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Abstract

A key requirement for the successful deployment of Video-on-Demand (VoD) systems is to maintain both
bandwidth efficiency as well as tolerable startup latency. The startup latency is defined as the interval between
the point a user “tunes–in” to (starts downloading) the video content and the point at which the uninterrupted
playout of the video can start. Periodic broadcast schemes have been proposed to solve the VoD distribution
problem for the set of the most requested videos. However, the current proposals for periodic broadcast
schemes assume CBR encoded videos. The few existing proposals for support of the bandwidth–efficient
family of VBR encoded videos are available at the cost of data loss due to overflow of the broadcast link
capacity by the aggregate traffic of the simultaneously transmitted segments. In this paper we address the
issue of the VBR encoded video broadcast and we propose LLBE (a Loss–Less Bandwidth–Efficient scheme),
which, in contrast to previous techniques for VBR video, is an inherently loss–less broadcast distribution
scheme. Given ample client storage, LLBE can satisfy any a–priori prescribed per–video startup latency. In
LLBE, the bandwidth necessary for the transmission and downloading of a video is minimized through an
optimization process. We observe that the minimization of the server bandwidth can be stated as a shortest
path problem. Finally, example performance results of LLBE and a discussion of some issues related to its
implementation are presented.

———————————-
Extended version of the paper appearing in the Proceedings of ACM SIGMETRICS 2000.
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1 Introduction

In this paper, we present a novel Loss–Less and Bandwidth–Efficient (LLBE) protocol requiring minimal server
bandwidth while maintaining zero data loss for the periodic broadcast of VBR video in Video–on–Demand (VoD)
systems. LLBE is, to the best of our knowledge, the first proposal that supports, by its design, the loss–less
periodic broadcast of VBR encoded video. LLBE can achieve any arbitrary a–priori per–video startup latency
(i.e., delay from “tune–in” of the set–top box to start of uninterrupted video playout). The startup latency is
deterministic, that is, exactly �� seconds of startup latency is required for the �–th video. In this sense, LLBE
provides predictable latency for the client devices, which can be considered preferable to the bounded but random
startup latency featured by other schemes.

LLBE operates by partitioning the entire video into smaller successive and non–overlapping segments. Each
segment is continuously broadcast on a separate channel. Each channel is assigned different bandwidth. The
client set–top box starts downloading the information of all the segments of a specific video as soon as the client
“tunes–in”. As soon as the first segment is downloaded completely, the uninterrupted playout of the video can
begin. Because of the schedule construction employed in LLBE, subsequent segments are guaranteed to be
completely downloaded just prior to their consumption by the playout process.

This paper differs from previous work in two crucial assumptions:

1. The client–side set–top box secondary storage capacity is not considered a constraint. Recent price re-
ductions for secondary storage devices, such as magnetic disks, as well as the gradual availability of re–
writable DVD media, indicates that commodity priced set–top boxes will likely contain storage in the range
of several Gigabytes. We thus believe that in the near future any set–top box with a basic set of capabilities
will be sufficiently equipped for the off–line storage of complete feature–length (approximately 2 hours)
videos. Subsequently, we will assume that the client set–top box is capable to store a large percentage, up
to 100%, of a video.

2. Reception of a broadcast segment does not delay until the start of the segment transmission, but can start
as soon as the client set–top box “tunes–in”. Previous schemes insist on forcing the reception of a segment
to start at the exact beginning of a segment, and never during its transmission. The segment lengths are
possibly representing several Gigabytes of information. Hence, it makes little sense to force the start–of–
segment restriction, especially if the following factors are accounted for:

(a) As a matter of design, VoD systems are to predominantly operate over uni–directional broadcast or
multicast channels, over cable or satellite infrastructure. Forward Error Correction (FEC) is routinely
employed in such systems for increased open–loop data integrity. FEC schemes group information in
units (blocks) such that error propagation is limited and re-synchronization of sender/receiver is still
possible in the presence of errors.

(b) The information conveyed in MPEG-1 and other VBR video encodings observes its own frame–
oriented or block–oriented structure. Parsing an incoming stream of MPEG-1 data allows the receiver
to synchronize by identifying the boundaries between successive frames.

(c) A possible multiplexing technology used for transporting the several different video segments is
packet–(cell–)based statistical multiplexing. Thus the entire segments are split into packets and the
inclusion of timing information in the header of the packets is subsequently trivial to accomplish.

The above three factors indicate that it is, in principle, possible to start reception of a segment without
waiting for its beginning, since the fragmentation of the entire segment into smaller units is a matter of
error resilience, or of the nature of video traffic, or of the underlying multiplexing technique. For the sake
of brevity we will assume that the reception starts at frame boundaries. For example, a segment consisting
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of 10000 frames, can be completely received if 10000 consecutive frames are received from the channel
on which the corresponding segment is cyclically broadcast. The time interval between the tune–in and the
identification of the first frame of a segment is considered negligible compared to ��. Note that reasonable
values of �� for near–VoD systems range typically in the range of few seconds up to a few minutes.

In this paper we do not consider VCR–like functionality, such as fast forward/backward and pause. We also
consider that the underlying network can provide dedicated broadcast/multicast service without the interference
from other traffic flows in the network. Thus, the presented solution is not suitable for best–effort type of service,
in the sense that it does not provide the means to compensate for the jitter accrued in a best–effort packet–switched
network. Nevertheless, the scheme can be applied in networks supporting bandwidth reservation.

The remaining of this paper is organized as follows: Section 2 provides a review of the related research.
Section 3 provides the necessary notation and definitions used in the new proposed scheme. Section 4 outlines
the periodic schedule construction process and the related algorithm. Section 5 illustrates through experimental
results the properties of the new scheme. A summary and future research directions is given in Section 6.

2 Previous Work

Periodic broadcast schemes form one of the two families of options used in the distribution of VoD content.
The other family is batched multicast, e.g., [1, 3]. Batched multicast collects requests over successive non–
overlapping intervals of time and admits a single new multicast for each video for which it received one or
more requests in the last collection interval. Blocking, i.e., rejection at the stage of call admission is possible.
Although batched multicasting is appealing for its ability to satisfy multiple requests through a single multicast,
it is inefficient for extremely popular (“hot–set”) videos. A simple back–of–the envelope computation indicates
that for 5 minute request collection intervals, and a typical popular feature movie length of 2 hours, 24 replicas of
the same video will be in progress at any point in time. At the same time it is reasonable to assume that the most
popular items will be the ones for which a provider wishes to minimize the startup latency. Clearly, reducing
the collection interval (and hence startup latency) results in an inversely proportional increase of the concurrently
transmitting replicas of the same video. Thus, batching for the hot–set videos is inefficient in terms of bandwidth.

While not dismissing the value of batched multicast for “cold–set” videos, a more efficient alternative is
needed for the “hot–set”. The rest of this paper deals precisely with the class of “hot–set” videos. The introduc-
tion of the periodic broadcast schemes was initially proposed in the form of staggered broadcast, e.g., by Dan
et. al. [5]. Multiple entire copies of each video are repeated every fixed interval of time. The startup latency of
this approach is normally large since the maximum startup latency experienced by a user is equal to the length
of the video divided by the number of copies that can be broadcast using a common link capacity. For example,
ten two-hour long movies, encoded at 3 Mbits/sec, broadcast on a link of 155 Mbits/sec, result in latency of 24
minutes.

The Pyramid Broadcasting (PB) technique presented by Viswanathan and Imielinski in [15] was the first to
drastically reduce the service latency by dividing each video into simultaneously broadcasting segments where
each segment is broadcast on a separate channel. Thus, the startup latency depends on the latency necessary
to start receiving only the first segment. Subsequent segments are guaranteed to be available when needed by
PB’s broadcast schedule construction. Improvements to PB have been proposed, such as the Permutation-based
Pyramid Broadcasting (PPB) [2], Skyscraper Broadcasting (SB) [7], the Client–Centric Approach (CCA) [8]
etc. Part of the improvements of PB’s variants was the reduction of the necessary client–side secondary storage.
Clearly, as the introduction reveals, reduction of the client–side secondary storage is in our view the wrong
priority.

All of the above periodic broadcast protocols (PB, PPB, SB, CCA) share a similar structure, that is, the
same bandwidth for all channels and increasing size of segment lengths. CCA has shown the best performance
by making maximum use of the client bandwidth and keeping a lower buffer space requirement. However, a
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common tradeoff is that, in order to decrease the startup latency, the number of segments must be increased and
the necessary bandwidth for the server increases proportionately to the number of segments. Variations of this
tradeoff include consideration for the specific sizes of the individual segments. However, the size of the segments
is dictated by the timing requirements. The intuition behind the segment sizes is that a segment must have begun
its cyclic transmission at least once while the previously downloaded segments are being consumed. Such a
relation ensures that the �–th segment has already been (at least partly) stored at the set top box just before its
consumption has to start.

Another approach to periodic broadcasting schemes, that of Harmonic Broadcasting and its variants, exhibits
a different structure, i.e., decreasing bandwidth for the channels and equal segment lengths. In this category fall
Juhn and Tseng’s Harmonic Broadcasting (HB) [9], Paris, Carter and Long’s Cautious Harmonic Broadcasting
(CHB) [11], Quasi-Harmonic Broadcasting (QHB) and Polyharmonic Broadcasting (PHB) [12]. These schemes
reduce the start–up latency and improve the bandwidth efficiency over PB and its variants. PHB demonstrated
the best performance, especially as far as bandwidth efficiency is concerned. Typical transmission bandwidths
were reported to be roughly 5 times the video consumption bandwidth. What HB and its variants suggest is that it
is possible to increase the number of segments without necessarily increasing proportionately the required server
bandwidth.

The previously proposed periodic broadcast schemes assume CBR encoded videos. For similar video quality,
CBR encoded video requires twice or more bandwidth than the average bandwidth of the corresponding VBR
encoded video [4], Clearly, there are substantial gains by replacing CBR by VBR encoded videos. The current
schemes that obtain further performance improvements by using VBR video are few, and rely on the same
definition of segments as the CBR–based schemes. Two recent proposal extending broadcast schedules to VBR
are [10] and [14]. In these schemes, it is assumed that the clients cannot start downloading and playout the video
until the beginning of the first segment is encountered. While the clients consume the first segment, they also
concurrently download segments whose playout is forthcoming according to a specific download strategy [7, 8].
Moreover, the server broadcasts each video segment (of the total �� segments for the �–th video) at its nominal
frame rate of � frames per second, that is, at the consumption rate of the video. Frames from the

��
�����

streams are multiplexed into the broadcast channel without buffering. Data loss occurs whenever the aggregate
rate of all broadcast segments exceeds the capacity of the shared link.

VBR–B [14] uses a geometric series of video segments. The segments are then aggregated and the data loss
performance is improved by the addition of smoothing, buffered multiplexing or the Join–Shortest–Queue (JSQ)
prefetch discipline. It must be noted, any scheme that improves loss performance but results in variable delays
requires a compatible jitter absorption technique at the receiver. Another VBR–specific scheme, [10], proposed to
use a fragmentation scheme that provides several alternative feasible fragmentations for the same startup latency.
Different fragmentation schemes could lead to different aggregate traffic shape when multiplexing the segments
together, resulting in very different bandwidth requirements and data losses. Although [10] improves on [14], it
does so at an increased computational cost, because it explores a large set of alternative feasible schedules. At
the same time, the inherent drawback of both schemes is the potential for data loss.

Summarizing, it appears that although the problem is completely deterministic in its formulation (a–priori
known frame sequences for each video and per–video playout latency demands) the existing ad–hoc schemes treat
the problem in a fashion that introduces the probability of data loss. Instead, we propose an algorithmic approach
which produces loss–less broadcast schedules for VBR video that minimizes also the per–video bandwidth given
the video sequence and a corresponding desired playout latency. The resulting scheme is called the Loss–Less
Bandwidth–Efficient (LLBE) broadcast protocol.
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Figure 1: An example of LLBE’s operation. The playout part describes the consumption of the video at the
client. The download part describes the continuous concurrent periodic broadcast of the five example segments.
Each of the five separate segments is periodically transmitted on a channel of bandwidth ���. The shaded area
in the download part corresponds to the information that is actually download by the client. Each segment is
completely stored at the client just in time for its playout.

3 Definition of the LLBE Protocol

Let � denote the number of VBR videos to be broadcast. The bandwidth of the broadcast link from server to
clients is � Mbits/sec. All video streams sent by the server share the � Mbits/sec. The consumption rate of each
video is � frames per second. The trace sequence of each video is fully known a priori. Let ���, 	 � �
 ���
 ��,
� � �
 ���
� stand for the number of bits in the 	–th frame of the �–th video, where �� denotes the total
number of frames of the �–th video.

The �–th video is divided into �� segments prior to broadcasting. The server broadcasts
��

����� video
streams simultaneously, each stream periodically broadcasts the same segment of the same video. A central point
of a periodic broadcast scheme is the way in which the videos are fragmented. The �–th video is fragmented
into �� segments of different sizes. Let �� denote the set of successive frames of the 	–th segment of the �–th
video, we have:

�� �
���
���

���� (1)

In LLBE, each of the �� segments is transmitted on a separate channel of bandwidth ���, 	 � �
 � � � 
��.
Thus, the total bandwidth necessary to transmit the �–th video given a fragmentation � � ���
 � � � 
 ��

� � is

����� �
���
���

������ (2)

In LLBE the client behaves in a greedy fashion, that is, it starts downloading all �� segments that correspond
to the desired video. Moreover, the download of all the segments starts at the same time point: the tune–in
instant. Thus, equation (2) is both the required server and required client bandwidth. As segments get gradually
consumed, the necessary client bandwidth decreases. That is, the maximum client bandwidth is necessary in the
beginning of the video reception. Essentially, the required per–video server and client bandwidth are coupled.
In the next section, a minimization process is employed to reduce the required server and client bandwidth on a
per–video fashion. The construction of LLBE is a generalization of the GEBB scheme [6]. GEBB was restricted
to CBR video but possessed a closed form solution for determining the optimal segment sizes that minimized the
total bandwidth necessary for a given playout latency.
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Following the construction illustrated on Figure 1, and in order to guarantee the startup latency ��, we note
that the first segment must be broadcast at a bandwidth:

������ �

�
�����

� ��

��

(3)

Equation (3) establishes that the surface of the first horizontal rectangle of the step–function for the client
download in Figure 1 is the same as the surface of the area denoted by the �� in the playout graph of the same
figure. A similar relation is true for all subsequent segments. That is, in order for the continuous and timely
playout, the next segment, ��, is fully downloaded and available at the client just before the end of the playout
of segment ���� . Thus, the bandwidth at which the 	–th segment of the �–th video is broadcast is determined
by:

������ �

�
�����

� ��

�� �

����

���
�����

�

(4)

Overall, after the startup latency �� seconds, the uninterrupted playout of the video is possible. Each segment
is available on local storage at the client just–in–time for its playout. The data are played out at their nominal
frame rate of � frames per second in the order of �� � �

� � �
� � � � ��

� . Note that because the frames have
different sizes, the playout curve of Figure 1 which represents the per–frame consumed data is also variable.
From equations (3) and (4), we conclude that the server bandwidth requirement to broadcast the �–th video
using LLBE for any valid transmission schedule, �, can be expressed by:

����� �
���
���

�
�����

� ��

�� �

����

���
�����

�

(5)

The loss–less nature of LLBE is evident since the aggregation of the bandwidth required for all the ��
segments of the �–th video, is constant as described by equation (5).

One can observe that several feasible schedules exist, since the construction of � is based on fairly mild
constraints. Namely, the only constraint necessary for � to be a feasible schedule is that all segments together
cover the entire video and that they do not overlap. The bandwidth–efficiency component of LLBE comes from
the selection of the feasible schedule that minimizes the required server (client) bandwidth (equation (5)). Our
objective is thus to determine ��’s such that a broadcast schedule can be constructed which results in the least
amount of bandwidth requirement ���, ��

� � ����������� is a feasible schedule�. Essentially, we wish to
determine an ordered sequence of �� � � integers (the “boundaries” between the segments) in the range � to
�� � � that minimizes the value of equation (5).

4 Calculation of the Optimal �� and ��

�

In formulating the optimal selection for � to achieve the minimum required server bandwidth, we consider a
discrete–time model at the frame level. That is, the segments are to consist of an integer number of frames. Let
us consider the collection from the 	–th to the �� � ��–st frame of a video. Let us define ����� as the bandwidth
necessary if the group of frames from 	 to � � �, inclusive, were to form a segment:

����
� �

����
��� �

�
�

�� � �����
�

(6)

Using the cost definition of equation (6) and given a sequence of video frame sizes ���, we can construct a
Directed Acyclic Graph (DAG) with vertices labeled from � to ���� and with directed edges from 	 to � where
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���� � � � 	 � �. The edge weights are as defined by the cost equation (6). A fragmentation to �� segments
(or less) amounts to finding a path from � to ���� consisting of �� edges (or less). Since the minimization we
wish to apply corresponds to the minimization of the cost of the edges participating in the path, the optimization
problem is in fact a shortest–path problem. Figure 2 illustrates the relation of the shortest path and the optimal
fragmentation of a video for �� � �.

rk1 1+mN

k
mC ,1

rk
mC ,

1, +mNr
mC

... ... ...

Figure 2: Example shortest path and optimal fragmentation, �, for �� � � given a certain ��. Segment �
�

spans frames from � to � � �. Segment �� spans from � to � � �. Segment �� spans from � to ��.

It appears appealing to apply the Bellman–Ford algorithm, specialized to single–source (from vertex �) short-
est path. By terminating the algorithm after its ��� � ��–st iteration, we guarantee that all paths determined up
to this point are the shortest paths with �� or less edges. Thus, the resulting running time is ��������

��.
However, a source of complications is not the running time but the need to preserve the original cost matrix
�� � �����

� � in main memory. The space requirement for the �� matrix is ������
�� but because typical

values of �� are �	

 


 or more (for a two-hour video file) it is not practical to assume that the cost matrix can
be stored entirely in main memory in currently available systems.

To solve the problem of the large memory requirements, we introduce a vector �� � ���
�� which contains

the prefix sums of the frame size sequence, that is:

��
� �

����
���

� ��
 	 � �
 � � � 
 �� � � (7)

From equations (6) and (7), ����
� can be restated as:

����
� �

��
� ���

�

�� � ���
�

(8)

By introducing equation (8) the memory requirements are decreased to �������. The calculation of ����
�

for any 	
 � pair is performed upon demand based on the �� vector which is used to look–up the prefix sums.
�� is calculated in ����� once at the beginning of the run. Figure 3 presents the pseudocode of the specialized
shortest–path algorithm, and it can be clearly seen that it exhibits a time complexity of ��������

�� and space
complexity of �������.

We note that for LLBE, the scheduling process for each video is independent from all the other videos that
share the same link. In other words, once the transmission schedules for a specific video is constructed, the
required bandwidth for transmitting this video is finalized and it is only dedicated for this video.

7



��� � 
;
for 	 � �
 � � � 
 �� � � do

��
� � ���;

��
� � ��

�;
� �

� � ��
�;

��� � ���� � ��; // Note: �	���
� � 


endfor
for 	��� � �
 � � � 
 ��� � �� do

for � � �
 � � � 
 �� � � do
for 	 � �
 � � � 
 �� � �� do

if
�
� �

� � ��
� �



�
��


�
�

��� ���
�

�
then

� �
� � ��

� � 

�
��


�
�

��� ���
�

;

������� � 	;
endif

endfor
endfor
�� = ��; // array–wide operation

endfor

Figure 3: Pseudocode of single–source Bellman–Ford version of the ��–step shortest path algorithm using an
����� prefix sum array, ��. �� is a work array. ������� holds the intermediate vertex on the path to � at the
	��� iteration. ������� is ��� � ����� and is initialized to NULL.

5 Experimental Results

The presented experiments are based on the application of LLBE on a set of sample traffic traces coded according
to the MPEG-1 standard [13]. All traces used herein are 40000 frames long, captured at 25 frames per second
with a GOP of 12 frames. We selected a total of � � �
 videos from the set of available traces. The set contains
both low–motion and high–motion content, namely it includes news broadcasts, feature movies, music videos,
sporting events and animations. We do not present separate per-video results for all video traces examined since
the performance results we derived lead to the same basic conclusions regardless of the video content.

First we look into the influence of �� and �� on the required server bandwidth for some representative
video traces. We anticipate that increasing �� or �� decreases the required bandwidth. Moreover, a question
that arises naturally by observing the slowly increasing bandwidth demand in HB and its variants is whether
there exists an asymptotic bandwidth demand which, given a startup latency objective, is the limit of the required
bandwidth as the number of segments �� tends to infinity. The results presented in Figure 4 suggest that this
asymptotic behavior is indeed the case. Hence, if we factor out the constraint that the number of segments is
limited by technological constraints, we claim that there exists an inherent bandwidth limit for a given startup
latency ��. This is demonstrated for VBR video traffic in LLBE, and trivially, the same is true for CBR video
as well. Consequently, we can claim that the experimental results suggest that for LLBE:

��
����

��
� � �������� � � (9)

An exact expression for the asymptotic bandwidth demand for a given playout latency is in fact known for
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Figure 4: Optimal server bandwidth, ���, demand for three sample video streams vs. variable number of seg-
ments ��. (�� � 	
 ���)

the special case of CBR video [6].
Figure 4 presents the results for three video traces for variable �� from 2 to 24 and for a fixed startup latency

� � 	
���. Similar curves were observed for all examined video traces. We note that the value at which ���
converges depends on the exact video trace under consideration, that is, different videos converge to different
values. The convergence value does not depend only on the average frame size or any other trace–wide statistic,
but instead on the exact sequence of frame sizes.

LLBE, by its definition, produces segments that are broadcast on channels of different bandwidths. An
implementation issue is how to schedule a given broadcast medium between several channels/streams such that
each one is allocated a different portion of the available bandwidth. The actual complexity is in providing the
mechanism for allowing the allocation of arbitrary bandwidth to each channel/stream. The current literature
provides already a large assortment of scheduling mechanisms, e.g., Weighted Fair Queueing (WFQ) and its
approximations, to allow implementations of arbitrary bandwidth allocations. Instead of the scheduling issue, we
focus on the related issue of quantized bandwidth allocation. That is, on the inefficiency of using a scheduling
scheme that allows only multiples of a basic rate to be allocated. Scheduling schemes that provide quantized
bandwidth allocation are, for example, the Time Division Multiplexing (TDM) schemes. Their inefficiency in
terms of quantized bandwidth allocation is compensated by the straightforward multiplexing and demultiplexing
mechanism.

We consider a TDM system with a basic rate of 	� ��	������ (ISDN rate). Thus, we consider this particular
example as an illustration of what an implementation using conventional voice channels would require in terms
of bandwidth. Namely, the total number of ISDN channels necessary for video � are:

�� �
���
���

������	� ��	�������	 (10)

The observation we derive from experimental results for increasing �� in Figure 5 is the disappearance of
the monotonic decrease of ��� for increasing ��. The reason is the internal fragmentation within the quanta of
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Figure 5: Optimal quantized server bandwidth, ���
�
	� ���	�������, demand for a sample video vs. variable
number of segments ��. (�� � 	
 ���, trace MTV I)

allocated bandwidth. For example, if ��� � ��
 ��	������, then the corresponding channels for this video seg-
ment requires �� 	���	������, leaving �� 	�� ��
 � 	���	������ unused. In order to provide straightforward
demultiplexing, no sharing of a primary rate channel is allowed between two or more segments. Thus, as the
number of segments increases, the per–channel bandwidth may decrease, leading to an increase of the level of
internal fragmentation.

A comparison of Figures 4 and 5 indicates that because of the internal bandwidth fragmentation the overall
bandwidth allocation can indeed be larger in the quantized case. If, instead, WFQ was used to provide an arbitrary
bandwidth allocation, then a jitter absorption scheme is necessary because the implementations of WFQ can only
approximate the fluid model assumed for the traffic, and service is dispensed in packet or cell quanta. Jitter
absorption is also necessary for TDM systems. In TDM, the necessary jitter absorption is defined by the length
of the repeating TDM cycle (each channel is allocated one or more slots within the TDM cycle, where each slot
in the current example corresponds to a 	���	������ quantum).

Dealing with the internal fragmentation inefficiency in a TDM system requires the generation of segments
that use bandwidth very close (but lower) to an integer multiple of the basic rate. A strategy that can be used
for reducing the internal fragmentation is the following: at the DAG construction stage that we illustrated earlier,
we omit all edges that correspond to bandwidths that lead to large internal fragmentation. Hence, the shortest
path, once created, uses only edges (and corresponding channel bandwidths) that to not exacerbate the internal
fragmentation. However, such technique is not valid in general because it can lead to a disconnected graph,
prohibiting the construction of a complete path. It is therefore recommended to, instead, explore the set of
allowed values of �� for each video (which can be accomplished in one single run of the shortest path algorithm
for up to the maximum ��) and to select the value that minimizes the quantized required bandwidth upon
inspection of a graph similar to Figure 5.

Next we explore the performance of the required server bandwidth ��� as a function of ��. Figure 6 presents
the results that are representative of the examined video traces. Namely, the required bandwidth indeed decreases
with increasing startup latency. The construction of LLBE allows the following very intuitive asymptotic behavior
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(for a given ��):

��
����

��
� � 
 (11)

and
��

���	
��
� �� (12)

That is, if the clients can wait for a long period of time, the necessary bandwidth is virtually zero (equation
(11)). Inversely, instant playout startup requires essentially infinite bandwidth. What is important to observe,
is the fast reduction of the necessary bandwidth for “reasonable” values of ��. For example, for the MPEG-
1 videos that we examined and �� � 	
 ��� the necessary bandwidth is not more than ��� to � ��	������
and for a latency of a few minutes, the necessary bandwidth can be equal to the average bandwidth necessary
of the corresponding MPEG-1 trace. Compared to the typical commodity disk drive I/O throughput of a few
��!������� the necessary bandwidth is indeed well below the technological limits of low–cost set–top boxes
for “reasonable” values of �� even if we assume �� � �	



 or more.

The next set of observations we make are related to the bandwidth necessary for each segment. Figure 7
illustrates the relation of the bandwidth of all the segments of the same video. For sufficiently large ��, and for
the segments in the later part of the trace the following is consistently observed:

��� 
 ����� (13)

In Figure 7 the above behavior is noticeable for 	 � ��. This observation is also in agreement with the
intuition behind the construction of the schedules with equal bandwidth segments (PB and variants) and also in
agreement with the results observed in GEBB [6].

For the same video trace (FUSS), Figure 8 illustrates the relation of the segment sizes. Notice the logarithmic
scale used for the y–axis on Figure 8. Hence, the almost linear increase in the size of the later segments corre-
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Figure 7: Per–segment server bandwidth, ���, for each segment. (�� � �
 �� �����, �� � 	
 ���, trace
FUSS)

sponds to an exponential increase of successive segment sizes (for 	 � ��). Similar behavior was observed in all
the other video traces as well. The observations can be summarized in the following relation:

�
�������

� �� 
 "
�
�����

� �� (14)

The above relation is also the intuition behind the CBR–based schemes, and the variants of PB in particular.
We note however that the factor of the geometric series, ", depends on ��
�� and the exact frame sequence of
the trace.

The later segment sizes, by accumulating a larger number of frames together, are almost equal to the product
of the number of frames multiplied by the average frame size. Essentially, for large 	, the corresponding segments
depend on the average frame size statistics. On the other hand, for small values of 	, the segments consist of a
small collection of frames and they exhibit higher variability which depends on the exact collection of frames.
Hence, for large 	, an exponential increase of the length of the segments (in terms of numbers of frames) is also
observed (for the sake of brevity, we omit presenting a corresponding figure).

A final performance comparison can be performed against the two schemes that have been proposed in the
past for VBR periodic broadcast, VBR–B and TAF [10, 14]. We first note that the segments sizes in VBR–B
follow a geometric sequence with a factor of 2. TAF generalizes the segment length selection. The results shown
in Figures 7 and 8 indicate that the selection of the “best” segment lengths (sizes) may follow a sequence which is
not necessarily monotonically increasing. This is in direct contrast to the construction of VBR–B and TAF. The
ability of LLBE to guarantee the timing constraints given a non–increasing segment lengths is due to its particular
“greedy” nature of the client download strategy. Furthermore, the size of segments, in terms of bits, compared
to their size in terms of frames are drastically different. For example, the number of frames corresponding to the
�–th segment of Figure 8 is approximately twice the number of frames of the �–th segment, but the size in bits
of the �–th segment is less than that of the �–th segment.

To compare the bandwidth efficiency of multiplexing 10 videos in the proposed LLBE with that of VBR-B
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[14] and TAF [10], we set the number of segments for each videos, �� to 7. The startup latency �� is set to
16.5 seconds. Figure 9 demonstrates the data loss rate. The bandwidth from the aggregation of the 10 videos
according to LLBE is used as bandwidth for VBR–B and TAF. The results clearly indicate that under VBR–B and
TAF, the resulting data loss (approximately 15 and 10 %) is high enough to render the video distribution useless
in such limited bandwidth. The exception is LLBE. In order to achieve the same zero data loss rate, the required
bandwidth for transmitting the 10 movies for LLBE is much lower than that for VBR-B and TAF (Figure 10). For
LLBE, the required bandwidth is 33.59 Mbits/sec, while for VBR-B it is 86.96 Mbits/sec and 60.72 Mbits/sec
for TAF.

Scheme Loss Rate
LLBE 0.000
VBR-B 0.153

TAF 0.104

Figure 9: Data loss rate for three VBR broadcasting schemes for a collection of 10 videos. (�� � � �� �����,
�� � �	�� ���, � � ���	 ��	������)

6 Conclusions and Future Directions

In this paper we consider the problem of loss–less periodic broadcast of VBR video for VoD systems. Given
the continuous decline in prices for secondary storage devices, we relax the constraints related to the client–side
secondary storage size. Moreover, because of the particular structure and distribution setup for video information,
we relax the assumption that was used to force the start of downloading to coincide with the beginning of a
segment. The resulting scheme, LLBE, provides enough degrees of freedom (the sizes of the individual segments)
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Scheme
���

��� �
�
�

LLBE 33.587
VBR-B 86.958

TAF 60.722

Figure 10: Required server bandwidth in Mbits/sec for zero data loss rate for three VBR broadcasting schemes
for a collection of 10 videos. (�� � � �� �����, �� � �	�� ���)

to allow its formulation as an optimization problem. We show the equivalence of the optimization problem to
a shortest path problem on a DAG. The storage needs for the shortest path problem cannot be supported with
commodity main memory storage resources. Hence, we refine the shortest path algorithm for the specific problem
and greatly reduce its main memory requirements.

The results we derive indicate that the segment sizes and bandwidth allocation approaches in previously
proposed schemes used the correct intuition but were unable to quantify the problem properly to support the
case of VBR encoded video. The optimization algorithm proposed for LLBE allows us to exactly quantify
the necessary parameters based on the particular stored video content and startup latency objective. Moreover,
because LLBE handles the distribution of VBR video as a collection of per–segment CBR streams, it inherently
avoids data losses that plagued previous schemes (even after they included additional schemes to rectify the losses
– at significant implementation complexity).

Currently, in LLBE, the server and client bandwidth demands for a video are identical. Future research in
this direction will focus on the reformulation of the optimization problem in a manner that will allow a–priori
constraints to be enforced on the client–side I/O bandwidth separately from constraints enforced on the server–
side bandwidth. We are also exploring techniques to support interactive VCR–like operations and to support
potentially heterogeneous clients/set–top boxes. Another possible use is the application of the decreasing–only
download bandwidth, as dictated by LLBE, to the call admission in a batched multicast or advance reservation
system. One approach to this end is the generalization of LLBE, in a similar manner to the generalization of
Skyscraper Broadcasting towards the Dynamic Skyscraper Broadcasting of Eager and Vernon.
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