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Abstract

The conventional, single band Hubbard model captures the dynamics that arise in strongly

correlated electron systems in the competition between electron transport and local Coulomb

interactions. However, some of the important physics of real lattices is overlooked by its

simplicity. The dynamic Hubbard model (DHM) provides additional degrees of freedom for

electron states in a lattice by including a higher energy orbital and hybridization param-

eters for electrons to take advantage of a reduced Coulomb repulsion in the upper orbital

when the lattice is at half-filling.

This “relaxation” of the electronic state is accompanied by an asymmetry between elec-

tron and hole quasiparticles in the model. In this thesis we employ the computational tool

of multiorbital dynamical mean field theory (MODMFT) to study electron-hole asymmetry

in the DHM as evidenced in the behaviour of the quasiparticle weight and optical conduc-

tivity of electrons. In agreement with previous exact diagonalization work on the DHM, we

find that the relaxation of electronic states is associated with quasiparticle dressing in the

hole regime of the lower orbital, and a transfer of optical conductivity spectral weight from

low to high frequencies. These observations are evidences of the electron-hole asymmetry

in the two-orbital system.

In this context, we evaluate the role of two critical variables in the DHM: the local

and nonlocal hybridizations which parameterize interorbital electron transitions in the

Hamiltonian. We demonstrate that the electron-hole asymmetry of the model has a more

complex relationship to these hybridization parameters than previously identified. Mott

physics plays an essential role in the quasiparticle dressing due to the local hybridization,

while the nonlocal hybridization promotes electron-hole asymmetry by providing a separate

channel for electron transport which serves to reduce the quasiparticle weight of holes in

the lower band.

We also briefly examine the phenomenon of orbital selective Mott transitions in the

DHM within the parameter regime of electron state relaxation, and evaluate the role played
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by the hybridization parameters in this context.
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Chapter 1

Strongly Correlated Electron

Systems

1.1 Band Theory of Solids

In 1894 George Johnstone Stoney suggested the word “electron” to describe the fundamen-

tal unit of electricity in matter [1]. It would be two decades before Tolman and Stewart [2,3]

provided experimental evidence that the electric current in metals such as copper, silver

and aluminum is carried by negative charges with a mass very similar to that of the free

electrons observed in cathode ray experiments such as J. J. Thomson’s [4].

This electric current had been described in a classical theory of metallic conduction

by Paul Drude in 1900 [5, 6] and later by Lorentz [7]. Drude’s theory envisions a gas of

electrons flowing through the crystalline environment of a metal’s ionic constituents. The

electrons move without restriction except for occasional collisions with the heavy atomic

nuclei. Interactions between the electrons are neglected. Among its deficiencies, including

a grossly imperfect estimate of specific heat, this free electron model offers no microscopic

explanation of the difference between conductors and insulators, a distinction requiring

a quantum mechanical wave-like extension of electrons throughout the periodic lattice of

ionic potentials within a solid.

Early developments in quantum theory provided qualitative improvements to the clas-

sical free electron picture. A quantum theory of solids was formulated more accurately

describing electronic energetics and transport properties in solid crystalline material [8].

Two key developments were Sommerfeld’s incorporation of the Pauli exclusion principle and

Fermi-Dirac statistics [9], and the interaction between the periodic lattice and electronic

wave nature described by Felix Bloch [10], giving rise to the band theory of solids.

1



1.1. BAND THEORY OF SOLIDS

Assuming non- or weakly-interacting electrons in the ionic lattice, band theory provides

a simple theoretical description of the metallic and insulating material states in terms of

the concentration of electrons occupying energy bands arising from the bulk nature of the

lattice. An atomic crystal lattice is formed by the lower energy state available to individual

atoms via geometrically-arranged group binding, mediated by the electromagnetic attrac-

tion of the positively charged nuclei with the negatively charged electrons localized to other

nearby nuclei. This reduction in energy from interactions yields the binding energy of the

solid. The interatomic binding is classified in various types: van der Waals, ionic, covalent,

metallic and hydrogen bonds, emphasizing different expressions of this attraction between

positive ions and negative electrons as described by the application of the Schrödinger

equation for the ionic system applied to the electronic wavefunctions.

In the limit of isolated atoms, electrons form shells related to their in situ angular

momentum state, restricted by the Pauli exclusion principle to occupy different available

states in the shell. As atoms are brought into spatial proximity to form a solid, the overall

wavefunction of the atomic system realizes an energetically more favourable ground state

through the sharing of electrons in incomplete shells.

Metallic binding involves the covalent sharing of electrons between atoms with incom-

plete electronic shells, yielding a crystal wavefunction that is a superposition of the various

angular momentum states available to a localized electron, interacting with its environment

of nuclei. The sharing of local electron states is an effective delocalization emphasizing the

wave-like character of the otherwise particle-like, localized electrons. The resulting “fluid”

of itinerant negative charge carriers acts as a binding agent for the ions which form the

structure of the metallic solid. The stability of the metallic crystal associated with its

binding energy is obtained by the lowering of electron kinetic energy through their spatial

extension in the crystal.

Free electrons unaffected by an electric potential have a de Broglie wavelength,

λ =
~
mv

, (1.1)

with energy

E =
~2k2

2m
. (1.2)

Within the constrained environment of the periodic crystal lattice, however, the momen-

tum, ~k, and wavelength of single, non-interacting electrons become intertwined with the

lattice periodicity and are redefined in terms of “crystal momentum” states which differ

from the free electron states. These are ordered into energy bands.

2



1.1. BAND THEORY OF SOLIDS

Pauli exclusion demands that in any quantum system no two electrons can occupy

the same quantum state as defined uniquely by a complete set of quantum numbers such

as momentum along an axis of coordinate space. In a finite-sized crystal lattice with

N sites, the number of possible momentum states available to electrons is limited by

the dimensionality of the space, and the values of allowed momenta, kn, are discretized

accordingly, so that,

kn =
2πn

Na
(1.3)

where n ∈ Z, −N
2 < n ≤ N

2 , and a is the lattice spacing.

The consequence of the exclusion principle is that the electrons must be distributed

throughout this allowed momentum-space, or Brillouin zone, across a wide range of values.

Since each electron can have either intrinsic spin up or down, only two electrons can

simultaneously hold a given momentum. Under the fictitious condition of zero temperature

(free from thermal excitations), the electrons can be imagined to “fill” the momentum states

of the lattice in twos up to the highest energy, labeled the “Fermi energy”, εF , corresponding

to a Fermi momentum, kF . All states above the Fermi energy remain unoccupied, unless

the electrons gain energy from their environment and become excited.

While electron drift is an inherent feature of a perfect lattice, including quantum me-

chanics in the theory of metals establishes the presence of forbidden states in the energy

landscape of a crystalline material inhibiting uni-directional charge carrier conductance.

These states arise at energies equivalent to the edges of the Brillouin zone and give rise to

bands of allowed electron states separated by “gaps” of energy states that are forbidden

to electron occupation. Electrical conduction involves the net transport of electrons in a

direction selected by (and opposite to) some applied electric field. Under the condition of

a full band, the situation of an insulator, the total current will necessarily be zero since

every electron traveling in one direction will have a pair moving with opposite momentum

according to 1.3. If, however, the band is partially filled then the application of an electric

field will induce a net current since nearby electron states remain available to create a net

flow of charge.

Thus, coordinate space electron transport within a crystalline material involves the

transition of electrons between available energy states and band gaps act as energy barriers

to electron transport under the condition that the average number of electrons per lattice

site filling a volume of material is sufficient to completely fill the momentum-space Brillouin

zone up to the top of a band. In the simplest case, this condition is expected to be satisfied

for a volume of material containing some even number of electrons per lattice site, since

under Pauli exclusion two electrons of opposite spin orientation are allowed per energy

3



1.2. MOTT PHYSICS

state of the Brillouin zone. Excepting the case where a complicated lattice structure allows

an overlap of energy bands, conduction can arise only through a partially occupied energy

band, or the input of energy into the system sufficient to excite an electron near a band

edge across a forbidden gap zone and into a higher and mostly unoccupied band, as in the

case of semiconductors.

1.2 Mott Physics

The scenario of electrons crossing a band gap through thermal excitation was suggested

by Wilson [11, 12] to explain the behaviour of semiconducting materials with a narrow

forbidden region. With an increased environmental temperature, the electrons would ex-

perience an emptying of a few states in the lower band and the subsequent occupation of

a few excited electrons in the lowest energy states of the band immediately above the gap,

resulting in thermally-mediated conduction within both bands.

It was noted, however, by DeBoer and Verwey [13] that Wilson’s simple and elegant

band theory was insufficient to properly explain the behaviour of a large class of transi-

tion metal oxides like NiO which do not exhibit full electron bands, having on average

an odd number of electrons per lattice site, but are nonetheless not metallic. In response

came Peierls’ proposal that “a rather drastic modification of the present electron theory

of metals” was required by accounting for the effects of electron-electron interactions on

generating insulating behaviour [14]. This avenue was explored by Mott in the context of

crystalline arrays of atoms under pressure or with variable lattice spacing at zero temper-

ature [15–17].

Mott argued that a change in atomic volume would result in a sharp phase transition

between metallic and non-metallic behaviour caused by the splitting of a band into two sub-

bands when there is only a small overlap of electron wavefunctions between neighbouring

atomic orbitals. A lower energy band is formed from electrons residing alone on lattice

sites, and a higher band from doubly-occupying electrons which are unable to avoid the

high cost of their mutual Coulomb repulsion.

This band splitting involves the evolution of a metal-insulator gap, illustrated in figure

1.1, due to the strong Coulomb repulsion between electrons in a half-filled lattice. The

transition between metallic and insulating behaviour for half-filled bands has been a vora-

ciously studied phenomenon in condensed matter physics which has become known as the

Mott (or Mott-Hubbard) metal-insulator transition (MIT). It arises from the competition

between the wave and particle natures of the electrons in the lattice, as the delocalization

of their wave property is constrained by the repulsion of multiple negative charge carriers

4



1.2. MOTT PHYSICS

occupying the spatially confined environment of a single lattice site [18]. Electron delo-

calization tends toward occasional double occupancy of lattice ions and thus a repulsive

interaction between the charge carriers. For systems in which the Coulomb repulsion is

large compared to the overlap of electron orbitals between neighbouring lattice sites, the

likelihood of double occupancy becomes energetically unfavourable. In the case of a lat-

tice that is exactly half-filled by electrons, the lower Mott sub-band will be exactly filled

and the upper band empty with an energy gap between localizing the otherwise itinerant

electrons.

Figure 1.1: Electron density of states (DOS) at half-filling, illustrated for the metallic case and
that of the Mott insulator. The bandwidth, W , is associated with the kinetic energy (or more
specifically, the hopping parameter, t, of the Hubbard Hamiltonian [1.4]). Electron filling in both
cases is from low energy up to the chemical potential µ. The metallic electrons form a Drude peak
around energy states equal to the chemical potential, with available states energetically congruent
to filled states, thus allowing small excitations to generate conductance. For the insulator, when
the Coulomb repulsion U is large, the electron states split into two bands separated by a gap.
The lower band, associated with electrons individually occupying lattice sites, is filled. The higher
energy band is associated with (unfilled) electron states of doubly-occupied sites. Only an increase
in the chemical potential or large excitations (e.g. thermal) will cause electron transitions into these
states, allowing conduction.

The Mott-Hubbard MIT is a central and illustrative problem in modeling strong cor-

relation effects resulting from the spatial confinement of narrow electron orbitals in many

condensed matter materials. Where band theory predicts metallic behaviour for partially

filled bands, strong interactions between electrons lead to observable MITs in transition

metal oxides such as vanadium sesquioxide (V2O3) [19]. These materials, along with rare

earth metals, have partially filled narrow 3d and 4f bands, respectively, where the strong

correlation between spatially confined electrons becomes a critical driver of interesting

physics including high temperature superconductivity, colossal magnetoresistance and the

5
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MIT [20].

1.3 Fermi Liquid Theory

The complex behaviours of strongly correlated electron systems provide a challenge for

theoretical descriptions which take into account the multiparticle relationships of the ma-

terials in which they occur. Capturing the effects of Coulomb interactions between many

electrons in a lattice is a daunting task in theoretical modeling that is greatly simplified

by the tenets of Fermi liquid theory [21,22].

Fermi liquid theory describes the excitations of electrons in an interacting many-body

system at finite temperature through effective “quasiparticles.” The states of the quasi-

particles are assumed to be in adiabatic continuity with those of a non-interacting electron

system and can therefore be labeled with the same quantum numbers as the non-interacting

states. As well, one assumes that while the unique states of electrons subject to Coulomb

interactions may be short-lived in the material, the quasiparticle states have a long life-

time and behave as essentially free particles with a rescaled effective mass, m∗, which is

dependent on the self energy of the quasiparticles (and thus their mutual interactions) and

their lifetime as measured by the weight of the coherent part of the single-particle Green’s

function [23].

In this thesis, the quasiparticle picture of Fermi liquid theory is assumed to be a correct

description of the metallic states of the systems investigated, breaking down in the tran-

sition to insulating behaviour in the MIT. In section 5.3 we will define the quasiparticle

weight as a measure of the quasiparticle coherence, an important tool in evaluating our

model of strongly correlated electrons.

1.4 Hubbard Model

One very important theoretical approach to describing strong correlations between elec-

trons in spatially confined systems is the Hubbard model [24–27], a straightforward math-

ematical description of the microscopic energy state of these materials. Grounded in the

tight-binding approximation of electron-ion wave function overlap in a crystalline solid [28],

the Hubbard model provides a simple but remarkably effective encapsulation of the real

material energetics arising from Coulomb repulsion between spatially proximate electrons

and the propensity of these charge-carriers to travel among the ions of a lattice, as governed

by the overlap of electron wave functions.

6



1.4. HUBBARD MODEL

In the formalism of second quantization, the Hamiltonian for the Hubbard model is

given as,

H = −
∑
i,j,σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

c†i↑ci↑c
†
i↓ci↓, (1.4)

where i and j indicate particular lattice sites on which electrons with spin σ are localized

in Wannier orbitals. The operators, c†iσ and ciσ, respectively create and annihilate an

electron at site i with spin σ. In the second term, the Coulomb repulsion, U , acts only

locally between electrons occupying the same lattice site, with their spin state denoted by ↑
and ↓. The first term gives the kinetic energy contribution from electron transport through

the lattice, which is modeled as tunneling or “hopping” of charge-carriers between sites due

to the overlap between electron orbitals and the attractive potential well of neighbouring

ionic centres. tij is the hopping integral of electrons moving between the labeled sites, and

is normally restricted to nearest neighbouring atoms so that

tij → t
∑
α̂

δi+α̂,j = t (1.5)

where α̂ denotes all vectors pointing to a nearest neighbour.

In the interests of simplicity, (1.4) ignores many characteristics of real lattices including

spin-spin interactions, the motion of the lattice ions, asymmetry in electron propagation,

extended hopping of electrons beyond nearest-neighbour sites (with [1.5]), and long range

Coulomb interactions of the form U(Rij) = e2/Rij . Thus the present model captures

the essential physics contained in the competition between the strongest (local) electron-

electron interactions and their kinetic energy.

Although developed with narrow d and f band phenomena in mind [24], the Hubbard

model (1.4) describes a single s-band with spatial symmetry [26]. The band is comprised

of N discrete electron energy states, where N is the number of lattice sites in the crystal

(becoming a continuous distribution of levels in the thermodynamic limit of N → ∞).

Each site, and thus each energy level can be occupied by at most two electrons of opposite

spin (“up” and “down”), in keeping with the uncertainty principle as discussed in section

1.1. Thus, a Hubbard lattice is “filled” with 2N electrons. A filling operator, n̂, is defined

for the average number of electrons per lattice site,

n̂ =
1

N

∑
iσ

c†iσciσ , (1.6)

and returns the expectation value n = 1 for half-filling and n = 2 when the lattice is

completely full.
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The filling of the model can be affected by considering the Hamiltonian (1.4) in the

so-called “grand canonical ensemble” with a third term defining the chemical potential µ

so that,

H = −
∑
i,j,σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

c†i↑ci↑c
†
i↓ci↓ − µ

∑
iσ

c†iσciσ . (1.7)

A basis for the overall state of the lattice is given by the direct product of the states

of all of the site configurations. Each site, j, has four possible states [where the arrows

represent the spin of the occupying electron(s)]: |∅〉j (unoccupied site), |↑〉j , |↓〉j and

the doubly-occupied site, |↑↓〉j . The Hilbert space of the entire N -site Hubbard state is

therefore of size 4N .

In the non-interacting limit, U = 0, the Hubbard model contains only the initial nearest-

neighbour hopping term. Under Fourier transformation the momentum eigenvalues are,

εkn = −2t cos kn (1.8)

where kn is the free electron momentum in (1.3).

In the more general case of non-zero electron-electron interactions (U 6= 0) the so-

lution to the Hubbard model is challenging, and has only been found exactly for the

one-dimensional lattice [29].

An important characteristic of (1.4) is particle-hole symmetry; that is, that any phase

diagram generated from solutions to the model is symmetric about n = 1 [30]. Thus

the physics of systems that are accurately described by the Hubbard model should be

the same for the charge carriers being particles or holes. Within Fermi liquid theory the

quasiparticles of the Hubbard lattice can be identified in adiabatic continuity with either

electrons or holes and will be referred to in this thesis as such with the quasiparticle picture

implicitly understood. In the limit of low filling (n ≈ 0) the quasiparticles are understood to

be electron-like, whereas for a nearly full band (n ≈ 2) they are hole-like. This distinction

becomes important for the two-band dynamic Hubbard model introduced in chapter 2,

where electron-hole asymmetry predominates under certain conditions.

1.5 Thesis Overview

In this thesis we perform a computational study of the Dynamic Hubbard model (DHM),

a two-orbital extension of the single band Hubbard model (1.4). The DHM is motivated

and defined in chapter 2, and a survey is made of previous work on Hamiltonians similar

to the DHM. This model has been extensively studied by Hirsch [31] using four-site exact
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diagonalization, focusing on the electron-hole asymmetry. The primary focus of our thesis

is to explore the same model as Hirsch using more sophisticated tools.

Our computational tool for studying the DHM is a multiorbital extension of Dynamical

Mean Field Theory (DMFT). The conventional, or single orbital DMFT formalism and

method will be outlined in chapter 3, with a particular focus on its application to the

Hubbard model (1.4) and the MIT.

Chapter 4 provides the necessary extension of single orbital DMFT to the two-orbital

context of the DHM, through multiorbital DMFT (MODMFT). The MODMFT formalism

used in our work will be defined and the workflow specified for solving DHM Hamiltonians

with arbitrary parameter sets. We have developed an original implementation of MODMFT

in the C++ programming language. The most important characteristic of our algorithm

is the inclusion of both local and nonlocal hybridization parameters in the Hamiltonian,

a requirement for a proper comparison with the results of Hirsch’s DHM formulation.

The nonlocal hybridization of multiorbital systems has received very little attention in the

literature of MODMFT and our implementation provides original insight into its role in

strongly correlated multiorbital models.

Results from the MODMFT method are dependent on the selection of particular out-

puts. These tools of our analysis are laid out in chapter 5, defining observables which

give us insight into the DHM physics. In particular, Hirsch’s examination of electron-hole

asymmetry focuses on the behaviour of the quasiparticle weight and optical conductivity in

response to dressing of quasiparticles. We have developed the analytical and computational

tools to measure these outputs in the context of our method, and our specific definitions

provide an original contribution to the study of multiorbital systems.

In chapter 6 we present a number of checks and limits on our MODMFT study of the

DHM. We include a demonstration of consistency with the single band results of DMFT

and the non-interacting limit, as well as justification of some analysis choices which provide

necessary efficiencies in the computational regimen.

The results of our study are finally presented in chapter 7, where we compare our

MODMFT calculations with previous work on the DHM. In particular we explore the

phenomenon of electron-hole asymmetry through the quasiparticle weight and optical con-

ductivity, and evaluate the influence of the orbital hybridizations on these properties. We

emphasize the role of the as-yet poorly understood nonlocal hybridization which param-

eterizes interorbital electron transport through the lattice. At the end of chapter 7 we

briefly address the appearance of orbital selective Mott transitions which arise from the

energetically dissimilar orbitals of the DHM, and are sensitive to the hybridization pa-

rameters. These transitions are not directly relevant to our examination of electron-hole
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asymmetry in the DHM, but are nonetheless a feature of the DHM which apparently has

not been previously explored.

Our results and outlook are summarized in the conclusion, chapter 8.
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Chapter 2

Dynamic Hubbard Model

2.1 Limitations of the Single Band Hubbard Model

The conventional Hubbard model (1.4) is a simple description of electronic behaviour in a

many-particle lattice system, incorporating competition between electronic transport and

Coulomb repulsion in determining the system’s dynamics. The simplicity of the model is

due in large part to the assumption of a single band with s-wave symmetry, so that electron

transport through the lattice is isotropic [26].

The Coulomb repulsion term in the Hubbard model assumes an on-site interaction,

U , between electrons in a doubly-occupied configuration of a single atomic orbital. This

interaction energy can be derived from the single electron wavefunctions supposing that at

each site both electrons are in a hydrogenic ground state (1s orbital),

ψ1s(Z, r) =

(
Z3

πa3
0

)1/2

e−Zr/a0 , (2.1)

with atomic number Z, Bohr radius a0, and r the distance from the ionic centre. The

Coulomb repulsion, U(r), is then calculated to be,

U(Z) =

∫
d3rd3r′ |ψ1s(r)|2 Vcoulomb(r, r′)

∣∣ψ1s(r
′)
∣∣2

=

∫
d3rd3r′ |ψ1s(r)|2

e2

|~r − ~r′|
∣∣ψ1s(r

′)
∣∣2 =

5

4
(13.606 eV)Z. (2.2)

Hirsch [32] used experimental data [33] to show that the measured effective Coulomb

energy of a doubly-occupied site is consistently different from the value calculated above

under the Hubbard model’s single s-band simplification. This effective energy, from mea-
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sured values, is simply,

Ueff = 2E1 − E2 (2.3)

where E1 is the energy of a lone electron bound to the positive nucleus, and E2 is the

energy of two electrons bound to the nucleus. The doubling of the first term immediately

assumes non-interacting electrons, and thus the difference of the terms is the net effect of

including Coulomb repulsion on a doubly-occupied site.

For hydrogen (Z = 1), one uses the ionization energy, EH
1 = 13.606 eV and the electron

affinity, AH = 0.754 eV = EH
2 − EH

1 to find,

UH
eff = 12.844 eV = U(1)− 4.154 eV, (2.4)

where U(1) is the expected value from hydrogenic orbitals defined in (2.2).

For helium (Z = 2) and further up the periodic table, 2.3 is the difference in the two

upper ionization energies, IZZ − IZZ−1. Thus,

UHe
eff = IHe

II − IHe
I = 54.418 eV− 24.587 eV = U(2)− 4.164 eV. (2.5)

The difference in energy of about 4 eV between measurements and the theoretical values

of (2.2) is obvious for Z < 8, and is plotted in figure 2.1 using the limit of currently available

data [33]. The overall offset of the data points suggests that the electron interactions have

a strong effect on the state of the two-electron atom across all values of Z.

Atomic electron orbitals are therefore not rigidly hydrogenic, as assumed in the single-

band Hubbard picture. This reality motivates alternative approaches to providing a more

realistic picture of the electronic wave function in a many-particle system.

One such approach has been the development of more sophisticated wave functions to

describe the two-electron atom, taking into account the electron-electron correlations. The

most straightforward example [34] is a variational solution first developed by Frenkel [35]

from the trial Hartree wave function,

ΨFre(r1, r2) = ψZ̃(r1)ψZ̃(r2) (2.6)

where r1 and r2 are the electron spatial coordinates of hydrogenic wavefunctions from (2.1).

The effective atomic number,

Z̃ = Z − 5

16
, (2.7)

is determined by minimizing the energy, and suggests shielding of the nucleus from one

electron by the other [36].
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Figure 2.1: Energy difference between the Coulomb repulsion UZ, calculated for two electrons in
hydrogenic 1s orbitals around a nucleus of atomic number Z and the experimental values [33] for
the effective Coulomb interaction of doubly-occupied ionized nuclei. A fit (solid line), f(Z), to the
data (points) is also shown.

Eckart [37] improved on this with a more sophisticated variational wave function in-

cluding radial correlations between electrons:

ΨEck(r1, r2) =
ψZ1(r1)ψZ2(r2) + ψZ2(r1)ψZ1(r2)

2
(∫
ψZ1(r)ψZ2(r)dr

) . (2.8)

finding effective values of Z1 ≈ 2.14 and Z2 ≈ 1.19 for helium. More recently these

have been reevaluated in a more general form by Hirsch [36] as Z1 ≈ 1.14Z − 0.105 and

Z2 ≈ 0.905Z − 0.622.

Still more reliable is the approach taken by Hylleraas [38] who allowed for radial and

angular correlations between electrons in a trial wavefunction, ΨHyl(~r1, ~r2), by including

the spatial separation r12 = |~r1 − ~r2| as a parameter [36].

Table 2.1 compares the energy of the two-electron atom arrived at through the three

approaches, alongside the experimental value for Z = 1 and Z = 2 nuclei. It is clear

that the inclusion of the angular information in ΨHyl provides an important contribution

to procuring a physically improved result which provides a better approximation of the

true Helium eigenspectrum than does the 1s and 2s orbitals of a radial central potential
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solution [39]. In all three approaches, as illustrated in figure 2.2, there is a qualitative

distinction between the eigenstate of a single electron orbiting its nucleus and that of

the electron orbiting along with a second electron. This distinction captures the essential

change the electron must undergo because of the strong correlations in the system.

+

single
electron state

+

+

+
r

12

double electron states

Hartree

Eckart

Hylleraas

Figure 2.2: Illustration of electron orbital reorganization under various double occupancy wave-
functions. A single electron occupies its own orbital around the nucleus. Joined by a second electron
(of opposite spin), the electron orbital much adjust. The Hartree variational wavefunction places
both electrons in the same expanded orbital. In the Eckart picture, the electrons occupy separate
orbitals. In the Hylleraas picture, the electrons share an orbital but the two-electron wavefunction
is sensitive to their relative separation.

Table 2.1: Energies (in eV) found from the variational wave functions ΨFre, ΨEck and ΨHyl,
compared with the experimental value, Eexp, for nuclei of Z = 1 and Z = 2 (data adapted from [36]).

Z EFre EEck EHyl Eexp

1 -12.86 -13.97 -14.30 -14.36
2 -77.49 -78.25 -78.98 -79.02
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2.2 The Many-Particle Case

While successful in approximating the state of a single interacting two-electron ion, it is not

difficult to see that a different approach is required with respect to the Hubbard Hamilto-

nian which models a many-body lattice. In that context it is necessary (and expedient) to

imagine highly localized hydrogen-like Wannier orbitals in keeping with the tight-binding

model [30], but still somehow capture the qualitative distinction in the electronic states of

singly-occupied and doubly-occupied atoms.

The dynamic Hubbard model (DHM) provides just such an approach, extending the

single-orbital Hubbard model to a two-orbital characterization of the strongly-correlated

system. In the DHM, the electron eigenstates are allowed to change in response to occupa-

tion and the accompanying energetic adjustments of local interactions. The intra-atomic

Coulomb repulsion between doubly-occupying electrons will cause their wavefunctions to

hybridize among higher energy single particle states which allow greater spatial separation

of the electron densities under the Coulomb integral (2.2), thus reducing the overall energy

of the total eigenstate [40].

The importance of including a second orbital at higher energy into the Hubbard de-

scription can be illustrated with the relatively simple case of the helium atom. It serves

as a practical example of the complexity of real systems. The helium Hamiltonian, in the

Born-Oppenheimer approximation and neglecting spin-orbit coupling, is,

HHe = − ~2

2m

(
∇2

1 +∇2
2

)
− Ze2

(
1

r1
+

1

r2

)
+

e2

|~r1 − ~r2|
(2.9)

where Z = 2 for the helium nucleus. The two-particle Coulomb repulsion is encapsulated

in the last term of (2.9), and is the complicating factor in determining the exact ground

state of the system. The ground state solution, the form of which is known through

variational calculations to a high degree of accuracy [41], spans a specialized set of basis

functions which are substantially different from the usual hydrogenic orbitals, as discussed

in section 2.1.

In terms of explicitly hydrogenic orbitals, a complete solution of (2.9) has been shown

[42] to include a superposition of all the bound and continuum states of the helium system.

Compared to an accurate variational Hylleraas wave function [38], the spin singlet ground

state,

Ψsinglet(r1, r2) =
1√
2

[φ↑(r1)φ↓(r2)− φ↓(r1)φ↑(r2)] , (2.10)

a product of spin-up φ↑ and spin-down φ↓ hydrogenic 1s orbitals, contributes only 92.6%
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of the proper helium ground state. An additional 4.6% of the variational ground state is

recovered by inclusion of the excited state where one electron occupies the 1s orbital and

the other populates the 2s orbital [42].

From this analysis, it is clear that a two-orbital hybridization model of a many-particle

system will provide an important physical degree of freedom to capture the physics of real

lattices. The DHM Hamiltonian is designed with this improvement in mind.

2.3 Varieties of Dynamic Hubbard Models

Three classes of Hamiltonian have been proposed by Hirsch [36,43] which extend the Hub-

bard model to include the necessary physics of a DHM. In any such model, the orbital

hybridization of doubly-occupied sites must appear within the local part of the Hamilto-

nian, Hi, as a component of the full Hamiltonian,

HDHM = −
∑
〈ij〉

tij

(
c†iσcjσ + c†jσciσ

)
+
∑
i

Hi . (2.11)

where 〈ij〉 indicates that electrons only travel between nearest neighbours. Two of these

models capture this “orbital relaxation” in an effective mechanism, while the third contains

the 2s orbital explicitly.

The first case [32] is a variant of the Holstein Hamiltonian [44], coupling a boson

oscillator having creation and annihilation operators, a†i and ai, to double occupancy of a

single orbital. The oscillator has mass M , spring constant K, and frequency ω0 =
√
K/M .

In this case, the local part of (2.11) might have the form,

Hi = HDHMo = ω0a
†
iai +

[
U + gω0

(
a†i + ai

)]
ni↑ni↓ , (2.12)

where g is a coupling constant giving an effective on-site repulsion Ueff = U − ω0g
2 when

a second electron is added to the single orbital. The on-site repulsion is transformed into

a dynamical variable dependent on the displacement of the oscillator,

xi =
a+ a†√
2Mω0/~

, (2.13)

which effectively models the change in electron orbital occupancy driven by Coulomb re-

pulsion.

The boson oscillator model (2.12) has been studied using a generalized Lang Firsov

transformation [32,45,46].
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Similarly, the DHM physics can be captured through a Hamiltonian with an auxiliary

spin degree of freedom [36,47,48], where, for instance,

Hi = HDHMs = ω0σ
x
i + gω0σ

z
i + [U − 2gω0σ

z
i ]ni↑ni↓. (2.14)

Here, σxi and σzi are spin-1
2 Pauli matrices providing a dynamic local degree of freedom

coupled to electronic double-occupancy. Again, the effective Coulomb repulsion depends

on the form of the auxiliary parameter, in this case, a local spin, whose energy levels have

a spacing ω0. On double occupancy, the local electronic orbitals are effectively adjusted in

reaction to the new energy conditions.

The auxiliary spin scenario (2.14) has been studied by exact diagonalization of a four-

site one-dimensional chain [48, 49], larger chains (up to 20 sites) using quantum Monte

Carlo in one [49] and two [50] dimensions, two-site dynamical mean field theory [51] and

exactly solving a simple dimer model [52].

A third and more direct approach [31,40] to the orbital relaxation of double-occupancy

augments the Hubbard Hamiltonian (1.4) with additional electronic degrees of freedom

only. In this scenario, each lattice site allows electron occupation of a lower (0) or upper

(1) energy level. As illustrated in figure 2.3 the lattice is characterized by two electron

bands centered on different energies, ε0 and ε1, with intraband hopping t0 and t1 between

nearest-neighbour sites, and interband intersite hopping t01 = t10. There are three Coulomb

interactions among localized electrons: U0 for a doubly-occupied lower orbital, U1 for the

upper excited orbital, and U01 acting between electrons occupying separate orbitals. In

addition, an intra-atomic hybridization parameter t′ mixes the onsite identity of electrons

between the upper and lower orbitals1. We will refer to the hybridization variables t′ and

t01, respectively, as “local” and “nonlocal”.

The full Hamiltonian for this “electronic” DHM including both the local (Hi) and

1Recalling the identification of the single band Hubbard (1.4) orbital as 1s, we note that in a strict
sense, we must be cautious about similarly considering these orbitals of the DHM as 1s and 2s states of
the hydrogen atom, since the essential dynamic of this model assumes single-electron transitions between
the orbitals in response to the presence or absence of a second electron. Quantum mechanical selection
rules forbid the direct transition of an electron between states where the change in angular momentum
quantum number, l, would be ∆l = 0, as would apply in a transition between 1s and 2s orbitals of the
hydrogen atom. The physical meaning of these orbitals can be taken as signaling the creation of a set of
new, hybridized orbitals of energy E− and E+ (clearly defined in the non-interacting limit of section 6.6),
which might taken as approximations of the Hylleraas states discussed above.
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t1

t0

t01

U0

U1

U01

є1

є0
t'

Figure 2.3: Two nearest-neighbour lattice sites illustrating the parameters in the electronic DHM
Hamiltonian (2.15). The bare energy of electrons occupying the lower orbital is ε0, and the upper
orbital ε1. The dotted arrows indicate electron tunneling between sites parameterized by overlap
integrals t0 and t1, as well as a nonlocal hybridization t01. This, along with the local hybridization
factor t′, provides a degree of freedom for electrons to transition between orbitals to lower the
energy of double occupancy. The Coulomb repulsions U0 and U1 apply to doubly-occupied lower
and upper orbitals, respectively. U01 is the energy penalty for an electron-electron interaction
between the orbitals.

non-local parts of (2.11), in the grand canonical ensemble, is now,

HDHMe = HKE +Hlocal +Hhyb (2.15)

HKE = −
∑
〈ij〉σ

[
t0(c†0iσc0jσ + c†0jσc0iσ) + t1(c†1iσc1jσ + c†1jσc1iσ)

+t01(c†1iσc0jσ + c†0jσc1iσ)
]

Hlocal = U0

∑
i

n0i↑n0i↓ + U1

∑
i

n1i↑n1i↓ + U01

∑
iσσ′

n0iσn1iσ′ + (ε0 − µ)
∑
iσ

n0σ

+ (ε1 − µ)
∑
iσ

n1σ

Hhyb = −t′
∑
iσ

(c†0iσc1iσ + c†1iσc0iσ)

In principle, the generality of (2.15) through the variability of its coefficient parameters

permits overlap of the electronic DHM with other, similar double band Hubbard models

which nonetheless do not capture the fundamental physics associated with the characteristic

adjustment of electronic orbitals particular to the premise of the DHM. For example, a
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periodic Anderson model (PAM) [53] with one or two2 conduction bands (having electron

operators d and f) and local hybridization t′ is characterized by the general Hamiltonian,

HPAM =
∑
kσ

(
εdkd
†
kσdkσ + εfkf

†
kσfkσ

)
+
∑
iσ

(
εdd
†
iσdiσ + εff

†
iσfiσ

)
+ U

∑
i

nfi↑nfi↓ + t′
∑
iσ

(
d†iσfiσ + f †iσdiσ

)
. (2.16)

In the single-band PAM (for instance [54]), associating the f -orbital with the lower inter-

acting electrons in (2.15) implies U0 = U and t0 = t01 = 0; associating the f electrons with

the upper orbital defines U0 = 0 and t1 = t01 = 0, with the lower orbital electrons being

itinerant. In the two-band PAM, both hopping parameters are simultaneously non-zero

allowing the possibility of two conducting bands.

In either case, (2.16) is formally equivalent to a special variety of (2.15), but further

consideration is required to identify whether specific incarnations of (2.15) (and [2.16]) can

provide the necessary physics of a DHM.

With this in mind, for the present purpose a set of minimal restrictions on (2.15) to

evaluate the fundamental physics of orbital relaxation would include,

Condition 1: A non-zero Coulomb repulsion, U0 > 0, in the lower orbital, motivating a

reflexive dynamic in electronic double occupancy.

Condition 2: A non-zero local or nonlocal hybridization, t′ or t01, thus allowing the

reorganization of electrons in the orbitals on double occupancy.

Condition 3: A non-zero hopping parameter, t0, for the lower band, associated with the

itinerant electrons described in the single band Hubbard model which experience the

adjustment of their wavefunction on double occupancy.

Condition 4: An energy gap between the two orbitals so that ε1 > ε0, avoiding the case

of orbital degeneracy.

The two-band PAM (2.16) has been studied by Kogoutiouk and Terletska [55] for t0 =

t01 = 0 and U1 = 0, which parameters do not meet condition 3 in (2.3). Similarly, the use

of an attractive U0 in the two-band PAM studied by Sarasua and Continentino [56] violates

the requirement of repulsion in Condition 1. By contrast, Continentino et al. ( [57]) and

Tovar Costa et al. ( [58], [59]) examined the MIT and the effect of t′ in (2.16) with two

conduction bands and U1 = 0. Their quite general analysis allows for agreement with all

2Essentially a double-band Hubbard model with on-site hybridization.
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the conditions in (2.3), although the motivation of orbital relaxation physics appears not

to have been explicit.

A two-band Hubbard model with intra-orbital hybridization t01 (and including an ex-

change interaction) has been studied with quantum Monte Carlo dynamical mean field

theory by Koga et al. [60], providing interesting results relating to the effect of hybridiza-

tion on the orbital-selective Mott transition (see section 7.6). However, this particular

realization of (2.15) employs degenerate electron bands, thus violating condition 4 as a

necessary characteristic of a dynamic Hubbard model.

Hirsch [40] identified two further restrictions on the relative values of parameters in the

electronic Hamiltonian (2.15):

U1 + 2ε1 < U01 + ε0 + ε1 < U0 + 2ε0 (2.17)

U0, U01 >> ε1 >> t0 . (2.18)

These restrictions in (2.17) involve the energy ordering of two-particle states of the lattice

sites, ensuring that electrons on doubly-occupied sites will tend to favour the upper orbital

over the lower due to the reduced cost of Coulomb repulsion from U1. This ordering is

illustrated in figure 2.4 and reflects the underlying classical intuition that electron pairs in

the 2s orbital have less spatial overlap of their densities due to a larger orbital size than

1s electron states [40].

ϵ
0

ϵ
1 E

0
 = U

1
 + 2ϵ
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1
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 + ϵ
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Figure 2.4: The non-hybridized two-electron energy states of the dynamic Hubbard model Hamil-
tonian (2.15), when the energy scaling condition (2.17) is applied. The lowest energy state, E0,
obtains with double-occupancy in the upper orbital. The highest energy double-occupancy state,
E2, has the electrons both populating the lower orbital.
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Parameter relationships expressed in (2.18) are intended to reflect the length scales of

real lattices: due to spatial proximity, electrons interact more strongly with one another

via Coulomb repulsion than they do with the attractive nucleus they orbit (U0, U01 >> ε1);

and interatomic distances are larger than intra-atomic distances (ε1 >> t0). This second

inequality on atomic length scales also encapsulates an important aspect of the DHM that

makes it essentially dynamic: that intra-atomic states tend to respond quickly to the local

electron occupancy conditions, remaking the site orbital on a shorter time scale than applies

to hopping [40].

The electronic DHM Hamiltonian (2.15) differs from the other two DHM realizations,

(2.12) and (2.14), by allowing a full occupancy of a lattice with four electrons. Pauli

exclusion restricts each site orbital to hold only one up and one down electron. In the naive

comparison to hydrogenic states, the orbitals comprise different states of the quantum

number n, and can thus be simultaneously occupied by electrons having the same spin

configuration with reference to some geometrical axis. In the electronic DHM, a full lattice

site is quadruply occupied, and there are 24 = 16 possible electronic occupations available

to the atom, illustrated in figure 2.5. These are the 24 basis states for the single-site

Hamiltonian.

Meeting the critical four conditions given in (2.3) (but perhaps not those specified by

Hirsch in [2.17] and [2.18]), the electronic DHM has been studied in a handful of cases

using different methods, and with a variety of motivations.

The first explicit investigation was by Hirsch in 1991 [40] for t1 = 0, with localized

electrons in the upper band, mapping to an effective single band model. This early paper

was followed by a more comprehensive evaluation of the DHM by Hirsch in 2003 [31] using

exact diagonalization of a four-site chain. It appears that these papers constitute the

only specific evaluations of the electronic dynamic Hubbard model (2.15) with the critical

physics of orbital relaxation as the focal point. They are, therefore, the important context

for comparing the results of our work as discussed in chapter 7.

A handful of other researchers have studied a version of the DHM without emphasizing

the specific physics relevant to our work. Shortly after Hirsch’s 1991 paper [40], Georges

et al. [61] employed QMDMFT in the restricted case of a bipartite lattice where the hy-

bridization occurs only in t01 and t0 = t1 = 0 to model electron transport in a “CuO-type”

system.

The study of CuO lattices motivated further interest in DHM-type Hamiltonians in

the work of Si et al. [62] who restricted hopping to the lower orbital, and the previously

mentioned work of Continentino et al. [57] and Tovar Costa et al. [58, 59] focusing on the

orbital selective Mott metal-insulator transition (OSMT) and t′.
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0 є0 є0 є1

є1 U0+2є0 U01+є0+є1U1+2є1

U01+є0+є1 U01+є0+є1 U01+є0+є1 U0+2U01+2є0+є1

U0+2U01+2є0+є1 U1+2U01+є0+2є1 U1+2U01+є0+2є1 U0+U1+2U01
+2є0+2є1

Figure 2.5: Sixteen possible electron basis states of the electronic DHM (2.15), along with the
total local energy of each state, with parameters illustrated in figure 2.3.
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More recently, interest in the OSMT (see section 7.6) has motivated Song and Zou [63]

and Song [64] to employ two-site DMFT in exploring a DHM with only t01 hybridization,

not t′, and U0 = U1, and the inclusion of Hund’s coupling terms. In a similar vein,

Winograd and de’Medici [65] have published a zero-temperature study of the OSMT using

a DHM with Hund’s coupling and interorbital Coulomb repulsion restricted as U0 = U1,

t01 = 0 and degenerate bands.

2.4 Four-Site Solution of the Electronic DHM

In 1991 Hirsch [40] introduced a simple version of the electronic DHM (2.15) restricting

electron hopping to the lower orbital so that t1 = t01 = 0, with the Hamiltonian,

H = −t0
∑
〈ij〉σ

[
c†0iσc0jσ + c†0jσc0iσ

]
+ U0

∑
i

n0i↑n0i↓ + U1

∑
i

n1i↑n1i↓

+U01

∑
iσσ′

n0iσn1iσ′ + ε0
∑
iσ

n0σ + ε1
∑
iσ

n1σ

−t′
∑
iσ

(c†0iσc1iσ + c†1iσc0iσ) . (2.19)

Assuming the energy condition (2.17) and that U01 − U1 − (ε1 − ε0) >> t′ << 1, Hirsch

employed a perturbation approximation to lowest order in t′ to map the two-band Hamil-

tonian to a single-band system of effective fermions, whose spin states respectively capture

the single-occupancy of electrons on the lower orbital (with some small weight in the upper

orbital), and the doubly-occupied site weighted primarily with both electrons in the upper

orbital and some minor contribution from the electrons in different orbitals of the site.

With this approximation, Hirsch demonstrated an increased hopping rate for holes moving

onto lattice sites occupied by few electrons, or equivalently, many other holes. This pro-

vided evidence for pairing of holes in the electronic DHM, in agreement with hole-pairing

evidence from other versions of the model [47,66].

In 2003 Hirsch returned to the electronic DHM, extending the analysis to a more general

case with a thorough exact diagonalization study [31] of the full Hamiltonian (2.15). In

that work, the focus was on ground state properties of a linear chain of four sites using

free-end boundary conditions (to avoid finite-size effects related to degenerate eigenstates).

For simplicity, Hirsch defined the three hopping parameters as equal, so that,

t0 = t1 = t01 = t , (2.20)
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with the justification that the essential physics is unchanged by this constraint, according

to his previous study [40] and work by others on the periodic Anderson model [54].

For the sake of computational efficiency, Hirsch additionally constrained the Hilbert

space of the exact diagonalization problem, eliminating all states containing three or more

electrons at any of the four sites, as well as states where a site is occupied by two electrons

of the same spin.

The main focus of the paper was the change in quasiparticle properties in the interacting

system as a function of band filling. Four key results emerged from the exact diagonalization

study [31]:

1. Quasiparticles are found to be less coherent as holes (high filling) than as electrons

(low filling), as measured by changes in the quasiparticle weight.

2. Optical conductivity spectral weight is transferred from low to high frequency as

band filling increases toward the hole regime (n ≈ 2).

3. For certain parameter regimes, an attractive effective interaction is found between

charge carriers, and associated with pairing of holes. The same parameters are also

associated with an increase in the coherence of the quasiparticles and their hopping

between sites.

4. Pairing of holes is correlated with lowering of the system’s kinetic energy.

These results issue from the fundamental asymmetry between holes and electrons in

the DHM, arising from the orbital relaxation that occurs at high band filling. According

to Hirsch, this asymmetry creates the conditions for superconductivity to obtain through

the mechanism of hole pairing, as explained in section 2.5. The particular physics of

electron-hole asymmetry does not arise in standard treatments of the single-band Hubbard

model, which is symmetric on electron-hole transformation of the creation and annihilation

operators.

An important advantage of the finite system size of [31] is the countability of electrons

occupying the lattice sites. A full band is composed of eight occupying electrons, two per

site. In this finite-size limit, Hirsch was able to directly evaluate the differences in key

indicators of hole-pairing and the onset of the superconducting transition by examining

the physics with one hole (seven electrons) or two holes (six electrons) occupying the

linear chain. Band-filling with two holes permits pairing, and under these circumstances

Hirsch observed some important effects when system parameters were properly tuned (t′ =

0.2, U0 = 10, U01 = 6, ε0 = 0, t01 = t0 = t1 = 1), as illustrated in figure 2.6. In particular,
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for the case where U1 and ε1 are both small, the quasiparticle weight for two holes (six

electrons) is larger than for a single hole (seven electrons) and thus hole pairing is associated

with “re-coherence”; paired holes experience an effective attraction seen in the negative

value of Ueff at Ne = 8, defined as,

Ueff(Ne) = E0(Ne) + E0(Ne − 2)− 2E0(Ne − 1) (2.21)

where Ne is the number of electrons in the system and E0 the ground state energy at

that filling; and the effective hopping, teff, of hole pairs between lattice sites is larger than

for single holes (in agreement with other DHM studies on correlated hopping Hubbard

Hamiltonians [40,67,68]).

The exact diagonalization results are in qualitative agreement with those found from

studies of the auxiliary spin DHM (2.14), particularly in a four-site exact diagonalization of

that model by Hirsch [48], and a two-site dynamical mean field zero temperature study by

Bach [51] who saw the same shift of spectral weight and decoherence of charge carriers as

band filling is increased, and was also able to investigate the Mott physics of the auxiliary

spin DHM.

Our study of the electronic DHM (2.15) explores the electron-hole asymmetry in the

same parameter space as Hirsch’s four-site exact diagonalization analysis. The DMFT

method allows full generality in the hybridization parameters t01 and t′, as well as the

Hilbert space size (permitting the full quadruple electron occupation of a lattice site).

These advancements on the four-site chain allow for a more sophisticated analysis of the

physics behind the electronic DHM, including realization of Mott physics, unavailable to

Hirsch in consequence of the computationally restricted Hilbert space. The results of our

DMFT analysis are given in chapter 7, where comparisons are made to those of Hirsch [31].

2.5 Superconductivity through Hole Pairing

The conventional understanding of superconductivity, BCS theory [69], identifies the in-

teraction between electrons and ions as the driving agency behind the phenomenon. The

strong Coulomb interactions acting directly between the electrons are confined to the back-

ground state in which the displacement of ions from their equilibrium positions mediate

an effective interaction between the otherwise mutually repulsive charge carriers, forming

a condensate of low energy Cooper pairs. This coupling of electrons to phonons drives the

superconducting phase transition by providing a more favourable (lower) potential energy

state for the system [70].
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Figure 2.6: Effects of hole pairing in the four-site exact diagonalization of (2.15), with system
parameters specially chosen for the proper physics to occur (t′ = 0.2, U0 = 10, U01 = 6, ε0 = 0, t01 =
t0 = t1 = 1). Here, ε corresponds to our ε1 − ε0 and U ′ to our U1. The solid line is the specific
regime where hole-pairing is seen to promote superconductivity: a) the quasiparticle weight for two
holes (six electrons) is higher than for one hole (seven electrons); b) Ueff is the effective Coulomb
repulsion defined in (2.21) which becomes attractive (negative) at the top of the band; c) the
effective hopping for two holes is higher than for a single hole. From [31].
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Alternatively, Hirsch developed [39] a theory of hole superconductivity [47, 66, 71] on

the basis of hole-pairing near the top of a band (i.e. when the band is nearly filled with

electrons). As previously discussed, the high density of electrons will result in electronic

wavefunctions adjusting to minimize the energy cost of the Coulomb repulsion, the central

feature of the dynamic Hubbard model. In this regime, electron-electron repulsion is of

competitive size in the system with the electron-phonon interaction, and in fact dominates

the physics. As electron states reorganize to minimize their mutual repulsion energy at the

lesser cost of increasing the electron-ion energy, new states of paired holes emerge with high

electron-electron energy but low electron-ion energy. These paired-hole states condense to

the bottom of the energy band leading to hole superconductivity [39].

The Hirsch model of hole superconductivity appeals to the fundamental asymmetry

between electrons and holes in condensed matter systems described by orbital relaxation

in the dynamic Hubbard model. This asymmetry is absent from the single-band Hubbard

Hamiltonian, where electrons and holes are treated on the same footing, but appears in

Hubbard models with a correlated hopping term [67] and in the DHM (2.15).

The higher electron density of the nearly full band therefore results in holes as charge-

carriers moving around the lattice in a background of negative electron charge, which

becomes deformed in response to the changing overall wavefunction. The holes, then, are

highly “dressed” quasiparticles with low coherence or high effective mass (corresponding

to a low quasiparticle weight). They are essentially followed through the lattice by a cloud

of disturbed electron background, much like polarons in the Holstein model [30, 44] of

electron-ion coupling [72].

In this highly dressed state, it has been shown [40,67,68] that paired holes (of opposite

spin) tend to propagate more easily through the lattice: the effective hopping amplitude of

charge carriers becomes dependent on the electronic occupation of the sites involved in the

electron tunneling. The first hole to hop onto a lattice site causes a significant reformation

in the electronic background, while the second hole in a pair makes the hop with a reduced

disruption to the background and this transition becomes easier [39]. The hopping, thole,

is enhanced for pairs of holes moving together as,

tpair = thole
√
zh (2.22)

where zh is the hole quasiparticle weight [73]. This enhanced, correlated hopping provides

an effective attractive interaction between nearest neighbour holes with opposite spin,

which is indicative of a superconducting transition [74,75].

Consequently, paired or correlated holes are somewhat undressed and thus have a re-

27



2.5. SUPERCONDUCTIVITY THROUGH HOLE PAIRING

duced effective mass compared to isolated and highly dressed holes moving about the

lattice. The lower effective mass from pairing of holes implies a higher mobility allowing

for a reduction in kinetic energy and a corresponding lowering of the system’s free energy.

This energy reduction provides the condensation energy for the superconducting transi-

tion as the undressed holes form the condensate. This contrasts with the potential energy

reduction that explains the condensate of Cooper pairs in BCS theory [68].

One may equivalently understand the onset of the superconducting state from the per-

spective of electron charge carriers. As the local density of holes increases (through pairing),

the density of electrons necessarily decreases and the quasiparticles undress, becoming more

free-particle-like [76].

The London penetration depth, λ, related to the screening of magnetic fields from the

interior of a superconductor, is,

λ =

√
mc2

4πne2
(2.23)

where m, n and e are the mass, density and charge of the superconducting carriers [77].

This relationship between λ and m suggests that this lowering in quasiparticle effective

mass will also reduce the London penetration depth, leading to transfer of optical spectral

weight from high frequencies to the low frequency Drude peak which is directly related to

the value of λ [76]. This effect has been observed experimentally [78,79] in the hole-pairing

regime of the electronic DHM exact diagonalization study [31].

The underlying physics of the Hirsch theory of hole-pairing-driven superconductivity

rests on the validity of orbital relaxation in nearly full electron bands. This theoretical

framework is robustly described in the general form of the Hamiltonian (2.15), an expres-

sion more complex than that of the single-band Hubbard model whose exact “solution”

has proven understandably elusive throughout the history of condensed matter physics.

The computational method of dynamical mean field theory, however, has proven to be an

important tool to gain insight into the physics of both the single-band Hubbard model and

multiorbital Hubbard models such as (2.15).
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Chapter 3

Dynamical Mean Field Theory

3.1 Motivation Behind DMFT

A change to the parameters defining a material can result in important and dramatic

physical responses when the electrons experience significant repulsive Coulomb interactions.

These interesting phenomena of strongly correlated systems find their simplest microscopic

description in the single band Hubbard model of spin-1
2 fermions on a lattice. This model

captures the essential physics at work due to the competition between kinetic energy and

Coulomb repulsion in the many-body system. Especially at low energies, these materials

demonstrate exotic and complex responses to small changes in their properties [80].

Despite its formal compactness, however, the Hubbard Hamiltonian (1.4) cannot be

solved analytically except for very small systems (which cannot be relied upon to capture

the dynamics of a true many-body “bulk” lattice environment), and in the special case of

one-dimensional chains of atoms with nearest-neighbour hopping [29]. This special case

remains the only Hubbard model with an exact ground state solution, and has at least

some practical application such as modeling finite dimensional systems such as aromatic

benzene rings [81]. In higher dimensional systems an exact solution of the Hubbard model

remains outstanding and has been the subject of concerted theoretical effort [30].

The essential difficulty of solving the Hubbard model is that the two terms of its Hamil-

tonian cannot be made diagonal in the same formal quantum basis space. The kinetic

energy term is diagonal in the momentum representation of the operators while the inter-

action term becomes diagonal when the Hamiltonian is Fourier transformed to coordination

space. The operators of the two spaces are governed by the position-momentum uncer-

tainty relation thus rendering an exact analytical diagonalization of the entire Hubbard

Hamiltonian out of reach for large, realistic systems.
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The quantum mechanical basis for a single-band Hubbard many-body system of N

lattice sites spans a Hilbert space of size 4N , determined by the four possible electron

occupations on each site, as permitted by the Pauli exclusion principle:

1. an empty site occupied by no electrons;

2. a single up-electron;

3. a single down-electron;

4. a doubly-occupied site of one up and one down electron.

Since the size of the Hilbert space grows exponentially with N , for even a small lattice

a Hamiltonian matrix cannot in practice be diagonalized (hence solved) analytically with

current computer technology, for reasons pertaining not only to processor speeds but more

importantly to dynamic storage limitations. Diagonalizing a matrix of size N ×N requires

computational operations on the order of N3 [82] and sufficient dynamic memory capacity

for storage of N ×N floating-point values1. Exact and complete eigenspectrum solutions

of the Hubbard model Hilbert space are therefore computationally limited to extremely

small lattice sizes. This constitutes a fundamental restriction on the exploration of various

aspects of the system that arise in the thermodynamic limit such as spatially ordered

phases [84].

The computational difficulty of obtaining the complete eigenspectrum can be limited

by utilizing symmetries of the system where the Hamiltonian commutes with an operator.

Useful symmetries would be particle number conservation and commutation of the Hamil-

tonian with the Pauli spin matrices (when neglecting spin-flip as a mechanism of the lattice

system). With these symmetries, the Hamiltonian matrix can be divided into independent

blocks which can be diagonalized separately.

Where the electron population of the Hamiltonian block is fixed with n↑ spin-up and

n↓ spin-down indistinguishable electrons, in the absence of spin flips the result is both

conservation of total spin angular momentum Sz = 1
2n↑ + −1

2 n↓ and particle number N =

n↑ + n↓. In this way the Hilbert space of the larger Hubbard Hamiltonian can be divided

into an analysis of smaller Hilbert spaces.

The size of the reduced Hilbert space problem involves the combinatorial solution of

distributing these n↑ and n↓ fermions on the available sites without violating the Pauli

1At the time of writing, a typical high-end desktop computer might have the capacity to churn out the
exactly calculated complete eigenspectrum for an eight-site lattice requiring dynamic storage in the tens of
gigabytes. The record 1.6 PB of storage available to users of the IBM Sequoia supercomputer [83], the third
fastest in the world, would “nearly” permit the exact solution of a lattice of twelve sites. A thirteen-site
lattice awaits the future development of a computer harnessing 36 PB of dynamic memory.
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exclusion principle which forbids two fermions of identical quantum state from populating

the lattice. The total number of ways of assigning the up and down electrons is
(
N
n↑

) (
N
n↓

)
,

and the largest of the Hubbard Hilbert spaces will correspond to the block with n↑ = n↓ =
N
2 and total block matrix size of

(
N
bN/2c

)(
N

N−bN/2c

)
.

Assuming parallelization of the diagonalization algorithm across independent blocks,

the dimension of this largest block will be the effective constraint on computational effi-

ciency in solving the complete eigenspectrum. Within the limits of current desktop tech-

nology one might solve the spectrum for a system of 18 or 19 lattice sites, while the

available global limits on supercomputer dynamic memory would permit a solution for the

full eigenspectrum of a 26 site system [83].2

It is clear that in the absence of exact solutions for large realistic systems of correlated

electrons an important area of research relates to approximation techniques which reduce

the computational expense of solving the Hubbard model, while providing insight into

the model’s characteristic competition between the kinetic energy and double-occupancy

penalization of the Hamiltonian’s two terms. Any lattice site, at any time, may be found

to be in a variety of electron occupation states and the dynamics of how these many-

body states evolve requires a sufficiently sensitive approximation scheme. A static mean-

field approximation such as Hartree-Fock is insufficient to capture the important physics

expected to obtain for the interesting case where the on-site Coulomb repulsion U is of

similar size to (or larger than) the electron hopping parameter t [20]. In the same physically

interesting region perturbation methods, requiring one term to dominate the other, are also

ruled out.

For a quarter century following the development of Hubbard’s model of strong corre-

lations [24, 26], physicists tried to develop a broad approach to analyzing this important

Hamiltonian. In particular, a microscopic description of the metal-insulator transition

proved elusive, since any effective technique must simultaneously capture the renormalized

quasiparticle behaviour at the Fermi energy and the localization effects embodied in the

Hubbard bands of the single electron density of states.

Hubbard’s own analysis [26] provided good insight into the development of the insu-

lating gap in the transition, but failed to demonstrate a well-defined quasiparticle peak

in the metallic phase [85]. From the metallic side of the metal-insulator transition, as

the Coulomb repulsion is increased, Brinkman and Rice [86] used a variational calculation

to determine the critical value Uc, but were unable to provide insight into the insulating

behaviour which should be anticipated by the formation of higher energy excitations that

2This estimate conveniently ignores the processing time and associated patience required to perform the
required calculations.
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eventually form the Hubbard bands [87]. The two methods provided differing critical val-

ues for the Coulomb parameter at which the MIT transition occurs and the relationship

between the Hubbard and Brinkman Rice predictions was unclear. Of critical interest was

the question of whether the insulating gap opens continuously or through a sharp transi-

tion, and the way in which this transition illuminates a breakdown in Fermi liquid theory

as the quasiparticle character of the electrons disappears [88].

A breakthrough in 1989 by Metzner and Vollhardt [89] and Müller-Hartmann [90] pro-

vided the framework for a robust solution of the dynamics of this strongly correlated

problem, relying on a simplification of the interaction dynamics that occurs in the limit of

infinite lattice coordination number.

3.2 The Simplification of Infinite Dimensionality

In the study of spin systems, especially classical ones, the use of an infinite limit to some

system parameter—such as spatial dimension, spin degeneracy or coordination number—

has provided a simplification toward an exact solution of many problems. The properties

in this limit yield insight into the physical system that is finite, but similarly “large” in

the space of that parameter [20].

The Weiss molecular field [91] of localized atomic spins, an approximation to the Ising

model (itself a reduction of a general extended Hubbard model [30] for U >> t), is an

example which becomes exact in just such a limit—that of infinite dimensionality, d→∞.

The Ising Hamiltonian HIsing describes the interaction with its n neighbours of a central

atom, j, of spin component Sjz along the z-axis, subjected to an applied magnetic field

Hz, such that,

HIsing
j = −gµ0HzSjz − 2JSjz

n∑
k=1

Skz (3.1)

where g is the Landé factor, µ0 the Bohr magneton, and J the exchange interaction strength

(which depends on the atomic separation but for simplicity is assumed constant for all k,

which denotes the neighbouring spins). The final term describes the interaction between

the (z component) spins of the neighbouring electrons and the central atom. It can be

approximated with a mean interaction value,

Hmean ≡
2J

gµ0

n∑
k=1

〈Skz〉 . (3.2)

The effective “molecular” or “Weiss” magnetic field Hmean is incorporated into (3.1) to
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give a simplified problem of a single atom within an average magnetic field:

HIsing
j = −gµ0(H0 +Hmean)Sjz . (3.3)

This Weiss mean-field approximation gives a qualitatively correct result for the mag-

netic phases of the Ising model in three dimensions but is unreliable at lower dimensional-

ity [84]. It becomes exact, however, in the limit of infinite dimensions (d→∞⇒ n→∞),

under the strict condition that the interaction J is scaled inversely with dimensionality as

J ≡ J∗

n (where J∗ is a constant parameter). Under that condition, the energy density of

(3.2) remains finite and non-zero, and the sum over the mean of the neighbouring spins is

asymptotically equivalent to the sum over the actual spins, since,

lim
n→∞

J∗

n

n∑
k=1

〈Skz〉 = lim
n→∞

J∗

n

n∑
k=1

Skz (3.4)

because,

lim
n→∞

J∗

n

n∑
k=1

(Skz − 〈Skz〉) ≈ 0 . (3.5)

Here, the positive and negative fluctuations Skz − 〈Skz〉 will cancel around the mean value

to within a remainder of O( 1
n).

The mean field approximation of the Ising model is thus a meaningful solution of a

system of localized spins in the limit of infinite dimensionality. With this relationship in

mind, Metzner and Vollhardt [89] showed that the same limit leads to a dramatic simpli-

fication for the investigation of quantum many-body systems described by the Hubbard

model.

As with the Ising model (3.1), it is necessary to perform a scaling on the Hubbard

Hamiltonian to ensure that in the d→∞ limit the energy per lattice site does not diverge.

In this case, the interaction term,

Hint = U
∑
i

ni↑ni↓ (3.6)

proves insensitive to the dimensionality, being localized to one site only.3

The Hubbard kinetic energy term in the mean field approximation with nearest-neigh-

3In the case of an extended Hubbard model with nearest-neighbour Couloumb interactions, scaling is
required for the interaction parameter.
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bour hopping t is,
1

n
〈HKE〉 =

−t
n

∑
〈ij〉

〈c†icj〉. (3.7)

and must be scaled appropriately to ensure the kinetic energy does not explode relative to

the interaction energy. The proper scaling is determined from the density of states for large

dimensions. From the central limit theorem, for the hyper-cubic lattice this is a Gaussian

density of states [89],

Dhc(ε)
d→∞−→ 1

2t
√
πd

exp

[
−
(

ω

2t
√
d

)2
]
. (3.8)

For d → ∞ this density of states remains non-trivial when the hopping amplitude is

redefined as,

t =
t∗√
d

(3.9)

for constant t∗ [20].

With this scaling, the self-energy perturbation expansion becomes entirely diagonal in

coordination space, as all non-local terms involving electron-electron interactions between

different lattice sites are proportional to 1√
d

[84]. This result has been explicitly shown

to hold for a variety of lattice geometries extended to infinite dimensionality including

cubic [90], honeycomb/diamond [92] and the Bethe lattice [87], which has a semi-circular

density of states [93,94],

DBethe(ε) =
1

π

√
1− ε2

4t∗2
. (3.10)

Only the local (or on-site) term is retained, so that,

lim
d→∞

Σij,σ(z) = Σij,σ(z)δij . (3.11)

Site-diagonal self energy was an important assumption made by Hubbard in his work

[26] on solving the insulating side of the metal-insulator transition. The variational wave

function used by Brinkman and Rice [86] in tackling the problem from the metallic side

of the transition becomes exact in the limit of d → ∞. Therefore, the limit explored by

Metzner and Vollhardt has the a priori appearance of connecting the results found by these

different methods, and this has been borne out in actual calculations [88].

The coordinate localization of the self energy (3.11) translates in momentum space

into a momentum-independent self energy. With this important simplification, the k-

dependence of the single-particle Green’s function Gσ(k, z) for the many-body interacting
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system is contained exclusively in the free-electron dispersion εk as,

Gσ(k, z) =
1

z + µ− εk − Σσ(z)
. (3.12)

The momentum-independence of the self energy provides the necessary simplification

for the development of dynamical mean field theory (DMFT), a computational tool which

can provide an exact solution to the Hubbard model in infinite dimensions. The solution

is realized by mapping the interacting lattice problem onto that of an impurity embedded

in a mean-field medium.

The DMFT technique emphasizes two essential characteristics arising from the mean

field approximation of the strongly-interacting system. First, in common with all mean

field theories, there is a loss of the spatial fluctuations of the electrons between unique

sites of the lattice. All properties of the system are in the context of onsite behaviour, an

obvious consequence of the lack of momentum resolution in the problem. On the other

hand, the on-site behaviour of the system is dynamical with respect to electron occu-

pancy, offering information about the lattice problem that would be unavailable to a static

mean-field solution. A dynamical solution is essential to capturing the competition in the

Hubbard model between the on-site Coulomb repulsion and the general tendency for itin-

erant charge-carriers to remove themselves from the local site into the lattice environment.

The consequence of this competition is nicely captured by the properties of a momentum-

independent single-particle Green’s function and self-energy that will be the ultimate result

of the DMFT approximation.

3.3 Anderson Impurity Model

In the limit of infinite dimensionality, the equivalence of the fully interacting lattice and a

single site interacting with a mean field environment suggested [88,95] that the onsite single

particle Green’s function Gii(z) for a system modeled by the Hubbard Hamiltonian is com-

parable to the Green’s function Gimp for the single-impurity Anderson model (SIAM) [96].

The SIAM is an appropriate intermediate step in generating a mean field approximation

to the fully interacting lattice Hubbard problem.

The general Anderson impurity model envisions a localized magnetic impurity occupied

by aNf -degenerate d or f shell of interacting electrons coupled to a non-interacting effective

medium (often called the “bath”) which represents the mean-field influence of a conduction

band in the surrounding lattice. In principle, the conduction band states form a continuum

of Bloch states φl(r) of the crystal, but in practice the band is parameterized by a finite
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value of Nl pseudo-sites of occupation energy εl. Electrons occupying the local impurity

site with energy εf are “hybridized” with the band electrons through a coupling constant

Vlf , an effective hopping between the impurity and the surrounding crystal environment.

For a system with chemical potential µ, the Hamiltonian of the Anderson model is,

HAM =

Nf∑
fσ

(εf − µ)c†fσcfσ +

Nl∑
lσ

Nf∑
f

(εl − µ)C†lfσClfσ + U

Nf∑
f>f ′

c†f↑cf↑c
†
f ′↓cf ′↓

+
∑
σ

Nl∑
l

Nf∑
f

Vlf (C†lσcfσ + Cf†σ clσ) , (3.13)

where the operators C† (C) create (destroy) a bath electron, and c† (c) create (destroy) an

f -shell electron on the impurity site. Similarly to the Hubbard model, in the absence of the

interaction term, U
∑Nf

f c†f↑cf↑c
†
f↓cf↓, (3.13) (known in that limit as the Fano-Anderson

model [96,97]) is exactly solvable [30].

The final term of (3.13) describes the hybridization between the f -shell electrons and

the conduction band. The bath pseudo-sites couple selectively to individual impurity elec-

trons so that each f orbital has, in practice, its own bath. It is important to note that

the bath energies εl do not represent actual states in the physical lattice, but are repre-

sentative of these in a mean-field way. Even in the thermodynamic limit of k → ∞ the

connectivity of the pseudo-sites does not map one-to-one to a physical lattice geometry,

since the hybridization constants, Vlf , couple every bath site to the single impurity site.

A specific case of (3.13) is employed in developing the DMFT method, where the

impurity site is restricted to a single orbital, yielding a simplified Hamiltonian for the

single-impurity Anderson Model (SIAM):

HSIAM =(εc − µ)
∑
σ

c†σcσ +
∑
lσ

(εl − µ)C†lσClσ + Uc†↑c↑c
†
↓c↓

+
∑
lσ

Vl(C
†
lσcσ + c†σClσ), (3.14)

visualized in figure 3.1.

Anderson [96] employed the Hartree-Fock approximation to derive a mean-field Green’s

function,

gimp(z)−1 = z − (εc − µ)−
∑
l

V 2
l

z − (εl − µ)
, (3.15)
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Figure 3.1: The single impurity Anderson model (SIAM) maps the physics of interacting electrons
on a lattice onto a mean field approximation. In the lattice problem, the electrons repel one another
via the on-site Coulomb repulsion U , and move about the geometry of the physical lattice sites
according to the hopping parameter t, related to the overlap of tight-binding orbitals which form
electronic bands in the lattice. In the mean field picture, a single site is considered as an impurity
in a non-interacting “bath” represented by l pseudo-sites of energy ε1, ε2, . . ., εl. Electrons on the
impurity site continue to interact locally via U , the Coulomb repulsion, and hop to and from the
bath via hybridization parameters V1, V2, . . ., Vl.

which is the dynamic equivalent of the static Weiss field in the Ising model problem dis-

cussed in section 3.2. Referred to as the “Weiss field” in the DMFT literature [84], gimp

describes the dynamical mean field to which the local problem of electrons on an impu-

rity site are coupled to their (effective) environment, and is the basis for designating the

approximation method as “dynamical mean field theory”.

3.4 Hubbard Model Dynamical Mean Field Solution

Physically, the effective quantity (3.15) captures the processes taking place in the rest of

the lattice, independent of the impurity. It can be thought of as describing the behaviour of

all others lattice sites, i, with the site of interest, o, physically removed, leaving a “cavity”

among the otherwise connected sites [95]. The Hubbard model for these remaining sites

would be described by a local (or onsite) Green’s function Goii(z), for each of the remaining

lattice sites, where the superscript indicates the removal of site o.

In the case of a translationally invariant Bethe lattice (figure 3.2) with connectivity κ

and scaled hopping t, it has been shown [87] that the effective field glat(z) interacting with

a site o in the lattice is related to the Green’s functions G
(o)
ii (z) as,

glat(z)−1 = z + µ− t2

κ

∑
〈i,o〉

G
(o)
ii (z) = z + µ− t2G(o)

ii (z) (3.16)
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Figure 3.2: An illustration of the tree-like Bethe lattice with connectivity three. Each site is sym-
metrically connected to three other sites, rendering the overall geometry unphysical and impossible
to illustrate with accurate angles.

where 〈i, o〉 indicates hopping of electrons only between the impurity site and its nearest-

neighbours in the Bethe lattice. For a Bethe lattice with limited connectivity the removal of

site o has a significant effect on the local topology, since the connectivity of its neighbouring

sites is fundamentally altered. For increasing connectivity, however, the removal of site o

has a diminishing effect on the local dynamics since z ≈ z−1, so that G
(o)
ii (z) ≈ Gii(z), the

latter Green’s function being identified with a complete lattice without a cavity. Henceforth

we will denote the onsite lattice Green’s function Gii(z) as Glat(z), which will clarify the

notation in the multiorbital configuration.

According to the discussion in section 3.2, in the limit of infinite bath pseudo-sites,

(3.15) becomes exactly equivalent to expression (3.16), for an appropriate finite number

and choice of bath parameters, εl and Vl. Arriving at the proper values of these parameters

for the specific Hubbard model under consideration is the ultimate goal of the DMFT

method and is accomplished by enforcing the equivalence of these mean field functions:

gimp(z) = glat(z) . (3.17)

Because the dynamical field (3.15) describes the non-interacting mean-field environment

of the impurity, it can be related to the interacting SIAM Green’s function Gimp(z) through

a Dyson equation,

gimp(z)−1 = Gimp(z)−1 + Σimp(z). (3.18)

where Σimp(z) is the momentum-independent local self energy. The self energy is therefore
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accessible given a solution of the SIAM Green’s function Gimp(z).4 Provided with defined

values of the bath parameters in the impurity Hamiltonian (3.14), there are a variety of

strategies available to find Gimp(z). These methods of solving the Hamiltonian are referred

to as “impurity solvers” and will be discussed in section 3.5.

At the same time, the effective field glat(z), arising from the cavity picture of the lattice,

can also be related to a Dyson equation involving the local lattice Green’s function Glat(z),

and associated self energy Σlat(z):

glat(z)−1 = Glat(z)−1 + Σlat(z) . (3.19)

In the DMFT problem, then, there are two parallel scenarios, the impurity model and

lattice picture, equivalent in the limit of infinite dimensionality. The mean field parameters,

εl and Vl, are the link mapping one model to the other.

This equivalence applies not only to (3.17), but to all elements in the two Dyson equa-

tions, (3.18) and (3.19). Thus, the Green’s function Gimp(z), arrived at by application

of an impurity solver on (3.14), will provide a good approximation of the local Green’s

function Glat(z) of the Bethe lattice. As well, the SIAM self energy determined by (3.18)

can be considered identical to the lattice self energy so that,

Σimp(z) = Σlat(z) ≡ Σ(z) . (3.20)

The onsite Green’s function is generally defined, for electrons with dispersion εk, as,

Glat(z) =
1

N

∑
k

1

z − (εk − µ)− Σ(k, z)
, (3.21)

and is related to the probability of an electron, with some frequency z, leaving site i

and traveling through the lattice before again returning. Some simple limits illustrate

its character. For an insulating material, where electron-electron Coulomb interactions

dominate the dynamics of the Hubbard model (1.4), the real part of the complex self

energy, Σ(k, z), will be large and dominate the denominator of (3.21) for relatively low

energy electron excitations, z − εk + µ. In this scenario the probability expressed by the

local Green’s function will be small. In the opposite limit, where Coulomb interactions

between electrons are tending toward zero, the probability will reflect a k-dependent delta

4Another method to find the self-energy is through the ratio of the two-particle and one-particle Green’s

functions, F imp(z) and Gimp(z) respectively, so that Σimp(z) = U F imp(z)

Gimp(z)
, which provides a more accurate

solution of the spectral density for the DMFT problem when numerical renormalization group methods are
employed as an impurity solver (q.v. section 3.5) [98].
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function centered around the Fermi energy of the material, where z = εk − µ.

Accounting for the momentum-independence of the self energy, from (3.11), k is re-

stricted to the dispersion, εk. Then the sum over k can be replaced by the non-interacting

electron density of states D(0)(ε) particular to the (infinite) lattice geometry, according to,

D(0)(ε) =
1

N

∑
k

δ(ε− εk) . (3.22)

Thus, (3.21) can be expressed as,

Glat(z) =

∫
D(0)(ε)

z − (ε− µ)− Σ(z)
dε (3.23)

which, as mentioned, is equivalent to the SIAM Green’s function for a proper choice of

mean field bath parameters. It should be noted that the choice of density of states in

(3.23) is the only place in the DMFT method where the lattice geometry explicitly enters.

The appropriate values of these bath parameters are arrived at through an iterative

self-consistency algorithm, wherein the impurity Dyson equation (3.18) is used to find the

self energy, which can be employed in the lattice Dyson equation to arrive at the mean field

function glat(z). This function can then be compared with the effective field value from the

impurity model gimp(z), according to some distance function χ2. If the comparison shows

equivalence within some tolerance ζ, then the mean field parameter values, εl and Vl, can

be considered correct for the lattice under consideration. If the effective field functions do

not agree then they must be adjusted by minimizing the distance function,

χ2 =

∫
dzf(z)

∣∣∣glat(z)− gimp(z)
∣∣∣2 (3.24)

where f(z) is a possible weighting factor that biases the minimization toward agreement

at some region of the frequency domain.

The adjusted bath parameter values that minimize (3.24) are now taken as input for a

new, refined SIAM Hamiltonian (3.14), which is submitted to the impurity solver, and the

analysis continues as before until convergence, where (3.24) is within ζ. At convergence,

these values should describe a mean field that—for the chosen number of bath sites—most

closely models the physics of a lattice model with the same system parameters of electron

hopping, Coulomb repulsion and chemical potential.

The lattice picture mean field contribution glat(z) is only determined after the value

of the lattice interacting Green’s function Glat(z) has been established. In general, these

are related through (3.19) which requires an explicit solution of the integral in (3.23). In
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special cases of infinite dimensionality the relationship is simplified. For the Bethe lattice

with infinite coordination number, the lattice mean field function is directly related to the

impurity interacting Green’s function Gimp(z) via,

glat(z)−1 = z + µ− t2Gimp(z) (3.25)

by exchanging Gimp(z) for Glat(z) (which are equivalent for the proper selection of bath

parameters) in (3.16) [87]. Under this formulation, the explicit determination of the self

energy becomes irrelevant to achieving a converged solution of the DMFT problem. Of

course, Σ(z) can be calculated after the fact using a Dyson equation.

In this simple case of a single-orbital Hubbard model, an analytical solution of the

integral can be evaluated exactly for the Bethe lattice density of states (3.10) with scaled

hopping t∗ [51]:

Glat
σ (z) =

∫
dε

πt∗

(
1

z − (ε− µ)− Σσ(z)

)√
1− ε2

4t∗2
(3.26)

=
1

2t∗2

(
z + µ− Σ(z)

− sgn {< [z + µ− Σ(z)]}
√

[z + µ− Σ(z)]2 − 4t∗2
)
.

The usefulness of the form provided by (3.25) becomes apparent in the multiorbital

DMFT solution presented in the following chapter, where the integration in (3.23) may

become analytically challenging and numerically time-consuming.

3.5 Impurity Solvers

The appropriate choice of an impurity solver is often cited as the most challenging step

in a reliable DMFT solution (see, for example, [20, 80, 84]). Both approximate and nu-

merically exact impurity solvers have been employed in DMFT studies, with each method

providing advantages and suffering from limitations. There is, therefore, no universal strat-

egy that can be employed to determine the appropriate system Green’s functions without

the involvement of approximations or assumptions. In selecting an appropriate impurity

solver the central conflict is between accuracy, efficiency and flexibility in the scope of the

parameter space available for analysis.

Approximate methods include iterated perturbation theory [87, 88, 95], non-crossing

approximation [87,99,100] and the fluctuation exchange approximation [80,101,102]. These
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impurity solvers are useful for the efficient insight they provide into the SIAM Hamiltonian

dynamics within certain parameter constraints. For instance, in the case of the non-

crossing approximation the Coulomb repulsion is large compared to the bandwidth W [99];

for fluctuation exchange, U < W
2 [80]. The flexibility to solve the Hamiltonian for any

choice of system parameters is sacrificed in favour of computational speed.

Numerically exact impurity solvers can be grouped into four computational strategies:

numerical renormalization group (NRG) [103–105], density matrix renormalization group

(DMRG) [106–108], and more commonly, quantum Monte Carlo (QMC) [87, 88, 109–111]

and exact diagonalization (ED) [51,112–114].

NRG methods map a discretized model of the electron conduction band onto a semi-

infinite chain linked to the impurity site, where the adjusted hopping parameter falls off

exponentially away from the impurity along the one-dimensional chain [105]. NRG offers

good resolution of low energy spectral details (including the metal-insulator transition),

but not in high energy regions such as the edges of the Hubbard bands. It is also unable

to solve a multiorbital DMFT problem in a robust way (such as, where the orbital energies

are dissimilar) [105,115], a requirement for the present study.

DMRG works similarly, mapping the interacting lattice of interest to a one-dimensional

model, but is less suited to resolving detailed spectral function structure, especially at low

energies, or the excited states of the Hamiltonian, which are important for determining the

Green’s function [108].

QMC methods are widely used as DMFT impurity solvers, employing either the Hirsch-

Fye [116] or continuous-time [109] methods. QMC is able to explore a very large Hilbert

space for the impurity model, thus employing an excellent mapping of the physical lattice,

but the accuracy of the method’s results grows with the square root of the simulation

time. As well, access to real-frequency results, as required for spectral properties, involves

analytic continuation via the maximum entropy method [117], a difficult problem especially

where the statistical errors associated with QMC are sizable [87].

Most importantly, for a multiorbital problem, the well-known QMC fermion sign-

problem becomes increasingly intense as the system moves away from particle-hole sym-

metry. This is particularly relevant to any study where the Coulomb repulsion between

electrons is not restricted to twice the chemical potential of the system, or the electrons

are in a superposition of states across non-symmetric orbitals [118].

Exact diagonalization produces a numerically exact Green’s function through the so-

lution of the Anderson model Hamiltonian (3.14), and compared to QMC allows for a

relatively simple extension of results to real frequencies through analytic continuation and

rational function extrapolation methods (q.v. section 5.1). It is also reliable for both fi-
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nite and zero temperature, and is unconstrained with respect to the parameters of the

system. In contrast to renormalization methods, ED can, in principle, handle multiorbital

Hamiltonians in a natural and simple way, and is free from the sign problem and statistical

uncertainties of QMC.

The main drawback of the ED method is that it becomes computationally intensive as

the Hilbert space of the largest Hamiltonian block increases, corresponding to an increase

in mean field bath sites. For a large number of sites one must rely on the Lanczos [119,120]

or Arnoldi [121] algorithms for an approximate solution that restricts the Hilbert space

to a manageable size by keeping temperature near zero [112, 113]. A smaller number of

bath sites, while computationally tractable, introduces disagreement at low energies in the

convergence of (3.24) [87], although this is somewhat alleviated in a multiorbital scenario

(q.v. section 6.2).

In this work, which focuses on a multiorbital model of strongly correlated electrons, ED

is a natural choice for the impurity solver for the reasons given. As well, the existence of

an early published FORTRAN implementation of the DMFT algorithm, the local impurity

self-consistent approximation (LISA) [87,122] for the single-orbital Hubbard model provides

a reliable ED comparison for results from new implementations of the DMFT problem (q.v.

section 3.6).

Under ED DMFT, the Anderson Hamiltonian (3.14) is diagonalized to give the exact

eigenstates |j〉 and eigenvalues λj of the system. For our work a reliable and efficient algo-

rithm, SelfAdjointEigenSolver.h, from the C++ Eigen library [123] is used to perform

the numerical diagonalization.

As discussed in section 3.1, the Hamiltonian is solved block-wise, to reduce the com-

putational time required for the diagonalization by taking advantage of symmetries in the

system. Each block is a matrix of size N × N , whose N -dimensional Hilbert space is

spanned by N eigenpairs.

For an impurity model of ns total sites (nb = ns − 1 bath sites) coupled to a single

impurity site as depicted in figure 3.1, the collection of states from all the blocks of HSIAM

are given by

| j〉 = | n1↑n2↑ . . . nns↑〉 ⊗ | n1↓n2↓ . . . nns↓〉 , (3.27)

where niσ is 1 if that eigenstate includes an electron of spin σ at site i and 0 if not.

At finite temperature T , the Green’s function of the system can be evaluated directly

from the collection of these eigenstates and their eigenvalues, along the Matsubara fre-

quency axis — the discretized imaginary axis of the complex frequency z [30]. For fermions,

the Matsubara frequency ωn is defined as a function of integer n and the inverse tempera-
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ture β as,

ωn = (2n+ 1)
π

β
. (3.28)

The collection of eigenstates |j〉 (with eigenvalues λj) found from diagonalizing all the

Hamiltonian blocks contributes to finding the Green’s function associated with the impurity

problem, Gimp
σ (iωn), which is [30],

Gimp
σ (iωn) =

1

Z

∑
j,k

∣∣∣〈k| c†σ |j〉∣∣∣2 (e−βλj + e−βλk)

iωn − (λj − λk)
, (3.29)

where the summations are over all eigenstates. Z is the partition function for inverse

temperature β.

This method of finding the impurity Green’s function shifts the DMFT solution to

the imaginary frequency axis, where the self-consistency routine described in section 3.4

remains unchanged except discretization of the complex frequency variable z = iωn. Real

frequency properties of the system, such as the spectral function A(ω) or optical conductiv-

ity σ(ω), can be recovered through analytic continuation using the substitution iω → ω+iη,

or a numerical rational function extrapolation technique relying on the analyticity of (3.29)

throughout the domain covered by the Matsubara points which ensures that as a function

of z, it is uniquely defined throughout the entire complex plane when locally well-defined

on the imaginary axis [124] (q.v. section 5.1).

The discrete nature of the Matsubara frequency finite-temperature solution requires

some care in the choice of the inverse temperature parameter β, to minimize finite-size

effects. Matsubara points are spaced as [2(n+ 1) + 1]πβ − (2n+ 1)πβ = 2π
β , which must be

considered in reference to the energy level spacing of the eigenstates found by diagonaliza-

tion. This spacing is affected by the discretization of the bath.

Continuation and extrapolation of the imaginary frequency results to real frequency

observables are sensitive to the fine structure afforded by a sufficiently large number of

bath levels. A small number of bath levels will result in non-physical gaps in the density of

states evidenced by kinks in the low energy portion of gimp(iωn), which can be especially

disruptive in the Fermi liquid regime resulting in a poor low-frequency fit between the

lattice and impurity functions in equation (3.24) [113]. This finite-size effect is somewhat

mitigated by restricting solutions to not-too-large β and through an appropriate weight,

f(z) in (3.24), that encourages proper fitting at low frequency.
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3.6 Single Band LISA Implementation

The inaugural DMFT computational algorithm was developed in FORTRAN by Werner

Krauth [122] and initial results focusing on the metal-insulator transition were published

in 1994 by Si et al. [111], with a more extensive set of results and a widely-cited general

review following two years later [87]. This algorithm, called “LISA” (Local Impurity Self-

consistent Approximation), is available online as open source software [122] and has been

used as the core of several DMFT studies on strongly correlated electron systems.5

The available LISA code is designed to solve a single-band Hubbard model using either

ED or Hirsch-Fye QMC as the impurity solver. The ED version of LISA includes a distri-

bution employing a finite-temperature implementation as well as one utilizing the Lanczos

algorithm which approximately solves the single-band problem at zero-temperature for a

larger number of mean field bath sites, but may offer unreliable information about excita-

tions [119,120].

In this thesis, a DMFT solver has been independently developed in the C++ program-

ming language. As mentioned in section 3.5, it employs an exact diagonalization routine

from the Eigen C++ libraries [123] as the impurity solver. The LISA algorithm provides

a reference for assessing the reliability of our new C++ code, especially given numerous

demonstrations of LISA’s agreement with experimental observations of real systems (see,

for example, [80,128]). The conjugate gradient minimization sub-routine, minimize [129],

employed in the FORTRAN code was borrowed in our implementation and translated

to C++, as the detailed structure of that algorithm provides very reliable6 results as a

method in finding global minima in the functional landscape of the DMFT self-consistency

condition (3.24).

As described previously, the principal goal of the DMFT self-consistency algorithm is

to find a set of parameters for the Anderson model bath in (3.14) which best approximates

the full lattice system, in order to derive the lattice Green’s function, self energy, or other

desired outputs. The self-consistency loop begins with an initial guess or more sophisticated

estimate (for example, see [62] and [130], respectively) at the value of these parameters, and

through successive minimizations convergence to a unique set of final values is expected.

Ideally, this convergence is robust—that is, there should exist a global minimum in

5For example, early DMFT results obtained with LISA include [87, 112, 125]. More recent research
groups continue to explicitly acknowledge their use of the algorithm, including [114,126,127].

6While of remarkable reliability, the sub-routine minimize is an arcane construction of about 300 lines
of interwoven GO TO statements. Curiously, Krauth comments in the code’s header, “This is a most reliable
conjugent [sic] gradient routine! It has served us well for many years, and is capable to cope with a very
large number of variables. Unfortunately, we don’t know who wrote this routine (original name: ’va10a’),
and we find it very obscure. Don’t worry, it works just fine.” [129]
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the functional landscape of the self-consistency method such that the particular values

of the starting parameters should be irrelevant to the “correct” result of the mapping

from the continuous system to the discrete Anderson model.7 A comparison of sample

results (table 3.1) between our C++ code and those from LISA illustrates our ability to

find a set of converged bath parameters with perhaps greater robustness than the original

FORTRAN implementation. The system parameters are kept constant for all cases. The

Coulomb repulsion of this single-band Hamiltonian is U = 1.0 and the chemical potential

is µ = 0.5, ensuring a metallic physical state where the Green’s function (3.29) should

properly diverge to negative infinity.

Figure 3.3 shows the low-frequency spectrum for the imaginary part of the self-con-

sistent Green’s function in Matsubara frequency for the illustrative sets of starting bath

parameters in table 3.1. The low-frequency region is of particular relevance as it is most

sensitive to perturbations in the conjugate gradient minimization and to numerical inaccu-

racies. Results for the LISA and C++ code are compared, demonstrating the convergence

of our results along a consistent curve. In contrast the LISA results are somewhat sensitive

to the choice of initial parameters. This sensitivity is found to depend as well on the choice

of optimization flags employed in executing the FORTRAN compiler (the results shown

are for the non-optimized FORTRAN compilation of LISA), and appears in the output of

two different machine architectures on which the code was compiled.

Initial parameters Self-consistent final bath parameters
LISA C++

Set V ε V ε V ε
0.20000 0.10000 0.167581 0.042032 0.192225 0.051220

1 0.30000 0.20000 0.419902 0.448987 0.414271 0.498435
0.20000 -0.10000 0.169194 -0.043284 0.191536 -0.050683
0.30000 -0.20000 0.420228 -0.454990 0.413722 -0.495746
0.10000 1.00000 0.191090 0.049528 0.194250 0.051481

2 0.20000 2.00000 -0.421647 0.510805 0.422266 0.524235
0.10000 -1.00000 0.196718 -0.053710 0.419528 -0.052171
0.20000 -2.00000 -0.420995 -0.525202 -0.417396 -0.518024

20.00000 7.00000 5.900908 41.881046 0.195649 0.051510
3 30.00000 10.00000 0.450311 0.001506 -0.426948 0.541305

20.00000 -7.00000 5.168741 -32.059884 0.198597 -0.053669
30.00000 -10.00000 -0.015162 -17.882145 0.425515 -0.548340

Table 3.1: Initial bath parameters used in self-consistency algorithm to compare our C++ code’s
convergence with that of LISA. Ideally, the converged values should agree across all three sets.

7This is not universally seen in all DMFT studies; for example, [130].
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Figure 3.3: A comparison of the self-consistently converged Green’s functions (3.29) for a single-
band Hubbard model from our C++ algorithm (lines) with the LISA Fortran algorithm (points).
Shown are results for three sets of initial bath parameters (q.v. table 3.1) which illustrate the
variance in convergence, at fixed system parameters (U = 1.0, µ = 0.5) and four bath sites. With
these parameters, the system is properly metallic and a negative divergence is expected at zero
Matsubara frequency, iωn. All three C++ lines overlap with Fortran set 2, which appears to be
the proper result (for different starting parameters similar to set 2, the Fortran code also converges
to this line). The C++ results therefore appear to be robust regardless of the initial parameter
choices, whereas the LISA code wanders into different global minima in the conjugate gradient
routine, resulting in unexpectedly different apparent physics.
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The self-consistent Green’s function is the main quantity of ultimate interest in the

DMFT problem, and it is derived from the appropriate set of bath parameters. The proper

convergence of this quantity is therefore an important indicator of the DMFT algorithm’s

proper functioning and in this case is a helpful test of the reliability of our multiorbital C++

DMFT implementation (chapter 4) applied in the limiting case of a single-band model.

3.7 MIT in Single Band DMFT

One definitive achievement [112] of the DMFT method was the visualization of the metal-

insulator transition at half-filling, emerging from the competition between electron kinetic

energy-driven hopping between sites and the Mott insulator state that arises from strong

on-site Coulomb repulsion (q.v. section 1.2). DMFT provided the first view of the MIT

without the need to restrict analysis to one of the transition’s two limits [131].

Varying the parameters of the Hubbard model under consideration, DMFT yields the

impurity density of states ρ(ω) defined for the analytically continued impurity Green’s

function Gimp(ω) as,

ρ(ω) = − 1

π
=Gimp(ω), (3.30)

which can show the opening of a Mott-insulator gap in the Hubbard model at half filling

around a critical value of the Coulomb repulsion, Uc. The shoulder Hubbard bands are

spaced symmetrically around the Fermi energy, as illustrated in figure 1.1.

The insulating phase is characterized by the complete lack of electron occupation at the

Fermi level, with a gap of non-occupied states between two separated Hubbard bands. The

metallic state shows a non-zero density of states at zero frequency (the Fermi energy) along

with the Hubbard bands, and thus a “three-peak” structure which becomes increasingly

distinct as Coulomb repulsion increases. The height of the central peak is the quasiparticle

weight and is an order parameter for metallicity [87]. (The evolution of these features can

be seen in figure 3.5 for the case of a finite temperature DMFT solution with four bath

sites.)

For zero temperature, as the Coulomb repulsion between electrons is gradually in-

creased, the metallic quasi-particle peak of constant height narrows in width until disap-

pearing abruptly at U = Uc, associated with a diverging electron effective mass [and thus a

vanishing quasiparticle weight (q.v. section 5.3)]. As the peak narrows, a finite insulating

gap appears in anticipation of the final disappearance of the peak. This sharp MIT was

observed by an early application of the LISA code [132] and visualized via an ED impurity

solver [112] using the zero-temperature Lanczos method on a paramagnetic system. In
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both studies a metal-insulator “co-existence region” appeared near the MIT. In the ED

study this was found in the region where 1.11W ≤ U ≤ 1.15W (for a free electron density

of states bandwidth W = 4). In this region LISA returned converged DMFT results for

both metallic and insulating behaviours. The rough consensus of various DMFT studies of

the MIT at zero temperature suggests a value of Uc between W and 1.5W [133].

At finite temperature the metallic and insulating definitions are less precise. The central

quasiparticle peak is gradually suppressed in height as weight is redistributed to the Hub-

bard shoulders. A coexistence region is found up to a critical end point temperature above

which there is a gradual suppression of metallicity as the Coulomb repulsion is changed,

and the phase of the material shows a gradual crossover between a state dominated by a

strong quasiparticle peak to that with a small central peak and dominant gapped Hubbard

bands [87]. Below this temperature, as the Coulomb repulsion is decreased from a large

insulating value, the phase becomes metallic at a critical value U = Uc1(T ). Similarly, as U

is increased from the metallic side of the transition there is a value U = Uc2(T ) > Uc1(T )

at which the phase becomes insulating. A typical phase diagram for the finite-temperature

MIT is shown in figure 3.4.

Figure 3.4: Finite temperature phase diagram for the MIT. A coexistence region is bounded by
the Uc1(T ) and Uc2(T ) curves. Uc1(T ) marks the transition to metallicity as U is decreased from
a high, insulating value, while Uc2(T ) marks the onset of insulating behaviour when U is increased
from a low, metallic value. The actual transition point, Uc(T ), is calculated from (3.31). From [20].
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The coexistence region has been thought of as a region of hysteresis, arising near the

MIT by increasing or decreasing the Coulomb repulsion toward Uc(T ), and is indicative

of a first-order transition. The actual transition point is found by examining the lower

free energy state of the two phases. This free energy F (U, T ), at temperature T for some

Coulomb repulsion U , can be calculated [134] by an integration,

F (U, T ) = F (0, T ) +

∫ U

0
D(U ′, T )dU ′ , (3.31)

where D(U ′, T ) is the average double occupancy defined by,

D = 〈n↑n↓〉 . (3.32)

In the practical context of the DMFT algorithm, the coexistence region appears to arise

as a discrepancy in the converged values of the bath parameters owing to the minimization

technique finding different stable solutions for differing input parameter regimes. With all

elements of the lattice Hubbard Hamiltonian held constant, one might expect a unique

physical solution for a set of bath parameters corresponding to the best fit between the

SIAM and the lattice system. In the coexistence region, however, this ideal case is not

actualized, and the existence of more than one stable solution must result from the mini-

mization routine settling on well-separated local minima in the bath parameter functional

landscape. These minima may correspond to equally low ground state energies, although a

transparent test along these lines does not appear to have been published. It is also unclear

whether the many studies on DMFT hysteresis have all employed the minimize conjugate

gradient method subroutine [129] packaged in the LISA code, or another method. Such

details are almost never indicated in the publications.

There has been some controversy regarding both the quantitative value of Uc(T ) as a

function of temperature, as well as the qualitative nature of the transition, whether an

abrupt first-order transition or a continuous change [131]. Many early finite-temperature

DMFT studies found an abrupt transition (characterized by the disappearance of the quasi-

particle weight) accompanied by a hysteresis region [87, 104], reminiscent of experimental

expectations from studying the MIT in V2O2 [19]. This was disputed by other non-DMFT

methods based on similar infinite-dimensionality assumptions [135, 136] which found con-

tinuous transitions at different values of Uc(T ). In an attempt at resolving the confusion,

Schlipf et al. [131] performed a careful finite-temperature QMC DMFT study (using two

different code implementations to identify and eliminate code-specific biases or errors) on

the Bethe lattice, finding a continuous MIT with no hysteresis region. This result was
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challenged by Krauth [137] as an error in methodology. Shortly thereafter, a (mean-field)

self-energy functional analysis by Potthoff [133] again found a first-order transition along

with a hysteresis region.

Figure 3.5 illustrates the spectral density evolution of the single-band system as the

MIT crossover develops with increasing U . In this plot the temperature is above the

maximum critical temperature Tc for the first-order transition. The electron quasiparticle

weight transfer from the metallic to the insulating regime is clearly seen as the central

coherent peak decreases in height until disappearing entirely.
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Figure 3.5: The evolution of the Mott metal-insulator transition (MIT) in the single-band Hubbard
model at half-filling, derived from our DMFT code with four bath sites (β = 100; W = 4.0 is the
bandwidth) for changing electron interaction potential. The actual numerical quantities are delta
functions, but are broadened as Lorentzians (η = 0.1) for clarity. A central, non-zero quasi-particle
peak at ω = 0.0 indicates metallic behaviour. The collections of side peaks are Hubbard bands,
which grow and separate with increasing Coulomb repulsion opening up an insulating gap as the
quasi-particle peak falls away. Note that once the insulating phase is attained, the separation of the
shoulder Hubbard peak centres is approximately U as expected [26,87] (c.f. figure 1.1). (Apparent
asymmetry in the central peak for U = 0.5W case is an artifact of the real frequency sampling
resolution.)

It should be noted that the discretization of the Anderson model bath generates discrete

delta functions in all DMFT real frequency quantities. Thus, the fine details of the spectral

density (for example) are poor, while the clustering of delta peaks provides a very accurate

“coarse-grained” insight into the actual electron states [87]. This is evident in figure 3.5 in

the structure which forms the normally continuous shoulders of the Hubbard bands, and

the “spikey” appearance of the coherent central peak that dominates for small U .

Corresponding to the change in the density of states that occurs around the MIT,

another indicator of the transition is an abrupt change in the slope of the self energy
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around the Fermi energy. In particular, the imaginary part of Σ(iωn) changes from a ωn

dependency near ωn = 0 to a negative divergence, as shown in figure 3.6 as the Coulomb

repulsion at half filling passes through the critical value for the MIT shown in figure 3.5.
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Figure 3.6: In addition to the elimination of the quasiparticle peak at the Fermi energy shown in
figure 3.5, the MIT is also signaled (perhaps more clearly) by an abrupt change in the self energy
as the Coulomb repulsion crosses the critical value. On the metallic side of the transition, the slope
of =Σ(iωn) goes to zero as ωn → 0, while for the insulating case it has a negative divergence.
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Chapter 4

Dynamic Hubbard Model in

Dynamical Mean Field Theory

4.1 A Short History of Multiorbital DMFT

Multiorbital models were implemented very early in the history of DMFT in an attempt to

explore electron transport in the copper-oxide planes of high temperature superconductors.

Already in 1993, Si and Kotliar [138, 139] studied a very general two-orbital model with

local hybridization and a dispersionless upper orbital using a matrix representation of

Green’s functions which defined the formalism of later multiorbital DMFT (MODMFT)

studies, including our work.

Georges et al. [61] employed a bipartite lattice with strongly correlated copper d or-

bitals and uncorrelated higher energy p orbitals, which they solved on the Bethe lattice

with a Monte Carlo impurity solver. In 1994, Cafarrel and Krauth [112] developed the

exact diagonalization DMFT impurity solver and immediately applied it to a similar Hub-

bard model, exploring superconducting order through the inclusion of an explicit pairing

term. Concurrently, Si et al. [62] included onsite hybridization between a half-filled lower

orbital coupled to the bath and a dispersionless upper orbital, observing a phase diagram

exhibiting non-Fermi liquid metallicity ascribed to the presence of the hybridization pa-

rameter. Pruschke and Bulla [115] employed a numerical renormalization group solver on a

non-hybridized two-orbital system with Hund’s coupling, exploring novel MIT behaviour.

Koga et al. [60] evaluated a degenerate two-orbital model with local hybridization using

QMC DMFT, examining the role of t′ in enhancing the MIT and “orbital selective” Mott

transition (OSMT) behaviour (see section 7.6).

An important benchmark study of exact diagonalization MODMFT was performed by

53



4.2. MODMFT FORMALISM AND WORKFLOW

Liebsch and Ishida [113], evaluating the importance of Matsubara frequency resolution

and the accuracy of using a limited number of bath sites per orbital. They employed a

matrix formalism similar to Si and Kotliar [139], and studied non-hybridized degenerate

three-band models and various lattice geometries realized through symmetries applied to

the Green’s functions of the different orbitals.

Winograd and DeMedici [65] have analyzed the OSMT with a two-orbital locally hy-

bridized model including Hund’s coupling at zero temperature with the Lanczos approxi-

mation.

Recently, a few DMFT studies have incorporated the intersite hybridization, t01, into

their multiband Hubbard Hamiltonians.

Poteryaev et al. [140] focused on the quarter-filling state of a non-degenerate two-

orbital model with both exact diagonalization and continuous time Monte Carlo DMFT

impurity solvers, enforcing a hypercubic lattice geometry on the DMFT solution through

the dispersion which incorporated a finite non-local momentum dependent hybridization,

t01(k), which drives the MIT at a different electron filling value than expected from the

non-hybridized case.

Song and Zou [63] and Song [64] have studied a two-orbital system with two-site DMFT

[141] including the nonlocal hybridization, but in the absence of local t′. They examined

the effects of the energy gap (ε1−ε0) and hybridization on optical conductivity and orbital-

selective Mott transitions.

4.2 MODMFT Formalism and Workflow

The formalism and algorithm of MODMFT are a generalization of that set out in chapter 3

for the single orbital case. The critical difference, which leads to a significant increase in

complexity, is the introduction of matrices to represent the Green’s functions and self energy

of the impurity and lattice models, coupled with the hybridization parameters, which mix

the electron states between the lower energy and higher energy orbitals, and are necessary

to capture DHM physics. These are the parameters introduced in chapter 2: t′, the local

(onsite) hybridization, and t01, the nonlocal (intersite) hybridization which is a hopping

parameter.

Figure 4.1 shows the workflow of the MODMFT algorithm we employ in solving the

electronic DHM for a particular system parameter set, involving a unique choice for each

of the following variables:

ε0 lower orbital energy (in general set to zero)
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ε1 upper orbital energy

t0 lower band hopping

t1 upper band hopping

t01 nonlocal hybridization (interband hopping)

t′ local hybridization

U0 lower orbital Coulomb repulsion

U1 upper orbital Coulomb repulsion

U01 interorbital Coulomb repulsion

µ chemical potential

As with the single band Hubbard model (1.4), the full Hamiltonian for the electronic

dynamic Hubbard model (2.15) is mapped to an impurity model, where the impurity site

is defined with a lower and upper orbital energy state. Each energy level is represented in

the impurity model by its own site. Electrons are locally hybridized between orbitals by

a non-zero value of t′, which is not a spatial hopping, thus retaining the local character

of DMFT and the momentum-independence of the self energy and Green’s function. Two

electrons with opposite spin can occupy each orbital site of the impurity, in keeping with

Pauli exclusion.

The non-interacting bath is composed of nl pseudosites, with energies εl, representing

the surrounding lattice environment of the impurity orbitals. The bath sites are coupled

to the impurity lower (0) and upper (1) impurity sites via hopping/hybridization param-

eters V0l and V1l, respectively. Two coupling geometries [113] are possible to connect the

multiorbital impurity to the bath, as shown in figure 4.2. One geometry identifies each

bath site with a particular orbital, while the other more generally shares every bath site

between the orbitals. The impurity orbitals interact directly with one another through the

local hybridization t′ and Coulomb term U01.

The more general bath hybridization/hopping geometry, allowing electron transitions

from both orbitals to all bath sites, better reflects the character of finite cross-orbital

intersite hopping in the electronic DHM. As well, connecting two impurity orbitals to nl

bath sites allows for 2nl adjustable hopping hybridization terms, instead of nl such terms

if each orbital is restricted to its own bath. The larger space of parameters in which to
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Figure 4.1: Workflow in MODMFT solution, illustrating the steps described in section 4.2. The
logic describes a self-consistency routine terminating with a convergence condition on the mean
field functions.
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Figure 4.2: Two possible geometries for electronic transitions between the two-orbital DMFT
impurity (green circles) and the bath pseudo-sites (orange circles). On the left, each orbital is
connected to its own bath, while on the right electrons from either orbital are allowed transitions to
all the bath sites. The solid lines indicate electron hopping between the impurity and bath, while
the dotted lines represent the local hybridization t′.

map the lattice problem to the impurity model allows for a better fit in the minimization

routine, and we take advantage of this by selecting the more general geometry.1

The multiorbital impurity model (MOIM), a generalization of (3.14), is,

HMOIM = (ε0 − µ)
∑
σ

c†0σc0σ + (ε1 − µ)
∑
σ

c†1σc1σ +
∑
lσ

(εl − µ)b†lσblσ (4.1)

+U0c
†
0↑c0↑c

†
0↓c0↓ + U1c

†
1↑c1↑c

†
1↓c1↓ + U01

∑
σσ′

c†0σc0σc
†
1σ′c1σ′

+
∑
lσ

V0l(b
†
lσc0σ + c†0σblσ) +

∑
lσ

V1l(b
†
lσc1σ + c†1σblσ) + t′

∑
σ

(c†0σc1σ + c†1σc0σ) ,

where the operators c†0 and c0 create and annihilate electrons on the impurity lower orbital,

c†1 and c1 on the upper orbital, and b†l and bl on bath pseudo-site l.

The MODMFT workflow illustrated in figure 4.1 begins with an initialization of the

bath parameters in the impurity Hamiltonian (4.1).

The extra orbital associated with the impurity increases the Hilbert space of the Hamil-

tonian for a fixed number of bath pseudosites. As discussed in section 3.5, an exact di-

agonalization solver is used in our implementation to find the eigensolution of (4.1), with

eigenvalues λj and eigenvectors | j〉. These eigenpairs are used to find the finite tempera-

ture Matsubara Green’s function defined in the multiorbital case as,

Ĝimp
σ (iωn) =

1

Z

∑
j,k

Φ̂jk(e
−βλj + e−βλk)

iωn − (λj − λk)
(4.2)

1Our reasoning follows a similar line as that taken in cluster DMFT studies, where one chooses the most
general bath parameterization possible for the self-consistency condition to be fulfilled [118].
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where,

Φ̂jk =

 ∣∣∣〈k| c†0σ |j〉∣∣∣2 〈j| c1σ |k〉 〈k| c†0σ |j〉

〈j| c0σ |k〉 〈k| c†1σ |j〉
∣∣∣〈k| c†1σ |j〉∣∣∣2

 . (4.3)

The impurity Green’s function is applied to the multiband matrix equivalent of the

self-consistency condition, (3.16), derived by the cavity method [87]. Borrowing from and

generalizing the usage in CDMFT [139,142], we have for the multiband case on the Bethe

lattice an expression for the lattice mean field function,[
ĝlat
σ (iωn)

]−1
= (iωn + µ) 1̂− ε̂− t̂′ − t̂ Ĝimp

σ (iωn) t̂ , (4.4)

where 1̂ is the 2× 2 identity matrix. The energy matrix ε̂ and hybridization matrix t̂′ are,

ε̂ =

(
ε0 0

0 ε1

)
(4.5)

t̂′ =

(
0 t′

t′ 0

)
. (4.6)

The hopping matrix t̂ is,

t̂ =

 t0 t01

t01 t1

 . (4.7)

With t01 = 0 it reduces to the form used in reference [65].

The use of (4.4) is specific to the Bethe lattice, and is the step in which the den-

sity of states of its specialized “geometry”, reflected in its derivation [87], enters into

the MODMFT procedure. This avoids the necessity of solving, at each iteration of the

MODMFT self-consistency routine, the multiorbital integral defining the lattice Green’s

function:

Ĝlat
σ (z) =

∫
D(0)(ε)

[
(z + µ− ε) 1̂− ε̂− t̂′ − Σ̂σ(z)

]−1
dε, (4.8)

where D(0)(ε) is the non-interacting density of states of the multiorbital system, which has

no simple analytical form (see section 4.3 below).

At convergence, the lattice mean field function resulting from (4.4) is expected to be

equal to the mean field function ĝimp
σ (iωn) defined from the impurity bath as,

ĝimp
σ (iωn) =

[
(iωn + µ)1̂− ε̂− t̂′ − ∆̂σ(εl, V0l, V1l)

]−1
(4.9)
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where ∆̂σ(εl, V0l, V1l) is the bath hybridization function,

∆̂(εl, V0l, V1l) =

nb∑
l=0

 V 2
0l

iωn−εl
V0lV1l
iωn−εl

V1lV0l
iωn−εl

V 2
1l

iωn−εl

 . (4.10)

(In the paramagnetic case a spin index is superfluous and suppressed on the bath param-

eters.)

Expression (4.10) is not the most general form which could be employed for this mul-

tiorbital function. Rather, for a construction with the number of orbitals, nx, it could be

defined in terms of nx independent bath parameters V̂x and ε̂x of size nl × nl [142]. The

computational expense required for this general configuration has motivated us to follow

the approximate form of the bath parameterization function employed by Bolech et al. [142]

as well as Ishida and Liebsch [143] for the cluster DMFT formulation, which has essential

similarities to MODMFT.

The equivalence of the lattice and impurity mean field functions,

ĝlat
σ (iωn) = ĝimp

σ (iωn) , (4.11)

is sought by mapping the value of ĝlat
σ (iωn) at each frequency onto the functional form of

ĝimp
σ (iωn), which is defined in terms of the bath parameters through (4.10). This is accom-

plished by characterizing a distance function χ2, similar to (3.24), over the multiorbital

matrix components,

χ2
MO =

1

N + 1

∑
σxy

N∑
n=0

f(ωn)
∣∣∣glat
σxy(iωn)− gimp

σxy(iωn)
∣∣∣2 , (4.12)

where N is the number of Matsubara frequencies employed in the solution. The subscripts

x, y denote the orbitals and the sum is a single sum over each unique pairing. f(ωn) is

a weighting factor which can take a range of forms in order to ensure better convergence

relative to some part of the energy spectrum.

As discussed in section 3.6, the efficient conjugate gradient minimization routine, min-

imize [129], is employed to traverse the functional landscape of ĝimp
σ (iωn) until it achieves

a minimal value for the distance function (4.12).

With respect to the form of the weight function f(ωn), we choose to emphasize the

bath parameters fitting the high structure lower frequency region through,

f(ωn) =
1

ωn
, (4.13)
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since the Green’s function smoothly approaches zero for ωn → ∞. Other forms of f(ωn)

such as 1 and 1
ω2
n

have been tested for MODMFT [113] and agree with our experience that

(4.13) provides a reliable and efficient result.2

An ideal mapping of the lattice Hubbard model to the impurity model will result in the

functions being strictly equal in (4.11). In practice, with a finite-sized bath the equivalence

condition (4.12) will remain approximate, and the minimization routine [129] will find as

close a fit as possible with the size of the parameter space available.

The minimization routine returns a set of bath parameters from the functional fit, which

are fed back into the impurity mean field function (4.9) and the components of this new

matrix ĝimp
new(iωn) are compared to those of the old function defined by the bath parameters

in use prior to the fit, testing for convergence between the two functions. The convergence

condition,
1

N + 1

∣∣∣ĝimp
σxy new(iωn)− ĝimp

σxy old(iωn)
∣∣∣2 < η (4.14)

tests whether the appropriate set of bath parameters for the mapping have been found

within some tolerance η. Having begun by inserting guessed parameters into the Anderson

impurity Hamiltonian (4.1), it is unlikely that on the first iteration the condition (4.14)

will be satisfied for a reasonably constrained η.

We take (N + 1)η ≈ 10−6-10−7, which in general seems to ensure an efficient arrival

at a converged solution while maintaining an apparently identical visual correspondence

between the ultimate and penultimate functions within the resolution of useful output

plots. We have found the results of increasing this value to the range of 10−8 and 10−9 to

be a case of diminishing returns.

Agreement in (4.14) signals a converged solution and the end of the MODMFT routine

at which point the converged impurity Green’s function and mean field function can be

used to determine the orbital self energy matrix Σ̂σ(iωn) through a multidimensional Dyson

equation,

Σ̂imp
σ (iωn) =

[
ĝimp
σ (iωn)

]−1 −
[
Ĝimp
σ (iωn)

]−1
. (4.15)

The self energy of the impurity model is considered equivalent to that of the lattice at

convergence of the bath parameters, so that,

Σ̂imp
σ (iωn) = Σ̂lat

σ (iωn) = Σ̂σ(iωn) . (4.16)

While the self energy plays no role in solving for the bath parameters in the MODMFT

2In contrast, the self energy functional approach of CDMFT [144] favours a weight of the squared self
energy, with f(ωn) = 1

ωn
providing a less adequate result in weakly metallic or insulating phases [145].
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algorithm, it is important for understanding and calculating the physical properties of the

system, including the tools of our DHM study defined in chapter 5, some of which are also

dependent on the converged value of the impurity Green’s function Ĝimp
σ (iωn).

If the convergence check in (4.14) does not produce sufficient agreement between the

current and previous values of the impurity mean field function, the new bath parameters

obtained from the minimization fit of (4.12) are taken as the initialization parameters for a

new (improved) instantiation of the MODMFT workflow, returning to the top of figure 4.1.

The impurity Hamiltonian (4.1) is redefined and the procedure is restarted and repeated

until the convergence condition is met.

The problem of finding proper bath parameters to map the lattice model to an impurity

model, from which Green’s functions and self energies can be evaluated, is therefore a

complex problem in self-consistency. The value of the converged bath parameters are

defined in terms of the impurity Green’s function through the self-consistency condition

(4.4) and its use in the minimization algorithm applied to (4.12). In turn, they define the

impurity Green’s function through the impurity Hamiltonian solution, and the impurity

mean field function ĝimp(iωn).

4.3 Multiorbital Bethe Lattice Density of States

The Bethe lattice depicted in figure 3.2, in the limit of infinite connectivity, is widely used

in DMFT studies to simplify the self-consistency procedure through expressions (3.16) and

(4.4).

The free electron density of states (DOS) for the infinitely-connected Bethe lattice (4.22)

is strictly applicable to the single band Hubbard Hamiltonian (1.4). While the explicit form

of the Bethe lattice DOS is not required for the simplification of the DMFT or MODMFT

routine itself, it is an explicit component in evaluating the optical conductivity (5.30)

discussed at length in section 5.4.

The single band Bethe lattice DOS has the semi-circular form depicted in figure 4.3,

centered at the orbital energy of the DMFT impurity, and dependent on the band hopping,

t, relevant to that orbital, with bandwidth W = 4t. Strictly speaking, it represents the

energies of electrons which begin at some site o, propagate away through the lattice, and

return to site o [93, 94]. In the multiorbital case, we expect the DOS to depend in a non-

trivial way on all three intersite hoppings, t0, t1 and t01, as well as the onsite hybridization

t′ and the orbital energy gap ε1. In the non-hybridized single band limit it will reduce to

two semicircular forms with bandwidth W0 = 4t0 and W1 = 4t1.

To our knowledge, a derivation of the multiorbital density of states for the infinitely
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Figure 4.3: Semi-circular Bethe lattice density of states, D(ε), for infinite connectivity, with
t = 1.0. The bandwidth is W = 4t.

connected Bethe lattice including intersite/interband hopping has not yet been achieved,

and in principle would require an analytical diagonalization of a infinite-dimensional pen-

tatriangular matrix [94].

Here we generalize Mahan’s intuitive derivation [94] of the single orbital Bethe lattice

DOS to the two-orbital case and derive the Hamiltonian matrix for the z-connected Bethe

lattice geometry, which will provide the eigenspectrum necessary to numerically determine

the multiorbital DOS which will depend on the specific inputs of the hopping and hy-

bridization parameters. These results will be used to provide a more reliable estimate of

the optical conductivity calculations in section 7.5.

We begin by defining eigenstates of the DHM Hamiltonian (2.15) for a Bethe lattice

geometry of connectivity z and two orbitals per site, focusing on the number of hops an

electron takes away from a site j without backtracking. The null ket is defined as |∅〉, the

vacuum state with no electrons occupying the lattice. A particle in the lower orbital on

site j will be identified as the state |00 〉, and in the upper orbital as |01 〉. Electron hopping

to any of the z nearest-neighbour sites is defined to be symmetric, and results in states

designated |10 〉 and |11 〉, corresponding to the lower and upper orbitals respectively. From

this site, a second hop is allowed to any of z − 1 nearest neighbours (a backwards hop is

not allowed) denoted by |20 〉 and |21 〉. All further states are defined by additional hops to

z − 1 nearest neighbours in the lattice.
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These states are explicitly defined in terms of the null ket as,

|00 〉 = c†0 |∅〉 (4.17a)

|01 〉 = c†1 |∅〉 (4.17b)

|10 〉 =
1√
z

∑
δ

c†0,δ |∅〉 (4.17c)

|11 〉 =
1√
z

∑
δ

c†1,δ |∅〉 (4.17d)

|20 〉 =
1√

z(z − 1)

∑
δ

∑
δ′ 6=−δ

c†0,δ+δ′ |∅〉 (4.17e)

|21 〉 =
1√

z(z − 1)

∑
δ

∑
δ′ 6=−δ

c†1,δ+δ′ |∅〉 (4.17f)

where the sum over δ and δ′ is over the nearest neighbour sites.

Hamiltonian matrix elements are determined by applying the non-interacting part of

Hamiltonian (2.15) on these states:

HDHM |00 〉 = ε0 |00 〉+ t′ |01 〉+ t0
√
z |10 〉+ t01

√
z |11 〉 (4.18a)

HDHM |01 〉 = t′ |00 〉+ ε1 |01 〉+ t01

√
z |10 〉+ t1

√
z |11 〉 (4.18b)

HDHM |10 〉 = t0
√
z |00 〉+ t01

√
z |01 〉+ ε0 |10 〉+ t′

√
z |11 〉

+ t0
√
z − 1 |20 〉+ t01

√
z − 1 |21 〉 (4.18c)

HDHM |11 〉 = t01

√
z |00 〉+ t1

√
z |01 〉+ t′

√
z |10 〉+ ε1 |11 〉

+ t01

√
z − 1 |20 〉+ t1

√
z − 1 |21 〉 (4.18d)

HDHM |20 〉 = t0
√
z − 1 |10 〉+ t01

√
z − 1 |11 〉+ ε0 |20 〉+ t′

√
z(z − 1) |21 〉

+ t0
√
z − 1 |30 〉+ t01

√
z − 1 |31 〉 (4.18e)

HDHM |21 〉 = t01

√
z − 1 |10 〉+ t1

√
z − 1 |11 〉+ t′

√
z(z − 1) |20 〉+ ε1 |21 〉

+ t01

√
z − 1 |30 〉+ t1

√
z − 1 |31 〉 (4.18f)

and for states corresponding to a larger number of hops, l,
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HDHM |l0 〉 = t0
√
z − 1 |(l − 1)0 〉+ t01

√
z − 1 |(l − 1)1 〉+ ε0 |l0 〉+ t′

√
z(z − 1) |l1 〉

+ t0
√
z − 1 |(l + 1)0 〉+ t01

√
z − 1 |(l + 1)1 〉 (4.18g)

HDHM |l1 〉 = t01

√
z − 1 |(l − 1)0 〉+ t1

√
z − 1 |(l − 1)1 〉+ t′

√
z(z − 1) |l0 〉+ ε1 |l1 〉

+ t01

√
z − 1 |(l + 1)0 〉+ t1

√
z − 1 |(l + 1)1 〉 . (4.18h)

The resultant Hamiltonian matrix is then,

H =



ε0 t′ t0
√
z t01

√
z 0 0 · · ·

t′ ε1 t01
√
z t1

√
z 0 0 · · ·

t0
√
z t01

√
z ε0 t′ t0

√
z − 1 t01

√
z − 1 · · ·

t01
√
z t1

√
z t′ ε1 t01

√
z − 1 t1

√
z − 1 · · ·

0 0 t0
√
z − 1 t01

√
z − 1 ε0 t′ · · ·

0 0 t01

√
z − 1 t1

√
z − 1 t′ ε1 · · ·

...
...

...
...

...
...

. . .


. (4.19)

The equivalent Hamiltonian for the single band Hubbard model has eigenvalues [94]

Eθ = 2t
√
z − 1 cos(θ) . (4.20)

The hopping is rescaled in the limit of large z ≈ z − 1 as,

t∗ = t
√
z , (4.21)

and the bandwidth is W = 4t∗, as expected. The semi-circular DOS D(ε) then arises

from G00(ε), the probability of an electron starting at site j propagating into the lattice

and returning to its starting position, and is dependent on the first component of all the

eigenvectors φ0(k) of the infinitely-connected Bethe lattice:

D(ε) = − 1

π
=G00(ε) (4.22)

=

∫ π

0
dk |φ0(k)|2 δ [ε− εk]

=

√
4t∗2 − ε2
2πt∗2

.

In the multiorbital case, the eigenvectors follow from the exact diagonalization of the
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Figure 4.4: DOS for a non-hybridized two-orbital Hubbard system with t0 = t1 = 1.0 and band
gap ε1 = 5.0. As expected, the DOS for the lower and upper orbitals are the semi-circular form
with bandwidth 4t. The plot is numerically produced approximating the infinitely-connected Bethe
lattice with a 300× 300 matrix.

Hamiltonian (4.19), and in principle could be used in a similar way to the single band

case to derive an analytical form of the non-interacting multiorbital Bethe lattice DOS.

We leave this involved task for future work and for the present purposes have employed a

numerical solution which is incorporated into the optical conductivity results in section 7.5

through a matrix form of the DOS,

D̂(ε) =

(
D00(ε) D01(ε)

D10(ε) D11(ε)

)
. (4.23)

Each of the DOS parameters in (4.23) follow from a construction identical to (4.22), with

Dxy(ε) dependent on the product of the x and y elements, φx(k) and φy(k), associated

with each eigenvector of (4.19).

Figure 4.4 provides an example of the multiorbital DOS for a non-hybridized two-orbital

Hubbard system with intraband hopping t0 = t1 = 1.0 separated by an energy gap ε1 = 5.0.

Figure 4.5 demonstrates the effects of hybridization t′ = 0.2 and t01 = 1.0 on the same set

of orbitals.
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Figure 4.5: DOS for the two-orbital Hubbard system in figure 4.4 with hybridization t′ = 0.2 and
t01 = 1.0. t0 = t1 = 1.0 and band gap ε1 = 5.0. Finite hybridization has warped the DOS for both
the lower and upper bands from their semi-circular form, and slightly affected the bandwidths as
well. The plot is numerically produced approximating the infinitely-connected Bethe lattice with a
300× 300 matrix.
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Chapter 5

Analysis Tools

5.1 Spectral Densities

In the limit of infinite connectivity, the DMFT and MODMFT methods map the physi-

cal lattice problem onto a discretized impurity/mean field solution as described in chap-

ters 2 and 3. The impurity solution provides a momentum-independent approximation of

the lattice Green’s function and self energy. At convergence, the impurity Green’s func-

tion Ĝimp
σ (iωn) (4.2) is considered equivalent to the momentum-integrated on-site lattice

Green’s function Ĝlat
σ (iωn) (4.8), and thus the spectral density Â(ω) of the impurity prob-

lem provides an important real frequency output of the DMFT method. Using the analytic

continuation of the imaginary frequency to the real frequency axis,

iωn → ω + iη+ , (5.1)

where η+ is some small shift above the real axis, the Matsubara Green’s function form

of Ĝimp
σ (iωn) uniquely provides the real frequency function Ĝimp

σ (ω), whose x, y matrix

component is [113],

Gimp
σxy(ω) =

1

Z

∑
j,k

〈k| c†yσ |j〉 〈j |cxσ| k〉(e−βλj + e−βλk)

ω + iη+ − (λj − λk)
, (5.2)

where x, y = 0, 1 for the lower and upper orbitals respectively.

The impurity single-particle spectral density for either orbital x = 0, 1 can then be

found from,

Axx(ω) = − 1

π
=Gimp

xx (ω) , (5.3)
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and will be formed from a series of delta functions (broadened into Lorentzians by the

finite contribution of η), corresponding to the allowed single particle transitions between

the eigenstates of the impurity model (4.1). Only those transitions with a finite overlap of

the eigenvectors 〈j| and |k〉 in (5.2) will contribute, and a larger bath will provide more

structure in the spectrum. In the limit of infinite bath sites, the spectrum will appear to be

smoothly continuous. For a small number of bath sites, however, the artificial broadening

from η will tend to capture some of the main features of the true continuous spectrum.

The impurity spectral density is useful for visualizing the quasiparticle weight, which is

defined as the spectral weight at the Fermi energy (ω = 0). The peak formed by this weight

is not singular, but has finite width that is dependent on the temperature ( 1
β ), bandwidth

and Coulomb repulsion, but in particular acquires its structure from the low energy limit

of the effective impurity model bath density of states, contained in the bath hybridization

function ∆(iωn) (4.10), in gimp
σ (iωn) (4.9) [87].

Figure 5.1 shows the evolution of the spectral weight as a function of inverse temper-

ature β for four bath sites and a non-interacting system. The three central features of

the discretized non-interacting quasiparticle peak are centered on the Fermi energy and

provide an important reference for the spectral density of interacting systems. For finite

onsite Coulomb repulsions U0, U1 and U01, the Hubbard bands will acquire weight at the

expense of the central structure, which will also narrow in width as Coulomb repulsion

increases, as shown in figure 5.2. The non-singularity of the quasiparticle peak along with

this dynamic narrowing makes it difficult to evaluate the quasiparticle residue by integrat-

ing over the spectral weight at or near ω = 0, and other methods are necessary as discussed

in section 5.3.

The impurity densities of states (5.3) are equivalent at convergence to the momentum-

integrated local spectral function of the lattice problem, related by analytic continuation

to Glat
σxx(iωn) (4.8). This quantity provides insight into the energetics of the quasiparticle

residue (section 7.3), and is essential to determining the optical conductivity (section 7.5).

The momentum-resolved spectral functions Âσxx(k, ω) (for orbitals x = 0, 1) can

be reconstructed from the local Green’s function expressed as a function of the non-

interacting dispersion, ε(k), recalling that the converged self energy matrix Σ̂σ(iωn) re-

mains momentum-independent. If it is assumed that this momentum-independent value

(appropriate in the infinite-dimensional system) derived from the DMFT problem provides

a reliable self energy for all momentum states of the electronic system, then the local

k-dependent Green’s function is,

Ĝlat
σ (k, iωn) =

∫ {
[iωn + µ− ε(k)]1− ε̂− t̂′ − Σ̂σ(iωn)

}−1
dk (5.4)
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Figure 5.1: Spectral density for the non-interacting four bath site system showing dependence
on inverse temperature, β, of the metallic quasiparticle peak. With increasing bath size, the delta
functions (broadened into Lorentzians by η = 0.01) would “fill out” to a more continuous form
centered at the Fermi energy, ω = 0. This central peak widens as temperature is increased (i.e. β
is decreased).

where ε(k) is necessarily restricted to values within the free particle bandwidth. The

matrices ε̂ and t̂′ are defined in (4.5) and (4.6), respectively.

In principle, the momentum-resolved spectral functions Ax(k, ω) can be determined

through (5.1) applied to (5.4), if the self energy values have also been accurately defined

near the real frequency axis.

One apparent strategy to evaluate these real frequency self energies is through the an-

alytic continuation of the multiorbital Dyson equation (4.15). Here, Σ̂σ(z) is an analytic

function defined in terms of the converged impurity mean field and Green’s functions, each

analytically defined as well. This technique, however well-defined, is very sensitive to im-

precise convergence of the Green’s function at small imaginary frequencies. An appropriate

set of converged bath parameters will, in principle, result in an exact match between the

lattice mean field functions ĝlat
σ (iωn) and Anderson impurity mean field function ĝimp

σ (iωn).

However, this is compromised at low energy by the finite structure of the impurity DOS

contained in ∆̂(iωn).

The effect of mismatch in the low imaginary frequency scale is carried over across the

entire real frequency domain of the self energy, and is especially pronounced near the poles

of ∆̂(ω + iη+), which are pinned by the bath energies. Since these bath energies tend to
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Figure 5.2: Spectral density for the interacting four bath site system for different values of
Coulomb repulsion, U0 = U1 (U01 = 0.0 for clarity), at half-filling. β = 200 with Lorentzian
broadening of η = 0.01. As Coulomb repulsion increases, quasiparticle weight is transferred from
the central quasiparticle peak (defined in figure 5.1 for the non-interacting case) to the Hubbard
bands, and there is a simultaneous narrowing of the peak centered at the Fermi level, ω = 0.0.
This dynamic narrowing makes it difficult to systematically determine the quasiparticle residue by
integrating over the central metallic peak.
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resolve at low frequency, in the analytic continuation the effects of the mismatch become

pronounced at small real frequencies in the self energy. This leads to negative values of

the (necessarily positive-definite) spectral function, especially near the Fermi energy, which

is an area of special interest in the energy scale of the problem. For a small number of

bath sites, including up to six, this technique of analytic continuation to find real frequency

properties provides a decidedly poor result, and is even avoided in zero-temperature DMFT

studies employing a much larger bath through Lanczos-type approximation schemes [113].

An example of the anomalous negative spectral weight for six bath sites is shown

in figure 5.3a, along with the positive definite impurity spectral density. The mismatch

between the lower orbital mean field Green’s functions, glat
σ00(iωn) and gimp

σ00 (iωn), is shown

in figure 5.3b.
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(a) Anomalous negative values in the
momentum-resolved lattice spectral function
component A0(k = 0.0, ω) for a six bath site
problem. For comparison, the positive defi-
nite spectral density of the impurity solution
A0(ω) is also shown. β = 200, U0 = 0.8,
U1 = 0.1, U01 = 0.0, ε1 = 1.0, t01 = 0.0,
t′ = 0.1, µ = 0.75. (The apparent asymme-
try in the impurity plot is a numerical arti-
fact of the sampling resolution.)
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Figure 5.3: Problematic analytic continuation of imaginary frequency multiorbital self energy to
real frequency.

An alternative method to find real frequency momentum-resolved spectral functions
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is to numerically extrapolate the imaginary frequency values to the real axis through a

rational function approximation, as in [113]. We have generalized an algorithm, Rat -

interp, from the Numerical Recipes library [82], to the complex plane so that the real

frequency self energy is taken as a function of the complex variable z. Through a local

fit to the Matsubara data points, the algorithm determines an expression of the form p(z)
q(z)

where p(z) and q(z) are polynomials with the order O(z) of the numerator less than that of

the denominator. Since z is a complex variable of general form, z = ω + iωn, and because

the functions in question are analytic in the neighbourhood of the fit, the functional form at

the imaginary axis uniquely determines the value of the function even at the real axis. The

quality of fit is somewhat improved for lower temperatures which provide a finer resolution

on the Matsubara axis, and thus more data points from which to fit the function elsewhere

on the complex plane.

Two checks are made on the quality of the rational function fit. First, the algorithm

should be able to produce the impurity density of states (5.3) from a fit to the imaginary

frequency impurity Green’s function (5.2), which is known exactly from the direct analytic

continuation of the Matsubara sums. Figure 5.4 shows an example of this check for a

system with non-trivial correlations. The extrapolation method captures the main features

of the impurity spectrum, and provides an especially good reconstruction near the Fermi

energy, which is a region of particular interest. (It should be noted that the real frequency

extrapolation is computationally time-intensive, necessitating a lower energy resolution

which is partly responsible for the non-matching details in [5.4].)

A second check is the Kramers-Kronig relation between the real and imaginary parts of

the extrapolated self energy. For a complex function F (x) = Fr(x) + iFi(x), the Kramers-

Kronig relation relates the real and imaginary parts, Fr(x) and Fi(x) respectively, to one

another as,

Fr(x)− Fr(∞) =
1

π
P
∫
dx′

Fi(x
′)

x′ − x
(5.5)

The rational function extrapolation method can find the real and imaginary parts of the

real frequency self energies. Properly determined, these values should be related according

to (5.5).

In the single orbital DMFT problem, <Σσxx(z) converges to its high frequency limit,

<Σσxx(∞), according to,

<Σσxx(z →∞)→ µ− εx +

∑
µν

∣∣∣〈µ ∣∣∣d†x∣∣∣ ν〉∣∣∣2 (e−βλµ + e−βλν
)

(λµ − λν)∑
µ e
−βλµ (5.6)
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Figure 5.4: Comparison of lower orbital spectral density A0(ω) for the impurity system deter-
mined by a rational function extrapolation from imaginary to real frequencies, and the analytic
continuation of the imaginary frequency impurity Green’s function. The extrapolation method
captures the main details of the analytically continued curve, and they are indistinguishable near
the Fermi energy. Four bath sites, U0 = 6.0, U1 = 2.0, U01 = 4.0, ε1 = t01 = 1.0, t′ = 0.2, µ = 15.0.

where µ and ν denote the eigenstates of the Anderson impurity Hamiltonian. The last term

in this expression is the shift in energy due to the Hartree-Fock mean field [146]. It is an

asymptotic value equivalently expressed by the leading term of the self energy perturbation

theory expansion on the imaginary frequency axis [147],

lim
iωn→∞

Σσxx(k, iωn) ≈ Uxn−σx +
U2
xn−σx(1− n−σx)

iωn
, (5.7)

which constant value is readily available from the converged DMFT and MODMFT imag-

inary frequency results for substitution into (5.5), to recover <Σσxx(ω).

Figure 5.5 shows the agreement of <Σσxx(ω) values directly extrapolated to the real

axis and those determined from the extrapolated =Σσxx(ω) using (5.5), which relies on a

numerical integration over ω.

5.2 Filling

The average electron occupation, or electron “filling” 〈nσ〉, is an important observable of

the converged DMFT system. In the MODMFT problem it provides critical information
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Figure 5.5: Comparison of <Σσ00(ω) and <Σσ11(ω) directly extrapolated to the real frequency
axis from a complex rational function fit to the Matsubara frequency self energy data, versus the
values obtained from the Kramers-Kronig (K-K) relation (5.5), utilizing the extrapolated imaginary
frequency self energies. The K-K curves have been adjusted by the Hartree-Fock high frequency
limit, <Σσxx(∞), taken from the imaginary frequency self energy data. Four bath sites, U0 = 6.0,
U1 = 2.0, U01 = 4.0, ε1 = t01 = 1.0, t′ = 0.2, µ = 15.0.

about the response of electrons to the relative energies and Coulomb repulsions of the two

orbitals. For simplicity we will hereafter denote the filling without chevrons.

At convergence, the filling is determined most easily from the impurity solutions. By

definition, the Fermi energy, corresponding to ω = 0, is the upper limit of electronic

occupation, allowing the determination nσ to be calculated by integrating over the negative

frequency spectral weight,

nσ =

∫ ∞
−∞

Aσ(ω)

eβω + 1
dω (5.8)

where the energies, ω, are defined relative to the Fermi energy. For temperatures on the

order of β = 100 or higher, the Fermi factor 1
eβω+1

is essentially a step function.

The denominator of the impurity Green’s function Ĝimp
σ (iωn) locates the poles of the

function at the eigenenergy differences λν − λµ, weighted in the numerator by the eigen-

states’ Boltzmann factors as e−βλν + e−βλµ . For β ∼ 200, only terms that include a

transition to or from a ground state have significant weight in this expression. Of these

terms, the gap between the first excited state and the ground state is already usually too

large to significantly affect the filling (5.8) through the Fermi factor.

Noting the dominance of the ground state, an alternative and computationally simpler
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approach to determining the electronic occupation is through the ground state eigenvector

|g.s.〉, itself, along with the first excited state vector. The ground state is a superposition

of different basis states |φ〉, so that

|g.s.〉 =
∑
φ

αφ |φ〉 , (5.9)

each basis state contributing a weight αφ to the total eigenstate character. The second and

higher excited levels near the ground state are easily checked to evaluate their contribu-

tion to the total filling through their Boltzmann weight in the partition function, and we

truncate for values of less than 0.01. However, we automatically include the contribution

of the first excited state, regardless of its weight. We determine the overall filling of the

ground state vector (plus contributions from other low-lying states) by counting the elec-

tron occupation on the impurity site lower orbital n0, and upper orbital n1, through the

operation,

〈g.s.| (n̂0 + n̂1) |g.s.〉 =
∑
φ,ρ

αφαρ〈ρ| (n̂0 + n̂1) |φ〉 . (5.10)

Figure 5.6 shows the Boltzmann weight of the first twenty excited states for a typical

set of interacting parameters.
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Figure 5.6: Boltzmann factors for the twenty lowest excited states of the impurity system, demon-
strating their minimal contribution to the overall state of the electrons. Note the log-log scale. Data
is for four bath sites, U0 = 6.0, U1 = 2.0, U01 = 4.0, ε1 = t01 = 1.0, t′ = 0.2, µ = 15.0.

The filling results from these two methods have been found to have very good agreement
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across a variety of test cases at the temperatures used in our study (β ∼ 100− 200).

5.3 Quasiparticle Weight

The quasiparticle concept of Fermi liquid theory (q.v. section 1.3) is crucial to our un-

derstanding of many-particle electronic systems. In an interacting lattice environment

electrons lose, to some extent, their identity and behaviour as individual particles and as-

sume a more corporate form in keeping with their wave-like properties, “dressed” up as

they move about the lattice with a “cloud” of interaction effects following them [148].

With the loss of free-particle identity, particle electrons are replaced by quasiparticle

excitations, characterized by an increased effective mass m∗, and a finite lifetime. The

density of states of the quasiparticle excitations is contained in the Green’s function, which

is divided by interactions into a coherent part Gcoh(k, ω), and an incoherent part Ginc(k, ω),

written as

G(k, ω) = Gcoh(k, ω) +Ginc(k, ω) . (5.11)

For a lightly dressed quasiparticle with a long lifetime, behaving very much as a free

electron, the incoherent part of the Green’s function will be small and the spectral density

will be dominated by a peak at the Fermi energy. As dressing is increased, this weight will

transfer to higher energies, as occurs in the MIT (q.v. section 3.7).

The weight of the peak at the Fermi energy is therefore a measure of quasiparticle

undressing and is denoted by Z.

For a single band system of interacting electrons, the quasiparticle weight can be derived

from the Green’s function,

G(z, k) =
1

z − ε(k) + µ− Σ(z)
(5.12)

(where the self energy is momentum independent, as in DMFT). If the system is in a Fermi

liquid state, the self energy is continuous in the limit of z → 0 and can be expanded as,

Σ(z)
z→0
≈ Σ(0) + z

dΣ(z)

dz

∣∣∣∣
z=0

, (5.13)
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so that (5.12) becomes,

G(k, z) ≈ 1

z − ε(k) + µ− Σ(0)− z dΣ(z)
dz

∣∣∣
z=0

=

 1

1− dΣ(z)
dz

∣∣∣
z=0

 1

z + µ−ε(k)−Σ(0)

1− dΣ(z)
dz

∣∣∣
z=0

. (5.14)

With non-zero interactions, the Fermi momentum is renormalized as k = k̃F , corre-

sponding to a Fermi energy defined where the real part of the self energy vanishes as [23],

ε(k̃F )− µ+ <Σ(0) = 0 . (5.15)

This condition gives rise to a coherent part of the Green’s function, a delta function at

z = 0, so that,

Gcoh(k, z) =

 1

1− dΣ(z)
dz

∣∣∣
z=0

 δ [µ− ε(k)−=Σ(0)] . (5.16)

The renormalization factor in parenthesis is the weight of the quasiparticle peak, located

at the renormalized Fermi energy when,

=Σ(z) = 0 . (5.17)

This is a condition for Fermi liquidity, under which the quasiparticle weight is related to

the slope of the self energy near the Fermi level, ω = 0, through,

Z =
1

1− ∂<Σ(ω)
∂ω

∣∣∣
ω=0

, (5.18)

where <Σ(ω) approaches zero as ω2. In the case where the system is an insulator, the

quasiparticles have lost all of their free-particle like quality and the self energy diverges at

the Fermi level, so definition (5.18) does not apply. The single particle Green’s function

behaves in an opposite way to the self energy, diverging for undressed quasiparticles and

going to zero for insulating behaviour.

In the language of Matsubara frequencies, on the imaginary axis the quasiparticle weight
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can be estimated [149] as,

Z =
1

1− =Σ(iω0)
ω0

, (5.19)

where ω0 is the lowest Matsubara frequency,

ω0 =
π

β
. (5.20)

In general, near the renormalized Fermi level k = k̃F , ω = 0, the quasiparticle effective

mass is inversely related to Z through,

m

m∗
=

1 + m
ε(k)

∂
∂k<Σ(k, 0)

∣∣∣
k=k̃F

1− ∂
∂ω<Σ(k, 0)

∣∣
k=k̃F

= Z

(
1 +

m

ε(k)

∂

∂k
<Σ(k, 0)

∣∣∣∣
k=k̃F

)
(5.21)

and to the energy band curvature through,

m

m∗
=
∂2E(k, ω)

∂k2

∣∣∣∣
k=k̃F , ω=0

(5.22)

which follows from a series expansion of E(k, ω) around k = k̃F , ω = 0.

Together, (5.21) and (5.22) connect the local curvature of the energy versus momentum

graph with quasiparticle coherence. The relationship is indicative of the effective mass of

quasiparticles occupying energy levels in a certain region of the dispersion. A slowly varying

topology of the interacting dispersion indicates carriers having a high effective mass and

conversely a sharp change in curvature suggests undressed quasiparticles of lower effective

mass.

The multiorbital lattice with hybridization between bands complicates the form of the

quasiparticle weight, as the Green’s function takes a matrix form. The diagonal elements of

the matrix no longer permit a form of the quasiparticle residue (5.18) as a renormalization

factor defined simply in terms of the diagonals of the matrix self energy Σ̂(z). For non-

zero hybridization the matrix form of the Dyson equation (4.15) ensures that the diagonal

elements of the lattice Green’s function depend on all four elements of the two-by-two self

energy matrix,

Σ̂(z) =

(
Σ00(z) Σ01(z)

Σ10(z) Σ11(z)

)
. (5.23)
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The simple diagonal form of (5.16) is approximately correct only in the limit of small

hybridization and very weak interactions. Nonetheless, this single band form has been

explicitly used for the hybridized multiorbital case in the literature, for example in [65,140].

More appropriately, the diagonal lattice Green’s function elements are decomposed into

a sum of terms relating to hybridized energy orbitals (we neglect the spin index, assuming

the paramagnetic case),

Glat
00 (k, z) = Glat

0−(k, z) +Glat
0+(k, z) (5.24a)

Glat
11 (k, z) = Glat

1−(k, z) +Glat
1+(k, z) (5.24b)

where (for x = 0 or 1 denoting the orbitals),

Glat
x−(k, z) =

u2(z)

z − ε(k)− ζ−(z)
(5.25a)

Glat
x+(k, z) =

v2(z)

z − ε(k)− ζ+(z)
. (5.25b)

The poles of the Green’s function now take the form of effective self energies, ζ−(z)

and ζ+(z), of hybridized energy orbitals. The contribution of each pole, ζ±(z), to the full

quasiparticle residue Zx is weighted by the numerators, u2(z) and v2(z). The factors ζ±(z),

u2(z) and v2(z) are functions of the self energy matrix elements:

ζ±(z) =
1

2
[ε0 + ε1 + Σ00(z) + Σ11(z)]± κ(z) (5.26a)

u2(z) =
1

2

[
1− ε0 − ε1 + Σ00(z)− Σ11(z)

κ(z)

]
(5.26b)

v2(z) =
1

2

[
1 +

ε0 − ε1 + Σ00(z)− Σ11(z)

κ(z)

]
(5.26c)

where

κ(z) =

√
[ε0 − ε1 + Σ00(z)− Σ11(z)]2 + 4 [t′ − Σ01(z)] [t′ − Σ10(z)] . (5.27)

Clearly, u2(z) + v2(z) = 1.

In contrast to the single band case where a single quasiparticle peak forms at the Fermi

energy for an electron of momentum ε(k), the two terms of (5.24) form two quasiparticle

peaks located at the Fermi energy when z = ζ±(z) − ε(k), for some momentum k specific

to each peak.

The single band conditions for coherent quasiparticle formation, (5.15) and (5.17), find
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their multiorbital expression as,

ε(k̃F )− µ+ <ζ±(z) = 0 (5.28a)

=ζ±(z) = 0 , (5.28b)

where ε(k̃F ) is the free particle energy dependent on the bandwidths, 4t0 and 4t1, as well

as the hybridization parameters.

Under these conditions (5.28), four definitions of the multiorbital quasiparticle weight

suggest themselves as usefully constructed from the components of (5.26): Z0 the quasi-

particle weight contribution for charge carriers in the lower orbital; Z1 for the upper or-

bital; and Z± giving the weight associated with one of the two hybridized energy orbitals,

constructed by linear combination from the physical upper and lower orbitals. These are

defined in terms of the Matsubara frequency from the slopes of ζ±(iωn) near zero frequency

as,

Z0 =
<u2(0)

1− ∂=ζ−(iω0)
ω0

+
<v2(0)

1− ∂=ζ+(iω0)
ω0

(5.29a)

Z1 =
<u2(0)

1− ∂=ζ+(iω0)
0

+
<v2(0)

1− ∂=ζ−(iω0)
ω0

(5.29b)

Z± =
<u2(0) + <v2(0)

1− ∂=ζ±(iω0)
ω0

. (5.29c)

In the case of a large band gap ε1, the dominant quasiparticle expression is Z0, as most

of the electron identity is located in the lower orbital, and in this limit Z− ≈ Z0. As will

be found in chapter 7, the key physics of the DHM becomes evident even in this regime,

emphasized as the gap narrows. The concept of orbital relaxation for electrons in the lower

energy state, which is the key paradigm of the DHM, suggests a focus on the quasiparticle

behaviour for electrons in this lower physical orbital, and thus we are particularly interested

in the behaviour of Z0 throughout this study and in our comparisons of the results from [31].

As a final note of contrast, in a regime of system parameters where electron-hole asym-

metry is particularly evident, figure 5.7 demonstrates the difference in quasiparticle weight

between definitions (5.29a) and (5.29b), and the single-band self energy definition com-

monly found in the multiorbital literature [65, 140]. There are clearly qualitative distinc-

tions.
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Figure 5.7: Upper and lower orbital quasiparticle weights, Z1 and Z0, versus total band filling, up
to the half-filled lattice (for clarity), for a system of strong electron-hole asymmetry. Above quarter
filling there is a qualitative difference between the quasiparticle weights Z(Σ) estimated from the
orbital self energies as in (5.19), and the values Z(ζ±) derived more appropriately from effective
self energies (5.29), especially in the upper orbital case (Z1).

5.4 Optical Conductivity

Spectroscopic methods provide experimental probes of material electronic structure. Opti-

cal spectroscopy evaluates a material’s response to incident electromagnetic radiation across

some spectrum of frequency correlated to an appropriate energy scale for phenomena of

interest. In particular, the optical conductivity σ(ω) is a response function accounting for

electronic transitions in a material between occupied and unoccupied energy states, and a

measure of electron transport in a lattice.

The low frequency component of σ(ω), called the “Drude weight”, corresponds to the

DC response of a material in the presence of an external electric field E(ω). For a small

perturbation there is a linear response. In an isotropic system it is captured by the con-
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ductivity relating the field to the induced current density J(ω) by,

J(ω) = σ(ω)E(ω) . (5.30)

The optical conductivity is sensitive to changing material phase with, for instance,

a MIT at half filling in a band corresponding to a complete suppression of the Drude

weight. In the case of the DHM, as discussed in section 2.5, orbital relaxation as a band

is filled with electrons should be signaled by a decrease in low frequency optical spectral

weight, transferred to higher frequency. This result was confirmed for a finite-chain QMC

study of the DHM in [48], where Hirsch used an optical conductivity expression for the

one-dimensional single band Hubbard model derived by Maldague [150].

The general form of the optical conductivity on an infinitely-connected lattice was

derived by Pruschke et al. [100] as,

σ(iν) =
1

Nνβ

∑
ksωn

∑
l

v2
kl
Gks(iωn)Gks(iωn + iν) . (5.31)

N is the number of lattice sites and vkl is the lth component of the charge carrier Fermi

velocity,

vk = ∇εk = −2t∇

[∑
l

cos(kla)

]
. (5.32)

For the case of an isotropic hypercubic geometry the sum over the Fermi velocity can be

expressed as an energy integral over the non-interacting density of states D(ε) [100, 151],

resulting in the expression,

σHC(ω) =
σpre

ω

∑
s

∫ ∞
−∞

dεD(ε)

∫ ∞
−∞

dω′
[
f(ω′)− f(ω + ω′)

] [
As(ε, ω

′)As(ε, ω + ω′)
]
,

(5.33)

where charge carriers have spin s. f(ω) denotes the Fermi function,

f(ω) =
1

e(ω−µ)β + 1
. (5.34)

The prefactor, σpre, is given by,

σpre =
e2a2t∗2

π~2V
(5.35)

with e the electric charge, a the lattice spacing, and V = ad the unit cell volume for

dimensionality. In our analysis we will in general be concerned with the values σ(ω)/σpre.

On the Bethe lattice, determining the optical conductivity is an ill-posed problem.
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The lattice geometry is normally ambiguous, defined not in terms of spatial direction or

bond angles and lattice spacings, but only in terms of topological connectivity: a constant

number of nearest neighbours relative to each site (q.v. figure 3.2). Defining transport

properties is therefore a difficult problem, and several methods have been proposed for

calculating σ(ω).

Most simply, and commonly used in early DMFT work, one can adopt the assump-

tions proper for the hypercubic lattice, as given by σHC in equation (5.33), assuming

the translational invariance carries over equally well in the case of the Bethe lattice’s

tree-like structure. This expression has been used for the DMFT Bethe lattice in refer-

ences [51,87,152,153], presumably as an approximation.

Chattopadhyay et al. [154] derived a more nuanced correction to (5.33) using the optical

sum rule for systems dominated by cubic nearest-neighbour hopping,∫ ∞
0

2

π
dωσ(ω) =

e2

ad−2
K (5.36)

where K is the kinetic energy. Requiring K to be consistent with the general kinetic energy

expression,

K =
1

π

∫
dεkD(εk)

∫
dωf(ω)=G(εk, ω), (5.37)

as well as that for the optical conductivity, they defined what we denote as a “Chattopad-

hyay” optical conductivity for the Bethe lattice, σChat(ω),

σChat(ω) =
σpre

3ω

∑
s

∫ ∞
−∞

dε
(
4t2 − ε2

)
D(ε) (5.38)

×
∫ ∞
−∞

dω′
[
f(ω′)− f(ω + ω′)

] [
As(ε, ω

′)As(ε, ω + ω′)
]
.

Blümer [155] was critical of the underlying assumption behind (5.38), that the infinite-

dimensional Bethe lattice will approximately obey the hypercubic lattice sum rule (5.36),

showing that this leads to results which are characteristic of geometric anisotropy. Instead,

he derived a robustly isotropic density of states for the Bethe lattice, employing a redefined

dispersion,

εk =
∞∑
d=1

Hed

(
εhc
k t
∗
d/
√
d!
)
, (5.39)

where d is the electron hopping “Manhattan” distance (i.e. the path taken by charge

carriers in the lattice as measured along the lattice bonds, reminiscent of measuring the

distance walked along rectangular city blocks). Hed(x) is the Hermite polynomial of order
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d, and εhc
k is the dispersion of the hypercubic lattice with nearest-neighbour hopping only.

For this Bethe lattice definition, with the usual semi-elliptic density of states, the

“Blümer” optical conductivity σB(ω) takes the form,

σB(ω) =
σpre

ω

∑
s

∫ ∞
−∞

dεD̃(ε)

∫ ∞
−∞

dω′
[
f(ω′)− f(ω + ω′)

] [
As(ε, ω

′)As(ε, ω + ω′)
]
,

(5.40)

The energy parameter D̃(ε) is given by,

D̃(ε) =
1√

4t∗2 − ε2
exp

−2

{
erf−1

[
ε
√

4t∗2 − ε2 + 4t∗2 sin−1
(
ε

2t∗

)
πt∗2

]}2
 , (5.41)

where t∗ is the renormalized Bethe lattice hopping parameter.

In this thesis we are under the constraint that a proper, generalized multiorbital Bethe

lattice formulation of transport properties, including the conductivity, appears not yet to

have been derived beyond an involved numerical solution in the context of a linear muffin-tin

orbital [28] band structure approximation [156], and a Peierls substitution approach which

couples the electromagnetic field to a physical lattice geometry with translational symmetry

[157]. Blümer’s derivation (5.40) is also specific to a single band system, dependent on a

careful evaluation of the hopping behaviour in that context [155] and not generalizable to

the multiorbital case. In each of these cases there is no apparent generalization applicable

to our scenario.

As a result, we adopt the assumption that the single band formulations (5.33) and

(5.38) can be appropriately generalized for the multiorbital case by recasting them into

matrix form; we rely on this as an effective avenue toward insight into the multiorbital

conductivity. The orbital-specific conductivities, σ0(ω) and σ1(ω), are dependent on the

diagonal elements of the matrix convolution of spectral function operators, Â0(ε, ω′) and

Â1(ε, ω + ω′). Ideally, the density of states should be recast in a proper multiorbital

expression not only including a dependence on the intra-orbital hopping parameters, t0

and t1, but also the interorbital nonlocal hybridization t01. As discussed in section 4.3, we

lack a rigorous analytical derivation for the multiorbital Bethe lattice DOS, but are able

to perform a numerical calculation in the context of the optical conductivity algorithm.

We thus proceed to estimate the optical conductivity aware of the limitations of the

hypercubic assumption and the lack of a proper multiorbital derivation for this property of

the system. Nonetheless, our multiorbital realization should provide insight into the impact

of interband transition absorption effects that are expected to reduce the orbital-specific

conductivity spectral weight.
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Under these assumptions our multiorbital optical conductivity σMO(ω) becomes (for

orbital α),

σMO,α(ω) =
σpre

ω

∑
s

[∫ ∞
−∞

dε ˆ̃D(ε)

∫ ∞
−∞

dω′
[
f(ω′)− f(ω + ω′)

]
Âs(ε, ω

′)Âs(ε, ω + ω′)

]
α

(5.42)

where ˆ̃D(ε) is a modified matrix DOS whose components are chosen appropriate to (5.33)

or (5.38) so that,

ˆ̃DPrus =

(
D00(ε) D01(ε)

D01(ε) D11(ε)

)
(5.43)

ˆ̃DChat =
1

3

([
4t20 − (ε+ ε0)2

]
D00(ε)

[
4t201 − (ε+ t′)2

]
D01(ε)[

4t201 − (ε+ t′)2
]
D01(ε)

[
4t21 − (ε+ ε1)2

]
D11(ε)

)
.

(5.44)

We will use (5.42) in our analysis of the DHM in section 7.5 where we identify the affects

of hybridization on the transfer of spectral weight between low and high frequencies.
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Chapter 6

Checks and Limits

6.1 Parameter Scales

In the single band case, the lattice DOS (4.22) in the limit of infinite connectivity has

allowed values of ε under the square root in the range of −2t ≤ ε ≤ 2t with a bandwidth

of W = 4t. In the multiorbital case, the non-hybridized bands are similarly characterized

by bandwidths W0 = 4t0 and W1 = 4t1. The system parameters used throughout our

DHM analysis are scaled relative to the lower orbital nearest-neighbour hopping parameter,

t0 = 1.0, which serves as a reference value for all other parameters including the Coulomb

repulsions. Thus the lower orbital bandwidth is maintained at a value of W0 = 4.0.

Realistic units for the energy scale are on the order of eV, although the relative (unitless)

specification of Coulomb repulsions with respect to bandwidth is the critical issue in the

physics of the DHM.

6.2 Bath Size

As discussed in chapter 3, the DMFT method is grounded in a mapping of an infinite

lattice onto a finite single impurity Anderson model (3.14). The effects of the whole lattice

environment on the local dynamics of an individual lattice site are captured by a small

set of non-interacting pseudo-sites representing the energetics of a mean-field “bath”. The

overall picture is illustrated in figure 3.1.

In principle, utilizing a larger bath should result in a more accurate parameterization,

as the conjugate gradient minimization routine [129] is able to explore a more nuanced

landscape in search of a function of finite dimension that best satisfies the distance re-

lationship (4.12). An increasingly large bath, however, begets the same computational
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problems discussed in section 3.1 that prohibit exact diagonalization of a large system: a

larger number of bath sites increases the Hilbert space of the problem, requiring significant

resources of time and computational memory. One of the critical challenges of DMFT

calculations is to find the best bath parameterization at the least cost [113].

The Lanczos method [119, 158] has been used (for example, [87, 112, 159, 160]) in the

history of DMFT to solve systems with larger baths at zero temperature. The Lanczos

algorithm accurately returns the ground state of the system, but suffers from a limitation in

handling degeneracies without additional time-consuming strategies [120,160]. As well, our

experience has shown that obtaining converged hybridized multi-orbital Green’s functions

in an efficient manner is also challenging under Lanczos. The Arnoldi algorithm [121]

alleviates the first of the problems, by reliably returning the full eigenspectrum of the

Hamiltonian, but the second difficulty remains. It has, however, been successfully applied

to multiorbital DMFT in the absence of orbital hybridization [114].

Figure 6.1 shows the effect of bath size on agreement between the single band mean field

Green’s functions, glat(iωn) and gimp(iωn), which should become identical in the limit of in-

finite bath site number. Figure 6.2 shows, as a function of bath size, the maximum absolute

difference separating the data sets, evaluated at the Matsubara frequency where agreement

is poorest. The data in the figures is calculated at half-filling near the metal-insulator tran-

sition, where convergence is most difficult to obtain, especially at low frequency. It is clear

from the scale of the plots that even with three bath sites the maximum disagreement be-

tween the functions is only a small fraction of their absolute value. This contrasts sharply

with results found in the original paper [87] on the single-orbital LISA implementation

where the same maximum relative disagreement for three bath sites was much larger.

It is also important to note the consistency among all four size examples at ωn = 0.

This agreement at very low energy is significant since the self energy behaviour at the real

axis is employed in determining the quasiparticle weight of the system.

In our exploration of the multiorbital electronic DHM (2.15), we have chosen to employ

a full finite-temperature exact diagonalization for ease and reliability of implementation.

The bulk of our calculations are performed with a four-site bath in addition to the two

impurity sites (one for each orbital). This choice provides sufficient parameterization of the

mean field to allow adequate agreement between the mean field functions, while limiting the

time required for the algorithm to be run to self-consistency and swept across incrementally

changing values of the parameters of interest in order to identify relevant trends such as

band filling or quasiparticle weight as a function of chemical potential.

Similar to figure 6.1 for the single band case, the agreement between mean field Green’s

functions for the multiorbital implementation is shown in figures 6.3 and 6.4 for the real
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Figure 6.1: Comparison of the converged single band mean field Green’s functions for the lattice,
glat(iωn), and SIAM, gimp(iωn), for different impurity bath sizes. Data is for U = 3, β = 200 at
half filling near the MIT where convergence is most difficult. Note the narrow scale of the y-axis,
demonstrating that even with three bath sites, the maximum discrepancy is a small fraction of the
absolute functional values. Also note the robust agreement among all cases at ω0, the data point
nearest the real axis, where the value and slope of the self energy determines the quasiparticle
weight.
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Figure 6.2: Maximum disagreement between single band mean field Green’s functions, =glat(iωn)
and =gimp(iωn), from data plotted in figure 6.1. The value indicates the separation value at the
Matsubara frequency with the worst agreement between the data sets.

and imaginary parts, respectively. The system parameters are comparable to the single

orbital case above, with symmetric half-filled orbitals (ε0 = ε1 = 0), Coulomb repulsions

near the metal insulator transition (U0 = U1 = 3.0, µ = 1.5), and coupling between the

orbitals (t01 = 1.0, t′ = 0.2 and U01 = 1.5). The agreement between the imaginary values

is excellent for all cases, whereas convergence of the real part of the Green’s functions

appears to be systematically more difficult in the multi-orbital realization and so is a

better measure of the appropriate size of the bath. The maximum disagreement of these

functions in figure 6.3 is shown in figure 6.5.

Our usual choice of four bath sites, or two per impurity orbital, is consistent with

findings in [113], where it was concluded (for non-hybridized orbitals) that this size of

bath provides reliable information so long as the inverse temperature, T , is not “too low”

(roughly T
t > 0.005). It is important to note that those results pertained to a larger number

of impurities embedded in the bath (a minimum three, as opposed to our two), but the

extra hybridization parameter accompanying an additional orbital in their case is off-set

by the inclusion of off-diagonal hybridization terms, V0l and V1l, in ours. This concurs with

the findings of reference [161] for the reliability of a two-orbital system with four bath sites.

Having said this, for certain instances where greater resolution or better convergence is

required, we can employ five or even six bath sites (seven or eight total sites). This level of

resolution can be useful, for example, in examining changes in the slope of the self energy
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Figure 6.3: Comparison of real parts of the converged mean field Green’s functions for the lattice,
<glat

00 (iωn), and SIAM, <gimp
00 (iωn), for different impurity bath sizes. Data is for U0 = U1 = 3.0,

µ = 1.5, β = 200 at half filling near the MIT where convergence is more difficult than in the metallic
or insulating phases. Coupling between the orbitals is t01 = 1.0, t′ = 0.2 and U01 = 1.5.
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Figure 6.4: Comparison of imaginary parts of the converged multiorbital mean field Green’s
functions. Parameters are the same as in figure 6.3.
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Figure 6.5: Maximum disagreement between real parts of the double band mean field Green’s
functions, <glat

00 (iωn) and <gimp
00 (iωn), from data plotted in figure 6.3.

(or functions derived therefrom) at the Fermi energy, or evaluating the real frequency

spectral functions, where an increase in multi-site correlations tends to add detail to the

overall structure of the spectrum. There is, however, a high cost in computational time

related to the exact diagonalization of a much larger Hamiltonian matrix.

The distance functions (3.24) in the single orbital case, and (4.12) in our two-orbital

implementation, provide a measure of how well the chosen number of bath sites approximate

the lattice solution. As discussed in section 3.6, the output of this function is determined

through our C++ translation of the conjugate gradient minimization routine, minimize

[129]. The actual convergence of the MODMFT algorithm (figure 4.1) is based on the

norm of the agreement between the matrix components of the impurity mean field Green’s

functions ĝimp(iωn) at two subsequent iterations of the algorithm. The level of agreement

is measured across all frequencies and compared to some arbitrarily small tolerance η in

(4.14), as discussed in section 4.2.

6.3 Nonlocal Hybridization and Convergence

The hybridization of electrons between orbitals and between sites through t01 is important

to the physical motivation of the DHM (2.15). It is of value to consider the effect of this

parameter on low-frequency convergence of the MODMFT solution.
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The strength of t01 is expected to govern the emphasis placed on the off-diagonal

impurity-bath hopping parameters V0l and V1l, which, as mentioned above, expand the

functional landscape for our multiorbital problem as compared to that of a non-hybridizing

multiorbital implementation of equivalent size. Figure 6.6 shows the change in the differ-

ence,
∣∣∣<gimp

00 (iωn)−<glat
00 (iωn)

∣∣∣, for the low energy region of the Matsubara spectrum. An

increase in t01 strongly corresponds with an increase in agreement between the converged

functions. The parameters are the same as in figure 6.3, with four bath sites and t′ = 01

to clarify the role of t01.
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Figure 6.6: Disagreement between real parts of the double band mean field Green’s functions,
gimp

00 (iωn) and glat
00 (iωn), for low frequency region of Matsubara spectrum, with varying nonlocal

hybridization t01. Four bath sites are used, with system parameters as in figure 6.3 and t′ = 0. It
is clear that a larger value of t01 corresponds to a better parameterization of the impurity model,
because of the greater emphasis on additional bath hybridization parameters .

Figure 6.7 shows the maximum disagreement between the mean field Green’s functions

from the data in figure 6.6. A model which includes a non-zero t01 will tend to be more

reliable in a MODMFT application with fewer bath sites than a model without this pa-

1t′ = 0 out of an abundance of caution, since it has been found to have no effect on the question at
hand, which is not surprising given its entirely local contribution to the impurity problem.
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rameter. Thus, this hybridization has a stabilizing effect on the DHM solution across a

larger set of system parameters which affects that logistics of modeling these systems.
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Figure 6.7: Effect of t01 on maximum disagreement between real parts of the two-orbital mean
field Green’s functions, glat

00 (iωn) and gimp
00 (iωn). Using data plotted in figure 6.6.

Additionally, we have found t01 to provide a helpful degree of freedom in converging an

otherwise difficult MODMFT solution. In certain parameter regions, usually in the vicinity

of a hysteresis region (see section 6.5), the MODMFT routine will fail to converge within

several hundred iterations. An increased value of t01 will often provide robust convergence,

following which the hybridization value can be scaled down to its original value in a stepwise

continuous way to arrive back at the original desired parameter definitions and convergence

results.

6.4 Single Band Limit

The single band exact diagonalization implementation of DMFT has been well tested and

well understood since its development in 1994 by Caffarel and Krauth [112], and a bench-

mark algorithm has been freely distributed in the LISA Fortran program [87,122] discussed

in section 3.6.

The single band limit provides an important reliability test for our MODMFT imple-

mentation. The matrix construction of the Green’s functions and self energy are struc-

turally different from the single-orbital form, and this slightly complicates the search for
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equivalence between the two cases. Naturally, electronic occupation of the upper orbital

must be made energetically unfavourable by setting (ε1 − ε0) → ∞. This ensures that in

the impurity Green’s function Ĝimp(iωn) the only finite component is Gimp
00 . Figure 6.8

provides a comparison of the self energy and lattice mean field Green’s function in this

limit, for ε1 = 1000 and the metallic half-filling system parameters U0 = 2, µ = 1, and

β = 100.
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Figure 6.8: A test of the multiorbital DMFT code in the single orbital limit with the upper energy
level gapped out at ε1 = 1000. There is good agreement at low energy between the self energies and
lattice mean field Green’s functions for the single orbital case (solid lines) and multiorbital lower
band result (points) U0 = 2, µ = 1 and β = 100.

Figure 6.9 provides a comparison of the converged bath parameters corresponding to

the data in figure 6.8, from the single orbital DMFT solution and the lower energy orbital

of the MODMFT solution. The hybridization values Vl and V0l, for bath sites l, show very

good agreement as do the bath energies εl, demonstrating the proper convergence of the

multiorbital code in the large ε1 limit. Test cases on other parameter sets provide equally

good results.

6.5 Hysteresis

As discussed in section 3.7, a hysteretic region has been observed in the MIT phase dia-

gram of strongly correlated electron systems examined under DMFT, and is understood as

evidence of a first-order transition. The existence of actual hysteresis has been challenged,
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Figure 6.9: Comparison of converged bath parameters for data shown in figure 6.8. The top
line shows agreement between hybridization parameters Vl and V0l; the lower set of data shows
agreement between the bath energies εl.

however, as a numerical deficiency [131].

In our two-orbital model of DMFT, it is unambiguous that hysteresis regions appear,

especially in diagrams showing the fillings and quasiparticle weights of the system. This

phenomenon arises when the MODMFT code is employed in subsequent cases to sweep

a system parameter across a discretized spectrum of increasing or decreasing values. At

certain regions of a phase diagram related to that parameter, there is disagreement between

the converged solutions from sweeping up and sweeping down, and one might say the

hysteretic path that results is “connected” to the extremal phase which formed the starting

point of a high value or low value of the parameter. For example, hysteresis observed in the

MIT region arising from subsequent iterations of the code where U0 is adjusted up or down

will provide two converged solutions: one connected to the insulating region (sweeping

down from high U0) and the other connected to the metallic limit (sweeping up from low

or zero U0). Various incarnations of hysteresis have been identified in MODMFT studies

including plots of band filling [161], double occupancy [162], spectral weight [163] and

quasiparticle weight [164]. A qualitative difference has also been observed between the

hysteresis regions found with QMC and ED DMFT impurity solvers [165].

In agreement with previous multiorbital results (e.g., [113,161,164]) we have found quite

generally that the hysteresis regions correspond to parameter spaces where the convergence

of the bath parameters is especially difficult, normally (but not exclusively) in the vicinity

of a MIT (as well as insulator to metal transitions [IMT]) in one of the two bands (or the

region where a MIT would occur except for the enhancement of the quasiparticle weight
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by the intersite hybridization t01). In the four-site MODMFT problem a converged set

of bath parameters can normally be arrived at with only 2-6 iterations of the MODMFT

loop. In a hysteresis region, this may take upwards of 100-200 iterations depending on the

specific conditions, and convergence will not occur at all in some instances after several

hundred iterations, especially for systems with large Coulomb repulsions relative to the

bandwidths.

A very typical example of the type of hysteresis encountered is shown in figure 6.10,

where the chemical potential µ is swept up and down across the same parameter space to

plot the total filling n of the two bands. The plateau region at half filling (n = 2) is bounded

by two hysteretic features at the MIT and the IMT. The total electronic filling is expected

to increase (decrease) monotonically with increasing (decreasing) chemical potential, as it

does in the case of increasing µ where each MODMFT run is initialized by the converged

bath parameters of the preceding converged solution at lower µ. In the case where chemical

potential is swept down, it is clear from the figure that the filling violates the physical

expectation of monotonical decrease across the entire insulating plateau and especially in

the left-hand hysteresis region.

Another example, not connected to Mott physics, is seen in figure 6.11. Here, hysteretic

behaviour arises in connection with an abrupt onset of energetics favourable for filling the

upper band, where before the value of the chemical potential had favoured filling of the

lower band. Again, this figure presents a choice between physical and non-physical solutions

evaluated on the monotonic change in the total filling of the combined bands.

The examples in figures 6.10 and 6.11 are for four bath sites, but our observations are

fairly consistent with tests made on five bath site systems. However, while still present, both

the hysteresis and the non-monotonic behaviour of the total filling are obviously suppressed

with the extra pseudosite. This suggests the hysteretic behaviour in our DMFT algorithm

is related to the computational method and may not reflect actual physics of the system.

We are unaware of any other MODMFT studies which indicate the same physical defect

in a hysteresis region, perhaps due in part to the fact that hybridization between bands is

often neglected whereas we do find it plays a role in moderating hysteresis (as do changes

in spin flip and pair exchange and temperature [164]), although not altogether eliminating

it. It is also critical to evaluate the effect of hysteresis on the monotonic change in total

band filling of a multiorbital system, and our review of the MODMFT literature has found

an understandable emphasis on hysteresis in the context of individual band filling alone

(where monotonic change is not necessarily expected) with no apparent examples of the

close-up total filling in the hysteresis regions, as in figure 6.11.

We have found these unidirectional violations of the anticipated relationship between
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Figure 6.10: Hysteresis in the total electron filling at the MIT and IMT in the converged
MODFMT solution, as chemical potential is swept up or down (direction of sweep indicated by
arrows). At each new data point calculation, the bath parameters are initialized with the con-
verged parameters of the previous solution in the sweep. The total electron filling should change
monotonically in the same direction as increasing or decreasing chemical potential — a physical
expectation violated in the case of decreasing µ, especially at the left-most transition. Four bath
sites, β = 100, U0 = 6.0, U01 = 4.0, U1 = 2.0, t01 = 1.0, t′ = 0.2, ε1 = 1.0.

total filling and chemical potential to be typical of our MODMFT hysteresis regions, and

indicative that one of the two convergence paths should not be considered physical. As

a rule, throughout this thesis we only present the converged result that agrees with the

physical expectations of monotonic changes in the total electron filling of a hysteresis region.

6.6 Non-Interacting Limit

6.6.1 Overview

We conclude this chapter by examining the non-interacting limit (U0 = U1 = U01 = 0) of

the electronic DHM Hamiltonian (2.15) and the ability of our MODMFT code to produce

the results expected in this limit.

In subsection 6.6.2 we will explore the analytical expression for the dispersion of the

one-dimensional tight-binding DHM lattice, evaluating the effects of hybridization on this
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Figure 6.11: A close-up example of a hysteresis region that arises from sweeping the chemical
potential up and down to change the electron occupation of the orbitals. In this region, the curve
corresponding to increasing µ (red with data points indicated by + markers) violates the expectation
of an associated monotonic increase in the total electron filling. Instead, the curve approaches and
then drops away from the blue horizontal reference line. The green curve (× symbols), corresponding
to a decreasing sweep in the chemical potential, levels off in the plateau region (below µ = 15.6)
without similar unphysical behaviour. The underlying dynamic creating this region of hysteresis is
the abrupt onset of favourable energetics for filling the upper orbital and is not associated with an
orbital MIT or IMT. Four sites β = 120, U0 = 10.0, U01 = 6.0, U1 = 4.0, t01 = 1.0, t′ = 0.2, ε1 = 5.0.

system before Coulomb repulsion is included in its dynamics. This analysis is not directly

comparable to the Bethe lattice geometry employed in the DMFT method. However, it

is relevant to the linear chain of four sites employed in Hirsch’s study [31], to which our

results in chapter 7 are otherwise compared. It is intended to provide insight into the

behaviour of the general model under hybridization.

In subsection 6.6.3, we turn to the multiorbital Bethe lattice and explore the non-

interacting limit as an additional simple check on the behaviour of our MODMFT code.

We examine the output of the algorithm with respect to the expected Drude peak in the

non-interacting spectral density and optical conductivity.
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6.6.2 Effect of Hybridization on Non-Interacting Bands

The energy bands of the non-interacting DHM Hamiltonian can be calculated analytically

through a Fourier transform to k-space. Taking the lower orbital energy centered at ε0 = 0,

the Hamiltonian matrix for a one-dimensional system becomes,

Hk =
(
c†0k c†1k

)( −2t0 cos(k) −2t01 cos(k)− t′

−2t01 cos(k)− t′ −2t1 cos(k) + ε1

)(
c0k

c1k

)
, (6.1)

with eigenvalues,

λ± =
1

2
[ε0(k) + ε1(k) + ε1]± 1

2

√
[ε0(k)− ε1(k)− ε1]2 + 4 [ε01(k)− t′]2 (6.2)

where,

ε0(k) = −2t0 cos(k) (6.3)

ε1(k) = −2t1 cos(k) (6.4)

ε01(k) = −2t01 cos(k). (6.5)

The solutions of (6.2) are the energies of the electron bands which, for non-zero hybridiza-

tion, are occupied by linear combinations of electrons in the physical bands centered at ε0

and ε1.

The indirect energy gap between non-interacting (NIN) upper and lower bands is de-

fined by

∆NIN(k) = λ+ − λ− =

√
[ε0(k)− ε1(k)− ε1]2 + 4 [ε01(k)− t′]2. (6.6)

For t0 = t1, ∆NIN(k) 6= 0 ∀k under either of two conditions:

1. ε1 > 0.

2.
∣∣∣ t′t01

∣∣∣ > 2 .

Under either condition, the energy dispersion will be gapped. The presence of hybridization

therefore introduces another means—besides the usual ε1 − ε0—of separating the energy

bands of the system.

Figure 6.12 compares the response of the non-interacting band structure to the opening

of a gap by changes in the values of ε1 and the onsite hybridization t′, where t01 = 0.

These illustrations of (6.6) make it clear that both parameters can play an equivalent role

in tending to separate the energy bands of the system, although the effect of t′ is more
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dramatic in that it affects the lower band as well as the upper. In the case of increasing

ε1 [figure 6.12 a)], the lower band position remains fixed for all values of the upper orbital

energy. Similar observations were made in a study of the two-orbital periodic Anderson

model by Continentino et al. [57].
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Figure 6.12: A gap is opened in the non-interacting 1D dispersion of the electronic DHM through
either a) ε1 or b) the local hybridization t′. t0 = t1 = 1. All other system parameter are zero
including t01. For the ε1 = 0.0 case in a) and t′ = 0.0 in b), the upper and lower bands are
degenerate (λ+ = λ−). In a), as ε1 is increased, the lower band (energies λ−) remains fixed (at
the ε1 = 0.0 position) while the upper band (λ+) moves up opening the gap. In b), increasing the
local hybridization t′ causes both the upper band to move up and the lower band to descend. It is
therefore clear that t′ produces a similar but enhanced effect on the non-interacting band structure

as ε1 (when the condition
∣∣∣ t′t01 ∣∣∣ > 2 is met). Also of note, in b), the band-widths are unaffected by

changes in t′.

The effect of t01 on the non-interacting band structure is shown in figure 6.13. With

t′ < t01, this intersite/interorbital hybridization does not open a gap in the band structure,

unlike the local hybridization t′ acting by itself.

The impact on the energy gap (6.6) for various parameter combinations is shown in

figure 6.14, demonstrating their relative importance in the spacing between the lower and

upper bands.

101



6.6. NON-INTERACTING LIMIT

-6

-4

-2

0

2

4

6

−π −π
2 0 π

2 π

λ
±

k

t01 = 0.0
0.5
1.0
1.5

Figure 6.13: The effect on the non-interacting linear chain from increasing t01, with t0 = t1 = 1
and t′ = ε1 = 0. The upper and lower bands are degenerate for t01 = 0.0. A flattening of the bands
becomes evident for t01 ≈ t0 = t1 = 1.0.

The particular case where t01 = 1.0 leads to complete band flattening, as shown in

figure 6.13 for t01 = t0 = t1 = 1.0, is worth further consideration. Figure 6.15 shows the

evolution of this phenomenon around this value of the hybridization, for t′ turned off. The

equal values of the interorbital hopping with the intraorbital hoppings t0 and t1 is critical

for the onset of flatness as seen in the figure.

Figure 6.16 shows the effect of the onsite hybridization near this regime where t01 = 0.8

is close to t0 = t1 = 1.0. The upper orbital energy is fixed at ε1 = 1.5. Increasing t′ tends

to change the free electron bandwidths, widening the lower band and narrowing the upper

and causing a mild moderating effect on the overall curvature effect of t01.

6.6.3 Non-Interacting Limit of the MODMFT Implementation

We conclude by examining the results of our MODMFT implementation for the non-

interacting case where all Coulomb repulsion input parameters are set to zero. In this

regime we examine the spectral densities and optical conductivity to establish the kind of

output generated by our code in this regime where analytical results are well established.

The structure of the non-interacting impurity spectral density generated by our MODMFT
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Figure 6.14: Change in the energy band gap (6.6) for various parameter values t01, t′ and ε1 in
the 1D electronic DHM.

routine is shown in figure 6.17, comparing the quasiparticle features of the four and five

bath site systems at half filling in the lower orbital for bandwidth W = 4. As discussed in

section 5.1, the structure around the Fermi energy, ω = 0.0, is formed by delta functions

artificially broadened into Lorentzians, arising due to the contribution (and limitations) of

the discrete bath density of states.

The densities of states of figure 6.17 are approximations to the exact semi-circular

density of states for the non-interacting Bethe lattice in infinite dimensions (4.22). This is

plotted for bandwidth W = 4t∗ = 4 in figure 6.18, in comparison to the four-site result of

figure 6.17 broadened to a Lorentzian with η = 0.05.

It is clear that many more bath sites are required to achieve visual congruence between

the finite DMFT structure and the exact solution in figure 6.18.

Finally, we show the lower orbital optical conductivity σ0(ω) for the non-interacting

system with four bath sites in figure 6.19. We compare the MODMFT output for both the
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Figure 6.15: Effect of changing t01 on flattening of the energy bands in the 1D non-interacting
DHM system with onsite hybridization t′ = 0 and upper orbital energy ε1 = 1.5. The difference
in curvature between the k = 0 electron quasiparticles and hole carriers at the band edges signals
a difference in their effective masses and thus clear electron/hole asymmetry even in the non-
interacting case.
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Figure 6.16: Change in the 1D non-interacting DHM band structure for finite ε1 = 1.5 and
t01 = 0.8, where the latter parameter provides a flattening effect on the bands. Increasing t′ tends
to widen the lower bandwidth and narrow the upper.
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Figure 6.17: Lower orbital impurity spectral density for non-interacting MODMFT at half filling,
comparing the four bath site result to that of five bath sites in the fully metallic system. The struc-
ture of this quasiparticle peak is determined by the bath discretization of the Anderson impurity
model. This observation is important when discerning the quasiparticle peak at the Fermi energy
in cases with non-zero interactions. The delta functions are artificially broadened by η = 0.01, for
β = 200.

hypercubic form (5.33) and the Chattopadhyay definition (5.38) at half filling (n = 2) with

degenerate orbitals, alongside the analytically exact results which match the MODMFT

data very well. The extension of the low frequency Drude peak which is determined by the

Lorentzian broadening (η = 0.05 in the figure) is an important reference for identifying the

same contribution in interacting systems.
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Figure 6.18: Lower orbital impurity DOS for non-interacting four bath site MODMFT at half
filling, artificially broadened into a Lorentzian with η = 0.05, compared with the analytically exact
non-interacting DOS for the infinitely connected Bethe lattice given by (4.22), with bandwidth
W = 4t∗ = 4.
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Figure 6.19: Lower orbital optical conductivity for the non-interacting four-site system, compar-
ing results from the hypercubic approximation, σHC,0(ω), and the Chattopadhyay improvement,
σChat,0(ω) (see section 5.4), alongside analytically exact results. The non-interacting conductivity
defines the extension of the low-frequency Drude peak due to artificial Lorentzian broadening of
η = 0.05. The lower orbital is at half filling.
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Chapter 7

Results

7.1 Overview

In this chapter we provide comparative results of our MODMFT Bethe lattice analysis of

the electronic DHM (2.15) and those of Hirsch in his 2003 four-site exact diagonalization

study of the same model [31]. The critical observation of electron-hole asymmetry related

to orbital relaxation is analyzed in the subsections that follow, each focusing on a particular

evidence for the phenomenon.

In section 7.2 we evaluate Hirsch’s observation of asymmetry in the quasiparticle eigen-

value spectrum. Section 7.3 provides an analysis of the quasiparticle weight reduction in

the regime of clear orbital relaxation, a primary outcome of Hirsch’s paper. In section 7.5

we evaluate the optical conductivity spectral weight transfer from low to high energies that

is associated with asymmetry between electron and hole quasiparticles.

In our analysis of the electronic DHM system, we focus on the influence of two aspects of

the model that have not been previously investigated to any great extent: the importance of

the intersite-interorbital hybridization t01 and the influence of the metal-insulator transition

on this two-orbital system. We find a complex relationship in the system dynamics arising

from the interplay between hybridization, Mott physics and orbital relaxation.

We conclude in section 7.6 with a brief observation of the orbital selective Mott tran-

sition in the electronic DHM. This phenomenon, while not directly related to our primary

interest in studying orbital relaxation, is nonetheless an interesting physical result and a

noteworthy consequence of the conditions which support orbital relaxation in this model.
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7.2 Quasiparticle Bands

In the single band Hubbard model an essential symmetry between holes and electrons is

built into the bands and is evidenced by the −2t cos(k) dispersion of the non-interacting

system. As discussed in chapter 2, it is observed in the four-site electronic DHM study [31]

that electron orbital relaxation in response to local non-zero Coulomb repulsions gives rise

to asymmetry between electrons and holes in strongly correlated electron systems. Despite

the energy cost, charge carriers in the lower orbital access the higher energy orbital as an

alternative quantum state in which to escape the penalty of double-occupancy.

The electron-hole asymmetry is evidenced by a reduced quasiparticle weight near the

top of the lower band (the hole-carrier regime) compared with that at very low filling

(the electron-carrier regime). This is a consequence of the orbital relaxation physics. For

the proper tuning of system parameters, in particular non-zero t′ and sufficiently large
U0
ε1

and U0
U1

, Hirsch showed the onset of an effective attractive interaction (2.21) between

quasiparticles indicative of hole pairing, as well as a lower effective hopping for holes than

for electrons (q.v. figure 2.6).

Throughout Hirsch’s study the nonlocal hybridization was fixed at the value of the

intraband hoppings so that,

t01 = t0 = t1 . (7.1)

As well, the Hilbert space was truncated to remove the contribution of states with greater

than two electrons or net spin polarization on any lattice site.

While the balance of non-zero Coulomb repulsion plays a significant role in the asymme-

try between hole and electron states (examined below), we emphasize (in contrast to [31])

that the essential differences are already present in potentia in the non-interacting band

structure of the model. The asymmetry arises first of all from the effects of a non-zero t01,

and then secondarily through the contribution of finite onsite-hybridization t′ and Coulomb

repulsions. The electron-hole asymmetry in the DHM is therefore not only a local relax-

ation response of double-occupied electrons but is also a nonlocal effect: a bias present

throughout the arguments of [31] due to (7.1).

In keeping with the results shown in figure 6.15, the hybridization assumption (7.1) is

exactly the condition for maximum flattening in the hole regime of the band structure even

in the non-interacting case, when ε1 is sufficiently large to open a gap at half-filling. The

curvature of the band energy εk is related to the effective mass m∗ of the charge carriers

in a metal by the relation,

m∗ ∝
[
∂2εk
∂k2

]−1

. (7.2)
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Effective mass differences are present in the one-dimensional chain for all values of ε1,

including zero, so long as t01 is non-zero, as seen in figure 7.1, comparing values of t01 = 0.8

and 1.0. The difference in curvature between the low-energy k = 0 point and the high-

energy band edges is therefore strongly indicative of a latent electron-hole asymmetry in

any two-orbital Hubbard model with non-zero intersite interorbital hybridization. The

greatest amount of flattening is present, in fact, for a degenerate two-orbital model with

t01 = t0 = t1. This is exactly the parameter set used by Hirsch in [31].
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Figure 7.1: Dispersion of non-interacting DHM linear chain for different values of t01 and varying
upper orbital energy ε1. The effective mass asymmetry between electrons and holes is evident in
the curvature difference at the centre (electrons) and edges (holes) of the lower band for all values
of ε1, so long as t01 is non-zero. As t01 is increased toward equality with the intra-orbital hopping
values, t0 = t1 = 1.0, the asymmetry between electrons and holes increases. Four bath sites,
U0 = U1 = U01 = t′ = 0.0.

The electron-hole asymmetry can also be seen from the impurity model eigenvalue

spectra of the non-interacting MODMFT Bethe lattice results, found by diagonalizing the

Anderson impurity Hamiltonian (4.1).

Figure 7.2 shows the impurity site bands as a function of electron filling. The bands

in the figure are hybridized only by t′ = 0.2, with t01 = 0.0. The large interorbital energy

gap, ε1 = 12.0, ensures that as chemical potential increases, lattice filling is predominantly

in the lower orbitals. Total filling occurs exclusively in the lower quasiparticle band all the

way up to n = 2.0, and in the upper band from n = 2.0 to 4.0. The eigenstate energy
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spectrum is symmetrical about the half-filling of the lower band (n = 1.0). Where total

filling is close to zero and quasiparticles are electron-like, the eigenvalue spectrum is the

same as near the top of lower band filling (filling near 2.0), where charge carriers are holes.
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Figure 7.2: t01 = 0.0, t′ = 0.2 impurity model eigenvalues for the non-interacting Bethe lattice
solution, for various electron fillings of the impurity site. The horizontal lines and arrows are a guide
to the eye, showing the symmetry of the lower band between electron filling 0.0 (empty lattice) and
2.0 (half-filled lattice, filled lower band). This symmetry demonstrates that in the absence of
nonlocal hybridization t01, even with non-zero onsite hybridization t′, the non-interacting DHM
treats electron and hole carriers on an equal footing. ε1 = 12.0, an extreme value, to provide a
clear separation of the hybridized eigenvalue bands. The detailed structure is also dependent on
the bath pseudosite energies.

For the same system with t01 = 1.0, figure 7.3, electron-hole asymmetry sets in, as seen

in the difference in lower width of the lower impurity model eigenvalue band at fillings 0.1

and 1.9, or between fillings 0.25 and 1.75.

Figure 7.4(a) shows a similar eigenvalue spectrum from reference [31] for the four-

site electronic DHM. While the parameter relationships are similar to those in figure 7.3

(including t01 = 1.0), figure 7.4(a) exhibits an apparent electron-hole symmetry around

half-filling in the lower eigenvalue band. The difference in results is due to Hirsch’s trun-

cation of the Hilbert space. The impact of slightly weighted eigenstates of high electron

filling is therefore of some consequence to the physics of the DHM.

Recalling that U0 = U1 = U01 = 0.0, and all other parameters are unchanged, it is

clear that electron-hole asymmetry is already latent in the DHM before the dynamics of
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Figure 7.3: t01 = 1.0, t′ = 0.2 impurity model eigenvalues for the non-interacting Bethe lattice
MODMFT solution, for various electron fillings of the impurity site. Compare with figure 7.2.
Arrows and reference line indicate the asymmetry between the electron-carrier region near the
bottom of the band (total filling near zero), and the hole-carrier region at the top of the lower
quasiparticle band (filling near 2.0).

orbital relaxation are introduced. This asymmetry should be present in any two-orbital

Hubbard-like system where quasiparticles hybridize nonlocally between lattice sites, in-

cluding systems with degenerate orbitals.

The interaction-driven orbital relaxation should serve to enhance the electron-hole

asymmetry of the non-interacting DHM. Figure 7.4(b) illustrates this expectation through

exaggerated values of the Coulomb repulsion and a large energy band gap ε1 = 6.0. The

hybridization parameters are the same as in 7.4(a), t01 = 1.0 and t′ = 0.2. The states in

the band below the gap are those in which the Coulomb repulsion does not contribute sig-

nificantly, and are therefore approximate solutions to the non-interacting electronic DHM

Hamiltonian. As a comparison to this, and to better understand the important role of in-

teractions, figure 7.5 shows the Bethe lattice MODMFT eigenvalue bands for a less extreme

set of Coulomb repulsions (those chosen by Hirsch are ill-suited to MODMFT convergence

due to very sharp filling transitions and extended insulating behaviour as a function of

chemical potential). It is plotted against impurity site total filling with t01 = 0.0 thus

showing the effect of strong Coulomb interactions on generating particle-hole asymmetry.
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Figure 7.4: Energy eigenvalue spectra at various fillings from exact diagonalization of the four-site
linear chain electronic DHM [31]. t01 = 1.0 and t′ = 0.2. Eigenenergies are plotted according to the
countable number of electrons Ne in the state, with Ne = 8 indicating a full four-site lattice, since
the Hilbert space is truncated to eliminate states where any site holds more than two electrons.
In (a) the system is non-interacting and the apparent electron-hole symmetry is artificially due to
the Hilbert space truncation. In (b) the system is strongly interacting with U0 = 20.0, U1 = 2.0,
U01 = 12.0 and ε1 = 6.0, introducing a clear asymmetry between one-electron (Ne = 1) and one-
hole (Ne = 7) states. The lower band is comprised of states dominated by singly-occupied lattice
sites, described approximately by the non-interacting DHM Hamiltonian. From [31] figure 4.

7.3 Quasiparticle Weight

An analysis of the quasiparticle weight provides particularly good insight into the claim of

orbital relaxation in the DHM. For the four-site exact diagonalization, with a countable

number of electrons on the lattice, Hirsch [31] defines the quasiparticle weight as a sum

over the lattice sites, i,

ZHσ(N) =
∑
i

(
|〈0N−1 |c0iσ| 0N 〉|2 + |〈0N−1 |c1iσ| 0N 〉|2

)
(7.3)
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Figure 7.5: Energy eigenvalue spectra at various fillings from the MODMFT Bethe lattice solution,
for comparison with figures 7.4(b) and 7.3. Here, the interaction parameters are less severe than
in figure 7.4(b) by necessity, with U0 = 10.0, U1 = 5.0, U01 = 6.0 and ε1 = 4.0. t01 = 0.0 and
t′ = 0.2. Eigenenergies are plotted according to the average filling of the impurity. This graph
shows the effect of Coulomb repulsion, without the presence of t01, on the lower eigenvalue band
which is comprised mainly of eigenstates with a small Coulomb contribution to the energy. The
gap (shown with a line) signals the beginning of moderately interacting higher energy states. The
band below the line has a narrowing trend from low to high filling, in agreement with figure 7.4(b).
The Hilbert space used by Hirsch to produce figure 7.4(b) is truncated, as described in section 2.4,
whereas here it is not. The larger Hilbert space and contribution of bath pseudosite energies to the
eigenvalues complicate the plot considerably. Higher energy states are not shown, for clarity.

where |0N 〉 is the ground state eigenvector for the four site system with N electrons. The

fraction of quasiparticle weight in lower and upper bands is given, respectively, by,

u2
σ =

∑
i |〈0N−1 |c0iσ| 0N |2

ZHσ(N)
(7.4a)

v2
σ =

∑
i |〈0N−1 |c1iσ| 0N |2

ZHσ(N)
. (7.4b)

In the single band limit, v2
σ = 0.

For ε1 large, the bands are well-separated and the quasiparticle weight evolution can

be clearly seen with respect to increasing interactions, which drive orbital relaxation in the

hole-pairing interpretation of the DHM. In this limit, we expect the quasiparticle weight

of the lower band to resemble that of the single band Hubbard model such that increasing

the Coulomb repulsion, U0, will produce a MIT at half-filling (n0 = 1), and show electron-
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hole symmetry between the empty and filled band states. At all Coulomb repulsions, the

bottom of the lower band, n0 = 0, and top, n0 = 2, should have Z0 = 1 as a small

number of electron or hole carriers are lightly dressed and behave as nearly free particles.

At intermediate fillings, interactions depress the quasiparticle weight toward zero due to

Mott physics.

Hirsch considered this case of a large energy gap with ε1 = 10.0, reproduced in figure 7.6.

For the non-interacting case, U0 = 0.0, Z = 1 at all fillings, as expected. Due to the

truncated Hilbert space, Mott physics does not drive the quasiparticle weight to zero at

half-filling for the highest Coulomb repulsions, but close inspection suggests electron-hole

asymmetry for all non-zero U0, even for a large penalty on upper orbital occupation. For

Hirsch’s finite lattice, the asymmetry around half-filling in the lower orbital can be defined

generally by the rule,

ZH(Ne) > ZH(2−Ne) (7.5)

where Ne is the band filling, determined by a countable number of electrons in the four-site

lattice with maximum occupation Ne = 8. Hirsch provides the rule (7.5) as a consequence

of the DHM having a higher energy orbital, believing it to describe “the physics of all

electronic energy bands” so that “holes are always more dressed than electrons” (emphasis

in original) [31].

Figure 7.6: Quasiparticle weight versus band filling for the four-site DHM solution with truncated
Hilbert space. Even for this large band gap, the asymmetry (7.5) in ZH (7.3) between electron and
hole states is small but noticeable. The variable U denotes our U0. Solid line: U0 = U01 = U1 = 0.0.
Dashed line: U0 = 3.0, U01 = 2.0, U1 = 1.0. Dash-dotted line: U0 = 6.0, U01 = 4.0, U1 = 3.0.
Dotted line: U0 = 10.0, U01 = 6.0, U1 = 5.0. For all cases, ε1 = 10.0, t′ = 0.2, t01 = 1.0. From [31],
figure 5(a).

With the same parameter scale, our MODMFT study also demonstrates somewhat

more clearly the onset of the electron-hole asymmetry on either side of the half-filled lower
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band, in support of Hirsch’s results. The asymmetry rule (7.5) can be stated more generally

for the continuous filling spectrum of MODMFT as,

Z(n) > Z(2− n) for n < 1 (7.6)

where n is the total electron filling of the MODMFT impurity site.

In what follows it is important to note the full Hilbert space of our study allows for

total filling up to n = 4, and the proper area of comparison to Hirsch’s work is between the

empty lattice at n = 0 and n = 2, the half-filled lattice. The asymmetry condition (7.5)

is therefore relevant to the quasiparticle spectrum below and above quarter total filling,

n = 1, or approximate half-filling in a dominant lower band.

We find that orbital relaxation is already creating asymmetry even for large ε1, where

it is driven by the presence of finite t01, and is largely absent for t01 = 0 even when

local hybridization t′ persists. Recalling that in [31] t01 = 1.0 and t′ = 0.2 in all cases,

figure 7.7a shows the total electronic filling of the impurity site for the same parameters

as in figure 7.6. As expected, the band gap at n = 2 from the large value of ε1 = 10.0

is common to all graphs. Increasing the lower orbital Coulomb repulsion leads to greater

definition in the insulating Hubbard gap at n = 1, which should resolve into a definite MIT

at this quarter filling value. The Mott physics evident in this figure is in contrast to its

absence in Hirsch’s work [31]. Due to the large interorbital energy gap, below half-filling

of the impurity (n = 2) the upper orbital remains largely empty and the lower orbital

increasingly fills and provides the dominant quasiparticle residue, Z0. Above a critical

chemical potential the upper orbital begins to fill and contributes to the quasiparticle

identity of the system through Z1.

We compare figure 7.7a with the case where t01 = 0.0 in figure 7.7b, finding very little

difference due to the nonlocal hybridization. By contrast, in what follows the quasiparticle

weight will be seen to be particularly responsive to t01. We will focus our analysis on the

lower orbital physics, which is of primary interest in the DHM as the dominant orbital

normally favoured in electron occupation up to double occupancy.

It must first be remembered that the quasiparticle residue is appropriately defined

under conditions (5.28), whereas the system can be characterized as non-Fermi liquid

(NFL) [161] exhibiting what has been termed “bad metallic behaviour” [65] (also called a
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Figure 7.7: Impurity orbital filling versus chemical potential for MODMFT Bethe lattice DHM
solution with full Hilbert space. System parameters are the same as figure 7.6, showing minimal
effect of nonlocal hybridization t01.

“quasi-insulator” [140])1 where condition (5.28b) is violated as,

=ζ±(iωn) < 0, =ζ±(iωn) finite (7.7)

and thus is not yet diverging as in the insulating case. NFL behaviour in multiorbital

systems is associated with non-zero local hybridization [62, 65, 139] and Hund’s Coupling

[161].

This NFL state will be associated with some finite quasiparticle weight at the Fermi

energy in the band spectral density. In practice, in order to distinguish NFL behaviour

from an insulating system where we cannot see a rapid divergence of the effective self

energy at very low energy below the Matsubara resolution,

=ζ±(iωn)→∞ for ωn < ω0 (7.8)

1The distinction should be made that in these references the notion of NFL behaviour is ascribed to a
finite value of the orbital self energies, =Σ, which we regard as only an approximate measure of the proper
state of the hybridized system. It may be, then, that NFL phases identified in the literature through the
self energy, itself, will appear to be FL or insulating if our “effective self energy” parameters ζ±(iωn) are
employed instead.
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we employ an approximate cutoff value where |=ζ±(iωn)| ≈ 0.5<ζ±(iωn), thus recognizing

the (poor) metallic behaviour remaining for a potentially ambiguous, very small quasipar-

ticle peak. This scenario, while subjective, is necessary for efficient large scale data analysis

and occurs mainly in the presence of Mott physics.

A final caution is due with respect to an insulating band gap, where the self energy from

a full band will be returned as uniformly zero, and thus its derivative at the Fermi energy

will show, deceptively, a quasiparticle weight in keeping with free electrons. A plateau in

the filling will provide evidence that the system is, in fact, insulating by virtue of a filled

band and the quasiparticle weight, while apparently unity, is actually not defined in this

region.

In comparison to the four-site DHM system of figure 7.6, the lower orbital quasiparticle

weight Z0 (5.29a) is shown in figure 7.8 for the MODMFT model. This is the case for

the large energy gap, ε1 = 10.0. The lower orbital develops through a MIT at half-filling

(quarter-filling of the entire impurity), and is nearly filled above n = 2, but not quite,

yielding Fermi liquid behaviour as the upper orbital begins to fill.
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Figure 7.8: Lower orbital quasiparticle weight, Z0, versus total band filling for the MODMFT
Bethe lattice DHM solution. The lower orbital develops a Mott MIT at n = 1 for large U0, and
for all cases is nearly filled above n = 2 where it remains metallic with hole carriers. System
parameters are the same as in figure 7.6, including nonlocal hybridization t01 = 1.0. The vertical
line at n = 1.0 is the reference for electron-hole asymmetry in the lower band, using (7.6). The
asymmetry is shown in a more obvious way for the case of U0 = 3.0 in figure 7.9.

The electron-hole asymmetry in the lower orbital, defined by (7.6), can be evaluated
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with respect to vertical reference line at n = 1, where even for this large energy gap there

is asymmetry in the quasiparticle weight for U0 > 0.0. The effect is more obvious than in

the four-site result, figure 7.6.

The asymmetry is noticeable even for the smaller case of U0 = 3.0, where the double

occupancy penalty is less and thus the orbital relaxation effect is expected to be less

obvious. Figure 7.9 shows the hole carrier side (n > 1) of the Z0 curve reflected back

across the half-filling line for the lower band.
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Figure 7.9: Lower orbital quasiparticle weight Z0 for the U0 = 3.0 case of figure 7.8. The
quasiparticle weight for the filling range 1 < n < 2 is reflected back across n = 1 to evaluate
the electron-hole asymmetry arising from orbital relaxation when U0 is small with hybridizations
t01 = 1.0 and t′ = 0.2.

The asymmetry in figure 7.9 is the combined effect of non-zero nonlocal and local hy-

bridization values, t01 = 1.0 and t′ = 0.2, respectively. The qualitative difference observed

in the non-interacting system from these parameters (see section 6.6) prompts an investi-

gation into their influence on this asymmetry in the interacting case, in order to identify

what role they play in orbital relaxation.

Turning off the nonlocal hybridization t01, and setting t′ to a large value, t′ = 1.0, for

an otherwise identical system to that in figure 7.9, figure 7.10b demonstrates the lack of

impact on the asymmetry from the local hybridization t′, even for a large value of that

parameter. By contrast, figure 7.10a reveals that t01 continues to produce an obvious

asymmetry when it is the only hybridization acting on the system.

Increasing the local hybridization t′ has a more complex effect on the asymmetry when
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(a) Nonlocal hybridization.
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(b) Local hybridization.

Figure 7.10: A comparison of the effects of local and nonlocal hybridizations on the electron-hole
asymmetry of the system in figure 7.8 where U0 = 3.0. The plots show the lower orbital quasiparticle
weight, with the states for filling 1 < n < 2 reflected back over the quarter filling line, n = 1. (a)
t01 = 1.0, t′ = 0.0: the local hybridization has almost no effect on the electron-hole asymmetry,
even for this large value. (b) t01 = 0.0, t′ = 1.0: a noticeable asymmetry is present due to the
nonlocal hybridization alone.

the lower orbital Coulomb repulsion and upper orbital energy are kept high (U0 = ε1 =

10.0). In this case, the asymmetry is small and we see in figure 7.11 that large t01 = 1.0

yields a lowering of the quasiparticle weight on the hole side of n = 1, whereas a large value

of the local hybridization, t′ = 1.0, leads to a violation of the asymmetry rule (7.6). The

quasiparticle weight on the hole side of a half-filled lower orbital is actually increased by

the presence of substantial onsite hybridization, before the quasiparticles are again dressed

as the band becomes full.

From figures 7.10 and 7.11 we make two observations about the role played by the

hybridization parameters in the DHM.

First, in [31], Hirsch’s assumption that “we do not expect the qualitative physics of

the [DHM] model to depend on the particular choice for [t01]” is a statement more readily

applicable to the value of t′. The local hybridization value, t′ = 0.2, used throughout

[31] plays a secondary and small role in the asymmetry, while the nonlocal hybridization,

t01 = 1.0, is predominantly and strongly responsible for orbital relaxation in conjunction

with the Coulomb repulsions and orbital energy gap. This is not surprising, given the

impact of t01 as the hybridization parameter responsible for altering the curvature of the
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Figure 7.11: Reflection of Z0 around n = 1, for the U0 = 10.0 case in figure 7.8, comparing
the non-hybridized case (t01 = t′ = 0.0) with a) hybridization exclusively local (and large), and
b) exclusively nonlocal hybridization of the usual size. The local hybridization case violates the
general asymmetry rule (7.6), as the reflected Z0 line is larger than the non-reflected line in the
intermediate filling region.

non-interacting dispersion in figure 7.1.

Second, a large onsite hybridization mixes the singly and doubly occupied states of the

impurity site to such a strong degree as to initially cause undressing of the quasiparticles

before the quasiparticle weight again drops near half-filling. That this phenomenon does not

arise for the case of large t01 reinforces the secondary role played by the local hybridization

in the orbital relaxation physics of the DHM. That such strong onsite mixing is to be

avoided is a point touched upon briefly, as well, by Hirsch in [31], with the consequences

clarified here in figure 7.11.

We now move beyond the limit of large band gap by lowering ε1 so that the doubly-

occupied states in the lower band become energetically less favourable in comparison to

states with one or even two electrons in the upper orbital. As expected, the phenomenon of

electron-hole asymmetry and orbital relaxation becomes more pronounced as the Coulomb
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repulsion U0 is maintained at a high value.

A choice of system parameters which emphasize this physics, U0 = 10.0, U01 = 6.0

and U1 = 5.0, is used in figure 7.12 to show the change in quasiparticle weight ZH as ε1

is progressively lowered for Hirsch’s four-site lattice problem [31]. The high energy case,

ε1 = 10.0, is somewhat equivalent to a single band Hubbard model result, where the upper

orbital is gapped out for low chemical potential, and the lower orbital has electron-hole

symmetry. As the upper orbital energy decreases, it becomes energetically competitive.

Double occupancy is avoided and quasiparticle holes are clearly dressed.

Figure 7.12: Quasiparticle weight ZH versus band filling for the four-site ED DHM solution with
truncated Hilbert space, as the orbital energy gap ε1 (ε in the figure) is lowered. The lowering of
ZH as ε1 increases demonstrates dressing of the quasiparticles, and clear electron-hole asymmetry
between the left and right of band filling 4 (half-filling of the lower band). U0 = 10.0, U01 = 6.0,
U1 = 5.0, t0 = t1 = t01 = 1.0, t′ = 0.2. From [31], figure 6(a).

This effect of lowering ε1 on Z0 in our MODMFT Bethe lattice results is shown in

figure 7.13 for the same set of parameters across the same region of filling. As the upper

orbital becomes energetically more favourable for occupation towards impurity half-filling,

there is dramatic dressing of the quasiparticles and strong electron-hole asymmetry. The

strong competition between orbitals for the ε1 = 2.0 case leads to a second MIT at n ≈ 1.85.

The individual orbital fillings, shown in figure 7.14, elucidate the mechanics of orbital

relaxation shown in figure 7.13. As the upper orbital energy is reduced, electron occupation

transfers from the lower to the increasingly competitive upper band. The dressing of

quasiparticles (indicated by lowering of Z0) is associated with this reduction in the lower

orbital filling, n0. For a nearly full band, n0 ≈ 2, the quasiparticles experience Fermi liquid

renormalization. They become increasingly heavy, or dressed, as the filling drops toward

n0 = 1, where the conditions for Mott physics take over near ε1 = 2.0. The transfer of
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Figure 7.13: Lower orbital quasiparticle weight Z0 versus total band filling for the MODMFT
Bethe lattice DHM solution, in comparison to the four-site lattice results of figure 7.12. Electron-
hole asymmetry is clear, with quasiparticle dressing on the hole side (near half-filling of the impurity
orbital, n = 2) as the upper orbital energy ε1 is lowered. The effects of orbital competition are
readily apparent in the lowest energy case, ε1 = 2.0, where the lower orbital experiences a second
MIT at n ≈ 1.85. U0 = 10.0, U01 = 6.0, U1 = 5.0, t0 = t1 = t01 = 1.0, t′ = 0.2.

charge density from lower to upper orbital in the presence of appropriate Coulomb penalties

drives the quasiparticle dressing.

The particular case of ε1 = 5.0 in figure 7.13 involves an obvious dressing of holes, while

the energy gap is large enough to maintain a dominant lower band at half-filling above the

MIT range of n0 = 1.0. Attending to this case, we can examine the role of hybridization as

a critical element in the orbital relaxation physics of the DHM. The relative effects of the

local (t′) and nonlocal (t01) hybridizations on Z0 are mapped out in figure 7.15. The total

electron filling is fixed at n = 1.990, very near to the right edges of figure 7.14, where in the

single band limit it is expected that Z0 ≈ 1.0. It is notable that t01 has a greater influence

on the quasiparticle weight than the local hybridization t′, and for all values of t′ increasing

the nonlocal hybridization leads to dressing of the holes (lowering of Z0). In contrast, the

onsite hybridization tends to lower the quasiparticle weight up to some minimum around
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Figure 7.14: a) Lower orbital filling, n0, and b) upper orbital filling, n1, plotted against total
filling of the impurity up to n = 2 for changing upper orbital energy, ε1, for the same cases as in
figure 7.13. The MIT at n = 1 corresponds to the lower orbital filling passing through n0 = 1. At
half-filling in the impurity, n = 2, a lowering of ε1 is correlated with electrons occupying the upper
rather than lower orbital. This reduces n0 in a) from the Fermi liquid regime near the top of the
band toward the Mott insulating region at half-filling (n0 = 1, which occurs here for ε1 = 2.0).

t′ = 0.5, and then cause mild undressing again toward t′ = 1.0.

The influence of local hybridization affords the electrons the opportunity to avoid dou-

ble occupancy without undergoing intraband transport, which would constitute the only

energy-reducing degree of freedom available in the single band Hubbard model. In this

two-band case of ε1 = 5.0, local hybridization immediately relieves the Coulomb repulsion

through charge transfer to the upper orbital. Figure 7.16 shows the filling of the lower

orbital for different values of hybridization. Lacking local hybridization, the electrons are

predominantly doubly-occupying this orbital, but as t′ increases, they lower their energy by

charge density transfer to the upper orbital (rather than by hopping to the same orbital on

neighbouring sites) and n0 falls. This situation obtains across all values of t01, since filling

is a local measurement responsive to local hybridization. Comparing with the quasiparticle

weight in figure 7.15, as n0 falls in the direction of half-filling, Mott physics brings down

Z0 toward an insulating state.

The role of the nonlocal hybridization t01 in figure 7.15 is even more dramatic than that

of t′. This is emphasized by its lack of impact on the lower orbital filling in figure 7.16. In

that case, there is only a very small (though nonzero) response to increasing t01 as a limited
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Figure 7.15: Lower orbital quasiparticle weight Z0 at orbital filling n = 1.990 for the case of ε1 =
5.0 in figure 7.13, as a function of changing hybridization. For all values of the onsite hybridization
t′ held constant, increasing the nonlocal hybridization t01 leads to dressing of quasiparticles. This
is especially obvious at low t′, but is still apparent even at t′ = 1.0. As t′ increases it diminishes
the dressing effect, and for all constant values of t01, Z0 has a minimum at roughly t′ = 0.5, above
which the increasing value of the local hybridization correlates with increased undressing of the
quasiparticles.
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Figure 7.16: Lower orbital filling n0 at orbital filling n = 1.990 for the case of ε1 = 5.0 in figure
7.13, as a function of changing hybridization. An increase in t′ allows the orbital energy to drop via
charge density transfer to the upper orbital, resulting in a reduction in n0. The simple behaviour
of the filling is in contrast to the more complex dependence of Z0 on both hybridization parameters
shown in figure 7.15.
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concentration of electrons escape the Coulomb repulsion on the lower orbital by occupying

the upper orbital via translation through the lattice. The effect of this small amount of

intersite/interorbital charge transfer is too limited to have any significant impact on the

Mott physics of the system, but is nonetheless more influential on the quasiparticle weight

in figure 7.15 than that of the local hybridization.

The reason for this acute difference is that charge transfer through t01, while slight,

provides a finite secondary channel for electronic transport off the lower orbital which does

not contribute to an increase in Z0. Z0 is related directly to the coherent part of the lower

orbital Green’s function Gimp
00 (z), which is a measure of the probability of electrons leaving

the lower orbital, entering the bath, and returning to the lower orbital with frequency

z. With a large value of cross-orbital hopping (t01), electrons at the Fermi level may be

energetically more likely to leave the lower band and not return, thus reducing Z0 through

the off-diagonal contribution of the Green’s function matrix, Ĝimp(z).

However, any increase in electronic transport in the lattice should be reflected by a

corresponding change in the kinetic energy. The lower orbital kinetic energy (K0) map for

the situation under consideration is shown in figure 7.17. In our model, K0 is a measure

of electrons traveling between the MODMFT lower orbital impurity site and the bath

pseudosites as represented by the converged expectation value of the applicable term in

the impurity Hamiltonian, equation (4.1),∑
lσ

V0l(b
†
lσc0σ + c†0σblσ) (7.9)

acting on the ground state eigenvector. It captures electron transport via both t0 and t01.

For small onsite hybridization, a large value of t01 clearly decreases the lower orbital kinetic

energy (i.e. increases the magnitude of the kinetic energy). Examining figure 7.15, this

behaviour corresponds to an obvious reduction in Z0. Note that this is the hybridization

range employed in Hirsch’s study, t′ = 0.2 and t01 = 1.0.

For small t01, the kinetic energy is virtually unaffected by changes in local hybridization,

as expected, and where both are large it appears the impact of cross-orbital hopping is much

reduced as the local hybridization is already transferring charge carrier density into the

upper band (as seen in figure 7.16), making it less attractive as a destination for “off-

diagonal” electron translation.

In summary, for the parameters of the DHM system currently under consideration, the

effect of the local hybridization on quasiparticle dressing is closely tied to Mott physics

as the lower orbital filling responds to charge transfer. The influence of the nonlocal

hybridization, however, is even greater and tends to lower the quasiparticle weight not
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Figure 7.17: Lower orbital kinetic energy K0 at orbital filling n = 1.990 for ε1 = 5.0 case of
figure 7.13, as a function of changing hybridization.
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through Mott physics but rather by providing an interband channel for electron transport

off the lower orbital. For this set of parameters, therefore, the two hybridizations cause

quasiparticle dressing in the lower energy band for very different reasons.

With respect to the quasiparticle weight, therefore, there is a somewhat complicated

interplay in this system between three factors: 1) local hybridization which dresses the

quasiparticles through non-kinetic charge density transfer between orbitals; 2) the lower-

ing of Z0 that arises from increased nonlocal hybridization, where the kinetic energy is

simultaneously enhanced; and 3) Mott physics which tends to lower Z0 as n0 → 1.0, aris-

ing under certain conditions as an indirect consequence of the interorbital charge density

transfer of the hybridization, especially when the impurity orbitals are energetically similar

(i.e. ε1 ≈ ε0).

The importance of Mott physics in the behaviour of the quasiparticle weight can be

seen from a different perspective for a lower range of Coulomb repulsions. In contrast

to figure 7.14, in a regime with U0 = 3.0, U01 = 2.0 and U1 = 1.0, quasiparticle dressing

appears not to persist in the hole regime for decreasing ε1. Rather, as seen in figure 7.18, the

holes become undressed as the upper orbital becomes increasingly energetically favourable.2

We explain the undressing behaviour in figure 7.18 as arising from the same tendency

toward Mott physics as in the case of the larger Coulomb repulsion—but with the reverse

effect. In the presence of the small, roughly comparable intra-orbital Coulomb repulsions,

as ε1 falls the system increasingly resembles the limit of two energetically degenerate single

band orbitals. Normally, a filled single band where n = 2 would have fully undressed

quasiparticle holes, but in this double orbital case the filling near n = 2 is more equally

shared between orbitals.

Figure 7.19 shows that the suppressed value of Z0 for ε1 = 0.8 and 1.0 in figure 7.18 is

a consequence of the lower orbital sitting at about half-filling, n0 = 1, and approaching a

Mott insulating transition. As the energy gap is lowered, the electrons increasingly favour

the upper orbital and the lower band moves away from half-filling to become more metallic:

the quasiparticles undress as upper orbital energy decreases.

The hybridization effects on this system are shown in figure 7.20 for the case of ε1 = 0.4.

The asymmetry caused by the difference in the Coulomb repulsions is present in the non-

2The parameters for this system satisfy the energy ordering requirement of (2.17), so long as ε1 < 1.0,
which causes double occupancy of the lower orbital to be the energetically least favourable state, and double
occupancy of the upper orbital the most favourable. However, the scale ordering, (2.18), where t0 << ε1
is not observed in this case, thus violating the physical dynamics proposed by Hirsch for the DHM which
ensure that electronic reorganization of the local orbital occupation proceeds on a shorter timescale than
electronic delocalization via intersite hopping [40]
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Figure 7.18: Lower orbital quasiparticle weight Z0 plotted up to half-filling in the impurity site,
for changing upper orbital energy ε1 with reduced Coulomb interaction values: U0 = 3.0, U01 = 2.0,
U1 = 1.0. In contrast to the case of figure 7.13 where U0 = 10.0, here the quasiparticles experience
undressing as the energy gap between the orbitals narrows. t01 = 1.0, t′ = 0.2.

hybridized system, and a non-zero value of the local hybridization t′, alone, tends to override

this, moving the quasiparticle weight up. From the non-interacting results of section 6.6,

we know that t′ accentuates the band gap while mixing the orbital identity of the electrons.

Here, they are promoted out of the lower orbital, driving n0 away from orbital half-filling

and the MIT, increasing Z0. The figure also shows, however, that an increase in the nonlocal

hybridization t01 dresses the holes thus enhancing the asymmetry. In fact, it is redirecting

electron tunneling from the intraband channel (from which Z0 acquires its definition), to

the interband hybridization/hopping channel thus reducing the quasiparticle weight in the

lower band.

The opposite trends in quasiparticle weight exhibited in these two cases (with U0 = 10.0

and U0 = 3.0) demonstrates the critical importance of Mott physics on the electronic DHM

system. Charge density transfer from the lower to upper orbital with decreasing ε1 can

promote quasiparticle dressing in the case where the lower orbital is already energetically
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Figure 7.19: a) Lower orbital filling, n0, and b) upper orbital filling, n1, plotted against total
filling of the impurity up to n = 2 for changing upper orbital energy, ε1. The cases with a larger
energy gap are near half-filled in the lower orbital, driving the band toward a Mott insulating state
and thus low quasiparticle weight, Z0, in figure 7.18. U0 = 3.0, U01 = 2.0, U1 = 1.0, t01 = 1.0,
t′ = 0.2.

dominant (and n0 > 1), or undressing where the orbitals are more similar and n0 < 1.

The phenomenon of orbital relaxation therefore leads to very different consequences for

the coherence of hole carriers depending on this condition.

In summary, we have found that the physics of orbital relaxation in the DHM is present

even in the case of large orbital separation, where it is primarily caused by the nonlocal

hybridization t01. Two mechanisms drive quasiparticle dressing as they relax to escape

the penalty of Coulomb repulsion. The first is the nonlocal hybridization t01 offering an

intersite/interorbital channel for charge transfer off the lower orbital, which simultaneously

increases the magnitude of kinetic energy and decreases the lower orbital quasiparticle

weight Z0. The second is the local hybridization t′ driving charge transfer to the upper

orbital, thereby depleting the lower orbital toward half-filling. This invokes Mott physics

which dresses the quasiparticles as the lower orbital moves toward an insulating state.

For large enough Coulomb repulsion, the system may even experience a MIT caused by

hybridization, strictly a multiorbital phenomenon. We have also shown, however, that t′

may lead to undressing of holes for a system where the orbital energies are close in value

or where t′ is very large. In this case, quasiparticle undressing occurs only through the

mechanism of t01. This contrasts with Hirsch’s expectations for the general behaviour of the
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Figure 7.20: For the system in figure 7.18 with ε1 = 0.4, the quasiparticle dressing of the lower
orbital weight, Z0, is strongly dependent on the hybridization strengths. Although the system is
tending toward the single band limit, the non-hybridized case exhibits some inherent asymmetry at
half-filling (n = 2) due to the uneven Coulomb repulsions between orbitals. With only t01 = 1.0, the
quasiparticles are strongly dressed compared to this non-hybridized case, whereas the effect of local
hybridization alone t′, tends to mix the electron identity between orbitals, strongly opposing this
effect. The nonlocal hybridization, t01, seems to do the opposite, suppressing hole mobility. In fact,
it provides an alternative channel for quasiparticle tunneling between sites, which the holes take
advantage of when the orbital energies are small enough. This effectively reduces the quasiparticle
weight of the lower orbital, which measures intraband transport.
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DHM, that the local hybridization is the most important parameter in orbital relaxation

physics, and that holes should always be more dressed than electrons according to (7.5).

7.4 Band Flattening and the Hirsch Model

A note is due on the dispersion-flattening effect of the nonlocal hybridization t01, observed

clearly in the non-interacting solution to the DHM Hamiltonian illustrated in figures 6.15,

6.16 and 7.1.

Experimental evidence from cuprates [166,167] suggests a correlation between high-Tc

superconductivity and band flattening from Van Hove singularities in the DOS near the

Fermi energy [168,169]. Theoretical work on extended-hopping Hubbard models [168,169],

the periodic Anderson model [170], as well as sub-lattice graphene geometries [171], have

suggested a connection between Van Hove singularities and band flattening attributable to

secondary hopping parameters which affect the non-interacting dispersion in a way very

similar to the influence of nonlocal hybridization.

We have shown that the nonlocal hybridization parameter in the electronic DHM (2.15)

serves both as a generator of band flattening in the non-interacting dispersion, and in

the preceding section 7.3 that non-zero t01 has a significant influence on quasiparticle

dressing and undressing in conjunction with Coulomb repulsion. Thus, an emphasis on

nonlocal hybridization in the electronic DHM should be an important consideration in the

phenomenon of orbital relaxation as it relates to the Hirsch model of hole-pairing driven

superconductivity (q.v. section 2.5).

7.5 Optical Conductivity

The optical conductivity provides another window on the physics of orbital relaxation,

as the dressing of quasiparticles with increased electron filling prompts the transfer of

spectral weight from the low frequency Drude peak to higher frequencies in the spectrum.

Here we demonstrate that this phenomenon, which is observed by Hirsch in his DHM exact

diagonalization study [31] and by Bach et al. in a two-site DMFT study [51] of the auxiliary

spin dynamic Hubbard model (q.v. section 2.3), also appears within the framework of our

MODMFT study. We also examine the influence of the hybridization parameters on the

optical conductivity within a parameter set that is conducive to orbital relaxation.

In section 5.4 we described the challenge of defining the optical conductivity (5.42)

for the multiorbital infinitely-connected Bethe lattice, and in section 5.1 we demonstrated

our technique for determining the real frequency momentum-resolved spectral function, a
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necessary step in determining conductivity. Keeping in mind the difficulties and caveats

involved in those discussions, we have employed the simpler hypercubic form (5.33) of the

optical conductivity in the following analysis, since it is both qualitatively and quantita-

tively very similar to the results from the Chattopadhyay form (5.38).

For reference, the optical conductivity of the non-interacting system is shown in fig-

ure 7.21 for various hybridization values. The two curves in each plot are for quasiparticle

filling n = 0.1 (the electron case) and n = 1.9 (the hole carrier case). The upper orbital

energy is ε1 = 4.0 and five bath sites are employed.3 The plot is a set of Lorentzian-

broadened delta functions with η = 0.1, and the extent of the low frequency Drude peak

can be clearly seen. The effect of different hybridizations is very small, but nonetheless

noticeable for non-zero t01.

In figure 7.22 we introduce finite Coulomb repulsion values of U0 = 10.0, U01 = 5.0 and

U1 = 0.5 which privilege double occupancy in the upper orbital with ε1 = 4.0. We compare

the conductivity for different hybridization values between the electron-carrier (n = 0.1)

and hole-carrier (n = 1.9) regimes, as electron occupation becomes somewhat more inclined

toward the upper orbital near overall electron half-filling (n = 2). There is a clear transfer

of spectral weight from the low energy Drude peak to higher frequencies for increased n.

This agrees with the results of Hirsch’s study [31] (as well as two-site DMFT applied to

auxiliary spin DHM [51]), where it is further determined (using a countable number of

electrons and holes) that the advent of hole-pairing near n = 2 will reverse this trend, as

paired quasiparticles undress (q.v. section 2.5). Since we employ an impurity model where

the bath does not represent physical lattice sites, we are unable to verify this observation

which relies on a finite lattice model with a countable number of electrons distributed on

the lattice sites.

The low energy Drude weight in figure 7.22 is reduced not only by transfer to higher

energies, but also by the Mott physics associated with half-filling in the dominant lower

orbital. The value of n0 approaches or retreats from unity under the influence of the

hybridizations parameters, t′ and t01, as illustrated and discussed in section 7.3, thus

affecting the conductivity spectral weight near ω = 0. The behaviour of this response

function is in agreement with the complicated quasiparticle weight response to the local

and nonlocal hybridizations.

The transfer of spectral weight from low to high energy is suppressed as the upper orbital

energy increases and its contribution through orbital relaxation is effectively removed.

3The non-interacting optical conductivity can be determined analytically without recourse to the DMFT
procedure. We have employed MODMFT and the impurity model with five bath sites here for the purpose
of direct comparison to the interacting results in figures 7.22 and 7.23. In figure 6.19 we demonstrated the
agreement between the analytical and MODMFT optical conductivity results in the non-interacting limit.
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Figure 7.21: Optical conductivity σ(ω) for the non-interacting impurity (U0 = U01 = U1 = 0.0)
with ε1 = 4.0, comparing the electron quasiparticle regime (n = 0.10) and hole-carrier regime
(n = 1.90) for different hybridization values. The shape of the low frequency Drude peak is only
slightly affected by the hybridization parameters. There is a stronger response to the nonlocal
hybridization t01. Lorentzian broadening of η = 0.1; an impurity model with five bath sites is used
for consistency with the interacting results. σpre is the prefactor (5.35).
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Figure 7.22: Transfer of optical conductivity σ(ω) spectral weight from low to high frequency,
comparing the electron quasiparticle regime (n = 0.10) and hole-carrier regime (n = 1.90), for dif-
ferent hybridization values. Much of the low frequency Drude weight (c.f. figure 7.21) is transferred
to higher energy structure in the hole regime. The remainder of the Drude peak is affected by Mott
physics as the dominant lower orbital weight is adjusted relative to n0 = 1.0 by the hybridization
parameters. The parameters are chosen to fall withing the DHM ordering criteria for orbital relax-
ation (2.17) so that, U0 = 10.0, U01 = 5.0, U1 = 0.5, ε1 = 4.0. Lorentzian broadening of η = 0.1,
five bath sites.
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Under these circumstances we expect the higher energy features at filling n = 1.9 in

figure 7.22 to be absent, but also that the hybridization will have almost no influence on

the conductivity since electrons will prefer to remain in the lower orbital even at high

filling. Quasiparticles should have metallic character at fillings n = 0.1 and n = 1.9, being

well-separated in the lattice and behaving like free particles. In figure 7.23, both of these

expectations are met. In this plot all the Coulomb repulsion values are the same as in

figure 7.22 but the upper orbital energy has been doubled to ε1 = 8.0, creating an effective

single band system. The contrast demonstrates that dramatic influence on the conductivity

under positive conditions for orbital relaxation.

7.6 Orbital Selective Mott Transition

We conclude our results with a brief look at the development of orbital selective Mott

transitions (OSMTs) in the electronic DHM. While OSMTs are not directly related to

our comparison of orbital relaxation results in Hirsch’s study4, the system parameters

which emphasize that physics in the DHM also provide a conducive environment to ana-

lyze OSMTs, where electrons undergo phase transitions between metallic and insulating

states according to their occupation of inequivalent orbitals. Several studies [172–175] on

multiorbital systems have shown that, not surprisingly, inequivalence between bands leads

to orbital-specific behaviour at critical fillings. Theoretical work on OSMTs was stimu-

lated by experimental observation [176] of a localized magnetic moment co-existing with

a metallic system at a critical doping in the phase diagram of Ca2−xSrxRuO4, interpreted

as a simultaneous existence of distinct phases in different electronic orbitals [177,178].

Orbital inequivalence leading to OSMTs has most often been generated for locally

hybridized degenerate two-orbital systems using different bandwidths along with Hund’s

exchange coupling [63, 65, 173, 175, 178–180]. With the addition of orbital hybridization,

an orbital-selective phase persists throughout a range of small t′, and is associated with

non-Fermi liquid behaviour [65].

Nonlocal hybridization effects (for next-nearest neighbour hybridization of a particular

lattice geometry, in the absence of local t′) were studied in the two-orbital system with

small band gap in [140], showing the disappearance of spin-polarized phases which occur

in the otherwise non-hybridized system.

As the characteristics of two-orbital systems with both local and nonlocal hybridization

4This is due, in particular, to the fact that Hirsch’s truncated Hilbert space eliminates the possibility of
MITs in his system. With a full Hilbert space, it is certainly true that the four site linear chain would also
exhibit OSMT behaviour.
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Figure 7.23: With the same Coulomb repulsions as figure 7.22, but ε1 = 8.0 (the upper orbital
effectively gapped out), the transfer of optical conductivity σ(ω) spectral weight from low to high
frequency is suppressed for all hybridization values. As well, hybridization has a minimal affect on
the conductivity as expected when the upper orbital is not accessible. The system is effectively a
single band. Lorentzian broadening of η = 0.1, five bath sites.
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remain largely unexplored in the literature5, here we briefly identify the OSMT behaviour

for the DHM in response to both hybridization parameters, in the interesting regime of

strong orbital relaxation. In this regime, the DHM appears to generate OSMT behaviour

in response to appropriate tuning of the local and nonlocal hybridizations.

In the literature, the typical phase diagram for OSMT behaviour follows the pattern of

earlier reports on the MIT presenting the change in quasiparticle weight as a function of

changing Coulomb repulsion, usually with U0 = U1 maintained at half-filling, for example

in references [65,165,178]. For U0 6= U1 an OSMT arises quite generally [181].

We show this case in figure 7.24 where the chemical potential is maintained at µ =

U0/2.0 which, in the single band realization, would ensure half-filling in the lower orbital.

The other Coulomb repulsions are maintained at U01 = U0/2.0 and U1 = U0/4.0 allowing

for orbital relaxation of the electronic state at electron quarter filling (total filling n = 1.0),

an effect that is amplified by a competitive value of the upper orbital energy, ε1 = 3.0.

The influence of different hybridization parameters on the behaviour of the lower and

upper orbital quasiparticle weights can be seen; these weights tend toward a MIT (Z = 0)

for each orbital at distinct values of the chemical potential. For the case where both

hybridizations are non-zero, the upper orbital approaches (but does not arrive at) a MIT

in synchronization with the lower orbital, at µ ≈ 4.5, whereas in the other cases it remains

reliably metallic until a higher value of the chemical potential is reached. At that point,

the filled (and thus insulating) lower orbital loses charge to the upper orbital which fills to

n1 = 1.0, and the lower orbital returns to a metallic state with electrons as carriers.

The MODMFT routine does not converge reliably around µ = 12.0 with either four

or five bath sites, leading to an absence of data in that region of figure 7.24 where both

orbitals experience an abrupt phase change. Nonetheless, the trend remains clear that, as

expected, the upper orbital experiences its MIT at a higher value of chemical potential.

The influence of the hybridization on the OSMT behaviour is mainly restricted to the

sharpness of the transitions. A finite nonlocal value, t01, appears to “draw out” the final

appearance of the insulating phase. This is especially evident in the lower orbital behaviour.

The most obvious effect of the local hybridization t′, is the early onset of the upper orbital

transition in figure 7.24b, which appears to be correlated with the prevention of Z1 from

attaining perfect Fermi liquidity (i.e. Z1 = 1.0) below its MIT.

As an alternative way of examining the DHM OSMT, we show in figure 7.25 the lower

and upper orbital quasiparticle weights mapped as functions of the hybridizations (not the

Coulomb repulsions), for a system with different parameters maintained around half-filling

in the lower orbital, which in the single band case would again persist as a Mott insulator

5Reference [65] mentions investigation of this type of system but provides no results.
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Figure 7.24: Response of the quasiparticle weight in the lower and upper orbitals to increasing
lower Coulomb repulsion with dissimilar orbital energies (ε1 = 3.0). The chemical potential is fixed
to U0/2, which would pin a single band to half-filling. Any deviation from this condition is therefore
due to the presence of the upper orbital and relaxation of the electron states. As U0 increases, the
orbitals exhibit distinct MITs. The effect of different hybridization values is demonstrated by the
four cases of each curve. U01 = U0/2 and U1 = U0/4, β = 200, and four bath sites are used
except for some data near µ = 12.0 where five sites were employed. The missing values in this
region are the result of unreliable convergence as the state of both orbitals changes dramatically
and simultaneously.
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(MI) for the value of U0 employed. With increased hybridization, the MI state moves

through a non-Fermi liquid (NFL) phase into a Fermi liquid (FL) at large hybridization.

The NFL phase is identifiable by a finite value in one of the effective self energies ζ± (5.26).
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Figure 7.25: Quasiparticle weight phase diagrams for (a) lower orbital and (b) upper orbital,
with respect to local (t′) and nonlocal (t01) hybridization for a system at half-filling in the lower
orbital in which strong orbital relaxation occurs, but the orbital gap remains significantly larger
than the hybridizations. The scale shows the value of the associated orbital quasiparticle weight,
with Zx = 0.0 insulating (uncoloured regions). Metallic regions may be Fermi liquid (FL) or non-
Fermi liquid (NFL), depending on the low energy limit of the effective self-energies, ζ±. Near zero
hybridization, the system is a Mott insulator (MI) in the lower orbital and a band insulator (BI)
in the upper, as seen in the filling maps of figure 7.26. As the hybridizations increase, the upper
orbital exhibits strong FL behaviour (the diagonal band) at very low filling, while the lower orbital
remains a MI, signaling an OSMT. For both hybridizations large, the orbitals are FL. U0 = 10.0,
U01 = 6.0, U1 = 2.0, ε1 = 2.0, µ = U0

2 = 5.0.

The upper orbital phase is more complex (figure 7.25b). As the hybridizations are

turned on, n1 grows slowly (figure 7.26b), but the electrons abruptly transition from band

insulating (BI) to FL, briefly back to BI, before returning to metallicity in NFL phase

as electronic filling grows more rapidly. Finally, at large hybridizations, the FL electron

density moves off the lower orbital to the upper clearly evidencing conditions for orbital

relaxation.

Our main observation in this section is simply that the system parameters of the DHM,

in particular those which lead to the phenomenon of orbital relaxation which we have

140



7.6. ORBITAL SELECTIVE MOTT TRANSITION

Lower Orbital

0 0.2 0.4 0.6 0.8 1

t′

0

0.2

0.4

0.6

0.8

1

t 0
1

0

0.2

0.4

0.6

0.8

1

(a)

Upper Orbital

0 0.2 0.4 0.6 0.8 1

t′

0

0.2

0.4

0.6

0.8

1

t 0
1

0

0.2

0.4

0.6

0.8

1

(b)

Figure 7.26: Filling map for (a) lower orbital and (b) upper orbital electron fillings, with respect
to local (t′) and nonlocal (t01) hybridization for the system of figures 7.25. The filling of the lower
orbital falls below n0 = 1.0 with increasing hybridization, moving the orbital phase from a Mott
insulator through a non-Fermi liquid to a metallic state.

been studying in comparison with Hirsch’s four-site exact diagonalization [31], also appear

to drive an OSMT. Since orbital relaxation depends on dissimilar orbital energies and

Coulomb repulsions, this result is not surprising given the dependence between MITs and

the value of the onsite Coulomb repulsion in the single band case. However, we have also

addressed the additional dependence of the OSMT on the local and nonlocal hybridizations

in the DHM. These brief results suggest that both hybridization parameters are influential

in the appearance of OSMTs in this system. Since, as described above, OSMTs have proven

to be of particular interest in multiorbital theoretical investigations, future examination of

multiorbital DHM models may provide further insight into this ongoing area of research.
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Chapter 8

Summary and Conclusion

The Coulomb interactions which repel electrons from one another as they occupy a con-

densed matter lattice system are known to be the source of a variety of interesting phenom-

ena including superconductivity and both the Mott metal-insulator transition that arises

in a single electron band, as well as orbital selective Mott transitions in multiband sys-

tems. The Hubbard model (1.4) has been an important theoretical tool for understanding

the competition that exists in these systems between the strong onsite electron-electron

repulsion and the charge carriers’ propensity to move about the lattice.

While some of the important physics of real strongly interacting electron systems is

captured by the Hubbard Hamiltonian, its nature as a single band description yields an

inevitable limitation on other aspects of real-world lattice systems which arise only when

multiorbital degrees of freedom are taken into account. The dynamic Hubbard model

(DHM) provides an important improvement toward capturing the influence of higher en-

ergy orbitals that are known to affect the fundamental behaviour of electrons in strongly

correlated systems. In particular, the electronic version of the DHM (2.15) is described

by a Hamiltonian that includes two orbitals per lattice site which hybridize electron states

both locally and nonlocally via hybridization parameters t′ and t01, respectively. Under

a set of energy ordering rules (2.17) which determine the relative values of the orbital

Coulomb repulsions and orbital energies, electron states will experience a relaxation from

occupying only the lower orbital to a superposition state which also partially occupies the

higher energy orbital as a means of escaping the high penalty of lower orbital Coulomb

repulsion near the filling condition for double occupancy.

This orbital relaxation of the electronic ground state in the DHM has been extensively

investigated in the exact diagonalization of a four site linear chain by Hirsch [31]. Hirsch

has identified a link between the phenomenon of orbital relaxation in this model and
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the pairing of holes, providing insight into a possible mechanism for high temperature

superconductivity.

In our research project we have developed and applied a computational implementation

of multiorbital dynamical mean field theory (MODMFT) to the problem of the DHM, in

order to test the four-site results of Hirsch and more fully investigate the role played by the

hybridization parameters, t′ and t01, in the dynamic Hubbard system. We designed and

developed an original C++ algorithm generalizing the single band dynamical mean field

problem to the context of two orbitals. After subjecting our implementation to a variety

of checks, we employed it on various parameter sets of the DHM to evaluate Hirsch’s

conclusions about the nature of orbital relaxation.

Hirsch observed an essential asymmetry between the quasiparticles of the DHM at low

filling (electrons) and high filling (holes) in the lower energy orbital. In the single band

system, electron-like and hole-like quasiparticles have an identical effective mass, behaving

as essentially free particles in the lattice. In the DHM two-orbital system, however, Hirsch

found that holes become dressed as the electronic states relax into the upper orbital through

the presence of interorbital hybridization. As well, he found that an increase in electron

filling from the electron to the hole regime of charge carriers is accompanied by a transfer

of optical conductivity spectral weight from low to high frequencies. We have found broad

agreement with these observations in our MODMFT results, and have examined the mech-

anisms connecting the local and nonlocal hybridizations with these asymmetry effects. In

particular, we have identified that the system parameters of the DHM are sensitive to a

complex interplay between t01, t′ and Mott physics.

For a large energy gap ε1 − ε0, the local hybridization t′ tends to drive quasiparti-

cle dressing in the hole regime via charge density transfer, which causes a depletion in

the otherwise nearly filled lower orbital toward half-filling. This initiates a drop in the

quasiparticle weight as the lower orbital approaches the insulating regime of the MIT.

The nonlocal hybridization t01 appears to cause hole dressing as well, and thus electron-

hole asymmetry, via a different mechanism that does not initiate Mott physics. Rather,

the presence of the interband hopping creates an alternative channel for electrons to escape

the lower orbital through transport, which diminishes the lower orbital quasiparticle weight

without necessarily having a substantial impact on the lower orbital filling. We have found

that the dynamics of orbital relaxation and hole dressing is more sensitive to this latter

(nonlocal) mechanism.

Our analysis has also indicated that, under the right circumstances, the impact of the

local hybridization t′ can be toward hole undressing rather than dressing as the electron

state relaxes to escape the lower orbital Coulomb repulsion. This scenario, unexplored in
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Hirsch’s study, obtains in the case of a small energy gap where a half-filled lattice already

entails a sizable occupation of the upper orbital in the electron ground state. Under

these circumstances, charge density transfer to the higher energy orbital through orbital

relaxation accomplishes the task of lowering the overall energy of the system, but this is

accompanied by a reduction in lower orbital filling away from the half-filling condition of

the MIT and thus undressing of the quasiparticles. In this scenario, however, the nonlocal

hybridization t01 continues to suppress the quasiparticle weight. There is, therefore, a

regime of the DHM in which the two hybridization parameters work toward opposite ends

with respect to electron-hole asymmetry, and the overall outcome is dependent on their

comparative strengths in the system.

The response of the optical conductivity within the DHM serves as another indicator

of electron-hole asymmetry in Hirsch’s study. We have been clear that the calculation

of the conductivity is something of an ill-posed problem in the infinitely-connected Bethe

lattice of dynamical mean field theory, and that the multiorbital scenario creates further

unsolved complications in the pursuit of a satisfying solution to this problem. With a

few assumptions in mind, we have estimated the orbital-specific optical conductivities of

the DHM and found agreement in our model with Hirsch’s observation that conductivity

spectral weight is transferred from low to high frequency as filling is increased from the

electron regime to the hole regime. This also aligns with observations made by Bach et

al. [51] using two-site DMFT on the auxiliary spin version of the DHM. While we did

not explore the sensitivity of the conductivity to the different hybridization parameters

in any great depth, it is nonetheless clear that some qualitative effects in the spectrum

are dependent on the same mechanisms at play in the way these hybridizations drive the

quasiparticle weight of the system. More work can be done in the future on this relationship.

In section 7.4 of our results we briefly touched on a qualitative connection between

Hirsch’s model of superconductivity through hole pairing and the flattening of the non-

interacting energy bands of the DHM two-orbital system caused by the presence of nonlocal

hybridization t01. In connection with the dominant role this parameter plays in the dressing

of holes through orbital relaxation, we believe there is further insight available in exploring

its effects on hole pairing in the context of the Hirsch model.

Finally, we have observed the recently much-studied phenomenon of the orbital selective

Mott transition (OSMT) in the DHM. While not directly related to our comparison with

Hirsch’s study of the four site linear chain, we have shown the appearance of OSMTs in

the DHM as a result of the dissimilar orbital energies and Coulomb repulsion strengths.

We also, briefly, examined the influence of the two different hybridization parameters, t′

and t01, on these OSMTs. The relative phases of electrons in the two bands—Fermi liquid,
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non-Fermi liquid, Mott insulating and band insulating—are sensitive to the respective

hybridization strengths of the system. We examined a system with parameters conducive

to orbital relaxation with closely spaced energy levels, and found a complex response of

transitions through the phases as the parameters were changed, especially within the higher

energy band.

For clarity, we provide an itemization of these results of our research on the DHM using

our MODMFT tool. We begin this summary of results by repeating that our research is

grounded in our development of an original, reliable C++ application for studying strongly

correlated two-orbital systems on the Bethe lattice with finite temperature using an ex-

act diagonalization DMFT solver. Our implementation stands apart from many previous

MODMFT studies in that we incorporate both local and nonlocal hybridization parame-

ters.

Electron-Hole Asymmetry in the Quasiparticle Weight We have identified broad

agreement with Hirsch’s observation of quasiparticle asymmetry between electron

and hole states.

The Role of Hybridizations in the Asymmetry We have demonstrated that the hy-

bridization parameters t′ and t01 play distinct roles in dressing holes near half-filling

of the lattice.

Mott Physics and the Asymmetry We have identified the important connection of

Mott physics to the asymmetry caused by the local hybridization t′.

Potential for Quasiparticle Undressing under Orbital Relaxation We have found

that the presence of a local hybridization t′ can, under certain parameter regimes,

initiate an undressing of quasiparticle holes as electron states relax. This is in contrast

to the emphasis of Hirsch’s work.

Optical Conductivity Weight Transfer We have identified the same transfer of optical

conductivity spectral weight observed by Hirsch in response to orbital relaxation.

Influence of Hybridizations on Optical Conductivity We have observed a depen-

dence of the optical conductivity behaviour on the hybridizations consistent with

their effects on the quasiparticle weight.

Greater Significance of the Nonlocal Hybridization We have observed that the quasi-

particle weight is more sensitive to the nonlocal hybridization t01 than to t′, which

stands in contrast to an assumption made in Hirsch’s work.
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Band-Flattening and Nonlocal Hybridization We have noted the potentially signif-

icant connection between band-flattening in the non-interacting dispersion caused by

t01 and its important role in orbital relaxation, which may be important to Hirsch’s

model of superconductivity.

Orbital Selective Mott Transition We observed the appearance of orbital selective

MIT behaviour in the DHM within the parameter regime of orbital relaxation, and

provided brief insight into the role played by the local and nonlocal hybridizations.

In light of these key results, we emphasize our discussion in section 4.1 where we

surveyed the many multiorbital DMFT studies which have examined the role of local

hybridization on strongly correlated electron systems. There, we also indicated the dearth

of work that has been done with this computational tool on Hamiltonians incorporating

nonlocal hybridization. This thesis has contributed some original and initial observations

of the significance of this parameter in a system with two hybridized bands. This has

been done while focusing on the specific physics of orbital relaxation and electron-hole

asymmetry in the electronic DHM. There is a great deal of room for further investigation of

the influence of t01 on multiorbital models, including those that do not obey the particular

criteria to qualify as a dynamic Hubbard model.

Other interesting avenues of investigation were deliberately set aside in this research

project, for simplicity, but beckon further study:

Hirsch has explored the influence of temperature on the optical conductivity response

[48], which could be applied in a straightforward way in our finite temperature realization

of the DHM in MODMFT. The role of temperature was not systematically explored in this

thesis, but was rather kept within a range that did not substantially affect the qualitative

results. Temperature sensitivity certainly provides an avenue for further study in relation

to all the phenomena discussed, and has already been explored by Liebsch [165] for a non-

hybridized system with Hund’s exchange coupling between bands of different bandwidths.

Many other MODMFT studies have focused on the physics arising from additional terms

in the multiorbital Hamiltonian which we have neglected for simplicity. In particular, a

Hund’s exchange term where electrons flip their spin as they hybridize between orbitals,

and a pair-hybridization term where electrons transition in spin up-down pairs via some

local parameter, might enhance the relevance of our multiorbital model with respect to

real systems, providing comparisons to other multiorbital work and additional insight into

orbital relaxation and the role of t01.

The role of different bandwidths in the physics of the DHM was not explored in our

study. Rather, we chose to maintain the intraband hoppings at t0 = t1 = 1.0, again for
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simplicity and to properly compare with the same choice in Hirsch’s study. This assump-

tion of equal bandwidths is perhaps not ideal, since an intuitive understanding of orbital

relaxation would imply that electrons escape the Coulomb repulsion of the lower orbital by

relaxing their state to a higher energy orbital where a greater spatial range of occupation

for the overlapping electron density reduces the Coulomb repulsion of double occupancy

but in turn should result in a greater degree of overlap of the electronic wavefunction with

neighbouring lattice sites. This implies the condition t1 > t0 between the intra-orbital

hopping parameters. The influence of this scenario alongside an exploration of t01 values

should provide new insights into different observables relevant to electron-hole asymmetry

and the OSMT.

Finally, our choice to restrict our study to a small number of bath sites (four, five and

very occasionally six) in the impurity model was motivated by computational efficiency

and the difficulty of attaining reliable convergence in applying the Lanczos and Arnoldi

algorithms to the multiorbital scenario. No doubt this is not an insurmountable problem,

especially since Winograd and de’ Medici [65] have recently published results employing

the Lanczos method on a two-orbital Hamiltonian, where they have explicitly explored

the influence of a local hybridization and made passing reference to results that included

the nonlocal hybridization as well. A successful application of the Lanczos or Arnoldi

algorithm in our MODMFT problem would allow the evaluation of a ground state solution

at zero temperature using a large number of bath sites. This would improve the resolution

of spectral density features and aid in convergence of the routine around abrupt phase

transitions, such as that shown in figure 7.24.

We therefore conclude that our study of the dynamic Hubbard model through the

computational tool of multiorbital dynamical mean field theory has shown significant and

broad agreement with the four-site exact diagonalization study performed by Hirsch in

support of his model of electron-hole asymmetry as a context for a hole-pairing mechanism

in superconductivity. In particular, we have observed electron-hole asymmetry through

the quasiparticle weight and optical conductivity results. We have evaluated the specific

role played by the different hybridization parameters in creating the asymmetry, and have

broken some new ground on the influence of nonlocal hybridization on the dynamics of

multiorbital systems, including the identification of orbital selective metal-insulator tran-

sitions. Many of these results are first steps and suggest that a whole range of hybridized

multiorbital scenarios can be explored in the future using these suggested improvements

and extensions to this tool of doubly-hybridized multiorbital dynamical mean field theory.
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[145] D. Sénéchal, Phys. Rev. B 81, 235125 (2010).

[146] J. W. Negele and H. Orland, Quantum Many-Particle Systems, Perseus Books,

Reading, MA, 1998.

[147] Y. M. Vilk and A.-M. Tremblay, J. Phys. I Paris 7, 1309 (1997).

[148] J. E. Hirsch, Phys. Rev. B 62, 14131 (2000).

[149] E. Kuchinskii and M. Sadovskii, Sov. Phys. JETP 103, 415 (2006).

[150] P. F. Maldague, Phys. Rev. B 16, 2437 (1977).

[151] T. Pruschke, D. L. Cox, and M. Jarrell, Europhys. Lett. 21, 593 (1993).

[152] M. J. Rozenberg et al., Phys. Rev. Lett. 75, 105 (1995).

[153] J. Hong and H.-Y. Kee, EPL (Europhys. Lett.) 33, 453 (1996).

[154] A. Chattopadhyay, A. J. Millis, and S. Das Sarma, Phys. Rev. B 61, 10738 (2000).
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