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Abstract

We theoretically investigate the effect of fluctuations in the order parameter on the

phase transition of 3He under nanoscale confinement of one spatial dimension realized

in recent experiments. We derive a new quasi two-dimensional free energy that relies

on a 3×2 complex matrix instead of the 3×3 complex matrix order parameter found

in the three-dimensional system. We minimize the quasi two-dimensional free energy

and present two energetically degenerate phases that are predicted: the A-phase and

the planar phase.

Beyond the mean-field approximation, we calculate the RG flow in the three-

dimensional, two-dimensional, and quasi two-dimensional limits. We derive the per-

turbative flow equations for all quartic coupling constants with non-trivial kinetic

factor. We find that the B-phase is energetically favoured in the three-dimensional

system in agreement with experiment. In contrast, in the quasi two-dimensional

limit, weak-coupling perturbative renormalization group predicts the planar phase to

be energetically favoured. However, strong-coupling corrections favour the A-phase

observed in experiment.

We derived FRG flow equations for the 3D, 2D and quasi-2D cases with non-trivial

kinetic factor. In the quasi-2D limit, we found that the A-phase was favoured over

the planar phase for certain levels of confinement. These confinement scales were

also confirmed to have a prominent Fermi liquid to A-phase transition in experiment.

Due to the unstable fixed point, we find that under confinement there is a fluctuation-

induced first-order transition to the A-phase.
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Chapter 1

Introduction

1.1 Motivation

One of the greatest wonders of physics is how randomly and chaotically moving par-

ticles can come together to form something as ordered and sophisticated as a block

of cheese. Order emerges in matter at sufficiently low temperatures when its ten-

dency towards chaos is overtaken by its desire to minimize its energy. Describing

the order in matter is challenging and requires identifying the important degrees of

freedom and relevant scale. The concept of scale dependence is especially important

for understanding the emergence of order. It encapsulates the idea that fundamen-

tally different physics can emerge from the same units of matter, depending on the

length or energy scale. In astrophysics, at different length scales, matter organizes

itself into vastly different structures, such as planets, solar systems and galaxies. In

particle physics, each energy scale requires a different field theory to describe it. In

condensed matter physics, the notion of scale plays an immensely important role in

understanding the phases of matter.

Phases of matter are characterized by long-range order, which involves a physical

property being present macroscopically in a material. The phases of matter observed

at room temperature are those that survive the thermal fluctuations of their environ-

ment. In extremely cold temperatures, these thermal fluctuations begin to disappear

and reveal the true quantum nature of matter. The long-distance or infrared (IR)

1



Figure 1.1: Relevant length scales. We show the scale dependence of physics in
3He. The bottom row corresponds to the various physical length scales. Above the
scale, we see the relevant degrees of freedom at each length scale, with their region
of validity highlighted. The top row shows the theory that describes the physics best
at each length scale.

energy scale describes the physics of these phases, as opposed to the ultraviolet (UV)

scale that our field theories may describe. Though the physics of a system varies

greatly with scale, all these physical theories at various scales can be related by the

Renormalization Group (RG). RG provides a framework to indicate which degrees of

freedom become important at any given scale. In experiments, we only have access

to a particular energy scale, which often is at a different scale than the theory being

tested. For example, the long-wavelength degrees of freedom often determine the

behaviour of cold temperature systems in condensed matter systems; however, the

physics of these long-wavelength modes are not obvious from the microscopic Hamil-

tonian of the system. RG provides a powerful tool that allows us to reconcile what

we calculate in theory and what we observe in experiments by allowing us to include

or remove irrelevant degrees of freedom into our theory.

We aim to use RG to analyze and describe phase transitions in superfluid 3He.

When 3He is cooled below 2.7 mK at atmospheric pressure, it undergoes a phase

transition from a normal Fermi liquid state to a superfluid state [1], which corresponds

to the transition from blue to red in ref. fig. 1.1. This phase transition is rather

unique and complex, even compared to other superfluids. Unlike superfluid 4He,

2



superfluid 3He is fermionic and thus cannot condense into a single quantum state due

to the Pauli exclusion principle. Instead, it forms Cooper pairs, where a pair of 3He

atoms couple to effectively form a boson-like particle, which allows it to condense

into a single quantum state. These Cooper pairs form a p-wave spin-triplet state,

which gives superfluid 3He an incredibly rich and complex phase behaviour [2]. These

Cooper pairs are described by Bardeen-Schrieffer-Cooper (BCS) theory and they are

the relevant degrees of freedom in the red region in fig. 1.1. We can apply the

Hubbard-Stratonovich transformation to our BCS theory and obtain the Ginzburg-

Landau theory of 3He to describe the physics at a length scale larger than thermal

fluctuations. To understand the phase transitions in superfluid 3He, we must consider

an even lower energy theory, which requires us to perform RG on the Ginzburg-

Landau theory. Consequently, the RG analysis of superfluid 3He is quite challenging,

but it is also crucial for the theoretical understanding of the low-energy physics of

3He.

Alongside its importance in theoretical physics, 3He has garnered much interest

in experimental physics. The quantum behaviours present in superfluid 3He, such

as its dissipationless flow, have given rise to many promising technologies, including

cryogenics for quantum computers, quantum sensors, and other quantum devices [3,

4]. The first wave of interest in superfluid 3He occurred in the 1970s when much of

the theory was developed. With the advent of nanotechnology, new excitement has

emerged over the last decade [1]. 3He is now being studied extensively in different,

confined geometries, which vastly restrict the 3He in one or more dimensions. In the

Davis lab at the University of Alberta, the phase diagram of 3He has been studied

under nanoscale uniaxial confinement, where it has displayed a drastic shift from the

unconfined case [5, 6]. In one direction, the system is confined to approximately

the size of a Cooper pair, which is given by its coherence length ξ0. This means

Cooper pairs have restricted mobility in one dimension, making them effectively two-

dimensional. For this reason, we will refer to the uniaxially confined system as quasi-
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2D and the unconfined system as 3D. This experiment involved oscillating 3He in

and out of a cavity with a resonator that was uniaxially confined to 500− 1000 nm

in the z direction, as illustrated in fig. 1.2a. This resonator is connected to the

circuit illustrated in fig. 1.2b, used to indirectly measure the phase of the 3He-A at

various pressures and temperatures and varying degrees of confinement. Under these

conditions, a magnification of the 3He-A phase in the pressure-temperature phase

diagram is observed. Because this effect is so large, it should be observed in the RG

analysis. Understanding the RG analysis of the phases of superfluid 3He in the quasi-

2D regime will contribute greatly to our theoretical understanding of this experiment

and can help extract measurable observables for future experiments.

(a) (b)

Figure 1.2: Experimental setup for confinement of 3He. Illustrations of the
nanoscale confinement experiments in ref. [6] a) A resonator that confines 3He uniax-
ially. It oscillates in its confined dimension through the application of an AC current.
b) Circuit diagram of the experimental system, where resonance frequency is mea-
sured, which also determines the superfluid fraction. Figures taken from [6].

1.2 Ginzburg-Landau Theory of 3He

Though the Ginzburg-Landau theory (GL theory) originally was a phenomenological

theory to describe the superconductor phase transition, it was found to be applicable

in many different phase transitions, including superfluid 3He. GL theory centers

around a quantity known as the order parameter, which summarises the degrees of

freedom relevant to a phase transition. In a ferromagnetic system, the order parameter
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is the net magnetization, and in liquid-gas transitions, the order parameter is the

difference between the liquid and gas densities [7]. The order parameter is generally

a field that can take on various forms depending on the complexity of the transition.

Some order parameters, like the net magnetization, form a real vector field. In the

case of superfluid 3He, 18 real parameters are needed to describe the transition, so a

more complicated complex matrix-valued field describes the order parameter, which

can be written as

A =

⎛⎜⎜⎜⎝
Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞⎟⎟⎟⎠ .

The components Aµj of A are labelled by the spin µ and orbital angular momentum j

degrees of freedom, respectively. A nonzero Aµj signifies the condensation of Cooper

pairs in the pj orbital with zero spin in the µ direction. Since superfluid 3He forms a

spin-triplet p-wave superfluid, it has spin S = 1 and total orbital angular momentum

L = 1, allowing for nine combinations of these two degrees of freedom.

Symmetry plays a vital role in GL theory. In a phase transition, there is a state with

a larger symmetry group, known as the disordered phase and a phase with a smaller

symmetry group, known as the ordered phase. The transition between these two

phases involves a spontaneous breaking of symmetry. For example, in a ferromagnet,

the order parameter (the net magnetization) points in a fixed direction, breaking the

rotational symmetry. A phase transition occurs when the order parameter, which is

zero in the disordered state, becomes non-zero in the ordered state. It is called a con-

tinuous or second-order phase transition if the order parameter changes continuously.

If there is a discontinuity in the order parameter, then this is called a discontinuous

or first-order transition. Second-order transitions occur when large-scale fluctuations

of the order parameter become very large near a critical temperature and cause spon-

taneous symmetry breaking. Another way to describe a first-order transition is the

presence of latent heat. Fluctuation-induced first-order transitions occur when fluc-
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tuations cause symmetry breaking. When the jump in the order parameter is much

smaller than the thermal fluctuations at the phase transition, this is known as a

weak first-order transition. These phase transitions can potentially be mistaken for

second-order phase transitions in low-resolution experiments.

The symmetry group of 3He is given by

G = SO(3)L × SO(3)S × U(1), (1.1)

where the action of the group on the order parameter is given by

A → eiϕRAST , (1.2)

where eiϕ ∈ U(1) is a phase factor, R ∈ SO(3)S is a 3-dimensional rotation matrix

that acts on the spin index, and S ∈ SO(3)L is a 3-dimensional rotation matrix that

rotates the angular index. The Ginzburg-Landau free energy functional, FGL, is a

phenomenological free energy that contains all possible terms that respect the sym-

metry of the system. Generally, terms up to the fourth order in the order parameter

are sufficient to describe a second-order phase transition. From this symmetry group,

we can derive all terms up to the fourth order in A that respect

F [A] = F [eiϕRAST ] (1.3)

for all A ∈ C3×3. The GL free energy is given by

FGL[A] =

∫︂ Λ

d3r
{︁
αtr(AA†) + β1|tr(AAT )|2 + β2[tr(AA

†)]2

+ β3tr(AA
TA∗A†) + β4tr(AA

†AA†) + β5tr(AA
†A∗AT )

+ K(γ − 1)∂iA
∗
µi∂jAµj +K∂iA

∗
µj∂iAµj

}︁
,

(1.4)

where Λ is the ultraviolet cut-off, which ensures we do not integrate outside the

validity of our assumption of bosonic particles. This is because the Cooper pairs

behave as individual 3He atoms above this Λ. Some choices for Λ include the Fermi

wavevector kF , the inverse coherence length ξ
−1
0 , and the average thermal fluctuation

√
Tc.
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As we stated before, BCS theory can be related to GL theory, through a method

known as mean-field theory, which assumes the order parameter is given by minimiz-

ing there are no fluctuations in the order parameter. The phenomenological coupling

constants in eq. (1.4) can be determined using mean-field theory at weak coupling.

Near the critical temperature Tc and at low pressures, weak-coupling theory deter-

mines the values of the GL coupling constants as

α(T, P ) = N(0) (1− T/Tc(P )) /3, (1.5)

β0(P ) =
7ζ(3)

240π2

N(0)

(kBTc(P ))
2 , (1.6)

βi(P ) = niβ0(P ), ni = (−1, 2, 2, 2,−2), (1.7)

K(P ) ≡ α(T, P )ξ2GL, (1.8)

ξGL(T, P ) =
ξ0√︁

1− T/Tc

(︃
7ζ(3)

20

)︃1/2

, (1.9)

ξ0(P ) =
ℏvF

2πkBTc(P )
, (1.10)

γ = 3, (1.11)

where N(0) is the single-spin density of states at the Fermi energy in the normal Fermi

fluid state, vF is the Fermi velocity, ξGL is the Ginzburg-Landau coherence length, and

ξ0 is the coherence length at T = 0. These are determined by performing a Hubbard-

Stratonovich transformation using the microscopic Hamiltonian of superfluid 3He.

Strong coupling corrections must be considered at nonzero pressures to accurately

describe the values of the quartic coupling constants βi. The deviation of these

coupling constants ∆βSCi (P ) from the weak-coupling values βWC
i was experimentally

determined in ref. [8] and [9], and this is shown in fig. 1.3. The strong coupling

βi(T, P ) are given by

βi(T, P ) = βWC
i (P, Tc(P )) +

T

Tc
∆βSCi (P ). (1.12)

The order parameter takes on the value that minimizes FGL[A]. For 3D case, this

minimum either corresponds to 3He-A or 3He-B, depending on the values of the βi’s.
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Figure 1.3: Experimentally determined strong-coupling corrections. Strong
coupling corrections to βi determined from [8][9]. The figure was taken from [5].

The change of the five quartic coupling constants β1 . . . β5 with scale, confinement

length, temperature, and pressure plays an essential role in studying the phases of

3He. To understand how these coupling constants are affected by fluctuations in the

order parameter, we must understand the renormalization group.

1.3 Renormalization Group Flows

The Renormalization Group was first developed as a consistent way to remove the

infinities in quantum field theories. The term ’group’ was added to its name because it

was developed when Group Theory was very popular. However, the renormalization

group is only semigroup, as there is no group inverse. Additionally, its algebraic

structure does not play an important role in physics. RG was discovered to be a much

more general tool than originally thought, and it was shown to have importance in

all areas of physics. The quintessential purpose of RG is to relate physics at various

scales. This makes it an excellent tool for exploring the long-distance physics of phase

transitions.

The Renormalization group (RG) flow of our Ginzburg-Landau free energy allows
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us to examine the low-energy effective theory of our free energy. Our free energy

FGL is the function of an order parameter ϕ and some coupling constants gi. In

3He, these would be the quadratic constant α, and the quartic coupling constants

βi. We imagine our system being put in a box with height L, so the fluctuations in

the system cannot have a wavelength larger than L. We then expand our box by

replacing L → bL, where b > 1 is known as our RG parameter. We are interested in

the IR regime, which corresponds to taking b → ∞, or the box becoming infinitely

large. Though the value of FGL is given by its minimization up to first order in

the coupling constants, there are fluctuation-induced corrections that need to be

considered. In fact, these corrections can show that phases that look stable to first

order, are indeed unstable. In perturbative RG, these corrections will take the form

of n-loop corrections to the free energy, while in Functional RG, the corrections will

be an infinite series of diagrams that is often uncontrolled. These corrections can

be written as a function of b, and the system can be rescaled to its original size. If

we add the corrections to the original free energy, we will see that we can replace

the coupling constants gi with renormalized coupling constants gĩ(b) to absorb the

correction into the form of the original free energy. Generally, we cannot solve for

gĩ(b) directly, but rather we derive a series of flow equations of b in the form

dgi
d ln b

= Bgi(g1, g2, . . . ),

where each Bgi is known as a beta function, not to be confused with our βi quartic

coupling constants and the mathematical special functions also referred to by the same

name. To check the stability of a phase with fluctuations, we simply minimize FGL

with the IR renormalized couplings gĩ(∞). A second-order phase transition will show

itself as a fixed point of the RG flow. This is because second-order phase transitions

involve a diverging coherence length, which causes the system to become self-similar.

Self-similarity causes the free energy to remain the same when the length is rescaled

by the RG parameter b. This fixed point can only be considered physical if it is stable

9



under perturbations.

1.4 Phases of Superfluid 3He

(a) (b)

Figure 1.4: Representation of spin and orbital angular momentum degrees
of freedom in 3He. Arrows represent spin, while circles represent orbital angular
momentum. a) Spin and orbital angular momentum configuration in 3He-A. Angular
momentum is fixed macroscopically, while spin is fixed at an angle from the angular
momentum vector. b) Spin and orbital angular momentum configuration in 3He-B.
Angular momentum and spin have a fixed angle between them. Figures taken from
[1].

The rich symmetries of 3He and its complicated order parameter allow for dozens

of possible phases; however, very few are thermodynamically stable. 3D superfluid

3He takes on two phases as seen in fig. 1.5; 3He-A and 3He-B, which are also known

as the A and B phases. 3He-B is a quasi-isotropic phase where the spin and angular

momentum degrees of freedom attain a joint rotational symmetry rather than their

original independent rotational symmetry, as seen in fig. 1.4b. 3He-A is an anisotropic

phase involving the angular momentum degrees of freedom aligning macroscopically

and all the spins aligning microscopically as well, as seen in fig. 1.4a.

As seen in Figure 1.5, 3He-B dominates the phase diagram,[1] whereas 3He-A is

only thermodynamically favourable in the high-pressure regime within a limited tem-

perature range. However, this changes under confinement. We can see in fig. 1.6 that

under confinement 3He-A begins to dominate 3He-B, which prevents the phase tran-
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Figure 1.5: Experimental phase diagram of 3He. Phase diagram of 3He in terms
of pressure (P) measured in bars, and temperature (T) measured in mK. Figure taken
from [1]

.

sition directly from the normal Fermi liquid phase to 3He-B. A new phase appears

between the A and B phases, which also appears to become wider with increased

confinement. The phase of 3He is determined by which phase has the lower free en-

ergy. The criterion that decides that 3He-A is energetically favourable is given by the

inequality

CAB = β1 +
1

3
(β3 − 2β45) > 0 (1.13)

Where we use the notation βij... = βi + βj + . . . . The shift in the boundary between

the A and B phases in the quasi-2D regime can be considered a shift in these βi

coupling constants, causing a change to CAB.

1.5 Thesis Objectives

In light of these new experiments, we aim to further the theoretical description of su-

perfluid 3He in the quasi-2D regime. Some progress has been made in understanding

this effect. Directly minimizing the GL equations, using the Euler-Lagrange equa-
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(a) (b) (c)

(d)

Figure 1.6: Phase diagram of 3He under confinement. The phase diagram of
3He in terms of pressure (P) measured in bars, and temperature (T) measured in mK
(a) Bulk phase diagram shown for reference, with the 3He-A in red and 3He-B in blue.
Phase diagrams for confinements of (b) 1067 nm, (c) 805 nm, and (d) 636 nm. Under
confinement, a new phase appears, which is colored grey. This figure is taken from
[6].

tions, has shown the amplification of 3He-A [10, 11]. Many attempts have been made

to theoretically understand the ”stripe phase” which appears between 3He-A and

3He-B [12–14]. Adding a cubic symmetry-breaking term manually in the GL theory

appears to reproduce the newly observed phase [12].

However, we have several reasons to believe that the dominance of the A-phase

under confinement can be explained purely by fluctuations of the order parameter

without considering additional interactions. Additionally, we hypothesize that we

can see this by adding fluctuations to weak-coupling theory. In fig. 1.6, we see that

under sufficient confinement, the A-phase appears at low pressures. The low-pressure

physics of 3He is described by weak-coupling theory. Another reason for our hypothe-
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sis is that experimental evidence suggests a second-order phase transition occurs from

the Fermi liquid to the A-phase [6, 10], and second-order phase transitions are usually

driven by fluctuations. In fact, fluctuations are known to play a more pronounced

role in lower dimensional systems and often lead to the formation of new phases [15,

16].

In order to prove this hypothesis, we will take the following steps. Firstly, we aim

to understand confinement from a very different angle; we would like to understand

the statistical field theory of 3He under confinement. We first undertake the challenge

of properly describing 3He under confinement. We derive a 2D GL free energy from

a confined symmetry group. In ref. [17], the GL theory of a system with a similar

symmetry group was explored in the context of p-wave superconductors. We will

see what happens in the quasi-2D regime by quantizing the angular momentum in

the confined dimension, similar to a particle in a box. We apply the quantization

procedure in ref. [18], which calculates the quasi-2D case for a simpler system, namely

a one-component bosonic superfluid. Further, we will explore the effect of different

boundary conditions on the result. After developing appropriate mathematical models

describing confinement, we will study the RG flows in different cases. We employ

techniques for computing RG flow of matrix order parameters from [19], using the

trace-log formula derived in ref. [20].

We hypothesize that under confinement, the fixed point that corresponds to the

3He-B shifts to produce the fixed point corresponding 3He-A. We will attempt to

do this using both the Wilsonian Renormalization Group and the Functional Renor-

malization Group. FRG will allow us to probe further into non-perturbative and

non-universal behaviours in 3He. In ref. [21], FRG is applied to the 3D superfluid

3He system, and 3He-A is found to be stable if strong coupling corrections are used.
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1.6 Thesis Outline

Since our thesis revolves around the understanding of the GL theory of phase transi-

tions, we will dedicate Chapter 2 to its introduction and exploration. We will begin

by applying GL theory to a toy model, then proceed to explore the order parameter,

phases, propagator, and Goldstone modes in the 3D system. Next, we will derive a

new GL theory of 3He with reduced symmetry and describe its properties. In Chapter

4, we will introduce the perturbative Renormalization Group and show its calculation

on a toy model. Next, we will review the application of this to 3D 3He and discuss

the main results. Next, we will apply RG to our confined 2D 3He system by observ-

ing the phases under various degrees of confinement. This is where we expect to see

the A-phase dominate over the B-phase at sufficient confinement. We will need to

extend our work by using more powerful RG methods. In Chapter 4, we will do this

by introducing functional renormalization and applying it to a U(1) toy model. We

will see the FRG result in 3D and compare it to our new calculations of FRG under

confinement. In Appendix A, we derive several properties of path integrals, including

the trace-log formula. In Appendix B, we derive the formulas for the derivatives of

various functions of the propagator. In Appendix C, we discuss our flow equations

and their derivations. Finally, in Appendix D, we have listed some notation and

conventions that may be helpful to the reader.
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Chapter 2

Ginzburg-Landau Theory

2.1 Introduction to Ginzburg-Landau Theory

Let us denote the order parameter of an arbitrary system by ∆(r), and let G be the

symmetry group of the system. We can calculate physical observables relating to the

phase transition exactly by calculating the partition function. For a given GL free

energy, the partition function Z given by the path integral

Z =

∫︂
D[∆] exp (−βFGL[∆]). (2.1)

As an alternative to the partition function, we can also define the effective free energy

Feff as

exp (−βFeff). =

∫︂
D[∆] exp (−βFGL[∆]). (2.2)

Evaluating such path integrals is a near-impossible task, so we must take approxima-

tions. We have employed the saddle-point approximation to solve such path integrals

in Appendix A. We find that the effective free energy can be expanded as

Feff = FGL[∆̄] +
1

2

∫︂
q

tr lnG−1(∆̄, q) + h.o.c., (2.3)

where ∆̄ corresponds to the location of the global minimum of FGL. G is the propaga-

tor, which encodes the behaviour of collective modes, which form the fluctuations of

the order parameter. The first term in the expansion corresponds to mean-field the-

ory, which assumes that the order parameter minimizes FGL. In an infinite domain,
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this reduces to solving a system of polynomial equations of the form

δFGL[∆]

δ∆a

⃓⃓⃓⃓
∆=∆̄

= 0, (2.4)

Here we assume that ∆a is the ‘a-th’ component of ∆. We will always work in an

infinite domain in our work and thus use eq. (2.4) for our minimization. The second

term in eq. (2.3) represents the correction to the free energy due to “fluctuations” in

the order parameter.

2.1.1 Symmetries

Symmetries play an essential role in our study of phase transitions. Mainly, they

help us construct a suitable free energy for our system and allow us to investigate

symmetry breaking during the phase transition. Every term of FGL[∆] needs to be

invariant under the symmetry group of the system G such that FGL[∆] contains all

terms invariant under G such that

FGL(g ·∆) = FGL(∆) (2.5)

for every group element g ∈ G. This g can be, for example, a negative sign, a complex

phase, or more complicated like some matrix multiplication. In the context of con-

densed matter systems, the broken symmetry is usually a rotational symmetry about

some axis. Rotations about one axis correspond to the group SO(2), which is equiva-

lent to the unitary group U(1), and rotations in three dimensions are represented by

the non-Abelian group SO(3).

Generally, FGL can contain infinitely many terms that satisfy eq. (2.5), but only a

few of these terms are important for understanding the phase transition. A sample

free energy may look like

FGL ∼
∫︂
ddx

[︁
(∂x∆(x))2 + α∆(x)2 + λ∆(x)4

]︁
, (2.6)

which involves derivative terms known as the kinetic terms, quadratic terms in the

order parameter known as the mass term, and finally, quartic terms in the order
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parameter known as the interaction terms. Here α and λ are coefficients known as

coupling constants. The values of the coupling constants are very important for the

phase transitions, and they can usually be measured in experiment.

Let X be the set global minima of FGL. Then H, the residual symmetry group, is

defined to be the largest group such that

h · ∆̄ = ∆̄ (2.7)

for all h ∈ H. H is the symmetry group of an order parameter ∆̄ that minimize

FGL. We can see that H ⊆ G. This reduction of the symmetry group from G to H

following A phase transition is known as ‘spontaneous symmetry breaking’. Broken

symmetries are the hallmarks of phase transitions and are essential to understanding

them. A broken symmetry refers to when the ground state of a system is no longer

invariant under the full group of symmetriesG, as it was before the transition. Certain

symmetries are ’broken’ such that the system is still invariant under a subgroup H

of G after the transition. The coset R is defined by

R = G/H, (2.8)

and it describes the transformations that physically change the new ground state and

encodes information about fluctuations and, in particular, Goldstone modes. This can

be thought ‘space of fluctuations’. Generally, R will be a manifold and not necessarily

a group. We are guaranteed a group structure on R when H is a normal subgroup of

G.

2.1.2 Example

The idea of GL theory is to describe phase transitions purely with the energetics of a

system in the form of the Ginzburg-Landau free energy functional and understand the

symmetries of this free energy. The first key observation that GL theory attempts to

explain is that during a phase transition, the order parameter spontaneously becomes
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non-zero below a critical temperature Tc. The second key observation is that symme-

try is broken below Tc; the ground state possesses only a subset of the symmetry of

the free energy. We now use Landau’s model for the superconducting transition as a

simple model to demonstrate GL Theory.

Landau’s key insight was that he ingeniously expanded the free energy of a su-

perconductor in terms of its macroscopic wavefunction ϕ(r), such that the density of

superconducting states ns(r) were given by ns = ϕ∗ϕ. Landau then expanded the

system in terms that respected the U(1) symmetry of ϕ given by

ϕ→ eiφϕ.

From the U(1) symmetry, we can write down all the relevant invariant low-order terms

under this group. Then GL free energy functional is given by

FGL[ϕ] = F0 +

∫︂
ddx

(︃
|∂ϕ(x)|2 + α|ϕ(x)|2 + λ

2
|ϕ|4(x)

)︃
. (2.9)

The minimum of the free energy decides the value of the order parameter. If we try

to minimize this free energy, we realize that ϕ must be a constant field to minimize

the |∂ϕ(x)|2 term. A simple calculation tells us that the minimizing order parameter

is

ϕmin =

{︄
0 α > 0√︁

−α
λ
eiφ0 α < 0

. (2.10)

We can see that when α changes sign, suddenly the Cooper pair density is non-

zero as seen in Figure 2.1, which indicates a phase transition occurred. The order

parameter now has ’picked’ a phase φ0, so the U(1) symmetry is broken with no

residual symmetry remaining.

We can see that the coupling constant α changing signs causes the phase transition,

leading to spontaneous symmetry breaking. Since α = 0 happens exactly at the phase

transition, it must also correspond to corresponds to T = Tc. Now that we have seen

a simple case of phase transitions, we are now ready for the more complicated case

of superfluid 3He.
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Figure 2.1: Spontaneous symmetry breaking in the ground state of the free
energy. Spontaneous symmetry breaking in the ground state of the free energy for
λ = 2. As the value of α becomes negative, the global minimum suddenly shifts away
from zero and breaks the symmetry of the system.
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Figure 2.2: Spontaneous breaking of symmetry of the order parameter in
the U(1) model. Spontaneous symmetry breaking in the ground state of the free
energy. As α is made negative, the expectation value of the order parameter becomes
non-zero continuously, signifying a second-order phase transition
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2.2 Ginzburg-Landau Theory of 3He

Superfluid 3He has a 3 by 3 matrix order parameter, which is the main reason for its

complexity. The cooper pairs in superfluid 3He have spin quantum number S = 1 and

angular moment L = 1, so the order parameter forms a 3 by 3 second-rank matrix,

with components given by each combination of angular momentum and spin degree

of freedom. The most general form of the 3He order parameter is

A =

⎛⎜⎜⎜⎝
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎞⎟⎟⎟⎠ , (2.11)

where each entry in the matrix is a complex-valued function with spatial dependence.

We will write this in index notation as Aµi, where µ is the spin index and i is the

angular momentum index. The free energy for superfluid helium in terms of this

order parameter is given by

F [A] =

∫︂
d3r
{︁
αtr(AA†) + β1|tr(AAT )|2 + β2[tr(AA

†)]2

+ β3tr(AA
TA∗A†) + β4tr(AA

†AA†) + β5tr(AA
†A∗AT )

+ K(γ − 1)∂iA
∗
µi∂jAµj +K∂iA

∗
µj∂iAµj

}︁
.

(2.12)

Here, α, β1 . . . β5, K, γ are all coupling constants, and summation is implied over re-

peated indices. Assuming the order parameter is constant, we can integrate over

momentum space

F [A] =K− 3
2

∫︂
d3q

{︁
αtr(AA†) + β1|tr(AAT )|2 + β2[tr(AA

†)]2

+ β3tr(AA
TA∗A†) + β4tr(AA

†AA†) + β5tr(AA
†A∗AT )

+ (γ − 1)qiA
∗
µiqjAµj + qiA

∗
µjqiAµj

}︁
.

(2.13)

Here, we have rescaled our momentum q to
√
Kq and factored it outside the free

energy. This allows us to ignore K dependence as an overall factor in the free energy,

which we will ignore. The symmetry group of 3He is

G = SO(3)S × SO(3)L × U(1)ϕ. (2.14)
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The group acts on the order parameter as follows:

A → eiϕRAST (2.15)

Where S ∈ SO(3)L corresponds to a rotation of space. R ∈ SO(3)S, which corre-

sponds to a rotation of spin. Finally, eiϕ ∈ U(1) corresponds to the gauge symmetry.

The breaking of the U(1) gauge symmetry is what leads to superfluidity and long-

range order, so the U(1) is broken in all the possible superfluid phases of 3He. The

components of the order parameter of 3He-B can be most generally written as

Aµj = ∆Be
iϕRµj(θ, n̂), (2.16)

where Rµj(θ, n̂) ∈SO(3) is an arbitrary rotation matrix about the axis n̂, with angle θ.

ϕ is a phase, and ∆A is a gap parameter that is chosen by minimizing the free energy.

The order parameter is left invariant when rotations of spin RS that gets undone by

a rotation of the angular momentum RL =
(︁
RS
)︁T

. Therefore, the spin and angular

momentum have a symmetry where they can be rotated together. Symmetries such

as this one where two different symmetries combine to make the same symmetry

transformation known as relative symmetries. The symmetry group is thus given by

HB = SO(3)L+S. (2.17)

Here, the ‘L + S’ signifies that a rotation in spin angular momentum space is no

different from a rotation in orbital angular momentum space. For convenience, we

can write the B phase order parameter as

AB = ∆B

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠ , (2.18)

where we have fixed ϕ = 0, and the rotation matrix is the identity matrix. We can

determine the parameter ∆B, by minimizing the free energy with respect to it. Then,

the free energy is

F [AB] = 3α∆2
B + 3(3β12 + β345)∆

4
B, (2.19)
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which has the critical points satisfying

F [AB]

d∆B

= 0 =⇒ ∆B =

√︃
−α

2(3β12 + β345)
, (2.20)

for α < 0 where we are allowing the coupling constants to be fully general. The free

energy takes the value

F [AB] = − 3α2

4(3β12 + β345)
(2.21)

in the B phase.

The A phase has a relative symmetry between rotations of angular momentum

about the z-axis and applying an overall phase. The spins have a rotational symmetry

about a fixed axis. Finally, there is a discrete Z2 symmetry. The symmetry group is

given by

HA = U(1)Lz−ϕ × U(1)S × Z2. (2.22)

Note that discrete symmetries do not contribute to the Goldstone modes, so they have

less relevance in the context of phase transitions. We can see that though we still

have a U(1) symmetry, the original gauge symmetry is broken, giving us long-range

order and superfluidity. We choose a representative order-parameter matrix for the

A phase as

AA = ∆A

⎛⎜⎜⎜⎝
1 i 0

0 0 0

0 0 0

⎞⎟⎟⎟⎠ , (2.23)

where ∆A is a real parameter chosen to minimize the GL free energy. When α < 0,

then this is the minimum. The free energy is given by

F [AA] = 2α∆2
A + 4β245∆

4
A, (2.24)

which can be minimized to give the value of ∆A as

∆A =

√︃
−α
4β245

(2.25)

and its minimized free energy as

F [AA] =
−α2

4(β245)
. (2.26)
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There are other possible phases that do not appear in experiment, but still corre-

spond to local minimums of the GL free energy. The A1 phase appears in 3He under

magnetic fields and has an order parameter of

AA1 = ∆A1

⎛⎜⎜⎜⎝
1 i 0

−i 1 0

0 0 0

⎞⎟⎟⎟⎠ , (2.27)

We are interested in finding out when the A phase will be favoured over the B phase.

We can derive the conditions in which this occurs with the following derivation:

F [AB] > F [AA] (2.28)

=⇒ − 3α2

4(3β12 + β345)
> − α2

4(β245)
=⇒ 3α2

4(3β12 + β345)
<

α2

4(β245)
(2.29)

=⇒ β12 +
1

3
β345 > β245 (2.30)

=⇒ CAB = β1 +
1

3
(β3 − 2β45) > 0. (2.31)

In general, finding the global minima for a matrix order parameter is a very chal-

lenging task, so it is helpful to use some techniques from group theory to simplify this

problem. The order parameters we see in experiment, such as the A and B phases,

still have a non-trivial residual symmetry H. This is because our symmetry group G

is large enough to have many different non-trivial subgroups. In fact, all of the order-

parameters corresponding to stationary points of the GL free energy have non-trivial

remaining symmetry [22, 23]. It appears that order parameters with higher symme-

try have a lower free energy. It is difficult to prove this rigorously, but it provides

important intuition in searching for minima. Minimizing the free energy for arbitrary

βi is extremely challenging, and involves solving a set of eighteen coupled nonlinear

equations, so instead we search through the different symmetry-breaking possibilities

by determining all the factorizations of G. Once the residual symmetry H and the

corresponding order parameter for each phase is determined, we can compare their
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free energy to see which phase will be stable. In ref. [22], we can find all the stationary

points of the free energy, which include

the polar state Apolar = ∆polar

⎛⎜⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎟⎠ ,

the β-state Aβ = ∆β

⎛⎜⎜⎜⎝
0 0 1

0 0 i

0 0 0

⎞⎟⎟⎟⎠ ,

the planar state Aplanar = ∆planar

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎠ ,

the bipolar state Abipolar = ∆bipolar

⎛⎜⎜⎜⎝
1 0 0

0 i 0

0 0 0

⎞⎟⎟⎟⎠ ,

and the α-state Aα = ∆α

⎛⎜⎜⎜⎝
1 0 0

0 eiπ/3 0

0 0 e2uπ/3

⎞⎟⎟⎟⎠ .

as well as the A, A1and B phases, which appear in experiment. These all satisfy

δF[A]

δA∗
µj

= 0, (2.32)

for all µ and j and all values of coupling constants. Though none of these states occur

in 3D, these potential phases may be relevant for the quasi-2D case.

2.3 Propagator of 3He

To better understand fluctuations of our order parameter, we must better understand

the propagator. The Hessian of the free energy gives the propagator and encodes the

behaviour of collective modes within a given field. A has nine complex components

that can be written in eighteen real components. To give our propagator a simpler
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Figure 2.3: Phase diagram of He-3. Phase diagram of 3He in 3D found using
eq. (2.31) to determine the blue line separating the A and B phases, with the in-
equality replaced with equality, and the coupling constants including strong-coupling
corrections.

form, we choose the basis given by

Aµi =
1√
2

(︁
ψµi + ψ̄µi

)︁
+

i√
2

(︁
ψµi − ψ̄µi

)︁
, (2.33)

where ψµi and ψ̄µi are real numbers that are used to define the order parameter as an

alternative toAµ,i. Let Ψ = (ψ1,1, ψ1,2, ψ1,3, ψ2,1 . . . ψ3,3) and Ψ̄ = (ψ̄1,1, ψ̄1,2, ψ̄1,3, ψ̄2,1 . . . ψ̄3,3).

Let q2 = q2x + q2y + q2z . The inverse propagator is given by the Hessian matrix of the

free energy [24]

δ2FGL
δA2

= G−1(Ψ, Ψ̄,q), (2.34)

where q is the momentum. Now we calculate the Hessian, given by

F (2)[Ψ, Ψ̄] =
δ2F [Ψ, Ψ̄]

δΨ(q)δΨ(q′)
= δ(d)(q− q′)

⎛⎜⎜⎝
δ2F [Ψ, Ψ̄]

δψ2

δ2F [Ψ, Ψ̄]

δψ̄δψ
δ2F [Ψ, Ψ̄]

δψδψ̄

δ2F [Ψ, Ψ̄]

δψ̄
2 ,

⎞⎟⎟⎠ (2.35)

where each block of the matrix is a 9 × 9 matrix, and this will be a rank 4 tensor

since the order parameter is rank 2.

We can write our inverse propagator as the sum of a momentum-dependant term
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G−1
0 (q) and a term that depends on the order parameter V(Ψ, Ψ̄) as

G−1(Ψ, Ψ̄, q) = G−1
0 (q) + V(Ψ, Ψ̄). (2.36)

We can define the non-interacting inverse propagator as

G−1
0 µi,νj(q) = δµν

(︁
q2δij + (γ − 1)qiqj

)︁⎛⎝ 1 0

0 1

⎞⎠ . (2.37)

The corresponding propagator is

G0(q) =
δµν
q2

(︃
δij +

(︁
γ−1 − 1

)︁ qiqj
q2

)︃⎛⎝ 1 0

0 1

⎞⎠ . (2.38)
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Finally, our interacting part of the inverse propagator is

Vµi,νj = 8β1

⎛⎝ (︁
ψµiψνj + ψ̄µiψ̄νj

)︁ (︁
ψµiψ̄νj − ψ̄µiψνj

)︁(︁
ψ̄µiψνj − ψµiψ̄νj

)︁ (︁
ψµiψνj + ψ̄µiψ̄νj

)︁
⎞⎠

+4β1

⎛⎝ (∥Ψ∥2 − ∥Ψ̄∥2)δijδµν 2Ψ · Ψ̄δijδµν
2Ψ · Ψ̄δijδµν (−∥Ψ∥2 + ∥Ψ̄∥2)δijδµν

⎞⎠
+8β2

⎛⎝ ψµiψνj ψ̄µiψνj

ψµiψ̄νj ψ̄µiψ̄νj

⎞⎠+ 4β2(∥Ψ∥2 + ∥Ψ̄∥2)

⎛⎝ δijδµν 0

0 δijδµν

⎞⎠
+4β3

∑︂
α

⎛⎝ (︁
ψαiψαj + ψ̄αiψ̄αj

)︁ (︁
ψ̄αiψαj − ψαiψ̄αj

)︁(︁
ψαiψ̄αj − ψ̄αiψαj

)︁ (︁
ψαiψαj + ψ̄αiψ̄αj

)︁
⎞⎠ δµν

+4β3
∑︂
k

⎛⎝ (︁
ψµkψνk − ψ̄µkψ̄νk

)︁ (︁
ψ̄µkψνk + ψµkψ̄νk

)︁(︁
ψ̄µkψνk + ψµkψ̄νk

)︁ (︁
ψ̄µkψ̄νk − ψµkψνk

)︁
⎞⎠ δij

+4β3

⎛⎝ (︁
ψµjψνi + ψ̄µjψ̄νi

)︁ (︁
ψµjψ̄νi − ψ̄µjψνi

)︁(︁
ψ̄µjψνi − ψµjψ̄νi

)︁ (︁
ψµjψνi + ψ̄µjψ̄νi

)︁
⎞⎠

+4β4
∑︂
α

⎛⎝ (︁
ψαiψαj + ψ̄αiψ̄αj

)︁ (︁
ψ̄αiψαj − ψαiψ̄αj

)︁(︁
ψαiψ̄αj − ψ̄αiψαj

)︁ (︁
ψαiψαj + ψ̄αiψ̄αj

)︁
⎞⎠ δµν

+4β4
∑︂
k

⎛⎝ (︁
ψµkψνk + ψ̄µkψ̄νk

)︁ (︁
ψµkψ̄νk − ψ̄µkψνk

)︁(︁
ψ̄µkψνk − ψµkψ̄νk

)︁ (︁
ψ̄µkψ̄νk + ψµkψνk

)︁
⎞⎠ δij

+4β4

⎛⎝ (︁
ψµjψνi − ψ̄µjψ̄νi

)︁ (︁
ψµjψ̄νi + ψ̄µjψνi

)︁(︁
ψ̄µjψνi + ψµjψ̄νi

)︁ (︁
ψ̄µjψ̄νi − ψµjψνi

)︁
⎞⎠

+4β5
∑︂
α

⎛⎝ (︁
ψαiψαj − ψ̄αiψ̄αj

)︁ (︁
ψ̄αiψαj + ψαiψ̄αj

)︁(︁
ψαiψ̄αj + ψ̄αiψαj

)︁ (︁
ψ̄αiψ̄αj − ψαiψαj

)︁
⎞⎠ δµν

+4β5
∑︂
k

⎛⎝ (︁
ψµkψνk + ψ̄µkψ̄νk

)︁ (︁
ψµkψ̄νk − ψ̄µkψνk

)︁(︁
ψ̄µkψνk − ψ̄νkψµk

)︁ (︁
ψ̄µkψ̄νk + ψµkψνk

)︁
⎞⎠ δij

+4β5

⎛⎝ (︁
ψµjψνi + ψ̄µjψ̄νi

)︁ (︁
ψµjψ̄νi − ψ̄µjψνi

)︁(︁
ψ̄µjψνi − ψµjψ̄νi

)︁ (︁
ψ̄µjψ̄νi − ψµjψνi

)︁
⎞⎠ (2.39)

We define ∥Ψ∥2 =
∑︁

µi ψ
2
µi, and ∥Ψ̄∥2 =

∑︁
µi ψ̄

2
µi. This equation is derived simply

by taking second derivatives of the free energy. We employ symbolic algebra tools such
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as Mathematica to confirm and manipulate this reliably. We can use this propagator

to study fluctuations of the order parameter.

2.4 Goldstone Modes

Spontaneous symmetry breaking can give rise to long wavelength excitations in the

order parameter known as Goldstone modes. They occur when the order parameter

is degenerate over a manifold of states, leading to oscillations in the order parame-

ter inside this manifold. Since the states are energetically degenerate, they require

no initial energy and can have arbitrarily low wavelengths. Thermal fluctuations

with energy ϵ ∼ T , where T is temperature, would lead to Goldstone modes with a

wavelength λ ∼ T− 1
2 fluctuating the order parameter.

These Goldstone modes are the primary contributors to the long wavelength fluc-

tuations of the order parameter during phase transitions. The presence of new Gold-

stone modes after a phase transition can give the new phases profoundly different

properties. To calculate the number of Goldstone modes that appear in each phase,

we need to count the ‘number’ of symmetries broken. Each symmetry broken corre-

sponds to an independent Goldstone mode. Goldstone’s theorem tells us the number

of Goldstone modes is given by

N = n(G)− n(H), (2.40)

where N is the number of Goldstone modes, n(G) is the number of generators of the

system’s symmetry G, and n(H) is the number of generators of the residual symmetry

of the system. The number of generators of a group is no different than the concept

of the dimension in a manifold. In fact, if we view each Lie group as a manifold,

the number of generators is the same as its dimension. For example, U(1) can be

seen as a one-dimensional circle as a manifold; therefore, it has only one generator.

We can then see that when the product of multiple groups is taken, their number of

generators is summed. We can now find the value of the number of Goldstone modes

28



in each phase. For 3He-A we have

NA = n(G)− n(HA), (2.41)

and for 3He-B we have

NB = n(G)− n(HB), (2.42)

where G, HA and HB are given in eq. (2.14), eq. (2.22) and eq. (2.17), respectively.

We can see that

n(G) = 2× n (SO(3)) + n (U(1)) = 2× 3 + 1 = 7, (2.43)

and

n(HA) = n (SO(2)) + n (U(1)) = 1 + 1 = 2, (2.44)

and finally

n(HB) = n (SO(3)) = 3. (2.45)

It follows that NA = 5 and NB = 4. We can also approach this calculation by the

use of our inverse propagator. The eigenvalues of the propagator are the dispersion

relations ϵ(q) of the collective modes. Since the inverse propagator is 18 dimensional,

there are 18 collective modes. The Goldstone modes can be identified with having

ϵ(q = 0) = 0, where ϵ(q) is the inverse propagator’s eigenvalue. The eigenvalue tells

us about each collective mode’s energy as a function of momentum. Note that the

eigenvalues of a local minimum should all be greater than or equal to zero; otherwise,

we have found an incorrect minimum for our free energy. We can confirm that we get

the same number NA and NB through the use of the propagator in section 2.4, and

we can see the dispersion relations of the collective modes plotted in fig. 2.4.
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(a) (b)

Figure 2.4: Collective modes of 3He. The eigenvalues ϵ of the propagator as a
function of momentum q, with γ = 1. The colouring scheme is to help distinguish
between various eigenvalues. The weak-coupling values were used for the coupling
constants. a) The collective modes of the A phase. b) The collective modes of the B
phase.

Phase Eigenvalue ϵ(q = 0) Degeneracy

3He-A

0 5

2(β1+β3)
β245

2

(β3−β4−β5)
β245

4

−2β4
β245

2

−(β4+β5)
β245

4

2 1

3He-B

0 4

− 6β1
3β12+β345

5

−2(3β1+β2−β4+β5)
3β12+β345

3

2(β3+β4+β5)
3β12+β345

5

2 1

Table 2.1: The eigenvalues at q = 0 of the 18 possible modes in both 3He-B and
3He-B. We set α = −1 for convenience. The degeneracy is the number of modes that
share the same ϵ(q = 0). We find 5 Goldstone modes in 3He-A and 4 for 3He-B as
expected.
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2.5 2D Ginzburg-Landau Theory

We can apply the principles of GL theory to derive a quasi-two-dimensional theory

of He-3. When confined to the quasi-2D regime, our 3D symmetry group reduces to

a confined quasi-2D symmetry group given by

G2D = SO(2)Lz × SO(3)S × U(1). (2.46)

Here, we assume the confinement is enough to restrict the Cooper pairs’ motion in

the direction of their confinement, leading the SO(3)L symmetry to become SO(2)Lz .

The quasi-2D symmetry group allows us to introduce new terms in our Ginzburg-

Landau Theory that are not included in the 3D free energy. For example, we could

try to consider terms like α1 (A21A
∗
12 +A23A

∗
11) or β6A11A31A32A33, but we have to

check if they are invariant terms. We would ideally like to find every single possible

term that is invariant under our new symmetry that is second or fourth order. We

will start by examining second-order terms.

Since we have a U(1) symmetry A and A∗ must appear equally like in A11A
∗
12.

We also know that the spin symmetry is still the same as in the 3D case, which tells

us the spin indices of the two order parameter components multiplied must be the

same as it is in the 2D case. Under these considerations, we can see the most general

second-order invariant to be the linear combination of quadratic terms, which can be

written as

ML
abAαaA

∗
αb. (2.47)

Here, we sum over repeated indices. ML
ab can be thought of as coefficients that scale

each quadratic term. Next, we must check which conditions ML needs to obey for

eq. (2.47) to be invariant under our symmetries.

In the 3D case, we need the term to be invariant under the action of any element

R ∈ SO(3)L. If eq. (2.47) is invariant then

ML
abRacAαcRbdA

∗
αd =ML

abAαaA
∗
αb (2.48)
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must hold true. We can relabel indices, remove the order parameter components

common to both sides and write this in the matrix form

RTMLR =ML. (2.49)

ThereforeML must be a matrix that is invariant under all rotations, which is only true

for scalar multiples of the identity matrix. We can now substitute back in ML = α · I

into eq. (2.47) and get

ML
abAαaA

∗
αb = αδabAαaA

∗
αb = α

∑︂
µi

AµiA
∗
µi = αtr(AA†). (2.50)

Here, α is an arbitrary real constant, and δab is the usual Kronecker delta. This gives

us back the expected second-order invariant in our 3D free energy. What we have

proven is that eq. (2.50) is the only quadratic form that is invariant under the 3D

symmetry group G.

When restricted to the confined symmetry, ML has more freedom. Let us apply

an SO(2)Lz transformation T to our quadratic form in A, and enforce that the form

remains invariant. Elements of SO(2)Lz are rotations about the z-axis. They have

the form

T =

⎛⎜⎜⎜⎝
sin θ − cos θ 0

cos θ sin θ 0

0 0 1

⎞⎟⎟⎟⎠ . (2.51)

Then, for an expression to be invariant under our quasi-2D symmetry group, it must

satisfy

ML
abTaiTbjAαiA

∗
βj =ML

ijAαiA
∗
βj, (2.52)

which implies

ML
abTaiTbj =ML

ij =⇒ T TMLT =ML. (2.53)

Solving this equation, we can see that

ML =

⎛⎜⎜⎜⎝
α1 α3 0

−α3 α1 0

0 0 α2

⎞⎟⎟⎟⎠ . (2.54)
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However, this term breaks time-reversal symmetry T when α3 is non-zero. So finally,

we have

ML =

⎛⎜⎜⎜⎝
α1 0 0

0 α1 0

0 0 α2

⎞⎟⎟⎟⎠ . (2.55)

Now we can see that the quadratic invariants look like

3∑︂
µ=1

[︄
α1

∑︂
i=1,2

AµiA
∗
µi + α2

∑︂
i=3

AµiA
∗
µi

]︄
(2.56)

in the quasi-2d regime. Let us define two new matrices

A⊥ =

⎛⎜⎜⎜⎝
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

⎞⎟⎟⎟⎠ , (2.57)

and

Az =

⎛⎜⎜⎜⎝
A1,3

A2,3

A3,3

⎞⎟⎟⎟⎠ . (2.58)

The quasi-2D quadratic invariants can be more easily written down as

α1tr(A⊥A
†
⊥) + α2tr(AzA

†
z). (2.59)

We can see that there are now two independent mass terms, but only one of these can

change signs first. The coupling constant that changes sign first will drive the phase

transition, and the other term can be ignored near the superfluid phase transition.

Using the microscopic physics of 3He, it can be determined that α1 drives the phase

transition [25]. Finally, our new quadratic invariant is

αtr(A⊥A
†
⊥). (2.60)

A⊥ is our new order parameter.

Now we see if we can introduce new quartic invariants of the form

MαβγδabcdAαaAβbA
∗
γcA

∗
δd. (2.61)
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I Mαβγδabcd

tr(AA†)2 δαγδβδδacδbd + δαδδβγδadδbc

|tr(AAT )|2 δαβδγδδabδcd

tr(AATA∗A†) δαγδβδδabδcd + δαδδβγδabδcd

tr(AA†A∗AT ) δαβδγδδacδbd + δαβδγδδadδbc

tr(AA†AA†) δαγδβδδacδbd + δαδδβγδacδbd

Table 2.2: Invariants and their M-tensors

Here the U(1) symmetry enforces that we must have equally many A’s and A∗’s in each

term in the invariant. In the 3D free energy, the five quartic invariants can be derived

using the same techniques as before. A table of invariants and their corresponding

M-tensor is provided in table 2.2.

Intuitively, our results in the quasi-2D case should look similar to table 2.2, but

while separating terms involving Az and A⊥, similarly to eq. (2.59).

Let us now consider our matrix M to act trivially on the spin as we did before, and

let us restrict our angular momentum interactions. We get

M = I⊗2 ⊗ML = I⊗ I⊗ P ⊗Q. (2.62)

Here, we assumed our tensor ML could be decomposed into the tensor product of

two matrices P and Q. This assumption is supported by the fact that all the terms

above are just the sums of terms that can be decomposed in this way. We can write

this tensor equation in component form with

=⇒ Mαβγδabcd = δαβδγδPabQcd. (2.63)

Now we apply a SO(2)Lz rotation T to our order parameter A and impose invari-

ance under quasi-2D symmetry and get

PabQcdTaiTbjTckTdℓAαiAαjA
∗
γkA

∗
γℓ = PijQkℓAαiAαjA

∗
γkA

∗
γℓ. (2.64)

This simplifies to

=⇒ [TPT T ]⊗ [TQT T ] = P ⊗Q, (2.65)
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which gives similar results as eq. (2.55). We can use one of the 3D quartic terms to

derive what the quartic term would decompose into in the quasi-2D case as follows:

β1tr(AA
†)2 = β1

∑︂
µν

∑︂
ij

AµiA
∗
µiAνjA

∗
νj −→ (2.66)

∑︂
µν

⎡⎣β1,1 ∑︂
ij=1,2

AµiA
∗
µiAνjA

∗
νj + β1,2

∑︂
i=1,2/j=3

AµiA
∗
µiAνjA

∗
νj

+β1,3
∑︂

i=3/j=1,2

AµiA
∗
µiAνjA

∗
νj + β1,4

∑︂
ij=3

AµiA
∗
µiAνjA

∗
νj

⎤⎦ (2.67)

We can divide the quasi-2D GL free energy, F2D into three parts based on the ap-

pearance of A⊥ and Az as

F2D = F⊥⊥ + F⊥z + Fzz, (2.68)

where the parts of the free energy can be defined as

F2D = αtr(A⊥A
†
⊥) + β1|tr(A⊥A

T
⊥)|2 + β2[tr(A⊥A

†
⊥)]

2

+β3tr(A⊥A
T
⊥A

∗
⊥A

†
⊥) + β4tr(A⊥A

†
⊥A⊥A

†
⊥) + β5tr(A⊥A

†
⊥A

∗
⊥A

T
⊥)

(2.69)

Fzz = σ1tr(AzA
†
z) + ρ1|tr(AzA

T
z )|2 + ρ2[tr(AzA

†
z)]

2. (2.70)

F⊥z can be constructed similarly by taking the cross terms between A⊥ and Az. Since

the A⊥ mass term changes sign first, both Fzz and F⊥z are not relevant to the phase

transition since Az does not contribute to the long-range order. That implies our

quasi-2D free energy is just the 3D one with the order parameter A replaced with A⊥

as shown below:

F⊥⊥ = αtr(A⊥A
†
⊥) + β1|tr(A⊥A

T
⊥)|2 + β2[tr(A⊥A

†
⊥)]

2

+β3tr(A⊥A
T
⊥A

∗
⊥A

†
⊥) + β4tr(A⊥A

†
⊥A⊥A

†
⊥) + β5tr(A⊥A

†
⊥A

∗
⊥A

T
⊥)

(2.71)

Not only is the 2D free energy similar to the 2D case, the inverse-propagator is

also given by eq. (2.39), with the summation angular momentum indices stopping at

i = j = 2 rather i = j = 3.

35



2.5.1 2D Order Parameter

Now, we will take our 3×2 order parameter and find the mean-field value of its order

parameter through minimization. Conveniently, it happens that in quasi-2D, the A

phase is still energetically favourable, as well as a truncated version of the B phase

known as the planar phase [25]. In quasi-2D, the order parameter of the planar phase,

which is the counterpart to the 3D B phase, looks like

A2b =

⎛⎜⎜⎜⎝
∆2b 0

0 ∆2b

0 0

⎞⎟⎟⎟⎠ . (2.72)

Then, the free energy is given by

F2D[A2b] = 2α∆2
2b + 2(2β12 + β345)∆

4
2b (2.73)

The minimum of this is given by

∆2
2b =

−α
2(2β12 + β345)

. (2.74)

The A phase is given by

A2a =

⎛⎜⎜⎜⎝
∆2a i∆2a

0 0

0 0

⎞⎟⎟⎟⎠ , (2.75)

or equivalently

A2a =

⎛⎜⎜⎜⎝
0 0

0 0

∆2a i∆2a

⎞⎟⎟⎟⎠ . (2.76)

Then, the free energy is given by

F [A2a] = 2α∆2
2a + 4β245∆

4
2a (2.77)

The minimum of this is given by

∆2
2a =

−α
4β245

(2.78)
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Figure 2.5: Strong-coupling corrections to 2D free energy. The free energy
of 3He-A and the planar phase under strong-coupling corrections with a pressure of
20 bars. The energy degeneracy between the two phases is broken, and 3He-A is
favoured.

For the A phase to dominate over the B phase. We have

F [A2b] > F [A2a]

=⇒ − α2

2(2β12 + β345)
> − α2

4(β245)
=⇒ α2

2(2β12 + β345)
<

α2

4(β245)

=⇒ β12 +
1

2
β345 > β245

=⇒ CAP = β1 +
1

2
(β3 − β45) > 0. (2.79)

At weak coupling, A phase and B phase have the same free energy

F [A2a] = F [A2b] = −5

4
, (2.80)

so we have to look beyond the mean-field level and consider fluctuations of the order

parameter to decide which of these two phases wins. The degeneracy between the

planar and A phase is lifted in the strong-coupling corrections, where the A phase is

favoured at all calculated temperatures and pressures, as shown in fig. 2.5 for various

temperatures.
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Chapter 3

The Renormalization Group

3.1 Introduction

Now that we have analyzed 3He through the lenses of mean-field theory and strong-

coupling behaviour, the next step is to observe the effects of fluctuations using RG.

In perturbative RG, the contributions of fluctuations to the effective free energy are

written in a perturbative series about the weak-coupling free energy. These series

are expanded in orders of coupling constants, and each term consists of momentum

space integrals, which can be represented as Feynman diagrams. The Trace-Log

formula allows us to easily evaluate the sum of all one-loop Feynman diagrams in our

Ginzburg-Landau theory. However, the presence of Goldstone modes at all length

scales leads to IR divergences of these Feynman diagrams. This leads us to apply a

regularization scheme by considering the appropriate length scales of our system and

using the Wilsonian RG scheme to identify the effects of fluctuations on the phase

transition.

3.1.1 An Overview of the Renormalization Group

RG provides a practical framework for understanding second-order phase transitions.

As we approach the critical point, fluctuations in the order parameter become large,

and interactions must be considered. The GL free energy describes the effects of these

fluctuations and interactions near the phase transition. For a real order parameter
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ϕ(x), the GL free energy might have the form

F [ϕ(x)] =

∫︂
ddx

[︃
1

2
∇ (ϕ(x)) · ∇ (ϕ(x)) + U(ϕ(x))

]︃
, (3.1)

where U is the effective potential, which contains terms constrained by the symmetries

of the theory. U generally depends on a number of coupling constants g = (g1, g2 . . . ).

For example, it could take the form

U(ϕ) = g1ϕ
2 + g2ϕ

4 + . . . (3.2)

We fix the gradient term to have a coefficient of 1
2
for simplicity, but it can be

multiplied by a coupling constant called the Wavefunction Renormalization for a

more comprehensive analysis. Let us set β = (kBT )
−1 to unity for simplicity. We are

interested in computing the partition function

Z =

∫︂
Dϕe−F [ϕ], (3.3)

which is a path integral over the space of order parameters (see appendix B for further

discussion). Informally, we can think of the path integral measure as the continuous-

infinite product of one-dimensional measures

Dϕ =
∏︂
k

dϕk (3.4)

Our Ginzburg-Landau theory is also no longer valid for momenta higher than our

ultraviolet cut-off Λ. Using this cut-off, we can remove UV divergences in our one-

loop corrections, but we must use the renormalization group scheme to overcome the

IR divergences.

We will use a momentum space renormalization group scheme. We first describe

our order parameter in terms of its momentum component rather than its spatial

dependence using the Fourier transform

ϕk =

∫︂
ddxϕ(x)eik·x. (3.5)
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Let k = ∥k∥. We can impose that the Fourier modes ϕk of the order parameter obey

ϕk = 0 for k > Λ. (3.6)

Now we suppose our system is restricted to a box of finite size, such that the smallest

momentum possible in the box is

Λ′ =
Λ

b
, (3.7)

for some b > 1. This allows us to regularize the IR divergences momentarily. However,

we will eventually consider our system at infinite size by taking b→ ∞.

Using this regularization scheme, we can break our order parameter into ‘short’

and ‘long’ wavelength components.

ϕk = ϕ<k + ϕ>k , (3.8)

where ϕ<k are the long wavelength modes given by

ϕ<k =

{︄
ϕk k < Λ′

0 k > Λ′ , (3.9)

and ϕ>k are the short wavelength modes given by

ϕ>k =

{︄
ϕk Λ′ < k < Λ

0 otherwise
(3.10)

We can now decompose our free energy in Fourier space and expand it in terms of

these short long wavelength fields as

F [ϕk] = F0[ϕ
<
k ] + F0[ϕ

>
k ] + FI [ϕ

<
k , ϕ

>
k ], (3.11)

where F0 is the part that only depends on one field, and FI involves products of the

shot and long wavelength fields. Our partition function in terms of these variables is

given by

Z =
∏︂
k<Λ

∫︂
dϕke

−F =
∏︂
k<Λ′

∫︂
dϕ<k e

−F0[ϕ
<
k ]

(︄ ∏︂
Λ′<k<Λ

∫︂
dϕ>k e

−F0[ϕ
>
k ]+FI [ϕ

<
k ,ϕ

>
k ]

)︄
. (3.12)

=

∫︂
Dϕ<e−F0[ϕ<]

(︄∫︂
Dϕ>e−F0[ϕ>]+FI [ϕ

<,ϕ>]

)︄
(3.13)

≡
∫︂

Dϕ<e−FW [ϕ<] (3.14)
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We want to evaluate this integral over the short-wavelength modes to obtain the

Wilsonian effective free energy, FW , which is a free energy for the long-wavelength

modes. FW can be written as

e−FW [ϕ<] = e−F0[ϕ<]

(︄∫︂
Dϕ>e−F0[ϕ>]+FI [ϕ

<,ϕ>]

)︄
(3.15)

We have not done anything to break the symmetry of the system, so FW will be of

the same form as F with shifted or renormalized coupling constants. We write FW as

FW [ϕ<] =

∫︂
ddx

[︃
1

2
γ′(b)∇ϕ< · ∇ϕ< + g′1(b) (ϕ

<)
2
+ g′2(b) (ϕ

<)
4
+ . . .

]︃
. (3.16)

We can see that long wavelength modes ‘experience’ different coupling constants. The

integrals in FW are bound by q ≤ Λ/b, while the integrals in F are bound by q ≤ Λ.

To ensure these two free energies are comparable, we must ensure they have the same

limits. We can do this by ‘zooming out’ by rescaling to momentum and position as

follows

k → bk, x→ x

b
. (3.17)

This ensures the cut-off for FW , Λ/b, gets rescaled to Λ. However, now the gradient

term in FW is no longer normalized, so we rescale the field ϕ< to get rid of this. We

transform the field as

ϕ′(x′) = b
2−d
2

√︁
γ′ϕ<(x). (3.18)

This gives us our new free energy in terms of these rescaled fields as

FW [ϕ′] =

∫︂
ddx

[︃
1

2
∇ϕ′ · ∇ϕ′ + g1(b) (ϕ

′)
2
+ g2(b) (ϕ

′)
4
+ . . .

]︃
. (3.19)

We can see that we have parameterized a set of theories in terms of b, with our original

UV theory being at b = 1, and the IR theory at b = ∞. Any set of renormalized

coupling constants will take the form

gi(b) = bOi

(︂
gi(0) + δgi(b)

)︂
, (3.20)

where Oi is the scaling of the coupling constant gi, gi(0) is the initial value of the

coupling constant (the mean-field value in our case), and δgi(b) are corrections to
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the coupling constants. Oi plays an important role in determining the importance

of coupling constants. When Oi < 0, then gi is referred to as an irrelevant coupling

because as b approaches infinity, the renormalized coupling constant will decay to zero,

indicating the coupling constant is not relevant for the phase transition of interest.

When Oi = 0, gi is referred to as marginal and if Oi > 0, then gi is a relevant coupling

constant. We are only interested in considering relevant coupling to the flow, and in

d = 4, any terms of higher order than quartic terms turn out to be irrelevant. This

is why we truncated our free energy to the fourth order.

Because we usually cannot solve for these renormalized coupling constants directly,

we can define a set of differential equations, called the flow equations, that have the

form

dgi(b)

d ln b
= Bgi(g1, g2, . . . ), (3.21)

where {gi} are the set of coupling constants, and Bgi is called the beta functions for

the coupling constant gi. We can view renormalization as a ‘flow’ in the space of

coupling constants. For an infinitely sized system, we aim to solve these equations

for the flow of the renormalized coupling constants at ln b → ∞, while for a finite

system, we will see that we must stop at some finite bf determined by the size of the

system. The initial conditions of the coupling constants at ln b = 0 are determined

by mean-field theory. The coupling constants will begin with their mean-field values

and slowly add longer and longer fluctuations as b increases, eventually including

fluctuations of all wavelengths.

As b flows to infinity, the coupling constants may approach a fixed point. A fixed

point corresponds to a free energy with special values for its coupling constants

such that they remain unchanged under the renormalization group flow defined in

eq. (3.21). The correlation length of the system, ξ, can have two possible fixed points

under the rescaling ξ → ξ
b
: either ξ = 0 or ξ = ∞. At ξ = 0, the system is uncor-

related and uninteresting. At ξ = ∞, we have fluctuations at all length scales, and

the free energy becomes scale-invariant. Second-order phase transitions correspond
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to stable fixed points.

The stability of a fixed point g⋆ = (g1⋆, g2⋆, . . . ) is determined by computing its

stability matrix

Mij =
∂Bgi

∂gj

⃓⃓⃓
g=g⋆

. (3.22)

This matrix must have purely negative eigenvalues for an infrared-stable fixed point.

When the coupling constants of a free energy are sufficiently close to a stable fixed

point, or within its ‘basin of attraction’, the couplings will flow to that fixed point

under RG. Every theory also has a Gaussian fixed point, which corresponds to all

coupling constants being zero, and this is a repulsive fixed point with entirely positive

eigenvalues.

We can also numerically solve for the running of the coupling constants themselves

to understand the phase transition. This can be especially useful when we cannot

find a stable fixed point but still have access to theoretical mean-field values. We can

substitute the values of the renormalized coupling constants at the end of our flow

back into our free energy to obtain our renormalized free energy. The minimum of the

free energy will determine the phase that is favoured after considering fluctuations

up to a length scale λtyp ∼ b
Λ
.

3.1.2 Trace-log formula

The trace-log formula provides an easy way to integrate over the slow modes up to

one-loop order for constant order parameters ϕ(x) = ϕ [20]. We start by writing the

trace-log formula

∆U =
1

2

∫︂
q

tr log G−1(ϕ,q), (3.23)

where G(ϕ, q) is the propagator in momentum space and can be decomposed as

G−1(ϕ,q) = G−1
0 (q) + V(ϕ), (3.24)

where G0(q) is independent of the order parameter, and V(ϕ) is independent of mo-

mentum q. The trace-log formula is valid only for small quartic couplings; However,

43



the scaling dimension of quartic couplings is O = 4− d, and the couplings will grow

out of the perturbative regime quickly for d < 4. Additionally, the quartic coupling

constants must have relevant scaling to consider the effects of interactions, and this

only occurs when d < 4. The solution is to consider RG ‘close’ to 4 dimensions. We

use a parameter ϵ = 4− d to regulate our integrals, where ϵ≪ 1.

These integrals often have infrared and ultraviolet divergences. The UV divergence

is taken care of by restricting the integrals to momenta with magnitudes less than Λ.

To alleviate the IR divergence around q = 0, we introduce an RG parameter b, and

integrate momentum shells with q ∈
[︂
Λ
b
,Λ
]︂
, and take the limit as b approaches ∞ will

approach the IR divergence more closely. We use the notation∫︂ ′

q

(. . . ) =

∫︂ Λ

Λ/b

ddq(. . . ) =

∫︂ Λ

Λ/b

dq

∫︂
Sd−1

dΩ
[︂
qd−1(. . . )

]︂
(3.25)

for momentum shell integration. Here, Ω represents the angular coordinates over

the d − 1 dimensional sphere Sd−1. Integration over the momentum shells gives us

progressive corrections to the effective potential

δU(b) =
1

2

∫︂ ′

q

tr log G−1(ϕ, q). (3.26)

However, our goal is to determine the corrections to the individual coupling constants.

Luckily, we can take derivatives of our effective potential to extract coupling constants

[20]. For example, in 3He

∂2

∂A1,1∂A∗
1,1

⃓⃓⃓⃓
A=0

U(A) = α (3.27)

for both the 3D and 2D effective potentials. We can do this for all the other coupling

constants as well and obtain an operator P̂ i for each coupling constant such that

P̂ i

⃓⃓⃓
A=0

U(ϕ) = gi. (3.28)

These operators must be a linear combination of derivatives in the order parameter

[20]. We can use these to get fluctuation corrections to the coupling constants

δgi(b) = P̂ iδU(ϕ) =
1

2

∫︂ ′

q

tr P̂ i

⃓⃓⃓
ϕ=0

log G−1(ϕ, q). (3.29)
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Calculating G(ϕ, q) is very computationally intensive, so alternatively, we use algebra

to calculate the derivatives of the matrix-logarithm (see appendix B). If we assume

that P̂ i took on the simplest possible form and this ϕ is a complex matrix order

parameter, then

P̂ i =
∂4

∂ϕµ,i∂ϕν,j∂ϕ̄ρ,k∂ϕ̄σ,l
, (3.30)

then

δgi =
1

2
tr

∫︂ ′

q

G0
∂2V

∂ϕµ,i∂ϕν,j
G0

∂2V
∂ϕ̄ρ,k∂ϕ̄σ,l

+G0
∂2V

∂ϕµ,i∂ϕ̄ρ,k
G0

∂2V
∂ϕν,j∂ϕ̄σ,l

+ G0
∂2V

∂ϕµ,i∂ϕ̄σ,l
G0

∂2V
∂ϕ̄ρ,k∂ϕν,j

. (3.31)

We obtain our RG equations as a system of differential equations by taking derivatives

with respect to the RG parameter t = ln b.

Once we have our RG equations, we can integrate them numerically using various

methods, such as the Runge-Kutta method. Since we are using a system of finite

size, we must stop our integration when the RG parameter b is at some final bf

value. The RG parameter allows us to limit fluctuations to a maximum wavelength

of λmax ∼ b/Λ, whereas a system will only allow fluctuations as large as its length

L, assuming our system is a cube with side length L. As b → ∞, we start including

fluctuations that cannot fit in our finite system. Instead of stopping our flow at

b = ∞, which corresponds to an infinite system size, we should rather stop our flow

at bf ∼ LΛ.

3.2 Renormalization Group Example

As an introductory example, we will calculate the RG flow of a complex scalar order

parameter ϕ(x) with U(1) symmetry and d spatial dimensions. We will approach

it without using the trace-log formula to illustrate the intricacies of Wilsonian RG

better. The free energy of this theory is given by

FGL[ϕ] =

∫︂
ddx

(︃
1

2
|∇ϕ|2 + U(ϕ(x))

)︃
, (3.32)
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with

U(ϕ) = α|ϕ|2 + λ

2
|ϕ|4. (3.33)

We take the Fourier transform of the free energy, with

ϕ(x) =

∫︂
ddk

(2π)d
ϕke

−ikx, (3.34)

and this allows us to write the free energy as

FGL[ϕ] =

∫︂ Λ

0

ddq
(︁
q2 + α

)︁
ϕkϕ

∗
k

+
λ

2

∫︂ Λ

0

ddk1d
dk2d

dk3d
dk4

(2π)3d
δ(k1 + k2 − k3 − k4)ϕ

∗
k4
ϕ∗
k3
ϕk2ϕk1 . (3.35)

We break the field ϕ into long wavelength modes ϕ<, and short-wavelength modes ϕ>

with

ϕk = ϕ<k + ϕ>k . (3.36)

We can substitute eq. (3.36) into eq. (3.35), and seperate the free energy as follows

F [ϕ] = F0[ϕ
<] + F0[ϕ

>] + FI [ϕ
<, ϕ>]. (3.37)

Here F0 is the same as FGL, which describes the energy of the slow and fast modes

independently. FI describes the integration energy between the slow and fast modes,

and is described by an expression of 16 terms. Before we write out FI , we can

conveniently throw out some of its terms by taking advantage of some properties of

Gaussian Integrals (see appendix A). We can throw away all terms that have an odd

power in the fields ϕ< and ϕ>, because they will have zero contribution to the path

integral. This includes terms like ϕ∗<
k1
ϕ∗<
k2
ϕ<k3ϕ

>
k4
. Our aim is to solve for the effective

action of the long wavelength modes which is given by

e−FW [ϕ<k ] = e−F0[ϕ
<
k ]

∫︂
Dϕ>k e−F0[ϕ

>
k ]e−FI [ϕ

>
k ,ϕ

<
k ], (3.38)

which involves integrating out all the short wavelength modes. This can be rewritten

in a condensed notation as

e−FW [ϕ<k ] = e−F0[ϕ
<
k ]Z>

0

⟨︂
e−FI [ϕ

>
k ,ϕ

<
k ]
⟩︂
>
, (3.39)
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where ⟨·⟩> is a Gaussian integration over the short wavelength modes ϕ>k (see ap-

pendix A). We can pick a normalization of our path integrals such that ⟨1⟩> = Z>
0 = 1.

We can further write the effective free energy as

FW [ϕ<k ] = F0[ϕ
<]− log

⟨︂
e−FI [ϕ

>
k ,ϕ

<
k ]
⟩︂
>
. (3.40)

This can be expanded in powers of FI

log
⟨︂
e−FI [ϕ

>
k ,ϕ

<
k ]
⟩︂
>
= log

⟨︃
1− FI +

1

2
F 2
I + . . .

⟩︃
>

(3.41)

=

⟨︃
1− FI +

1

2
F 2
I + . . .

⟩︃
>

+
1

2
⟨1− FI⟩2> (3.42)

= −⟨FI⟩> +
1

2

[︁
⟨F 2

I ⟩ − ⟨FI⟩2
]︁
+ . . . . (3.43)

We can expand our Wilson effective free energy in orders of λ as

FW [ϕ<k ] = F0[ϕ
<] + ⟨FI⟩> − 1

2

[︁
⟨F 2

I ⟩ − ⟨FI⟩2
]︁
+O(λ3) (3.44)

We will compute FW up to the first order in λ. We must first solve for ⟨FI⟩>, where

FI is expanded into 16 terms in terms of ϕ<k and ϕ>k and their complex conjugates.

We can now apply properties of Gaussian integrals seen in appendix A to get the

following identities for our calculations:

⟨ϕk1ϕ∗
k2
⟩ = G−1(ϕ = 0, k1 − k2) =

(2π)d

k21 + α
δ(k1 − k2), (3.45)

⟨ϕ∗
k2
⟩ = ⟨ϕk2⟩ = ⟨ϕ∗

k1
ϕk2ϕk3⟩ = 0, (3.46)

⟨ϕ∗
k3
ϕ∗
k4
ϕk2ϕk1⟩ = ⟨ϕk1ϕ∗

k3
⟩⟨ϕk2ϕ∗

k4
⟩+ ⟨ϕk2ϕ∗

k3
⟩⟨ϕk3ϕ∗

k4
⟩. (3.47)

When we expand ⟨FI⟩>in terms of the long and short wavelength modes, we will see

only certain terms contribute. Firstly, there must be an even number of ϕ> in a term

for it to be non-zero. Secondly, terms with four short wavelength modes, such as

ϕ∗>
k3
ϕ∗>
k4
ϕ>k2ϕ

>
k1

will contribute an overall constant that we can ignore for our purposes.

Terms with 4 ϕ∗<
k3
ϕ∗<
k4
ϕ<k2ϕ

<
k1
, trivially come out of the integral and reproduce the

original quartic term. The terms we are interested in, therefore, must have only two

47



short and two long wavelength fields, with only one of the short wavelength fields

complex conjugated. For example, terms like ϕ∗<
k4
ϕ∗>
k3
ϕ>k2ϕ

<
k1
. There are 4 such terms,

and they contribute equally. Our correction to the effective energy is given by

4
λ

2

∫︂ Λ/b

0

ddk1d
dk2d

dk3d
dk4

(2π)3d
δ(k1 + k2 − k3 − k4)ϕ

∗<
k4
⟨ϕ∗>

k3
ϕ>k2⟩>ϕ

<
k1

(3.48)

= 4
λ

2

∫︂ Λ/b

0

ddk1d
dk2d

dk3d
dk4

(2π)2d
δ(k1 + k2 − k3 − k4)δ(k3 − k2)ϕ

∗<
k4
ϕ<k1

k22 + α
(3.49)

= 4
λ

2

∫︂ Λ/b

0

ddk1d
dk2d

dk3
(2π)2d

δ(k3 − k2)ϕ
∗<
k1+k2−k3ϕ

<
k1

k22 + α
(3.50)

= 4
λ

2

∫︂ Λ/b

0

ddk1d
dk2

(2π)2d
ϕ∗<
k1
ϕ<k1

k22 + α
, (3.51)

which can be written as

= 4
λ

2(2π)3d

∫︂ Λ/b

0

ddkϕ∗<
k ϕ<k

∫︂ Λ

Λ/b

ddq
1

q2 + α
, (3.52)

which only corrects the second-order term (mass term, appendix on path integrals).

We can write FW as

FW [ϕ<k ] =

∫︂ Λ/b

0

ddk

(2π)d

(︃
k2 + α + 4

λ

2(2π)d

∫︂ Λ

Λ/b

ddq
1

q2 + α

)︃
ϕ<k ϕ

∗<
k (3.53)

+
λ

2

∫︂ Λ/b

0

ddk1d
dk2d

dk3d
dk4

(2π)3d
δ(k1 + k2 − k3 − k4)ϕ

∗<
k4
ϕ∗<
k3
ϕ<k2ϕ

<
k1
. (3.54)

We can rescale the momenta with k → bk and the field with ϕ< → k
4−d
2 ϕ<, which

makes

FW [ϕ<k ] =

∫︂ Λ

0

bd
ddk

(2π)d

(︃
b2k2 + α + 4

λ

2(2π)d
kd−2

∫︂ Λ

Λ/b

ddq
1

q2 + α

)︃
b4−dϕ<k ϕ

∗<
k (3.55)

+
λ

2
b4−d

∫︂ Λ

0

ddk1d
dk2d

dk3d
dk4

(2π)3d
δ(k1 + k2 − k3 − k4)ϕ

∗<
k4
ϕ∗<
k3
ϕ<k2ϕ

<
k1
. (3.56)

We can write the renormalized coupling constants

α(b) = b2
(︃
α + 4

λ

2(2π)d

∫︂ Λ

Λ/b

ddq
1

q2 + α

)︃
= b2 (α + 4αλ ln b) (3.57)

λ(b) = b4−dλ. (3.58)
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To get corrections to λ, we must calculate FW up to order λ2. We must calculate

⟨F 2
I ⟩ which can be expressed as

⟨F 2
I ⟩ =

λ2

2

∫︂ Λ

0

∏︁
i dpidqi
(2π)6d

δ(q1+q2−q3−q4)δ(k1+k2−k3−k4)⟨ϕ∗
q4
ϕ∗
q3
ϕq2ϕq1ϕ

∗
k4
ϕ∗
k3
ϕk2ϕk1⟩>

(3.59)

We can calculate the expectation value using Wick’s theorem. Corrections to λ(b)

will be of the form

λ2

2

∫︂ Λ

0

∏︁
i dpidqi
(2π)6d

δ(q1 + q2 − q3 − q4)δ(k1 + k2 − k3 − k4)ϕ
∗<
q4
ϕ∗<
q3
ϕ<q2ϕ

<
q1
⟨ϕ∗>

k4
ϕ∗>
k3
ϕ>k2ϕ

>
k1
⟩>

(3.60)

Wick’s theorem allows us to decompose our expectation values as

⟨ϕ∗>
k4
ϕ∗>
k3
ϕ>k2ϕ

>
k1
⟩> = ⟨ϕ∗>

k4
ϕ>k1⟩>⟨ϕ

∗>
k3
ϕ>k2⟩>+ ⟨ϕ∗>

k4
ϕ>k2⟩>⟨ϕ

∗>
k3
ϕ>k1⟩>+ ⟨ϕ>k4ϕ

>
k2
⟩>⟨ϕ∗>

k3
ϕ∗>
k1
⟩>.

(3.61)

= ⟨ϕ∗>
k4
ϕ>k1⟩>⟨ϕ

∗>
k3
ϕ>k2⟩> + ⟨ϕ∗>

k4
ϕ>k2⟩>⟨ϕ

∗>
k3
ϕ>k1⟩> (3.62)

which gives us

−λ
2

2

∫︂ Λ/b

0

∏︁
i dpidqi
(2π)6d

δ(q1 + q2 − q3 − q4)δ(k1 + k2 − k3 − k4)ϕ
∗<
q4
ϕ∗<
q3
ϕ<q2ϕ

<
q1
×[︃

16

∫︂ Λ

Λ/b

dq⃗

(2π)d
1

(q2 + α)

1

((q + k2 − k4)2 + α)
+ 4

∫︂ Λ

Λ/b

dq⃗

(2π)d
1

(q2 + α)

1

((q − k1 − k2)2 + α)

]︃
.

The two integrals have the same value, which simplifies our equation to

−10λ2
∫︂ Λ/b

0

∏︁
i dpidqi
(2π)6d

ϕ∗<
q4
ϕ∗<
q3
ϕ<q2ϕ

<
q1
δ(q1 + q2 − q3 − q4)× (3.63)

δ(k1 + k2 − k3 − k4)

[︃∫︂ Λ

Λ/b

dq⃗

(2π)d
1

(q2 + α)2

]︃
. (3.64)

(3.65)

Then, we have

λ̃(b) = b4−d
(︂
λ̃− 10λ̃

2
ln b
)︂
. (3.66)

Let t = ln b, where t = 0 corresponds to the UV regime while t = ∞ is identified with

the IR. Our flow becomes

d

dt
α̃ = 2α̃− 4α̃λ̃ (3.67)
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d

dt
λ̃ = ϵλ̃− 10λ̃

2
(3.68)

when ln b → ∞, the Wilson-Fisher fixed-point is α̃⋆ = 0 and λ̃⋆ = ϵ
10
. The 2×2

stability matrix at the fixed point

Mij =
∂Bgi

∂gj

⃓⃓⃓⃓
g=g⋆

, (3.69)

with g = (α̃, λ̃) reads

M =

⎛⎝ 2− 2ϵ
5

0

0 −ϵ

⎞⎠ . (3.70)

The eigenvalues of the stability matrix inform us about the stability of a fixed point.

Negative eigenvalues correspond to stable directions that result in RG flow heading

towards the fixed point, whereas positive eigenvalues correspond to unstable direc-

tions, which will result in the flow moving away from the fixed point. M has a

positive eigenvalue in the direction of α and a negative eigenvalue associated with

λ. This fixed point is stable in the quartic couplings, therefore it corresponds to a

second-order phase transition.

3.3 Renormalization Group of 3He

3.3.1 3D System

Understanding the RG analysis in a 3D system is crucial because 3He is experimen-

tally well-understood in that context, allowing us to determine the effectiveness and

limitations of RG. We are interested in predicting what phase is favoured during the

phase transition and perhaps what kind of phase transition it is. In 3D, we let our
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order parameter be the full 3× 3 matrix. We use the invariants

I1 =
⃓⃓
tr
(︁
AAT

)︁⃓⃓2
(3.71)

I2 =
⃓⃓
tr
(︁
AA†)︁⃓⃓2 (3.72)

I3 = tr
(︁
AATA∗A†)︁ (3.73)

I4 = tr
(︁
AA†AA†)︁ (3.74)

I5 = tr
(︁
AA†A∗AT

)︁
. (3.75)

We assume the Einstein summation convention, so repeated indices are summed over.

We define our free energy as

F [A] =

∫︂ Λ

d3q
{︁
U(A) + (γ − 1)qiA

∗
µiqjAµj + qiA

∗
µjqiAµj

}︁
, (3.76)

where Λ ∼
√
T is our UV cutoff since it is the smallest fluctuation scale of the

Goldstone modes. The effective potential is defined as

U(A) = αtrAA† +
∑︂
n

βnIn(A). (3.77)

each component of A is complex, so we define it in terms of two real parameters

Aµi =
1√
2

(︁
ψµi + ψ̄µi

)︁
+

i√
2

(︁
ψµi − ψ̄µi

)︁
. (3.78)

Using ψ and ψ̄ simplifies our analysis by making the propagator a diagonal matrix

when γ = 1. We are interested in calculating the renormalized coupling constants,

which will have the form

β̄a(b) = bϵ
(︂
β̄a(0) + δβ̄a(b)

)︂
, (3.79)

β̄a(0) is the mean-field value of β̄a and δβ̄a(b) is the one-loop correction. The scaling

dimension of β̄a is ϵ = 4− d = 1. The mean-field values of the coupling constants are

βββ̄MF = −β1,MF

(︂
−1, 2, 2, 2,−2

)︂
(3.80)

γMF = 3. (3.81)

51



We begin by relating our coupling constants to derivatives of the free energy following

eq. (3.28)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̄1

β̄2

β̄3

β̄4

β̄5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1

16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0

0 2 0 2 0

1 −2 −1 0 0

0 0 1 −2 1

1 −2 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂4

∂ψ2
1,1∂ψ̄

2
1,1

∂4

∂ψ1,1∂ψ2,2∂ψ̄1,1∂ψ̄2,2

∂4

∂ψ2
1,3∂ψ̄

2
1,1

∂4

∂ψ2
2,3∂ψ̄

2
1,1

∂4

∂ψ2
1,1∂ψ̄

2
2,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
A=0

U(A), (3.82)

where A depends implicitly on ψ and ψ̄. We can write eq. (3.82) in a more compact

form

βββ̄ = TP̂
⃓⃓⃓
A=0

U(A). (3.83)

Then

δβββ̄(b) = TP̂
⃓⃓⃓
A=0

δU(b). (3.84)

We are interested in the phase transition from the Fermi liquid state to any superfluid

phase, so we can set α = 0, which corresponds to T = Tc. After substituting in the

trace-log formula, we get

δβββ̄(b) =
1

2
TP̂
⃓⃓⃓
A=0

∫︂ ′

q

tr lnG−1(A, q). (3.85)

Using eq. (3.31), we can evaluate the corrections analytically. The corrections take

the form

δβ̄a(b) =
Ca(γ,βββ̄)
γ2

∫︂ ′

q

1

q4
, (3.86)

where each Ca(γ,βββ̄) is a quadratic form in our quartic coupling constants βββ̄. The

renormalized coupling constants become

β̄a(b) = bϵ
(︂
β̄a(0) +

Ca(γ,βββ̄)
γ2

∫︂ ′

q

1

q4

)︂
. (3.87)

The flow equation becomes

dβ̄a(b)

d ln b
=ϵbϵ

(︄
βa(0) +

Ca(γ,βββ̄)
γ2

∫︂ ′

q

1

q4

)︄
+ bϵ

Ca(γ,βββ̄)
γ2

d

d ln b

∫︂ ′

q

1

q4
(3.88)

=ϵβ̄a(b) + bϵ
Ca(γ,βββ̄)
γ2

(︂ bϵ
Λϵ

)︂
. (3.89)
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The evaluation of
∫︁ ′

q
1
q4

is shown in appendix C.1. We impose self-consistency on our

coupling constants such that bϵβa → βa(b), which leads to

dβ̄a(b)

d ln b
=ϵβ̄a(b) +

Ca
(︂
γ,βββ̄(b)

)︂
γ2

1

Λϵ
(3.90)

We can also absorb Λ by rescaling

βa(b) =
β̄a(b)

Λϵ
. (3.91)

The quadratic nature of Ca causes Λ to be cancelled from both sides of the flow

equation. Now that we have renormalized everything, we can drop the b-dependence

in βa(b) and call it βa, and refer to Ca(γ,βββ(b)) as Ca(γ) for simplicity. Let t = ln b,

and our flow equations take the form

dβa
dt

= ϵβa +
1

γ2
Ca(γ). (3.92)

The flow will start at t = 0 and end at tf = ln bf , where

tf = ln(bf ) ∼ ln (ΛL)exp = ln
1 mm

30 nm
≈ 10. (3.93)

The length scale of the system in ref. [6] is Lx ∼ Ly, which is 1 mm. The UV cut-off

is given by Λ ∼ λ−1
T , where λT thermal fluctuation wavelength

√︂
2πℏ2
mkBTc

, and m is the

mass of a 3He atom. For the 3D case, when ϵ = 1, we compute the values of Ca(γ)

using eq. (3.31), and get

C1(γ) =− 6β2
1

(︁
2γ2 + 1

)︁
− 1

15
β1
(︁
10 (β4 + 3β5)

(︁
5γ2 + 1

)︁
+ β2(γ(133γ + 34) + 13)

+3β3(γ(41γ − 2) + 21))− 1

60
β5
(︁
β3
(︁
366γ2 + 68γ + 46

)︁
+ 12β2(γ − 1)2 + 3 (2β4 + 3β5) (γ − 1)2

)︁
, (3.94)

C2(γ) =
1

60

[︂
−4β2

3

(︁
17γ2 + γ + 12

)︁
− 2β5

(︁
20β2

(︁
15γ2 + γ + 8

)︁
+ β3(γ(163γ − 66) + 23)

+β4(γ(73γ − 6) + 53))− 16β2
1(7γ(γ + 3) + 2)− 4β1 (10β2(γ(14γ − 5) + 3)

+(γ − 1) (3β3(γ − 1) + β4(23γ + 7) + β5(53γ + 37)))− 4β2
2(γ(229γ + 42) + 119)

−12β2
4(γ(16γ + 3) + 11) + β2

5(7− γ(13γ + 114))− 16β2β3(γ(37γ − 4) + 27)

− 4β4 (β2(γ(233γ − 16) + 143) + β3(γ(51γ − 32) + 41))
]︂
, (3.95)
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C3(γ) =
1

60

[︂
−423β2

3γ
2 − 152β2

4γ
2 − 634β3β4γ

2 + 186β2
3γ + 124β2

4γ − 552β3β4γ.

−2β2
1(γ − 1)(61γ − 1)− β2

2(γ − 1)(91γ + 29)− β2
5(γ − 1)(143γ + 37)

+2β5 (β3(17− γ(33γ + 104))− 8β4(γ − 1)(11γ + 4))− 123β2
3 + 28β2

4

−4β1 (5β2(γ − 1)(5γ − 2)− 2β3(γ − 1)(29γ + 1) + β4(7− γ(58γ + 69)))

− β5(γ(43γ + 69) + 8) + 2β2 (−6β3(γ(41γ + 23)− 4)− 14β3β4

−(γ − 1) (β4(121γ + 59) + 5β5(17γ + 7)))
]︂
, (3.96)

C4(γ) =
1

60

[︂
−283β2

3γ
2 − 452β2

4γ
2 − 474β3β4γ

2 − 314β2
3γ − 176β2

4γ + 248β3β4γ

−2β2
1(γ − 1)(61γ − 1)− β2

2(γ − 1)(91γ + 29)− β2
5(γ(373γ + 14) + 213)

+2β5 (β3(γ − 1)(7γ + 23)− 4β4(7γ(γ + 3) + 2)) + 2β2 (−2β3(γ − 1)(68γ + 37)

−3β4(γ(77γ + 46)− 3) + 15β5(γ − 1)(3γ + 1)) + 4β1 (15β2(γ − 1)γ − 4β3(7γ(γ + 3) + 2)

−β4(γ − 1)(8γ − 23) + β5(31(1− 3γ)γ − 58))− 3β2
3 − 92β2

4 − 14β3β4

]︂
,

(3.97)

C5(γ) =
1

30

[︂
−4β1

(︁
10β4

(︁
5γ2 + 1

)︁
+ 3β2(γ − 1)2 + β3(γ(43γ + 14) + 3)

)︁
−3β2

5(γ(43γ + 14) + 3)− 2β5 (4β2(γ(34γ + 7) + 4) + β3(γ(53γ − 6) + 13)

+β4(γ(213γ + 14) + 73))
]︂
. (3.98)

Computing these corrections while leaving γ fully general is a major result. The flow

of γ can be found by calculating the second loop order corrections. The following

results are taken from [26]. We have

dγ

dt
=

1

3
(1− γ)

(︂ 1

γ2
+ 3
)︂
fγ, (3.99)

where fγ > 0 is a positive definite function given by

fγ = 12β2
1 + 2β1β2 + 8β1β3 + 2β1β4 + 6β1β5 +

13

2
β2
2 + 4β2β3

+ 7β2β4 + 5β2β5 + 8β2
3 + 4β3β4 +

13

2
β2
4 + 5β4β5 +

15

2
β2
5 . (3.100)
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Because fγ is positive definite, the flow of γ has an infrared-stable fixed point at

γ⋆ = 1 independently of the rest of the couplings. Near the beginning of the flow,

when b ∼ 1, the value of γ ̸= 1, and this plays an important role in destroying the

fixed ratios in the couplings given in eq. (3.80). At γ = 1, the equations simplify

greatly to the well-known equations by Jones, Love and Moore in ref. [26]. At γ = 1,

our corrections Ca(1) are given by

(a)

(b) (c)

Figure 3.1: RG flow in 3D. a) RG flow of the five quartic couplings βa(b), where b
represents the typical wavelength of fluctuations according to λ ∼ bλT , the thermal
wavelength. The flow is numerically determined and plotted against t = ln b. The
fixed ratios of the quartic couplings change significantly. The flow becomes unphysical
at the red dotted line where the free energy of the B phase diverges. b) The flow of
CAB, which is positive when the A phase is favoured and negative when the B-phase
is favoured, is plotted against t. The B phase is shown to be favoured in the valid
region of our RG. c) The RG flow of γ with respect to t. γ decays rapidly to its fixed
point at γ = 1.
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C1(1) = −2
[︂
9β2

1 + 6β1β2 + 6β1β3 + 2β1β4 + 6β1β5 + 4β3β5

]︂
, (3.101)

C2(1) = −2
[︂
4β2

1 + 13β2
2 + β2

3 + 3β2
4 + β2

5 + 4β1β2 + 8β2β3

+ 2β3β4 + 2β4β5 + 2β3β5 + 12β2β4 + 8β2β5

]︂
, (3.102)

C3(1) = −2
[︂
3β2

3 + 4β1β4 + 4β1β5 + 6β2β3 + 10β3β4 + 2β3β5

]︂
, (3.103)

C4(1) = −2
[︂
5β2

3 + 6β2
4 + 5β2

5 + 4β1β3 + 4β1β5 + 6β2β4 + 2β4β3 + 2β4β5

]︂
, (3.104)

C5(1) = −2
[︂
3β2

5 + 4β1β3 + 4β1β4 + 6β2β5 + 2β3β5 + 10β4β5

]︂
, (3.105)

where γ has been set to 1 [26], and ϵ = 4− d. The fixed point occurs when

(β1⋆, β2⋆, β3⋆, β4⋆, β5⋆, γ⋆) =
(︂
0,

ϵ

26
, 0, 0, 0, 1

)︂
. (3.106)

We can substitute the values of the coupling constants at the Wilson-Fisher fixed

point into the free energy and see that the A phase and B phase are energetically

degenerate at this fixed point. The stability matrix at the Wilson-Fisher fixed point

is

M3D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
13
ϵ 0 0 0 0

− 4
13
ϵ −ϵ − 8

13
ϵ −12

13
ϵ − 8

13
ϵ

0 0 7
13
ϵ 0 0

0 0 0 7
13
ϵ 0

0 0 0 0 7
13
ϵ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.107)

and its eigenvalues are
(︂
−ϵ, 7

13
ϵ, 7

13
ϵ, 7

13
ϵ, 7

13
ϵ
)︂
. The fixed point is attractive in the

β2 direction, and repulsive otherwise. At face value, our result suggests that the

superfluid transition in 3He is not second-order. Additionally, it was determined that

the Wilson–Fischer fixed point is unstable for the 3×2 matrix order parameter as well

[26]. This is in stark contrast to the clear second-order phase transition in experiment

[6, 27]. There are several potential explanations for this. Fluctuation-induced first-

order transitions often correspond to an unstable RG fixed point, and such transitions

at low enough resolution can appear to be second-order. However, the resolution of

the experiments excludes such a possibility.
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A more favourable explanation is that this is a shortcoming of perturbative RG

at the one-loop level. The Wilson–Fisher fixed point is computed as a correction to

the Gaussian fixed point through expansion in the small parameter ϵ ≪ 1. Though

this fixed point is unstable for ϵ = 1, it is still ‘less unstable’ than the Gaussian fixed

point with eigenvalues (ϵ, ϵ, ϵ, ϵ, ϵ). Even the positive eigenvalues are reduced from ϵ

to 7
13
ϵ, so it is plausible that the second or third order corrections could give us a fully

stable fixed point. However, computing these higher-order corrections for 5 coupling

constants and 18 real fields would be very challenging. Even computing these first-

order corrections without the techniques outlined in ref. [20] would be extremely

cumbersome. Additionally, stable fixed points are usually found for simpler theories

with only one coupling constant, such as the Wilson–Fisher fixed point of classical

O(N)-models. In contrast, many tensor field theories with multiple coupling constants

do not have stable fixed points in the perturbative RG, see Refs.[19, 26, 28–34]. Our

free energy, has five quartic couplings, so it is unreasonable to expect a single one-

loop calculation to change the sign of five eigenvalues to yield an infrared-stable fixed

point.

We conclude that we can not extract useful information from the fixed points

because of the limitations of one-loop RG. We can, on the other hand, numerically

solve the RG flow and determine what phase is favoured in the phase transition.

We solved the RG flow equations in the 3D-limit, and the results are plotted in

fig. 3.1. The five quartic coupling constants βa(t) deviate significantly from the fixed

ratios of the mean-field initial conditions in eq. (3.80). This lifts the accidental ener-

getic degeneracy of the A-phase and B-phase. The coefficients βa(t) in the early stages

t ∼ 0 indicate that CAB becomes increasingly negative, so the B-phase continues to

be favoured over the A-phase.

The coupling constants βa quickly take on unphysical values that cause the free

energy to become unbounded from below. We detect this when the A-phase or B-

phase free energies become singular. Because of the complex nature of the free energy,

57



numerous conditions in the form of a system of inequalities must be upheld for the

free energy to be bounded below. For example

β12345 > 0. (3.108)

Finding a complete list of these inequalities is challenging and beyond the scope of

this thesis. The inequality that appears to be violated is

β5 > β1. (3.109)

These divergences could result from cutting off our free energy at the fourth degree.

Our perturbative RG equations can no longer be applied in this unphysical regime.

For all physical values of the RG, the B-phase is energetically favoured over the A-

phase.

3.3.2 2D System

We can extend our analysis of RG in 3D systems to 2D systems and gain an under-

standing of 3He under complete confinement when the order parameter’s last column

vanishes completely. The order parameter is given by

A⊥ =

⎛⎜⎜⎜⎝
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

⎞⎟⎟⎟⎠ . (3.110)

The free energy is

F⊥[A⊥] =

∫︂
d2q⊥

{︁
U(A⊥) + (γ − 1)qiA

∗
⊥µiqjA⊥µj + qiA

∗
⊥µjqiA⊥µj

}︁
, (3.111)

where q⊥ = (qx, qy). The effective potential is defined as

U(A⊥) = αtrA⊥A
†
⊥ +

∑︂
n

βnIn(A⊥). (3.112)

Each component of A⊥ is complex, so we define it in terms of two real parameters

A⊥µi =
1√
2

(︁
ψµi + ψ̄µi

)︁
+

i√
2

(︁
ψµi − ψ̄µi

)︁
. (3.113)
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Now we will calculate the RG flow in 2D, setting ϵ = 2. We are interested in calcu-

lating the renormalized coupling constants, which will have the form

βa(b) = bϵ
(︂
βa(0) + δβa(b)

)︂
, (3.114)

βa(0) are the mean-field values in the 2D case, which have the same ratios as the 3D

case [25]. δβa(b) is the one-loop correction. The mean-field values are

βββMF = β2,MF

(︂
−1, 2, 2, 2,−2

)︂
, (3.115)

γMF = 3 (3.116)

We begin by relating our coupling constants to derivatives of the free energy following

eq. (3.28)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

β2

β3

β4

β5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 −3 0 0

0 3 3 0 0

1 −3 3 −3 0

0 0 −6 3 3

1 −3 3 0 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂4

∂ψ4
1,1

∂4

∂2ψ1,2∂2ψ2,1

∂4

∂ψ2
3,1∂ψ̄

2
2,2

∂4

∂ψ2
1,2∂ψ̄

2
1,1

∂4

∂ψ2
1,1∂ψ̄

2
3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
A⊥=0

U(A⊥), (3.117)

The derivation of the flow equations is identical to the 3D case. Our flow equations

are of the form

dβi
dt

= ϵβi −
1

γ2
C̃i(γ), (3.118)

where ϵ = 2 in the 2D case. We compute the values of C̃i using eq. (3.31), and get

C̃1(γ) =
1

4

[︂
24β2

1

(︁
γ2 + 1

)︁
+ 4β1

(︁
2 (β4 + 3β5)

(︁
γ2 + 1

)︁
+ 3β2(γ + 1)2 + β3(γ(5γ − 2) + 5)

)︁
+ β5

(︁
4β2(γ − 1)2 + (2β4 + 3β5) (γ − 1)2 + 2β3(γ(5γ + 6) + 5)

)︁]︂
, (3.119)

C̃2(γ) =
1

4

[︂
4β1

(︁
4β2

(︁
γ2 + 1

)︁
+ (β3 + β4 + β5) (γ − 1)2

)︁
+ 2

(︁
6β2

4

(︁
γ2 + 1

)︁
+β2

2(γ(17γ + 6) + 17) + 2β2 (β3(γ(9γ − 2) + 9) + β4(γ(11γ − 2) + 11))

+β2
3(γ(3γ − 2) + 3) + 8β3β4((γ − 1)γ + 1)

)︁
+ 2β5

(︁
12β2

(︁
γ2 + 1

)︁
+(β3 + β4) (γ(5γ − 2) + 5)) + 4β2

1(γ(γ + 6) + 1) + β2
5(γ(γ + 6) + 1)

]︂
,

(3.120)
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C̃3(γ) =
1

4

[︂
β2
4(γ − 1)2 + β2

5(γ − 1)2 + 2
(︁
2β2

1 + β2
2

)︁
(γ − 1)2 + 2β2

3(γ(7γ − 6) + 7)

+4β3
(︁
β1(γ − 1)2 + 3β2(γ + 1)2

)︁
+ 4β4

(︁
β2(γ − 1)2 + β1(γ(γ + 6) + 1)

+4β3(γ(γ + 3) + 1)) + 2β5
(︁
β4(γ − 1)2 + (2β1 + β3) (γ(γ + 6) + 1)

)︁]︂
,

(3.121)

C̃4(γ) =
1

4

[︂(︁
2β2

1 + β2
2

)︁
(γ − 1)2 + 2β2

3(γ(3γ + 14) + 3) + 4β2
4(γ(3γ + 4) + 3)

+β2
5(γ(17γ − 2) + 17) + 4β3

(︁
β2(γ − 1)2 + β1(γ(γ + 6) + 1)

)︁
+ 4β4

(︁
β1(γ − 1)2

+3β2(γ + 1)2 + 4β3((γ − 1)γ + 1)
)︁
+ 2β5

(︁
β3(γ − 1)2 + 2β1(γ(5γ − 2) + 5)

+β4(γ(γ + 6) + 1))
]︂
, (3.122)

C̃5(γ) =
1

2

[︂
4β1

(︁
2β4

(︁
γ2 + 1

)︁
+ β2(γ − 1)2 + β3(γ + 1)2

)︁
+ β5

(︁
8β2

(︁
γ2 + γ + 1

)︁
+3β5(γ + 1)2 + 2β3(γ(3γ − 2) + 3) + 2β4(γ(7γ + 2) + 7)

)︁]︂
. (3.123)

The flow of γ is identical to the 3D case given in eq. (3.99) and (3.102).

We solved the RG flow equations in the 2D-limit, and the results are plotted

in fig. 3.2. The five quartic coupling constants βa(t) deviate significantly from the

fixed ratios of the mean-field initial conditions in eq. (3.80). This lifts the accidental

energetic degeneracy of the A-phase and planar phase. The coefficients βa(t) in the

early stages t ∼ 0 indicate the CAP becomes increasingly negative, so the planar phase

is favoured over the A-phase.

We notice that the decay of γ(t) to γ⋆ = 1 is much slower than the 3D case.

This allows for a greater effect on the ratios of the coupling constants, and this

implies a larger physical effect. Fluctuations often are much more pronounced in

lower dimensional systems.

The coupling constants βa quickly take on unphysical values that cause the free

energy to become unbounded below. We detect this when the A-phase’s or the planar

phase’s free energies become singular. Similarly to the 3D case, the inequality that

appears to be violated is

β5 > β1. (3.124)
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(a)

(b) (c)

Figure 3.2: RG flow in 2D. a) RG flow of the five quartic couplings βa(b), where the
flow is numerically determined and plotted against t = ln b. The fixed ratios of the
quartic couplings change significantly but only differ from the 3D flow quantitatively.
The flow becomes unphysical at the red dotted line where the free energy of the planar
phase diverges. b) The flow of CAP , which is positive when the A phase is favoured
and negative when the planar phase is favoured, is plotted against t. The planar
phase is shown to be favoured in the valid region of our RG. c) The RG flow of γ
with respect to t. γ decays slowly to its fixed point at γ = 1, inc comparison to 3D.

Our perturbative RG equations can no longer be applied in this unphysical regime.

For all physical values of the RG, the planar phase is energetically favoured over the

A-phase.

3.3.3 Quasi-2D System

When 3He uniaxial nanoscale confinement to confinement length Lz, which is much

smaller than the length scale of the system, the 3D rotational symmetry of the system
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reduces to only a 2D symmetry, and the symmetry of the system reduces to

SO(3)S × SO(2)L × U(1). (3.125)

This implies that the order parameter in this case will be the 3× 2 order parameter.

We are effectively considering the 2D case while allowing fluctuations of the order pa-

rameter in the z-direction. This is nontrivial because there is a mismatch between the

number of spatial dimensions, which is three, and the number of angular momentum

indices, which is two. The confinement also leads to the quantization of the confined

momentum qz with

qz =
π

Lz
n, (3.126)

We assume A(x⊥, z) is periodic in z, which signifies specular reflection at the boundary

walls. qx and qy also take on discrete values proportional π
Lx

and π
Ly
, but the spectrum

is sufficiently tightly spaced to be approximated as a continuum. We replace the

integral over qz with a sum

∑︂
qz

=
1

Lz

∞∑︂
n=1

. (3.127)

The quasi-2D free energy is

F [A⊥] =
1

Lz

∞∑︂
n=1

∫︂
d2q⊥

{︄∑︂
a

βaIa(A⊥) + (γ − 1)qiA
∗
⊥µiqjA⊥µj+

(︂
α + q2

)︂
trA⊥A

†
⊥

}︄
,

(3.128)

where q = (qx, qy, qz) = (q⊥ cos θ, q⊥ sin θ, nπ
L
), and q⊥ = (qx, qy). The qz-dependence

is entirely held within q2 = q2⊥ + q2z .

The quasi-2D free energy interpolates between the 2D and 3D free energies. When

Lz = 0 we will recover the 2D free energy, and when Lz → ∞, this will recover the

3D free energy with the last column of the order parameter set to zero. The value of

Lz is on the order of 1000 nm in Ref. [6], so

(LzΛ)exp ∼ 30. (3.129)
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We will investigate LzΛ ∈ [10, 50] to cover all confinement ranges of the experiment.

In the quasi-2D case, the value of α during the phase transition should offset the

non-zero kinetic energy and make the denominator of the propagator singular to

incorporate Goldstone modes. We have

α = −π
2

L2
z

(3.130)

during the phase transition, and so q2z + α = ∆q2z with

∆q2z =
π2

L2
z

(n2 − 1). (3.131)

The modes with n > 1 are massive, but they still can lead to a quantitative effect in

the RG equations. The momentum shell integral in this case will be∫︂ ′

q

(. . . ) :=
1

Lz

∞∑︂
n=1

∫︂ Λ

Λ/b

d2q⊥(. . . ) =
1

Lz

∞∑︂
n=1

∫︂ Λ

Λ/b

dq⊥

∫︂ 2π

0

dθ
[︂
q⊥(. . . )

]︂
. (3.132)

Using the same derivatives as the 2D case in eq. (3.117), we can apply eq. (3.31) and

get the corrections to be of the form

δβ̄a = −
∫︂ ′

q⊥

C̃a(γ)q4⊥ + C̃a(1)[(γ + 1)q2⊥∆q
2
z +∆q4z ]

(q2⊥ +∆q2z)
2(γq2⊥ +∆q2z)

2
. (3.133)

During the RG procedure, we rescale the length scale which results in the rescaling

of Lz so we define a new reduced confinement length

L̃z =
ΛLz
b
. (3.134)

Applying eq. (C.2) this simplifies to

δβ̄a = − 1

Lz

(︂Λ
b

)︂2 ∞∑︂
n=1

C̃a(γ)
(︂

Λ
b

)︂4
+ C̃a(1)

[︂
(γ + 1)

(︂
Λ
b

)︂2
∆q2z +∆q4z

]︂
(︂(︂

Λ
b

)︂2
+∆q2z

)︂2(︂
γ
(︂

Λ
b

)︂2
+∆q2z

)︂2 . (3.135)

We can substitute eq. (3.134) into this equation and simplify it to

− Λ

ΛLz

(︂Λ
b

)︂2 ∞∑︂
n=1

C̃a(γ)
(︂

Λ
b

)︂4
+ C̃a(1)

[︂
(γ + 1)

(︂
Λ
b

)︂2
π2Λ2

b2L̃
2
z

(n2 − 1) +
(︂
π2Λ2

b2L̃
2
z

(n2 − 1)
)︂2]︂

(︂(︂
Λ
b

)︂2
+ π2Λ2

b2L̃
2
z

(n2 − 1)
)︂2(︂

γ
(︂

Λ
b

)︂2
+ π2Λ2

b2L̃
2
z

(n2 − 1)
)︂2 .

(3.136)

= − 1

ΛLz

(︂b2
Λ

)︂ ∞∑︂
n=1

C̃a(γ) + C̃a(1)
[︂
(γ + 1) π

2

L̃
2
z

(n2 − 1) + π4

L̃
4
z

(n2 − 1)2
]︂

(︂
1 + π2

L̃
2
z

(n2 − 1)
)︂2(︂

γ + π2

L̃
2
z

(n2 − 1)
)︂2 . (3.137)
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Now, we can apply similar steps as eq. (3.90) and (3.92), and obtain that the renor-

malized couplings obey the following flow equation

dβa
d ln b

= ϵβa −Ha(γ, L̃z), (3.138)

where

Ha(γ, L̃z) =
1

ΛLz

∞∑︂
n=1

C̃a(γ) + C̃a(1)
[︂
(γ + 1) π

2

L̃
2
z

(n2 − 1) + π4

L̃
4
z

(n2 − 1)2
]︂

(︂
1 + π2

L̃
2
z

(n2 − 1)
)︂2(︂

γ + π2

L̃
2
z

(n2 − 1)
)︂2 (3.139)

The summand expression decays as 1
n4 , so summing this to some large N will get us

a sufficiently accurate answer. The expressions for C̃a(1) are given by

C̃1(1) = 4(3β2
1 + 3β1β2 + 2β1β3 + β1β4 + 3β1β5 + 2β3β5) (3.140)

C̃2(1) = 2(4β2
1 + 4β1β2 + 10β2

2 + 8β2β3 + 10β2β4 + β2
5

+ 6β2β5 + β2
3 + 2β3β4 + 2β3β5 + 3β2

4 + 2β4β5) (3.141)

C̃3(1) = 4(2β1β4 + 2β1β5 + 3β2β3 + β2
3 + 5β3β4 + β3β5) (3.142)

C̃4(1) = 2(4β1β3 + 4β1β5 + 6β2β4 + 5β2
3 + 2β3β4 + 5β2

4 + 2β4β5 + 4β2
5) (3.143)

C̃5(1) = 2(4β1β3 + 4β1β4 + 6β2β5 + 2β3β5 + 8β4β5 + 3β2
5). (3.144)

We can analytically perform the summation over n when γ = 1. We have

Ha(1, L̃z) =
Ca(1)
L̃z

∞∑︂
n=1

1(︂
1 + π

L̃z
(n2 − 1)

)︂ (3.145)

= Ca(1)
L̃
3

z

4

−2 + η coth(η) + η2/ sinh2(η)

η4
> 0, (3.146)

with η =

√︂
L̃
2

z − π2. Here we assumed η > 0 as applies to the physical system.

We solved the RG flow equations in the quasi-2D limit, and the results are plotted

in fig. 3.3. The five quartic coupling constants βa(t) deviate significantly from the

fixed ratios of the mean-field initial conditions in eq. (3.80). This lifts the accidental

energetic degeneracy of the A-phase and planar phase just as it did in the 2D limit.

The coefficients βa(t) in the early stages t ∼ 0 indicate the CAP becomes increasingly
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(a)

(b) (c)

Figure 3.3: RG flow in the quasi-2D limit. a) RG flow of the five quartic couplings
βa(b), where the flow is numerically determined and plotted against t = ln b for
LzΛ = 30. The summation limit N was increased until 10, after which the flow
did not have observable changes from increasing N. The fixed ratios of the quartic
couplings change significantly but only differ from the 2D and 3D flow quantitatively.
The flow becomes unphysical at the red dotted line where the free energy of the planar
phase diverges. b) The flow of CAP , which is positive when the A phase is favoured
and negative when the planar phase is favoured, is plotted against t. The planar
phase is shown to be favoured in the valid region of our RG, similar to the 2D case.
c) The RG flow of γ with respect to t. γ decays slower than the 3D case but faster
than the 2D case.

negative, so the planar phase is favoured over the A-phase. We find that the planar

phase is favoured in all confinement scales within the context of the experiment.

We notice that the decay of γ(t) to γ⋆ = 1 is much slower than the 3D case, but

faster than the 2D case. This allows for a greater effect on the ratios of the coupling
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Figure 3.4: Quasi-2D RG flow for various levels of confinement. We plotted the
RG flow of CAP (t) for various levels of confinement against t = ln b. The summation
limit N was increased until 10, after which the flow did not have observable changes
from increasing N. The degeneracy between the planar phase and A-phase is broken
for all confinement lengths. The planar phase is favoured for all levels of confinement
considered.

constants, and this implies a larger physical effect. However, this is not enough to

cause the A-phase to be favoured.

The coupling constants βa quickly take on unphysical values that cause the free

energy to become unbounded below. We detect this when the A-phase or planar

phase free energies become singular. Similarly to the 3D case, the inequality that

appears to be violated is

β5 > β1. (3.147)

Our perturbative RG equations can no longer be applied in this unphysical regime.

For all physical values of the RG, the planar phase is energetically favoured over the

A-phase, in contradiction with the experiment. Perturbative RG at the one-loop level

is insufficient to explain the emergence of A-phase at low pressures under confinement.

The next step is to move on from perturbative RG to more powerful methods.
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Chapter 4

Functional Renormalization Group

4.1 Introduction

Perturbative RG only allowed us to compute corrections up to the first order in the

quartic couplings, and it did not reveal the A-phase. The Functional Renormalization

Group (FRG) allows us to compute our partition function exactly using the Wetterich

equation [35]. Although solving the Wetterich equation exactly is very difficult, with

the appropriate approximations, FRG allows us to include corrections far beyond first-

order, including non-perturbative corrections. However, FRG’s promise is countered

by the fact that we cannot control or predict which corrections will be included

in our FRG equations. FRG has successfully accurately modelled numerous phase

transitions [36–38].

The ideas used in FRG are very similar to the ones in perturbative RG despite

their very different use of notation. We have listed some relationships between FRG

and perturbative RG in table 4.1. The central goal of FRG is to solve for the effec-

tive action Γ[ϕ], which encodes all the physics relevant to the system. Just like in

perturbative RG, we cannot solve for Γ directly, so we derive a system of differential

equations that depend on an IR momentum cutoff parameter k. The parameter k has

a very similar function to b in perturbative RG, but the momentum shell integration

is replaced by the use of a regulator Rk(q). Rather than using the trace-log formula,

we use the far superior Wetterich equation to solve for Γk. Our ansatz gives the initial
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Perturbative RG FRG

Feff [ϕ] Γ[ϕ]

t = ln b t = ln Λ
k

g(b) gk∫︁ ′
q

Rk(q)

G(ϕ, q) Gk(ϕ, q)

trace-log formula Wetterich equation

Table 4.1: Relation between concepts and notation from perturbative RG and FRG.

value for Γk at k = Λ, which in our case will be the GL free energy F [ϕ]. The final

value of the flow is given by Γk=0 = Γ, which contains our corrections.

We want to mathematically define the notation we have introduced in FRG using

powerful mathematical machinery borrowed from quantum field theory. We start by

defining our partition function over a real scalar field ϕ, for simplicity, with a source

J

Z[J ] =

∫︂
Dϕ exp

(︂
−F [ϕ] +

∫︂
r

Jϕ
)︂

(4.1)

=

∫︂
Dϕ exp

(︂
−
∫︂
r

1

2
q2ϕϕ+

∫︂
r

U(ϕ) +

∫︂
r

Jϕ
)︂
. (4.2)

Let W [J ] = logZ[J ], then we can find correlation functions as follows (see ap-

pendix A)

G
(n)
{ij}[{rj}; J ] =

δnW [J ]

δJi1(r1) . . . δJin(rn)

⃓⃓⃓⃓
J=0

= ⟨Tϕi1(r1) . . . ϕi1(rn)⟩, (4.3)

where T is time ordering. Then we have

δW [J ]

δϕi(r)

⃓⃓⃓⃓
J=0

= ⟨Tϕi(r)⟩ =
∫︂
Dϕe−F [ϕ]ϕi(r) = φi(r). (4.4)

To get the effective action from this, we use a Legendre transformation, whereW and

Γ are conjugate

Γ[φ] = −W [J ] +

∫︂
r

Jϕ. (4.5)
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Now we add a correction to our free energy that includes our regulator

∆Fk =

∫︂
ddq

(2π)d
ϕ(q)Rk(q)ϕ(q). (4.6)

Here, Rk(q) acts as a smooth UV and IR cutoff. Some common examples of regulators

include q2

exp(q2/k2)−1
and (k2 − q2)θ(k2 − q2). Then, we define our regularized partition

function as

Zk(J) =

∫︂
Dϕ exp

(︂
−F [ϕ]−∆Fk +

∫︂
r

Jϕ
)︂
. (4.7)

A regulator must satisfy

Rk=Λ(q) ∼ Λ2 (4.8)

Rk=0(q) = 0. (4.9)

The initial value of the regulator should be very large and have little contribution

of order e−k
2
. When k → 0, then our regulator should vanish and leave the original

partition function. Rk grows like k2 for low momentum and decays exponentially for

high momenta with characteristic width k. The regulator can be reduced to the form

Rk(q) = q2r
(︂ q2
k2

)︂
. (4.10)

For the regulator to properly regularize UV and IR divergences, it must satisfy two

conditions. For the IR regularization at

r(y) ∼ 1

y
as y → 0, (4.11)

and for the UV regularization

r(y) ∼ 1

yd/2
as y → ∞. (4.12)

This gives ultraviolet and infrared conditions. The first limit is to suppress low

momentum modes, such as Goldstone modes, as the propagator acquires additional

mass at low momentum below k. However, renormalization is required to deal with
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the cut-off. The second limit guarantees it decays exponentially fast to avoid UV

divergences. Now, using our regulator, we will define a regularized effective action.

Let Wk = logZk, we can now write our k-dependent effective action as

Γk[φ] = −Wk[J ] +

∫︂
r

J · ϕ−∆Fk. (4.13)

Our goal is to solve Γk, with initial conditions at k = Λ and ending at k = 0. The

Wetterich equation is the exact flow equation for Γk and is given by

∂tΓk =
1

2
Tr

[︄(︂
Γ
(2)
k +Rk

)︂−1

∂tRk

]︄
(4.14)

=
1

2

∫︂
ddq

(2π)d
tr
[︂
Gk(ϕ,q)∂tRk(q)

]︂
. (4.15)

Here, Γ
(2)
k is the second functional derivative, or Hessian, of Γk. Tr is a trace over

matrix indices and spatial degrees of freedom via integration. t is the RG time and is

given by log Λ
k
, and it runs from t = 0 to t = ∞. The regularized propagator Gk(ϕ,q)

is given by

Gk(ϕ,q) =
(︂
Γ(2)[ϕ] +Rk(q)

)︂−1

. (4.16)

The flow of Γk does depends on our choice of regulator, but all regulator-dependent

flows converge to the same quantum effective action when k → 0. Solving the full

Wetterich equation is intractable for any system, so we must truncate the effective

action at a finite number of terms. However, this destroys the regulator-independence

of our effective action. Despite this, choosing tried and tested regulators will generally

provide accurate results.

4.2 U(1) theory

We now do a simple calculation using FRG, similar to what we did for the Wilsonian

Renormalization Group. We first make an ansatz for the effective free energy being
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the same as our GL free energy

Γk[ϕ] =

∫︂
ddx

(︃
|∇ϕ(x)|2 + αk|ϕ(x)|2 +

λk
2
|ϕ(x)|4

)︃
(4.17)

.
=

∫︂
ddx

(︁
|∇ϕ(x)|2 + Uk(ϕ(x))

)︁
, (4.18)

where Uk is the effective potential. The Hessian of Γk is given by its second functional

derivatives which is given by

Γ
(2)
k [ϕ](x,y) =

δ2Γk[ϕ]

δΦ(x)δΦ(y)
=

⎛⎝ Γ
(2)
ϕϕ Γ

(2)
ϕϕ∗

Γ
(2)
ϕ∗ϕ Γ

(2)
ϕ∗ϕ∗

⎞⎠
(x,y)

(4.19)

=

⎛⎝ λkϕ
∗2 −∇2

x + αk + 2λk|ϕ|2

−∇2
x + αk + 2λk|ϕ|2 λkϕ

2

⎞⎠ δ(d)(x− y), (4.20)

where Φ = (ϕ, ϕ∗). Our regulator will have the form

Rk(x,y) =

⎛⎝ 0 Rk(−∇2
x)

Rk(−∇2
x) 0

⎞⎠ δ(d)(x− y). (4.21)

The infrared limit corresponds to k → 0. The flow of Γk in the infrared limit is

defined by the Wetteretich equation

∂tΓk[ϕ] = −k d
dk

Γk[ϕ] =
1

2
Tr

[︃
Rk
̇
(︂
Γ
(2)
k [ϕ] +Rk

)︂−1
]︃
, (4.22)

where t = ln
(︁
Λ
k

)︁
, which flows to t = ∞ in the infrared limit. Λ is the UV cut-off. We

assume our field is constant with ϕ(x) = ϕ ∈ R. The flow equation for our effective

potential becomes

∂tUk(ϕ) =
1

2
tr

∫︂
ddq

(2π)d
Rk
̇ (q)Gk(q, ϕ), (4.23)

with

Rk(q) =

⎛⎝ 0 Rk(q)

Rk(q) 0

⎞⎠ , (4.24)

and the inverse propagator is defined as

Gk(q, ϕ)
−1 = Γ

(2)
k [ϕ] +Rk(q) (4.25)

=

⎛⎝ λkϕ
2 q2 +Rk(q) + αk + 2λkϕ

2

q2 +Rk(q) + αk + 2λkϕ
2 λkϕ

2

⎞⎠ , (4.26)
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which lets us determine the propagator as

Gk(q, ϕ) =

⎛⎝ λkϕ
2

λ2kϕ
4−[q2+Rk(q)+αk+2λkϕ2]

2

−[q2+Rk(q)+αk+2λkϕ
2]

λ2kϕ
4−[q2+Rk(q)+αk+2λkϕ2]

2

−[q2+Rk(q)+αk+2λkϕ
2]

λ2kϕ
4−[q2+Rk(q)+αk+2λkϕ2]

2
λkϕ

2

λ2kϕ
4−[q2+Rk(q)+αk+2λkϕ2]

2

⎞⎠ . (4.27)

We can now choose a regulator

Rk(q) = (k2 − q2)θ(k2 − q2), (4.28)

Rk
̇ (q) = −2k2θ(k2 − q2). (4.29)

This is the simplest regulator and often simplifies to the trace-log formula corrections.

We can now start calculating the flow in the effective potential as

∂tUk(ϕ) =
1

2

∫︂
ddq

(2π)d
Rk
̇ −2 [q2 +Rk(q) + αk + 2λkϕ

2]

λ2kϕ
4 − [q2 +Rk(q) + αk + 2λkϕ2]2

(4.30)

= −2k2
∫︂

ddq

(2π)d
θ(k2 − q2)

k2 + αk + 2λkϕ
2

[k2 + αk + 2λkϕ2]2 − λ2kϕ
4

(4.31)

= −2
Ωd

d(2π)d
kd+2 k2 + αk + 2λkϕ

2

[k2 + αk + 2λkϕ2]2 − λ2kϕ
4
. (4.32)

From the flow equation of the effective potential we can determine the flow equations

of the coupling constants.

αk = U ′′
k (0), (4.33)

λk =
1

6
U

(4)
k (0). (4.34)

The flow equations for the coupling constants are given by

∂tαk = U̇
′′
k(0) (4.35)

∂tλk =
1

6
U̇

(4)

k (0). (4.36)

We evaluate these

∂tαk = −2
Ωd

d(2π)d
kd+2 ∂2ϕ

⃓⃓
ϕ=0

k2 + αk + 2λkϕ
2

[k2 + αk + 2λkϕ2]2 − λ2kϕ
4

(4.37)

= 4
Ωd

d(2π)d
kd+2 λk

(k2 + αk)
2 , (4.38)
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∂tλk = −1

3

Ωd

d(2π)d
kd+2 ∂4ϕ

⃓⃓
ϕ=0

k2 + αk + 2λkϕ
2

[k2 + αk + 2λkϕ2]2 − λ2kϕ
4

(4.39)

= −10

3

Ωd

d(2π)d
kd+2 λ2k

(k2 + αk)
3 . (4.40)

We can define new dimensionless coupling constants as

α̃k =
αk
k2
, (4.41)

λ̃k =
λk
k4−d

(4.42)

This transforms as

∂tα̃k = −k∂k
αk
k2

= 2α̃k +
1

k2
αk̇ (4.43)

∂tλ̃k = −k∂k
λk
k4−d

= (4− d)λ̃k +
1

k4−d
λk̇. (4.44)

Let us define ϵ = 4− d. Our dimensionless flow equations are

∂tα̃k = 2α̃k + 4
Ωd

d(2π)d
λ̃k

(1 + α̃k)
2 (4.45)

∂tλ̃k = ϵλ̃k −
10

3

Ωd

d(2π)d
λ̃
2

k

(1 + α̃k)
3 . (4.46)

The Wilson Fisher fixed point is given by

α̃⋆ = − 1

11
(4.47)

λ̃⋆ = 2.225 (4.48)

4.3 Functional Renormalization of 3He

4.3.1 3D System

We calculate the FRG flow equations in the 3D case using an ansatz that is our free

energy

ΓΛ[A] = F [A] =

∫︂
d3q

{︁
U(A) + (γ − 1)qiA

∗
µiqjAµj + qiA

∗
µjqiAµj

}︁
, (4.49)
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and the effective potential is defined as

U(A) = αtrAA† +
∑︂
n

βnIn(A). (4.50)

A has 9 complex components, which can be written in terms of two real components.

We will consider the free energy the same as our effective action at the UV scale ΓΛ.

To diagonalize the propagator, we choose the following basis

Aµi =
1√
2

(︁
ψµi + ψ̄µi

)︁
+

i√
2

(︁
ψµi − ψ̄µi

)︁
. (4.51)

Let Ψ = (ψ1,1, ψ1,2, ψ1,3, ψ2,1 . . . ψ3,3) and Ψ̄ = (ψ̄1,1, ψ̄1,2, ψ̄1,3, ψ̄2,1 . . . ψ̄3,3). Now we

calculate the hessian of Γ[Ψ, Ψ̄]

Γ(2)[Ψ, Ψ̄] =
δ2Γ[Ψ, Ψ̄]

δΨ(q)δΨ(q′)
= δ(q − q′)

⎛⎜⎜⎝
δ2Γ

δψ2

δ2Γ

δψ̄δψ
δ2Γ

δψδψ̄

δ2Γ

δψ̄
2

⎞⎟⎟⎠. (4.52)

This will be a rank 4 tensor since the order parameter is rank 2. As we calculated in

Sec. 2.3

Γ
(2)
µi,νj[Ψ, Ψ̄] = δµν

(︂
(q2 + α)δij + (γ − 1)qiqj

)︂⎛⎝ 1 0

0 1

⎞⎠+ Vµi,νj(Ψ, Ψ̄). (4.53)

We can easily calculate the inverse of this to get the propagator. Let q2 =

q2x + q2y + q2z . Let qî = qi
q
, with

∑︁
i qî

2 = 1. In spherical coordinates this is

q̂i =
(︂
cos θ sinϕ, sin θ sinϕ, cosϕ

)︂
. We can now choose the following regulator

Rk(q) = δµν(k
2 − q2)θ(k2 − q2)

(︂
δij + (γ − 1)q̂iq̂j

)︂⎛⎝ 1 0

0 1

⎞⎠ , (4.54)

where θ(x) is the Heaviside step function given by

θ(x) =

{︄
1 x ≥ 0

0 x < 0
. (4.55)

We proceed by deriving the regulator and getting

Ṙk(q) = k
d

dk
Rk = δµν

(︂
2k2δij + 2(γ − 1)k2q̂iq̂j

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.56)
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We can write the inverse propagator when the order parameter is zero as

G−1
k (0, q) = Γ(2)[0] +Rk = δµν

(︂
(k2 + α)δij + (γ − 1)[k2q̂iq̂j]

)︂⎛⎝ 1 0

0 1

⎞⎠ (4.57)

The zero field propagator is given by

Gk(0, q) = G0 = δµν

(︄
δij

(k2 + α)
−

(γ − 1)k2q̂iq̂j
(k2 + α)(γk2 + α)

)︄⎛⎝ 1 0

0 1

⎞⎠ (4.58)

Since Γk only has k-dependence in its effective potential, we will calculate the flow of

Uk.

∂tUk =
1

2

∫︂
ddq tr

[︄(︁
Γ(2)[Ψ, Ψ̄] +Rk(q)

)︁−1 Ṙk(q)

]︄
, (4.59)

where t = ln
(︁
Λ
k

)︁
, where Λ and k are the ultraviolet and infrared cutoffs, respectively.

Similarly to Chapter 3, we can relate the coupling constants to the effective po-

tential by taking a linear combination of derivatives as follows⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

β2

β3

β4

β5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1

16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0

0 2 0 2 0

1 −2 −1 0 0

0 0 1 −2 1

1 −2 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂4

∂ψ2
1,1∂ψ̄

2
1,1

∂4

∂ψ1,1∂ψ2,2∂ψ̄1,1∂ψ̄2,2

∂4

∂ψ2
1,3∂ψ̄

2
1,1

∂4

∂ψ2
2,3∂ψ̄

2
1,1

∂4

∂ψ2
1,1∂ψ̄

2
2,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
A=0

U(A), (4.60)

Additionally, we have the following relation for α

∂2

∂ψ2
1,1

⃓⃓⃓
A=0

U(A) = α. (4.61)

Unlike with RG, we will calculate the flow equations for α as well for greater accu-

racy in our result. We can summarize the relationship between U and the coupling

constants with the relation

P̂ gU(A) = g. (4.62)

From eq. (4.59), we can derive the flow equation for our coupling constants

∂tgk = ∂t

(︂
P̂ gUk

)︂
=

1

2

∫︂
ddq

(2π)d
trṘkP̂ gGk(Ψ, Ψ̄, q). (4.63)
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From appendix B we can analytically find derivatives of the propagator. For a second

derivative, the formula is given by

∂2

∂ψµ,i∂ψν,j

⃓⃓⃓
A=0

Gk(Ψ, Ψ̄, q) = −G0
∂2V

∂ψµ,i∂ψν,j
G0 (4.64)

The fourth-derivative case is given by

∂4

∂ψµ,i∂ψν,j∂ψ̄ρ,k∂ψ̄σ,l

⃓⃓⃓
A=0

Gk(Ψ, Ψ̄, q) = G0
∂2V

∂ψµ,i∂ψν,j
G0

∂2V
∂ψ̄ρ,k∂ψ̄σ,l

G0

+G0
∂2V

∂ψµ,i∂ψ̄ρ,k
G0

∂2V
∂ψν,j∂ψ̄σ,l

G0 + G0
∂2V

∂ψµ,i∂ψ̄σ,l
G0

∂2V
∂ψ̄ρ,k∂ψν,j

G0. (4.65)

We have selected Rk such that all instances of q cancel out from G′ and only angular

dependence is left. Our flow equation simplifies to a radial integral over the solid

angle Ω below

∂tgk =
kd

2d(2π)d

∫︂
dΩ tr

[︂
ṘkP̂ iGk(Ψ, Ψ̄, q)

]︂
. (4.66)

We perform the substitution αk → k2α̃k and βik → k2β̃ik to arrive at our renormalized

flow equation. From simple dimensional analysis, we can see that the dimensionless

equations will have a prefactor k4−d for the quartic couplings and k2 for α. We now

solve for the flow equations in the dimensionless coupling constants

∂tβik =∂t

(︂
k4−dβ̃ik

)︂
= k4−dB̃βi (4.67)

=⇒ k4−d∂tβ̃ik − (4− d)k4−dβ̃ik = k4−dB̃βi (4.68)

=⇒ ∂tβ̃ik = (4− d)β̃ik + B̃βi , (4.69)

where B̃βi depends only on the renormalized couplings. For a coupling constant g, we

define the functions B̃g as the dimensionless version of Bg. We determine Bβi have

the form

Bβi =
−2Ci(1)

[︂
3(α− 1)2 + (γ − 1)(α− 1)(α− 5) + 2(γ − 1)2

]︂
+ α(γ − 1)2Di

3π2(α− 1)2(α− γ)2
,

(4.70)

where Ci(1) are defined in eqs. (3.101) to (3.105).
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The values of Di are given by

D1 = 8β1 (β3 − 4β2) + 2β5 (4β2 − 8β3 + 2β4 + 3β5) (4.71)

D2 = 2
[︂
−16β2

1 + 4 (β3 + β4 + β5) β1 − 8β2
2 + β2

3 − β2
4

− 4β2
5 + 8β3β4 + 4β2 (β3 + β4) + 2β3β5 + 2β4β5

]︂
(4.72)

D3 = 2
[︂
4β2

1 + 4 (β3 − 4 (β4 + β5)) β1 + 2β2
2 + 6β2

3 + 4β2
4

+ β2
5 − 32β3β4 + 4β2 (β4 − 4β3)− 8β3β5 + 2β4β5

]︂
(4.73)

D4 = 2
[︂
4β2

1 + 4 (−4β3 + β4 + β5) β1 + 2β2
2 − 19β2

3 − 11β2
4

+ β2
5 + 8β3β4 + 4β2 (β3 − 4β4) + 2β3β5 − 8β4β5

]︂
(4.74)

D5 = − 2
[︂
β1 (12β3 − 8β2) + β5 (12β2 − 4β3 + 6β4 + 9β5)

]︂
(4.75)

The flow equation for the dimensionless α is given by

∂tα̃k = 2α̃k + B̃α, (4.76)

We computed Bα to be

Bα =
2 (α2(γ + 2)− 6αγ + 2γ2 + γ) (β1 + 5β2 + 2β3 + 3β4 + 2β5)

3π2(α− 1)2(α− γ)2
. (4.77)

We also apply the flow equations of γ from [26], and we have listed the equations in

Appendix C. The initial conditions for our coupling constants are

βi(0) = −β1,MF

(︂
−1, 2, 2, 2,−2

)︂
(4.78)

α(0) = 0 (4.79)

γ(0) = 3; (4.80)

We numerically integrated the FRG flow equations in the 3D limit, and the results are

plotted in fig. 4.1. The five quartic coupling constants βa(t) deviate significantly from

the fixed ratios of the mean-field initial conditions in eq. (4.103). The coefficients

βa(t) in the early stages t ∼ 0 indicate the CAB remains negative, despite briefly

flowing towards positive CAB, so the B-phase is favoured over the A-phase. However,
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(a) (b)

(c) (d)

Figure 4.1: FRG flow in the 3D limit. a) FRG flow of the five quartic couplings
βa(t), where the flow is numerically determined and plotted against t = ln Λ

k
. The

fixed ratios of the quartic couplings change significantly, and the flow is qualitatively
similar to the 3D RG flow. The flow becomes unphysical at the red dotted line because
the free energy of the planar phase diverges. b) The flow of CAB, which is positive
when the A phase is favoured and negative when the B phase is favoured, is plotted
against t. The B-phase is shown to be favoured in the valid region of our FRG, but
in comparison to the 3D RG flow of CAB, we find that the FRG reveals that there is
an initial tendency towards the A-phase. c) The RG flow of γ with respect to t. γ
decays quickly to γ = 1.d) The flow of α. α starts at the phase transition and flows to
the negative, indicating that the system transitioned into a symmetry-broken state.

this indicates that the higher-order corrections included are pushing the flow towards

the A-phase.

We notice that the decay of γ(t) to γ⋆ = 1 is quite rapid, but it is similar to the 3D

RG case. When γ = 1, the flow equations for the quartic couplings become identical.

Because γ is the primary driver for changing the fixed ratios between the quartic

couplings, its rapid decay leads to a smaller effect on the quartic couplings. α starts

at the phase transition with α = 0 and flows to the negative, indicating that the
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system transitioned into a symmetry-broken state. This indicates that the superfluid

phase transition occurs.

The coupling constants βa quickly take on unphysical values that cause the free

energy to become unbounded below. We detect this when the A-phase or B-phase

free energies become singular. The inequality that appears to be violated is

3β12 + β345 > 0, (4.81)

which leads to our effective potential becoming unbounded below. Our FRG flow

equations can no longer be applied in this unphysical regime. For all physical values

of the FRG, the B-phase is energetically favoured over the A-phase. This is consistent

with experiment [6].

4.3.2 2D System

We can extend our analysis of FRG to the 2D limit and gain an understanding of

3He under complete confinement when the order parameter’s last column vanishes

completely. The order parameter is given by

A⊥ =

⎛⎜⎜⎜⎝
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

⎞⎟⎟⎟⎠ . (4.82)

The free energy is

ΓΛ = F [A⊥] =

∫︂
d2q⊥

{︁
U(A⊥) + (γ − 1)qiA

∗
⊥µiqjA⊥µj + qiA

∗
⊥µjqiA⊥µj

}︁
, (4.83)

where q⊥ = (qx, qy). The effective potential is defined as

U(A⊥) = αtrA⊥A
†
⊥ +

∑︂
n

βnIn(A⊥). (4.84)

The propagator is defined similarly to the 3D case

Γ
(2)
µi,νj[Ψ, Ψ̄] = δµν

(︂
(q2⊥ + α)δij + (γ − 1)q⊥iq⊥j

)︂⎛⎝ 1 0

0 1

⎞⎠+ Vµi,νj(Ψ, Ψ̄). (4.85)
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Here we define q2⊥ = q2x + q2y . The other main difference between the 3D and 2D

propagators is that i and j run over two spatial coordinates rather than three. Our

regulator is defined as

Rk(q⊥) = δµν(k
2 − q2⊥)θ(k

2 − q2⊥)
(︂
δij + (γ − 1)q̂⊥iq̂⊥j

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.86)

In polar coordinates, we have q̂⊥i =
(︂
cos θ, sin θ

)︂
. We proceed by deriving the

regulator and getting

Ṙk(q) = k
d

dk
Rk(q) = Rk(q) = δµν

(︂
2k2δij + 2(γ − 1)k2q̂iq̂j

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.87)

Now, we can write the inverse propagator when the order parameter is zero as

G−1
k (0, q) = Γ(2)[0] +Rk = δµν

(︂
(k2 + α)δij + (γ − 1)[k2q̂⊥iq̂⊥j]

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.88)

The propagator at zero order parameter is given by

Gk(0, q) = G0 = δµν

(︄
δij

(k2 + α)
−

(γ − 1)k2q̂⊥iq̂⊥j
(k2 + α)(γk2 + α)

)︄⎛⎝ 1 0

0 1

⎞⎠ . (4.89)

Now, we will solve the Wetterich Equation using our ansatz. is given by

∂tUk =
1

2

∫︂
ddq⊥tr

[︄(︁
Γ(2)[Ψ, Ψ̄] +Rk(q)

)︁−1 Ṙk(q)

]︄
(4.90)

In 2D, we can relate the coupling constant to the effective potential with the

following linear combinations of derivatives⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

β2

β3

β4

β5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 −3 0 0

0 3 3 0 0

1 −3 3 −3 0

0 0 −6 3 3

1 −3 3 0 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂4

∂ψ4
1,1

∂4

∂2ψ1,2∂2ψ2,1

∂4

∂ψ2
3,1∂ψ̄

2
2,2

∂4

∂ψ2
1,2∂ψ̄

2
1,1

∂4

∂ψ2
1,1∂ψ̄

2
3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
A⊥=0

U(A⊥), (4.91)

and

1

2

∂2U(A⊥)

∂ψ2
1,1

⃓⃓⃓
A⊥=0

= 0. (4.92)
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The rest of the derivation is identical to the 3D case. The flow of our dimensionless

quartic couplings are given by

∂tβik = ∂t

(︂
P̂ iUk

)︂
=

1

2

∫︂
ddq

(2π)d
trṘkP̂ iGk(Ψ, Ψ̄, q). (4.93)

We find the flow equations take the form

∂tβ̃ik = (4− d)β̃ik − C̃βi (4.94)

∂tα̃k = 2α̃k − C̃α. (4.95)

For a coupling constant g, we define the functions C̃g as the dimensionless version of

Cg.

Cβi =
C̃i(1)

[︂
(α− 1)2 + 1

2
(α− 3)(α− 1)(γ − 1) + 1

2
(γ − 1)2

]︂
+ α(γ − 1)2D̃i

(α− 1)2(α− γ)2
, (4.96)

where C̃i(1) are defined in eqs. (3.140) to (3.144). The flow equation for α can be

determined using eq. (4.64), and the beta function is given by

Cα =
(2β1 + 7β2 + 4β3 + 5β4 + 3β5) (α

2(γ + 1)− 4αγ + γ(γ + 1))

π(1− α)2(γ − α)2
(4.97)

The values of D̃i are listed below

D̃1 = 3β2
5 + 4β2β5 − 6β3β5 + 2β4β5 − 12β1β2 + 4β1β3 (4.98)

D̃2 =
[︂
−12β2

1 + 4β3β1 + 4β4β1 + 4β5β1 − 6β2
2 + 2β2

3 − 3β2
5

+ 4β2β3 + 4β2β4 + 8β3β4 + 2β3β5 + 2β4β5

]︂
(4.99)

D̃3 =
[︂
4β2

1 + 4β3β1 − 12β4β1 − 12β5β1 + 2β2
2 + 6β2

3 + 4β2
4

+ β2
5 − 12β2β3 + 4β2β4 − 24β3β4 − 6β3β5 + 2β4β5

]︂
(4.100)

D̃4 =
[︂
4β2

1 − 12β3β1 + 4β4β1 + 4β5β1 + 2β2
2 − 14β2

3 − 8β2
4

+ β2
5 + 4β2β3 − 12β2β4 + 8β3β4 + 2β3β5 − 6β4β5

]︂
(4.101)

D̃5 = − 6β2
5 − 8β2β5 + 4β3β5 − 4β4β5 + 8β1β2 − 8β1β3. (4.102)
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We also apply the flow equations of γ from [26], and we have listed the equations in

Appendix C. The initial conditions for our coupling constants are

βi(0) = −β1,MF

(︂
−1, 2, 2, 2,−2

)︂
(4.103)

α(0) = 0 (4.104)

γ(0) = 3; (4.105)

We numerically integrated the FRG flow equations in the 2D-limit, and the results are

plotted in fig. 4.2. The five quartic coupling constants βa(t) deviate significantly from

the fixed ratios of the mean-field initial conditions in eq. (4.103). The coefficients βa(t)

in the early stages t ∼ 0 indicate the CAP becomes negative, breaking the degeneracy

between the planar phase and A-phase, and favouring the planar phase. We expected

to see the A-phase dominate as theoretically shown in Ref. [25]. The flow diverges

quickly at t ∼ 0.05 compared to the RG flows in Chapter 3, and the 3D FRG flows.

This means we have taken into account fewer fluctuations, and we do not capture the

effects of the Goldstone modes to the same extent. This may be why we fail to see

the A-phase emerge in our flow.

We notice that the decay of γ(t) to γ⋆ = 1 is quite rapid, and it is similar to the

3D FRG case. α starts at the phase transition with α = 0 and flows to the negative,

indicating that the system transitioned into a symmetry-broken state. We expect to

see this since we want to see what phase is favoured after the transition.

The coupling constants βa quickly take on unphysical values that cause the free

energy to become unbounded below. We detect this when the A-phase or planar

phase free energies become singular. The inequality that appears to be violated is

2β12 + β345 > 0, (4.106)

which leads to our effective potential becoming unbounded below. Our FRG flow

equations can no longer be applied in this unphysical regime. For all physical values

of the FRG, the planar phase is energetically favoured over the A-phase.
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(a) (b)

(c) (d)

Figure 4.2: FRG flow in the 2D limit. a) FRG flow of the five quartic couplings
βa(t), where the flow is numerically determined and plotted against t = ln Λ

k
. The

fixed ratios of the quartic couplings change significantly, and the flow is qualitatively
similar to the 3D FRG flow. The flow becomes unphysical at the red dotted line
because the free energy of the planar phase diverges. The flow stops at t0̃.05, which
is much earlier than the 3D case. b) The flow of CAP , which is positive when the A
phase is favoured and negative when the planar phase is favoured, is plotted against t.
The degeneracy between the A-phase and the planar phase is broken, and the planar
phase is shown to be favoured in the valid region of our FRG. c) The RG flow of γ
with respect to t. γ decays quickly to γ = 1. d) The flow of α with respect to t. α
starts at the phase transition, with α = 0, and flows to the negative, indicating that
the system transitioned into a symmetry-broken state.

4.3.3 Quasi-2D System

We can extend our analysis of FRG to the quasi-2D limit. We quantize our confined

momentum

qz → kn =
nπ

Lz
, (4.107)

where Lz is the nanoscale confinement length. qx and qy also take on discrete val-

ues proportional π
Lx

and π
Ly
, but the spectrum is sufficiently tightly spaced to be
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approximated as a continuum. Unlike in the RG case, which used momentum shell

integration for all cases, our method for regulating our integrals will change in quasi-

2D. The order parameter A⊥ is the same as the 2D case, and our anstaz for the free

energy is given by the quasi-2D free energy

Γ[A⊥] = F [A⊥] =
1

Lz

∞∑︂
n=1

∫︂
d2q⊥

{︄∑︂
a

βaIa(A⊥) + (γ − 1)qiA
∗
⊥µiqjA⊥µj+

(︂
α + q2

)︂
trA⊥A

†
⊥

}︄
,

(4.108)

where q2 = q2⊥ + k2n. The propagator is defined similarly to the 2D case

Γ
(2)
µi,νj[Ψ, Ψ̄] = δµν

(︂
(q2⊥+k

2
n+α)δij+(γ−1)q⊥iq⊥j

)︂⎛⎝ 1 0

0 1

⎞⎠+Vµi,νj(Ψ, Ψ̄). (4.109)

Let us define our regulator as

Rk(q⊥) = δµν(k
2 − q2⊥ − k2n)θ(k

2 − q2⊥ − k2n)
(︂
δij + (γ − 1)q̂⊥iq̂⊥j

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.110)

In polar coordinates we have q̂⊥i =
(︂
cos θ, sin θ

)︂
. We proceed by deriving the regu-

lator and getting

Ṙk(q) = k
d

dk
Rk(q) = Rk(q) = 2k2δµν

(︂
δij + (γ − 1)q̂iq̂j

)︂⎛⎝ 1 0

0 1

⎞⎠ . (4.111)

Now, we can write the inverse propagator when the order parameter is zero as

G−1
k (0, q) = Γ(2)[0] +Rk = δµν

(︂
(k2 + α)δij + (γ − 1)[(k2 − k2n)q̂⊥iq̂⊥j]

)︂⎛⎝ 1 0

0 1

⎞⎠ .

(4.112)

The propagator at zero order parameter is given by

Gk(0, q) = G0 = δµν

(︄
δij

(k2 + α)
−

(γ − 1)(k2 − k2n)q̂⊥iq̂⊥j
(k2 + α)(γ(k2 − k2n) + k2n + α)

)︄⎛⎝ 1 0

0 1

⎞⎠ .

(4.113)

Now, we will solve the Wetterich Equation using our ansatz. This is given by

∂tUk =
1

2Lz

∑︂
kn

∫︂
d2q⊥tr

[︄(︁
Γ(2)[Ψ, Ψ̄] +Rk(q)

)︁−1 Ṙk(q)

]︄
. (4.114)
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Our flow equations become

∂tβik =
1

2Lz

k∑︂
kn=0

∫︂ √
k2−k2n

0

qdq

∫︂ 2π

0

dθ tr

[︄
P̂ iGkṘk(q)

]︄
. (4.115)

Since the regulator and the propagator don’t depend on the magnitude q, we can

write the sum as

∂tβik =
1

4Lz

⌊Lzk
π

⌋∑︂
n=0

(k2 − k2n)

∫︂ 2π

0

dθ tr

[︄
P̂ iGkṘk(q)

]︄
. (4.116)

Here, ⌊·⌋ is the floor function, which comes from the requirement that kn < k. We

have seen in fig. 4.2 that our flows survive for very small t ∼ 0.1. For small t we have⌊︂Lzk
π

⌋︂
=
⌊︂LzΛe−t

π

⌋︂
≈
⌊︂LzΛ
π

⌋︂
. (4.117)

We repeat the procedure from the previous section and derive the FRG flow equations

for our dimensionless coupling constants. We calculated in section 3.3.3 that the value

of LzΛ is roughly around 30 for 1000 nm confinement in ref. [6].

The flow of our dimensionless couplings is given by

∂tβ̃ik = (4− d)β̃ik +

⌊LzΛ
π

⌋∑︂
n=0

(1− k̃
2

n)H̃βi

16π(1− α̃k)3
(︂
α̃k − γ + (γ − 1)k̃

2

n

)︂3 (4.118)

∂tα̃k = 2α̃k +

⌊LzΛ
π

⌋∑︂
n=0

(1− k̃
2

n)H̃α

4π(1− α̃k)2
(︂
α̃k − γ + (γ − 1)k̃

2

n

)︂
2
, (4.119)

where k̃n = kn
k
. We use the same flow equation for γ as in perturbative RG flow. For

a coupling constant g, we define the functions H̃g as the dimensionless version of Hg.

These are given by

Hα =
(︂
2β1 + 7β2 + 4β3 + 5β4 + 3β5

)︂(︂
α2(γ + 1)− 4αγ + (γ + 1)γ

+ 2(γ − 1)(α− γ)k̃
2

n + (γ − 1)2k̃
4

n

)︂
(4.120)

Hβi = C̃i(1)
[︂
2(α− 1)3 + (γ − α)2(α + 3k̃

2

n − 4)(γ − 1) + (γ − 1)2(α− 1)(2α− γ − 1)

− 3(γ − 1)3(k̃
2

n − 1)
]︂
+ (α− 1)(k̃

2

n − 1)(γ − 1)2Ẽ i, (4.121)
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where C̃i(1) is defined in eqs. (3.140) to (3.144). We define Ei in the appendix, in

eqs. (C.14) to (C.17) and (C.19). Our flow will have the same initial conditions as

the 2D and 3D limits, given by eq. (4.103).

(a) (b)

(c) (d)

Figure 4.3: FRG flow in the Quasi-2D limit with 1000 nm confinement. a)
RG flow of the five quartic couplings βa(t), where the flow is integrated numerically
and plotted against t = ln Λ

k
for LzΛ = 30 with corresponds to roughly 1000 nm of

confinement. The fixed ratios of the quartic couplings change significantly but do
not differ qualitatively from the quasi-2D Rg flow and the 2D FRG flow. The flow
becomes unphysical at the red dotted line where the free energy of the planar phase
diverges. b) The flow of CAP , which is positive when the A phase is favoured and
negative when the planar phase is favoured, is plotted against t. The planar phase is
shown to be favoured in the valid region of our RG, similar to the 2D case. c) The
RG flow of γ with respect to t. γ decays slower than the 3D case but faster than the
2D case. d) The RG flow of α(t). α flows to increasingly negative values in the valid
regime of the RG flow.
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(a) (b)

Figure 4.4: FRG flow in the Quasi-2D limit with 500 nm confinement. a)
RG flow of the five quartic couplings βa(t), where the flow is determined numerically
and plotted against t = ln Λ

k
for LzΛ = 18.5, which corresponds to a confinement

of roughly 500 nm. The fixed ratios of the quartic couplings change significantly
and differ from the 2D and 3D FRG flow both quantitatively and qualitatively. The
flow becomes unphysical at the red dotted line where the free energy of the planar
phase diverges. b) The flow of CAP , which is positive when the A phase is favoured
and negative when the planar phase is favoured, is plotted against t. The A-phase
is shown to be favoured in the beginning of our RG flow, bu then the planar phase
becomes favoured towards the end of the valid region of our RG.

(a) (b)

Figure 4.5: FRG flow in the Quasi-2D limit with 200 nm confinement. a) a)
RG flow of the five quartic couplings βa(t), where the flow is determined numerically
and plotted against t = ln Λ

k
for LzΛ = 6, which corresponds to a confinement of

roughly 200 nm. The fixed ratios of the quartic couplings change significantly and
differ from the 2D and 3D FRG flow both quantitatively and qualitatively. The flow
becomes unphysical at the red dotted line where the free energy of the planar phase
diverges. b) The flow of CAP , which is positive when the A phase is favoured and
negative when the planar phase is favoured, is plotted against t. The A-phase is
shown to be favoured throughout the valid region of our RG.
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We integrated our FRG flow equations and plotted them at various levels of con-

finement in Figures 4.3 to 4.5. In all the cases, the flow of γ is qualitatively similar

to fig. 4.3c as they flow to γ⋆ = 1. γ decays quite slowly compared to the 3D and

2D limits, leading to a more pronounced deviation of the coupling constants. We

note that the quasi-2D FRG does not interpolate between 2D and 3D, because it

has a different regulator than them, leading to the quasi-2D FRG flow incorporating

different higher order corrections that may not be considered by both the 2D and the

3D case. The flow of α is similar in all three levels of confinement, as it becomes

negative, indicating a phase transition. All the flows break down when the effective

potential becomes unbounded below when the following inequality is violated

2β12 + β345 > 0, (4.122)

In Figure 4.3, we chose ΛLz = 30, which we approximated to correspond to 1000 nm

of confinement. Here, Λ is the inverse thermal wavelength. The five quartic coupling

constants βa(t) deviate significantly from the fixed ratios of the mean-field initial

conditions in eq. (4.103). The coefficients βa(t) in the early stages t ∼ 0 indicate

the CAP becomes negative, breaking the degeneracy between the planar phase and

A-phase, and favouring the planar phase. We expected to see the A-phase dominate

as theoretically shown in Ref. [25]. In Ref. [6], we see the A-phase at low pressure.

We observed a similar flow of CAP for all of the confinement lengths we tested above

ΛLz = 30, indicating that the planar phase is favoured for confinement lengths greater

LzΛ = 30.

In Figure 4.4, we chose ΛLz = 18.5, which we approximated to be roughly 500

nm of confinement. The five quartic coupling constants βa(t) deviate significantly

from the fixed ratios of the mean-field initial conditions in eq. (4.103) as well. The

coefficients βa(t) in the early stages t ∼ 0 indicate the CAP becomes positive, breaking

the degeneracy between the planar phase and A-phase, and favouring the A-phase

initially and then ultimately favouring the planar phase. We expected to see the
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A-phase dominate as theoretically shown in Ref. [25]. We observed a similar flow

of CAP , where the A-phase was initially favoured in the RG flow, for confinement

lengths within 15 ≲ ΛLz ≲ 25. This indicates that the planar phase is still favoured

for confinement lengths greater LzΛ > 15, but there is some evidence that the A-

phase may appear. Further incorporation of corrections is required to confirm this

result.

In Figure 4.4, we chose ΛLz = 6, approximating roughly 200 nm of confinement.

The five quartic coupling constants βa(t) deviate significantly from the fixed ratios

of the mean-field initial conditions in eq. (4.103) as well. The coefficients βa(t) in

the early stages t ∼ 0 indicate the CAP becomes positive, breaking the degeneracy

between the planar phase and A-phase, and the A-phase is favoured for the whole

flow. We observed a similar flow of CAP , where the A-phase was favoured in the

FRG flow, for confinement lengths within LzΛ ≲ 10. This indicates that for sufficient

confinement (LzΛ ≲ 10), there is a phase transition from the Fermi liquid phase to

the A-phase.

The corrections from FRG still give up the same unstable Wilson Fisher fixed point

as perturbative RG, indicating that our phase transition is a fluctuation-induced first-

order transition. This may have to do with our choice of a non-smooth regulator

Rk ∼ θ(k2 − q2), which provided an easier analysis, but a smooth regulator would

provide a more accurate RG flow [35]. Our results indicate that there is a fluctuation-

induced first-order phase transition to the planar phase for ΛLz > 30 and to the A-

phase for LzΛ ≲ 10, and the results are ambiguous in the intermediate confinement

scales.
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Chapter 5

Summary & Conclusion

In conclusion, we have theoretically investigated the effects of fluctuations in the or-

der parameter on the phase transition of 3He under uniaxial nanoscale confinement.

We introduced a reduced symmetry group for our confined system and used it to

derive a new quasi-two-dimensional free energy that relies on a 3 × 2 matrix order

parameter instead of the 3×3 matrix order parameter found in the three-dimensional

system. We explored candidate phases of the quasi-two-dimensional system by ex-

ploring possible subgroups of our reduced symmetry and searching for the phase with

the lowest weak-coupling and strong-coupling free energy. We found that the best

candidates are two energetically degenerate phases: the A-phase and the planar phase.

Beyond the mean-field approximation, we calculate the perturbative RG flow in

the 3D, 2D, and quasi 2D limits. We derive the perturbative flow equations for all

quartic coupling constants with non-trivial kinetic factor (for γ ̸= 1) and arbitrary

confinement (for 0 ≤ Lz < ∞). In the quasi 2D limit, weak-coupling perturbative

renormalization group predicts the planar phase to be energetically favoured, whereas

the strong-coupling corrections favour the A-phase observed in experiment. Because

of the lack of a stable fixed point, our results indicate that there is a fluctuation-

induced first-order transition to the planar phase. However, these results are ques-

tionable since perturbative RG could not accurately predict the second-order phase
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transition in the 3D system either.

There was a need to consider higher-order corrections, which led us to use the

Functional Renormalization Group. We derived FRG flow equations for the 3D, 2D

and quasi-2D cases. In the quasi-2D limit, we found that the A-phase was favoured

over the planar phase for certain levels of confinement. These confinement scales were

also confirmed to have a prominent Fermi liquid to A-phase transition in experiment.

Due to the unstable fixed point, we find that under confinement with LzΛ ≲ 10,

there is a fluctuation-induced first-order transition to the A-phase. More extensive

study needs to be done into the FRG to explore the stability of the fixed point under

higher-order corrections.
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Appendix A: Path Integrals

A.1 Gaussian Integrals

Path integrals, or functional integrals, are generalizations of integrals which integrate

over functionals rather than functions. The path integrals of interest are general-

izations of Gaussian integrals, which are the integrations of the exponentiation of

second-order polynomials. The simplest example is the one-dimensional case is∫︂
dx exp

(︁
−ax2 + bx

)︁
= e

b2

4a

√︃
π

a
, (A.1)

where a > 0. Over one complex dimension, our Gaussian integral is∫︂
d (z, z̄) exp (−zwz̄ + ūz + z̄v) = e

uv
w
π

w
, (A.2)

where Re(w) > 0. or more generally, we can have a Gaussian integral over RN of the

form ∫︂
dNv exp

(︁
−vTAv + b · vT

)︁
= (2π)N/2 (detA)−

1
2 exp

(︁
bTA−1b

)︁
, (A.3)

where detA > 0. We can have a Gaussian integral over CN of the form∫︂
dN
(︁
v, v†

)︁
exp

(︁
−v†Av + wv + v†w′)︁ = πN (detA)−1 exp

(︁
wA−1w′)︁. (A.4)

In Gaussian path integrals, we generalize this to an infinite continuum of variables∫︂
Dϕ exp

(︃
−1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y) +

∫︂
dx J(x)ϕ(x)

)︃
∝ det(A)−

1
2 exp

(︃
1

2

∫︂
dx

∫︂
dy J(x)A−1(x, y)J(y)

)︃
, (A.5)
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where

Dϕ =
∏︂
k∈R

dϕk, (A.6)

and ϕk is the Fourier transform of ϕ(x). A−1(x, y) is defined by∫︂
dy A(x, y)A−1(y, z) = δ(y − z) (A.7)

A.2 Expectation values

Now, we are interested in proving certain properties of our Gaussian path integral.

Our standard path integral is given by

Z =

∫︂
Dϕ exp

(︃
−1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y)

)︃
. (A.8)

We can define the expectation value as

⟨H(ϕ)⟩ = 1

Z

∫︂
Dϕ exp

(︂
− 1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y)

)︂
H(ϕ), (A.9)

Now we define a functional that depends on a source J(x) as

Z[J ] =

∫︂
Dϕ exp

(︃
−1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y) +

∫︂
dx J(x)ϕ(x)

)︃
. (A.10)

We also define F [J ] with

Z[J ] =

∫︂
Dϕ exp

(︂
− F [J ]

)︂
. (A.11)

Then, we can derive the following

⟨ϕ(z)⟩ =
∫︂

Dϕ exp
(︂
− 1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y)

)︂
ϕ(x) (A.12)

=
δ

δJ(x)

⃓⃓⃓
J=0

∫︂
Dϕ exp

(︃
−1

2

∫︂∫︂
dxdy ϕ(x)A(x, y)ϕ(y) +

∫︂
dx J(x)ϕ(x)

)︃
(A.13)

=
1

Z

δ

δJ(x)

⃓⃓⃓
J=0

Z[J ] =
δ

δJ(x)

⃓⃓⃓
J=0

lnZ[J ]. (A.14)

We can substitute the known expression for Z[J] from eq. (A.5) and find

⟨ϕ(z)⟩ = δ

δJ(x)

⃓⃓⃓
J=0

∫︂
dx

∫︂
dy J(x)A−1(x, y)J(y) = 0. (A.15)
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Next, we determine the two-point correlation function

⟨ϕ(z)ϕ(w)⟩ = 1

Z

δ2

δJ(z)δJ(w)

⃓⃓⃓
J=0

Z[J ] (A.16)

=
δ2

δJ(z)δJ(w)

⃓⃓⃓
J=0

∫︂∫︂
dxdy J(x)A−1(x, y)J(y) (A.17)

= A−1(z, w) (A.18)

If F is the free energy, then A(x, y) is given by the propagator G(x, y). For higher-

order terms, we can apply Wick’s theorem.

A.3 Trace-Log Formula

Now we aim to derive the trace-log formula. Some function ϕ̄ is a critical point of a

functional F [ϕ] if it satisfies

δF [ϕ̄]

δϕ
= 0. (A.19)

The functional can be approximated locally around this critical point with a Taylor

series

F [ϕ̄+ η] ≈ F [ϕ̄] +
1

2

∫︂∫︂
dtdt′η(t′)

δ2F [x̄]

δϕ(t)δϕ(t′)
η(t) . . . (A.20)

In a path integral given by

Z =

∫︂
Dϕ exp

(︂
− F [ϕ]

)︂
. (A.21)

The first-order approximation is given by minimizing F [ϕ] with minimum ϕ̄ which

can be written as

Z ≈ exp
(︂
−F [ϕ̄]

)︂
, (A.22)

where we assume the path integral measure is normalized. This is equivalent to

the mean-field approximation; The free energy is given by the order parameter that

minimizes it. However, we can improve this by adding the second-order corrections

to the functional F

Z ≈
∫︂

Dϕ exp
(︂
−F [ϕ̄] + 1

2

∫︂∫︂
dtdt′η(t′)

δ2F [ϕ̄]

δϕ(t)δϕ(t′)
η(t) . . .

)︂
. (A.23)
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Now this a Gaussian path integral that can be evaluated to

Z ≈
∫︂

Dϕ exp
(︂
−F [ϕ̄]

)︂
det

(︄
δ2F [ϕ̄]

δϕ(t)δϕ(t′)

)︄ 1
2

(A.24)

∝
∫︂

Dϕ exp
(︂
−F [ϕ̄] + 1

2
log det

(︄
δ2F [ϕ̄]

δϕ(t)δϕ(t′)

)︄)︂
. (A.25)

We apply the formula det logA = tr logA to obtain

Z ≈
∫︂

Dϕ exp
(︂
−F [ϕ̄] + 1

2
tr log

(︄
δ2F [ϕ̄]

δϕ(t)δϕ(t′)

)︄)︂
. (A.26)

This is the trace-log formula.
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Appendix B: Derivatives of the
Trace-Log Formula

B.1 RG

We are interested in taking the fourth derivative of a matrix logarithm. Let ϕ be an

arbitrary vector with components ϕa. First, we derive the expression for the derivative

of a matrix logarithm of the inverse propagator, as shown below

∂

∂ϕa
lnG−1(ϕ, q). (B.1)

We begin with the identity

∂

∂ϕa
exp

(︁
log G−1(ϕ, q)

)︁
=

∂

∂ϕa
G−1(ϕ, q) (B.2)

=⇒ exp
(︁
log G−1(ϕ, q)

)︁ ∂

∂ϕa
log G−1(ϕ, q) =

∂

∂ϕa
G−1(ϕ, q) (B.3)

G−1(ϕ, q)
∂

∂ϕa
log G−1(ϕ, q) =

∂

∂ϕa
G−1(ϕ, q) (B.4)

=⇒ ∂

∂ϕa
log G−1(ϕ, q) = G(ϕ, q) ∂

∂ϕa
G−1(ϕ, q). (B.5)

Next, we will derive the formula for the derivative of the matrix inverse

G(ϕ, q)G−1(ϕ, q) = I (B.6)

=⇒ ∂

∂ϕa

(︁
G(ϕ, q)G−1(ϕ, q)

)︁
= 0 (B.7)

∂G(ϕ, q)
∂ϕa

G−1(ϕ, q) + G(ϕ, q) ∂

∂ϕa
G−1(ϕ, q) = 0 (B.8)

∂G(ϕ, q)
∂ϕa

= −G(ϕ, q)
[︃
∂

∂ϕa
G−1(ϕ, q)

]︃
G(ϕ, q). (B.9)
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Now, we compute our derivatives, only including terms that involve the second deriva-

tive of the inverse propagator; all other derivatives are zero at ϕ = 0, assuming we

have a quartic free energy. Let G(0,q) = G0. Then, the fourth derivative of a matrix

logarithm is

∂4

∂ϕa∂ϕb∂ϕc∂ϕd

⃓⃓⃓
ϕ=0

log G−1 =
∂3

∂ϕb∂ϕc∂ϕd

(︄
G ∂G

−1

∂ϕa

)︄⃓⃓⃓⃓
⃓
ϕ=0

(B.10)

=
∂2

∂ϕc∂ϕd

(︄
−G ∂G

−1

∂ϕa
G ∂G

−1

∂ϕb
+ G ∂2G−1

∂ϕa∂ϕb

)︄⃓⃓⃓⃓
⃓
ϕ=0

. (B.11)

We repeat this procedure while only having derivatives of second-order.

= −

(︄
G0

∂2G−1

∂ϕa∂ϕb
G0

∂2G−1

∂ϕc∂ϕd
+G0

∂2G−1

∂ϕa∂ϕc
G0

∂2G−1

∂ϕb∂ϕd
+G0

∂2G−1

∂ϕa∂ϕd
G0

∂2G−1

∂ϕb∂ϕc

)︄⃓⃓⃓⃓
⃓
ϕ=0

. (B.12)

This is specifically relevant to taking derivatives of the trace-log formula for pertur-

bative RG. To take derivatives of the Wetterich equation, we would like to evaluate

both the second and fourth derivative of the propagator since we need the flow equa-

tion of α and βi. We also use the condition that only the second derivative of G−1 is

non-zero. The second derivative of the propagator with respect to a field is given by

∂2

∂ϕa∂ϕb

⃓⃓⃓⃓
⃓
ϕ=0

G = − ∂

∂ϕb

(︄
G ∂G

−1

∂ϕa
G

)︄⃓⃓⃓⃓
⃓
ϕ=0

(B.13)

= −G0
∂2G−1

∂ϕa∂ϕb

⃓⃓⃓⃓
⃓
ϕ=0

G0 (B.14)

∂4

∂ϕa∂ϕb∂ϕc∂ϕd

⃓⃓⃓⃓
⃓
ϕ=0

G = − ∂3

∂ϕb∂ϕc∂ϕd

(︄
G ∂G

−1

∂ϕa
G

)︄⃓⃓⃓⃓
⃓
ϕ=0

(B.15)

=
∂2

∂ϕc∂ϕd

(︄
G ∂G

−1

∂ϕa
G ∂G

−1

∂ϕb
G − G ∂2G−1

∂ϕa∂ϕb
G + G ∂G

−1

∂ϕb
G ∂G

−1

∂ϕa
G

)︄⃓⃓⃓⃓
⃓
ϕ=0

(B.16)

=

(︄
G0

∂2G−1

∂ϕa∂ϕb
G0

∂2G−1

∂ϕc∂ϕd
G0 + G0

∂2G−1

∂ϕa∂ϕc
G0

∂2G−1

∂ϕb∂ϕd
G0 + G0

∂2G−1

∂ϕa∂ϕd
G0

∂2G−1

∂ϕb∂ϕc
G0

)︄⃓⃓⃓⃓
⃓
ϕ=0

.

(B.17)
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Appendix C: Flow equations

C.1 Derivation of integrals

Calculating the RG flow of a coupling constant involves taking derivatives of integrals,

which allows ur to take advantage of the fundamental theorem of calculus

d

dx

∫︂ x

0

f(k)dk = f(x). (C.1)

We can apply this to our momentum shell integrals

d

d ln b

∫︂ ′

q

(. . . ) = b
d

db

∫︂ Λ

Λ/b

dq

∫︂
Sd−1

dΩ
[︂
qd−1(. . . )

]︂
(C.2)

=
[︂Λ
b

]︂d[︂∫︂
Sd−1

dΩ(. . . )
]︂⃓⃓⃓
q=Λ/b

. (C.3)

In perturbative RG, the flow of our βa is determined by calculating the following

d

d ln b

∫︂ ′

q

1

q4
=

d

d ln b

∫︂ Λ

Λ/b

dq
qd−1

q4
= b

d

db

∫︂ Λ

Λ/b

dq
1

q5−d
(C.4)

= −b
(︂ 1

q5−d

)︂⃓⃓⃓
q=Λ/b

(︂ d

db

Λ

b

)︂
=
(︂ b
Λ

)︂4−d
. (C.5)

C.2 Flow of gamma

The flow equation for the parameter γ obtained from ref. [26] does not have the same

normalization for their βa, as our equations in our explorations of perturbative RG

and FRG. We denote the quartic coefficients in ref. [26] as β̃a. The flow of β̃1 for d

spatial dimensions and 3 spin degrees of freedom reads

d

d ln b
β̃1 = 2β̃1 −

1

4π2
3dβ̃

2

1 + . . . (C.6)

(C.7)
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We have a variety of flow equations in both 2D and 3D. When γ = 1, they have

the form

d

d ln b
β1 = ϵβ1 − zβ2

1 + . . . , (C.8)

where z will vary based on the way we calculate our flow equations. Both schemes

must be related via the rescaling

3d

4π2
β̃a = zβa ⇒ βa =

3d

4π2z
β̃a. (C.9)

The beta function for the kinetic coefficient γ in ref. [26] is given by

γ̇ =
1

(16π2)2
4

3
(1− γ)

(︂ 1

γ2
+ 3
)︂
f̃γ, (C.10)

where f̃γ is a quadratic form of the quartic couplings. We can now write this in terms

of our alternative coupling constants

1

(16π2)2
f̃γ(β̃a) =

1

(16π2)2

(︂4π2z

3d

)︂2
fγ(βa) =

(︂ z

12d

)︂2
fγ(βa). (C.11)

We then have

γ̇ =
1

108

(︂z
d

)︂2
(1− γ)

(︂ 1

γ2
+ 3
)︂
fγ (C.12)

with

fγ = 12β2
1 + 2β1β2 + 8β1β3 + 2β1β4 + 6β1β5 +

13

2
β2
2

+ 4β2β3 + 7β2β4 + 5β2β5 + 8β2
3 + 4β3β4

+
13

2
β2
4 + 5β4β5 +

15

2
β2
5 . (C.13)
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C.3 Quasi-2D RG

The FRG flow equations for the quasi 2D regime are defined using Ei, which are given

by

E1 = −6γβ2
3k

4
n + 6β2

3k
4
n − 12γβ2

4k
4
n + 12β2

4k
4
n − γβ2

5k
4
n + β2

5k
4
n − 16γβ3β4k

4
n

+ 16β3β4k
4
n − 10γβ3β5k

4
n + 10β3β5k

4
n − 10γβ4β5k

4
n + 10β4β5k

4
n − 16αβ2

3k
2
n

+ 12γβ2
3k

2
n + 4β2

3k
2
n − 36αβ2

4k
2
n + 24γβ2

4k
2
n + 12β2

4k
2
n − 6αβ2

5k
2
n + 2γβ2

5k
2
n + 4β2

5k
2
n

− 40αβ3β4k
2
n + 32γβ3β4k

2
n + 8β3β4k

2
n − 28αβ3β5k

2
n + 20γβ3β5k

2
n + 8β3β5k

2
n

− 28αβ4β5k
2
n + 20γβ4β5k

2
n + 8β4β5k

2
n − 4

(︂
(γ − 1)k4n + (6α− 2(γ + 2))k2n + 3α2 + 12α + γ

− 16
)︂
β2
1 − 2

(︂
17(γ − 1)k4n + (54α− 34γ − 20)k2n + 3α2 + 60α + 17γ − 80

)︂
β2
2 + 2α2β2

3 − 12αβ2
3

− 6γβ2
3 + 16β2

3 − 36αβ2
4 − 12γβ2

4 + 48β2
4 − 3α2β2

5 − 12αβ2
5 − γβ2

5 + 16β2
5

+ 8α2β3β4 − 24αβ3β4 − 16γβ3β4 + 32β3β4 + 2α2β3β5 − 24αβ3β5

− 10γβ3β5 + 32β3β5 + 2α2β4β5 − 24αβ4β5 − 10γβ4β5 + 32β4β5 + 4β2

(︂(︂
−9(γ − 1)k4n

+ (−26α + 18γ + 8)k2n + α2 − 24α− 9γ + 32
)︂
β3 +

(︂
−11(γ − 1)k4n + (−32α + 22γ + 10)k2n

+ α2 − 30α− 11γ + 40
)︂
β4 − 6

(︂
(γ − 1)k4n + (3α− 2γ − 1)k2n + 3α + γ − 4

)︂
β5

)︂
− 4β1

(︂
4
(︂
(γ − 1)k4n + (3α− 2γ − 1)k2n + 3α + γ − 4

)︂
β2 −

(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n

+ α2 − γ
)︂(︂
β3 + β4 + β5

)︂)︂
(C.14)
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E2 = −14γβ2
3k

4
n + 14β2

3k
4
n − 4γβ2

4k
4
n + 4β2

4k
4
n − γβ2

5k
4
n + β2

5k
4
n − 16γβ3β4k

4
n

+ 16β3β4k
4
n − 2γβ3β5k

4
n + 2β3β5k

4
n − 2γβ4β5k

4
n + 2β4β5k

4
n − 36αβ2

3k
2
n

+ 28γβ2
3k

2
n + 8β2

3k
2
n − 8αβ2

4k
2
n + 8γβ2

4k
2
n − 2αβ2

5k
2
n + 2γβ2

5k
2
n

− 72αβ3β4k
2
n + 32γβ3β4k

2
n + 40β3β4k

2
n − 12αβ3β5k

2
n + 4γβ3β5k

2
n

+ 8β3β5k
2
n − 4αβ4β5k

2
n + 4γβ4β5k

2
n + 4

(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n

+ α2 − γ
)︂
β2
1 + 2

(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n + α2 − γ

)︂
β2
2 + 6α2β2

3

− 24αβ2
3 − 14γβ2

3 + 32β2
3 + 4α2β2

4 − 4γβ2
4 + α2β2

5 − γβ2
5 − 24α2β3β4

− 120αβ3β4 − 16γβ3β4 + 160β3β4 − 4β2

(︂
3
(︂
(γ − 1)k4n + (4α− 2γ − 2)k2n + α2

+ 6α + γ − 8
)︂
β3 +

(︂
(γ − 1)k4n + 2(α− γ)k2n − α2 + γ

)︂
β4

)︂
− 6α2β3β5

− 24αβ3β5 − 2γβ3β5 + 32β3β5 + 2α2β4β5 − 2γβ4β5 + 4β1

(︂(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n

+ α2 − γ
)︂
β3 −

(︂
(γ − 1)k4n + (6α− 2γ − 4)k2n + 3α2 + 12α + γ − 16

)︂(︂
β4 + β5

)︂)︂
(C.15)

E3 = −6γβ2
3k

4
n + 6β2

3k
4
n − 12γβ2

4k
4
n + 12β2

4k
4
n − 17γβ2

5k
4
n + 17β2

5k
4
n − 16γβ3β4k

4
n + 16β3β4k

4
n

− 2γβ3β5k
4
n + 2β3β5k

4
n − 2γβ4β5k

4
n + 2β4β5k

4
n − 32αβ2

3k
2
n

+ 12γβ2
3k

2
n + 20β2

3k
2
n − 44αβ2

4k
2
n + 24γβ2

4k
2
n + 20β2

4k
2
n − 50αβ2

5k
2
n

+ 34γβ2
5k

2
n + 16β2

5k
2
n − 40αβ3β4k

2
n + 32γβ3β4k

2
n + 8β3β4k

2
n

− 4αβ3β5k
2
n + 4γβ3β5k

2
n − 12αβ4β5k

2
n + 4γβ4β5k

2
n + 8β4β5k

2
n

+ 4
(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n + α2 − γ

)︂
β2
1 + 2

(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n + α2 − γ

)︂
β2
2 − 14α2β2

3 − 60αβ2
3 − 6γβ2

3 + 80β2
3

− 8α2β2
4 − 60αβ2

4 − 12γβ2
4 + 80β2

4 + α2β2
5 − 48αβ2

5 − 17γβ2
5 + 64β2

5

+ 8α2β3β4 − 24αβ3β4 − 16γβ3β4 + 32β3β4 + 4β2

(︂(︂
−
(︂
(γ − 1)k4n

)︂
− 2(α− γ)k2n + α2 − γ

)︂
β3 − 3

(︂
(γ − 1)k4n + (4α− 2γ − 2)k2n + α2 + 6α + γ − 8

)︂
β4

)︂
+ 2α2β3β5 − 2γβ3β5 − 6α2β4β5 − 24αβ4β5 − 2γβ4β5

+ 32β4β5 − 4β1

(︂(︂
(γ − 1)k4n + (6α− 2γ − 4)k2n + 3α2 + 12α + γ − 16

)︂
β3 +

(︂
(γ − 1)k4n

+ 2(α− γ)k2n − α2 + γ
)︂
β4 −

(︂
−5(γ − 1)k4n + (−14α + 10γ + 4)k2n + α2 − 12α− 5γ + 16

)︂
β5

)︂
(C.16)
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E4 = 8β1

(︂
β2

(︂
α2 − γ − 2(α− γ)k2n −

(︂
(γ − 1)k4n

)︂)︂
− β3

(︂
α2 + 6α + γ + (4α− 2γ − 2)k2n

+ (γ − 1)k4n − 8
)︂
+ 2β4

(︂
−3α− γ + (−3α + 2γ + 1)k2n −

(︂
(γ − 1)k4n

)︂
+ 4
)︂)︂

− 2β5

(︂
2α2β4 + 3α2β5 + 48αβ4 + 18αβ5 + 14β4γ + 3β5γ − 64β4 − 24β5

+ 4β2

(︂
α2 + 9α + 2γ + (7α− 4γ − 3)k2n + 2(γ − 1)k4n − 12

)︂
− 2β3

(︂
α2 − 6α− 3γ

+ (−8α + 6γ + 2)k2n − 3(γ − 1)k4n + 8
)︂
+ 44αβ4k

2
n + 12αβ5k

2
n + 14β4γk

4
n

+ 3β5γk
4
n − 28β4γk

2
n − 6β5γk

2
n − 14β4k

4
n − 3β5k

4
n − 16β4k

2
n − 6β5k

2
n

)︂
(C.17)

3π(γ − 1)γ2
(︂
k2n − 1

)︂2
(C.18)

E5 = (α− 1)3
(︂
24β2

1 + 4
(︂
β2 + 4β3 + β4 + 3β5

)︂
β1 + 13β2

2 + 16β2
3 + 13β2

4

+ 15β2
5 + 8β3β4 + 10β4β5 + 2β2

(︂
4β3 + 7β4 + 5β5

)︂)︂(︂
3γ2 + 1

)︂(︂
α− γ + (γ − 1)k2n

)︂
3

(C.19)
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Appendix D: Notation and
Conventions

Bold letters like q denote vector, and q would denote the magnitude of the vector q.

We use the following shorthand for integrals∫︂
q

:=

∫︂
ddq. (D.1)

The Kronecker delta is defined as

δij :=

{︄
0 i ̸= j

1 i = j
. (D.2)

We denote functional derivatives as

δ

δϕ
, (D.3)

which act on functionals.

We distinguish between the trace operators tr and Tr. We use tr in the conventional

way; to only sum over the diagonal of a matrix or tensor

trA =
∑︂
i

Aii, (D.4)

whereas Tr is used to sum over all degrees of freedom, including the diagonal of a

matrix. For example,

TrA(x) =

∫︂
x

∑︂
i

Aii(x). (D.5)

Let ϕ(x) be a real function. We define its Fourier transform as

ϕ(x) =

∫︂
ddq

(2π)d
ϕ̃(q)eiq·x. (D.6)
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Sometimes we will drop the tilde, and it is understood that ϕ(x) is the real space

function and ϕ(q) is its Fourier transform.

For our quartic couplings βi, we use the convention

βijk := βi + βj + βk. (D.7)

log refers to the natural logarithm.
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