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ABSTRACT

This work has been' an jinvestigation of the applica-
bility of tK: finite element method to the study of crystal

growth proc#sses. The finite elementgﬁgshad was chosen

because a review of past analytical research in the area of
4
crystal growth theory indicated that analytical techniques

may\have reached the limit{ of their usefulness and further
progress in the area may require the exploitation of numer-
ica: methods.

e To demonstrate its apélicability, ﬁhe method has been
used to analyze the problems such as, the stability of
cylindrical and spherical particles growing in supércooled

liquid, dendritic growth, and the evolution of dendritic
] ‘

shape with time. Quantitative comparisons between this
approach, ot@gr theories and expérimentgi data aré made f@r
all ?xamples to assess the value of the methéd,

The method has also been used to obtain a time in-
' variant shape of ; dendrite growing in a supercooled liquid.
The results indicatE that the velocity of gr§Wth of a éendrite
'with'time‘%nvariant shape is closer to that prddicted by the

Langer-Krumbhaar stability criterion than to that predicted by

;
7

L 2

the makimum.velocity princ®*ple used by many refearchers.
These results on the applicability of the finite

4

element method to crystal growth problemspare encouraging.

iv



However, certain concerns still remain éegarding accﬁiacy

in calculations Q;FEHEfQEE curvatures and separation of .
numerical instabilities from physical instabilities. If
these concerns and problems can be overcome, a number of
interesting applications of the finite element method to the

study of crystal gr®wth phenomena are pasgsible.

it

. . s s bl casestesasd sl g
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equation (2-8)
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(]

thermal diffusivity
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defined after equation

specific heat
.

.characteristic length

(3-50)
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vector defined after equation (3-56)

defined after equation
defined after equation
variational integral

index in a description
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latent heat of fusion
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unit normal vector

defined after equation
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of the ¢ perturbation

-
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t 7 time
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v - interface velocity, equation (3-14)
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< S CHAPTER 1
FJ
’ ” INTRODUCTION ' g

The problems related to the crystallization Joechanism

of supercooled liquids have been studied thearetlcally and

experimentally for some time by physical chemists and
[ ]
materials scientists. 1In recent years, however, the sybject

f crystal nucleation and growth has received a large amount

[

of attention from scientists and engineers working in such

i

diverse areas as solid state physics, medicine, biological

u
H

sciences, atmospheric sciences, solar ene gy utilization

(thermal energy storage), and desalination of ocean water.

The overall. :fystalllzatlg process is determined by transport

effects (hea, and mass transfer) as well as interface effects

(surface tension and growth kinetics). Discussions of mechan-
ism of crystal growth must consider both, as well as the
nucleation process itself. As Mott (1] pointed out, the
transport process may usually be treaéed as macroscopic
involving the prccegsés of diffusion of heat or matter. On -
the Q%hé: hand, the interface process involves the detailed
atomic structure of the surface.

Depending on the system studied, either the transport

cantrclllng process- \Alternatlvely, both processes may control
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the rate together and indeed, interact with each other [2]).
In‘mgny situations, ' however, the fatgggf removal of latent
heat controls the rate at which crystallization can proceed.
If t%is is thé case the problem of determining the rate at
which the interface boundary aévaﬂgés through the medium
reduces to one of calculating the temperature distribution
in thevsélié and liquid phases.
| An important factor cant&alling the micro- and macro-
structure of the crystal grown from the melt is the direction
of the heat flux at the interface boundary. For solidification
of a melt which is above its'equilibfium:fusian temperature,
heat flows from the melt to the interface and solidification
must be maintained by cénéugti@n of heat from the interface
into the crystal. For a one component system in which heat
transfer is the limiting process the resulting interface tends

to be smooth and isothermal. However, for a crystal growing

into a supercooled melt (temperature less than the equilibrium

]
0

usion temperature) heat flows from the interface ‘to the melt.

n this case the growing interface will tend to be unstable

Ll

and dendritic grawth will result. It is to problems of in- LJA
stability and dendritic growth that this thesis will be o
addressed. )

The term 'dendritic éfaﬁth' when used in reference to

solidification suggests a tree-shaped crystal structure, that

i

a crystal with an intricate network of branches. éenéritic

solidification is characterized by a morpholoqy resulting
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from the gravt§ of long, thin spikes in specific erystgllg?
graphic di:eeti%ns, with regular branches in other equivalent
directions. The branching habit extends to secondary, tertiary,
and sometimes higher orders. The main qualititive e:périEEﬁt—
al observations areé: (a) that for a pure melt, dendritic growth
takes place only when the melt is supercooled, (b) that the
direcé&ens of growth are always strictly crystallographic, (e)
branching occurs at roughly regqular spa:igg, smaller for each
successive order of branching, and (d) that only a small portion
of 1lfquid solidifies in this way [3]. Crystal growth from

. all three states of mattériﬂﬁq:nrf liquid and solid--is known'
to produce this type of marphélagy_ -

The subject of dendritic growth has a whole series of
important consequences for the growth of crystals of many 7
commonly used materials. Some idea of the scale of this can
be judged from the fact that hundreds of million tons of
steel are produced annually, all of which has undergone
dendritic growth. There is a wide range of data available
in the literature on the grcwtﬁgcf dendrites in different
systems (metals, ice, phosphorus, solid state precipitates,
and ionic crystals from aqueous solutions). These data give
an understanding, in a qualitative sense, of the basic pheno-

sociated with dendritic growth. However, to examine’

this derstanding from a quantitative viewpoint, the complex

eat flow problem with moving boundary has to be solved. 1In
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'a general theoretical examination 6f the problem the essential
difficulty resides in the fact that the position of the
boundary on which one wishes to apply boundary conditions
is not known; finding its pasitianiis part of the problem.
This makes the problem non-linear so that solutions may not
be built up:by superposition. Consequently, analytical
solutions must be sought through application of approximate
methods.

A review of pést analytical research in the area of
dendritic growth theory suggests that these techniques may
have reached the limit of their usdefulness and further pro-
gress in the area may require the exploitation of numerical
methods. It is belie%ed that the Finite Element Method is
well suited.to solve ;ueh problems, sinceé the basic concepts
of this ;gthéd have already been found to possess general
applicability to a wide range of field problems. Indeed,

in addition to the usual applications in structural and

fields. Problems in such diverse fields as water seepage [5],
irrotational flow of ideal fluids [6], electrical fields [7],
and heat conduction [8] have already been studied by the
finite element approach.

It is the purpose of the present work to examine the
applicability of the finite elemeﬁt method to the study of
crystal growth ‘transport processes. Specifically, the method.

4
will be tested on twa‘types of problems. The first is an
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investigation of the morphological stability of cylindrical
and'spherical particles undergoing radial growth controlled
by diffusion. The second is'éhe predictia@ of the growth
velocity of a fully developed.dendcite as a function of
supercooling. The primary motiyation is to see if the finite
element method can improve our understanding of the crystalli-
zation process.
To this end, a brief literature survey is made in
Chapter 2 in order to establish a relation between the present
york and what has been reported previously. Chapter 3 is
devoted to fundamental theory, which includes definitions
and basic equations relevant to this study, the variational
"principle, and fundamental concepts of ¥inite element analysis
and the Ritz technique( Chapter 4 presents the analysis of
morphological stability of spherical and cylindrical particles
growing in supercooléd liquids. Chapter 5 contains the analy-
sis of dendrites with the"shapes of parabolic cylinders and
paraboloids of revolution. In Chapter 6, an attempt has been
'_méde to demonstrate that the finite element ﬁethéd can be gsed-
to study the time dependent growth of dendrites.
| The results' obtained by the present approach are
compared with those previously obtained by other methods,
either theoretical or experimental. It is found that géad‘
agreement exists among the results.predictad by these different:

-

ﬁéthods.



Based on the fact that the results compare well
for the problems that were treated, it is suggested that
the finite element metliod may be developed into a useful

tool in the analysis of other crystal growth problems.
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CHAPTER 2° ’
J LITERATURE SURVEY

2.1 Introduction

\ . _ .

A review of the most significant contributions to the
area of morphological stabilit§ in crystal growth and in |
particular to that of dendritic growth will be presented here.
Due to the vast literatgiﬁ-fssociatea with crystal growth
problems, only those papéfs which are pertinent to the
present investigatioh will be cited. An excellent survey of
literature on crystal growth mechanisms is given in the wérké
of Parker [2] and Jackson [9]. For a historical review of
the general problem of dendritic growth, the reader is.referred

i

to. the study by Smith [10].

4.2 Experimental Investigations

The term dendrite was appaféntly first introduced to
the world of crystal growth by Tschernoff in 1879 [10]. Hg
used it to describe the highly branched structure he found
in the centre of metal ingots. With the recognition of crystal
structure of metals it waé assumed, and later demonstrated,

that the directions of the various dendrite arms coincided

with crystographically significant directions of the structure.

i
"
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The modern impetus to this area of crystal growth
science may be traced to the experimental studies of Chalmers
and hié collaborators [11-16), who demonstrated that the
dendrites represent the most advanced stage of interfacial
instabilities in a wide class of materials. With the halp of
. experiments, Wineburg and Chalmers [11,12] alsoc showed that
dendritic growth is observed only if the 1iqu§é is at a lower

interface.

"t
oo

temperature than t

2.2.1 " Dendritic Growth Rate

The growth rate of dendrites for various amounts of
supercoolings has been measured in pure water [17], tin [14,18],
nickel [19],133& [14], and plastic crystals [20]. However,
some of these investigations dealt with the growth rate of
crystals in contact with a solid substrate, which bear little

relationship to the results obtained in free growth from the

Wineburg and Chalmers [12] measured the free growth
of lead dendrites, and showed that the dendrites grew much
faster than the smooth interface. Rosenburg and Winegard

[18] measured the growth rate of dendrites in a supercooled
. : ' A Y

bath of tin with a range of supercooling from 0.4°C to 1l1°C.

®

hey found that there was a substantial scatter in the results,
: Fid

and a factor of three existed-between the highest and lowest

-

values for a given temperature.
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Lindenmeyer and Chalmers [13] meésu:ed the free growth
of ice in pure water along the basal plane at bath super-
coolings between 2° and 6.5°C. They reported the free growth *-

rate v in distilled water to be

v = 0.028 (ar)2:39 cm/sec, , (2-1)

=

where AT is in °C. 1In distilled waterjhaving similar super-
cooling, they observed that the growth rate upon a substrate

was as much as an order of magnitude faster. It was surmized
that this differen§§ was due to the pﬁaximity of a heat sink —_—
which allowed a more efficient removal of latent heat. They
cénsluéed from this result that the rate of growth of ice
:fy%téls in water is limited by the conduction of latent heat
intp the water for free growth, and into the water, the solid
wall, and across the solid wall into the bath for growth

on i substrate.

Walker [19] made extensive measurements on the growth
of dendrites in nickel and cobalt, and plotted the growth
velocity against the square of the supercooling. He found that
up %c a supercooling of almost 175°C, the results fell on
the' v « (AT)? line. i

Ryan [211 investigated the free grawth of single ice
crystals in supercooled water, and measured growth rates for

supercoolings ranging from 0.1 to 2.5°C. His data do not

cooling. . In the range of 0.1°C to 1.3°C, the growth rate obeys
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approximately a power law of sup Ryan also reported

that in the ranée of subcoolings ffom 0.2 to 1.5°C the shape
of the dendrite tip may be approximated by a parabolic
.platelet. His results also showed that the tip radius de-
creases as the supercooling increases.
Mason [22] has reported that ice crystals grow as
needles (paraboloids of revolution) when grown in water in

\

the supercooling range from 3 to 5°C. Hallet [23] measured

—

the growth rates of ice dendrites growing patallel to the ///

basal plane in supercooled water, and his data Ebllowed the

relation \\\\ \

v = 0.08 (a0 % cm/sec, (2-2)

for supercooling between 0.1°C and 2.0°C. He also found
that the déndrite arm width and spacing decreased with in-
creased supercoolings;

Macklin and Ryan [24] made a detailed study of the
growth of ice in pure water at supercoolings up to 7.5°C.
They reported growth velocities which approximately fit the

relationship

-

v = 0.0227 (aT)%-2?

cm/sec, (2-3)'

where AT is in 0.°C.

Pruppacher - [25] determined the rate at -which ice
crystals grow freely in supercooled Water and in dfdute -
! .

acqueeous solutions of various salts. He reported that at

-
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supercoolings between 0.5°C and 9°C, the growth rate of ice _

dendrites can be represented by the relation

22

v = 0.035 (AT)Z' cm/sec, ] (2-4)

He also concluded that dissolved salts affected the growth
rate of ice crystals in a systematic manner. At concentrations
larger than 10-2 moles/liter all salts reduced the growth
rate below the one in pure water by an amount which depended
on type of salt in solution. At concentrations smaller than
10-2 moles/liter some salts did not affect the growth rate
whereas others increased it over and above in the pure water.
He concluded that at low solute concentrations the growth
rate of ice in aqueous solutioﬁs is limited by the‘rate of
dissipation of latent heat. As the solute concentration
increased, the rate of diffusion of solute atoms away from the
interfate became increasingly important.

Glicksman and Schaefer [26] have reported some
results on the in situ observations of dendritic solidification
in pﬁre tin. They used cinematographic techniques to obtain
.quantitative data on the variation of tip profile as a function
of the growth speed, and on the transition of periodic edge-
profile perturbations into true dendritic side branches. They
obgerved that the approximation of a parabolic dendrite tip
appeared satisfactory over a distance of about 9 tip-radii
back from the nose of each deridrite. Further back than about

9 tip-radii the dendrite's shape became increasingly distorted
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from a parabola by the combined influences of side-branching
and interferring neighboring thermal diffusion fields.
Kallunga ] and Kallungal and Barduﬁg (28] con-
ducted extensive experiments to measure the growth fate of
ice crystals in slightly supercooled water. They observed
that the shape of ice dendrites was neither 2-D parabolic
cylinder nor axisymmetric paraboloid of revolution, but it
was similar to ah elliptic paraboloid. They also reported
that the ice crystal growth in slightly subgooled quiscent

water could be represented by the relation

17

v = 0.0118 (AT)Z' cm/sec, ’ (2=5)

where AT is in °C.
4 .
Kallungal and Barduhn [28) also measured the tip

<
radius of curvature of ife crystals and observed that the

tip radii could be expressed by the relation

R = 0.61/AT microns " (2=6)

where AT 1s in °C and is in the range of 0.1° to 1°C.
Glicksman, Schaefer, and Ayers [20] designed an

experimental set up to study the dendritic growth in super-

coole§ succinonitrile, a low entropy—of¥fusion plastic crystal.

They méasured the growth rate of dendrites for free growth

conditions as well as confined growth conditions. They

' reported that for f;ac growth, the growth rate data fitted

a relation



v« (a2 % . cm/sec, (2-7)

for supercoolings ranging from 0.1°C to 7°C. They also
measured the-tip radii of curvature, and reported that the
tip radiu# of curvature was inversely proportional to the
amount of supercooling. FPurthermore, they found that near
the tip, the dendrites were alﬁast paraboloids of revolution.
They compared their experimental results with three different
steady-state theories and found that full agreement between
steady-state theory and experiment was clearly lacking. They
reported that the velocities obtained by theoretical methods
were considerably higher than the experimental values. How-

ever, they found that all the non-isothermal steady-state

supercooling relationship over a limited range of supercooling.
They also reported that the interfacial molecular attachment
kinetics are sufficiently rapid not to influence significantly

the axial growth rate of freely growing dendrites of succino-

nitrilé over a limited range of supercooling.

Summarizing the experimental work on the dendritic
growth rate At can be concluded that although no two investi-
gators agree on the reported value of the growth rates, the

experimental data usually conform to a curve of the form
v = A AT" | . (2-8)

where v is the growth velocity, AT is the supercooling and
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A apd n are constants for a given material. PFor all the
measurements, n lies between 1.5 and 3.0. Also, the shape of the
dendrite tip is somewhere between a paraboloid of revolution
and a 2-p parabﬂllc cylinder depending on the material. Finally,
the radius of curvature at the tip of dendrites is reported

to be proportional to 1/AT by all the investigators.

2.2.2 Morphological Stability

Morphological stability in crystal growth is concerned
with the stability of a particular shape of solid, growing
from melt, solution, or vapour by diffusional pr@:ess, that
is, whether it is stable against small perturbat;ens in shape.
Arakaﬂa {29], and Arakawa and Higuchi [30]) studled
the growth of ice crystals in water and observed that when the (j
supercooled water Ytemperaturé about -0.5°C) was nucleated 7
by placing small hoar frost crystals on the surface, needle

and circular disc crystals grew outwards from the nucleating -

I}

crystals. The circular

[

isc cry;tals developed notches
around their edges as they grew, and later they became six-
sided dendrites.

Williamson and Chalmers ([31) photographed growing
ice discs in slightly subcooled water and observed that at

subcoolings qreater than 0.4°C, the disc morphology became
b

unstable and smgll protuberances appeared on the edge of the

disc. At subcoolings greater than 0.6°C, ice assumed the

, characteristic dendritic appearance shown by snow flakes.
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.They reported that as the supercooling was made greater
~than 1°C, ‘dendrites with side-branches appeared in specifi-
cally preferred growth directions. Also, as the subcooling
was increased the spacing between dendrite arms decreased
and they found that the dendrite arm width ahd spacing

obeyed the following relation approximately:

arm width lD‘%AT cm

arm spacing lﬂiz/gT cm

Lindenmeyer and Chalmers [32]) showed that a circular
crystal became hexagonal in shape and finally developed into
a dendrite crystal with six arms.

Morris and Winegard [33) photographed the growing
é%ﬁdrites and observed that ;he dendrites tip grew with a
vgfiahle shape, and fluctuated in a periodic manner as it
propagated into the melt. ‘Fram their photographs it is
evident that the tip continuously grév larger in radius and
sﬁbEEQuently small irregqularities occurred which eventually
qrew>int§ primary branches.

Hardy and Coriell [34,35] have made measurements of

the growth (and decay) of perturbations on single crystal

L

clinders of ice growing from slightly supercooled distilled

water] Ice crystals were grown with the basal plane normal
to the axis of the cylinder. Hence, growth was occurring

parallel to this plane; the kinetic coefficient for such
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growth is known to be sufficiently large so that the kinetic
(interface attaehgeﬁt) céntributian to the undercooling was
negligible in those experiﬁents. Due to the low undercoolings
and small growth velocities, the conditions were close to
steady-state. The ice crystal was first allowed to come into
equilibrium with a large bath of water at a temperature
islightly above 0°C. The temperature of the bath was decreased
by about 0.1°C and the ice crystal started to grow from radius
of about 0.05 cm. The :rfétal could be rotated about its
axis, and photographed from the side so the faéiug and size
of the perturbations could be measured. They reported that
at first the ice crystal grew as a regular cylinder and the
solid-liquid interface could be characterized by an equation
(incylindrical coordinates r,@,;) of the form r = R where R
depends on time but not on z and ¢. As the c¥linder grew,
instabilities developed gné»the topography of the unstable

interface could be approximately characterized by the equation

r = R + § cos(K¢) (2-9)

where K=6 or 12, and § is a small amplitude facté%ip At a

later stage, perturbations also developed along theiz direction.
In concluding the experimental literature survey, it

should be pointed out that though a wide range of experimental

data exist on the problems of morphological stability and

denéritic §rgwth, care must be exerciggd when comparing them

with theory because the precise conditions under which the
)



experiments were conducted are often not known.

2.3 Tnia;gtical;;nvgstiggtiagg

While the bulk of experimental investigations @f
dendritic growth have been about equally divided between
free growth and confined growth, thi§ certainly is not.true
of theoretical investigations reported in literature since
the overwhelming majority of these works have dealt with
free growth conditions. As mentioned earlier, either diffu-
sion process or interface kinetics limit the growth rate
under free growth conditions. For this paper we will review
only those theories which consider the diffusi@n process as
the rate controlling process as the crystalligatigzxgrcceeds,
although we will mention the use of interface kinetic laws as

boundary conditions for the transport process.

2.3.1 Dendritic Growth Rate

Papapetrou [36), in a classical study of dendritic
growth, suggested that the tip of a dendrite has the form of
a paraboloid of revolution. But it was G.P. Ivantsov [37]
of the Soviet Union who made the first serious attempt to make
a mathematical analysis of dendritic growth rates into its
supercooléﬂ melt. He showed that some aspects of dendritic
growt® could be described quantitatively with heat flow theory
applied at a suitable microscopic level. Using the suggestion

of Papapetrou [36], he assumed that the tip regiopy of a
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dendritic trunk may be adequately represented by a paraboloid
of revolution. He further ;l:ﬁmsd.that the crystal was
isothermal anpd édvaﬁcing at a constant velocity v, into an
isothermal, undercooled bath at temperature T_. He obtained
thersalutign to the moving boundary problem diffusién equation

and showed that the dendrite obeys the equation
—vﬂfzai exp (vﬁfzai) E;(EvR/Eag) = AT ¢L/L (2-10)

where v is the growth rate, R is'the dendrite tip radius,

a, and c, are the thermal diffusivity and the specific heat
of the melt, L is the latent heat of fusion, AT is the amount
of bath sﬁpercgcling? and E; is the integral error function.
However, the above solution dées not completely specify the
conditions of growth. A diffusion solution can be gbtai%ed
for a given unée:ea@lingipravided the product vR is constant,
as is evident from above gquétian (2-10). Thus, for a given
bath supercooling, thin dendrites growing rapidly ar‘thicE
dendrites growing slowly can both satisfy the diffusion
conditions. Commonly, a value of R which maximizes v would
be sought but this is impossible since VR = constant.

In 1960, D. E. Temkin [38], also of Soviet Union,
recognized the limitations of the Ivantsov:Analysis and argued
that the assumption of an isothermal interface was fundamenﬁally
incorrect. He noted that the very existence of the variation |

in curvature along the surface of the deﬁdrite‘implies that

the equilibrium fusion temperature must vary with position in
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accordance with the Gibbs-Thompson relationship. Temkin
also introduced linear interface kinetics into the problem.
For mathematical simplicity, Temkin assumed that the shape
is still a parabolqid of revolution. He also sgsumed that
Laplace equation could be used fpr the problem with small
bath undercoolings, that is when vR/al << 1. He obtained
the solution to the diffuzion'problem with above mentioned

condition to be : “

'vR/Zal exp (vR/Zal) Ei(-vR/Zaz) =

c .
(2-11)

|3

2Py 1
s _1+Ll/uR+Lzy/v1i2

wheré . is the interface kinetic coefficient, y is the

specific surface free energy and Py and pg are the density

of the liquid and the solid phase respectivély. The coeffi-

cients Ll and L2 are defined by
] kl a,c, L
Ll = (1.33 + 0.60 f;) B (2-;2)'
and
k ac,T
- L L°f -
L2 (3.86 + 2.08 f_) Aﬁ———jn (2-13)
8 Py L

where Tf is the fusion temperature of the pure bulk material
and kz and k8 are the thermal conductivities of the liquid

and solid.
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The major difference between the Temkin and Ivantsov

[
o]

results is that the forwmer exhibits a maximum in the function
v versus R. Temkin chose the value of R to be the actual
tip radius which corresponded topothe maximum velocity of

growth. For vR/2a,

g << 1, Temkin showed that the equation

(2-11) may be written in the following approximate form,

- n
AT EL/L

n
o

vR , Py
e

| S|
—
N
1
-
[
M

(1 + L /uR + L, Y/VR%)

3 0.457, and n

growth rate principle to equation (2-14) to get,

where L 1.21. Temkin applied the maximum

(2n-1) L. v

<
]
LN
1
. P\
v
g

R [R ;7(541) Lifu]

%

and R is obtained from the relation

L. n 2 p, L. a T(2n-1) c,AaT 1 ® ,
(2 + Ly = % 3 % .t R - (nﬁl)i%
UR p_(2n-1) L_¥vy nL . u

(2-16)°

Thus, according to Temkin, the simultaneous solution
of equations (2-15) and (2-16) uniquely predicts both’the
velocity and tip radius of a freely growing dendrite for a

given bath uyndercooling.
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(2-15) and (2-16) to obtain

R® = (2n-1) L,v/v, ' (2-17)
and . 2 2n
I T) (2n-1)ap,©, Ap2D © (2-18
TZn-1) 7L, n p; L | (2-18) -

At approximately the same time as the Temkin paper,
Bolling and Tiller [16]) presented an excellent physical
picture of the effects of non-isotherm#lity on the growth
of a dendrite. Independent of Temkin they also recegnized
the non-isothermality of a dendrite due to the variation of
curvature and‘kinetics over the surface. They showed that
the variation of temperature in the solid gives rise to a
heat flux in addition to the latent heat term at the tip of
the dendrite. Thus, the velocity of a non-isothermal dendrite
will be reduced compared to an isothermal dendrite under
similar conditions. Bolling and Tiller also attempted to
derivevexpressions which would determine both the maximum
velocity and the corresponding tip radius. Inspite of the.
fact that in a later analysis Kotler and Tarshis [39) have
shown that their calculations had some mathematical inconsis-
tencies, the Bolling and Tiller [16] work contains numerous
useful contributions to the understanding of dendritic grewth.
Bolling and Tiller gave a detailed review and discussion of

the following general assumptions made in the analysis of
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gsziiizip growth by theoretical investigators in this field.
These assumptionBd are:

(a) growth occurs at a constant speed (quasi-
stationary process),

(b) the dendrite shape is either‘a pa%abelic cylinder
or paraboloid of revolution,

(c) the liquid domain is infinite,

(d) the maximum velocity condition is used' to

-+

specify the velocit

bey

¥

(e) natural convection due to density differences

—%

0

in solid and liquid phase is neglected.

'4 Horvay and Cahn [40] analy:edﬁgfe dendrite growth
problem using four different geometries for the crystal shape;
namely (a) parabolic cylinder, (b) elliptic paraboloid, (c)
paraboloid of revolution, (f) spheroidal. However, thej consid-
ered the dendritic interface to be isothermal. )

Treating the gféblem in parabolic coordinates in a moving
frame of reference; they used the cghventianél technique of
separation of variables. For each geometry, they were able

to “express the growth rate as

<
i

a, (AT) YR cm/sec. (2-19)

where AT is in °C. ., The factor a varied by almost two orders
of magnitude between the parabolic cylinder and the paraboloid

of revolution.
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Hillig [41] "solved the steady-state growth of a
what he called a "self-consistent” method. This method
requires solution for the shape of .the crystal that simultan-
eously satisfies the required he§£ flow and temperature
variation over éﬁe dendrite surface. 1In his method, the
temperature at infinity was not assumed but calculated
using a Taylor expansion. He concluded that the assumption
of steady state is probably iﬁvalid. He suggested that 7
possibly the shape is oscillatory in time and the dendrite
moves with a constant average velocity.

Trivedi [(42] presented an exact solution to the heat
flow equation for the growth of dendritic needles (paraboloids
of revolution) in a supercooled melt. His final result is
Similgr to the equation [2=-11], but his values for Ll and L:2
are not constants but functions @f the thermal Peclet ﬂumbéfi
He also compared his thea:etlcal results with experimental
results on phosphorus and abtained good agreement.

'Tr1VE§1 [43] also analyzed the growth of non-isothermal
dendrltfftblates (parabolic cylinders) growing in a super- |

cooled melt. He expressed the solution for this problem as

) 1
2 B 2 c,AT

(EZR) exp (92?) erfc (%) = i - " o 727

2a, , of) (1+L;/uR + YL,/VR

(2-20)
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where L, and L, are of the form defined by equation (2-12)

and eguation (2—13), but have different values from the case

of the paraboloid of revolution. Foxr the case where kinetic

effects may be neglected and the Peclet number %gs is small,

]
the above result can be simplified to give

VR 1 €y T/L  (2-21)
o = & e — . : ggEEL)
““r ' 1+ sz/vR -

Differentiating equation (2-21) with respect to R and setting

dv

ar - 0 gives

R? - WLy /v, (2-22)

Substituting equation (2-22) into equation (2-21) resulte in

the growth model for a parabolic cylinder as

- 2 .
. a, c, AT 4
27 ' oot o
‘ vV T & 7 (2-23)
. m vL,

Holzman [44,45,46) ‘has made analysis similar to but
independent of Trivedi for both parabolic platelet and para-
boloid of revolution. He gquestioned the traditional time
invariant shape of the dendrites. To maintain a time invariant
shape, the heat balance at the solid-liquid interface requires
that the sum of heat fluxes in the salidzand liquid at each
point of the advancing interface must be equal to the local

rate of release of heat of fusion. Holzman found that this



is not true, and he calculated a quantity he called "exces
velocity”, which is the difference bet;een the true local
growth velocity required to satisfy heat balance, and the
growth velocity predicted for the hypothetical steady state
(shape preserving) model. His results show that the hypo-
Vthetigal parabolic or paraboloidal interface tends to bulge
with a pronounced peak at about one radius back from the
tip of the dendrite.

The analyses of dendritic growth which we have just
reviewed ﬁave all been mathematical and based on idealized,
though more and more realistic formulations of the problem.
With the advent of high speed computers the numerical analysis
of more realistic models became possible. Geering, Dldf%gld
and Tiller [47] were the first to analyze the dendritic é;awth
problem using a Eamguterimadél. They simplified the problem
considerably by considering only one-dimensional heat transfer.
This was done by choosing the subdivisions (or boxes) of the
domain so that two sides were always isotherms and the other
four were orthogonal surfaces. The computer algorithm for
choosing the boxes in this way was analogous to seeking an
orthogonal set in a mathematical solution. They checked the
results obtained from the computer model against Ivantsov's
solution and found to be in excellent agreement. They also
‘'used the model with heat flow ifd interface curvature effect -

taken into account and found ih\agreement with Temkin's

: LS
analysis for pure tin.
-
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Oldfield [48] extended the above mentioned computer
model to simulate the long term growth of tin dendfitgs; He
obtained the smoothed velocity of the dEﬁdrité tip and found
that the growth of the dendrite was accompanied by changes
in shape and a fall in the growth velocity. O0Oldfield surmized
that the dendrite grows with a cyclic flucuation in velocity,
forming a new branch in each phase of slaw»gfawﬁhi However,

" the above mentioned computer models were quite simglified in
form and the heat flux in the solid was neglected.

Recently, Langer and Muller-Krumbhaar [49-51] have
suggested replacing the widely used maximum velocity principle
by a stability :riteriaﬁ of the form vRZ = constant, where
v is the growth velocity and R is the corresponding tip radius
of the dendrite. They claim that this type of stability
criterion is valid for small Peclet numbers. They found that
a direct evaluation of the relévant corrstant of proportionality
yields values of v and R, as function of undercooling which
are in substantial agreement with the ﬁgasuremEﬁts of Glicksman
et al. [20] on dendritic growth of succinonitrile crystals.
Using the Langer-Muller-Krumbhaar stability theory Langer,
Sekerka and Fufiaka {52]) have presented a yniversal law for
dendritic growth rates. They checked their universal law with
measured values on ice and succinonitrile dendrites and obtained

good agreement.

- Summarizing, we find that both isothermal and non-

isothermal theories predict that the growth rate decreases as
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we change the shape from a paraboloid of revolution to tha
of a parabolic cylinder. The exponents on subcoolings, AT
varies from 2 to 4 and the growth rates predicted at a given

AT vary by about 5 orders of magnitude. -

2.3.2 ﬂ@gphélagiegl;$t§b;;i§y

The stability is tested in theoretical development,
by assuming an arbitrarily small perturbation in shape to ‘be
present, and then seeing whether this perturbation will grow
or decay. This is different from the question of whether the
shape and equations are shape preserving (dendritic growth

problem).

testing for shape stability. Prior to this paper, the shape
preserving ellipsoids of Ham [54] were generally believed to
imply that such shapes were stable whereas in fact they had
not been tested for stability.

Mullins and Sekerka [53] studied the stability of the
shape éf-a spherical particle undergoing diffusion controlled
growth into an initially uniformly supersaturated matrix.
This was done by supposing an expansion, into spherical
harmonics, of an infinitesimal devigtian of the pafﬁiclé from
sphericity and then calculating the time dependence of the
coefficient of the expansion. It was assumed that the pertin-

ent diffusion field obeyed the Laplace's equation, an assumption
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whose conditionﬁ of validity were discussed in detail. It
was shown that the sphere is stable below and unstable above
a certain radius Rc’ which is just seven times the critical
radius of nucleation theory. They were able to look at any
arbig;arily shaped perturbation by examining each of its
harmonics. 1If any of these harmonics evolve with a faster
growth rate than the smooth interface, then this interface
will become unstable. The perturbation method of Mullins and
Sekerka has proven to be a most valuable tool 'in the dgvelap&b
ment of the theory of interface stability.

Coriell and Parker [55] extended the.results of Mullins
and Sekerka for the sphere to the case of cylinder. Both
perturbations in circular cross-section shape were considered
as well as perturbations along the lepgth of the cylinder. For
a perturbation of the form r = R + 6§ cos(K¢), where k is a
posiéive integer, the cylinder was found to be stable when

its radius was less than a critical radius R and unstable

c’
when greater than Rc, analogous to the case of a sphere.

‘ Tarshis ([56]) followed the perturbation procedure
originally proposed by Mullins and Sekerka (53], but modified
it slightly to incorporate a coupling equation which provided
a means of systematic inclusion of other physical factors.
The results of his study indicated that interface'gttachment
kinetics can markedly affeq' the stability criterion. .

Tarshish considered the stability of a single protuberance and

not of the individual harmonics making up some arbitrary
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distortion,as in the perturbation method.
Kotler [57] analyzed the stability of the dendrite
stem, employing a right circular cylinder as its physical
representation. He also treated the stability of the para-

boloid of revolution with the major emphasis on the region

' near the tip. In each of these cases he took into acceunt

the interface curvature effects as well as attachment

kinetics. He concluded that the re

ity, for most metals and ice, appeared to be less than one
tip radius behind the dendrite tip.

To summarize,ie would seem that at present the theore-
tical methods have arrived at a point at which improvements
are very difficult to ach;;;}. It may héﬂevgf be that pro-
gress can be made using some form of approximate numerical
method. Since the interface shape is always curved, and
boundary conditions are complex, the finite element method
seems to be an appropriate choice. The finite element method
has been successfully used to solve various partial differen-
tial equatioﬁs of fluid-mechanics and heat transfer, and
fundamentally the dendrite problem seems to be similar in
form. The next chapter describes the proposed igthéd in

L4
detail.



CHAPTER 3
FUNDAMENTAL THEORY

In this chapter the fundamental theory on which
this research is based will be presented. The first portion
deals with the aspects of thermﬁdynaﬁics that have dpecial
relevance to the crystallization process, while the later
portions deal with the mathematical formulation of the
problem. A brief description of the finite element method
is also presented for the benefit of those unfamiliar with

the method.

3.1 The Physics of Freezing

In most engineering literature the process by which
a liquid solidifies is described as occurring in three
heat loss stages. First the liquid which was initially at
some temperature above f:;ezing cools to its equilibrium
freezing temperature. Then with:further heat loss, solidifi-
cation begiéﬁ and continues for some time (depending on the
latent heat of fgéicn and the rate of heat loss) at constant
temperature. Finally, when all the liquid has turned to
solid, the solid begins to cool. For example, suppose 1l gm
of water, initially at 40°C and atmospheric pressure is to
be cooled at a rate of heat loss, say 1l cal/min. The cooling

process can be depicted ideally by Figure 3.1. The cooling

30
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continues at a constant rate for 40 minutes, at the end of
which the temperature is 0°C. With further heat loss, ice
begins to form and continues forming for 80 minutes (the
heat of fusion of ice is, 80 cal/gm): during which time the

temperature remains at 0°C. At the end of the 80 minutes,

0

ooling proceeds once more, but now at a rate of approximate-
ly 2 °C/min because the specific heat of ice is approximately
0.5 cal/gm°C.

In reality, when a quantity of ligmid is cooled, freez-
ing does not occur in the ideal way shown in Figure 3.1. -
Actually, if there is no solid phase present a liquid can be
cooled substantially below its equilibrium fusion temperature

before freezing occurs. Such a liquid is in a metastable’

upercooled state. It is found experimentally that the

maximum supercooling attainable increases with increasing
purity of the liquid, particularly as far as foreign particles
in suspensions are concerned, and that it is easier to super-
cool small droplets than larger volumes of liquid. Both

these effects are easily accounted for by the assumpéign
division of a sample of liquid into many small droplets
effectively isolating the most active foreign particles into

a small fraction of the total number of droplets. For example,
we may easily cool tap wateg to -4 to -7°C, while Water drop-
lets can exist down ﬁs=2135&?[551. Except in the case of

materials which form glasses, it is not possible to maintain
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the supercooled state indefiniﬁely or to achieve more than a
limited degree of superzaaling:befgre spontaneous freezing
occurs. Figure 3.2 shows a;mﬂre realistic graph of cooling
Process of 1 gm of water at 1 atmospheric pressure when
cooled at a rate of ézal/minuté.

This behaviour can be very simply understood from
considerQZian of the process of freezing. From Figure 3.3,
which shows the free energy-temperature diagram with a P-T
diagram, it is clear that at any temperature below that of
equilibrium, the free energy of the solid is less than‘that of
the liquid, thu% it is energetically favéurable for the
liquid to change to the crystalline state. This can ﬁat be
accomplished discontinuously; first a verf small volume of
liquid must crystallize and this crystal must then grow until
all the liquid has frozen. A small crystal embryo is, however,
in an energetically unfavourable state because of its very
large surfaceita—vaiumeAratia and the positive free energy
associated with its interface with the liquid. There is
thus a free energy barrier to be overcome before freezing can
‘commence and this barrier can only be surmounted by a nuclea-
tion process depending upon thermal fluctuations. - The stability
of a small crystal embryo may be enhanced if it grows closely
upon an insoluble foreign particle and in this case the nucle-
ation process is termed heterogeneous. If theré are no foreign
particles or surfaces present, then freezing must commence

by a process of homogeneous nucleation within the pure liquid
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itself. This study deals only with the pure liquids, thus
only the homogeneous nucleation is of concern here.

From thermodynamic treaﬁment of equilibrium across
a curved interfaceg it can be shown that in a pure supercooled
melt a small crystal will melt while a large crystal can

continue to exist and grow. The proper criterion for

"smallness”, in this sense, is the radius of curvature. If
this is less than some galue, the critical radius, that
depends on the temperaé;;fei melting occurs; if 1ar§er, it
does not. The critical radius can be axgre;sed as: (3]
- ZTTE

LAT

(3i13
B

where T. is the equilibrium temperature, Y is the surface
free energy per unit area, L is the latent heat of fusion and
AT is the améunt of supercooling.

The basic process to be considered after nucléaticn‘
is the°process of growth. The rate at which free;iﬁg pro-
ceeds is controlled by the rate of removal of the latent
heat. If it is not removed, the temperature rises to the
point at which no more freezing can occur--that is, the
freezing point.

The latent heat is removed by conduction; this may be
- through the crystal (as in Figure 3.4(a)) cf?inta the liquid,
if this is supercooled and therefore at a la%gr temperature
'than the interface where freezing occurs (Figure 3.4(b)).

This study is concerned only with the latter case.
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When the liquid is supercooled and freezing proceeds
by rejecting latent heat into the liquid, the shape of
interface is not smooth. This can be explained as follows.

igure 3.5 shows the schematic of removal of latent heat

|

through the liquid when freezing proceeds in a supercooled

elt. On a flat interface r = «, the latent heat dissipates
into a prism of liquid ([Piqure 3.5(a)], while the heat from

a curved interface dissipatgé‘gnta a certain solid angle
[Figure 3.5(b)] and hence dissiﬁates at a faster rate. Thus,
any part of the crystal interface which gets aheadéaf neigh-
bouring regions is in a more favourable position to dissipate
latent heat of crystallization and so its growth rate is

enhanced. This situation leads to instability and dendritic

crystal growth with dendrite arms branching out into the liquid.

3.2 Physical Model and Assumptions

To begin simply, this study is concerned with the
initial growth development of a solid phase in a pure super-
cooled melt. The geometries of interest are the following:

(a) Circular cylinder

(b) Parabolic cylinder

(c) Paraboloid of revalu%icn .

(d) Spheroidal

Particular interest in the shapes indicated arises
because considerable experimental data and analytical results

are available on growth rates and stability of these shapes
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It is assumed that thg rate controlling process isi
thermal diffusion, and that interface kinetics may be %gﬁétedi
The thermal profile in front of the solid is illustrated in
Figure 3.6. The equilibrium melting point of the tip (inter-

r

face) is depressed an amount AT, owing to the radius of
curvature of the non-flat interface. The amount of freezing

point depression due to curvature effect (Gibbs-Thompson

effect) is given by

(3-2)

[ g
[ ]
It
o H-;I

Te

in which vy is the surface free energy, K is the mean curvature,
L is the latent heat generated per unit volume of solid
produced and Tf is the equilibrium fusion temperature. As
'the solid grows, heat is released, which is dissipated into
the supercooled melt. This heat diffuses down a temperature

gradient into the melt, resulting from the temperature

difference ATE; thus

—j AT

(3=3)

]

>
3
+
>
H

The other basic assumptions to be made are the
. . ]
following:
1. Densities of s0lid phase (crystal) and the super-=

cooled liquid phase are equal, thus, the moving boundary does
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Figure 3.6 Thermal Profile in Front of a Dendrite
Tip Growing in a Melt Under Cooled
aan>u.ntA'I‘=='l‘f-'l‘(r
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T ™
0

e

not create any convection'in the 1iquid as the growth proceeds.
& .
2. Physical properties are constant throughout each
phase.

3. The temperature far from the interface is uniform

4. The solid front moves with an average, constant
growth velocity v. This implies a quasi-steady state process.
The quasi-steady state implies that the quantities of inter-
est, for example temperatures in this case, do not change
with time with respect to a coordinate system moving with

velcéity V.

3.2.1 Discussion of Assumptions

The assumption that conduction is the main mechanism
of heat dissipation is most important. 1In the fusion problem

convection can arise from one of two saufﬁigf irstly, a .

‘urs because .

convection due to displacement of the %ﬁquid

of the different densities of the liquid and solid, Pe and Pg
respectively. As the freezing proceeds, it can be shown using
the conservation of mass that the liquid Ms displaced ahead

of the crystal with a velocity given by
g = -g v 3-4)

where Vo is the normal velocity of the interface and .-

£ = (ps- @L)/pii Chambre [53] has shown that unless ¢ is
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appreciable, with respect to unity, the temperature distri- -
bution in the liquid and solid is essentially unchanged from
the ¢ = 0 case. Since ¢ < 0.1 for any material we may wish
to consider, the effect of this%'displacement' convection
upon the temperature distribution during dendritic growth
can be justifiably neglected.

The other type of cchvectian; natural convection,

occurs due to density differences in the melt. It is not so

0
[

clear that this type of convection can be neglected in all

cases. Gilpin [60] has shown natural convection has a signi-

for supercoolings less than about 2°C. These experiments were
V4

done in large vessels. Whether or not the same conclusion
would apply for dendrites growing in mqre confined spaces
is uncertain. The assumption of constant material properties

justifiable since the temperature'range of interest is not

Ph

rge.

B

very 1
The assumption of uniform temperature far away from
the interface boundary was also made. Bclliig and Tiller [16]
have stated that in practice, if the far field boundary is
more than 10 aliv away from the solid interface, where a_is

te

e

the thermal diffusivity of the liquid and v is the dendr
velocity of growth, the temperature remains fairly constant.

In this study,the far field boundary'is obtained by consider-
ing various sizes of domains and choosing the one which justifies
the assumption of nearly uniform temperature far away from

[

the interface.
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3.3 Mathematical Formulation and
' Governing Equations T

The core problem is to solve the quasi-steady state
heat equation for the temperature fields inside and around
a crystal, of some predefined initial shape, growing into
a pure supercooled melt.

The differential equation for heat transport to be
solved for quasi-steady state conditions iﬂ the moving

coordinate system fixed to the dendrite tip is

2 '\?BTgléqT,ﬁ A
VT3 2 a 3t 0 (3=5)

where a is the thermai diffusivity, and v is the growth
velocity of the dendrite.. The velocity v, is of course, a
quantity that is ultimately to be determined. Setting the’
right hand side of the equétian (3-5) to zero gives the quasi-
steady state approximation which will be used throughout this
analysis. That is, it is assumed that the diffusion field
responds very quickly to changes in the shape of the moving
interface. Also, since equation (3-5) is to be solved both
inside and around the gr&wing dendrite, subscripts s and &
will be used to denote solid and liquid!:espéatively.

Equation (3-5) is to be solved subject to two boundary
conditions at the solid-liquid interface. First, there is a
thermodynamic boundary condition due to the Gibbs-Thompson

effect that is written in the Eé:m
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Tif = Tf i At ' (3-6) .

in which Tif is the interface temperature; Tf is the fusion
temperature of the pure substance, K is the curvature of the
surface; y is the surface free energy; and L is the latent heat
per unit volume the solid formed.

The second boundary condition at the interface is the

heat balance condition:
Lv = -k, VT, + ks VT) . n - (3=7)

where n is the outward directed unit normal at a point on the
surface; and v is the normal velocity of the surface at that
point. kz and ka are the thermal conductivities of the liquid
and solid phases respectively.

In addition to the interface conditions, T, equals T_

(a constant) at a distance far away from the tip of the dendrite.

3.3.1 Nanénimegsianalézat;qg .

Equations (3-5) through (3-7) can be non-dimensionalized’

with help of the following substitutions:

) 0 = o = jf ' (3=8a)
» ’ f -« ’ . )

]

Let

-3

(3-8b)

nﬂlw ]
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o e B L 3 o o E el
- . d v
c L
Ve T . | . (3-8)
v = v' v, (3-8e)
“—and
K = K/d_ | (3-8€)

and tc are characteristic length, velocity and

v
where dc' c

time respectively. The non-dimensional variables, n, £, v',
8 and K' are respectively length in r direction, length in z
direction, velocity, temperature and curvature.

The differential equation (3-5) now becomes
c %g = , 3=9)
Ve + —=_=% 3F 0, (3=9)

and the interface conditions become

Tf Yy K

% T TE T mTo (3-10)
c f "=

and
. ' TfiT: L
L vnn - [(- kl Vel'* k8 VEE).Q_] (;:Ea;)_ ) . (3—1&)

By choosing the characteristic length to be

%
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(3-12)

[
equation (3-10) reduces to B.¢ = =K'. Further, egquation

' (3-11) can be simplified by letting

7f77 z = ], , (3§13)
This determines the characteristic time and velocity; .

S T S . (3-14)

£ . (3-15)

Also, define Stefan number in the liquid

. L
Ste —
ok L

]
|
|

|
|
~

(3-16)
and the Stefan number in the solid as -

. =T )p
Ste, = S £ * s | (3-17)
8 L

&

Then to get a complete temperature distribution we need to
solve the following differential equations for the domains

given in Figure (3-7):
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= -1  on S : (3-19)
: —= 0. ~ ons,, s, T (3-20)
6, = § "5 =K' (n,£) on S, (3=-21)

(ii) Solid region

wn
r
m\
L]

vZo_ + vt L ste, =S =0, - (3
) . .

< with boundary conditions

es = eif on 54 (3-23Yy

‘ B === 0, on S, S (3-24)

L™
(=]
m



3.4 VAriational Formulatjon

Often boundary value problems have different but
sequivalent formulations--a differential formulation and a
:vgriaticngi formulation. 1In the first, a partial differential
equation is written, and its direct solution is attempted
subject to given boundary conditions. In the second, ‘the aim_
is to find the unknown function or functions which ‘

make stationary a functional or system of functionals
subject ta the same boundary canditignsé The two gtcblEm
formulations are mathemati:aliy equivalent becéﬁse the N
functions that satisfy the differential eguations and their
boundary conditions also extremize or make stationary the
functionals. Detailed procedures for formulating many problems
of engineering and applied physics by variational approach
can be found ig texts by Mikhlin [61], Schecter [62], and

Kantorovich

To formuldte a two-dimensional boundary value problem
of the type given in the last section by a variational

approach, consider the fallguin§ integral
1(6) l‘]‘“a_e 2, (gg)z - 249 0)dn A  (3-27)

where D is the eitire domain under consideration. The bﬂunﬂi??%axa
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conditions are exactly the same as those used in the boundary
value problem. The object is to find a function 6(n,£),
céntiéucus in the region D together with its partial deriva- '
tives of the first and second orders, satisfying the specified
boundary conditions and giving the integral I(8), Eg. (3-27)
ia minimum value.

| Let 8(n,{) be a function which minimizes the integral.
I(8); let us consider the value of the integral’for the function
8(n,E) = 8(n,E)+a B tn. (3-28)

|
where é(n,&) also satisfies the boundary conditions and h‘

a parameter. Since both 8 and S satisfy the boundary conditions,
B(n,g) must vanishrgn the portion of the boundary on which o
is specified. p

. To minimize I(6), a necessary condition is the vanish-

ing of the first variation of I(6):, which is §I(8). The

- ,
requirement is therefore : e -
§1(08) = [ a_ I(6+ uB)] =0 (3-29)
R da ° ' et
a=0
where I(6 + aB) is given by
I(6+aB) = ff[(gi + a )2 + (%%-+ a %%)2»- 2g (0 + aB)}

*

dndg (3=-30)
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ifferentiating (3-30) with resp

respect to a and getting a=0
gives

P A

® e - g][z so s + 22228 _ 298y anas (3-31)

In the above expression for §I(8),

the first two terms can
be transformed by means of Green's

formula, and equation (3-31)
can be written as
81(0) = -2 { J[(v%0 + gygandag + [ - 28 4¢ - ] dn] 8} = 0
D r an 3
* (3-32)
where [ is the contour of the domain.
and the

As the area integrals
line integrals are independent and that B(n,£) is
atﬁitrary, the result is,

v28 + g =0 onD (3-33)
and
f128 g - 28 4018 = 0
p?am 3 | :

(3-34)

However, on the portion of I (say rl), on which 6 is specified,
g(n,g) = 0, and on the remaining portion (say r,), equation
 (3-34) gives :
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90 e - .
o ﬁdg = 3¢ dn =0 on T, (3-35)
Equation (3-35) can be reduced to the form
. 8 3~
ﬁ 0 on r‘z (3-36)

when n is the unit normal.
Thus, we can see that the minimization of the integral
represented by equation (3-27) results in recovering Ehé boundary

value problems arrived at in section 3.3 provided an approxima-

tion is made such that

381
- 9, = v' Stel §E; (3-37)
for the liquid region and
k a6
L . )
9g = g V' Ste §f§ (3-38)
i -

for the solid region. It is seen that the functional does not
lead to the partial differential equation if g is taken as a
function of 6. However, the approximation considering g as
only a function of position is justified because the terms
described by Eq. (3-37) and (3-38) are intzadu;e% iteratively
in the computer program.

A similar analysis can be made for the case where
the growing dendrite has an axis éf symmetry. The integral
to be minimized for arriving at the boundary value problems
represented by equations (3-18) and (3-22) for the axisymmetric

case is
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I(8) = éTI(ig)z + (%%)3 -2 g 6]n dndE (3-39)

where the growing dendrite is symmetric about the £ axis.

3.5 The Finite Element Method

T

The finite element method is one of the newest and
most pgpular numerical techﬂ;ques for solving the differential

equatlcns of engineering and plied physics. This method has

been used extensively ;gsf! nt vyears because it has, in

”'-,-" 7
general, several outstanding advantages. Some of the main

l. 1Irreqularly shaped boundaries can be aéprcximateﬂ
using elements with straight sides or matched exactly using
elements with curved boundaries. The method, therefore, is
not limited to "nice” shapes with easily defined boundaries.

2. The size of the elements can be varied. This
property allows the element grid to be expanded or refined as
the need arises.

3: The material properties in adjacent elements do

the method to be applied

not have to be the same. This allow
to non-homogeneous andlanisctrcpic configurations with
relative ease.

4. Once a computer program has been developed, all
problems for which the equations are the same can be solved

)
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simply by supplying the computer with appropriate boundary
coofdinaies and material properties.

The finite element method, When applied to heat
transfer problems, generally consists of the fcllcwing steps:

l. Discretization of the domain under study; definingr
the nodal points and elements.

2. Defining the element function for a single eleﬁent
and evaluation of the matrices of the elements.

3. Assembling the complete matrix of the continuum
and application of €he boundary gcnditiaﬂs:

4. Solution of the resulting-system of equations to
obtain nodal temperatures.

5. Calculation of any other functions (temperature

gradients) based on the nodal temperatures.

The first step of discretizing the domain involves
the decigion as to the number, size, and shape of tgé elements
used to model the domain. This decision has to be based on
physical rea;oning and experience. For example, the element
Size can be decreased in the areas where the desired result
may vary quite rapidly (high gradient values), and can be
increased in regions where the desired result is relatively
constant. 7

Each element is then analyzed separately and its prop-
erties are generally derived from the minimization of the
functional or Galerkin type expression governing the problem,

after choosing a set of functions to define uniquely the
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temperature within each "finite element®™. These approximate
functions have to satisfy the admissibility and completeness
conditions for the problem. Admissibility implies continuity
of essential variables between elements, and that the order
of the expansion is such that the terms are well defined in
the variational statements; for completeness, when the elements
tend to be infinitely small and hence derivatives inside the
variati@gal statement tend to be constant, the approximate .
function must %epresent tﬁis constant derivative condition.

If these conditions are satisfied the solution will converge
to its correct value ,as the total number of elements is in-

creased.

3.5.1 The Finite Element Method Applied to
-he tic Growth Problem

In variational form the temperature distribution
problem to be solved is that of minimizing the functional
given by equation (3-27) for the two-dimensional problem and
for the axisymmetric case the functional given by equation
(3=-39) is to be minimized. Since the procedures to be followed
in the finite element formulation are the same for two-dimen-
sional and axisymmetric problems, only the axisymmetric case
is described here in detail. The main difference comes in
evaluating the element matrices, which are given in Appendix 2.

Consider the case of an axisymmetric dendrite growing
in a supercooled liquid. The ultimate objective is to deter-

mine the temperature distribution inside and around the
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dendrite, and the temperature gradients at the interface to
caleulate-the growth velocity of the dendrite under given
‘ccnditigns_ -

i First the region under consideration is divided into
a number of élements. The type of the element chosen for this'
study is a triangqular element with 8ix nodes, as shown in
Figure (3.8). In order that the element mesh may be generated
automatically by the computer on supplying a minimum amount

of input data, the elements are chosen in a block pattern

i1

8 shown in Figure (3.9). The node numbering syst also
follows a distinct pattern. The numbering system of nodes
and the pattern for elements allowed for easy changes in total
number of nodes and the size of individual elements. Details

of the automatic mesh generation procedure are given in

The six node tiiangulaf element enablés a quadratic
variazian of the temperature within the element. The quadra-
tic element is known to give good results with very little
extra camput%tianal work ccmpa;éd to the linear element, and
withaut the programming complications present in other higher
érder elements or the isoparametric elements.

The genératisn of the interpolation function for a tri-

angular element is simplified considerably if one works with the

A,
b, = -v% i =1,2,3 (3-40)
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where A is the area of the triangular element and Ai are

the areas of the subtriangles as shown in Figure (3-8).

Thus, the side connecting nodes 1 and 2 is described by
vy = 0 etc. We have then three area coordinates (@1.w2,w31

but only two are independent since

wl + wz + ws =1 . (3-41)

The gquadratic variation of the temperature, Em, in

L7
the mth element, expressed in terms of the six nodal values

o7 (i‘é\%_pé 6) is ) -

i

(3-42)
where ~—N\
Xg = <9y = 1), by(29, =1), ¥y (2, - 1), 4 ¥y,

Since n is a linear function in the n-f{ plane, it is giverf

exactly b

-

LI I T - (3-44)
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on any triangle in the n-f£ plane, provided n.

), are the vertex

radial coordinates. Hence, the functional (3-39) may be

expressed as the Heighted .sum of three portions

m - Jm 2 m 2 )
3 m .Y Y m
= » . 3 — oy - - E"
T(e) isl;. nlv g- ¥y “371 ) o+ (ag ) 2g 6] dndg

(3-45)

Next, the derivatives with respect to n and £ may be written

as rd
. |
30 - -6 .m - "
3 lé; 6y Py (i=1 to 6) (3-46)
and
> 0™ 6 .m 2 o e 147
3E "iél Bi Pi ii;l to 6) (3-47)
where
l — A =131 = [ T = - -
) (3-48)
) bk = n; TNy ) (3-49)
and -
) (3-50)

[ ]
|
L
1
E it
[
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¥

;nd pim is obtained by replacing the b's with a's in the
expression for Pim;
Let the term g be approximated by an interpolation

expression

o

(3-51)

0
]
N ™
m\
P..
b
oot

[
et

then the equation (3-45) can be written as

N E 6 -
1(6™ = 13 n,™ gfwl [z o pp?s c 8P )2 184 x oM
i=1 * =1 K K =17 3

dnde  (3-52)

3I(e™) _ 3 m , s a M o R - .6 - =
—am - I g"‘i E 05 (BPy + PPy = 2 151 90y

ar
L
>3
o
et
[
Mol

dndg =0 (3-53)

&

Equation (3-53) can be simplified considerably if all qualities

independent of the triangle size and shape are evaluated once

for all. To assist in doing so, define

. m .3 m . o Soo ea
SA[; = I AU | NG PiP;) dnag (3-54)
k=1 Y
and o

oal; = 2 ffug xy xy an ag (3-55)
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With this notation, the minimiZation equation (3-53) becomes

>

SA 0 +QAG =0 (3-56)

where SA and QA are 6x6 matr%gos and 8 ;nd G are 6xl1 vectors.
The functional minimi;ation problem has thereby been
reduced to a simple matrix equation, in which the coeffigient
matrices SA and QA are easily assembled. The element matrices
SA and QA for axisymmetric elements and S and Q for two-dimen-
sional elements are listed in Appendix 2. Also given is a

. sampl‘l integration.

‘For a dendrite growing at constant speed, the second

" part of the above matrix equation contains terms involving v'

ag

and a¢ (see?:ations 3-37 and 3-38). Since v' and % can
only be obtained after the temperature field has been determjin-

ed, an iterative process is used. That is, the first computa-

tion is done with Ste = 0 so the v' g% term drops out. The
Yesulting temperature field is used to calculate v' and g%

~and the term g = v' Ste g% is introduced as an effective /)

distributed heat generation in the second iteration. Typically

5 or 6 iterations were required to converge to a self-reprodu-

cing result. It should be noted that for growth of a sphere
or a cylinder, this problem does not arise because Ste is

assumed to be zixo.

‘
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‘ Once the individual matfisfﬁ all the element
are obtained, es Ssentially a baakkegp;ng operation is required
to assemble the element matrices and apply the boundary !
cgnditigngi The method for assembling the element matrices
and application of the boundary conditions can be found in
" Standard texts [64-66].

The global matrix arrived at by the above mentioned
assembly process ig always symmetric and banded. The band
width is Proportional to the largest difference between nodes
in thggsame element. Thuys, considerable savin ng in storage
requirements ig realized if only the diaggngl and upper (or
lower) d;agnanal elements are stored. " As shown in Fiqure (3-9)

the numbering of the nodes is such that the minimum bandwidth

i8s realized.



- CHAPTER 4

¢ STABILITY.OF PARTICLES GROWING IN

A SUPERCOOLED MELT

4.1 Introduction .
.

/
The purpose of this chapter is to examine the
applicability of the finite element method to study the
stability of a phase boundary. As mentioned p:eviggsly,
the stability is tested by introducing a perturbation in the
original interface shape and determining whether this per-
turbation will grow or decay.
Because some of the heat flow problems arising out
"of stability studies can be solved exactly by analytical
methods, an opportunity exists for checking computer
modelling methods. The computer models and their results

can be compared at each stage with analytical results.
>

4.2 The Unperturbed Growth of a Sphere
Fram a Sllghtly'Supercaaled Melt

Consider the case of a solid sphere (Figure 4.1)
growing in an originally uniformly supercooled melt. If the
growth is assumed to be diffusion (heat transfer) controlled,

we need to solve the time dependent diffusion equation.

65 —
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The Geometry of a Sphere Growing
Supercooled Liquid
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avir - A2 = NI

subject to the boundary conditions

TL (r =, t) = T_ . . (4.2a)
'rs (r o, t) = finite (4.2b)
Tl (r=R, t) = ?s (r=R), t) = Tff = Tf - 'I‘f rk (4.2c)

and the heat balance condition

aT aT
- kl [ s_il + k_ ['5_5 = L g% , (4.3)
I r=R T r=R

to arrive at a formal solution for the growth of a sphere.
An exact solution to the above mentioned time dependent
diffusion (heat flow) equation is possible only if the effect’
of capillarity (interface curvature effect) is neglected. But
it is not justifiable in Feal'situations to neglect capillarity. =~
It is reasonable to assume that if the supercooling is-
small then the temperature at any point near the growing
3T

particle changes slowly with time and the term 3t in equation

(4.1) is negligible. Mathematically speaking, if



és
(T, = T)

Ste = & £ << 1, - (4.4)

then we are justified in approximating equation (4.1) by the
. Laplace equation as was shown for the case of a growing dend-

rite in Section 3.3.

0. (4.5)

The solution of the Laplace equation (4.5) subject

to the boundary conditions (4.2) gives

(P.. - T.)
- if «
T, =T, + = R. (4.6)
we find from equation (4.6)
aT T -7 :
et 4 - - _if =

and the growth rate of the sphere can be obtained from equation

(4.3) to be N
K
. dR _ 2 -
R= a&& 7w Mg =T (4-8)

. \

assuming Ts = Tif for all r < R.

The results based on the equations (4.6-4.8) provide
" an excellent starting ground for testing the accuracy of the
finite element method for solving crystal growth problems.

The finite element prograpme was run for a sphere having an
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initial radius ranging from 50 R* to 250 R*, where

[y
Wy

R* = 2T Tf/(TfiT:) is the classical nucleation radius of

a sphere. Since it is not possible to have the outer boundary
of the supercégled melt at infiﬂitf while using the finite
element method, an approximation has to be made that at some
gufficiently iarge finite distance away from the interface

of the growing sphere the melt is at a uniform temperature, T,
In the present analysis the radius of the outer boundary was
taken to be 60 times the radius of the ice sphere.

The domain to be considered for the finite element
solution of the spherg growth ér@blgm is shown in Figure
(4.2). For this it ig enough to consider just the one quadrant
as shown in Figure (4.2).

Figures (4.3-4.5) and Tables (4.1-4.3) present the

comparison of the results obtained by the finite element

method with the.analytical solutions. It is evident that the
finite element method approximates the distribution of temper ~-
ature and temperature gfadiént‘arauﬁd a growing sphere very
accurately, and glle same is true for predicting the growth

rate for spheres of different initial radii. Further, it is
seen that the finite element method predicts the temperature
distribution extremely accurately near the interface, while

the accuracy is not so great far away from the interface.

But, in stability problems and the problems of dendritic growth
we only need the temperature distribution near the interface,

thus further justifying the assumption of considering an
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Fiéure 4.2

The Domain to be Considered for the

Study of the Growth of a Sphere
in Supercooled Liquid '

70



71

Figure 4.3

xin

A Comparison of the Exact Solution

and the Finite Element Bolution for the

Temperature Distribution Around a ,

Sphere Growing in a Supercooled Liquid
‘> T-Tf

(R=100R ; 6 = )

Tf- Ta_




49

ir

-

Along Horizontal Axis

72

¥

10‘1 Tr 1 1 1 ° 171 I[ T T 1 T 1T 1717

Exact Solution
1072 ¢
EE ~ 4 Finite Element Solution 3
25 =
10-3 Lo —
10 3 3
B - = .
2 E
1074 —
sF 3
2} =
1078 - E
sF . :
= -
2&- -
lﬂig - — T N | 1771_L¢l — 1 I S N R A A |
y - 2 3 4 § 7889 2 3 4 5 &8 7838
100 10! 102
ro,
R
A *.1
Figure 4.4 A Comparison of the Exact Solution

and the FinYte Element Solution for
{ the Temperature Gradient Around a
Sphere Growing in Supercooled Liquid

(R = 100 ¥)



™

Along the Vertical Axis -

——

:Tr'rlil" T T 1 T T T 1T

——— Bact Solution

4 Finite Element Solution 3
=

Figure 4.5

A Comparison of the Exact Solution
"and the Finite Element Solution for
the Temperature Gradient Around a
Sphere Growing in a Supercooled Liquid

¥

I
+ (R =100 R ) . -



74

=~ TABLE 4.1

A COMPARISQN OF THE EXACT SOLUTION AND THE FINITE ELEMENT
SOLUTION FOR THE GROWTH RATE OF VARIOUS POINTS
ALONG THE INTERFACE OF A SPHERE GROWING IN

SUPERCOOLED LIQUID (R = 50 R*, ks = 0)

Position Along the Finite Elament Bact Solution
Interface (Angle in Solution far the for the Growth
Degrees fram the Growth Rate (Non- Rate (Non-Dimen-
2 Axis) Dimensionalized) sionalized)
0 0.002460 0.002506
9 0. 002506 "~ 0.002506
v 18 ' 1 ’ 0.002502 0.002506
27 0.002503 ' = 0.002506
36 0.002504 0.002506
45 - - 0.002506 0.002506
54 , 0.002507 0.002506
63 , 0.002508 ~ 0.002506
72 : 0.002506  0.002506
81 . 0.002507 0. 002506
‘e - 0. 002506 : 0.002506




TABLE 4.2

A COMPARISON OF THE EXACT SOLUTION AND THE FINITE ELEMENT

SOLUTION FOR THE GROWTH RATE OF VARIOUS PDiHTSE

ALONG THE INTERFACE OF A SPHERE GROWING IN A

SUPERCOOLED LIQUID (R = 100 R*,

J:Sgo)

Bact Solution
for the Growth
Rate (Non-Dimen-
sionalized)

0 0.001245 0.001253
9 . 0.001261 0.001253
18 0.001262 0.001253
27 0.001264 0.001253
36 0.001264 0.001253
45 ’ 0.001264 0.001253
54 0.001265 . 0.001253
63 0.001264 0.001253
72 0.001263 0.001253 >
81 0.001263 0.001253
90 0.001263 0.001253
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‘ TABLE 4.3
A COMPARISON OF THE EXACT SOLUTION AND THE FINITE ELEMENT
SOLUTION FOR THE GROWTH RATE IOUS POINTS

ALONG THE INTERFPACE OF A SPHERE GR?WING IN A
' 8

SUPERCOOLED LIQUID (R = 250%, x - 4)
” .
Position Along the Finite Element Bact Solution
Interface (Angle in Solution for the for the Growth
Degrees fram the - ° Growth Rate (Non~ Rate (Non—Dimen-
Z Axis) ) Dimensicnalized) sionalized)
0 ‘ 0.000495 ‘ 0. 000499
9 0. 000502 ~ 0.000499
18 0.000502 3 0. 000499
27 0.000503 ' 0.000499
36 ' 0.000503 0.000499
e 45 0.000503 ‘ 0.000499
e 0.000503 - - 0.000499°
72 0.000502 0.000499
81 = 0.000s02 - 0.000499
90 : 0. 000502 0.000499




LT

77

'a:bitrafy distance far away from the imterface to be infinitely

away fram the @r;gln A node that caused consistent problems

is the one on the ice surfagm at zero degrees. The growth

rate calculated for this node is consistently lower than that

- for,other nodes around the sphere. This anamoly is an artifact

% - - - .
produceqg by the factftha;gthis node is at a corner of the

isalutlan dﬁna;n where a caﬁ:tgnt temperature surface meets an

=

insulat™ sur*ace (i.e. a slngularlty exlsts) Methods to re-
duce the é:rct ;esqlt;ng fram such s;ngularfE;es are available

3

in the finite element~diterature (67, 68, 69].

e Stability of a Sphere Growing in
a Sli htly Superccéled _Liquid

4.3.1 Theoretical Solutions

~ We consider a gphere of radius R slightly perturbed by

~a spherical harmonic Igm(€,¢); The position of the perturbed

surface is given by

r = R+ § ng.(8;¢), o (4;9).

where 6§ is a small first order quantity,(% << 1); and
Yoo (8,¢) is a spherical ‘harmonic which determines the shape

contours position aléng the surface of the sphere as shown

in Table 4.4 and FLgure 4.6. For a small perturbat;cn, the

! curvature Qf a 'slightly pgrturbed sphere may be approximated by

, . 2 o

g 26 Yoo (0% +2) 8 o

K, = §-—>n_ 4 A0 > — (4.10)
R R2 R
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'TABLE 4.4

SOME SPHERICAL HARMONICS, Y

Y38

0.5 (5 cos> 6 - 3 Cos 0)

=

. Lm
[ 4
YlO Cos 6
Yll Sin¢ sin o or Sin 6 Cos ¢
Y, "= 0.5 (3 Cos® o -1) ’
20 . ° , .
-
|
Y21 3 Cos © Sin 0 Cos ¢ or 3 Cos O S:Ln ® S8in ¢
Y,, 3 sin2 0 cos (24) or 3 si® osin (29
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=

Further, since § is small compared to R and in linear stability

theory each harmonic develops independently of the others, the
]

velocity of the growth of the perturbed sphere is also given

by

v = R+ 4§ Y (4.11)
1

e » : =

It can bé shown that the temperature distribution

in 'the liquie and solid around a perturbed sphere discussed

B

‘above is given by [SBj -
oo vy 5 T v ot - om =1 o 04
: * T T )R = 2T_T {(r-T ) R"- =TT R £(2+1)} &Y,
T, (r,6,0) = £ - f + £ = S — Im
L L < F i ( ¥ . X r!-*l ?‘Q " .
- F . B -
. TR : (4.12)
and
F] . : ’ 2 .
' : T, (2+2) (L-1)T r~ 6Y
. o 2r _ £ o Lm £ 1
Ts,(rp6.¢) = Tf(l! EB) f = '§£+2 — ~  (4.13)

Knowing the temperature distribution from equations (4 12) and

(4. 13), the velocity v of each element of the interface may be

calculated from \ ’ .
k aT_ k. aT
v = Wt T,  l4.14)
T OiLlf. = . i.f. '

where the subscript i.f. indicates that the queﬁtity is to be

evaluated at the interface. It is assumed in the equation
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. ' L -
(4.14) 'that the normal gradients on the interface are the
same as the radial gradients.
The quantity §/6 can now be evaluated using the
> ' \ '
. equation (4.11) and it can Be shown to be -

L -

(L-1) T_ K. T.-T _ o k
. ' _ [ (24+2) (2+41) %+ 248(2+2) TE”
i)

6
3

]
'y
|
4
. 3]

.(4.15)

The two criteria for stability are defined as
k - ) A l-*f . .
- - F - .
(6/8)/(R/R) = 0, _ (4.16)

for absolute stabi;ity*(ﬁc growth of perturbation),.and

-
-

(8786)/(R/R) < 1, O (4.17)
for rélative stability (p@?ﬁﬁrbatisn grows no faster than
the séhere itself). It isﬁélearﬁthat the quantity
(6/6)/(R/R) can be easily calculated from the equations
(4.15) and (4.8).

' Several computér runs were made to test tha appliéag
bility of the finite element method to the problem of the
stability of a slightly péftufbed sphg%e growing in an
arigiﬁallyAunifcrmly supercooled melt. ' Thgzangular_hifmﬂniés

considered were Yyo @nd Y,,. Figures 4.7 through 4.9 and

\‘ i
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and Table 4.5 and L_G,smirize the comparison of the finite
element calculations and the analytical results. 'It is évident
that generally good agreement exists between the tw@»methgdsg
the maxiimum error in the quantity 5/5 / é}R being about 40

~percent for the case k,/ggié 4, but less than 10 peréent when
ks/ki = 0. However, it phculd be noted that these errors
numerically magnified because the calculations for 5/5 / R/R
involve sgbt%actiéﬂ of quantities which are very close to each
other. This means that the finite element results are much
closer to the aﬁalytiéal results when the heat t¥ansfer in the
solid éidqgis neglected. This should be expected because it is
difficult to model the solid side of thegéphg:e very-accurateii}

s .
since the sizes involved are so small. The accuracy of the

finite element calculations can be further imp:o%e?,by inc:eaa—\\\
ing the number of nodes.

4.4 The Sﬁab;ll_y of a Solid Cylinder
Growing in a Supércaaiad Liquid

The next geometrical shape considered is a cylinder
in an infinite liquid. The length of the cylinder is assumed

to be large enough to avoid end corrections..

4.4.1 The Unperturbed Growth of a Cylinder

Using arguments similar to those used for the sphere

would result in the Laplace eguation ; &
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A CQMPARISON OF THE ANALYTICAL METHOD Aq THE FINITE ELEMENT

METHOD TO STUDY THE STABLLITY OF A SLIGHTLY PERTURBED

SPHERE GROWING IN A SUPERCOOLED

}

" (THE SPHERE PERTURBED BY THE HARMO!

LIQUID

= — —
‘R/R* k7K, Analytical Finité Element
' §/8 / R/R 5/8 / R/R
25 0.750 0.792
25 , Y 0.583 0.634

‘100 .
100
100

0.116
0.913
0.873
0.695
0.961
0.942

0.901
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TABLE 4.6

[
L}

]

A CQMPARISON OF THE ANALYTICAL METHOD AND THE FINITE ELEMENT
METHOD TO STUDY THE STABILITY OF A SLIGHTLY PERTURBED ' |

SPHERE GROWING IN A SUPERCOOLED LIQUIL

(THE SPHERE PERTURBED BY THE HARMONIC Y30

ﬁf—' — 'fiiff' — 7*7, I 7*;1 —_— . —
R/R* L ks/kl Analyﬁiéal ) Finite Element
~ 6/6 / R/R §/6 / R/R
@ o _
. ) - ) Y -
25 0’ ' 1.167 1.223 -
25 : 1 v 0.542 0.595
25 4 -1.333 1.220
50 0 . 1.592 1.766 s
50 1l 1.286 1.53
: [ ]
S0 4 0.367 0.624
‘100 0 1.798 1.914
*
100 s 1l 1.647 1.843
100 4 1.191 1.434
A ) ' _ _ _
rd . - " - - -
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vir, = o0, S (4:18) 7

T, (r=a) =-T . (4.19)

H

=T (xeR) : T, ., T 4.20)

;and the heat balance condition 4

]
-

|
s
]
e |

Qr

. Tg : ia"l's '
-k, =2 o+ k. (-8 = 1
L o r=R 8 ar r=R

=%

Thi solution of the above équatian (4.18) is

(r) = A Zfn(r) + B (4.22).

T,

where A and B are to be evaluated using boundary conditions.

However, the boundary condition T, (r=a) = Ta, makes T at

£ 2

r = a infinite, so there is a difficulty in using the Laplace

(4.23)

when gquétian (4.23) is used in the boundary condition for

the conservation of heat we find



(T, = T - = ) ! (4.24)
Figures 4.10 through 4.12 and Tables 4.7 and 4.8
‘present the comparison of the finite element calculations and

analytical results for the growth of a cylinder in a super-

0
—

réaigd iquid. 'The results show a very close aéreement; C It
shauidfbé hoted that iﬁrthe case of a sphere the results .
obtained from § finite but sufficiently lafge domain were'
compared with analytical solutions based on an infinite domain
while in the case of the cylinder the results from a finite
damaiﬁ.afeiéampared with analytical solutions based on a finite
domain. Thus, it should be expected that the finite element

esults for ‘the cylinder agree much more elésely‘with the

M,

=

nalytical results.-

v

4.4.2 The Stability of a_Perturbed Cylinder .

I3

Consider a cylinder of radius R slight;yigeftufbed by

a, set of spatial harmonics. The position of thE'PgrturbEEﬁﬁ%;%zsg_

surface is given by

r = R+ 6 cos (Ké) (4.25)

EE ‘

where § is a positive length very small compared to R and
K is a positive integer, so that r returns to its original
value when ¢ changes by 27, Hardy and Coriell ([35] have shown

that to the first order, if normal gradients on the interface
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TABLE 4.7
A COMPARISON OF THE EXACT. SOLUTION AND THE FINITE ELEMENT
SOLUTION FOR THE GROWTH RATE OF VARIOUS POINTS ALONG THE

INTERFACE OF A CYLINDER GROWING IN A SUPERCOOLED LIQUID

(R = 1024 R*, Ry/R = 60, k /k, = 4)

Position Along the Finite Element Exagt Solution
Interface (Angle in Solution for the for the Growth
Z Axis) Dimensionalized) sionalized)

0 0.6000 E -04 .o  0.6010 E -04

12 0.6017 E -04 0.6010 E -04

(o]
2

24 o «. 0.6017 E =04 ' 0.6010 E

=
S
L

36 ' 0.6018 E ~04 0.6010
48 | 0.6018 E —04 0.6010 E -04
60 - 0.6019 E -04  0.6010 E -04
72 0.6019 E -04 | #0.6010 E -04"

90 0.6062 E -04 0.6010 E -04




TABLE 4.8 ' r

A COMPARISON OF THE EXACT SOLUTION AND THE FINITE ELEMENT
SOLUTION FOR THE GROWTH RATE OF VARIOUS POINTS ALONG THE
\ B
INTERFACE OF A CYLINDER GROWING IN A SUPERCOOLED LIQUID

(R = 512 R*, RA/R"

L]

0 Kk /K = &
60, ,sfkl 4)

Position Alorg the Finite Element Exact Solution
Interface (Angle in Solution far the for the Growth
Degrees from the Growth Rate (Non-= Rate (Non-Dimen-
~ Z Axis) . Dimensionalized) sionalized)

0 - 0.1199 E =03 | 0.1202 £ -03
12 ~0.1204 E -03 0.1202 E -03
24 Ka 10.1204 E -03 ~0.1202 E -03
36 0.1204 E -03 :  0.1202 E -03
s 0.1204 E -03 . 0.1202 E -03
60 - 0.1204 E =03 0.1202 E -03
72 ~ 0.1204 E -03 0.1202 E =03

90 , 0.1212 E 03 0.1202 E =03

e
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are considered the same as radial gradients,

k )

) , * i
= A (k1) (1 - (Rtfﬁ)] il‘g‘jx (szfl,)(lf

O&ﬂl‘ e

L _ 2}
w2 LR TE
" -

- . (4.26)

where Rt is the classical nucleation radigs_ Equations (4.26)
and ;4-24) can be used in caombination to obtain the quantity
(é/&)/(é/R) ‘which determines the stabilizy criterion.

Several computer runs were made using different values of K,
R,/R, and ksfkl for testfg the stability of ‘a perturbed
cylinder. Figures 4.13 through 4.15 and Tables 4.9 throigh '
4.10 show the comparison of the finite elemént!results with
‘the analytical results. 'Again, the results are in good agree-
ment and the accuracy is even be%ter when the solid siéé heat

-

transfer is neglected.
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TABLE 4.9

R 4

_-«_A COMPARISON OF THE ANALYTICAL METHOD AND THE FINITE ELEMENT

¢ —

METHOD TO STUDY THE STABPLITY OF A SLIGHTLY PERTURBED

. T
CYLINDER GROWING IN A SUPERCOOLED LIQUID

(THE CYLINDER PERTURBED BY THE HARMONIC K=6)

R/R*

k /%, Rnalytical Finite Element
5/8 / R/R 5/8 / R/R

400
400
400
512
512
512
1024
1024




- , : : ‘ 100

TABLE 4.10

A COMPARISON OF THE ANALYTICAL METHOD AND THE FINITE ELEMENT
METHOD TO STUDY THE STABILITY OF A SLIGHTLY PERTURBED
éfLIﬁDER GROWING IN A SUPERCOOLED LIQUID

(THE CYLINDER PERTURBED BY THE HARMONIC K=2)

R/R* k,fkl Analytical Finite Element
§/8§ / R/R §/6 / R/R

- ) - - - B

100 1 10.752 . 0.791
100 _ 1 0.504 0.612
100 4 -0,240  -0.430

0.876 ' 0.923

I

O‘

1 L=
| o =
s

0.753 ‘ 0.862

LV}
o
[ =]
'

0.383 & ~ 0.501

0.938 0.952°

Y
fe]
o .
=]

0.876 0.930

r -
[
o
Lo

400 4 o.}sz | 0.783




CHAPTER 5
DENDRITIC GROWTH

5.1 Introduction

‘The purpose of this chapter jis to dembnstrate that
the finite element method can be used effectively to calculate
the velocity of groﬁth of freely growin§ dendrites in super-
cooled liquids. The first portion of this chapter deals with
the selection of an appropriate domain for the finite element
study, while the latter portion presents the results obtained
using this domaip for various systems (i.e. dendritic growth

.

in ice, tin, succiononitrile etc.). The results thus
—

obtained are compared with the available analytical and
experimental results.. The shapes studied are paraboloids of

revolution and parabolic cylinders.

5.2 Selection of Domain to be Studied

AN .
As described previously in Chapter 2, most of the

analytical studies of dendritic growth consider a dendrite
growing in a supercooled liquid infinite in extent. However,
in practice the domain is always finite. Also, since both

the paraboloid of revolution and parabolic cylinder have an
axis of symmetry, the domain to be studied can be represented
by Figure 5.1. The problem now is to select various dimensions

in the Figure 5.1 so that the finite element results become

101
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=

AS reqyistic as possible. To achieve this goal thg following
criteria\éhould be m;t: (1) the outer b@undafy should be
glose to an isotherm with temperature equal tDkTagg(Z) the
domain should be largé enough so that the calculated inter-

face velocity changes very little by inc:egéing

domain aﬂy further, (3): -the number of nodes shoulM be '
optimized in a way that the results are redsonably accurate
yet the computer‘time required is.not EX?ESSiV&; | |
To avgid a c;;tly and lohq triai and error procedure
'w

to obtain an appropriate domain some guidelings were adopted
from the available literature. Bolling and 'lleri[lS] have
shown that a melt maf be considered infinite with respect to
the dendrite when its boundaries are ~ 1G.a£/v,away frcm;the

body of the growing dendrite and it is sufficiently long for

' the steady state to be reached. _Kotler and ?érshis [39
noted that a pafaboloid of re@golution is an -excellent a
.mation for the shape over a d;stance on the order of 1
from the tip. " Holzman [46] has presented a contour még
‘isotherms in and around a growing dendrite which can be used
to define a domain to be studied. An approximate value of
the tip curvature of a dendrite for various systems can be
easily determined from the available Jliterature.

Keeping the above mentioned éuide;ineg in mind, an
initial dgmain was selected. The finite elgmén; method as

described in Chaptet 3 was used to obtain the temperature

field inside and around a growing dendrite. The assumptions
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<and mathematical for;ulaticn were the same as those described
in Chapter 3. Senéitivity studies were made to select the
most appropriate ddméin to be studied. The finite element
grid was spéh that the mesh was finer near the dendrite tip
(where temperature gradients are large) and coarse away from
the tip (where temperature gradients are small). Figure 5.2
presents the effect of the sire of the dimension Rz on the
tip velocity of the dEﬁaritéa It is clear that when the
domaln is small (i.e. when the baundary with the temperature
Ta is not very far f‘.lirhe tip) thé driving force %8 such .
that the dendrite will grow with a high velocity. However,
as the domain is made larger the tip velocity éends to fegch
a iimiting valle. To fix the dimensigﬁ RB it can be argued on
pﬁysical grounds that 33 should be larger than R2 so that the-
temperature gradients near the outer boundary are nearly the
" same. After only a few trials it was found that to study the

growth of dendrites with the shape of paraboloids of revolution

= 10R, R, = 203,'

obtained from this domain

the most appropriate domain was such ths

and R3 = 40R. The temperature fiel
further justified its appropriateness. Figures 5.3 and 5.4
present the temperature field along the vertical and horizontal
axes respectively. It is cléarithat the temperature gradients
near the outer boundary in both figures are very small and equal
(ideally the temperature gradient at the outer boundary should

approach to zero), while the gradients near the interface are

such that the tip velocity is greater than the velocity at the
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bottom'end of the dendrite. This is very true in real
situations. Each side of the domain (liquid'and éalid) was
divided into 200 triangular elemenfs.v It ;as found that by
increasihg the numbef of nodes any further the accuracy did

not change siapificantly.

5.3 Dendritic Growth Velocity

5.3.1 1Isothermal Dendrite

Ivantsov's calculation has already been mentioned in
Chapter 2. It was eésily possible to simulate his model by
the finite element method since the only<change needed in the
pr;blem forﬂplatipn was to eliminate the Gibbs-Thompson effect.
The main characteristic of the Ivantsov model is that for
different tip curvatures chosen the tip velocity is such that
the product VR is constant. Also, the axial component of
surface growth remains constant since the dendrite retains
its shape as it grows according to the Ivantsov model. Figu:e
5.5 presents the comparison of the tip velocity obtained by
the finite element method and the analytical method for an
isothermal dendrite. The results are in very close agreement.
Also, it is seen that the product VR remains almost constant
in the finite element calculations. Table 5.1 lists the axial
velocities calculated at the points along the déndrité inter-

face. It can be seen that again all the velocities calculated

are within 1% of the theoretical value.



TABLE 5.1

A COMPARISON OF THE IVANTSOV'S METHOD AND THE FINITE ELEMENT
METHOD FOR THE AXIAL GROWTH VELOCITIES OF VARIOUS ﬁQIHTS
ON THE INTERFACE OF AN ISOTHERMAL DENDRITE

(NON-DIMENSIONAL TIP CURVATURE = -0.022)

Position Along the Growth Rate by Growth Rate by

Interface (Angle in the Ivantsov Method the Finite

Z Axis) (Non-Dimension-
alized)

0 0.0125 0.0124
17 /) 0.0119 0.0118
8 ' 0.0112 . i 0.0110
39 , . 0.00942 | 0.00964

50 - 0.00771 0.00797
61 ~ 0.00569 0.00601
& 0.00335 0.00383
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5.3.2 Non-Isothermal Dendrite

Computations were next performed on a non-isothermal
dendrite following the Bolling & Tillér and Temkin models:
Calculations were performed for various valﬁes of suhcaaliﬁgs
(i.e. various Stefan numbers ranging from 0 to 1)_7 Al;haugh
the computer program is based on non-dimensionalized variable%
the physical constants given in Appendix III are used to
convert the results to specific systems such as ice, tin,
succinonitrile etc. The maximum velocity ﬂriﬁerian of Bolling
and Tiller was used to determine the actual tip radius of
curvature of the dendrite. The stability criterion of Langer
and JMuller-Kriembhaar was also considered to obtain a compari-
son with the maximum velocity principle.

iFigure 5.6 presents the non-dimensional tip velocity
of an ice dendrite as a func:tian‘ of the non-dimensional tip
curvature ferivaricus values of the gtefan number. It is
clear that at each stefan number‘tberv*ﬁ curve passes through
a maximum which is the actual tip curvature for a dendrite
according to the maximum velocity principle. Figure 5.7
presents a comparison of present calculations with those

obtained by the Temkin model and the Ivantsov model for a
Stefan number of 0.05. The curvature and velocity based on
the L-MK stability theory are also shown in the~*figure.

‘*Figure 5.8 shows the relationship between the actual

velocity of growth of ice dendrites as a function of super

cooling based on available experimental correlations as well

¢
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as the present calculations based on the maximum velocity
principle. It is seen that although no two correlations agree
completely, the results based on present calculations fall
well within the range of valﬁesgabtainea by different eéffela!
tions. Figure 5.9 compares the values of gip radius of curva-:
ture obtained by the present method with those of previous
researchers. Again, the values obtained here compare favour-
ably with the available data in the literature.

i It is to be noted that all the correlations available
in the literature show a simple power law relationship between
the velocity of growth and the amount of subﬂa@liﬂgs,;iie.
all the lines in Figure 5.8 except the one based on the finite
element calculations have constant slope. The line based on
the present calculations deviates from a constant slgpe show=
ing the true effect of the varying Stefan number.

Figures 5.10 and 5.11 present the comparisons between
the present method and the available experimental data for
the velocity of growth of tin and succinonitrile éendrites
respectively. The results show that the present method using
the maximum velocity criterion gives growth velocities which
are consistently a factor of two to thr® too high, but are
consistent with other approximate amalytical techniques that
use the maximum velocity criterion.

In all of'the above calculations it was assumed that
the déndrite'shape was a paraboloid of revolution. Although,

it is agreed by most researchers that most dendrites are closer
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ﬁa a paraboloid shape, many authors believe thatszhe actual
shape varies somewhere between a paraboloid of revolution and
é parabolic cylinder. 1In particular the two principle radii
of the ice dendrite appear to be largely different [27].
Figure 5.12 presents the results based on isothermal and non-
isothermal parabolic cylinders, isothermal and ncn—isath%rmal
paraboloids, and various experimental correlations for thég
growth of ice dendrites. It is clear that the dendritic growth
velocity will depend strongly on the three dimensional shape
of the dendrite as tﬁe results based on various models ziffer'
by several orders of magnitude. Althqugh the values of velo-
cities based on the current n@niiSchgrmal pa:abglaiaai model
using the maximum velocity criterion come close to the experi-
mental data, this result may be somewhat fortuitous.

Examining the results in more detail will show that
either the quasi-steady state growth, assumption model is not
appropriate for a dendrite or the shape which obeys the qguasi-=
steady state growth is other than a paraboloid of fevalétién.
Holzman [45], [46] showed that both the paraboloid (needle
crystal) and the parabolic cylinder (platelet) shapes do not
satisfy the heat balance conditions. He calculated a quantity
he defined as an excess velocity for both these shapes. He
showed that if one calculates the velocity of interface along
each pcint;vthe condition of steady growth is violated. Similar
calculations by the present method confirmed his results.

Figures 5.13 and 5.14JRhow the excess velocity obtained by the
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finite element method for the two shapes under consideration.
It is seen that the hypothetical paraboloid and the parabolic
cylinder bulge behind the tip as found by Holzman. The dotted
line in both figures represents the velocities required to
maintain the time invariant shape, while the solid line shows
the actual velocity obtained by calculation. |

Summarizing the results of this chapter, it is eviden-
tly clear that the finite element method can be used to study
the dendritic growth phenomenon. However, to gain a%better
understanding of dendritic growth, it is important to
simulate dendrite growth over a time period. The next chapter

is devoted to this study.
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CBAPTER 6
SIMULATION OF DENDRITIC GROWTH

The purpos; of this chapter is to make an attempt.
‘to~study the development of the crystal shape with timeg
As described previously, the experimental evidence shows
that dendrites grow with a constant speed for a given super-
cooling. But the study of dendrite growth by the finite
element model gave no hint that the dendrite would grow with‘
a time invariant shape and velocity. The maximum velocity
principlg presented a convenient tool to obtain a ;nique
value for the velocity of growth, but it is not based on any
strict physical reasoning. The stability criterion of Langer
and Muller-Krumbhaar has also not been thoroughly tested. The
aim here is to make an attempt to obtain a shape which is

time invariant and the corresponding velocity of growth of

a dendrite.

To simulate dendrite growth, the following steps wer
required.

1. An-initial dendrite shape was chosen.

2. The finite element program was used to calculate heat
fluxes at the interface and from these heat fluxes the
velocity of advance at each point on the'interface was
calculated in the same way as it was done in the previous
chapter.

124
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3. Each interface node wyas then advanced by an amount

equal to the velocity times g time step. This time step was
chosen such that the maximum adv, ce of a node was about 0.1
to 0.2 of the tip radius.

4. The interface k@des were then shifted in the
negative Z dlte:t;an so that the finite element domain remained
centered on the node at the dendrite tip. 1In this shift, the
nodes must be moved along radial lines so that their spacing
is not severely distorted by changes in dendrite shape.

5. New interface curvatures were then calculated for
each nodal point. The technique used ingthis step will be

6. The fi §ZEe element grid was the constructed again
using the new interface position and the velocities at the
interface nodes recalculated.

7. ©Steps (3) through (6) were then repeated a large

number of times. The result was a simulation of the dendrite

interface evalgti@n as a function of time.

Perhaps the most difficult step in this procedure is-
step (5)-—the calculation of interface curvature. Cubic
séliﬁes were considered first to represent the mcvlng shape-
changing interface. Cubic splines were selected because it is
known that splines can fit various shapes easily and continuity
of slope and curvatfire is maintained at each knot. Ability to

calculate the curvature at each node is essential since the

&
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curvature is needed to calculate the freezing pgintidepressian
due to Gibbs-Thompson effect at each é@iﬁt. |

The use of cubic Spliﬁéssiég however, not very success-
ful. It was found that the cubic spline routine ;nterpﬁlated
the moving interface very accurately, but the curvatures
calculated near the tip were not very satisfactory. Since
the cubic spline is required to %g!s through EVE?Y‘PGiﬁt and
the nodal points near the tip are spaced very closely, the
curvature values obtained fluctuated wildly from one node to

the next. This provided a numerical unstability that grew as

the calculation proceeded.
To eliminate the above mentioned problem a slightly
different curve-fitting strategy was employed. Since the |
difficulty in the curve fitting was near the tip, the curve
fitting routine was split in two parts. Near the tip a ‘para-
pola was fitted using the least square technique and for the
remaining part of the interface, the interface curvature was
obtained by using the finite difference method to evaluate the
second derivative. In fitting a parabola to the dendrite tip
the node right at the tip was not included. As was the case
for the sphere in Chapter 4, the calculated ;elacity at this
point is not consistent with‘that at the adjacent nodes pre-
sumably\pecause,of the singular nature of this point in the
"finite element grid. Using this technique a smoothly varying
curvature that appeared reasonable was obtained. However, the

calculation of curvatures from a set position coordinates for
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the intgrféce remains ;g one of the major sources of pﬁtentiai
numerical errors. : . ;

Iﬁitiall;, to m;k% the long-term growth calculations
simpler, the flux on the solid side of the dendrite was neglec-
ted. In all calculations presented in this section the Stefan
number was set equal to zero. The result will, therefore,
apply only to cases where the supercooling i{ relatively small.

Figures 6.1 through 6.4 present the results obtained for the

long=term growth of dendrites with kg 0. Figure 6.1 shaws
the evolution im shape of a dendrite interface. It is seen

that starting with a paraboloidal shapé, as the dendrite grows,

-

instabilities develop near the dendrite tip. The tip becomes
broader and.slows down before ultimately reaching a time invar-
iant shape with constant velocity of growth.

To determine if the results obtained for the long-term
growth by the finite elamént method are dependent on the
initial canditicns, the program was run with two different
initial paraboloids. Figure 6.2 presents the velocity and
curvature obtained by using an initial paraboleid with broad
tip while Figure 6.3 shows similar results for an initial para-
b@l@ié with a sharp tip. The final velocity anq}tip curvature
for the two initial shapes ar; within 0.5 pérceht of each other.

Figures 6.2 and 6.3 do show an oscillatory behaviour as
would be suggested by the Langgrixruﬁbhaar stability analysis;
however, they also suggest that the oscillations are highly

damped so that the dendrite quickly approaches la time invariant
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shape. The pltimate time-invariant shape is shown in Figure
6.4 and compared with a paraboloidal shape with the same tip
curvature. These results would suggest that the dendrite
obeys the quasi-steady state assumption, but the shape is
slightly different than the paraboloid of revolution as assumed
previoﬁsly.

Next, calculations were attempted including the flux
- on the solid side. With ks = 4k£ (i.e. ice-water system)
similar calculations were performed as described before.
Figure 6.5 presents thelresults of these caizulations. Start-
ing with two different paraboloids, the dendrites reach a steady
velocity and tip curvature.

The above described results suggest that the dndrites
grow with a time-inyariant shape which is slightly different
from a paraboloid of revolution. Also, it is found that the
velocity of growth of the dendrites is considerably lower than
that~predict§d by the maximum velocity principle. 1In fact,
the velocity obtained by the current method is closer to that
predicted by the Langer-Krumbhaar stability ;riterion. Figure
6.6 presents the comparison of velocity of growth for ice
dendrites as a function of supercooliig obtained by different
methods. It is evident that the velocities obtainéd by the
long-term growth model and the Lhnqer-xrumbhaar ‘stability
criterion are very similar and also in agreement with some

measurements for growth of ice dendrites made by Kallungal and

Barduhn [28] recently. )
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Although simulations were not done for the c@nductiviﬁy

ratio ksfkg, appropriate for tin or succinonitrile, it is
probable that g¢he calculation of the time-invariant dendrites
for these materials would give velocities closer to what is
measured than ;he use of the maximum velocity criterion would.
For hs = 0 and ksjkg = 4, the non-dimensional velocities were
respectively a factor of 2 and 2.7 less for the time-invariant
solution than the maximum velocity one. This is very close
to the differences observed in Figures 5.10 and 5.11 between
the measured values and the predictions baéed on the maximum

velocity assumption.



CHAPTER 7
SUMMARY AND CONCLUSIONS

This work has been an investigation of the appliéabiii
ity of the finite element method to the study of crystal
growth tzanspért processes. The objective was to see if the"
finite method can be applied to gain a better understanding
of dendritic growth phenamenaﬁf

To attain the objective set out for this w@ri, the

approach was developed in three stages,

1. The first stage was designed to demonstrate-

that the finite element method can be successfully applieﬂ to
study the problems of stability of spherical and cylindrical
particles gréwing in superca&leﬂiliquids. This was done by
comparing the solution of simple heat flow problems by the
analytical method with solution by the finite element method.
Both approaches were shown to give identical results (Chapter
4). It was found that the finite element method could give
accurate results for stability problems involving irregular

boundaries (perturbed cylinders and spheres).

2. In the second stage, a finite element model was
used to study the dendritic growth problem. This problem was
chosem because of the great difficulty experienced in the |

anayltical treatments in the solution of the diffusion

136
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equations which govern the process of dendritic growth. The
‘choice was reinforced by the widespread occurrence of this
phenomenon, which has gfea; technological importance.

The dendritic growth problem was formulated such that
the essential features of the growth process were included
in this model. A paraboloid of revolution or a parabolic
cylinder of isotropic, pure material was considered to grow
into a pure, supercooled melt. The heat flow in the solid
side was also accounted for. The results obtained from this
. model were compared with the available data based on experi-

mental as well as analytical research. The results obtained

available correlations. However, the calculations from the
model at this stage,as well as the available analytical data,

did not fully explain the observed dendritic growth phenomenon.

3. In the third stage, an attempt was made to study
the long-term growth of a dendrite. The moving interface was
described in a manner that could adequately represent the
dendritic growth process. It was determined that the steady
state shape for a growing dendrite was close to a paraboloid
but not exactly a paraboloid of revolution. It was also found
that the growth velocity thus obtained was smaller than that
pfediéted by the often used maximum velocity principle. The
growth velocities were closer to those predicted by the ;

Langer-Krumbhaar stability criterion.
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The most interesting future applicaiion of the finite
element method is to the simulation of crystal growth, such as
~the studies done in the last chapter. Although the prelimin-

ary results presented in that chapter are encouraging, there

remain some major concerns about its success in other applica-

T~

tions.

1. The calculation of surface curvatures are necessary

~

for the application‘pf the Gibbs*Thoﬁbson effect on interface
temperatures. This can be done with relative ease foé a sur-
face described by an analytical function; however, for a sur-
face defined only'by a finite set of coordinate points this
calculation, which involves second differences of the coordin-
ates, can introduce large numerical errors. Improvements in the
method by which this calculation was done may be required to
improve the accuracy with which the method Ssimulates the long-

. [ 4
time behaviour of crystal growth. A method based on coordinate

transformation may reduce some of the difficulties faced here.

2. A second concern is that numerical instabilities

]

may be mistaken for or confused with real instabilities when

one is using a numerical technique to study a problem like

this. Generally one would expect the numerical instabilities
would be very sensitive to changes in nodal spacing whefeas the
real inséabilitiesvwguld not; therefore, repeatability of the
resul for different nodal sﬁacing is an essential computation-

al tept of the reliability of the predictions.
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3. In Simulation of crystal growth it is the ‘vélcgity
4
excess' that determines the changes in crystal shape with time.
1

This means that it is not sufficient to calculate the mean
velocity of, for example, a dendrite té an acceptable degree
of accuracy, say one percent, but one ﬁust be concerned about
calculating differences in velocities between nodal points to
this accuracy. 1In such things as determining the require&
domain size or nodal spacing age should, therefore, do the
selection on the basis of calculated 'velocity excess' rather

than just the mean growth rate.

4. A final concern is the computer time required to
'carry out these simulations. 1In the calculations éhat were
shown in Qhaptér 6, 871 nodes were normally used. This pro-
duced 21 discrete coordinate points along the dendrite surface
ch was considered to be bare minimum

needed. Carrying out a simulation of a dendrite growth over

s

to define its shape wh

a distance of the order of 30 times the tip radius required 800
sqponds of CPU time on an Amdahl 460/V7. One would ideally
like to double the number of nodes on the dendrite surface,
which would increase the total number of nodes by a factor of
two and the computational time by about a factor of eight.

Some runs were made using this increased number of

ever, the availability of computer time became a limiting factor

=

on the amount of work that could be done. Obviously if extensive

crystal growth simulation work was to be done an effort would
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as well it could only be done on the faster of the new computer
machines.

If these concerns and problems with the use of the
finite element method of crystal growth simulation can be over-

come, a number of interesting applications can be envisioned.

l; With a small modification of the present program the
time evolution of a cfystal from a spheriﬁa; nucleus céuld’be
simulated. Small perturbation analysis suggests that the YBO
mode is the lowest unstable mode of perturbation for a sphere.
The large amplitude growth of this perturbation is, however,

unknown.

2. Also with small modification the effects of inter-
face kinetics on the growth shapes can easily be studied. For
this one just has to introduce an.additional term into the
equation for the interface temperature that depends on the

local interface velocity.

I

This would require the solution of the mass diffusion as w‘il .

as heat diffusion equations at each time step.

4. Theoretically it should be possible to do three
dimensional simulations; however, at present such work would

probakly not be feasible because of the computation time required.
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APPENDIX 1
THERMODYNAMIC EQUILIBRIUM ACROSS A CURVED INTERFACE

In the physical model described in Chapter III it
was stated that the equilibrium fusion temperature of the -
tip (interface) of a dendrite is depressed an amcun; ATI
owing to the radius of curvature of the non-flat interface.
The derlivation for this phenomenon, known as capilla:it;
(or Gibbs-Thompson effect) will be disgusséﬁ briefly in this
appendix. For a detailed study on this subject the reader
is referred to textbooks on thérm@dynamics such as Guggenheim
(70] and Landau and Lifshitz (71].

Consider a very small section of the interface, over
-whlch the curvature is nearly uniform, and with small adjacent
regions of the solid and liquid phases which are nearly
uniform in composition and temperature. A pressure difference
exists across the interface, which can be determined by minimi-
zing the free energy with éespect to an infinitesimal change
ef volume of one phase, the total volume being constant. This
leads to the condition

d surface area _ A 4+ %s) (A-1)

1 2

s L - Ysg d v, = Ygp

Ps and P2 are the pressures at the curved interface, r, and r,

are the principal radii of curvature and are positive if the
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interface is concave toward the solid.

Figure Al-1 Equilibrium Across a Curved Interface

If the pressures Ps and Pl are nearly the same as the pressures

at a flat interface, -

ap_ = P_ - P_(flat); lApsl << P_, (A-2)

<

it may be appropriate to use the Gibbs-Duhem relations,
Au_ N V. 8P ‘-5 4T :
H s s s r' (A=3)

Au, N, =V, APL -5, A Tt. - . (A-4)
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At a flat intérface Pg(flat) =P, (flat), so from equation

(A-1)

and Au_ = ?Aug because the phases are always in equilibrium.
If the liquid is assumed to be under constant pressure,
then AP, = 0, and from equations (A-2), (A=3), and (A-4) it is

found that

5, 5 V vy .
-aT, (-GS = B b (3~ + 2. (A=6)
r N, Ng Ng TR

y
Now, T, (S,/Ny = §_/N_) is the latent heat of fusion per

atom, so

Y .
v 8L g -
T, —— K, (A-7)

[
g |
[}
I

where K = (=~ + =-—) is the mean curvature of the interface. . .
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DERIVATION OF ELEMENT MATRICES

In the finite element formulation fo the dendritic
growth phenomenon described in section 3.5.1 the functional
miﬁimizatian g;cblem was reduced to a simple matrix eq;aticn_
The matrix equation (3.56) can be simplified canéide;ahly if
all quantities iﬁdépendent of triangle size and shape are
evaluated once and for all. In this appendix the derivation

ofthe element matrices for a six-node triangular element as

shown below is bfiefly discussed.

" Figure A2-1  8ix Node Triangular Element
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Matrices for Axisymmetric Formulation
From Chapter III the element matrices are:
-m 3 ) ' - = B
SA, 5 E;l Nk JJ Vg (Py Py + Py Py) dndE)
\"“s
and (1,7 = 1 to 6) (A2-1).-
m S |
QA = 217 n : TORCY
1J k=1 K [J wg xixj dn df (A2-2)
D
with
<SP ,Pay eunn. P> = (4y,~1) b /2A™, (4y.-1) b /2AR
12! R 1~ 71 f T2 g !
(4¥.-1) b./2A™, 2(y.b., + v.b ) /A"
AP3TL) by/eR, 2(yyhy 4+ by /AT,
2(y.b, + y,b_)/A™, 2(y.b. + y.b.)/A® > (A2-3)
W3Py ¥Rl /A, 2(vy by + ¥;b, ] b
{le =% 5 = = XE’} ;{wl(zwl‘l)l "‘2 (zwzgl)i WS(EWS!J-)!
B { .
4¢1¢21 4¢2W3p 4*3¢1 (A2-4)
bk i P P 1,J,K cyeclic (A2-5)

i,J,K cyclic ' (A2-6)



m o - . , : .
A = (alb3 azbl)/z (A2-7)

K Y
The array P, is found by replacing the b's with a's s‘n the

expression for Pi_

To as®ist in simplifying the derivation of the element

rRE. . I[ ¢, (P.P_ + P,P_) dndf . (A2-8)

w3
W

Then in terms of these quantities

3 k

SA.. =-I° n R
w1 K 4T

1J

and

i K iJg

An explicit evalua%icn of équatians (A2-8) and (A2-9)
is obtained by a straight forward substitution of the approp-
riate quantities into the equations and making use of Table
A.l. For example, to evaluate Til’ the following expressigﬁ

is to be evaluated:



™.

S L o
Typ = 2 J[ ¥, XXy dndg (a2

On substituting appropriate value of x, in terms of ¥,

e equation (A2-12) becomes

13

T = 2 JJ w% (Ewl*l)z dndE (A2-13)

and using the Table A.l1 for integration, results in

11 ) 1260 (A2-14)
Similarly, all the elements of the matrices R and T can

be evaluated and thus the coefficient matrices SA and QA

can be obtained. The various matrices are listed below for
convenience. Alséf since all these matrices are symmetric,

only the lower triangular elements are listed. The quantity

s L . ) _ . 3 m
a7 tf used to represent the sum (aiaq + bibJ)/EQA .
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TABLE A.1

COEFFICIENTS (C) EDR AREA INTEGRALS IN AREA-

and i,J,k represent any permut.;m of
1,2,3.

r 4
$ COORDINATE SYSTEM (FROM REFERENCE [ 61])
Order 8 8 B C 7
- i J k .
P B +B+B,
1 1 0 0 1/3
2 2 0 0 2/12
. _ — -
1 1 0 1/12
,,(ﬁfgﬁ _
3 3 0 0 1/10
2 1 0 2/60
1 1 1 1/60
Remark: Bi BJ Bk o
TR TR dA = C A
Alll



2. Matrices for Two-Dimensional Formulation

®

The element matrices for two-dimensional formulation

are:
m N . o a s
iy (P; P, + P, P_) A (i,J=1 to 6) (A2-15)
Am
and
Q™. = 2 da | (AZ-16)
iJ Xi X3 . :
Am

m . _. . _
with arrays Pi’ PJ' o XJ and A" defined exactly the same
as those in previous section, except that the coordinates

n, &, now represent two-dimensional system. The integrals
can be evaluated by following the same procedures described
previously for axisymmetric case, and one can obtain the ‘
corresponding matrices fdr two-dimensional formulation, which

are listed below. Here a g is used to represent the sum

m
(aja; + bibJ)/IZA .

P .
3 .
- B
. .
' .
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APPENDIX 3
AUTOMATIC MESH GENERATION

As mentioned in chapter 3, the element mesh is
generated automatically by the computer on supplying a minimum
amount of data. For a domain which is divided into twenty
blocks similar to one shown in Figure 3.9, the folldwing
input data is required: )

l. The z coordinate of nodes 1 and 21.

2. The angle between the line drawn from the origin
to ‘the node and the z axis, for nodes 43, 63, 85, 105, 127, 147,
cevee.., 799, 818.

3. The desired spacing between the nodes 1, 3, 5, 7,
+++++, 21 as fraction of the total distance between the nodes

1 and 21.

With the above information, the r and z coordinates
of nadeszézg 63, 85, 105, 127, 147, ......., 799, 819, 841,
and Bél can be obtained provided the shape of the interface
and the outer boundary is kngwn.(i.a, spherical, parabolic
etc.). The coordinates for remaining néégs can be determined
by using the fractional ratios of distances between the nodes
1l and 21, 43 and 63, 85 and 125, R A 841 and 861. The node
numberiﬁq on the solid side is similar to the numbering on the

liquid side. The interfgge node members are commaon between

F
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the solid and liquid sides. Such a mesh generation scheme

| facilitates quick and easy change in spacing of nodes as

required by the problem under investigation.

= k]
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APPENDIX 4

PHYSICAL CONSTANTS FOR WATER, TIN, AND SUCCINONITRILE

USED IN THIS WORK

(1) WATER

Equilibrium melting temperature : 273 K
Latent heat of fusion . 80 cal/cmS
Density of solid 0.91 gm/cmB
Density of liquid ' 1 gm/cmB
Thermal conductivity of liquid 0.00133 cal/cm.deg.sec
Thermal conductivity cfrsalid 0.00532 cal/cm.deq.dec
Specific heat of liquid 1l cal/gm °C
Thermal diffusivity of liquid 0.00144 EEQ/EEE

Interfacial surface energy 7.17 cal/:mg

(2) TIN
Equilibrium melting tempe:aﬁure 505 K
Latent heat of fusion 502 cal/cm3
Density of solid _ © 7.3 gm/gmB
Density of liquid . 6.98 gn/cm’
Thermal conductivity of solid 0.144 cal/gm.deq.sec
Thermal conductivity of liquia 0.064 :aifcmideg;SEE
iSPEEifiéaheat of liquid ) 0.060 éél/qm °C

Thermal diffusivity of liquid - 0.2 cmzfseci
' 7 2

Interfacial surface energy 13.03 x 10 ' cal/cm



(3) SUCCINONITRILE

Equilibrium melting temperatﬁre, ' : 331.247 K

Latent heat of fusion 10.72 cal/EmB
Density of solid ' 1.016 gm/ 3
Density of liquid : Ogazg‘ 1 Y
Thermal conductivity of Solid 5.36 x ].0-4 cal/:mgdéqiseg‘

Thermal conductivity of liquid 5.32 x 1074 cal/cm.deg.sec
Specific heat of liquid 0.478 cal/gm °C
Thermal diffusivity of liquid 0.00116 cmzfsecg

Interfacial surface energy 2.14x1077 cal/cmz



