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Abstract

Multicast is a bandwidth efficient mechanism to provide wireless services for a

group of nodes. Providing reliable wireless multicast is challenging due to channel

fading. This thesis investigates cooperation among receiving nodes to enhance the

reliability of wireless multicast. A time division based cooperative multicast strat-

egy is proposed, and the optimal scheduling scheme is found to maximize the sys-

tem throughput. It is shown that the optimal relay number is bounded by a threshold,

and the optimal time allocation can be found using an efficient algorithm. Numeri-

cal results show that the proposed strategy can enhance network performance when

the average channel condition between receiving nodes is better than that of the

direct link. To provide incentive for cooperation, this thesis further studies the in-

teractions among selfish nodes using game theoretic approaches. The cooperative

multicast process is modeled as a repeated game and the desired cooperation state

which satisfies the absolute fairness and the Pareto optimality criteria is found. A

Worst Behavior Tit-for-Tat incentive strategy is designed to enforce cooperation and

its effectiveness is studied under both the perfect and the imperfect monitoring sce-

narios. To address the issue of imperfect monitoring, an interval based estimation

method is proposed. Simulation results show that the proposed strategy can enforce

cooperation efficiently even the monitoring is imperfect.
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Ṽi node i’s estimated long term payoff

V payoff profile in a static game

Ve enforceable payoff profile in a static game

Vf feasible payoff profile in a static game

yk
ij node j’s observed information from node i in stage k

α time allocation parameter

βk
jil left interval boundary of behavior level b̂k

jil

βl left interval boundary of behavior level b̂l

γi transmission rate of the node i

γr transmission rate of the relay

γs transmission rate of the source

Γ1 average received SNR between the source and a node

Γ2 average received SNR between the relay and a node

µ total number of successful nodes in T

µ1 number of successful nodes in T1

µ2 number of successful nodes in T2

τ average value of N0/(Prσ
2
ij)



σ2
r variance of the channel gain between the relay and a node

σ2
s variance of the channel gain between the source and a node

δ common discount factor

ε interval partition parameter

εT estimation error threshold in refined WBTFT strategy

η bounded rational parameter

ϕi transmission probability of node i



Chapter 1

Introduction

1.1 Motivation

In the past decade, the growing demand for group-oriented, high speed, high qual-

ity wireless communications and the scarcity of conventional frequency spectrum

leverage the use of multicast technique, where information data are delivered to

a group of nodes simultaneously [1–3]. Applications include the Internet Proto-

col Television (IPTV) over WiMax [4] and multimedia broadcast/multicast service

(MBMS) in 3G networks [5]. However, the fading characteristic of wireless chan-

nels poses great challenge in wireless multicast. For instance, when a source tries to

multicast to multiple wireless nodes, generally these nodes undergo different chan-

nel fading. To guarantee that nodes with bad channels receive the data correctly,

the source may have to use a low transmission rate or even retransmissions, which

greatly limits the network performance. Therefore, it is important to design reliable

wireless multicast techniques.

Recently, cooperative multicast has emerged as an effective technique to combat

fading, which exploits the benefits of spatial diversity among the receiving nodes

[6]. In cooperative multicast networks, data packets are not only transmitted by
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the source, but also rebroadcasted by nodes who successfully receive them from

the source. Therefore, a node can receive copies of the data from multiple paths.

Although a packet might be lost in the direct link between the source and a node, it

can still be successfully delivered through other paths with good channel conditions.

In general, cooperation among receiving nodes can increase the packet delivery

success probability and the network performance can be greatly improved.

Although several cooperative multicast strategies have been proposed and in-

vestigated in existing works, there are still some fundamental issues that need to be

exploited. For instance, in delay-sensitive applications, where the time for deliver-

ing a packet is limited, how to allocate the time for source transmission and relay

cooperation to maximize the system throughput? When a set of successful nodes

are available, how to determine the number of relays to obtain the optimal perfor-

mance? These issues have not been well studied in the literature, which inspires the

first part of the research in this thesis.

Another challenging issue in cooperative multicast is the incentive mechanism

design for cooperation stimulation. In most of the existing cooperative strategies,

it is assumed that nodes will cooperate unconditionally and forward data whenever

being selected as relays. However, in many applications, cooperative behavior may

not be carried out since the wireless nodes tend to be “selfish”. In wireless mul-

ticast networks, a selfish node is able to hear the broadcasted data from any relay

and prefers to taking advantage of others but does not contribute at all, since re-

laying data would cost extra energy. Therefore, before the cooperative multicast

strategy can be successfully deployed, it is critical to design incentive mechanisms

to stimulate cooperation among selfish nodes.

In the literature, cooperation stimulation strategies have been proposed for uni-

cast ad-hoc networks [7], where nodes communicate with each other through point-

to-point links. The special features of wireless multicast networks bring new chal-
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lenges for cooperation stimulation. First, in multicast networks, communication is

point-to-multiple points. The heterogeneous behaviors of nodes make it challeng-

ing to design a general decision rule, since a node’s decision may depend on the

behaviors of all its neighbors. Second, due to the existence of noise and fading in

wireless channels, packets may be dropped during transmission. Therefore, a co-

operative behavior may not provide the expected service, and hence may not get

any reward. Moreover, in multicast applications, a node may make decisions based

on the monitoring results of all others’ behaviors. Since the monitoring process is

usually imperfect, the monitoring results may be erroneous, which may result in

frequent undesired decisions and may discourage user cooperation. The above is-

sues have not been discussed for wireless multicast networks, which motivates the

second part of the research in this thesis.

1.2 Contributions and Thesis Outline

This thesis studies node cooperation and incentive strategies in wireless multicast

networks. The major contributions lie in two aspects:

• A simple time division based cooperative multicast strategy is proposed and

analyzed for delay-sensitive applications. The relay selection problem is

studied and the optimal relay number is derived. It is shown that the op-

timal relaying strategy is a pure threshold policy, where the optimal relay

number is bounded by a threshold. Moreover, to avoid the complexity in

exhaustive search for the optimal time allocation between source and relay

transmissions, a simple algorithm is proposed that can find the optimal time

allocation quickly.

• An incentive strategy is designed to stimulate cooperation among selfish nodes

in cooperative multicast networks. The cooperative multicast process is mod-
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eled as a repeated game, and the desired cooperation state is analyzed. To

stimulate cooperation, a Worst Behavior Tit-for-Tat incentive strategy is pro-

posed, which can achieve cooperation efficiently. Moreover, an interval based

estimation method is developed to address the issue of imperfect monitoring.

The rest of this thesis is organized as follows. In Chapter 2, the related works

on cooperative multicast and incentive mechanism design are reviewed, and some

background knowledge of game theory is provided. Chapter 3 studies a time divi-

sion based cooperative multicast strategy in wireless networks. The optimal relay

number is derived and a simple algorithm is proposed to find the optimal time al-

location efficiently. In Chapter 4, a Worst Behavior Tit-for-Tat incentive strategy is

proposed for cooperative multicast networks. Game theoretic approaches are em-

ployed and equilibrium of the strategy is analyzed under both the perfect and the

imperfect monitoring scenarios. An interval based estimation method is also pro-

posed to address the issue of imperfect monitoring. Finally, Chapter 5 concludes

this thesis and discusses the future work.
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Chapter 2

Literature Review

2.1 Cooperative Wireless Multicast

Wireless multicast is a bandwidth efficient communication technique, where the

same data packets are delivered to multiple destinations simultaneously [1–3, 8, 9].

However, the fading characteristic of wireless channels poses great challenge in pro-

viding reliable multicast transmissions. Traditionally, to guarantee that nodes with

bad channels receive the data correctly, the source may have to use a low trans-

mission rate [10], or employ retransmissions until every node receives the packet

successfully [11], which greatly limits the network performance. Recent advances

on cooperative communication provide an alternative way to combat fading, which

exploits the benefits of spatial diversity among receiving nodes [12–15]. Motivated

by this idea, cooperative multicast has emerged as an efficient method to provide

reliable wireless multicast services [6, 16–22].

2.1.1 Two-Phase Cooperative Multicast Model

Fig. 2.1 depicts a single-hop cooperative multicast system, where a source multi-

casts data packets to a group of wireless nodes. Generally, the cooperative multicast

5



Fig. 2.1. Single-hop cooperative multicast system.

process contains two phases. In the first phase, the source multicasts data packets to

the group, and nodes with good channel conditions can receive the packets success-

fully. In the second phase, some of the successful nodes who correctly receive the

packets from the source are selected as relays to rebroadcast the packets in orthog-

onal channels. It can be seen that by employing cooperation, a node can receive

multiple copies of the data from different paths. Although a packet might be lost

in the direct link between the source and a node, it can still be successfully deliv-

ered through other paths with good channel conditions. Therefore, the reliability of

wireless multicast can be greatly improved.

2.1.2 Cooperative Multicast Strategies

In the literature, a number of cooperative multicast strategies have been proposed

to improve the network performance, which can be roughly classified into the fol-

lowing categories.

• Time division based cooperation (TDBC) [23, 24]: When multiple relays are

selected, the second phase of the cooperative multicast process is divided into

several subslots as shown in Fig. 2.2, and the selected relays take turns to re-
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Fig. 2.2. Time division based cooperation.

broadcast the data, each utilizing a designated subslot. This kind of strategy

does not require complex coding schemes and is easy to deploy. Moreover,

the interference among relays is avoided due to the orthogonal transmission

in different subslots. However, when the number of relays increases, the

time duration for each subslot becomes smaller and the corresponding trans-

mission rate becomes higher, which may decrease the success probability of

each transmission and limit the performance.

• Space-time coding based cooperation (STCBC) [20, 21, 25]: In the second

phase of cooperative multicast, instead of transmitting data in different time

slots, the relays can employ space time codes to re-encode the received data

packets and forward them simultaneously. For instance, in [25], a STCBC

strategy is proposed for video multicast, where the relays employ random-

ized distributed space-time codes (R-DSTC) to re-encode the data and trans-

mit them simultaneously. The whole duration of the cooperation phase is

utilized for each relay and the system performance is improved, with the cost

of computational complexity. In this strategy, the instantaneous channel state

information between the relays and a receiving node is needed to decode the

rebroadcasted data. Therefore, when the number of relay becomes larger, the

overhead for channel estimation increases as well, which brings more com-

plexity in deploying the cooperative strategy.
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Fig. 2.3. Network coding based cooperation.

• Network coding based cooperation (NCBC) [17–19]: Network coding has the

capability of increasing network throughput by exploiting the shared nature of

wireless medium [26]. In the NCBC strategies proposed in [19], cooperation

among nodes is triggered after a batch of packets have been sent from the

source. An example is shown in Fig. 2.3. In this scheme, the source transmits

two different symbols in the two slots in phase 1, then the relays may forward

the combined symbol (which is generated using network coding) in phase 2

under ceratin scenarios. The nodes who already have one of the symbols can

successfully decode the missing one from the combined symbol. It can be

seen that this scheme saves almost 1/4 time compared with the conventional

TDBC scheme, and hence is more efficient. However, if both symbols are lost

at a node, they cannot be recovered from the combined symbol. Therefore,

the packet loss information is needed to schedule cooperation when deploying

the NCBC strategy.

2.1.3 Optimal Scheduling in Cooperative Multicast

Scheduling of cooperation plays an important role in designing cooperative multi-

cast strategies. Generally, it contains relay selection and time allocation between

source transmission and relay cooperation. Recently, efforts have been made to-

wards finding the optimal scheduling schemes for cooperative multicast under dif-

ferent performance metrics. Some of the research directions related to optimal
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scheduling are listed as follows.

• Optimal scheduling for TDBC: In TDBC, a relay’s transmission time is di-

rectly related to the number of relays. On one hand, a larger relay number

results in a shorter transmission time and a higher transmission rate, which

decreases the success probability of each relay transmission. On the other

hand, more relays can provide higher spatial diversity that may increase the

chance of receiving successfully. Therefore, to maximize the system through-

put, the optimal number of relays can be determined by solving an optimiza-

tion problem. In some scenarios, the relays are selected based on topology

information. For instance, when the receiving nodes are distributed within a

large area that beyond the source’s transmission range [23], the optimal relay-

ing scheme considering path loss effect is to select the minimum number of

relays so that their transmission ranges cover all the receiving nodes. The op-

timal time allocation between source multicast and relay cooperation can be

found via numerical methods when the optimal relay selection is determined.

• Optimal scheduling under total power constraint: When the size of a net-

work increases, the power consumption in wireless multicast will also in-

crease. Therefore, some scheduling schemes are designed to find the optimal

relay selection and power allocation under a total power constraint. Typi-

cally, numerical methods can be used in searching the optimal relay trans-

mission order and corresponding power allocation according to the channel

state information among the receiving nodes. It has been shown that such

optimization problem can be solved within polynomial time [21, 27]. In the

literature, power efficient scheduling in dense wireless networks has been

studied and low complexity distributed power allocation protocols have been

proposed [22].

9



• Optimal scheduling for maximum lifetime: In wireless sensor networks, life-

time is the critical concern when deploying multicast strategies. The network

lifetime is usually defined as the time until the first node runs out of battery.

Then the optimal scheduling scheme should be energy efficient such that ev-

ery node lasts for a period as long as possible. A simple optimal solution–

Maximum Lifetime Accumulative Broadcast (MLAB) algorithm has been

proposed in [28] that specifies the optimal relay transmission order and cor-

responding power level. This scheme ensures that the lifetimes of relay nodes

are the same and their batteries die simultaneously, and therefore the lifetime

of the network is maximized.

This thesis focuses on studying the TDBC strategy and aims to find the optimal

relay selection and time allocation schemes that maximize the system throughput,

which is discussed in Chapter 3.

2.2 Incentive Mechanisms for Cooperation

In many applications, wireless users are selfish in nature, and incentive mechanisms

are needed in order to achieve cooperation. Cooperation stimulation in wireless ad

hoc networks and cognitive radio networks has been extensively studied in recent

years. Many incentive mechanisms have been proposed, which can be briefly clas-

sified into three categories: Payment based mechanisms [29–32], reputation based

mechanisms [7, 33–38] and punishment based mechanisms [39–41].

2.2.1 Payment Based Mechanism

Payment based mechanisms introduce virtual currency (or credit) as payment for re-

ceiving cooperative services. The main idea is that nodes who get services should be

charged while nodes who help others should be remunerated. For instance, in [29],
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a type of virtual currency called “nuglets” is introduced. When a node wants others

to help deliver data packets, it will load a number of nuglets into the packets and

those who help forward the data will deduct a certain amount of nuglets. Another

example is the credit system “Sprite” presented in [30]. In this system, a node keeps

a receipt after forwarding data for others and reports the receipt to a credit clearance

service (CCS) in order to get some payment. The CCS will charge the sender a cer-

tain amount of credits and pay them to the cooperative nodes. It has been shown

that the above mechanisms can stimulate cooperation efficiently in mobile ad-hoc

networks. However, this kind of mechanism either requires temper-proof hardware

for each node to guarantee the deduction of the virtual currency or needs some

central banking service to coordinate the credit exchange, which greatly limits its

applications.

2.2.2 Reputation Based Mechanism

An alternative way to stimulate cooperation is to use reputation based mechanisms.

In this kind of mechanism, nodes monitor each other’s behaviors and cooperate

with those who maintain good reputations. For instance, in [33], a reputation

based mechanism is proposed to stimulate cooperation, where each node launches a

“watchdog” to monitor its neighbors’ transmissions. If a node does not forward oth-

ers’ traffic, it will be identified as a misbehavior node and this reputation informa-

tion is distributed throughout the network. Then, each node employs a “pathrater”

to select the routes that avoid the misbehavior nodes. Following the same idea, some

protocols such as “CORE” [34] and “CONFIDENT” [35] are proposed to enforce

cooperation, which have been shown can detect and isolate the misbehavior nodes

efficiently. The major challenge of designing reputation based mechanism for wire-

less networks is that the monitoring process may not be perfect due to noise and

fading, where the obtained information may be inaccurate and undesired decisions
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may damage the cooperation state.

2.2.3 Punishment Based Mechanism

Another possibility to provide incentive is to use the punishment based mechanism,

which is suitable for the scenarios where nodes compete for limited resources (e.g.

bandwidth, power, etc.). The main idea is that nodes employ some punishment strat-

egy to punish those who do not cooperate. In [40], a “punish-and-forgive” strategy

is proposed to motivate cooperative spectrum sharing in cognitive radio networks.

In this strategy, whenever a node deviates from cooperation, a punishment period

will be triggered. For example, when a node occupies the whole spectrum to deliver

its own data, the channel will be jammed. Nodes who sense the channel are aware

of this misbehavior and they will perform non-cooperatively for a certain period, in

which no one can get a good service. When the punishment period is long enough,

nodes will forgive the misbehavior and resume cooperation again. It can be seen

that by introducing punishment, selfish nodes do not have intention to deviate and

cooperation can be enforced. However, this kind of mechanism also depends on the

accuracy of monitoring or detecting the misbehavior. Although nodes have incen-

tive to cooperate by following such strategies, the random error in wireless channels

may result in false alarm that leads the cooperation into punishment period, which

degrades the network performance.

2.3 Game Theoretic Approaches

Game theory is a branch of applied mathematics that models and analyzes the in-

teractions among individual decision makers who have potentially conflicting inter-

ests [42]. It has been widely used in economics, political science, biology and

engineering areas to study cooperation and competition. Recently, game theo-
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retic approaches have been applied in studying cooperation stimulation problems

in wireless networks [32, 37–41, 43–45]. The cooperative scenarios such as packet

forwarding and spectrum sensing are modeled as games, and incentive strategies

are designed and analyzed according to game theory. In the following, some fun-

damental concepts and models in game theory are introduced, and game theoretic

approaches applied in wireless networks are reviewed.

2.3.1 Individual rationality

One of the fundamental assumptions in game theory is that decision makers are

rational, which means they make decisions in order to achieve some objectives

[46]. The rationality in game theory can be explained from two aspects. First,

a rational individual makes decisions consistently. In a game, each player has a

personal preference or an objective, which is referred as payoff (or utility). Once the

payoff is defined, the player makes decisions to maximize his/her payoff. Second,

a rational individual is aware of others’ rationality when making a decision. This

means a player assumes that others are as smart as he/she is, and makes decisions

considering others’ potential reactions. In wireless networks, decision makers are

either mobile users or network operators who control the wireless devices, and they

can program the devices and let them follow certain decision rules. Therefore, in

many wireless applications, the rationality assumption holds and game theory can

be applied to model and analyze the interactions among wireless users.

2.3.2 Static games

Typically, a game consists of the following three elements: a set of rational players,

a set of actions (or strategies) available to each player, and a payoff function for

each player that specifies the outcome for a combination of actions. If the players

only have one move as a strategy, the game is called Static Game or Single-Stage
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Game. Mathematically, we can represent the static game as G = 〈N ,A,V〉, where

N = {1, 2, ..., N} is the set of players, A = {A1,A2, ...,AN} is the joint set of

action spaces, and V = {v1, v2, ..., vN} is the set of payoff functions. When the

game is played, player i chooses an action Ai from its action spaces Ai, and all

players’ actions constitute an action profile A. After the actions are carried out,

player i gets a payoff vi(A).

In such a static game, a player tends to maximize his/her own payoff, which de-

pends on the whole action profile. Therefore, in order to find the optimal solution,

it is important to analyze the outcome of the game with different action profiles. In

game theory, Nash equilibrium (NE) is an important concept to measure the out-

come of the game, which characterizes the steady state that no player has incentive

to change his/her action [42]. Denote A = {Ai, A−i}, where A−i is the action

profile of players except i. Then NE of the static game can be defined as follows.

Definition 1. The action profile A∗ constitutes a Nash equilibrium if , for each

player i,

vi(A
∗
i , A

∗
−i) ≥ vi(Ai, A

∗
−i), ∀ Ai ∈ Ai. (2.1)

At NE state, none of the player can increase his/her payoff by unilaterally chang-

ing to other actions. Therefore, in a static game, players will take equilibrium ac-

tions as the optimal decision.

Fig. 2.4. Two-node packet forwarding process.
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TABLE 2.1

Two-node packet forwarding game.

node 2 cooperates node 2 defects

node 1 cooperates (r1 − c1, r2 − c2) (−c1, r2)

node 1 defects (r1, −c2) (0, 0)

Many scenarios in wireless communication can be modeled as static games.

For instance, Fig. 2.4 shows the two-node cooperative packet forwarding process,

where a source node’s packet needs to be delivered via the other one. S1 and S2

represent the two source nodes, and D1 and D2 are their destinations, respectively.

This process can be modeled as a static game if each source node only transmits

one packet. In this game, each source node can be viewed as a player, and their

actions are either “cooperate” or “defect”. The payoff of a player can be defined

as the reward for successfully delivering its own packet minus the cost to help the

other source node forward a packet. The game can be expressed in matrix form

as shown in Table 2.1. The elements inside the matrix represent the payoff profile

for each combination of actions, where r1 and r2 represent the reward and c1 and

c2 represent the cost. In this static game, it is easy to check that the only NE is

“defect” for both nodes. Therefore, mutual cooperation cannot be achieved if the

cooperative forwarding game is played only once.

2.3.3 Repeated games

In many situations, players interact several times, and the static game is played

repeatedly. This type of game is referred as the repeated game, and each interaction

is called a stage. Unlike static games, repeated games have the following features.

• First, a player can observe others’ past behaviors and hence can condition

his/her action in the future. The past moves of all players are referred as the
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history of the game. In a repeated game, at the beginning of stage k, player i

makes a decision Ak
i based on a period of history according to some strategy

si. Note that there is no history in the first stage. Therefore, the strategy

should define the initial action.

• Second, instead of maximizing the payoff in one stage, players make deci-

sions in order to maximize their long term payoffs. Specifically, if players

do not know the end of the game, the game can be viewed as an infinite

repeated game, and the long term payoff of player i can be represented as

Vi =
∑+∞

t=0 (δ)tvt
i , where δ ∈ (0, 1) is a common discount factor that charac-

terizes how much the player cares about the future payoffs.

• Moreover, since the action is determined by the history and behavior strategy,

mutual cooperation becomes possible. For instance, in the two-node packet

forwarding scenario, if both nodes keep transmitting packets and they adopt

the same strategy where the decision is to cooperate as long as the other one

cooperates, then cooperation state can be maintained.

In repeated games, NE can be analyzed according to the behavior strategy.

Definition 2. A strategy profile S∗ = {s∗i , s∗−i} constitutes an NE if, for each player

i,

Vi(s
∗
i , s

∗
−i) ≥ Vi(s

′
i, s

∗
−i), ∀ s′i 6= s∗i . (2.2)

If a strategy employed by all players constitutes an NE starting from any stage of

the game, then it is called a subgame perfect equilibrium strategy [47]. Obviously,

when designing incentive mechanisms, a subgame perfect equilibrium strategy is

preferred, since by employing such strategy, no one has incentive to deviate at any

time. In the literature, One-Shot Deviation Principle is proposed to study the sub-

game perfection of a strategy, which states that a strategy is subgame perfect if no
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player can increase his/her profit by deviating to another strategy for one stage and

then come back to follow the original strategy again in the rest stages.

Another aspect of the equilibrium analysis is what payoffs can be achieved at

the NE point. The Folk theorem is one of the most important principles to study

the possible NE points in repeated games. Before introducing the theorem, the

following terms are defined.

Definition 3. The payoff profile Vf is feasible if, for each player i, the correspond-

ing action Af
i ∈ Ai.

Definition 4. The payoff profile Ve is enforceable if, for each player i,

vi(A
e
i , A

e
−i) ≥ min

A−i∈A−i

max
Ai∈Ai

vi(Ai, A−i). (2.3)

It can be seen that feasible means the payoff profile can be realized by some

actions, and enforceable means a player’s payoff is no less than his/her worst pay-

off when he/she plays the best response against the others. Based on the above

definition, the Folk theorem can be described as follows.

Theorem 1. The Folk Theorem : For any feasible and enforceable payoff profile V ,

there exists a discount factor δ < 1, such that for all δ ∈ (δ, 1), there is a Nash

equilibrium with payoff profile V .

The Folk theorem implies that there might be several NE points in a repeated

game, and enforcing cooperation is possible.

In some games, players may have different cooperation actions and there might

be different cooperation states. For instance, in the two-node packet forwarding

game, nodes can forward the packet with different power. Then a question arises:

which cooperation state should be enforced as an NE when designing the incen-

tive mechanism? One method in selecting the desired NE is to compare the corre-

sponding action profile according to the concept of Pareto optimality [42], which is

defined as follows.
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Definition 5. The action profile Apo is Pareto optimal if, for each player i,

vi(A
po
i , Apo

−i) ≥ vi(Ai, A−i), ∀ Ai ∈ Ai. (2.4)

From the above definition, it can be seen that Pareto optimality is a multi-

objective optimization criterion considering each node’s payoff. An alternative

explanation of Pareto optimality is that no one can increase his/her own payoff

without decreasing any other node’s payoff, which can be proved according to the

above definition. Another important criterion in equilibrium selection is the ab-

solute fairness criterion, which requires that each player obtains the same payoff.

This is natural in strategy design for wireless networks since users should be treated

fairly in many applications.

2.3.4 Game Theoretic Approaches for Cooperation Stimulation

Game theoretic approaches have been incorporated in designing and analyzing co-

operation stimulation strategies for wireless networks [32, 38, 39, 44]. Generally,

such approaches consists of the following procedures: game modeling, equilibrium

analysis and strategy design.

• Game modeling: In many cooperative communication scenarios, the interac-

tions among wireless nodes can be modeled as repeated games. Each wireless

node can be viewed as a player, and it takes actions to maximize a certain

payoff. The action of a node can be defined as cooperate or not, or coop-

erate at a certain level. The corresponding payoff is usually defined as the

reward from others minus the cost incurred by offering help. After the game

is formulated, game theory can be applied to analyze the outcome of nodes’

interactions, and incentive mechanisms can be designed accordingly.

• Equilibrium analysis: Before designing incentive mechanisms, it is important
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to know whether cooperation can be enforced, which is equivalent to analyze

the NE of the repeated game. According to the Folk theorem, sometimes

there might be multiple NE points. To stimulate cooperation efficiently, a

proper NE should be selected according to some criteria, such as the Pareto

optimality and the absolute fairness criteria.

• Strategy design: In repeated games, to provide incentive is to design an equi-

librium strategy such that nodes will benefit by following the strategy rather

than deviating from it. In the literature, there are several strategies that can

enforce cooperation, such as the Tit-for-Tat and Grim Trigger. In Tit-for-Tat

strategy, a player imitates the others’ past behaviors. For instance, in the two-

node packet forwarding game, a node who follows the Tit-for-Tat strategy

will act exactly the same as the other node did in the previous stage. The

Grim Trigger strategy introduces more severe punishment, where a node co-

operates as long as the other one cooperates and defects forever once the other

defects. It has been shown that both strategies are subgame perfect equilib-

rium strategies. When designing the incentive mechanisms, these strategies

can be modified to fit the specific application, and sometimes can be applied

together to form a more efficient strategy.

The above game theoretic approaches have been widely used for cooperation stim-

ulation in ad-hoc networks, and are also incorporated in this thesis to study the

incentive mechanism design in cooperative multicast networks.
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Chapter 3

A Time Division Based Cooperative

Multicast Strategy

Wireless multicast is a bandwidth efficient communication technique that allows

a source to deliver the same information to multiple destinations simultaneously.

However, the existence of noise and fading in wireless channels poses great chal-

lenge in providing reliable multicast transmissions. Recently, cooperative multicast

has emerged as an efficient technique to combat fading in wireless channels, which

exploits node cooperation for information relaying. Although different cooperation

strategies have been developed to improve the network performance, the optimal

scheduling problem, such as relay selection and time allocation, has not been well

addressed for delay-sensitive applications.

This chapter studies node cooperation in wireless multicast networks for delay-

sensitive applications, and proposes a time division based cooperative multicast

strategy. The major contribution is two-fold. First, the optimal relaying strategy that

maximizes the system throughput is shown to be a pure threshold policy, where the

optimal relay number is bounded by a threshold. Second, to avoid the complexity in

exhaustive search, a simple algorithm is proposed to find the optimal time allocation
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Fig. 3.1. System model.

between source multicast and relay cooperation.

The rest of this chapter is organized as follows. Section 3.1 describes the system

model. Section 3.2 gives a detail discussion of the optimum relay selection scheme.

Section 3.3 presents a simplified numerical method to find the optimal time alloca-

tion. Section 3.4 provides performance analysis of the proposed strategy. Section

3.5 gives some further discussion, followed by conclusions in Section 3.6.

3.1 System model

3.1.1 Network Description and Channel Model

The considered model is a single-hop wireless multicast network as shown in Fig.

3.1, where a source multicasts data packets to a group of N nodes that are close to

each other. The distance between the source and each node is much larger than the

distance between any pair of nodes, so that the average channel condition between

any two nodes is better than that of the direct link from the source to a node. The

live multicast applications are considered, which have stringent delay constraint and

require that a packet of length Lp must be delivered to all nodes within time duration

T . All the wireless channels are assumed to undergo path loss and Rayleigh fading.
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The channel gain between the source and any node is assumed to be independent

and identically distributed (i.i.d.). Denote xs as the symbols broadcasted by the

source, and the received symbols at node i, denoted as ysi, can be represented as

ysi =
√

Pshsixs + nsi, (3.1)

where Ps is the source’s transmission power, hsi is the channel gain from the source

to node i, which can be modeled as a complex Gaussian random variable with

CN (0, σ2
s), and nsi is the additive white Gaussian noise (AWGN) with CN (0, N0).

According to Shannon theory, the corresponding channel capacity is given by

Csi = log

(
1 +

Ps|hsi|2
N0

)
. (3.2)

The block-fading channel model is considered, where the channel gain remains

unchanged within a time slot (with length T ) and is i.i.d. in different time slots.

It is also assumed that a data packet can be successfully delivered if the source’s

transmission rate γs is no larger than the corresponding channel capacity, and the

packet delivery success probability from the source is given by

ps(γs, Ps) = Pr{γs ≤ Csi} = exp

(
N0(1− 2γs)

Psσ2
s

)
, (3.3)

The channel gain between any pair of nodes is assumed to be i.i.d. with CN (0, σ2
r).

The corresponding packet delivery success probability from node i to node j can be

similarly derived as pr(γi, Pi) = exp
(

N0(1−2γi )
Piσ2

r

)
, where γi is node i’s transmission

rate and Pi is the transmission power.

3.1.2 Time Division Based Cooperative Multicast Strategy

Fig. 3.2 shows the considered time division based cooperative multicast strategy. It

contains two phases that have time duration T1 = (1 − α)T and T2 = αT , respec-

tively, where 0 ≤ α < 1. In the first phase, the source transmits the packet at rate
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Fig. 3.2. Time division based cooperative multicast strategy.

γs = Lp/T1 using power Ps. According to the channel model, the probability that

a node successfully receives the packet from the source is ps = exp
(

(1−2γs )N0

Psσ2
s

)
=

exp
(

1−2γs

Γ1

)
, where Γ1 = Psσ2

s

N0
. At the end of Phase 1, the successful nodes send

feedbacks to the source indicating their success in receiving the packet, and the

feedback time is assumed to be negligible.

In Phase 2, nodes who successfully receive the packet from the source help

forward the packet to others. Given that i nodes receive the packet correctly in the

first phase, since all channel gains between nodes are i.i.d., the source randomly

selects mi ≤ i of them to serve as relays, and the selected relays take turns to

broadcast the packet in Phase 2. Note that the number of selected relay, mi, depends

on the number of successful nodes in Phase 1. The time duration T2 in Phase 2

is divided into mi intervals of equal length, each for a relay who transmits the

packet at the same rate γr = Lp

T2/mi
using the same power Pr. The corresponding

probability that a node successfully receives from a relay is pr = exp
(

(1−2γr )N0

Prσ2
r

)
=

exp
(

1−2γr

Γ2

)
, where Γ2 = Prσ2

r

N0
. Note that, when all nodes correctly receive the

packet from the source, there is no need for nodes to forward the packet in Phase 2

and mN = 0. For a node who fails in Phase 1, it still can succeed in Phase 2 if it

correctly receives the packet from at least one of the mi relays, which happens with

probability
(
1− (1− pr)

mi
)
.
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Let µ1 be the number of nodes that successfully receive the packet in Phase 1,

and µ2 be the number of nodes who fail in phase 1 but successfully receive the

packet in Phase 2. Given µ1 = i and mi relays help forward the packet, µ2’s condi-

tional mean isE[µ2|i,mi] = (N−i)
(
1−(1−pr)

mi
)
. Define m

4
=(m1,m2, · · · ,mN),

and let µ(α,m) be the total number of nodes who successfully receive the packet

within T (either from the source or from one of the relays). Following the above

analysis, the system throughput is defined as the mean of µ(α,m), which can be

calculated using

E[µ(α,m)]

=
N∑

i=1

[
i + (N − i) · (1− (1− pr)

mi
)]

Pr{µ1 = i}

=
N∑

i=1

{[
i + (N − i) · (1− (1− pr)

mi
)] ·

(
N

i

)
pi

s(1− ps)
N−i

}
. (3.4)

3.2 Optimal Relay Selection Scheme

This section studies the optimal relay selection scheme for the cooperative multicast

strategy. Specifically, the time allocation parameter α is fixed and the optimal relay

number m that maximizes the system throughput is derived. From (3.4), for a par-

ticular number of successful nodes in phase 1, µ1 = i, the relay selection parameter

mi only affects the term
(
1 − (1 − pr)

mi
)
. Therefore, for a fixed α, maximization

of the throughput E[µ(α,m)] is equivalent to maximization of
(
1 − (1 − pr)

mi
)
,

or equivalently, minimization of (1 − pr)
mi for all 1 ≤ i ≤ N − 1. Define

ω
4
=1/Γ2 and ρ

4
=γr/mi = Lp/(αT ), and p(α,mi)

4
= exp (ω(1− 2ρmi)). Thus, pr =

exp
(

1−2γr

Γ2

)
= p(α, mi), and the optimal relay selection problem becomes the fol-

lowing optimization problem: for 1 ≤ i ≤ N − 1,

minimizemi
H(α, mi)

∆
=

(
1− p(α,mi)

)mi subject to 0 ≤ mi ≤ i. (3.5)
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Note that in (3.5), mi is an integer. To gain some insights into the optimal relay se-

lection problem, it is important to analyze the properties of H(α, x)
4
=

(
1−p(α, x)

)x,

where p(α, x)
4
= exp

(
ω(1 − 2ρx)

)
and x ∈ R+ is a positive real number. The fol-

lowing result can be obtained.

Lemma 1. For a fixed α, H(α, x) achieves its minimum value at x = x0 where

∂H(α,x)
∂x

∣∣∣
x=x0

= 0. In addition, H(α, x) is a monotonically decreasing function of x

when 0 < x ≤ x0, and it monotonically increases when x > x0.

Proof. Take the first derivative of ln H(α, x) = ln
{(

1− p(α, x)
)x} with respect

to x, it can be obtained that

∂ ln H(α, x)

∂x
=

1

H(α, x)

∂H(α, x)

∂x

= ln
(
1− p(α, x)

)
+

(−1) · x
1− p(α, x)

∂p(α, x)

∂x

where

∂p(α, x)

∂x
= exp

(
ω(1− 2ρx)

) · ω · (−1) · ln 2 · ρ · 2ρx

= −ρω(ln 2)p(α, x)2ρx.

Therefore,

∂H(α, x)

∂x
= H(α, x)

{
ln(1− p(α, x)) +

(−1) · x
1− p(α, x)

∂p(α, x)

∂x

}

=
H(α, x)p(α, x)

1− p(α, x)

{
1− p(α, x)

p(α, x)
ln

(
1− p(α, x)

)
+ ρω(ln 2)x2ρx

}

=
H(α, x)p(α, x)

1− p(α, x)
f(α, x) (3.6)

where

f(α, x)
4
=

1− p(α, x)

p(α, x)
ln

(
1− p(α, x)

)
+ ρω(ln 2)x2ρx. (3.7)

Appendix A shows that f(α, x) has the following properties:

i)

lim
x→0

f(α, x) = 0, lim
x→+∞

f(α, x) = +∞. (3.8)
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ii) Define x∗ as the root of ∂f(α,x)
∂x

= 0, then




∂f(α,x)
∂x

< 0 if 0 < x < x∗;

∂f(α,x)
∂x

= 0 if x = x∗;

∂f(α,x)
∂x

> 0 if x > x∗.

(3.9)

From the two properties it can be seen that f(α, x) = 0 has a single root x0 ∈
(0, +∞) and 




f(α, x) < 0 if 0 < x < x0;

f(α, x) = 0 if x = x0;

f(α, x) > 0 if x > x0.

(3.10)

For x ∈ (0, +∞), it is obvious that p(α, x) ∈ (0, 1), H(α, x) ∈ (0, 1), and thus,

H(α,x)p(α,x)
1−p(α,x)

> 0. Based on (3.6), (3.8), and (3.10), it can be obtained that




∂H(α,x)
∂x

< 0 if 0 < x < x0;

∂H(α,x)
∂x

= 0 if x = x0;

∂H(α,x)
∂x

> 0 if x > x0.

(3.11)

Therefore, H(α, x) has one global minimum at x = x0, and it is a monotonically

decreasing function of x if x ∈ (0, x0), and monotonically increases as x increases

from x0. This completes the proof.

For a given α, let x0(α) be the root of the equation ∂H(α,x)
∂x

= 0, and define

m∗(α) =




bx0(α)c if H(α, bx0(α)c) ≤ H(α, dx0(α)e);
dx0(α)e otherwise.

(3.12)

Here, b·c and d·e are the floor and the ceiling functions, respectively. Based on

Lemma 1, for integer mi, H(α, mi) is a monotonically decreasing function of mi

when mi ≤ m∗(α), and H(α, mi) monotonically increases if mi > m∗(α). Note

that the number of relays should be no larger than the number of successful nodes

in phase 1. Therefore, based on the property of H(α, mi), given µ1 = i nodes

successfully received the packet in phase 1, to minimize H(α, mi) and to maximize
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the network throughput, if i is smaller than m∗(α), then all these successful nodes

should be selected as relays; otherwise, the source should randomly select only

m∗(α) of the i successful nodes to serve as relays in phase 2.

To summarize, the optimal relay number mi can be found by

mopt
i =





min
(
i,m∗(α)

)
if i < N,

0 if i = N
(3.13)

From (3.13), it can be seen that m∗(α) works as a threshold in determining the

optimal number of relays and it can be found numerically according to (3.12).

With the optimal relay selection algorithm, the network throughput E[µ(α,m)]

in (3.4) becomes

E[µ(α)] =
N∑

i=1

{[
i + (N − i) ·

(
1− (

1− pr(α)
)mopt

i

)]

·
(

N

i

)
ps(α)i

(
1− ps(α)

)N−i

}
. (3.14)

3.3 Optimal Time Allocation Scheme

In this section, based on the optimal relay selection scheme in the previous discus-

sion, the optimal time allocation is determined. Specifically, a simple numerical

method is proposed to jointly determine the time allocation parameter α and the

relay number m that maximize the system throughput. Note that the optimal relay

number threshold m∗(α) in (3.12) is a function of α. Therefore, to determine the

optimal time allocation, it is necessary to find m∗(α) for all α ∈ [0, 1), which is

computationally expensive.

For any given α ∈ [0, 1), m∗(α) can be obtained based on (3.12), where it

is related to the root of the differential equation ∂H(α,x)
∂x

= 0, x0(α). Instead of

solving the above differential equation to obtain m∗(α), an efficient algorithm is

proposed to find m∗(α) with less complexity. The following lemmas are introduced

to facilitate the algorithm.
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Lemma 2. x0(α) linearly scales with α. That is, given α1 6= α2, let x0(α1) and

x0(α2) be the solutions to ∂H(α1,x)
∂x

= 0 and ∂H(α2,x)
∂x

= 0, respectively. Then,

x0(α1)
x0(α2)

= α1

α2
.

Proof. From the proof of Lemma 1, ∂H(α,x)
∂x

= 0 has a single root x0(α) which is

also the single root of equation

1− p
(
α, x

)

p
(
α, x

) ln
(
1− p

(
α, x

))
+ ω(ln 2)

Lp

T

x

α
2

Lp
T

x
α = 0 (3.15)

where p
(
α, x

)
= exp

(
ω

(
1− 2

Lp
T

x
α

) )
. Denote y = x

α
. Thus, finding x0(α) is

equivalent to finding the single root y = y0 of the following equation

1− p(y)

p(y)
ln

(
1− p(y)

)
+ ω(ln 2)

Lpy

T
2

Lpy

T = 0 (3.16)

where p(y) = exp

(
ω

(
1− 2

Lpy

T

) )
, and then letting x0(α) = α · y0. It can be

seen that the solution to (3.16), y0 = x0(α)
α

, does not depend on α. Therefore, x0(α)

scales linearly with α.

Lemma 2 means that, if x0(α0) is known for a specific value α0, then for any other

α ∈ (0, 1), the corresponding x0(α) can be determined as x0(α) = x0(α0) · α/α0.

Lemma 3. For an integer n, assume a, b ∈ (0, 1) satisfy x0(a) = n and x0(b) =

n + 1. If m∗(α0) = n + 1 for a specific α0 ∈ (a, b), then m∗(α) = n + 1 for any

α ∈ [α0, b].

Proof. To prove Lemma 3, the first step is to prove that for an infinitely small

positive value ε, m∗(α0 + ε) = n + 1.

First, note that for α0 ∈ (a, b), m∗(α0) = n + 1 means that x0(α0) ∈ (n, n + 1]

and H(α0, n) > H(α0, n + 1). (When H(α0, n) = H(α0, n + 1), that is, n and

n+1 relays give the same system throughput, m∗(α) = n is selected in order to

reduce the total energy consumed by relays.) From Lemma 1, H(α0, x) decreases

when x increases from n to x0(α0), and increases when x increases from x0(α0)
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to n + 1. Since H(α0, n) > H(α0, n + 1), there exists z ∈ (n, x0(α0)) such that

H(α0, z) = H(α0, n + 1).

Taking the first derivative of H(α, x) =
(
1− p(α, x)

)x with respect to α, then

∂H(α, x)

∂α
= x

(
1− p(α, x)

)x−1 · (−1) · ∂p(α, x)

∂α

= ln 2 · ω · 2Lpx

αT x2
(
1− p(α, x)

)x−1
p(α, x)

Lp

T
(− 1

α2
)

= ln 2 · ω · 2Lpx

αT x2H(α, x)p(α, x)

1− p(α, x)

Lp

T

(
− 1

α2

)
< 0 (3.17)

which means that H(α, x) decreases as α increases. In addition, as proved in Ap-

pendix B, for any given α ∈ [0, 1), if H(α, z) = H(α, n+1) and 0 < z < x0(α) <

n + 1, then ∣∣∣∂H(α, x)

∂α
|x=z

∣∣∣ <
∣∣∣∂H(α, x)

∂α
|x=n+1

∣∣∣. (3.18)

Since H(α0, z) = H(α0, n + 1) and ε is an infinitely small positive value, then

H(α0 + ε, z)−H(α0 + ε, n + 1)

= ε

(
∂H(α, x)

∂α

∣∣∣
x=z,α=α0

− ∂H(α, x)

∂α

∣∣∣
x=n+1,α=α0

)
+ O(ε2) > 0. (3.19)

Furthermore, z ∈ (n, x0(α)) and x0(α0+ε) = x0(α0)(α0+ε)/α0 > x0(α0) implies

that z ∈ (n, x0(α0 + ε)). Note that from Lemma 1, H(α0 + ε, x) decreases when x

changes from n to x0(α0 + ε). Consequently,

H(α0 + ε, n) > H(α0 + ε, z)
from(3.19)

> H(α0 + ε, n + 1) (3.20)

and therefore, m∗(α0 + ε) = n + 1. From m∗(α0 + ε) = n + 1, it can be seen that

m∗(α0 + 2ε) = m∗((α0 + ε) + ε
)

= n + 1, using the same proof as above. Keeping

adding ε, eventually, it can be concluded that m∗(α) = n + 1 for any α ∈ [α0, b].

This completes the proof.

For interval [a, b] where x0(a) = n and x0(b) = n + 1 (n is an integer), based

on the property of H(α, x), it can be obtained that H(a, n) < H(a, n + 1) and

H(b, n) > H(b, n + 1). Therefore, it is obvious that when α increases from a to
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b, there is an αn that satisfies H(αn, n) = H(αn, n + 1). From Lemma 3, it can

be seen that m∗(α) = n if α ∈ [a, αn], and m∗(α) = n + 1 for any α ∈ (αn, b].

Therefore, the relay threshold m∗(α) increases with α in a stair case manner. Based

on this observation, the following simplified algorithm can be used to efficiently

find the values of m∗(α) for any α ∈ [0, 1). An illustration is shown in Fig. 3.3,

in which x0(α) and m∗(α) are represented by the dashed-dotted line and solid line,

respectively.

Algorithm 1 Determination of m∗(α) (0 ≤ α < 1).

1: let α = 1 and solve ∂H(α=1,x)
∂x

= 0 to get x0(α)|α=1.

2: draw the figure of x0(α) = α · x0(α)|α=1.

3: draw lines x0(α) = 1, 2, ..., which will partition the line of x0(α) = α ·
x0(α)|α=1 into K regions with index 0, 1, ..., K − 1. Assume region k is be-

tween lines x0(α) = k and x0(α) = k + 1.

4: in region k = 0, if α = 0, then m∗(α) = 0; Otherwise m∗(α) = 1.

5: for k = 1 : K − 1 do

6: in region k, use numerical methods such as bi-section search to find the point

of α = αk such that H(αk, k) = H(αk, k + 1).

7: in region k, m∗(α) = k if α ∈ [jk, αk] and m∗(α) = k + 1 if α ∈ (αk, jk+1],

where jk = k
x0(α)|α=1

.

8: end for

Step 3 of the algorithm is to partition the line x0(α) into several regions. In

region k, at the left end, x0(α) = k, while at the right end, x0(α) = k+1. Therefore,

in region k, m∗(α) is either k or k+1. From Lemma 3, when α moves from the left

end to the right end in region k, once m∗(α) = k+1 at one particular value of α, the

value of m∗(α) will keep at value k + 1 when α further moves from the particular

value to the right end of the region. Therefore, in Step 6, bi-section search method

is used to find the particular value of α in region k. And in the region, m∗(α) = k
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Fig. 3.3. Illustration of Algorithm 1.

and m∗(α) = k + 1 at the left and right side of the particular value, respectively, as

shown in Step 7.

The major advantage of the above algorithm is that the differential equation

∂H(α,x)
∂x

= 0 only need to be solved once, and then all values of m∗(α) can be found

by fast search. Note that when the algorithm is not adopted, ∂H(α,x)
∂x

= 0 has to be

solved for each value of α within 0 ≤ α < 1, which is computationally complex.

Given the above efficient method to determine m∗(α) for all α ∈ [0, 1), the

optimal time allocation can be found as follows. First, α is uniformly sampled in the

range of [0, 1) with a step size ∆ (¿1). Then m∗(α) can be found for all sampled α

values according to Algorithm 1 and the corresponding network throughputE[µ(α)]

can be calculated using (3.14). Finally the value of α that maximizes E[µ(α)] is

selected as the optimal time allocation parameter. Note that α=0 corresponds to

direct transmission without node cooperation.
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3.4 Performance Evaluation

In this section, the performance of proposed cooperative multicast strategy is eval-

uated and compared with that of the direct multicast scheme without cooperation.

Consider a network with N = 100 nodes. The packet size Lp is 8 Kbits, which

needs to be received within T = 10 ms over a wireless channel with 1 MHz band-

width. Other parameters are Γ1 = 0 dB and Γ2 = 10 dB. Fig. 3.4 shows E[µ(α)],

the average number of nodes that successfully receive the packet during T with

different values of the time allocation parameter α. It is observed that E[µ(α)] de-

creases with α at first and then increases to a maximum point and then decreases

again. This can be explained as follows. When the time duration for relay session

(i.e., Phase 2) is very short (α is close to 0), the success probability pr in phase 2 is

very small such that almost no node can receive successfully from a relay. Thus, a

larger α means more waste of time, and degrades the performance. As α increases

to a certain level, the success probability pr becomes larger, and cooperation in

phase 2 takes effect. So the overall throughput increases. As α further increases

(close to 1), the time for source transmission, T1, is very small (close to 0), which

means the success probability ps is very small and almost no node can receive the

packet correctly in phase 1. As a result, the throughput decreases dramatically.

Next the cooperation strategy is compared with direct multicast. The coopera-

tion strategy is designed with the optimal time allocation and optimal relay selec-

tion. The system throughput is derived numerically for different values of Γ1 and

Γ2, where the difference between them is kept at Γ2 − Γ1 = 10 dB. Note that Γ1

and Γ2 are the average SNR for the channel from the source to the nodes, and be-

tween any two nodes, respectively. Fig. 3.5 shows the average number of successful

nodes versus Γ1. It can be observed that when Γ1 is smaller than -6.4 dB, optimal

cooperation strategy is just direct multicast. The reason is as follows. When Γ1 is

very small (which means that the channel from the source to each node is poor), it
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is not beneficial if the duration T is partitioned into two phases and let the source

transmit in the first phase, because almost no node will successfully receive the

packet in the first phase due to poor channel quality. As the value of Γ1 increases

beyond a certain level, cooperation achieves a better performance. Particularly, in

Γ1’s region from -4 dB to 4 dB, the optimal cooperation strategy achieves signifi-

cant performance gain, compared to the direct multicast. When Γ1 further increases

(more than 8 dB), both the cooperation strategy and direct multicast can achieve

high throughput, and the difference between them becomes smaller and smaller.
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Fig. 3.4. Throughput versus α.
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Fig. 3.5. Comparison of cooperative multicast and direct multicast.
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3.5 Further Discussion

The analysis in preceding sections is based on the assumption that the channel gain

between any pair of nodes is i.i.d., referred to as i.i.d. case. It is essential to inves-

tigate the impact if the channel gain between nodes is not identically distributed.

Consider the following non-i.i.d. case. The nodes are uniformly distributed within

a circle with radius d0. The channel between any pair of nodes undergoes path loss

with exponent 2 and Rayleigh fading. In the non-i.i.d. case, the probability pr in

preceding sections is not the same anymore for each pair of nodes, and is expressed

as pr(τij, γr) = exp (τij(1− 2γr)), where τij = N0

Prσ2
ij

depends on the statistics of

the channel gain between node i and node j. To deal with the heterogeneity of

pr, an approximation is used, which can be described as follows. For the N nodes

uniformly distributed within the circle, the average value of τij , denoted as τ , can

be calculated using numerical methods, and the corresponding value of pr, denoted

pr = pr(τ , γr) can be found for a particular value of γr. By using pr to approximate

the success probability between any pair of nodes, the system throughput can be

approximated according to (3.4), by replacing pr with pr. By employing this ap-

proximation, the optimal relay selection and optimal time allocation can be derived

as well.

Simulations are used to evaluate the effectiveness of the above approximation.

Consider N = 10 nodes uniformly distributed within a circle with unit radius.

The wireless channel bandwidth is 1 MHz. The length of the whole time slot is

T = 20 ms, and the packet size is Lp = 8 Kbits. The average received SNR for a

node from the source is Γ1 = 0 dB, and the average received SNR between two

nodes is 10 dB if the distance between the two nodes is unit. 1000 topologies

are randomly generated based on the node distribution. First, the time allocation

parameter α is fixed at 0.5, where the whole time slot is equally partitioned. When

µ1(∈ {1, 2, ..., N}) nodes successfully receive the packet from source in T1, by
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TABLE 3.1

Optimal number of relays and maximal system throughput versus µ1

µ1 1 2 3 4 5 6 7 8 9

Optimal number Exhaustive search 1 2 2 2 2 2 2 2 2

of relays Approximation 1 2 2 2 2 2 2 2 2

Maximal Exhaustive search 9.37 9.74 9.78 9.81 9.84 9.87 9.90 9.94 9.97

system throughput Approximation 9.36 9.73 9.76 9.80 9.83 9.86 9.90 9.93 9.97
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Fig. 3.6. Optimal time allocation for non i.i.d. case.

exhaustive search (on how many relays are selected and which relays are selected)

the optimal number of relays can be found, which achieves the maximal average

(note that here the average is for the 1000 topologies) system throughput for the

1000 topologies, as shown in Table 3.1. The approximation results are also given in

Table 3.1. Then, the optimal time allocation scheme is also compared by changing

α, based on the optimal number of relays that determined using exhaustive search.

The results are shown in Fig. 3.6. It can be seen that the approximation results

match well with the exhaustive search simulation results, which demonstrates the

accuracy of the approximation for the non-i.i.d. case.
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3.6 Summary

In this chapter, a time division based cooperative multicast strategy is proposed for

transmissions of delay-sensitive traffic. The optimum relay selection and time al-

location schemes are analyzed. It has been shown that the optimal relay number

is bounded by a threshold value which can be found via numerical methods. An

efficient algorithm is also proposed to find the optimal time allocation for source

transmission and node cooperation. Numerical results show that the proposed strat-

egy can enhance the network performance.
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Chapter 4

Cooperation Stimulation

In most existing cooperative wireless multicast strategies, it is assumed that nodes

will cooperate unconditionally, and always forward data when selected as relays.

However, in many applications, nodes are selfish and prefer receiving data than

offering help, since relaying data costs extra energy. Therefore, it is critical to

design incentive mechanisms to stimulate cooperation among selfish nodes.

This chapter employs game theoretic approaches to study the cooperation stim-

ulation problem in wireless multicast networks. The cooperation among selfish

nodes is modeled as a repeated game and an incentive strategy is proposed accord-

ing to game theory. The rest of this chapter is organized as follows. Section 4.1

describes the system model and Section 4.2 formulates the repeated game. Equi-

librium of the game is studied in Section 4.3. The incentive strategy is proposed

and analyzed under both perfect and imperfect monitoring scenarios in Section 4.4.

Performance evaluation is provided in Section 4.5 and finally conclusion is drawn

in Section 4.6.
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4.1 System Model

The general system model is the same as the one considered in Chapter 3, where a

source multicasts data packets to a group of N nodes that are close to each other. In

this chapter, the mobile scenario is considered where nodes are randomly moving

within a circular area. The distance between the source and each node is much

larger than the average distance between any pair of nodes. To enhance the system

performance, the previously discussed two-phase cooperative multicast strategy is

employed, where the source transmits in the first phase, and some successful nodes

are selected as relays to forward the data in the second phase. For simplicity, this

chapter studies the single relay case, where only one relay is selected to rebroadcast

the data in the second phase.

Similar to Chapter 3, the wireless channel between the source and a node expe-

riences Rayleigh fading and AWGN noise (with distribution CN (0, N0)), and the

corresponding channel gain is assumed to be i.i.d. with CN (0, σ2
s). The probability

that a node correctly receives a packet from the source is ps = exp
(

N0(1−2γs )
Psσ2

s

)
,

where Ps is the source’s transmission power and γs is the transmission rate. The

channel gain between any two nodes i and j is modeled as CN (0, σ2
ij) and the

corresponding probability that node j successfully receives a packet from node i

is pij = exp
(

N0(1−2γr )

Piσ2
ij

)
, where Pi is node i’s transmission power and γr is the

corresponding transmission rate. Since nodes are mobile, the success probability

pij changes from time to time. To simplify the analysis, the following approxima-

tion is used. For any pair of mobile nodes i and j, the average value of N0(2γr−1)

σ2
ij

can be calculated according to the mobility model and the statistics of the chan-

nel gain, which is denoted as D, and the overall probability that node j success-

fully receives a packet from node i is approximated as pij ≈ pr(Pi) = exp
(
−D
Pi

)
,

∀ i, j ∈ {1, 2, ...N}, i 6= j. The impact of the approximation on system perfor-

mance will be discussed in Section 4.4.6.
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4.2 The Repeated Game Model

In the cooperative multicast strategy discussed in Chapter 3, it is assumed that the

selected relay nodes always help forward the data with the same designated power.

However, in real applications, nodes may not follow the strategy and can decide the

transmission power by themselves. Note that forwarding data benefits the unsuc-

cessful nodes, but incurs some cost to the relay, such as extra energy consumption.

Therefore, a selfish node would expect others to cooperate but would not cooperate

itself. Consider the scenario where nodes are all selfish and aim to maximize their

own profits. Then, the cooperative multicast process can be modeled as a game,

where each node is a player. When selected as a relay, a node can decide the trans-

mission power to maximize its payoff, which is defined as the reward for receiving

packets (either from the source or from the relays) minus the cost to forward pack-

ets. Since the multicast session usually lasts for a long time, nodes may perform

the decision-making process repeatedly. Therefore, the interactions between nodes

can be formulated as a repeated game. Denote the reward for correctly receiving a

packet as r0 > 0 and the cost for transmitting a packet with unit power as c0 > 0,

where r0 and c0 are application dependent constants. Consider M time slots as a

stage, in which nodes are assumed not to change their transmission power. Then

the cooperative multicast game can be defined as follows:

Definition 6. The Cooperative Multicast Game is the game G =〈 N , Ak,vk〉, where

• N={1,2,...,N} is the set of nodes (players),

• Ak = [Ak
1, A

k
2, ..., A

k
N ]. Ak

i = P k
i ∈ [0, Pmax] is node i’s action in stage k, which

means that if node i is selected as a relay, it transmits the packet with power P k
i .

Pmax is the maximum power that a node is willing to use for cooperation during a

long-period multicast program.

• vk = [vk
1 , v

k
2 , ..., v

k
N ]. vk

i = r0(n
k
si + nk

ri) − c0n
k
i P

k
i is node i’s expected payoff
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in stage k, where nk
si is the expected number of packets correctly received from the

source, nk
ri is the expected number of packets not correctly received from the source

but correctly received from the relays, and nk
i is the expected number of packets that

node i should forward to others.

Consider the scenario where nodes stay in the multicast session for a long time

and no one knows exactly when others will leave the multicast service and when

the game will end. Then the cooperative multicast process can be viewed as an

N -player infinite repeated game. In such a repeated game, at the beginning of stage

k, node i makes a decision of Ak
i based on other nodes’ past behaviors according to

strategy si. Assume that any node i is rational, and it makes decisions to maximize

its long term expected payoff

Vi =
∞∑

k=0

(δ)kvk
i , (4.1)

where v0
i is node i’s expected payoff in the current stage, and δ ∈ (0, 1) is a com-

mon discount factor that characterizes how much nodes care about future payoffs.

From the above game model, it can be seen that in order to motivate nodes to work

cooperatively, a proper incentive strategy should be designed such that nodes will

get more benefit by following the strategy rather than deviating from it.

4.3 Equilibrium Analysis of Cooperative Multicast

Game

In the previous section, the cooperative multicast process is modeled as an N -player

infinite repeated game. Next, before designing the incentive strategy, it is important

to analyze the Nash Equilibria (NE) of the game. NE is a steady state of the game

where players do not change their actions (or strategies). Obviously, the incentive

strategy should enforce cooperation at an NE from which no one has intention to
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deviate. According to the Folk theorem [42], any feasible and enforceable payoff

profile of a stage game is possible to be an NE of the corresponding infinite re-

peated game. In this game model, feasible means the expected payoff profile can be

realized by taking certain actions (where Ak
i ∈ [0, Pmax] ∀i ∈ N ), and enforceable

means each node’s expected payoff should be no worse than that without cooper-

ation. Then the question is which NE is the desired one that should be enforced.

Several issues need to be considered when choosing the NE. First, in many applica-

tions, nodes should be treated fairly. Second, nodes tend to maximize their expected

payoffs. Thus the enforced NE should achieve high payoff for all nodes. Based on

the above discussion, the desired NE can be determined according to the following

criteria:

(i) absolute fairness, which requires that all nodes have the same expected payoff;

(ii) maximum payoff, which means the desired NE achieves the maximum payoff

profile under the fairness criterion.

According to the above criteria, the desired NE can be found as follows. Denote

A = [P1, P2, ..., PN ] as the action profile and v(A) = [v1(A), v2(A), ..., vN(A)] as

the corresponding expected payoff profile. Then finding the desired action profile

A∗ is equivalent to solving the following optimization problem:

max
A

vi(A) subject to vi(A) = vj(A) ∀ i, j ∈ N , i 6= j. (4.2)

Since the channel gain between the source and a node is i.i.d. and the relay is

randomly selected, each node has the same chance to be selected as a relay, and

that probability is

q1 =
N−1∑
µ1=1

Pr{i is selected|µ1 nodes succeed in Phase 1}

×Pr{µ1 nodes succeed in Phase 1}

=
N−1∑
µ1=1

1

N

(
N

µ1

)
pµ1

s (1− ps)
N−µ1 =

1

N

(
1− pN

s − (1− ps)
N

)
. (4.3)
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Moreover, the probability that node i does not receive the packet correctly from the

source while node j is selected as a relay is

q2 =
N−1∑
µ1=1

Pr{j is selected|i does not succeed and µ1 nodes succeed in Phase 1}

×Pr{i does not succeed and µ1 nodes succeed in Phase 1}

=
N−1∑
µ1=1

1

N − 1

(
N − 1

µ1

)
pµ1

s (1− ps)
N−µ1

=
1

N − 1

(
1− ps − (1− ps)

N
)
. (4.4)

In a stage, the expected number of packets that node i correctly receives from the

source is Mps, the expected number of packets that node i receives from relay node

j when i does not receive them correctly from the source is either Mq2 · pr(Pj) (if

Pj > 0) or 0 (if Pj = 0), and the expected number of packets that node i should

transmit is Mq1. In a stage, let r(x) denote the reward that a node gets from another

node whose transmission power is x, and c(x) denotes the cost of a node if it uses

power x to cooperate, then

r(x) =





0 if x = 0;

Mq2r0 · pr(x) otherwise,
and c(x) = Mq1c0 · x. (4.5)

Then the expected payoff of node i in one stage is

vi(A) = Mpsr0 +
∑

j∈N ,j 6=i

r(Pj)− c(Pi). (4.6)

Before solving (4.2), the following lemma can be proved.

Lemma 4. v1(A) = v2(A) = ... = vN(A) if and only if P1 = P2 = ... = PN .

Proof. First, if Pi = Pj ∀i, j ∈ N , i 6= j, based on (4.6), it is obvious that vi(A) =

vj(A), ∀i, j ∈ N , i 6= j. Next, the following steps will show that given vi(A) =

vj(A) ∀i, j ∈ N , i 6= j, then Pi = Pj , ∀i, j ∈ N , i 6= j. For any two nodes

i, j ∈ N , according to (4.6), it can be obtained that

vi(A)− vj(A) =

{ ∑

t∈N ,t6=i

r(Pt)− c(Pi)

}
−

{ ∑

t∈N ,t6=j

r(Pt)− c(Pj)

}

= {r(Pj) + c(Pj)} − {r(Pi) + c(Pi)} = h(Pj)− h(Pi)(4.7)
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where h(x)
4
=r(x) + c(x). For x ∈ (0, +∞), the following can be obtained:

dh(x)

dx
=

dr(x)

dx
+

dc(x)

dx
= Mq2r0

{
exp

(
−D

x

)
·Dx−2

}
+ Mq1c0 > 0. (4.8)

Therefore, h(x) is a monotonically increasing function of x. Since vi(A) = vj(A),

it is equivalent to vi(A)− vj(A) = h(Pj)−h(Pi) = 0. Based on the monotonically

increasing property of h(x), it can be concluded that vi(A) = vj(A) if and only if

Pi = Pj . This completes the proof.

The above lemma indicates that to achieve the same expected payoff, all nodes’

transmission power should be the same. Thus, the expected payoff for node i under

the fairness constraint can be represented as:

vi(Pi) = Mpsr0 + (N − 1)r(Pi)− c(Pi) = Mpsr0 + g(Pi). (4.9)

where g(x)
4
=(N − 1)r(x) − c(x). Note that in order to enforce cooperation, the

expected payoff of each node at the desired NE should be larger than that without

cooperation. That is vi(Pi) > Mpsr0, or equivalently, g(Pi) > 0. Assume there

exists a Pi ∈ (0, Pmax] such that g(Pi) > 0. Then solving (4.2) is equivalent to

solving

max
x

g(x), subject to x ∈ (0, Pmax] and g(x) > 0, (4.10)

and the following result can be obtained.

Lemma 5. If there exists an x ∈ (0, Pmax] such that g(x) > 0, the following can be

obtained:

arg max
x∈(0,Pmax],g(x)>0

g(x) =





arg maxx>0 g(x) if Pmax ≥ arg maxx>0 g(x);

Pmax if Pmax < arg maxx>0 g(x).

(4.11)

Proof. Let R
4
=(N − 1)Mq2r0, C

4
=Mq1c0, then g(x) = Rpr(x)− Cx. Hence,

dg(x)

dx
= R

{
exp

(
−D

x

)
·Dx−2

}
− C = RD

pr(x)

x2
− C. (4.12)
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and

d2g(x)

dx2
= RD

pr(x)

x4
(D − 2x). (4.13)

From (4.12) and (4.13), it can be seen that dg(x)
dx

is monotonically increasing in

(0, D/2) and monotonically decreasing in (D/2, +∞) with the maximum value

achieved at x = D/2. Moreover, it is easy to prove that limx→0+
dg(x)

dx
= −C < 0

and limx→0+ g(x) = 0, which implies that g(x) first decreases and takes negative

values when x increases from 0. Based on the above property, if there exists an

x such that g(x) > 0, then there exists at least one x that satisfies dg(x)
dx

> 0.

Since dg(x)
dx

achieves maximum value at x = D/2, then dg(x)
dx
|x=D/2 > 0. There-

fore, dg(x)
dx

= 0 has two roots xg1 and xg2(0 < xg1 < xg2), where dg(x)
dx

> 0

for x ∈ (xg1, xg2) and dg(x)
dx

< 0 for x ∈ (0, xg1) ∪ (xg2, +∞). It implies that

g(x) monotonically increases in (xg1, xg2) and decreases in other intervals, and

xg2 = arg maxx>0 g(x). Then, it can be seen that g(xg1) < 0 and g(xg2) > 0, Based

on the increasing property of g(x) in (xg1, xg2), there exists a point x∗g ∈ (xg1, xg2)

such that g(x∗g) = 0 and g(x) > 0 in (x∗g, xg2). Since there exists Pi ∈ [0, Pmax]

such that g(Pi) > 0, then Pmax > x∗g. Then the solution to (4.10) is

arg max
x∈(0,Pmax],g(x)>0

g(x) =





xg2 if Pmax ≥ xg2;

Pmax if Pmax < xg2.
(4.14)

where xg2 = arg maxx>0 g(x). This completes the proof.

Based on the above lemma, the desired power vector that satisfies the absolute

fairness and the maximum payoff criteria can be found as A∗ = [P ∗, ..., P ∗] , where

P ∗ =





arg maxx>0 g(x) if Pmax ≥ arg maxx>0 g(x);

Pmax if Pmax < arg maxx>0 g(x).
(4.15)

Interestingly, the NE with action profile A∗ also has the following property.
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Lemma 6. The NE with A∗ = [P ∗, ..., P ∗], is Pareto optimal, that is, no one can

increase its expected payoff without decreasing any other node’s expected payoff by

taking a different action.

Proof. Take the summation of all nodes’ expected payoff in a stage, then
N∑

i=1

vi(A) = NMpsr0 +
N∑

i=1

∑

j∈N ,j 6=i

r(Pj)−
N∑

i=1

c(Pi)

= NMpsr0 +
N∑

i=1

g(Pi). (4.16)

By applying action profile A∗ = [P ∗, ..., P ∗], it can be obtained that
N∑

i=1

vi(A∗) = NMpsr0 + Ng(P ∗). (4.17)

Since P ∗ maximizes g(x) in (0, Pmax], according to (4.16), it is obvious that

max
N∑

i=1

vi(A) =
N∑

i=1

vi(A∗). (4.18)

For any other action profile A
′
, if vi(A

′
) > vi(A∗) > 0, then

∑

j∈N ,j 6=i

vj(A
′
) =

N∑
i=1

vi(A
′
)− vi(A

′
) <

N∑
i=1

vi(A∗)− vi(A∗)

=
∑

j∈N ,j 6=i

vj(A∗) (4.19)

This indicates that a node cannot increase its expected payoff by taking any other

action without decreasing any other node’s expected payoff. Thus the NE point A∗

is Pareto optimal. This completes the proof.

So far, the NE that achieves absolute fairness and Pareto optimality is found. Note

that Pmax is the maximum power that a node is willing to offer for cooperation dur-

ing the long-period multicast program, and it is usually small in real applications,

since nodes may preserve energy for other applications. In this thesis, the scenario

that P ∗ = Pmax is considered, that is, Pmax < arg maxx>0 g(x). In the following

sections, an incentive strategy is proposed to stimulate cooperation at the desired

NE point A∗ = [Pmax, ..., Pmax].
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4.4 Cooperation Stimulation Strategy

4.4.1 Worst Behavior Tit-for-Tat Incentive Strategy

In this section, a Worst Behavior Tit-for-Tat incentive strategy is proposed to stim-

ulate cooperation at the desired equilibrium state. As mentioned before, in the co-

operative multicast game, a node makes decisions based on others’ past behaviors.

And the incentive strategy is a general decision rule such that everyone can benefit

by following it rather than deviating from it. Before introducing the strategy, the

behavior of a node is defined as follows:

Definition 7. The behavior of node i observed by node j in stage k, denoted as bk
ij ,

is defined as the probability that node j successfully receives a packet from node i.

According to this definition, the observed behavior is a function of a node’s ac-

tion. Note that based on the approximation of pij as pr(Pi) in Section 4.1, for any

node i, its behavior observed by all other nodes is the same, which can be further

simplified as bk
i = pr(P

k
i ) = exp(−D/P k

i ). Although the transmission power of a

node is private information which may not be observed, the packet delivery success

probability can be estimated and monitored based on the number of successfully de-

livered packets. During the multicast process, a node can monitor others’ behaviors

and adjust its decision accordingly. Then the proposed Worst Behavior Tit-for-Tat

strategy s∗ is as follows:

(i) At the beginning stage, all nodes cooperate with action A∗ = Pmax.

(ii) In each stage, all nodes monitor others’ behaviors.

(iii) In stage k, if the worst behavior among node i’s observations in the previous

stage, denoted as bk−1
† , is greater than a threshold bT , then node i takes an action

that gives the same behavior as bk−1
† . Otherwise, node i do not cooperate. Mathe-
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matically, from the definition of behavior, it can be obtained that

Ak
i = P k

i =





−D

ln bk−1
†

, if bk−1
† > bT ;

0, otherwise.
(4.20)

(iv) If node i’s observations of all other nodes’ behaviors are the same as its own

behavior in all the previous L consecutive stages, then node i should use A∗ = Pmax

to resume cooperation in stage k.

The main idea of this strategy is that if a node deviates from the desired ac-

tion (A∗), all other nodes would behave the same as the deviating node, or even do

not cooperate when the deviating behavior is below a threshold. Note that in this

strategy, nodes make decisions mainly based on the one-stage observation, and a

deviating behavior will result in a reduced reward immediately in the next stage.

Then, intuitively, a selfish and rational node will not deviate if the benefit by devi-

ating is less than the corresponding decrease of reward. If a node happens to make

a mistake (i.e. due to imperfect monitoring), the desired cooperation state will be

damaged since other nodes take the misbehavior as a deviation. To address this

issue, the proposed strategy allows nodes to resume cooperation at the desired state

when everyone takes the same behavior for a consecutive of L stages.

4.4.2 Analysis of WBTFT Strategy with Perfect Monitoring

According to the proposed strategy, a node makes a decision based on its monitor-

ing results of others’ behaviors. Thus, the action of a node is greatly affected by the

accuracy of the monitoring technique. To gain some insight, it is worth analyzing

an ideal scenario, where the monitoring process is perfect and everyone knows oth-

ers’ actual behaviors (or actions) in the previous stage. The proposed strategy can

be analyzed from two aspects: whether the desired NE can be achieved if everyone

follows the proposed strategy, and whether the strategy is a subgame perfect equi-

librium strategy, where a node cannot get more benefits by deviating to any other
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strategy from any stage if other nodes follow the proposed strategy.

First, consider the scenario that all nodes follow the proposed strategy from

the starting stage. Since the monitoring process is perfect, all nodes’ observed

behaviors are the same in the first stage. According to the proposed strategy, nodes

will cooperate with the desired power Pmax in the second stage. Following the

same idea, it can be seen that in the rest stages, nodes will always cooperate with

Pmax. Hence, the desired cooperation state can be achieved if all nodes follow the

proposed strategy.

The next question is whether the proposed strategy is a subgame perfect equi-

librium strategy. In the literature, One-Shot Deviation Principle is used to analyze

the subgame perfection of a strategy [47], which states that a strategy is subgame

perfect if a player cannot get more benefits by deviating for one stage and then

coming back to follow it again. Based on this principle, the WBTFT strategy can

be analyzed as follows.

Denote P † as the desired action for the current stage according to the proposed

strategy s∗. Without loss of generality, it is assumed P † has been used by all nodes

in the previous K stages, where K < L. Then if everyone follows s∗, node i’s long

term expected payoff is given by

Vi(s
∗) =

L−K−1∑

k=0

(δ)kvi(Ak) +
∞∑

k=L−K

(δ)kvi(A∗), (4.21)

where Ak
i = P † when k < L−K, ∀i ∈ N . Note that with perfect monitoring, any

one-shot deviation behavior of node i will be recognized by other nodes, who will

react accordingly in the next L stages. Assume node i employs a one-shot deviation

strategy s′ in the current stage that gives A0
i = P ′

i < P †. Then the corresponding

long term expected payoff is given by

Vi(s
′) = vi(A′0) +

L∑

k=1

(δ)kvi(A′k) +
∞∑

k=L+1

(δ)kvi(A∗), (4.22)
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where A′0
j = P †, ∀j ∈ N , j 6= i and A′k

j = P ′
i (∀j ∈ N , 0 < k < L + 1).

According to the One-Shot Deviation Principle, s∗ is a subgame perfect equilibrium

strategy if Vi(s
∗) ≥ Vi(s

′). The following result can be obtained.

Lemma 7. For any P ′
i ∈ (0, P †], Vi(s

∗) ≥ Vi(s
′) can be obtained if G(P †) ≥

G(P ′
i ), where G(x) =

∑L
k=1(δ)k

∑L
k=0(δ)k

(N − 1)r(x)− c(x).

Proof. First, note that for the one-shot deviating node i, it will not deviate to an

action P ′
i > 0 in the current stage such that 0 < b0

i < bT . Because in this case, all

other nodes who follow the proposed strategy will not cooperate during the next L

stages, and the reward for node i is the same as that when choosing P ′
i = 0, but the

cost is larger. Therefore, node i’s deviating behavior b0
i will either be 0 or b0

i > bT ,

and all other nodes will employ the same behavior during the next L stages. Then

from (4.9), (4.21) and (4.22), it can be obtained that

Vi(s
∗) =

L−K−1∑

k=0

(δ)k{Mpsr0 + g(P †)}+
∞∑

k=L−K

(δ)k{Mpsr0 + g(Pmax)} (4.23)

where g(x) = (N − 1)r(x)− c(x), and

Vi(s
′) = Mpsr0 + (N − 1)r(P †)− c(P ′

i ) +
L∑

k=1

(δ)k{Mpsr0 + g(P ′
i )}

+
∞∑

k=L+1

(δ)k{Mpsr0 + g(Pmax)} (4.24)

According to the discussion in Section 4.3, P ∗ = Pmax maximizes g(x) in (0, Pmax],

then g(Pmax) ≥ g(P †). Therefore,

Vi(s
∗)− Vi(s

′)

=
L−K−1∑

k=1

(δ)kg(P †)− c(P †) +
L∑

k=L−K

(δ)kg(Pmax)−
{

L∑

k=1

(δ)kg(P ′
i )− c(P ′

i )

}

≥
L∑

k=1

(δ)kg(P †)− c(P †)−
{

L∑

k=1

(δ)kg(P ′
i )− c(P ′

i )

}

=
L∑

k=0

(δ)k{G(P †)−G(P ′
i )} (4.25)
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where G(x)
4
=

(∑L
k=1(δ)

k/
∑L

k=0(δ)
k
)

(N−1)r(x)−c(x). The inequality in (4.25)

is obtained by replacing g(Pmax) with g(P †) in the term
∑L

k=L−K(δ)kg(Pmax). If

G(P †) ≥ G(P ′
i ), then from (4.25), it can be concluded that Vi(s

∗) ≥ Vi(s
′), this

completes the proof.

Based on the above lemma, it can be seen that the proposed strategy constitutes a

subgame perfect equilibrium under certain conditions. The above condition can be

further extended, as described in the following proposition.

Proposition 1. In the cooperative multicast game with perfect monitoring, the

Worst Behavior Tit-For-Tat strategy is a subgame perfect equilibrium strategy if

the following conditions are satisfied:

(a) G(x) > 0 for x ∈ (−D/ ln bT , Pmax], and (b) Pmax ≤ arg maxx>0 G(x).

Proof. Note that G(x) has the same structure as g(x) except that there is a constant

factor
(∑L

k=1(δ)
k/

∑L
k=0(δ)

k
)

. From the proof of lemma 5, it can be seen that

the constant factor does not affect the analysis. Following similar procedures, it

can be obtained that if there exists an x ∈ (0, Pmax] such that G(x) > 0, G(x)

monotonically increases in (min{x|G(x) = 0, x > 0}, arg maxx>0 G(x)). From

the above property, if condition (a) holds and Pmax ≤ arg maxx>0 G(x), then

G(x) > 0 and it monotonically increases in (−D/ ln(bT ), Pmax]. Then, given

−D/ ln(bT ) ≤ P ′
i ≤ P † ≤ Pmax, it can be obtained that G(P †) ≥ G(P ′

i ), which in-

dicates the condition in lemma 7 is satisfied and the proposed strategy is a subgame

perfect equilibrium strategy. This completes the proof.

Given that δ is close to 1, bT and L can be properly selected such that the above two

conditions are satisfied. Hence, cooperation can be stimulated using the proposed

WBTFT strategy.
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4.4.3 Refined Strategy for Imperfect Monitoring

The previous analysis is based on the assumption that the monitoring process is per-

fect. In this section, the analysis is extended to a more realistic case, where nodes’

monitoring results may be erroneous. In a distributed scenario, a node can estimate

others’ behaviors based on the number of successfully received packets. However,

due to packet loss, the monitoring results may be erroneous, and undesired actions

may be carried out. Therefore, it is critical to design an estimation method that

can achieve high accuracy. In the following, an interval based estimation method is

proposed to address the issue of imperfect monitoring.

Typically, the estimation is based on some observed information, such as the

number of successfully received packets. In this game model, since the behavior

is defined in terms of probability, then any node j’s observed information from

another node i can be defined as the proportion of packets that node j receives

correctly from node i among all the packets that node i should transmit. Denote

yk
ij =

nk
ij

n
as the information that node j observes from node i in stage k, where

nk
ij is the number of packets that node j receives correctly from node i, and n is

the average number of packets that a node should transmit in a stage. Note that

if node i transmits n packets with certain power that results in a behavior bk
i , then

statistically nk
ij follows a binomial distribution B(n, bk

i ), and therefore the mean of

the observed information yk
ij is bk

i . Based on this fact, an interval based estimation

method can be designed, which is described as follows.

The range [0,1] is divided into m+1 intervals, [0, β1], (β1, β2], ...(βm, 1], within

the lth interval (0 ≤ l ≤ m), a certain behavior b̂l is selected to represent the lth

behavior level. Then node j’s estimated behavior of node i is

b̃k
ij =





b̂0 if yk
ij ∈ [0, β1];

b̂l if yk
ij ∈ (βl, βl+1];

b̂m if yk
ij ∈ (βm, 1],

(4.26)
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where b̂0 = β0 = 0. The interval boundaries ({βl}) and behavior levels ({b̂l}) are

designed according to a parameter ε such that if node i transmits n packets with

behavior b̂l, then any other node’s estimation error probability (i.e. the probability

that the estimation of node i’s behavior is not b̂l) is no larger than a small value 2ε.

The design procedures are shown in Algorithm 2 for 1 ≤ l ≤ m.

Algorithm 2 Determination of b̂l and βl (l = 1, 2, ..., m).

1: Select a index value m = 100 and let b̂m = b∗
4
= exp(−D/Pmax);

2: Find βm ∈ { 1
n
, 2

n
, ..., n−1

n
, 1} such that Pr{yk

ij ≤ βm|bk
i = b̂m, nk

i = n} =

F (nβm; n, b̂m) = ε;

3: Set l = m;

4: while βl > bT do

5: for βl−1 = βl − 1
n

to 0 with step 1
n

do

6: Find b̂l−1 that satisfies F (nβl−1; n, b̂l−1) = ε;

7: if 1− F (nβl; n, b̂l−1) ≤ ε then

8: break and go to step 11,

9: end if

10: end for

11: Set l = l − 1;

12: end while

13: Adjust the index values l → 1, l + 1 → 2,..., m → m− l + 1.

In this algorithm, F (x; n, p) is the cumulative distribution function of a binomial

random variable X ∼ B(n, p). And βl is selected from the set { 1
n
, 2

n
, ..., 1}. Note

that the number of intervals m + 1 is affected by the system parameters (i.e. Pmax,

D, n, bT and ε), and its value is unknown until all the intervals are determined.

Since the algorithm starts searching the intervals from the highest level, then the

index m is initialized with an arbitrarily chosen large number (i.e. m = 100) in

the first step, and in the last step, after all intervals are determined, m and all other
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βmβm−1β1 β2b̂1
b̂m−1 b̂m

PDF of yk
ij

Fig. 4.1. Probability density function (PDF) of yk
ij .

indices are adjusted accordingly based on the number of determined intervals. The

details of Algorithm 2 are explained as follows.

In step 1, the desired cooperation behavior b∗ is selected as the highest behavior

level b̂m. In step 2, βm is determined according to the design parameter ε, such

that if node i takes behavior b̂m, the probability that yk
ij falls in [0, βm] is ε. Here,

the design parameter ε is selected from the set {F (1; n, b∗), F (2; n, b∗), ..., 1} to

guarantee the existence of βm which satisfy the above condition, and the determi-

nation of ε is discussed in Section 4.5. Then from step 4 to step 12, the boundary

points and the corresponding behavior levels for other intervals are found one by

one in a repeated manner until βl is smaller than the threshold bT . For example,

given the right boundary of the (m − 1)th interval βm, the algorithm searches the

left boundary βm−1 from βm − 1
n

to 0 with step size 1
n

. For each possible value

of βm−1, the corresponding b̂m−1 is found such that if node i takes behavior b̂m−1,

the probability that yk
ij falls in [0, βm−1] is Pr{yk

ij ∈ [0, βm−1]|bk
i = b̂m−1, n

k
i =

n} = F (nβm−1; n, b̂m−1) = ε (i.e. the probability in the left tail in the PDF fig-

ure of yk
ij , as shown in Fig. 4.1, is ε). Then the desired searching result is largest

value of βm−1 such that its corresponding b̂m−1 and itself satisfy the constraint that
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Pr{yk
ij ∈ (βm, 1]|bk

i = b̂m−1, n
k
i = n} = 1 − F (nβm; n, b̂m−1) ≤ ε. Note that

the algorithm searches βm−1 from a discrete set, it may not find a pair of βm−1 and

b̂m−1 such that both Pr{yk
ij ∈ [0, βm−1]} and Pr{yk

ij ∈ (βm, 1]} are equal to ε. To

address this issue and to be consistent with the determination of βm, the searching

constraint for the left boundary of the interval is set to be Pr{yk
ij ∈ [0, βm−1]} = ε

and the constraint for the right boundary is Pr{yk
ij ∈ (βm, 1]} ≤ ε, such that when

node i cooperates with b̂m−1, another node j’s estimation error probability is no

larger than 2ε.

According to the interval based estimation method, if nodes take behaviors from

the set B = {0, b̂1, ..., b̂m}, the monitoring results will be more accurate when ε ap-

proaches zero. Denote P = {0, P̂1, ..., P̂m} as the set of power levels that is asso-

ciated with the behavior levels in B, where P̂l = −D/ ln b̂l, (b̂l ∈ B, 0 < l ≤ m).

Then, the WBTFT strategy can be refined as follows. In step (ii), nodes employ the

above interval based estimation method to estimate others’ behaviors. Moreover,

a communication period is added at the end of each stage where nodes exchange

the worst observed behavior level index, and it is assumed that the information

exchange is perfect. In step (iii), at the beginning of a stage, nodes choose their

transmission power from the set P according to the smallest exchanged behavior

level index obtained in the previous stage.

4.4.4 Analysis of Refined Strategy with Imperfect Monitoring

This subsection studies the equilibrium conditions of the refined strategy under im-

perfect monitoring. With imperfect monitoring, a node is uncertain about others’

behaviors in the previous stage, and it is also not sure how others will react in the

next stage if it takes a certain action. Therefore, it is difficult to find a closed form

formulation of the long term expected payoff due to the infinite number of possible

future paths, which makes it difficult to check the equilibrium condition. Note that
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in reality, a node may be bounded rational [48] when making a decision. That is,

when the decision making process is complex and the optimal solution is difficult

to reach, a node tends to simplify its analysis and only care those outcomes with

large probabilities rather than considering all possible scenarios. Based on this fact,

the refined strategy can be analyzed under the bounded rational assumption.

In the following analysis, a bounded rational node i is assumed to have the fol-

lowing characteristics. When node i estimates other nodes’ behaviors and estimates

its own expected payoff, if node z takes an action that gives the behavior bk
z in stage

k, node i will consider the scenario where another node j’s observed information

yk
zj falls in the interval (u1(b

k
z), u2(b

k
z)), which satisfies Pr{yk

zj ≤ u1(b
k
z)|bk

z} ≤ η

and Pr{yk
zj ≥ u2(b

k
z)|bk

z} ≤ η, where η is a small value close to zero; and node

i will ignore the small-probability scenarios where yk
zj falls outside the interval

(u1(b
k
z), u2(b

k
z)). It can be seen that when estimating the long term payoff, instead

of considering all possible outcomes, the bounded rational nodes will focus on the

monitoring results within a range with a large coverage probability (equal to or

greater than 1 − 2η). Intuitively, when η becomes smaller, the estimated payoff is

closer to the expected payoff. On the other hand, a smaller η may result in higher

computational complexity that is difficult to handle. Note that when all nodes follow

the refined strategy, they will choose behaviors in the set B. In this case, according

to the interval based estimation, it is easy to check that a bounded rational node

i with η ≥ ε will only consider the scenario that its observed information from

another node j with behavior bk
j = b̂l falls in the interval (u1(b̂l), u2(b̂l)), where

Pr{yk
ji ≤ u1(b̂l)|b̂l} ≤ ε ≤ η and Pr{yk

ji ≥ u2(b̂l)|b̂l} ≤ ε ≤ η. From the interval

based estimation, it can be shown that u1(b̂l) ≥ βl and u2(b̂l) ≤ βl+1, and node i’s

estimation result of node j’s behavior is exactly b̃k
ji = b̂l = bk

j . Similarly, when es-

timating its long term payoff, node i will only consider the scenario that all nodes’

estimations in the future stages are correct, which greatly simplifies the calculation
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of the estimated payoff. In this work, we use η = ε when analyzing the equilibrium.

Similar to the analysis for the perfect monitoring scenario, the one-shot devi-

ation principle is also employed to study the equilibrium condition for the refined

strategy. Assume all nodes follow the refined strategy in the past stages, and node

i decides to take a one-shot deviation in the current stage. If node i takes an action

from the power set P , according to the bounded rational assumption and interval

based estimation, it will consider that everyone’s estimation is accurate. Then the

equilibrium analysis is the same to that under the perfect monitoring scenario, and

the condition in proposition 1 is sufficient for the refined strategy being an equilib-

rium strategy. The next question is whether node i can benefit more by deviating to

an action other than those in P , which is analyzed as follows.

Denote P̂l† as the desired action for the current stage according to the refined

strategy, where l† represents the power level index. Without loss of generality, it is

assumed that if all nodes follow the strategy, they will cooperate with Pl† in the next

L stages and then resume cooperation in stage L + 1. Assume node i decides to

take a one-shot deviation in the current stage with P ′
i < P̂l† , where P ′

i ∈ (P̂l, P̂l+1],

and its corresponding behavior is b0
i ∈ (b̂l, b̂l+1], where b̂l+1 ≤ b̂l† . Based on the

bounded rational assumption with η = ε, node i will believe that any other node j’s

observation y0
ij falls in the interval (u1(b

0
i ), u2(b

0
i )), where Pr{y0

ij ≤ u1(b
0
i )|b0

i } ≤ ε

and Pr{y0
ij ≥ u2(b

0
i )|b0

i } ≤ ε. From the interval based estimation, it can be shown

that u1(b
0
i ) ≥ βl and u2(b

0
i ) ≤ βl+2. Therefore, node i will believe that j’s estimated

behavior b̃0
ij is either b̂l or b̂l+1. Denote wij(b̂l+1|b0

i ) as node i’s estimated probability

that node j’s estimation is b̃0
ij = b̂l+1 given b0

i ∈ (b̂l, b̂l+1], which can be calculated

as

wij(b̂l+1|b0
i ) =

Pr{y0
ij ∈ (βl+1, u2(b

0
i ))|b0

i }
Pr{y0

ij ∈ (u1(b0
i ), u2(b0

i ))|b0
i }

. (4.27)

Here, node i’s estimated probability of an event means the probability that node i

estimates the event happens. Since nodes exchange their worst behavior levels at
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the end of each stage, node i’s estimated probability that the worst behavior level in

current stage is b̂l+1, denoted as wi(b̂l+1|b0
i ), is

wi(b̂l+1|b0
i ) =

∏

j∈N ,j 6=i

wij(b̂l+1|b0
i ). (4.28)

Then, node i’s estimated probability that the worst behavior level in the current

stage is b̂l is wi(b̂l|b0
i ) = 1 − wi(b̂l+1|b0

i ). Hence, node i’s estimated long term

payoff is

Ṽi(P
′
i ) = Mpsr0 + (N − 1)r(P̂l†)− c(P ′

i )

+
L∑

k=1

(δ)k
{

vi(P̂l)wi(b̂l|b0
i ) + vi(P̂l+1)wi(b̂l+1|b0

i )
}

+
∞∑

k=L+1

(δ)kvi(Pmax). (4.29)

Based on the above discussion, the following result can be obtained.

Lemma 8. Assume the conditions in proposition 1 are satisfied, for any one-shot

deviation action P ′
i ∈ (P̂l, P̂l+1) that gives behavior b0

i , Ṽi(P̂l+1) > Ṽi(P
′
i ) can be

obtained if G̃(b0
i , l) = c( −D

ln b0i
)−

[
wi(b̂l|b0

i )c(P̂l) + wi(b̂l+1|b0
i )c(P̂l+1)

]
> 0.

Proof. If node i takes action P̂l+1 in the current stage, then according to the bounded

rational assumption and interval based estimation, wi(b̂l+1|b0
i ) = 1. From (4.29), it

can be obtained that

Ṽi(P̂l+1)

= Mpsr0 + (N − 1)r(P̂l†)− c(P̂l+1)

+
L∑

k=1

(δ)k{Mpsr0 + g(P̂l+1)}+
∞∑

k=L+1

(δ)k{Mpsr0 + g(Pmax)}

=
∞∑

k=0

(δ)kMpsr0 + (N − 1)r(P̂l†)

+
L∑

k=0

(δ)kG(P̂l+1) +
∞∑

k=L+1

(δ)kg(Pmax) (4.30)

and
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Ṽi(P
′
i )

=
∞∑

k=0

(δ)kMpsr0 + (N − 1)r(P̂l†)− c(P ′
i )

+
L∑

k=1

(δ)k[wi(b̂l|b0
i )g(P̂l) + wi(b̂l+1|b0

i )g(P̂l+1)] +
+∞∑

k=L+1

(δ)kg(Pmax)

=
∞∑

k=0

(δ)kMpsr0 + (N − 1)r(P̂l†) +
+∞∑

k=L+1

(δ)kg(Pmax)

−c(P ′
i ) + wi(b̂l|b0

i )c(P̂l) + wi(b̂l+1|b0
i )c(P̂l+1)

+
L∑

k=0

(δ)k[wi(b̂l|b0
i )G(P̂l) + wi(b̂l+1|b0

i )G(P̂l+1)] (4.31)

From the definition of behavior, it can be obtained that P ′
i = −D

ln b0i
. Since wi(b̂l|b0

i )+

wi(b̂l+1|b0
i ) = 1, it can be obtained that

Ṽi(P̂l+1)− Ṽi(P
′
i ) = G̃(b0

i , l) +
L∑

k=0

wi(b̂l|b0
i ){G(P̂l+1)−G(P̂l)}. (4.32)

According to the proof of proposition 1, G(P̂l+1) > G(P̂l) for P̂l+1 > P̂l. Then, if

G̃(b0
i , l) > 0 is satisfied, it can be concluded that Ṽi(P̂l+1) > Ṽi(P

′
i ), this completes

the proof.

Based on the above result, it can be seen that a node will not deviate to an action

other than those in P under certain conditions. To summarize, the equilibrium

conditions for the refined strategy can be stated as follows.

Proposition 2. In the cooperative multicast game with bounded rational nodes, the

refined WBTFT strategy is an equilibrium strategy under imperfect monitoring if

the following conditions are satisfied:

(a) Conditions in Proposition 1 are satisfied.

(b) G̃(x, l) = c(−D
ln x

) −
[
wi(b̂l|x)c(P̂l) + wi(b̂l+1|x)c(P̂l+1)

]
> 0, ∀ 0 ≤ l < m

where x ∈ (b̂l, b̂l+1).
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It can be seen that in the imperfect monitoring scenario with interval based esti-

mation, besides the equilibrium conditions in Proposition 1, an additional condition

is required to guarantee that any deviation to behaviors other than those in B is

not beneficial. The above conditions can be satisfied by appropriately choosing the

parameters ε and L, and hence the refined strategy maintains an equilibrium with

imperfect monitoring.

4.4.5 WBTFT Strategy with Optimal Power Allocation

In the previous game model, it is the assumed that nodes use the same transmission

power for all time slots during one stage. However, nodes may employ different

power levels for different time slots or only transmit a portion of packets when

selected as relays in a stage. Therefore, it is essential to investigate the optimal

power allocation scheme within a stage.

First, consider the scenario that nodes vary the transmission power within a

stage. Suppose node i transmits ni packets in a stage, the power allocated for the

tth packet is denoted as Pt, t = 1, 2, ..., ni, and the total cost in this stage is ci =
∑ni

t=1 c0Pt. In this scenario, the behavior of node i observed by any other node can

be represented as bi = 1
ni

∑ni

t=1 pr(Pt). Obviously, a node prefers to provide large bi

with low cost. Then given a desired behavior, the optimal power allocation scheme

should achieve the lowest cost. Based on this idea, the following lemma can be

proved.

Lemma 9. To obtain the same bi, where bi > 1
e
, the optimal power allocation

scheme that gives the lowest cost ci is Pt = P = −D
ln(bi)

∀ t = 1, 2, ..., ni.

Proof. Denote s‡ = [P1, P2, ...Pni
] as a power allocation scheme which is different

with the equal power allocation scheme s = [P , ..., P ]. Let bt = exp(−D/Pt) for

Pt ∈ s‡ and b = exp(−D/P ), assume s‡ and s obtain the same behavior bi, then
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bi = 1
ni

∑ni

t=1 bt = b. The corresponding cost for each scheme is given by

ci(s
‡) =

ni∑
t=1

c0
−D

ln bt

, ci(s) = nic0
−D

ln b
. (4.33)

Denote a(x) = −1/ ln x, then for b = bi > 1/e, it is proved in Appendix C that

a(x) satisfies the following property,

a(b) = a

(
b1 + b2 + ... + bni

ni

)
≤ a(b1) + a(b2) + ... + a(bni

)

ni

. (4.34)

where the equal sign is achieved when b1 = ... = bni
= b. From (4.33) and (4.34),

it can be concluded that ci(s) ≤ ci(s
‡), this completes the proof.

Lemma 9 implies that using the same power to transmit the packets can provide

others fixed observed information with the smallest cost. According to the WBTFT

strategy, nodes make decisions based on the observed information. Therefore, to

gain more profit, they will keep the transmission power unchanged within a stage.

The next question is whether a node will transmit all the time when selected as a

relay in a stage. Suppose node i should transmit n packets in a stage, and its desired

behavior is denoted as b†, which is assumed to be greater than 1/e. Lemma 9 im-

plies that node i will transmit packets with the same power. However, it can decide

to transmit with a certain probability (or equivalently, only transmit a portion of n

packets). Denote ϕi as the probability (or the proportion of n) that node i decides

to transmit with fixed power P i when selected as a relay, then the expected num-

ber of packets that any other node j can successfully receive is nij = nϕipr(P i).

Equivalently, the behavior that any other node should observe in the stage can be

represented as bi = ϕipr(P i), and the corresponding cost in the stage is given by

ci = c0nϕiP i. Since nodes are selfish and tend to maximize their payoff, then de-

termining the optimal ϕi and P i is equivalent to solving the following optimization

problem:

min ϕiP i subject to bi = ϕipr(P i) = b†. (4.35)
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Let x represent P i, according to the constraint, it can be obtained that ϕi = b†/pr(x).

Define f(x)
4
=ϕiP i = b†x/pr(x), then df(x)

dx
= b†(1−D/x)

pr(x)
. It can be seen that f(x)

has the following property:




df(x)
dx

< 0 if 0 < x < D;

df(x)
dx

= 0 if x = D;

df(x)
dx

> 0 if x > D.

(4.36)

Note that ϕi ∈ (0, 1], it can be obtained that pr(x) ≥ b†, which leads to x ≥ −D
ln b† . It

can be seen that if −D
ln b† < D which is b† < 1

e
then min{f(x)} = f(D), if −D

ln b† ≥ D,

then min{f(x)} = f( −D
ln b† ). Therefore, the solution to (4.35) can be summarized as





ϕi = eb†, P i = D, if b† < 1
e
;

ϕi = 1, P i = −D
ln b† , if b† ≥ 1

e
.

(4.37)

It can be seen that if the desired behavior b† is no less than 1/e, a node will always

transmit with fixed power when it is selected as a relay. In addition, based on the

above discussion, in the WBTFT strategy, if bT ≥ 1/e, then the optimal power

allocation within a stage can also be achieved.

4.4.6 Further Discussion of Designing Issues

In the previous section, the WBTFT strategy is refined with an interval based esti-

mation method to address the issue of imperfect monitoring. However, the design

of intervals is based on the approximation that the packet delivery success proba-

bility between node i and node j at each stage is pij ≈ exp(−D
Pi

), where D depends

on the long term average channel condition between node i and node j. In real

applications, given the mobility model, the average channel condition between two

mobile nodes may fluctuate from stage to stage, which may result in large esti-

mation errors when using the intervals designed according to D. To address this

problem, the following adjustment of the interval based estimation is made. First,
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a general behavior level set B = {0, b̂1, ..., b̂m} (with interval boundaries {βl}) is

designed according to Algorithm 2 based on D, and its corresponding power set P

is derived. Note that in the refined strategy, nodes choose transmission power from

the same power set P based on the worst behavior level index. Next, in stage k,

node j estimates the current average channel condition between node i and itself

(either by exchanging topology information or using pilot signals), and calculates

the average value of N0(1−2γr )

σ2
ij

, denoted as Dk
ij . Then, node j adjusts its estima-

tion of node i’s behavior level as follows. In stage k, given P and Dk
ij , if node

i chooses power P̂l ∈ P (1 ≤ l ≤ m), node j’s observed behavior of node i

is b̂k
ijl = exp

(
−Dk

ij/P̂l

)
= (b̂l)

Dk
ij/D, and node j’s observed behavior level set

of node i is updated as Bk
ij = {0, b̂k

ij1, b̂
k
ij2, ..., b̂

k
ijm}. Then, the interval bound-

aries for each behavior level in Bk
ij are updated, by using βk

ijl = (βl)
D

k
ij/D. Then

node j estimates node i’s behavior level according to the new intervals at the end

of stage k. That is, if node j’s observed information of node i, yk
ij , falls in the

lth interval (βk
ijl, β

k
ij(l+1)], then node j’s estimation result of node i’s behavior level

is b̂k
ijl. Note that for the original behavior levels in B, the intervals are designed

such that the estimation error probability for each behavior level is no larger than

2ε (i.e., Pr
{

yk
ij ∈ [0, βl] ∪ yk

ij ∈ (βl+1, 1]|bk
i = b̂l, n

k
i = n

}
≤ 2ε). Unfortunately,

this feature cannot be maintained for the adjusted intervals. The estimation error

probability decreases with the behavior level index when Dk
ij > D and increases

when Dk
ij < D. An example is shown in Fig. 4.2. To guarantee the accuracy

of estimation, a threshold value εT is set. In stage k, if node j’s observed infor-

mation from node i, yk
ij , falls in the lth adjusted interval, then node j first calcu-

lates pe = Pr
{

yk
ij ∈ [0, βk

ijl] ∪ yk
ij ∈ (βk

ij(l+1), 1]|bk
i = b̂k

ijl, n
k
i = n

}
and compares

pe with εT . If pe > εT , then the estimation result is unreliable and will be dis-

carded. At the end of each stage, nodes only exchange the worst behavior level

index from their reliable estimation results and make decisions accordingly.
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Fig. 4.2. Estimation error probability versus interval index.

4.5 Performance Evaluation

In this section, the performance of the proposed strategy is evaluated via simulation.

Before showing the simulation results, it is worth investigating how to select the

design parameters to satisfy the equilibrium conditions.

4.5.1 Evaluation of the NE Conditions

First, consider the conditions in Proposition 1. As shown in the proof of Propo-

sition 1, G(x) has the same property as g(x). That is, if there exists an x such

that G(x) > 0, then G(x) monotonically increases in (min{x|G(x) = 0, x >

0}, arg maxx>0 G(x)]. Then, the conditions become min{x|G(x) = 0, x > 0} ≤
−D/ ln(bT ) and Pmax ≤ arg maxx>0 G(x). Consider a system setup with N = 10,

ps = 0.4, D = 0.4, δ = 0.99 and r0/c0 = 100. Fig. 4.3 shows min{x|G(x) =

0, x > 0} and arg maxx>0 G(x) versus different L. It can be seen that as L in-

creases, arg maxx>0 G(x) becomes larger, while min{x|G(x) = 0, x > 0} is close

to zero, which implies the conditions are easier to satisfy when L becomes larger.

Note that to achieve optimal power allocation in a stage, bT should be no less than
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1/e. Therefore, bT can be selected such that bT ≥ max{exp(−D/ min{x|G(x) =

0, x > 0}), 1/e}. In this system setup, if the unit power is 10 mW, and Pmax is less

than 107 mW, then L = 1 and bT = 1/e can satisfy the required conditions.

Next, consider the conditions in Proposition 2. It can be seen that condition (b)

of Proposition 2 is related to the behavior intervals, which are determined based on

the parameter ε. According to the interval based estimation, a small ε is preferred

because the estimation result becomes more and more accurate when ε approaches

zero. However, a small ε may violate the equilibrium conditions. Thus, given a

network setup, the smallest ε that satisfies the conditions in Proposition 2 can be

found via numerical methods. Some values of the minimum ε under different Pmax

are given in Table 4.1. The design parameter n is 1000, and other parameters are

the same as the previous setup in Fig. 4.3. It can be seen that the minimum ε are all

smaller than 0.02, which is acceptable.
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Fig. 4.3. Condition in Proposition 1.
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TABLE 4.1

Minimum ε vs Pmax.
Pmax 1 2 3 4 5 6 7 8 9 10

Minimum ε 0.0119 0.0113 0.0106 0.0126 0.0158 0.0090 0.0121 0.0132 0.0181 0.0133

4.5.2 Simulation Results

In this part, simulation results are shown to demonstrate the effectiveness of the

proposed incentive strategy. The simulated multicast network consists 10 mobile

nodes that are randomly deployed within a circular area with radius d0 = 25m. Each

node is moving according to the random waypoint model: a node randomly chooses

a destination and moves forward to the destination with a velocity uniformly chosen

in [0.5m/s, 2.5m/s]. When arriving at the destination, the node will choose a new

location and a new speed to move on. The source broadcasts a packet every 10 ms

with rate 1 Mbps over a wireless channel with 1MHz bandwidth. The maximum

power that a node offers for cooperation is 40 mW. When selected as a relay, a

node can choose the power between 0 and 40 mW to rebroadcast the packet with

rate 1 Mbps. All the wireless channels undergo path loss with exponent 2 and

Rayleigh fading, and the average received SNR from the source to a receiving node

is 0 dB. The average received SNR between a pair of receiving nodes with distance

d0 and unit transmission power 8 mW is 2 dB. The parameter D is calculated by

averaging results from simulations of the above mobility model in 107 time slots

and is approximated by D = 0.40. Other system parameters are set as r0 = 100,

c0 = 2 and δ = 0.99.

Fig. 4.4 shows the average payoff and throughput of all nodes in different stages

when everyone follows the proposed strategy. The intervals are designed according

to n = 1000 and ε = 0.0158. The corresponding stage length is M = 10103

time slots. Other parameters are L = 1, bT = 1/e and εT = 0.1. This simulation
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contains 50 runs, each with 50 stages, and the average payoff and the throughput of

all nodes are plotted. The results with perfect monitoring process where all nodes

cooperate at the desired power level are also plotted as a benchmark. It can be seen

that the WBTFT strategy with interval based estimation can achieve cooperation

efficiently at a level with average payoff 92.08 per time slot, which is close to the

desired cooperation state with average payoff 93.37 per time slot.

In Fig. 4.5, the payoff and throughput of a node with two different strategies,

the proposed strategy and a deviation strategy, are compared. The deviation strat-

egy is characterized by a deviating ratio θ, which is defined as the ratio between

the deviating behavior and the desired behavior according to the WBTFT strategy.

Specifically, if the desired behavior in stage k is bk for all nodes, then a node with a

deviating ratio θ will take an action P k
i such that bk

i = exp(−D/P k
i ) = θ ·bk. In this

simulation, node 1 deviates with θ = 0.5 in stage 4,7,10,..., 49, and in other stages,

it follows the proposed strategy. The design parameters are the same as those in Fig.

4.4. It can be seen that whenever node 1 deviates, its misbehavior will be identified

and the corresponding payoff is reduced. Therefore, the proposed strategy is able

to punish the deviating node. The average payoff with deviation strategy is 89.35

per time slot, which is less than that by following the proposed strategy, hence the

proposed strategy can motivate cooperation efficiently.

Fig. 4.6 shows the impact of L on the performance. Other parameters are the

same as the previous figures and there is no deviating node. It can be seen that as

L increases, the performance slightly degrades. This is mainly because when es-

timation error occurs, a smaller L can help resume cooperation faster. Therefore,

when designing the incentive strategy for real applications, a small L is preferred

so that cooperation can be easily recovered when undesired actions are carried out.

Fig. 4.7 shows a similar trend to Fig. 4.6, where the performance degrades as εT

increases. The reason is that when εT increases, nodes will exchange unreliable

66



information that contains large estimation errors. Therefore, the desired coopera-

tion behavior might be estimated as a deviation and nodes may not cooperate at the

desired level even though no one intentionally deviates.

Fig. 4.8 shows the performance with different bT . Other parameters are the

same as those in Fig. 4.4. In this simulation, the average payoff and throughput of

node 1 with two different deviating ratios are compared. Note that θ = 1 means no

one deviates. It can be seen that the changing of bT does not affect the performance

when all nodes follow the proposed strategy. However, as bT increases, the deviat-

ing node’s average payoff decreases. The reason is that when bT becomes larger, the

punishment becomes more severe, since no one will cooperate when a misbehavior

that falls below bT is detected.

Fig. 4.9 shows the average payoff and throughput for a deviating node with

different deviating ratios. The incentive strategy is designed according to n =

100, 500 and 1000, and the corresponding minimum ε is 0.0210, 0.0173 and 0.0158,

respectively. Other parameters are the same with Fig. 4.4. It can be seen that among

the three designs, the one with n = 1000 and that with n = 500 achieve relatively

close performance, with n = 1000 being slightly better, and both performances are

better than that with n = 100. This can be explained as follows. First, according

to the value of ε, the estimation error probability of n = 1000 is the smallest,

and a larger n also means a longer stage, in which nodes can collect more data to

estimate each other’s transmission probability. Second, the approximation of pij

as pr(Pi) in the system model is more accurate when the stage is longer, which

further reduces the estimation errors. Moreover, according to Algorithm 2, a larger

n will result in more behavior levels and smaller interval ranges for each level. The

behavior levels for n = 100, 500 and 1000 are listed in Table 4.2. For n = 1000 and

n = 500, the adjacent behavior levels are close to each other, while for n = 100,

the difference between two adjacent behavior levels is much larger. Therefore,
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estimation errors have greater impact on the performance when n = 100. Based on

the above discussion, when designing the incentive strategy, a large n is profitable.

4.6 Summary

In this chapter, cooperation stimulation among selfish nodes in wireless multicast

networks is studied. The cooperative multicast process is formulated as a repeated

game and the desired cooperation state that satisfies the absolute fairness and the

Pareto optimality criteria is found. A Worst Behavior Tit-for-Tat incentive strategy

is proposed to stimulate cooperation, and the equilibrium conditions are derived

under perfect and imperfect monitoring scenarios. To address the issue of imperfect

monitoring, an interval based estimation method is developed. Simulation results

show that even with imperfect monitoring, the proposed strategy can efficiently

enforce cooperation, and its performance is close to that of the desired cooperation

state where all nodes fully cooperate with perfect monitoring.

TABLE 4.2

Behavior levels for n = 100, 500, 1000.
l 2 3 4 5 6 7 8 9 10 11

Behavior for n = 100 0.382 0.596 0.782 0.923

Behavior for n = 500 0.339 0.432 0.526 0.621 0.710 0.792 0.864 0.923

Behavior for n = 1000 0.390 0.457 0.526 0.593 0.659 0.722 0.781 0.835 0.883 0.923
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Fig. 4.4. Performance comparison under perfect and imperfect monitoring
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Fig. 4.5. Performance analysis with deviating node
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Fig. 4.6. Performance analysis under different L
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Fig. 4.7. Performance analysis under different εT
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Fig. 4.8. Performance analysis under different bT
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis first proposes a time division based cooperative multicast strategy for

delay-sensitive applications. In this strategy, some successful receiving nodes are

selected as relays to rebroadcast the data after source transmission. The optimal

relay selection and time allocation schemes are analyzed. It has been shown that

the optimal relay number is bounded by a threshold value which can be found via

numerical methods. An efficient algorithm is also proposed to find the optimal time

allocation for source transmission and node cooperation. Numerical results show

that the proposed strategy can enhance network performance significantly when the

average channel condition between receiving nodes is better than that of the direct

link.

After designing the cooperative multicast strategy, this thesis studies coopera-

tion stimulation among mobile selfish nodes in wireless multicast networks using

game theoretic approaches. The cooperative multicast process is formulated as an

infinite repeated game. The Nash equilibrium of the game is analyzed and the

desired cooperation state which satisfies the absolute fairness and the Pareto opti-
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mality criteria is found. A Worst Behavior Tit-for-Tat incentive strategy is proposed

to stimulate cooperation, and the equilibrium conditions are derived under both

the perfect and the imperfect monitoring scenarios. It is shown that the proposed

strategy achieves optimal power allocation for a selfish node when the designing

parameters are appropriately chosen. Moreover, to address the issue of imperfect

monitoring, an interval based estimation method is developed. Simulation results

show that the proposed strategy can enforce cooperation efficiently even the moni-

toring is imperfect.

5.2 Future Work

Although this thesis has thoroughly addressed several critical issues in designing

cooperative multicast strategies, there still exist many issues that need further in-

vestigation.

In the cooperative multicast strategy design, coding scheme is not considered.

It is possible to incorporate some coding techniques, to further improve the network

performance. For example, this thesis considers that the relays transmit in a time

division fashion, where each time only one relay is allowed to rebroadcast data. If

space-time coding is employed, multiple relays can transmit simultaneously, and

the performance can be further improved. Another possible direction is to jointly

consider the power constraint, such as total power or maximum lifetime of the net-

work, and design power efficient cooperation schemes.

In the incentive mechanism design, this thesis only considers the cooperation

stimulation among selfish mobile nodes. In static scenarios, the packet delivery

success probability between any pair of nodes cannot be approximated using the

same method as in this thesis due to the fixed topology. Therefore, some refinement

needs to be made for the WBTFT strategy to deal with the heterogeneity of channel
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conditions. Besides, this thesis only considers selfish nodes who aim to maximize

their own profits. From a security perspective, it is also worth investigating cooper-

ation stimulation when there are attackers, whose purpose is to destroy the system.

In the proposed strategy, nodes make decisions not only based on its own observa-

tion, but also according to the information that others claim. Therefore, an attacker

can exchange false information and destroy the cooperation state. A possible solu-

tion is to design some criteria to identify the attackers and then remove it from the

multicast group by using encryption, which will be considered in the future work.
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Appendix A

Proof of (3.8) :

Note that p(α, x) is monotonically decreasing with x and

lim
x→0

p(α, x) = 1, lim
x→+∞

p(α, x) = 0.

Therefore, it can be obtained that

lim
x→0

f(α, x) = lim
p(α,x)→1

{
1− p(α, x)

p(α, x)
ln

(
1− p(α, x)

)}

+ lim
x→0

{ρω(ln 2)x2ρx} = 0

and

lim
x→+∞

f(α, x) = lim
p(α,x)→0

{
1− p(α, x)

p(α, x)
ln

(
1− p(α, x)

)}

+ lim
x→+∞

{ρω(ln 2)x2ρx} = +∞.

Proof of (3.9) :

From the proof of lemma 1 it can be obtained that

∂f(α, x)

∂x
=

∂
{

1−p(α,x)
p(α,x)

ln
(
1− p(α, x)

)}

∂x
+

∂{ρω(ln 2)x2ρx}
∂x

= ρω(ln 2)2ρx

{
1

p(α, x)
ln

(
1− p(α, x)

)
+ 2 + ρ(ln 2)x

}
.(A-1)
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Let U1(α, x)
4
= 1

p(α,x)
ln

(
1− p(α, x)

)
. Then it can be shown that

∂U1(α, x)

∂x
=

{ −1

p2(α, x)
ln

(
1− p(α, x)

)− 1

p(α, x)(1− p(α, x))

}
· ∂p(α, x)

∂x

=
ρω(ln 2)2ρx

p(α, x)
(
1− p(α, x)

)
{(

1− p(α, x)
)
ln

(
1− p(α, x)

)
+ p(α, x)

}
.

Let U2(p)
4
=(1−p) ln(1−p)+p, then ∂U2(p)

∂p
= − ln(1−p) > 0 for p ∈ (0, 1). There-

fore, U2(p) is monotonically increasing when p ∈ (0, 1). Since limp→0 U2(p) = 0,

it indicates U2(p) > 0 for p ∈ (0, 1). Then it is obvious that ∂U1(α,x)
∂x

> 0 with

p(α, x) ∈ (0, 1) where x ∈ (0, +∞). Thus, U1(α, x) is a monotonically increasing

function of x for x ∈ (0, +∞), and so is the function W (α, x)
4
=U1(α, x) + 2 +

ρ ln 2 · x.

It can be shown that

lim
x→0

W (α, x) = lim
p(α,x)→1

{
1

p(α, x)
ln

(
1− p(α, x)

)}
+ 2 = −∞

and

lim
x→+∞

W (α, x) = lim
p(α,x)→0

{
1

p(α, x)
ln

(
1− p(α, x)

)}
+ 2

+ lim
x→+∞

{ρ ln 2 · x} = +∞.

Based on the monotonically increasing property, W (α, x) = 0 has only one

positive root denoted as x = x∗. Thus,




W (α, x) < 0 if 0 < x < x∗;

W (α, x) = 0 if x = x∗;

W (α, x) > 0 if x > x∗.

Since ρω(ln 2)2ρx > 0 and ∂f(α,x)
∂x

= ρω(ln 2)2ρxW (α, x) (from (A-1)), it can be

obtained that 



∂f(α,x)
∂x

< 0 if 0 < x < x∗;

∂f(α,x)
∂x

= 0 if x = x∗;

∂f(α,x)
∂x

> 0 if x > x∗.

This completes the proof.
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Appendix B

Proof of (3.18)

Proof. For any given α ∈ [0, 1), from (3.17) and the fact H(α, z) = H(α, n + 1),

it can be obtained that
∣∣∣∂H(α,x)

∂α
|x=z

∣∣∣
∣∣∣∂H(α,x)

∂α
|x=n+1

∣∣∣
=

1−p(α,x)
ρω(ln 2)x22ρxp(α,x)

∣∣
x=n+1

1−p(α,x)
ρω(ln 2)x22ρxp(α,x)

∣∣
x=z

(B-1)

where ρ = L
αT

. Since H(α, z) = H(α, n + 1), then (1− p(α, z))z = (1− p(α, n +

1))n+1, which leads to z
n+1

= ln(1−p(α,n+1))
ln(1−p(α,z))

. Thus, (B-1) can be rewritten as

∣∣∣∂H(α,x)
∂α

|x=z

∣∣∣
∣∣∣∂H(α,x)

∂α
|x=n+1

∣∣∣
=

(1−p(α,x)) ln(1−p(α,x))
ρω(ln 2)x2ρxp(α,x)

∣∣
x=n+1

(1−p(α,x)) ln(1−p(α,x))
ρω(ln 2)x2ρxp(α,x)

∣∣
x=z

=

∣∣∣A(α,n+1)
B(α,n+1)

∣∣∣
∣∣∣A(α,z)
B(α,z)

∣∣∣
(B-2)

where A(α, x)
4
=

(
1−p(α,x)

)
ln

(
1−p(α,x)

)
p(α,x)

and B(α, x)
4
= ρω(ln 2)x2ρx.

It can be seen that the f(α, x) in (3.7) can be expressed as f(α, x) = A(α, x) +

B(α, x). In the proof of Lemma 1, it has been shown that f(α, x) has the following

property: 



f(α, x) < 0 if 0 < x < x0(α);

f(α, x) = 0 if x = x0(α);

f(α, x) > 0 if x > x0(α).

For x ∈ (0, +∞), it is obvious that p(α, x) ∈ (0, 1), A(α, x) < 0, and B(α, x) > 0.
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Thus, from the above property of f(α, x), it can be shown that




|A(α, x)| > |B(α, x)| if 0 < x < x0(α);

|A(α, x)| = |B(α, x)| if x = x0(α);

|A(α, x)| < |B(α, x)| if x > x0(α).

For 0 < z < x0(α) < n + 1, the following can be obtained:

∣∣∣∣
A(α, z)

B(α, z)

∣∣∣∣ > 1 >

∣∣∣∣
A(α, n + 1)

B(α, n + 1)

∣∣∣∣ .

Together with (B-2) it can be concluded that

∣∣∣∂H(α, x)

∂α
|x=z

∣∣∣ <
∣∣∣∂H(α, x)

∂α
|x=n+1

∣∣∣.

This completes the proof.
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Appendix C

Proof of property (4.34)

Proof. To prove (4.34), the following property of a(x) is obtained first.

(1) For x ∈ (0, 1), da(x)
dx

= 1
x(ln x)2

> 0, then a(x) is monotonically increasing;

(2) a(x) is concave in (0, 1
e2 ) and is convex in ( 1

e2 , 1);

(3) a(1
e
) = 1 and da(x)

dx
|x=1/e = e, then the tangent of a(x) at the point (1

e
, 1) is

Z2(x) = ex;

(4) limx→0 a(x) = limx→0
−1
ln x

= 0.

(5) For any x1, x2 and λ that satisfy x1 < 1
e

< x2, 0 < λ < 1, and λx1+(1−λ)x2 >

1
e
, the following holds: a(λx1 + (1− λ)x2) < λa(x1) + (1− λ)a(x2).

Property (5) can be proved as follows. Let x1 ∈ (0, 1
e
), x2 ∈ (1

e
, 1) and xλ =

λx1 + (1− λ)x2 where λ ∈ (0, 1). It can be seen that if xλ > 1
e
, then xλ ∈ (1

e
, x2).

Denote the line determined by the two points (x1, a(x1)) and (x2, a(x2)) as Z1(x),

where Z1(x1) = a(x1) and Z1(x2) = a(x2). Then it can be obtained that

Z1(xλ)− Z1(x1)

Z1(xλ)− Z1(x2)
=

xλ − x1

xλ − x2

=
λ− 1

λ
(C-1)

Then, it can be seen that Z1(xλ) = λZ1(x1) + (1 − λ)Z1(x2) = λa(x1) + (1 −
λ)a(x2). To prove property (5) is equivalent to prove a(x) < Z1(x) for all x ∈
(1

e
, x2). Based on the property (1)-(4), it is easy to check that Z1(x1) = a(x1) >

Z2(x1) and Z1(x2) = a(x2) > Z2(x2), which indicates line Z1(x) is above line

Z2(x) in (x1, x2). Since x1 < 1
e

< x2, it is obvious that Z1(
1
e
) > Z2(

1
e
) = a(1

e
).
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According to the monotonically increasing property of a(x), it can be obtained that

Z1(x2) = a(x2) > a(x1) = Z1(x1), then Z1(x) is also an increasing function.

Since a(x) is a convex and increasing function in ( 1
e2 , 1), from Z1(

1
e
) > a(1

e
) and

Z1(x2) = a(x2), based on the monotonically increasing property of Z1(x), it can

be concluded that a(x) < Z1(x) within (1
e
, x2).

Then, based on the above properties, (4.34) can be proved using induction. First,

according to property (2) and Jensen’s inequality, it can be seen that (4.34) holds if

bt > 1/e2 ∀ t = 1, 2, ..., ni. Next, consider the case that bt < 1/e2 for some t.

For ni = 2, let x1 = b1 < 1/e2 < 1/e, x2 = b2 > 1/e and λ = 1/2, then

λx1 +(1−λ)x2 = 1
2
(b1 + b2) = b > 1/e. From property (5), it can be obtained that

a(b) = a

(
b1 + b2

2

)
<

a(b1) + a(b2)

2
. (C-2)

Assume for ni = n, the following holds:

a

(∑n
t=1 bt

n

)
<

∑n
t=1 a(bt)

n
. (C-3)

For ni = n + 1, let bn+1 < 1/e2 < 1/e, it can be shown that

a(b) = a

(∑n+1
t=1 bt

n + 1

)
= a

(
1

n + 1
bn+1 +

n

n + 1
·
∑n

t=1 bt

n

)
. (C-4)

Since b > 1/e, then (n+1)b =
∑n+1

t=1 bt > n/e+bn+1, which leads to
∑n

t=1 bt/n >

1/e. Let x1 = bn+1, x2 =
∑n

t=1 b̂t/n, and λ = 1/(n + 1), from property (5), it can

be obtained that

a

(
1

n + 1
bn+1 +

n

n + 1
·
∑n

t=1 bt

n

)
<

1

n + 1
a(bn+1) +

n

n + 1
a

(∑n
t=1 bt

n

)
.

(C-5)

Since a
(∑n

t=1 bt

n

)
<

∑n
t=1 a(bt)

n
, it can be obtained that

a(b) = a

(∑n+1
t=1 bt

n + 1

)
<

1

n + 1
a(bn+1) +

n

n + 1
·
∑n

t=1 a(bt)

n
=

∑n+1
t=1 a(bt)

n + 1
.

(C-6)

Thus, (4.34) also holds for ni = n+1. Based on induction, it can be concluded that

(4.34) holds for all ni > 0. This completes the proof.
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