SVM and kernelized the optimization model. A key drawback was that the sparse
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regularization term tended to select only a single feature from the candidate set.

This is a well known problem with L1 based regularization. To avoid this limita-

tion, I will investigate a combination of L1 and L2 norm regularizers, known as the

elastic net [98], which is generally more effective at group feature selection. An-

other possible extension is to adopt the OSCAR model [95], which appears even

more effective (but is also more expensive). We also discovered that the drug-target

interaction inference problem—in some cases—can be considered as multi-instance

learning problem, so we proposed to use multiple feature selection vectors for each

positive training data points in theory and applied the feature cost vector to ad-

dress the multi-instance problem in practice. We hypothesize that more advanced

machine learning methods specifically tailored for multi-instance classification can

further improve the accuracy of drug-target interaction prediction.
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Chapter 4

Conclusion

This thesis has investigated some important problems in the bio-relation discov-

ery (BRD), while pursuing a novel methodology for applying sparse learning op-

timization techniques in these problems, in comparison to some initial heuristic

approaches. The sparse learning methods share a common framework that sparse

regularizers are introduced to select important features, while additionally kernel-

ization may be applied. In particular, I have categorized the BRD area into to sub-

areas, undirected BRD and directed BRD. In undirected BRD, I presented the gene

expression bi-clustering problem and investigated three approaches (two heuristic

approaches and one sparse learning based approach). For directed BRD, I presented

two problems, the genetic regulatory network problem and the drug-target network

inference problem. For both of these problems, sparse learning models are devel-

oped and kenelization approaches are further investigated.

4.1 Summary of Contributions

In Chapter 2, to solve the linear coherent bi-clustering problem, I first proposed two

heuristic approaches, the line detection based LCBD and the beam detection based

LinCoh. LCBD uses the Hough transform [33] technique, that was originally de-

veloped in computer graphics, to find gene pairwise linear coherence while LinCoh

uses beam detection to find gene pairwise linear coherence. In the second step of

LCBD and LinCoh, a sample majority voting and sample set clustering are used re-

spectively to do achieve final bi-clustering. LCBD and LinCoh both identify linear-
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coherent bi-clusters that disclose undirected relations between genes, while LinCoh

is a more practical algorithm on microarray datasets due to data noise. So LinCoh

can serve as another useful tool for microarray data analysis, including bi-clustering

and genetic regulatory network inference. After LCBD and LinCoh, I proposed an-

other novel approach SLLB, that can discover linear coherent bi-clusters based on

a sparse learning optimization model. The time complexity of the SLLB algorithm

is O(n2k) where n is the number of observations and k is the number of itera-

tions that SLLB takes to converge, which is very fast comparing to algorithms like

LinCoh. Note that while discovering linear coherent bi-clusters, SLLB favors data

points corresponding to features that are far away from each other in the observation

pair 2D space; this nice property can be used for downstream data analysis such as

feature clustering, observation-feature relation studies and observation/feature se-

lection.

To address the genetic regulatory network problem in Chapter 3, I proposed

a new kernelized version of globally regularized risk minimization objective for

learning regulatory networks from gene expression data. Exploiting the assumption

that genes with similar expression patterns are likely to be co-regulated, I first clus-

ters the genes, then learn the regulatory relationships by encouraging genes with

similar expression patterns to share regulators. I kernelize the linear model to map

the independent linear relations between transcription factors to more complex re-

lations in high dimensional space, considering in real cases, the TF-gene regulation

rules likely obey the so-called canalyzing rules. I conjecture that the kernelized

model can avoid the problem of enumerating all the canalyzing regulations and can

discover the non-linear relations between transcription factors to better construct

the target gene profile and more accurately infer the TF-gene causal relations. To

address the regulation time lag problem, I proposed to use cubic spline interpola-

tion to represent the discrete gene profiles to continuous profiles and look for the

potential time lag between transcription factor and a set of similar genes instead of

a single gene. This makes the time lag searching more robust to noise. I also con-

sidered the within-cluster gene competition effect that is neglected by most GRN

inference methods in the literature.
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In Chapter 3, I also proposed a novel drug-target interaction prediction method

based on identifying potential drug-target binding regions. Besides its effectiveness

in predicting drug-target interactions, the proposed method can identify a number

of drug-target interactions that were missed by previous methods. It is believed

that the poor recall of previous methods is due to the use of a target kernel matrix

based on Smith-Waterman score: a low overall similarity between two protein se-

quence sequences does not mean they do not share common drug binding regions.

This drawback is avoided in our approach by collecting a large number of candidate

binding regions (i.e., common substrings) that subsequently play the primary role

in interaction prediction. In addition, the use of an explicit vector representation,

as opposed to implicit similarity measure, enables the easy use of non-linear kernel

expansions that are not possible for fixed kernel methods like BLM. The approach

integrates feature selection directly into L1-norm SVM and kernelize the optimiza-

tion model.

The experimental results demonstrate that the sparse learning approach cannot

only infer different types of bio-relations more accurately, but also generate impor-

tant information that reveals the biological reasons that cause the bio-relations.

4.2 Future Research Directions

A disadvantage of LinCoh are its large memory and compute time requirements,

due to constructing the outer and inner sample set matrices. It takes O(n2mp) to

compute the sample set matrices where n is the number of genes and mp is the

number of parameters θ, β and γ. The memory required for storing the matrices is

O(n2ms) where n is the number of genes and ms is the average size of the sample

set elements. It takes weeks and up to 1 Gigabyte memory to run experiments on

the E.coli dataset. Improvements in beam detection and sample set clustering can

also achieve significant speed-ups.

For SLLB, although the two parameters β1 and β2 in our synthetic experiments

are selected in a way that give good results, it is quite robust to different settings.

In both synthetic data and real data experiments, I did not try many β1 β2 settings
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but found the results were all very good under different evaluations. When comes

to practice, considering that β1 actually controls the size of observation and β2 con-

trols the size of features in the result bi-clusters, β1 and β2 can be determined when

prior knowledge of bi-cluster size is known. I suggest that the SLLB algorithm can

be used in other machine learning applications such as image clustering, document

clustering, and other biology and health care data clustering, as long as observations

of the same group have linear coherence under a subset of features, and for different

clusters, different feature sets need to be selected. It may be useful to test SLLB on

other applications such as document bi-clustering and image bi-clustering. Exten-

sions of SLLB that consider other relations between observations in addition to the

linear coherent relations is also worth investigating.

For the GRN problem, further prediction improvements are likely to come from

incorporating further sources of biologically relevant data, such as the within-cluster

gene competition mRNA upper bound, binding information [76], or other forms of

prior knowledge beyond the co-regulation assumption made here. Moreover, as

an effective strategy, the kernel method combined with the L1 norm feature selec-

tion might be extended to resolve other similar problems in bioinformatics area and

other research areas.

For the drug-target interaction inference problem, a key drawback was that the

sparse regularization term tended to select only a single feature from the candidate

set. This is a well known problem with L1 based regularization. To avoid this lim-

itation, one can investigate a combination of L1 and L2 norm regularizers, known

as the elastic net [98], which is generally more effective at group feature selec-

tion. Another possible extension is to adopt the OSCAR model [95], which appears

even more effective. It is also discovered that the drug-target interaction inference

problem—in some cases—can be considered as multi-instance learning problem,

so I propose to use multiple feature selection vectors for each positive training data

points in theory and applied the feature cost vector to address the multi-instance

problem in practice. I conjecture that more advanced machine learning methods

specifically tailored for multi-instance classification can further improve the accu-

racy of drug-target interaction prediction.
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Appendix A

Line Detection based Bi-clustering

A.1 The LCBD Algorithm

Let A(I, J) be an n × m real valued matrix, where I = {1, 2, 3, ..., n} is the set

of genes and J = {1, 2, 3, ...,m} is the set of samples. The element aij of A(I, J)

represents the expression level of gene i under sample j. A row vector A(i, J) and

a column vector A(I, j) represents the ith gene over all the samples and the jth

sample over all the genes, respectively. Our algorithm is composed of three major

steps.

In the first step, for each pair of genes A(p, J) and A(q, J), where p, q ∈

{1, 2, 3, ...n} and p ̸= q, I construct a two-dimension binary matrix that repre-

sents the 2D image of the two vectors with x-coordinates A(p, J) and y-coordinates

A(q, J), respectively. A pixel in the 2D image is denoted by a 1 in the binary ma-

trix. Using the binary matrix as input, I then identify lines in the 2D image based

on the Hough transform. The Hough transform technique works on the following

principle: First note that each point (pixel) in a 2D image can be passed through

by an infinite number of lines, and each of which can be parameterized by r and

θ, where r is the perpendicular distance between the origin and the line and θ is

the angle between the perpendicular line and the x-coordinate. Then note that the

set of lines that pass through a point forms a sinusoidal curve in the r − θ coordi-

nate space. Now, if there is a common line that passes through a set of points in

the original 2D image, their corresponding sinusoidal curves must have a point of

intersection in the r − θ space. So by finding a point of intersection in r − θ space,
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one can identify a line that passes through a set of points in the original 2D space.

Each line in the 2D image is a linear correlation between a pair of genes under a

subset of samples. To allow for possible overlaps in the final bi-clusters, I let the

Hough transform identify at most k non-reduplicative lines. Therefore, for each

pair of genes, one can collect at most k sample sets over which the two genes are

linearly correlated. After collecting sample sets for each gene pair, an n× n upper

trianglular matrix can be obtained, where each element contains at most k sample

sets (see Figure A.1 for illustration). Denote each element in the matrix as Sij . Note

that for each 2D image, the horizontal lines and vertical lines in the 2D image are

not eliminated since they might not represent linear correlations.

In the second step, for vector of sample sets, SiJ , I count the samples that appear

in each element of SiJ . I then collect the top w voted samples into a sample pool

and the corresponding genes who voted for these samples into a gene pool. The

sample and gene pools thus constitute an initial bi-cluster. Then, for the remaining

samples, I iteratively add them and their corresponding gene into the sample and

gene pools, respectively, as long as by adding them the mean gene-gene correlation

coefficient of the current bi-cluster remains above a threshold. The user specified

parameter w should be greater than 3, because one can always draw a line between

any 2 random points but the possibility that more than 2 random points lie on the

same line is very small unless there is a linear correlation. In this step, each sample

sets vector SiJ will construct at most one bi-cluster that necessarily contains gene i.

In the third step, I remove redundancy in the bi-cluster sets generated in step

two. If two bi-clusters share more than 60% identical elements, one of the two

will be removed depending on which has more identical elements. Algorithm 1

describes the LCBD algorithm.
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Figure A.1: Illustration of an n× n gene pairwise sample sets matrix
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Algorithm 1 The LCBD Algorithm
Input An n×m real value matrix A(I, J), k, w.
Output A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do
for j = i + 1 to n do

Construct binary matrix Bi,j for vectors A(i, J) and A(j, J);
Do Hough transform based on Bi,j and k to obtain a set of sample sets, SiJ ;

end for
end for

for i = 1 to n do
Select the top w most voted samples in SiJ as the initial sample pool si;
Select the genes whose corresponding gene pair sample sets contain all the
initial samples gi;
Construct the initial bi-cluster A(gi, si);
while gene-wise mean correlation coefficient of A(gi, si) < threshold do

Add the most voted sample in the leftover sample sets to the sample pool si;
Add the corresponding gene into the gene pool gi;
Update bi-cluster A(gi, si);

end while
end for

Remove redundant bi-clusters in the set A(gi, si) that has > 60% overlapping
elements.
Output the set of bi-clusters A(gi, si);
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A.2 Results
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Figure A.2: Match score of the LCBD method of different bi-cluster overlapping
rate on synthetic dataset under unique distribution
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Appendix B

Beam Detection based Bi-clustering

B.1 The LinCoh Algorithm

Let A(G,S) be an n × m gene expression data matrix, where G = {1, 2, . . . , n}

is the set of gene indices and S = {1, 2, . . . ,m} is the set of sample (condition)

indices. Its element eij is the expression level of gene i in sample j. Our LinCoh

algorithm consists of two major steps, described in the next two subsections.

Step one: establishing pairwise gene relations. For each pair of genes p, q ∈

{1, 2, . . . , n}, I plot their expression levels in all samples in a 2D plane, as shown in

Figure 2.6, where a point (x, y) represents a sample in which gene p has expression

level x and gene q has expression level y. The goal of this step is to detect a

correlation between every pair of genes on a subset of samples, if any. Such a

subset of samples must evidence the correlation, in the way that the two genes

are co-up-regulated (or co-down-regulated) in these samples [53]. I define a beam

Bθ,β,γ in the 2D plane to be the set of points on the plane that are within distance
1
2
β to a straight line that depends on θ and γ. Here θ is the beam angle, β is the

beam width, and γ is the beam offset. They are all search parameters, but I am able

to pre-determine some best values or ranges of values for them.

Let µp and σp (µq and σq) denote the mean expression level of gene p (q, re-

spectively) across all samples and the standard deviation. To identify the subset of

supporting samples for this gene pair, Sθ,β,γ = S ∩ Bθ,β,γ , I seek for a beam Bθ,β,γ

in the 2D plane that aligns approximately the main diagonal (or the antidiagonal)

of the rectangle defined by {(µp − σp, µq − σq), (µp + σp, µq − σq), (µp + σp, µq +
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σq), (µp − σp, µq + σq)}. Such an approximate alignment optimizes the following

objective function, which robustly leads to good quality bi-clusters:

max
θ,β,γ

WSθ,β,γ
·DSθ,β,γ

subject to:
∣∣corr(A(p, Sθ,β,γ), A(q, Sθ,β,γ)

)∣∣ ≥ tcc.

In the above maximization problem, DSθ,β,γ
is the vector of the Euclidean distances

of the samples inside the beam, i.e. Sθ,β,γ , to the line passing through (µp, µq) and

perpendicular to (called the midsplit line of) the beam center line; WSθ,β,γ
is a weight

vector over the samples in Sθ,β,γ , and I use Shepard’s function wj = drj/
∑

drj with

parameter r ≥ 0 to weight sample j ∈ Sθ,β,γ (to weight more on distant samples

but less on samples nearby the midsplit line); In the constraint, |corr(·, ·)| is the

absolute correlation coefficient between the two genes p and q, calculated over only

the samples in Sθ,β,γ; tcc is a pre-determined correlation threshold.

The output of the maximization problem is Sθ,β,γ , which is either empty, indicat-

ing that no meaningful relationship between the two genes was found, or otherwise

a subset of samples that evidence a meaningful correlation between genes p and q.

According to our extensive preliminary experiments, the bi-clustering results are of

high quality when the correlation threshold tcc is larger than 0.75; and it is set to

0.90 and 0.75, respectively, on synthetic datasets and real datasets.

I implemented a heuristic process to search for the beam, whose center line is

initialized to be the line passing through the main diagonal (for positive correla-

tion) or the antidiagonal (for negative correlation) of the rectangle in the expression

plot. The beam width β is fixed at a certain portion of 4σpσq/
√
σp

2 + σq
2; again

supported by the preliminary experiments, a constant portion in between 0.8 and

1.0 is sufficient to capture most meaningful correlations; and I fix it at 0.8 for both

synthetic datasets and real datasets. That is, β = 0.8 × 4σpσq/
√

σp
2 + σq

2. To

determine the beam angle θ in the positive correlation case, I define the search axis

to be the midsplit line of the main diagonal; a small interval is placed on the search

axis centering at (µp, µq), which is for a pivot point to float within; around each

position of the pivot point, whose distance to the center point (µp, µq) is denoted

as γ, different angles (the θ) are searched over to find a beam center line; each re-
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sultant beam is tested for the constraint satisfaction in the maximization problem,

and discarded otherwise; among all those beams that satisfy the constraint, the one

maximizing the objective function is returned as the target beam.

For evaluating the objective function, I have tested multiple values of r and

found that 0 gives the most robust bi-clustering results. Therefore, r is set to 0 as

default. For each sample j inside the beam, its distance dj to the mid-split line of

the beam center line is rounded to 0 or 1 using a threshold of
√
σp

2 + σq
2. When

the target beam is identified, though might not be the true optimum to the objective

function, the sample set Sθ,β,γ is further partitioned into outer sample set (contain-

ing the samples with distance dj rounded to 1) and inner sample set (containing the

rest). Gene pairs, together with non-empty outer and inner sample sets, are sent to

Step two for clustering.

Step two: sample set clustering. Step one generates an outer sample set and an

inner sample set for each gene pair. In this step, two n×n matrices are constructed:

in the outer matrix M o, the element mo
pq is the outer sample set for gene pair p and

q; likewise, in the inner matrix M i, the element mi
pq is the inner sample set for gene

pair p and q. I next process these two matrices to robustly find bi-clusters.

First, I want to filter out small outer sample sets that indicate insignificant cor-

relations for gene pairs. To this purpose, I select roughly the largest 0.15% outer

sample sets among all for clustering, which are of 99.7% confidence.This confi-

dence level is set after testing on a randomly generated datasets, with 68%, 95%,

99.7% confidence levels according to the 68-95-99.7 rule. Observing that two dis-

joint gene pairs could have the same outer sample sets but very different expres-

sion patterns, simply using outer sample sets to construct bi-clusters might lead

to meaningless bi-clusters. In our LinCoh algorithm, genes are used as bridges to

group similar outer sample sets to form bi-clusters, since linear correlation is tran-

sitive. I first define the similarity between two outer sample sets mo
pq and mo

rs as

sim(mo
pq,m

o
rs) = |mo

pq ∩mo
rs|/|mo

pq ∪mo
rs|, which is a very popular measure in the

literature. Next, I rank genes in the descending order of the number of associated

non-empty outer sample sets. Iteratively, the gene at the head of this list is used

as the seed gene, to collect all its associated (non-empty) outer sample sets. These
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outer sample sets are partitioned into clusters using a density based clustering algo-

rithm similar to DBSCAN [20], and the densest cluster is returned, which is defined

as a cluster whose central point has the most close neighbors. An initial bi-cluster

is formed on the union S1 of the outer sample sets in the densest cluster, and the set

G1 of the involved genes.

The quality of the bi-cluster (G1, S1) is evaluated by its average absolute cor-

relation coefficient,

aacc(G1, S1) =

∑
p,q∈G1

|corr(A(p, S1), A(q, S1))|
(|G1|2 − |G1|)

. (B.1)

The initial bi-cluster (G1, S1) is refined in three steps to locally improve its quality.

In the first step, all samples in S1 are sorted in decreasing frequency of occurrence

in all the outer sample sets of the seed gene; the lowest ranked sample is removed

if this removal improves the quality of the bi-cluster, or otherwise the first step is

done. Secondly, every gene in G1 is checked to see whether its removal improves

the quality of the bi-cluster, and if so it is removed from G1. At the end, if the

minimum gene pairwise absolute correlation coefficient of the bi-cluster is smaller

than a threshold, the bi-cluster is considered as of low quality and discarded. By ex-

amining values from 0.50 to 0.99, our preliminary experiments showed that a high

threshold in between 0.7 and 0.9 is able to ensure good quality bi-clusters, and it is

set to 0.8 in all our final experiments. In the last step of bi-cluster (G1, S1) refine-

ment, the inner sample sets of the gene pairs from G1 are collected; their samples

are sorted in decreasing frequencies in these inner sample sets; using this order,

samples are added to S1 as long as their addition passes the 0.8 minimum pairwise

absolute correlation coefficient. A final bi-cluster (G1, S1) is thus produced.

Subsequently, all genes from G1 are removed from the gene list, and the next

gene is used as the seed gene for finding the next bi-cluster. The process iterates

until the gene list becomes empty. I remark that a gene can participate in multiple

bi-clusters, but it serves as a seed gene at most once. At the end, when two bi-

clusters overlap more than 60% area, the one of smaller size is treated as redundant

and discarded [53]. The pseudocode for the LinCoh algorithm 2 is provided below.
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Algorithm 2 The LinCoh Algorithm
Input An n×m real value matrix A(I, J), Tclose, TminCC

Output A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do
for j = i + 1 to n do
MO(i, j) = NULL, MI(i, j) = NULL;
θrec = NULL, βrec = NULL, γrec = NULL;
for A set of beam parameters (θ, β, γ) do

if WSouter(θ,β,γ)
·DT

Souter(θ,β,γ)
> |MO(i, j)| then

MO(i, j) = Souter(θ,β,γ);
θrec = θ, βrec = β, γrec = γ;

end if
end for
MI(i, j) = Sinner(θrec,βrec,γrec);

end for
end for

for i = 1 to n do
for j = i + 1 to n do

if MO(i, j) < µss + α · σss then
MO(i, j) = NULL, MI(i, j) = NULL;

end if
end for

end for

for i = 1 to n do
SSi =

∪
j∈J(MO(i, j));

end for
GeneListss = DescendSort(Genes) based on |SSi| ̸= NULL of each i ∈ I;
BiclusterPool = NULL;
while GeneListss ̸= EMPTY do
SeedGene = Pop(GeneListss);
Construct similarity matrix Matrixss for SSseedGene elements based on
MS(SSi, SSj) =

|SSi∩SSj |
|SSi∪SSj | ;

Find the centroid sample set SScentroid that has the most close (MS(Si, Sj) ≥
Tclose) neighbors, SSneighbors;
GenePool =

∪
(Gi ∈ GSScentroid

∪
GSSneighbors

);
SamplePool =

∪
(Sj ∈ SScentroid

∪
SSneighbors);

BiClusterinitial = A(GenePool, SamplePool);
BiClusterrefined = RefineBicluster(BiClusterinitial)
if MinAbsCC(BiClusterrefined) ≥ TminCC then

BiclusterPool.add(BiClusterrefined);
end if

end while
Biclustersfinal = RedundantRemoval(BiclusterPool)
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B.2 Results
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Figure B.1: The gene match scores of the five algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the union overlap model.
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Figure B.2: The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using the
union overlap model.
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Figure B.3: The gene discovery rates of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using the
union overlap model.
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Figure B.4: The gene match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using the
additive overlap model.
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Figure B.5: The overall match scores of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using the
additive overlap model.
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Figure B.6: The gene discovery rates of the five algorithms for recovering linear
coherent and additive bi-clusters, under six different amounts of overlap using the
additive overlap model.
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Table B.1: Statistics of different algorithms’ bi-clustering results and the numbers
of functional terms enriched on different databases.

#Terms enriched
(GO, KEGG,

#Bi-clusters µ|gene| σ|gene| µ|sample| σ|sample| MIPS/regulons)
(Yeast)
LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5
LCBD 132 46.46 17.53 13.35 4.28 10, 6, 11

ISA 47 67 34.54 8.4 1.78 15, 13, 18
OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2
MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6

CC 10 297.7 304.18 60.8 23.46 6, 4, 8
(E.coli)
LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22
LCBD 155 485.05 336.63 15.37 22.95 23, 22, 33

ISA 34 124.21 42.18 13.88 6.11 11, 10, 13
OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5
MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4

CC 10 309.9 950.15 31.4 81.74 2, 2, 2

Table B.2: For all the gene pairs with absolute correlation coefficient ≥ 0.8, the
number of pairs that have between 0 and 7 common GO terms.

Term count yeast E.coli
0 909 2680
1 18860 3485
2 7898 1533
3 1839 490
4 165 239
5 30 52
6 6 18
7 4 0

Overall 28802 5817
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Table B.3: The top 10 gene pairs’ common GO terms and their counts.
yeast E.coli

GO term Count GO term Count
GO:0006412 8353 GO:0006412 811
GO:0000723 1920 GO:0008652 680
GO:0000027 1615 GO:0001539 388
GO:0000028 1070 GO:0006810 317
GO:0006365 969 GO:0006355 234
GO:0006413 893 GO:0006811 195
GO:0030488 782 GO:0006865 183
GO:0006364 720 GO:0006260 127
GO:0030490 683 GO:0046677 115
GO:0006360 424 GO:0008152 111
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Appendix C

Sparse Learning based Bi-clustering

C.1 The SLLB Algorithm

Algorithm 3 The SLLB Algorithm
Input: M , β1, β2, ϵ.
Output: a set of linear coherent bi-clusters.

A = 1 · 1T

bij = m̄i: − aijm̄j: for i, j ∈ [1, 2, ...n].
sik = 1 if d′ijk <= ed

′′
ijk − 1, sik = 0 otherwise, for i ∈ [1, 2, ...n], k ∈ [1, 2, ...p].

while ∆L > ϵ do
for each i, j do

if
∑

k
sik
dijk

(mik − aijmjk − bij)
2 < β2 then

wij = 1
else
wij = 0

end if
end for
for each i, j do

if
∑

j
wij

dijk
(mik − aijmjk − bij)

2 < β1 then
sik = 1

else
sik = 0

end if
end for
for each i, j do
(aij, bij)

T = (XT
ij△(si: • dij:)Xij)

−1XT
ij△(si: • dij:)yij

end for
Calculate loss change ∆L.

end while
Construct bi-clusters from W , S and remove redundant bi-clusters.
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C.2 Results
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Figure C.1: The overall match scores of the eight algorithms for recovering linear
coherent and additive bi-clusters, at six different noise levels.
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Figure C.2: The gene discovery rates of the eight algorithms for recovering linear
coherent and additive bi-clusters, at six different noise levels.
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Figure C.3: The whole match scores of the eight algorithms for recovering the over-
lapping linear coherent and additive bi-clusters, under the adding overlap model.
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Figure C.4: The observation discovery rate of the eight algorithms for recovering
the overlapping linear coherent and additive bi-clusters, under the adding overlap
model.
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Figure C.5: The observation match scores of the eight algorithms for recovering the
overlapping linear coherent and additive bi-clusters, under the union overlap model.
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Figure C.6: The whole match scores of the eight algorithms for recovering the
overlapping linear coherent and additive bi-clusters, under the union overlap model.
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Figure C.7: The observation discovery rate of the eight algorithms for recovering
the overlapping linear coherent and additive bi-clusters, under the union overlap
model.
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Table C.1: Statistics of different algorithms’ bi-clustering results and the numbers
of functional terms enriched on different databases.

#Terms enriched
(GO, KEGG,

#Bi-clusters µ|gene| σ|gene| µ|sample| σ|sample| MIPS/regulons)
Yeast:
SLLB 101 83.40 36.40 85.56 25.98 3, 7, 5

QUBIC 100 119.08 59.69 23.21 6.21 3, 2, 3
LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5
LCBD 132 46.46 17.53 13.35 4.58 10, 6, 11

ISA 47 67 34.54 8.4 1.78 15, 13, 18
OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2
MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6

CC 10 297.7 304.18 60.8 23.46 6, 4, 8
E.Coli:
SLLB 52 43.79 16.23 106.58 51.70 8, 11, 13

QUBIC 100 73.91 33.45 33.51 14.51 14, 8, 15
LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22
LCBD 155 485.05 366.63 15.37 22.95 23, 22, 33

ISA 34 124.21 42.18 13.88 6.11 11, 10, 13
OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5
MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4

CC 10 309.9 950.15 31.4 81.74 2, 2, 2
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Appendix D

Feature selection SVM

(a). Semi-definite programming. By introducing two variables a and b, I use the

Lagrange multipliers to move the λ constraints to the objective function to get:

min
γ≥0,a≥0,b≥0

β21
Tγ +max

λ
λT1− 1

2
λTBλ+ aTλ+ bT (1− λ) (D.1)

where B = 1
β1
△(y)(

∑
j γjKj)△(y). Introducing δ to rewrite the minmax prob-

lem in min problem:

min
γ≥0,a≥0,b≥0,δ

β21
Tγ + δ

s.t. : δ ≥ max
λ

bT1− 1

2
λTBλ+ λT (1 + a− b)

(D.2)

Let ∂(bT 1− 1
2
λTBλ+λT (1+a+b))

∂λ
= 0, we get: Bλ = 1+ a− b. Substituting it to the δ

constraint, we get:

δ ≥ bT1+
1

2
(1+ a− b)TB+(1+ a− b)

Therefore, we can write the problem in the semi-definite programming form:

min
γ≥0,a≥0,b≥0,δ

β21
Tγ + δ

s.t. :
[

2
β1
△(y)

∑
j(γjKj)△(y) (1+ a− b)

(1+ a− b)T δ − bT1

]
< 0.

(D.3)

(b). Quadratic constraint linear programming (QCLP). According to Sion’s

minmax duality theorem (15) can be re-written as:

max
0≤λ≤1

min
γ≥0

λT1− 1

2β1

λT△(y)(
∑
j

γjKj)△(y)λ+ β21
Tγ, (D.4)
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By introducing a new variable υ to make γ unconstrained, we get:

max
0≤λ≤1

max
υ≥0

min
γ

λT1− 1

2β1

λT△(y)(
∑
j

γjKj)△(y)λ+ β21
Tγ − υTγ, (D.5)

Let the term 1
2β1

λT△(y)
∑

j(γjKj)△(y)λ = − 1
2β1

STγ, where Si = λT△(y)Ki△(y)λ.

Then let partial derivative of objective function with respect to γ equals to 0, we

get β21 − 1
2β1

S − υ = 0, so that β21 − 1
2β2

S = υ ≥ 0 ⇒ S ≤ 2β1β21 ⇒

λT△(y)Ki△(y)λ ≤ 2β1β2, ∀i. So the original problem can be formulated in the

following QCLP form which can be solved in QCLP solver:

max
0≤λ≤1

1Tλ

s.t. : λT△(y)Kj△(y)λ ≤ 2β1β2, ∀i.
(D.6)

(c). Generic constraint generation. Introduce a new variable δ into (15) to

get:
min
γ≥0,δ

δ

s.t. : δ ≥ β21
Tγ + 1Tλ− 1

2β1

λT△(y)
∑
j

(γjKj)△(y)λ

0 ≤ λ ≤ 1

(D.7)

Then use the generic constraint generation algorithm to solve the above problem.

Randomly generate a set of λ to get a set of constraints:

δ ≥ F (γ, λ1)
δ ≥ F (γ, λ2)

...
δ ≥ F (γ, λk)

(D.8)

Solve the minγ≥0,δδ problem based on these constraint to get solution γ(k), λ(k).

Then solve the problem max0≤λ≤1F (γ(k), λ)− δ(k). If the solution is greater than

a given threshold ϵ, add the new constraint based on the new λ, halt otherwise.
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