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Abstract

This thesis is concerned with subspace identification and its applications for con-

troller performance assessment and process modeling from closed-loop data.

A joint input-output closed-loop subspace identification method is developed

which provides consistent estimation of the subspace matrices and the noise covari-

ance matrix required for the LQG benchmark curve estimation.

Subspace LQG benchmark is also used for performance assessment of the cascade

supervisory-regulatory control systems. Three possible scenarios for LQG control

design and performance improvement are discussed for this structure. A closed-

loop subspace identification method is also provided for estimation of the subspace

matrices necessary for performance assessment.

A method of direct step model estimation from closed-loop data is provided

using subspace identification. The variance calculation required for this purpose

can be performed using the proposed method. The variances are used for weighted

averaging on the estimated Markov parameters to attenuate the noise influence on

the final step response estimation.
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p

(
Up

Ūp
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Ūp

)

W ξu
p

(
Ξp

Up

)

Xf System future state matrix defined as
(

xN · · · xN+j−1

)

Xc
f Controller future state matrix defined as

(
xc

N · · · xc
N+j−1

)



XCL
f Future closed-loop state matrix defined as

(
Xf

Xc
f

)

Xcc1
f Future state matrix defined in the cascade control structure as

(
Xf

Xc1
f

)

Xcc2
f Future state matrix defined in the cascade control structure as

(
Xf

Xc2
f

)

Xcs
f Future state matrix defined in the cascade control structure as




Xf

Xc1
f

Xc2
f




Xp Past state matrix defined as
(

x0 · · · xj−1

)

xt System states at sampling instant t

xc
t Controller states at sampling instant t

xc1
t High-level controller C1 states at sampling instant t (defined

in the cascade control structure)

xc2
t Low-level controller C2 states at sampling instant t (defined in

the cascade control structure)

Yf Future data Hankel matrix for yt

Yp Past data Hankel matrix for yt

yt System output(s) at sampling instant t

F Matrix defined as [I + LuL
c
y]
−1

∆c
N reversed extended controllability matrices of {Ac, Bc}

= (AN−1
c Bc AN−2

c Bc · · · AcBc Bc)

∆d
N reversed extended controllability matrices of {A,B}

= (AN−1B AN−2B · · · AB B)

∆s
N reversed extended controllability matrices of {A,K}

= (AN−1K AN−2K · · · AK K)



ηy,ηu Performance index

ΓN Extended observability matrix of the process up to order N =(
CT (CA)T · · · (CAN−1)T

)T

ΓCL
N Extended observability matrix of the closed-loop system

Γc
N Extended observability matrix of the controller

Γc1
N Extended observability matrix of controller C1 in the cascade

control structure

Γc2
N Extended observability matrix of controller C2 in the cascade

control structure

Γcs
N Extended observability matrix defined for the cascade control

structure as
(

ΓN LuL
c2
y Γc1

N LuΓ
c2
N

)

λ Weighting on the control effort

γi Markov parameter used for calculating the cumulative effect of

the noise et on the process output variance

ξt System measured output(s) at sampling instant t

ψi Markov parameter used for calculating the cumulative effect of

the noise et on the process input variance

Υ Pseudo-inverse of the subspace matrix containing past and fu-

ture data =

(
Wp

Uf

)

† Superscript; Moore-Penrose pseudo-inverse

T Superscript; Transpose transformation



List of Abbreviations

APC Advanced Process Control

ARMAX Auto Regressive Moving Average with eXogenous Input

ARX Auto Regressive with eXogenous Input

CVA Canonical Variate Analysis

FOPTD First Order Plus Time Delay

IMC Internal Model Control

LQG Linear Quadratic Gaussian

MA Moving Average

MIMO Multi Input Multi Output

MOESP MIMO Output Error State Space

MPC Model Predictive Control

MVC Minimum Variance Control

N4SID Numerical Subspace State Space IDentification

OPC OLE for Process Control

PID Proportional Integral Derivative

RBS Random Binary Sequence

SISO Single Input Single output

SOPTD Second Order Plus Time Delay



Chapter 1

Introduction

1.1 Objective of this thesis

In the past decades process control practice has progressed from conventional meth-

ods to more advanced methods in the most areas of control applications including

control system design, process identification, fault detection and diagnosis and pro-

cess integration. Research in the field of control theory has also been extended in

many directions to provide new and advanced control algorithms for handling more

complex processes with interactions and constraints, new open-loop and closed-loop

identification required for process model development, control relevant identifica-

tion methods, many model-based and signal-based fault detection and diagnosis ap-

proaches and a variety of controller performance assessment methods either model-

based or data-driven.

In most of the control systems, many controllers initially perform well, but abrupt

or gradual performance deterioration will occur as time goes by. It was reported

by Ender (1993) [31] that as many as 60% of all industrial controllers have some

kind of performance problem. This problem has received the attention of many

researchers both from industry and academia. There has been considerable interest

in developing methods for performance assessment of the control systems in the last

2 decades. Comprehensive review papers by Qin (1998, 2007) [80, 85] and Harris et.

al. (1999) [38] provide a detailed review of the research on control loop performance

assessment.

Model-based performance assessment methods are on the basis of designing an

optimal controller (mostly linear) for the process which is used as a benchmark

for evaluation of the current controller performance. Such an optimal control de-

sign needs some information about the process dynamics. The first and most used

benchmark is the minimum variance control (MVC) [4] benchmark presented by

Harris (1989) [36]. LQG control has also been used as a benchmark for perfor-

mance assessment which provides a more comprehensive benchmark by the cost of

1



requiring more information about the process. The benchmark in this method is

the ‘trade-off’ curve [14] which presents the limit of optimal performance for linear

control. Introduction to these methods are provided in the next chapter. Data-

driven approaches do not require the process knowledge, but they can not provide

the absolute limit of the optimal performance.

The required process knowledge for the purpose of controller performance assess-

ment rises up the need for process modeling. Different benchmarks require different

levels of the process knowledge for which many estimation and identification ap-

proaches have been proposed [45, 85]. The requirement of working with closed-loop

data in real applications, motivated the researchers to focus mostly on the closed-

loop identification methods for this purpose.

Classic open-loop and closed-loop identification theory has been well developed

and presented in a great detail in the celebrated textbooks by Ljung (1999) [69]

and Söderström and Stoica (1989) [87]. The most common classic identification

methods are the prediction error method [69] and instrument variable method [87].

Subspace identification methods provide an alternative approach for system identi-

fication relying on numerically robust tools such as QR-factorization and singular

value decomposition. Various methods of subspace identification have been devel-

oped in the past two decades [57, 64, 91, 96]. Subspace identification methods

have also been applied in other areas of control applications such as performance

assessment [43], predictive control [43, 29] and fault-tolerant control design [30].

The focus of this thesis is on the subspace identification and its application for

process modeling and controller performance assessment from closed-loop data. The

LQG trade-off curve is used as the benchmark for controller performance assessment

in this work. Using the subspace framework removes the requirement of an explicit

model for trade-off curve estimation. More details are provided in the next sections.

1.2 Outline of the thesis

In Chapter 2, an overview on the subspace identification and controller performance

assessment is provided. The subspace identification approach proposed in the thesis

is based on Regression Analysis approach [57]. This method is reviewed in this

chapter and a numerical example is provided. The concept of LQG benchmark for

performance assessment is reviewed in this chapter as well.

In Chapter 3, calculation of the LQG benchmark from closed-loop data is stud-

ied. Closed-loop subspace identification can be used to obtain the trade-off curve

without requiring an explicit model of the process or disturbance. Also, the noise

covariance plays an important roll in the calculation of the LQG trade-off curve and

should be estimated via closed-loop identification. A previously proposed method

2



of closed-loop identification by Kadali and Huang (2002) [54] is revisited and then

an alternative direct formulation of the joint input-output identification method is

provided for which the consistency of noise variance estimation can be obtained.

Monte-Carlo simulations are provided to investigate the consistency of the proposed

method and some other relevant methods of closed-loop subspace identification. A

subspace method of estimating the noise model and the noise covariance from closed-

loop routine operating data (with no external excitations) is also presented in this

chapter which is useful for performance assessment of model-based controllers in

which a process model is normally available. A simulation example on a multivari-

ate system is provided. Both methods are implemented in an experimental study

on a pilot-scale 2× 2 Continuous Stirred Tank Heater (CSTH) process.

Chapter 4 presents an extension of the subspace-based LQG benchmark to the

case of a more general control structure consisting of supervisory advanced con-

trol and low-level regulatory control. This supervisory-regulatory control structure

which comes from cascade implementation of advanced controllers [66] is very com-

mon in advanced process control applications. In this chapter, a review of the

available options for implementation of advanced controllers is provided based on

[66], and then performance assessment of the cascade control structure is studied

using the LQG benchmark. For this purpose, three different scenarios are consid-

ered and LQG controller design is provided for each case. Following the subspace

framework of Chapter 3, a control design is provided is free from the explicit process

model requirement. Then, it is shown that LQG trade-off curves can be obtained

for each case using certain subspace matrices. The curves can be used for perfor-

mance assessment of supervisory and regulatory controllers and helps the engineer

to decide which controller(s) to be re-tuned/re-designed for performance enhance-

ment. The required subspace matrices as well as the noise covariance matrix can

be estimated using a proposed closed-loop subspace identification approach for the

cascade structure based on the idea of joint input-output identification. MATLAB

and HYSYS simulations are used to demonstrate utility of the proposed method.

In Chapter 5, direct estimation of the process step response model from closed-

loop data using subspace identification is studied. Necessary information concerning

impulse response coefficients is embedded in subspace matrices. Therefore, the

step response coefficients can be directly obtained from this matrix by integration

without the need of extracting state space models as the conventional subspace

identification does. Since the estimated subspace matrix contains more than one

set of impulse response coefficients, a question raises about how to best synthesize

them to obtain an optimal estimate of the impulse response coefficients. For this

purpose, a reformulation of the subspace identification problem is required for which

the variance of all elements in the related subspace matrix can be evaluated. The
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calculated variances are then used to perform a weighted averaging on the impulse

response coefficients in order to attenuate the noise influence on the step response

estimation. Two Monte-Carlo simulations are provided followed by two pilot-scale

experiments to verify the proposed method.

1.3 Contributions of the thesis

The contributions of this thesis are summarized as follows:

• An alternative formulation of the joint input-output subspace identification

is proposed and used for performance assessment based on the LQG bench-

mark. Consistency analysis for the proposed closed-loop identification method

is provided.

• The subspace LQG control is designed in a supervisory-regulatory control

structure for three possible cases and the LQG trade-off curve for each case is

developed using certain subspace matrices without the requirement of explicit

models.

• A closed-loop subspace identification method based on the joint input-output

identification approach is provided to estimate the required subspace matrices

under the cascade control.

• Direct estimation of the process step response model from closed-loop data

using a sequential closed-loop subspace identification method is provided.

• Two Graphic User Interfaces (GUI) are generated for closed-loop subspace

identification and controller performance assessment based on the LQG bench-

mark.

• Experimental evaluation of the proposed methods on two pilot-scale processes.
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Chapter 2

A Review of Subspace
Identification and Performance
Assessment

In this chapter brief introductions to the two major subjects of the thesis, subspace

system identification and controller performance assessment, are provided. Our fo-

cus is on the approaches that are used in the following chapters which are Regression

Analysis approach for subspace identification and LQG benchmark for performance

assessment. However, to provide better understanding of advantages of the LQG

benchmark, a brief review on the minimum variance control (MVC) benchmark is

given as well. Since no simple numerical example on the procedure of subspace

identification has been provided in the textbooks of system identification, we will

describe regression analysis method procedure by use of a numerical example in

this chapter. Also, an insightful study on the mechanism of the open-loop subspace

identification is performed for the noise-free case. The reviews are mostly taken

from [43, 57, 45].

2.1 A brief review on open-loop subspace identi-

fication

Subspace identification methods provide an alternative data-driven approach to

classical system identification methods like the prediction error method [69] and

instrument variable method [87]. Subspace methods use efficient computational al-

gorithms such as QR-factorization and singular value decomposition, which makes

them intrinsically robust from a numerical point of view. Various methods of sub-

space identification have been developed in the past two decades such as regres-

sion analysis approach, N4SID (Numerical SubSpace State Space IDentification),

MOESP (MIMO Output Error State sPace) and CVA (Canonical Variate Analysis)

[57, 64, 77, 91, 92, 90, 96]. Subspace identification methods are intrinsically suitable
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for multivariate systems identification compared to the classic methods. This chap-

ter gives an overview of the regression analysis method which is used in the next

chapters. Although the principal goal of the method is to identify the state space

system matrices {A, B, C, D, K}, certain subspace matrices are first calculated as

an intermediate step. In this work, these intermediate matrices will be used for per-

formance assessment and step model estimation,so the explicit model of the process

is not of our interest. This issue will be elaborated more in the next section.

In the following, we provide a brief introduction to the subspace notation and

the regression analysis approach. A simple numerical example is also provided as

well as a study on the mechanism of the calculation in this method for noise-free

case.

2.1.1 Subspace notation and preliminary

Consider the following state space representation for a linear system with l inputs

and m outputs

{
xt+1 = Axt + But + Ket

yt = Cxt + Dut + et

(2.1)

where xt ∈ Rn, ut ∈ Rl, yt ∈ Rm and et ∈ Rm is white noise. From Equation (2.1),

for t = N

xN+1 = AxN + BuN + KeN (2.2)

and for t = N + 1

xN+2 = AxN+1 + BuN+1 + KeN+1

= A2xN + (AB A)

(
uN

uN+1

)
+ (AK B)

(
eN

eN+1

)

This procedure can be continued to t = 2N − 2 which gives

x2N−1 = AN−1xN + (AN−2B AN−3B · · ·B)




uN

uN+1

· · ·
u2N−2




+ (AN−2B AN−3B · · ·B)




eN

eN+1

· · ·
e2N−2


 (2.3)
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Following the same procedure for the output equation in (3.1), similar results to

(2.3) can be derived

y2N−1 = CAN1xN + (CAN−2B CAN−3B · · ·D)




uN

uN+1

· · ·
u2N−2




+ (CAN−2K CAN−3K · · · I)




eN

eN+1

· · ·
e2N−2


 (2.4)

Assembling the results for t = N,N + 1, ..., 2N − 1, yields a matrix equation as

follows:


yN

yN+1

yN+2

· · ·
y2N−1




=




C
CA
CA2

· · ·
CAN−1




xN

+




D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
· · · · · · · · · · · · · · ·

CAN−2B CAN−3B CAN−4B · · · D







uN

uN+1

uN+2

· · ·
u2N−1




+




I 0 0 · · · 0
CK I 0 · · · 0

CAK CK I · · · 0
· · · · · · · · · · · · · · ·

CAN−2K CAN−3K CAN−4K · · · I







eN

eN+1

eN+2

· · ·
e2N−1




(2.5)

Adding time index by 1, Equation (2.5) changes to



yN+1

yN+2

yN+3

· · ·
y2N




=




C
CA
CA2

· · ·
CAN−1




xN+

+




D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
· · · · · · · · · · · · · · ·

CAN−2B CAN−3B CAN−4B · · · D







uN+1

uN+2

uN+3

· · ·
u2N




+




I 0 0 · · · 0
CK I 0 · · · 0

CAK CK I · · · 0
· · · · · · · · · · · · · · ·

CAN−2K CAN−3K CAN−4K · · · I







eN+1

eN+2

eN+3

· · ·
e2N




(2.6)
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Continuing this procedure for time indexes 2, 3 until j− 1 and assembling obtained

equations gives




yN yN+1 · · · yN+j−1

yN+1 yN+2 · · · yN+j

yN+2 yN+3 · · · yN+j+1

· · · · · · · · · · · ·
y2N−1 y2N · · · y2N+j−2




=




C
CA
CA2

· · ·
CAN−1




(
xN xN+1 · · · xN+j−1

)
+

+




D 0 · · · 0
CB D · · · 0

CAB CB · · · 0
· · · · · · · · · · · ·

CAN−2B CAN−3B · · · D







uN uN+1 · · · uN+j−1

uN+1 uN+2 · · · uN+j

uN+2 uN+3 · · · uN+j+1

· · · · · · · · · · · ·
u2N−1 u2N · · · u2N+j−2




+




I 0 · · · 0
CK I · · · 0

CAK CK · · · 0
· · · · · · · · · · · ·

CAN−2K CAN−3K · · · I







eN eN+1 · · · eN+j−1

eN+1 eN+2 · · · eN+j

eN+2 eN+3 · · · eN+j+1

· · · · · · · · · · · ·
e2N−1 e2N · · · e2N+j−2




(2.7)

Equation (2.7) provides the subspace equation for the outputs. Performing a

similar procedure on the state equation gives the following subspace matrix equation

for system states:

(xN xN+1 · · · xN+j−1) = AN
(

x0 x1 · · · xj−1

)

+
(

AN−1B AN−2B · · · B
)



u0 u1 · · · uj−1

u1 u2 · · · uj

· · · · · · · · · · · ·
uN−1 uN · · · uN+j−2




+
(

AN−1K AN−2K · · · K
)



e0 e1 · · · ej−1

e1 e2 · · · ej

· · · · · · · · · · · ·
eN−1 eN · · · eN+j−2


 (2.8)

Short-hand version of the above derivations are the following subspace equations:

Yf = ΓNXf + LuUf + LeEf (2.9)

Yp = ΓNXp + LuUp + LeEp (2.10)

Xf = ANXp + ∆dUp + ∆sEp (2.11)

In the above equations, subscript ‘p’ stands for ‘past’ and ‘f ’ stands for ‘future’.

Comparing Equation (2.9) with (2.7) gives the definition of subspace matrices ΓN ,

8



Lu and Le as

ΓN =




C
CA
CA2

· · ·
CAN−1




(2.12)

Lu =




D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
· · · · · · · · · · · · · · ·

CAN−2B CAN−3B CAN−4B · · · D




(2.13)

Le =




I 0 0 · · · 0
CK I 0 · · · 0

CAK CK I · · · 0
· · · · · · · · · · · · · · ·

CAN−2K CAN−3K CAN−4K · · · I




(2.14)

ΓN ∈ RmN×n is the extended observability matrix and Lu ∈ RmN×lN and Le ∈
RmN×mN contain the process and disturbance Markov parameters, respectively. In

some subspace literatures Hd
N is used instead of Lu and Hs

N instead of Le. The defi-

nition of data Hanlke matrices Up, Uf ∈ RlN×j, Yp, Yf ∈ RmN×j and Ep, Ef ∈ RmN×j

can also be retrieved by comparing Equation (2.9) with (2.7) and Equation(2.11)

with (2.8). As an example, Up and Uf are defined as follows:

Up =




u0 u1 · · · uj−1

u1 u2 · · · uj

· · · · · · · · · · · ·
uN−1 uN · · · uN+j−2




Uf =




uN uN+1 · · · uN+j−1

uN+1 uN+2 · · · uN+j

· · · · · · · · · · · ·
u2N−1 u2N · · · u2N+j−2




Typically, j should be much larger than max(mN, lN) to reduce sensitivity to

noise [90]. In fact, j plays the same role as the number of observations in regression

analysis and N is related to the order of system. There are some common assump-

tions in all subspace identification methods; pair (A,C) is required to be observable

and pair (A,BKR1/2) should be controllable where R is the covariance matrix of

white noise entering the process.
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2.1.2 Regression analysis approach

The following derivation is taken from [57]. Consider the state space model (3.1)

again. By shifting the time subscripts, we get

xt = Axt−1 + But−1 + Ket−1

yt−1 = Cxt−1 + Dut−1 + et−1

Combining the two above equations yields

xt = (A−KC)xt−1 + Kyt−1 + (B −KC)ut−1

Doing the same combination recursively results in

xt = (A−KC)Nxt−N + (A−KC)N−1(Kyt−N + (B −KD)ut−N)+

+ · · ·+ (A−KC)(Kyt−2 + (B −KD)ut−2)+

+ Kyt−1 + (B −KD)ut−1 (2.15)

The time index in Equation (2.15) can be replaced by t = N, N + 1, ..., N + j − 1.

Collecting all of the resulting equations in a matrix format gives a subspace equation

as follows:

Xf = ΦyYp + ΦuUp + ΦxXp (2.16)

where

Φx = (A−KC)N

Φy = C(A−KC,K)

Φu = C(A−KC,B −KD)

and C operator is defined by

C(A,B) , (AN−1B AN−2B · · · AB B) (2.17)

Φx represents error dynamics of the Kalman filter, so as N → ∞, it results in

Φx → 0, because of the stability of Kalman filter. As a result, for large N

Xf = ΦyYp + ΦuUp (2.18)

Substituting Equation (2.18) in (2.9) gives

Yf = LwWp + LuUf + LeEf (2.19)

where Wp is defined as:

Wp =

(
Yp

Up

)
(2.20)
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and Lw can be represented by

Lw = ΓN(Φy Φy) (2.21)

Based on Equation (2.19), subspace matrices can be estimated by least squares

or other regression methods

(
L̂w L̂u

)
= Yf

(
Wp

Uf

)†

= Yf

(
W T

p UT
f

)
(

(
Wp

Uf

) (
W T

p UT
f

)
)−1 (2.22)

This pseudo-inverse operation can be done in a more numerically robust way

using QR-factorization [91, 90]. The residual of this least squares estimation is

given by

Vf = Yf − Ŷf (2.23)

= LeEf (2.24)

and its covariance can be estimated as

P̂v =
1

j
VfV

T
f (2.25)

Furthermore, the innovation ef can be estimated from the first row of Vf as follows:

êf = Vf (1 : m, :) (2.26)

To retrieve the system matrices, the following SVD needs to be performed:

W1L̂wW2 = (U1 U2)

(
S1 0
0 S2

)(
V1

V2

)
(2.27)

where W1 and W2 are proper weighting matrices. In Knudsen (2001) [57], the choices

for them are given as

W1 = I (2.28)

W2 = (WpW
T
p )1/2 (2.29)

Theoretically, for a finite dimension of state space models, there exists S2 = 0

and the dimension of S1 determines the dimension of the state space matrix A. From

this decomposition, ΓN can be obtained by

Γ̂N = U1S
1/2
1 (2.30)

System matrices now can be retrieved as follows [57]:
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Γ̂1
N = Γ̂N(1 : (N − 1)m, :) (2.31)

Γ̂2
N = Γ̂N(m + 1 : Nm, :) (2.32)

Ĉ = Γ̂N(1 : m, 1 : n) (2.33)

Â = (Γ̂1
N)†Γ̂2

N (2.34)

B̂ = (Γ1
N)†L̂u(m + 1 : Nm, 1 : l) (2.35)

D̂ = L̂u(1 : m, 1 : l) (2.36)

K̂ = (Γ̂1
N)†P̂v(m + 1 : Nm, 1 : m)R̂−1 (2.37)

There are some other approaches in subspace identification such as methods

based on projection (e.g., N4SID) or statistical approaches (e.g., CVA) and MOESP,

which are not used in this thesis. Details of these methods can be found in subspace

identification literature (see [43], [90], [91], [96] and references therein).

Many methods have also been developed for closed-loop system identification

based on subspace approach. Modified N4SID, ARX prediction approach, inno-

vation estimation method, orthogonal projection approach and joint input-output

identification are some of them and details can be found in the literature [42, 56, 64,

70, 84, 88, 94, 95, 98]. A comprehensive review is provided in [43]. We will review

a method based on the joint input-output approach in the next chapter, and the

consequent application for performance assessment will be studied.

In the following subsection, a simple numerical example of implementing the

regression analysis method is given for better understanding of the method.

2.1.3 A numerical example

Consider the following state space representation:

x(t + 1) = −0.1x(t) + u(t) + 0.2e(t) (2.38)

y(t) = 0.5x(t) + e(t) (2.39)

The noise variance is set to be 0.01. A small set of input-output data is generated

for this process as provided in Table 2.1.

Table 2.1: Identification data for numerical example
u(t) 1 -1 1 -1 -1 1
y(t) 0.0021 0.5002 -0.5479 0.5562 -0.5536 -0.4435
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Choosing N = 2 and j = 3, the data Hankel matrices can be built as follows:

Up =

(
1 −1 1

−1 1 −1

)
(2.40)

Uf =

(
1 −1 −1

−1 −1 1

)
(2.41)

Yp =

(
0.0021 0.5002 −0.5479
0.5002 −0.5479 0.5562

)
(2.42)

Yf =

( −0.5479 0.5562 −0.5536
0.5562 −0.5536 −0.4435

)
(2.43)

Then, Wp is given by

Wp =




0.0021 0.5002 −0.5479
0.5002 −0.5479 0.5562

1 −1 1
−1 1 −1


 (2.44)

Using Equation (2.22), one can estimate Lw and Lu as follows:

(
L̂w L̂u

)
=

(
−0.5479 0.5562 −0.5536
0.5562 −0.5536 −0.4435

)




0.0021 0.5002 −0.5479
0.5002 −0.5479 0.5562

1 −1 1
−1 1 −1

1 −1 −1
−1 −1 1




†

=

(
−0.5479 0.5562 −0.5536
0.5562 −0.5536 −0.4435

)


0.0021 0.5002 1 −1 1 −1
0.5002 −0.5479 −1 1 −1 −1

−0.5479 0.5562 1 −1 −1 1


×







0.0021 0.5002 −0.5479
0.5002 −0.5479 0.5562

1 −1 1
−1 1 −1

1 −1 −1
−1 −1 1







0.0021 0.5002 1 −1 1 −1
0.5002 −0.5479 −1 1 −1 −1

−0.5479 0.5562 1 −1 −1 1







−1

=

(
0.0604 −0.1235 −0.2345 0.2345 −0.0032 0.0140
0.0049 0.0116 0.0258 −0.0258 0.4985 −0.0003

)
(2.45)

which gives

L̂w =

(
0.0604 −0.1235 −0.2345 0.2345
0.0049 0.0116 0.0258 −0.0258

)

L̂u =

( −0.0032 0.0140
0.4985 −0.0003

)
(2.46)
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Equation (2.23) can now be used to estimate Vf as

Vf =

(
0.0142 −0.0172 0.0126
−0.1524 0.0186 0.2112

)
(2.47)

which gives

P̂v =

(
0.0002 0.00006
0.00006 0.0226

)

ef = Vf (1, :) =
(

0.0142 −0.0172 0.0126
)

R̂ = cov(ef ) = 0.0003 (2.48)

Performing SVD on Lw yields

L̂w =

(
0.9948 −0.1022
−0.1022 0.9948

)(
0.3609 0

0 0.0114

)( −0.1651 0.9727
0.3437 −0.0982

)

Using Equation (2.30), ΓN can be estimated by

Γ̂N =

(
0.9948
−0.1022

)
(0.3609)1/2 =

(
0.5976
−0.0614

)
(2.49)

Now, the system parameters {a,b,c,d,k} can be estimated using equations (2.33)

to (2.37) as follows:

ĉ = Γ̂N(1, 1) = 0.5976 (2.50)

â = (Γu
N)†Γy

N = (ĉ)−1Γ̂N(2, 1) = (0.5976)−1(−0.0614) = −0.1228 (2.51)

b̂ = (Γu
N)†L̂u(2, 1) = (ĉ)−1L̂u(2, 1) = (0.5976)−1(0.4995) = 0.9969 (2.52)

d̂ = L̂u(1, 1) = −0.0032 (2.53)

k̂ = (Γ̂u
N)†P̂ (2, 1)(R̂)−1 = (0.5976)−1(0.00006)(0.0003)−1 = 0.3347 (2.54)

R̂ = 0.0003 (2.55)

Equations (2.55) and (2.54) show poor estimations of the noise dynamics and

noise variance which can be as a result of using small number of input-output data

points.

2.1.4 An insight to the noise-free identification

In this section, the mechanism of regression analysis method in the noise-free case

is studied using simulation to provide more insight to the subspace identification

approach. This simple yet insightful study is worthy because normally it is nontriv-

ial to understand the calculation procedure of the subspace identification since it

involves projection and inversion of some large matrices. Our result shows that in

the absence of the noise, Markov parameters in the subspace matrix Lu are naturally
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estimated by differentiation and averaging procedure. We have not found this issue

being studied in the subspace literature.

Recall Equation (2.22) from Section 2.1.2. We define

Υ ,
(

Wp

Uf

)†
(2.56)

U ‡
f , Υ(:, 2lN + 1 : 3lN) (2.57)

Equation (2.22) shows that L̂u is calculated by

L̂u = Yf × U ‡
f (2.58)

To avoid dealing with large matrices, we shall discuss the SISO case only. Our

simulations show that U ‡
f has a special structure which helps to understand the

mechanism of calculation of the Markov parameters in Lu. Assume that the exci-

tation signal, ut, is a ‘well-designed’ RBS signal as shown in Figure 2.1. We choose

N = 3 and j = 10. Then, U ‡
f ∈ R10×3 has the following structure:

U ‡
f =




0 0 0
0 0 α
0 α −α
α −α 0
−α 0 0
0 0 −α
0 −α α
−α α 0
α 0 0
0 0 0




(2.59)

Therefore, L̂u is calculated by

L̂u = Yf × U ‡
f

=




y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

y5 y6 y7 y8 y9 y10 y11 y12 y13 y14







0 0 0
0 0 α
0 α −α
α −α 0
−α 0 0
0 0 −α
0 −α α
−α α 0
α 0 0
0 0 0




=




α[(y7 − y6) + (y10 − y11)] L̂u(1, 2) L̂u(1, 3)
α[(y8 − y7) + (y11 − y12)] α[(y7 − y6) + (y10 − y11)] L̂u(2, 3)
α[(y9 − y8) + (y12 − y13)] α[(y8 − y7) + (y11 − y12)] α[(y7 − y6) + (y10 − y11)]


 (2.60)
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Figure 2.1: RBS test signal and the process response

It shows that the lower triangular part of Lu should have a Toeplitz structure. Now,

three natural questions are: (1) Where do the non-zero elements appear in U ‡
f? (2)

What is the value of α and does the lower triangular part of L̂u contain Markov

parameters? (3) Is the upper triangular part of L̂u zero?

1. Position of the non-zero elements in U ‡
f is determined by the time of switchings

in the RBS signal. If at sample t = i a positive step excitation occurs in ut,

the (i−N + 1)th element in the first column of U ‡
f is α and the next element,

(i − N + 2)th, is −α. Next columns follow the structure of (2.59). If −α

appears first, it is as a result of a negative step switching in the test signal.

Looking at the test signal shown in Figure 2.1 explains the structure of U ‡
f in

(2.59). It shows that a positive step change occurs at t = 6 and a negative step

at t = 10. The first one results in non-zero elements at U ‡
f (4, 1) and U ‡

f (5, 1)

and the second one makes U ‡
f (8, 1) and U ‡

f (9, 1) non-zero in the first column

(Note that any step changes before time t = N does not affect U ‡
f ).

2. Equation (2.60) shows that, for this example, two terms have contribution in

each of the impulse response coefficients. For instance, (y7−y6) and−(y11−y10)

for the first Markov parameter. Figure 2.1 clarifies that each of these two terms

is indeed the first impulse response coefficient obtained by differentiating the

first and second step response coefficients. The multiplier α appears to take

the average of the two estimated impulse response coefficients and therefore,

its value is given by

α =
1

#switchings
(2.61)
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where the RBS signal has magnitude of 1. If not, α will be

α =
1

(#switchings)(magnitude of RBS)
(2.62)

3. The upper part of L̂u contains L̂u(1, 2), L̂u(1, 3) and L̂u(2, 3) which are given

by the following relations:

L̂u(1, 2) = (y6 − y5) + (y9 − y10) = 0 + 0 (2.63)

L̂u(1, 3) = (y5 − y4) + (y8 − y9) = 0 + 0 (2.64)

L̂u(2, 3) = (y6 − y5) + (y9 − y10) = 0 + 0 (2.65)

which show that the upper part elements are indeed zero.

Remark. It should be noted that this result is only valid when the identifi-

cation test signal is step-type and noise-free. Furthermore, the Nyquist frequency

of the test signal should be designed in a way that allows the process to show its

low-frequency dynamics. In the absence of these conditions, matrix U ‡
f no longer

has the mentioned structure.

Remark. Even when all the above conditions are satisfied, no clear conclusion

can be proposed for the mechanism of the calculation of L̂w.

In the next section of this chapter, a brief review on some important concepts in

controller performance assessment is presented. The focus will be on the methods

based on MVC and LQG benchmarks.

2.2 A brief review on performance assessment

The design of automated and effective strategies for control performance assessment

and monitoring has become a necessity in many industries [13, 31, 39, 61, 76].

Controller performance assessment has been one of the most active areas of research

in the field of process control during the past two decades. Considerable academic as

well as commercial interests have been devoted to the monitoring of both univariate

and multivariate control systems [47, 55, 59, 75, 80, 85, 89, 101]. The first important

step was taken by Harris (1989) [36] who proposed the minimum variance control

benchmark for performance assessment. This benchmark has been widely used

as a reference bound on achievable performance since his work. Using this MVC

performance bound as a performance benchmark provides the absolute lower bound

on the output variations and it can be evaluated without complete knowledge of the

process model. Therefore, methodologies for the assessment of a MVC benchmark
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have been reported in a variety of control applications including single-loop feedback

control (Harris, (1989) [36]; Lynch and Dumont, (1996) [73]), feedforward/feedback

control (Desborough and Harris, (1993) [28]), cascade control (Ko and Edgar, (2000)

[59]), and multivariable feedback control (Harris et. al. (1996) [37]; Huang et. al.

(1997,1999) [47, 45]). In the next subsection, we review this approach briefly.

2.2.1 Performance assessment using MVC benchmark

For a system with time delay d, a part of output variance is independent of feedback

and is achievable by minimum variance control. This part which can be estimated

from routine operating data, is called feedback control invariant part [36]. To sep-

arate this feedback invariant term, closed-loop output y should be represented as a

moving average model such as

yt = f0et + f1et−1 . . . + fd−1et−(d−1)︸ ︷︷ ︸ +fdet−d + fd+1et−(d+1) + . . . (2.66)

ymv

where ymv is the feedback invariant portion of yt and et is white noise. ymv is a

measure of theoretically achievable lower bound of output variance.

Note that this variance may or may not be achievable in practice, however as

a benchmark, MVC provides some useful information about how well current con-

troller works in comparison to minimum variance controller. The following is a short

review on SISO feedback control performance assessment using MVC benchmark.

Consider a SISO system under feedback control where Gp and Gl are the process

and disturbance transfer functions, respectively. One can represent the process

transfer function as Gp = z−dG̃p , where d is the time-delay and G̃p is the delay-free

model. Defining Gl as the disturbance transfer function and Gc as the controller

transfer function, yt can be represented by [45]

yt =
Gl

1 + GpGc

et =
Gl

1 + z−dG̃pGc

et (2.67)

Using Diaphontine identity, Gl can be written as

Gl = f0 + f1z
−1 + · · ·+ fd−1z

−d+1

︸ ︷︷ ︸ +F2z
−d (2.68)

F1

where fi’s are impulse response coefficients of Gl and F2 is the remaining rational
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proper transfer function. Now, Equation (2.67) can be written as

yt =
F1 + z−dF2

1 + z−dG̃pGc

et

= [F1 +
F2 − F1G̃pGc

1 + z−dG̃pGc

z−d] et

= F1et + Let−d (2.69)

where L is appropriately defined. Since F1et in independent of the white noise

occurring before time t− d + 1, one can write

V ar(yt) = V ar(F1et) + V ar(Lrt−d) (2.70)

Therefore

V ar(yt) > V ar(F1et) (2.71)

and the equality holds when L = 0 which gives

F2 − F1G̃pGc = 0

and results in the following MVC law:

Gc =
F2

G̃pF1

(2.72)

Therefore, if a stable process output is modeled by an infinite moving average

(MA) model, the first d terms is an estimate of the MVC term Fet. It should

be noted that the above results does not hold for the case on non-minimum phase

systems because it results in unstable pole-zero cancelation. The modified control

derivation is provided in [45].

For implementing the MVC benchmark in performance assessment applications,

one needs to have some a priori knowledge about the process time-delay. This can

be problematic in the case of MIMO systems. In this case, a matrix of delays, named

‘interactor matrix ’, should be known. To circumvent this problem, some methods for

estimating the interactor matrix or even avoiding the use of it have been proposed.

Huang et al. (1997) [46] developed a filtering and correlation (FCOR) analysis

algorithm. Harris et al. (1996) [37] developed another method based on spectral

factorization. The algorithm by Ko and Edgar (2001) [59] avoided the direct use

of interactor matrix. In more recent works, McNabb and Qin (2003) [76] proposed

an alternative approach for MVC benchmark based on state space model. In a

data-driven framework, Kadali and Huang (2003) [55] developed an algorithm using

subspace approach.
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2.2.2 LQG benchmark for performance assessment

The MVC benchmark may not be directly applicable for assessing the performance of

those control systems whose objective is not just minimizing process output variance

but also keeping the input variability within some specified range. This may be

considered for reducing the upset to the process, conserve energy and and lessen

the equipment damage. The LQG benchmark is a more appropriate benchmark for

this type of control systems. However, obtaining this benchmark in a traditional

way needs a complete model of the process which is a demanding requirement. To

reduce the dependency of the method to the process model, some efforts have been

done in using subspace approaches to find the LQG benchmark from closed-loop

data. This idea has been explored in [53, 43]. The final results of this method are

reviewed at the end of this section. First, we provide a review on the concept of

performance assessment using LQG benchmark.

Performance assessment using the LQG benchmark is to determine how far the

output variance is from the best achievable variance for a given input variance. In

other words, one should solve the following problem:

Given E[u2
t ] < α, what is min E[y2

t ]?

Solution of this problem is given by a curve named ‘trade-off’ curve [14] which

can be obtained by solving the LQG problem

J(λ) = E[y2
t ] + λE[u2

t ] (2.73)

by varying values of λ. Detailed discussion on the equivalence of the above statement

and Equation (2.73 is provided in [14] based on the concept of Pareto optimization.

In this way, various solutions for E[u2
t ] and E[y2

t ] can be calculated and a curve with

the optimal E[y2
t ] as the abscissa and E[u2

t ] as the ordinate is formed by minimizing

Equation (2.73). This curve provides the limit of performance for linear controllers

in terms of variance [14]. A typical LQG curve is shown in Figure 2.2.

Having the curve and current input and output variances, one can determine

certain performance indices to compare the performance of the current controller to

the optimal LQG controller [43]. As an example, assume that the actual input and

output variances are represented by Vu and Vy, respectively. The optimal output

variance corresponding to Vu is shown by V o
y and the optimal input variance corre-

sponding to Vy is V o
u (see Figure 2.2). Then the following performance indices for

output and input variances can be defined:

ηy =
(V o

y )

(Vy)
, ηu =

(V o
u )

(Vu)
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Figure 2.2: A sample LQG trade-off curve

The achievable MVC benchmark can also be found from this curve, as shown in

the figure. Based on Equation (2.73), this is the case when λ → 0.

A state-space or input-output model of the process can be used to obtain the

LQG curve [45]. For instance, consider the following input-output model in ARMAX

form:

Ayt = But + Cet

where et is white noise with unity variance. If a regulatory LQG control law is given

by ut = −E
F
yt, then

yt =
CF

AF + BE
et = Gyet (2.74)

and

ut =
CE

AF + BE
et = Guet (2.75)

where E and F are functions of λ. The stability of the above control design is shown

in [62]. Using Parseval’s Theorem, the output and input variances can be expressed

as

V ar(yt) =‖ Gy ‖2
2

V ar(ut) =‖ Gu ‖2
2

Therefore, V ar(yt) and V ar(ut) are the H2 norms of the closed-loop transfer

functions from noise to the output and input, respectively. The LQG solution cane

also be found approximately using MPC solvers [45].
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Huang and Kadali (2002) [53] presented a method to approximate solution of the

LQG problem using subspace matrices Lu and Le. This approach does not require

the explicit model of the process. The final results of the method are summarized

below:

Define 


ψ0

ψ1
...

ψN−1


 = −(LT

u Lu + λI)−1LT
u Le,1

and




γ0

γ1
...

γN−1


 = [I − Lu(L

T
u Lu + λI)−1LT

u ]Le,1

where Le,1 is the first block column of Le. It has been shown that the optimal control

action can be obtained by

uopt
t =

N−1∑
i=0

ψiet−i

which results in an output as follows:

yopt
t =

N−1∑
i=0

γiet−i

Finally, input and output variances under LQG control can be obtained using

the following relations:

V ar[ut] =
N−1∑
i=0

ψi V ar[et] ψT
i , (2.76)

V ar[yt] =
N−1∑
i=0

γi V ar[et] γT
i (2.77)

It is shown that above LQG design is equivalent to the classic LQG control design

for the case of N →∞ [32], so the stability results [14] can be also extended for the

subspace design. It should also be noted that the classic LQG design requires a form

of parametric model, but the above subspace expression relies on non-parametric ex-

pressions of the process and disturbance. As s result, using the subspace framework

reduces the bias error of the parametric modeling, but it has higher variance.

Calculation of the LQG benchmark using this method requires the knowledge of

Lu, Le and the noise variance. For control performance monitoring, it is desired to

identify the required subspace matrices and the noise covariance from closed-loop

data which brings the requirement of a proper closed-loop subspace identification

method. This issue is discussed in details in the next chapter.
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2.3 Concluding Remarks

In this chapter, an introduction to the subspace identification and controller perfor-

mance assessment was provided. Focusing on the open-loop subspace identification,

we reviewed the method of regression analysis approach which will be used in the

following chapters for the purpose of closed-loop identification. A simple numer-

ical example was also provided to show the procedure of subspace identification.

A closer look into the mechanism of the open-loop subspace identification for the

noise-free case was also presented. To the best our knowledge, this analysis has not

been provided in the subspace literature. This study showed that in the absence

of noise, the Markov parameters of the process (in Lu) are naturally calculated by

averaging over a series of estimated impulse response coefficients coming from step

response differentiation.

A review of controller performance assessment based on the MVC benchmark

and LQG benchmark was provided to show the advantages and drawbacks of each

method. Since the focus of the next chapters is on the LQG benchmark, a more

detailed review on this approach was presented.
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Chapter 3

Closed-loop Subspace
Identification for Performance
Assessment Using the LQG
benchmark

3.1 Introduction

High performance control systems require healthy controllers. However, survey

shows that sixty percent of industrial controllers have some performance problems

[86]. Even if the controllers work properly at the time of initial commissioning, many

of them encounter performance deterioration after some time of service. It is there-

fore necessary to design automated and effective strategies for control performance

assessment and monitoring.

Minimum variance control (MVC) benchmark originally proposed by Harris

(1989) [36] provides the most fundamental step for modern algorithms to mea-

sure the performance. For multi-input multi-output (MIMO) systems, the extended

method needs the knowledge of an interactor matrix [27, 37, 38, 46]. Although the

minimum variance control provides valuable information about a lower bound on the

process variance, it is often not a practically implemented controller, because of its

aggressive control actions. Furthermore, the minimum variance control benchmark

only focuses on the output without considering limitations on the inputs.

The LQG benchmark approach considers variances of both input and output

and provides a ‘trade-off’ curve which represents a feasible range of performance

for linear controllers [14, 40, 45]. In other words, this curve provides the lowest

achievable variance of the controlled variable corresponding to different values of

the variance of the manipulated variable. Performance of the existing controllers

can be evaluated by comparing current input and output variances against the lowest

achievable bounds represented by the trade-off curve. This method is based on a
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model of the process which has to be obtained through process identification.

Subspace identification methods provide an alternative data-driven approach to

classical system identification methods such as the prediction error method [69]

and instrument variable method [87]. Subspace methods offer several advantages

over classical transfer function based methods. For example the parametrization

issue related to MIMO system is avoided, and they use efficient computational al-

gorithms such as QR-factorization and singular value decomposition, which makes

them intrinsically robust from a numerical point of view. Various methods of sub-

space identification have been developed over the past two decades such as regres-

sion analysis approach, N4SID (Numerical SubSpace State Space IDentification),

MOESP (MIMO Output Error State sPace) and CVA (Canonical Variate Analysis)

[57, 64, 77, 91, 92, 90, 96]. Most of these methods have been extended to closed-

loop identification (see [42, 56, 64, 70, 84, 88, 94, 95, 98]). Consistency analysis

for different open-loop and closed-loop subspace identification methods has been

proposed in the subspace literature. Several papers have presented studies on the

consistency analysis of open-loop methods [5, 8, 9, 11, 51, 57, 71, 74]. Consistency

analysis results for the closed-loop problem are also presented by many researchers

[18, 20, 22, 42, 68, 98].

Kadali and Huang [53] presented a method for calculating the LQG trade-off

curve in a subspace framework without using an explicit model. A relevant closed-

loop subspace identification method is also developed in [54]. The subspace approach

to estimating the LQG benchmark needs certain intermediate matrices in subspace

identification and the covariance matrix of the noise. Consistency of the estimation

of the noise covariance matrix has remained an outstanding issue in the previous

work. We study this issue in this chapter.

In a typical model-based control application, the plant model is usually known

through process identification, but the disturbance model is typically assumed to

take a certain fixed form such as an integrated white noise. Thus the actual distur-

bance model is often not available. Even if a disturbance model is identified, it is

unlikely that this model could be useful later owing to the more likely time-varying

nature of the disturbance dynamics. Therefore, disturbance model should ideally

be identified from routine operating data for the sake of evaluating current control

performance. Here, we develop a procedure to estimate the noise model subspace

matrix without explicitly identifying parametric models. This issue also arises when

the consistency requirements, as discussed in this chapter, may dictate the need for

a large set of experiment data for consistent estimation of the noise covariance.

The consistency of the LQG benchmark hinges on consistency of estimation of

the noise covariance matrix. Through several Monte Carlo simulations, we found

that several closed-loop subspace identification methods that are suitable for the
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estimation of the LQG benchmark do not provide consistent estimation of the noise

covariance as they may have intended. Motivated by this finding, we first develop

an alternative closed-loop subspace identification method to achieve consistency

of estimation of the noise covariance, and then go on to utilize these results for

computing the LQG trade-off curve for SISO and MIMO examples.

This chapter is organized as follows: In the next section, a review of the exist-

ing method of joint input-output subspace identification is provided and a lack of

consistency is pointed out. Section 3 provides a modified joint input-output formu-

lation and the consistency analysis for the noise covariance followed by a simulation

example. In section 4, we demonstrate how the noise subspace matrix and noise

covariance can be estimated from the routine operating data. Section 5 provides

implementation results in a pilot-scale experiment. Concluding remarks are pro-

vided in the Section 6.

3.2 Subspace approach to the LQG benchmark

estimation

To implement LQG benchmark for performance assessment in subspace framework,

certain subspace matrices are required. In this section we provide a brief review of

the existing joint input-output identification method presented in [54].

3.2.1 Joint input-output closed-loop identification

In the method presented in Section 2.2.2, calculation of the LQG benchmark requires

the knowledge of Lu and Le. For control performance monitoring, it is desired to

identify the required subspace matrices and the noise covariance from closed-loop

data. This subsection provides a review of the identification method proposed by

Kadali and Huang [54] to estimate these matrices from closed-loop data.

Consider the following state space representation for a linear system with l inputs

and m outputs:

{
xt+1 = Axt + But + Ket

yt = Cxt + Dut + et

(3.1)

where xt ∈ Rn, ut ∈ Rl, yt ∈ Rm and et ∈ Rm is white noise. It was shown in

Chapter 2 that system (3.1) can be represented by the following subspace equation:

Yf = LwWp + LuUf + LeEf (3.2)

where the definitions of Yf , Uf , Ef and the subspace matrices, Lw, Lu and Le, are

given in Chapter 2.

26



A linear controller used in a regular feedback loop can be represented by
{

xc
t+1 = Acx

c
t + Bc(rt − yt)

ut = Ccx
c
t + Dc(rt − yt)

(3.3)

where xt ∈ Rnc , ut ∈ Rl, yt ∈ Rm and rt ∈ Rm is the setpoint. Similar to system

(3.1), subspace equations for the controller can be obtained as follows:

Xc
f = AN

c Xc
p + ∆c

N(Rp − Yp)

Uf = Γc
NXc

f + Lc
y(Rf − Yf )

where Γc
N ∈ RlN×nc is the controller extended observability matrix, Lc

y ∈ RlN×mN

contains the Markov parameters of the controller and ∆c
N ∈ Rnc×mN is the reversed

extended controllability matrix of {Ac, Bc}. Up and Uf ∈ RlN×j and Yp, Yf , Rp,

Rf ∈ RmN×j are data Hankel matrices for past and future inputs, outputs and

setpoints, respectively.

Applying regression analysis [57] on these equations, one can get the following

input-output relation by eliminating the states:

Uf = Lc
wW c

p + Lc
yRf − Lc

yYf (3.4)

where Lc
w ∈ RlN×(l+2m)N and W c

p is defined as

W c
p =




Yp

Up

Rp


 (3.5)

Substituting Equation (3.4) in Equation (3.2) with some rearrangements yields

Yf = LCL
y WCL

p + LCL
yr Rf + LCL

ye Ef (3.6)

where

LCL
y WCL

p = (I + LuL
c
y)
−1(LwWp + LuL

c
wW c

p )

LCL
yr = (I + LuL

c
y)
−1LuL

c
y

LCL
ye = (I + LuL

c
y)
−1Le

and WCL
p = W c

p . Similarly, substituting Equation (3.2) in Equation (3.4) yields

Uf = LCL
u WCL

p + LCL
ur Rf + LCL

ue Ef (3.7)

where

LCL
u WCL

p = (I + Lc
yLu)

−1(Lc
wW c

p + Lc
yLwWp)

LCL
ur = (I + Lc

yLu)
−1Lc

y

LCL
ue = −(I + Lc

yLu)
−1Lc

yLe
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With the above results, a joint input-output identification can be formulated as

follows: (
Yf

Uf

)
=

(
LCL

y

LCL
u

)
WCL

p +

(
LCL

yr

LCL
ur

)
Rf +

(
LCL

ye

LCL
ue

)
Ef (3.8)

Since Rf is the Hankel matrix of the external perturbations uncorrelated with

WCL
p and Ef , closed-loop subspace matrices LCL

y , LCL
u , LCL

yr and LCL
ur can be esti-

mated using least square estimation as

(L̂CL
u L̂ur) = Uf

(
WCL

p

Rf

)†
(3.9)

(L̂CL
y L̂yr) = Yf

(
WCL

p

Rf

)†
(3.10)

Ûf and Ŷf are found by the orthogonal projection of the row space of Uf and Yf .

The first row of Ŷf is the one step ahead estimation of the output. So the innovation

sequence can be estimated by

êf = (eN eN+1 · · · eN+j−1)
T

= Yf (1 : m, :)− Ŷf (1 : m, :) (3.11)

where (1 : m, :) represents the first m rows and all columns of the matrix (following

MATLAB notation). Using ef , the block Hankel matrix for noise, Ef , can be built.

Define

Ξf , Uf − Ûf = LCL
ue Ef

and, for LCL
ue we have

L̂CL
ue = Ξf/Ef = ΞfE

†
f (3.12)

Using matrix inversion lemma, it has been shown in [54] that L̂u can be obtained

from closed-loop matrices by the following equation:

L̂u = L̂CL
yr (L̂CL

ur )−1 (3.13)

Calculation of L̂e is straightforward from the definition of LCL
ur and LCL

ue :

L̂e = −(L̂CL
ur )−1L̂CL

ue (3.14)

Estimated subspace matrices L̂u and L̂e and the covariance matrix of the es-

timated noise sequence are used for input and output variance calculation under

LQG control which provides the trade-off curve [53]. However, our simulation stud-

ies show a potential lack of consistency in the noise covariance estimation using this

method which may result in a biased LQG trade-off curve.
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There are several other methods of closed-loop subspace identification that may

be used to estimate the LQG benchmark. However, through Monte-Carlo simula-

tions, we found these methods do not provide consistent estimation of the covari-

ance matrix too, which motives this work. Before introducing the formulation of our

method, a comparison to the other methods of closed-loop subspace identification

is necessary.

One of the earliest methods is the joint input-output identification by Verhae-

gen [95] which can not be used for estimation of the subspace matrices. Ljung and

McKelvey (1996) [70] proposed another method of closed-loop subspace identifica-

tion which requires a preliminary ARX modeling step. A similar requirement exists

in some other methods such as Shi (2001) [82], Jansson (2003) [50] and Larimore

(2004) [65] for removing the effect of undesired terms due to the feedback. The

method driven by Van Overschee and De Moor [94] needs Markov parameters of

the controller and it does not provide direct estimation of the subspace matrices Lu

and Le. The closed-loop method of Chou and Verhaegen (1997) [24] is extremely

sensitive to noise [21] and the presented algorithm can not be used for estimating

the noise model. Based on the idea of [50], Chiuso and Picci [21] presented another

method by replacing the first step with an oblique projection step and provided the

consistency analysis of their method in [20, 22]. However, this method as well as the

method of Huang et. al (2005) [42] based on orthogonal projection do not provide

direct estimation of the noise subspace matrix , Le. It is shown in [42] that the

method of Wang and Qin (2002) [97] based on principal component analysis may

deliver a bias for closed-loop data. The ‘innovation estimation’ method by Qin and

Ljung (2003) [83, 68] is based on performing N least squares estimations to iden-

tify a set of casual models [81] which provides consistent estimation of Lu and Le

directly. This method is shown to be sensitive to unstable open-loop systems [20].

Also, our simulations show that this method does not provide consistent estimation

of the noise variance estimation. Wang and Qin (2006) proposed another method

similar to [42], using parity space. This methods requires a first step of principal

component analysis and SVD to estimate Lu followed by a least squares and QR

factorization step to estimate Le and the noise covariance matrix. However, the

consistency of noise variance is not discussed in the paper.

The most pertinent closed-loop subspace identification methods that provide

direct estimates of the subspace matrices and the covariance matrix are the joint

input-output approach [54] and the innovation estimation approach [83, 68]. In the

next section, we will conduct a Monte-Carlo simulation to evaluate the consistency

of the covariance estimation of these methods. For more comprehensive study, we

also simulate classical N4SID closed-loop identification algorithm [93, 94] and the

CVA method for which the codes where available.
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A comparative Monte-Carlo simulation

In this example, we show the results of Monte-Carlo simulation using four different

methods of subspace closed-loop identification. As mentioned before, our focus

is on the inconsistency of noise variance estimation. These methods include: the

joint input-output identification by Kadali and Huang (2002) [54], the ‘innovation

estimation’ method by Qin and Ljung (2003) [83], the closed-loop method by Van

Overschee and De Moor [93, 94] and CVA method from MATLABr toolbox.

The following system is taken from [90] with some minor modifications:

xt+1 =




0.6 0.6 0
−0.6 0.6 0

0 0 0.7


 xt +




1.616
−0.348
2.631


 ut −




1.147
1.520
3.199


 et

yt =
(−0.437 −0.504 0.093

)
xt − 0.775ut + et

A PI controller, [0.1 + 0.05/s], is used to control the process. Variance of the input
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Figure 3.1: Results of Monte-Carlo simulation using four different closed-loop sub-
space identification methods

noise is 0.01. The test signal is designed by MATLABr command ‘idinput ’ with

Nyquist frequency of 0.12 and magnitude of 0.5. The variance-based signal to noise

ratio is approximately 10.
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Each simulation run generates 3000 data points. We generate 50 data sets,

each time with the same reference input rt but with a different noise sequence et.

Since the number of rows in the data Hankle matrices, N , is an important factor in

the consistency of subspace methods, we run the Monte-Carlo simulations on each

method for 5 different values of N . The result of the noise variance estimations is

shown in Figure 3.1. The average value of the estimated noise variances for each

value of N and the true value of the noise variance are also indicated in the figure.

As the figure shows, none of these methods provide consistent estimation of the

noise variance.

In the following section, we present a modified version of the method of [54]

which divides the closed-loop identification problem into two open-loop identification

problems for which the noise covariance consistency is guaranteed.

3.3 A direct formulation of joint input-output closed-

loop identification

In this section, we present an alternative formulation of the joint input-output

closed-loop identification followed by the consistency analysis and a simulation

study. In [57] it has been established that consistency can be achieved for estimation

of the subspace matrices and noise variance using regression analysis approach for

open-loop system identification. We will use this result to address the consistency

of noise covariance estimation in our formulation.

3.3.1 A direct formulation of joint input-output closed-loop
subspace identification

Recall the basic subspace relation for the process in Equation (2.9), and similarly

for the controller:

Yf = ΓNXf + LuUf + LeEf (3.15)

Uf = Γc
NXc

f + Lc
y(Rf − Yf ) (3.16)

Substituting Equation (3.16) in (3.15) gives

Yf = ΓNXf + LuUf + LeEf

= ΓNXf + Lu[Γ
c
NXc

f + Lc
yRf − Lc

yYf ] + LeEf

= ΓNXf + LuΓ
c
NXc

f + LuL
c
yRf − LuL

c
yYf + LeEf

= (I + LuL
c
y)
−1[ΓNXf + LuΓ

c
NXc

f + LuL
c
yRf + LeEf ] (3.17)
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For simplicity in the notation, define F , (I + LuL
c
y)
−1. Substituting Yf obtained

from (3.17) in Equation (3.16) yields

Uf =Γc
NXc

f + Lc
yRf − Lc

yFΓNXf − Lc
yFLuΓ

c
NXc

f − Lc
yFLuL

c
yRf − Lc

yFLeEf

=− Lc
yFΓNXf + (Γc

N − Lc
yFLuΓ

c
N)Xc

f + (Lc
y − Lc

yFLuL
c
y)Rf − Lc

yFLeEf

(3.18)

Equations (3.17) and (3.18) can be represented as follows:

Yf =(FΓN FLuΓ
c
N)XCL

f + (FLuL
c
y)Rf + FLeEf

Uf =(−Lc
yFΓN Γc

N − Lc
yFLuΓ

c
N)XCL

f +

(Lc
y − Lc

yFLuL
c
y)Rf − Lc

yFLeEf

or in a compact form

Yf = ΓY
NXCL

f + LY RRf + LY EEf (3.19)

Uf = ΓU
NXCL

f + LURRf + LUEEf (3.20)

where

XCL
f = [(Xf )

T (Xc
f )

T ]T (3.21)

ΓY
N = (FΓN FLuΓ

c
N)

ΓU
N = (−Lc

yFΓN Γc
N − Lc

yFLuΓ
c
N)

LY R = FLuL
c
y

= (I + LuL
c
y)
−1LuL

c
y (3.22)

LUR = Lc
y − Lc

yFLuL
c
y = [I − Lc

y(I + LuL
c
y)
−1Lu]L

c
y

= (I + Lc
yLu)

−1Lc
y (3.23)

LY E = FLe

= (I + LuL
c
y)
−1Le (3.24)

LUE = −Lc
yFLe = −Lc

y(I + LuL
c
y)
−1Le

= −(I + Lc
yLu)

−1Lc
yLe (3.25)

Regression analysis [57] can now be performed on equations (3.19) and (3.20)

after replacing future states with past inputs and outputs to obtain equations (3.26)

and (3.27) as follows

Yf = LY W yr
p + LY RRf + LY EEf (3.26)

Uf = LUW ur
p + LURRf + LUEEf (3.27)

where W yr
p and W ur

p are defined by

W yr
p =

(
Yp

Rp

)
and W ur

p =

(
Up

Rp

)
(3.28)
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and LY ∈ RmN×2mN and LU ∈ RlN×(m+l)N have the same role as Lw for the open-

loop system (3.1). Choosing Rf to be uncorrelated with Ef , W ur
p and W yr

p , each of

these open-loop identification problems can be solved by least squares estimation.

Note that these two estimation problems are indeed open-loop identification

problems. Similar to other subspace identification methods, some assumptions are

required [57]: i) pair {Acl, Ccl} is observable, ii) pair {Acl, [Bcl Kcl]} is controllable

(definitions are given in (3.39)), iii) the transfer function from et to yt has all its

zeros strictly inside unit circle and iv) rt and et are jointly quasi-stationary and

uncorrelated.

Ûf and Ŷf are found by the orthogonal projection of the row space of Uf and Yf .

For estimating open-loop subspace matrices Lu and Le, three of the the subspace

matrices in equations (3.26) and (3.27) are required: LY R, LUR and LUE. The first

two are already available from least square estimation. The last one is estimated as

follows [43]:

Ξf , Uf − Ûf

L̂UE = ΞfE
†
f

The required noise vector in the above equation (for constructing Ef ) can be

estimated based on Equation (4.75). But, a closer look of Equation (3.24) shows

that term Yf (1 : m, :) − Ŷf (1 : m, :) in Equation (4.75) gives an estimation of

F(1 : m, :)ef not ef :

Yf (1 : m, :)− Ŷf (1 : m, :) = F(1 : m, 1 : m)ef

and ef should be estimated as

êf = F−1(1 : m, 1 : m)[Yf (1 : m, :)− Ŷf (1 : m, :)] (3.29)

It means that we need a correction term in the future noise estimation, comparing

to Equation (4.75), before constructing Ef . This task can be done using closed-loop

subspace matrices that we have already identified. Using the definition of LY R in

Equation. (3.22) we have

LY R = (I + LuL
c
y)
−1LuL

c
y

⇒ (I + LuL
c
y)LY R = LuL

c
y

⇒ LY R = LuL
c
y(I − LY R)

which gives the estimation of L̂uLc
y by

L̂uLc
y = L̂Y R(I − L̂Y R)−1 (3.30)
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This results in the following estimation for F−1:

F̂−1 = I + L̂Y R(I − L̂Y R)−1

Since the estimation of L̂Y R is consistent [57], F̂−1 estimation is also consistent.

In summary, in this alternative method, two least squares estimations should be

performed

(L̂U L̂UR) = Uf

(
W ur

p

Rf

)†
(3.31)

(L̂Y L̂Y R) = Yf

(
W yr

p

Rf

)†
(3.32)

Note that these two estimation problems are indeed open-loop identification prob-

lems. Then, innovation estimation is performed as follows:

êf = [I + L̂Y R(I − L̂Y R)−1](1: m, :)[Yf (1 : m, :)− Ŷf (1 : m, 1 : m)] (3.33)

which results in consistent estimation of noise variance to be shown shortly.

Based on the definitions of Lu and Lc
y, it is clear that if either the process or the

controller has at least one sample delay (D or Dc is zero), the correction factor will

be I.

After constructing Ef by the use of (3.33), LUE can be estimated as:

L̂UE = (Uf − Ûf )E
†
f (3.34)

Finally, Lu and Le, needed for calculating the LQG benchmark, are estimated

[54]:

L̂u = L̂Y R(L̂UR)−1 (3.35)

L̂e = −(L̂UR)−1L̂UE (3.36)

Although the previous method [54] is also joint input and output closed-loop

identification, the main difference between the new formulation and the method

of [54] is in defining two different data matrices in (5.4), where in [54], W yr
p =

W ur
p = [Y T

p UT
p RT

p ]T . The direct extension from the conventional joint input-

output closed-loop identification to that of subspace, as proposed in this chapter,

has truly decomposed closed-loop identification problem into two open-loop identi-

fication problems, for which the consistency of noise covariance estimation, required

for the calculation of the LQG trade-off curve, can be proven (to be shown shortly).

For better understanding of the proposed method, let’s revisit classic joint input-

output identification briefly.
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Assume that process and disturbance models and controller are defined by Gp(z
−1),

Gl(z
−1) and Gc(z

−1), respectively. In a closed-loop system the following relations

can be obtained [69]:

yt =
Gc(z

−1)Gp(z
−1)

1 + Gc(z−1)Gp(z−1)
rt +

Gl(z
−1)

1 + Gc(z−1)Gp(z−1)
et

, M(z−1)rt + N(z−1)et

ut =
Gc(z

−1)

1 + Gc(z−1)Gp(z−1)
rt +

−Gl(z
−1)Gc(z

−1)

1 + Gc(z−1)Gp(z−1)
et

, P (z−1)rt + Q(z−1)et

(3.37)

or in a matrix format:

(
yt

ut

)
=

(
M(z−1)
P (z−1)

)
rt +

(
N(z−1)
Q(z−1)

)
et (3.38)

Clearly, M(z−1),N(z−1),P (z−1) and Q(z−1) can be estimated as an open-loop

identification problem and then process and disturbance models can be constructed

as follows:

Ĝp(z
−1) = M̂(z−1)P̂ (z−1)

−1

Ĝl(z
−1) = −P̂ (z−1)

−1
Q̂(z−1)

Looking again at equations (3.26) and (3.27) in the modified approach shows

that Equation (3.38) has been transformed into subspace framework where M(z−1)

has the same role as LY R and P (z−1) has the same role as LUR. The same can be

said for Q(z−1) and LUE. So we can estimate Lu and Le in a similar way as that of

Gp(z
−1) and Gl(z

−1)

L̂u = L̂Y R (L̂UR)−1

L̂e = −(L̂UR)−1L̂UE

Using open-loop identification technique brings the advantage of consistency in

the noise covariance estimation which is shown next.

3.3.2 Consistency of noise covariance estimation

For the proof of consistency in the estimation of noise covariance, we follow the

framework of [57]. Consider the system with rt as input and yt as output:
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{
xcl

t+1 = Aclx
cl
t + Bclrt + Kclet

yt = Cclx
cl
t + Dclrt + et

(3.39)

where xcl
t ∈ Rn+nc . Using the standard procedure of subspace approach [43, 57, 96],

the state vector of this system, XCL
f , defined in Equation (3.21), can be written in

the subspace form as:

XCL
f = φyYp + φrRp + LxclXCL

p (3.40)

where

φy = C(Acl −KclCcl, Kcl)

φr = C(Acl −KclCcl, Bcl −KclDcl)

Lxcl = (Acl −KclCcl)
N (3.41)

where C operator is defined by (2.17).

Substituting XCL
f in Equation (3.19), for Yf we have

Yf = LY W yr
p + LY RRf + ΓCL

N LxclXCL
p + LY EEf

= ΘZ + ΓCL
N LxclXCL

p + LY EEf (3.42)

where ΓCL
N ∈ RmN×(n+nc) is the extended observability matrix and

Θ =
(

LY LY R

)
and Z =

(
W yr

p

Rf

)

For convenience in the notation we use Lx instead of Lxcl and Xp instead of XCL
p

in the rest of this section. The term with Lx in (3.42) goes to zero for a large value

of N and the following regression model appears

Yf = ΘZ + V (3.43)

Θ can be estimated by Θ̂ = YfZ
† and the residual of the estimation is v = LY Eef .

Covariance of LY Eef is estimated by

P̂v =
1

j
V V T (3.44)

Note that the noise covariance matrix estimation, R̂, is calculated by R̂ = P̂v(1 :

m, 1 : m), so consistency of noise covariance estimation can be shown by means of

P̂v.

From least squares estimation property, for j → ∞, Yf → ΘZ in (3.42) which

gives

LY Eef = −ΓCL
N Lxxp
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where xp(k) = x(k) for k = 1, · · · , N . The covariance of the residual, v, can be

expressed in terms of Lx, xp and ΓCL
N by

Pv = Cov(LY Eef )

= E[(LY Eef )(LY Eef )
T ]

= ΓCL
N Lx[Cov(xpx

T
p )]LT

x (ΓCL
N )T (3.45)

Equation (3.45) will be used later in the proof of consistency.

Now consider the problem of estimation of xp having information z using the

least squares method where z(k) = [y(k)T r(k)T ]T for k = 1, · · · , N . This problem

can be formulated as follows:

xp = Πz + x̃ (3.46)

where x̃ is the estimation error. The following is the standard procedure of least

squares estimation:

Π̂ =XpZ
T (ZZT )−1

⇒ X̃ =Xp − Π̂Z = Xp −XpZ
T (ZZT )−1Z

which gives

X̃X̃T =[Xp −XpZ
T (ZZT )−1Z][XT

p − ZT (ZZT )−1ZXT
p ]

=XpX
T
p −XpZ

T (ZZT )−1ZXp −XpZ
T (ZZT )−1ZXp

+ XpZ
T (ZZT )−1[ZZT (ZZT )−1]ZXp

=XpX
T
p −XpZ

T (ZZT )−1ZXp

Dividing both side by 1/j

1

j
X̃X̃T =

1

j
XpX

T
p − (

1

j
XpZ

T )(
1

j
ZZT )−1(

1

j
ZXT

p )

=
1

j

j∑

k=1

xp(k)xp(k)T − (
1

j

j∑

k=1

xp(k)z(k)T )

(
1

j

j∑

k=1

z(k)z(k)T )−1(
1

j

j∑

k=1

z(k)xp(k)T ) (3.47)

and for j →∞ it gives

Cov(x̃) , Px̃ = Ē(xpx
T
p )− Ē(xpz

T )Ē(zzT )−1Ē(zxT
p ) (3.48)

where Ē is defined as

Ē((•)) = lim
j→∞

1

j

j∑

k=1

E((•)k)
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Now we can state the following theorem for the consistency of noise covariance

estimation for the closed-loop identification proposed in this chapter.

Theorem 1: Assuming under closed-loop condition, et and rt are uncorrelated

and rt is persistently exciting of sufficient order, then estimation of noise variance

(P̂v) for N →∞ converges to Pv asymptotically.

Proof.

Based on Equation (3.43), and using the definition of pseudo-inverse and Equation

(3.42), Θ̂ can be expressed as

Θ̂ = YfZ
† = YfZ

T (ZZT )−1

= (ΘZ + ΓCL
N LxXp + LY EEf )Z

T (ZZT )−1

= Θ + ΓCL
N LxXpZ

T (ZZT )−1 + LY EEfZ
T (ZZT )−1 (3.49)

The last term of Equation (3.49) goes to zero when j →∞, because Ē(efz
T ) = 0

and Ē(zzT ) exists, owing to the persistent excitation. So, Ē(efz
T )Ē(zzT )−1 = 0

and therefore we can show that

EfZ
T (ZZT )−1 =

1

j
EfZ

T (
1

j
ZZT )−1

=
1

j

j∑

k=1

ef (k)z(k)T (
1

j

j∑

k=1

z(k)z(k)T )−1

= Ē(efz
T )Ē(zzT )−1 = 0 (forj →∞) (3.50)

Based on the results of (3.50), Equation (3.49) gives the Θ̂ as follows:

Θ̂ = Θ + ΓCL
N LxXpZ

T (ZZT )−1

which yields

Ŷf = ΘZ + ΓCL
N LxXpZ

T (ZZT )−1Z

Therefore, residual V can be estimated by

V̂ = Yf − Ŷf = −ΓCL
N LxXpZ

T (ZZT )−1Z

Based on Equation (3.44), for estimation of the covariance of v, P̂v, one needs

to calculate V̂ V̂ T as

V̂ V̂ T =

=ΓCL
N LxXpZ

T (ZZT )−1[ZZT (ZZT )−1]ZXT
p LT

x (ΓCL
N )T

=ΓCL
N Lx[XpZ

T (ZZT )−1ZXT
p ]LT

x (ΓCL
N )T

=ΓCL
N Lx[XpX

T
p + XpZ

T (ZZT )−1ZXT
p −XpX

T
p ]LT

x (ΓCL
N )T

=ΓCL
N LxXpX

T
p LT

x (ΓCL
N )T − ΓCL

N Lx[XpX
T
p −XpZ

T (ZZT )−1ZXT
p ]LT

x (ΓCL
N )T
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Using derivations of Pv and Px̃ in equations (3.45) and (3.48), P̂v is given by

P̂v =
1

j
V̂ V̂ T = Pv − ΓCL

N LxPx̃L
T
x (ΓCL

N )T (3.51)

Lx → 0 when N increases because of the stability of Kalman filter and Px̃ also

decreases with N , so convergence of P̂v with respect to N is fast due to the three

factors in LxPx̃L
T
x decreasing with N .

Remark. Selection of row dimension in data Hankel matrices, N , has been

addressed in some subspace identification papers [9, 74, 25, 78] for the open-loop

identification case. In the literature, this parameter is often said to be selected

‘large enough’ to cover the dynamics of system, but not too large to cause ‘over-

parametrization’ problem. The most cited method was presented in [78] based on

the analogy between subspace identification and ARX identification. It examines

AIC or BIC criteria on a set of ARX models of order N (obtained from the first row

block of Equation (2.19)) for n 6 N 6 log(j)α, to find the best value of N . n is the

order of system and α < ∞. However, there is no detailed analysis on the selection

of N for closed-loop identification.

Based on the above proof procedure, consistency depends on both N and the

number of columns in data Hankel matrices, j. In the analysis of consistency, the

value of j is considered to be infinite. The value of N is required to be sufficiently

large such that Lx in Equation (3.41) approaches zero. It should be noted that

(Acl − KclCcl) represents dynamics of the optimal observer which is stable. Thus,

it is always possible to find a sufficiently large N for {Lx → 0} to hold. But,

finding a proper value for N based on this analogy needs the optimal observer

dynamics which is unknown before the identification is performed. One approach

to solve the problem is to use an iterative method which starts from a small value

of N (larger than the system order) and at each iteration identifies the closed-loop

system matrices and evaluates Lx. By increasing N at each iteration, one can find

a value of N for which Lx is ignorable.

To avoid this iteration approach, we use upper bound of N by using the closed-

loop process dynamics. Dynamics of the optimal observer should normally be faster

than the process dynamics to be observed. Thus, a value of N that assures (Acl)
N

to be close to zero will generally guarantee that Lx is close to zero. Note that

the convergence of term {ΓCL
N LxPx̃L

T
x (ΓCL

N )T} in Equation (3.51) is faster than Lx.

This value of N can be obtained from a correlation analysis on the closed-loop data,

and provides an upper bound on N . Note that the closed-loop system is stable.

So, impulse response coefficients of the system must converge to zero. In the joint

input-output identification approach we consider two closed-loop systems, one with

yt as the output and one with ut as the output. Therefore, two correlation analysis
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should be performed and the maximum of the two calculated values of N can be

used as common N . We use this approach in the next example to elaborate the idea.

Remark. Although we show that the proposed method of this chapter is consis-

tent, it should be noted that contrary to direct identification methods, joint input-

output identification requires the assumption that the controller is linear with no

constraints on the control signal. Fortunately, the potential problem of solving

non-trivial model reduction problem in joint input-output identification [22] does

not appear here, because the explicit model of the process is not required for LQG

curve estimation.

3.3.3 Simulation

Consider the system and controller given in the previous example. We run a Monte-

Carlo simulation using the proposed closed-loop identification method of this chap-

ter. The same conditions as the previous example are applied here for the simulation.

Figure 3.2 shows the correlation analysis results on the closed-loop data. Based

on this graph, a proper upper bound on N can be chosen as 25.

The results of Monte-Carlo simulation shown in Figure 3.3 indicate the consistent

estimation of the noise variance for large enough value of N .
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Figure 3.2: Results of correlation analysis on closed-loop data

Figure 3.4 shows the effect of value of N on the estimated LQG curve which

agrees with 3.3. The average value of the estimated noise variance has been used

for each N . Figure 3.5 presents the final results for this example which shows

that the estimated LQG curves converge to the ‘True curve’ asymptotically using

the proposed method of this chapter (for N = 25). The ‘True Curve’ comes from

solving the LQG problem using the true model of the process.

In Section 5, this method will be implemented in a pilot-scale application.
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3.4 Practical considerations

In many control applications, specifically when model predictive controllers are de-

signed for a process, the disturbance model is typically ‘selected’ (as a tuning pa-

rameter) rather than the real disturbance model. Disturbance dynamics changes

with time in many applications. As discussed before, both process and disturbance

models are needed for calculating the LQG trade-off curve. On the other hand, if

one intends to identify both process and noise models by performing identification

test, a large set of experiment data might be required, because the value of N for

having consistent estimation of the noise covariance can be large, specifically for

MIMO processes.

In this section, we will present a simple yet practical method of using closed-loop

routine operating data and available subspace matrices of plant dynamics to calcu-

late the noise subspace matrix. Note that number of data samples is typically not a

problem when using routine operating data. We provide the proof of consistency for

the noise model and noise covariance estimation using this method. A simulation

example is provided in this section followed by a pilot-scale experiment in the next

section.
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Figure 3.6: A typical closed-loop process

Consider a linear dynamic model of the process available in a format such as

transfer function, finite impulse response (FIR), finite step response (FSR) or state

space. The subspace matrix of the process, Lu, can be obtained from any of these

formats. Some of them can be transformed directly to Lu, such as FIR and state

space models. Subspace matrices for open-loop process, Lu and Lw, can be identified

from open-loop or closed-loop experiments as well [43, 57].

Now, consider the typical closed-loop system shown in Figure 3.6 in which the

contribution of noise in the output is defined by ‘v’. Having a set of input-output

data from routine operation of the closed-loop system, one can predict the process

output based on Equation (3.2) as

ŷf = Lwwp + Luuf

Having the output prediction, vf can be found from

vf = yf − ŷf (3.52)

The first half of this data set can be used to form Vp and the second half for
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constructing Vf , so that both have the half number of columns comparing to that

of Ef . Therefore, in the rest of computations, Ef will be replaced by E ′
f , Ef (:

, j/2 : j). Note that this modification only means using less number of data points

and does not affect the size of Le in the estimation. The details of estimation and

consistency analysis are provided in Section 4.1. The term with Xh
p in Equation

(3.59) goes to zero with N →∞, and the following regression model appears:

Vf = LvVp + LeE
′
f

Then, least square estimation can be used to obtain L̂v as

L̂v = VfV
†
p (3.53)

The residual of estimation is s = Lee
′
f and its covariance can be estimated by

P̂s =
1

j
SST (3.54)

Note that the noise covariance matrix estimation, R̂, is calculated by R̂ = P̂s(1 :

m, 1 : m).

V̂f is found by the orthogonal projection of the row space of Vf and Yf . One can

define

Ω , Vf − V̂f

= Vf − L̂vVp = LeE
′
f (3.55)

So, the innovation term, e′f , can be estimated as

ê′f = Ω(1 : m, :)

E ′
f can be constructed from ê′f and L̂e is given by

L̂e = Ω(E ′
f )
†

3.4.1 Consistency Analysis

The disturbance model H(z) in Figure 3.6 can be represented in the state space

form as:
{

xh
t+1 = Ahxh(t) + Khe(t)

vt = Chxh(t) + e(t)
(3.56)

where xh
t ∈ Rnh , vt ∈ Rm and et ∈ Rm is white noise. Similar to system (3.1), the

basic subspace equation for this system is as follows:

Vf = Γh
NXh

f + LeEf (3.57)
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Using regression analysis, future states can be represented by past outputs and

states in subspace format as

Xh
f = φvVp + Lh

xX
h
p (3.58)

where

φv = C(Ah −KhCh, Kh)

Lh
x = (Ah −KhCh)N

Substituting (3.58) in (3.57) yields

Vf = LvVp + Γh
NLh

xX
h
p + LeEf (3.59)

= LvVp + S

where

Lv = Γh
Nφv

To prove the consistency in estimation of Lv, one may substitute Vf in Equation(3.53)

from (3.59) and V †
p by its definition, which gives

L̂v =VfV
†
p

=LvVpV
T
p (VpV

T
p )−1 + Γh

NLh
xX

h
p V T

p (VpV
T
p )−1 + LeEfV

T
p (VpV

T
p )−1

=Lv + Γh
NLh

xX
h
p V T

p (VpV
T
p )−1 + LeEfV

T
p (VpV

T
p )−1 (3.60)

=Lv (where j →∞ and N →∞)

The second term in (3.60) goes to zero because Lh
x converges to zero when N →

∞ (stability of Kalman filter) and the third term goes to zero because Ē(efv
T
p ) = 0

and Ē(vpv
T
p ) exists (persistent excitation). So, Ē(efv

T
p )Ē(vpv

T
p )−1 converges to zero

and similar to (3.50), we can show that EfV
T
p (VpV

T
p ) = 0 when j → ∞, which

proves the consistency of L̂v.

Consistency of noise covariance estimation can be proven following the same

procedure as in Section 3.2 by replacing Z with Vp and XCL
p with Xh

p .

3.4.2 Example

Consider a 2×2 process with open-loop transfer function matrix Gp and disturbance

transfer function matrix Gl given as [45]

Gp =

(
z−1

1−0.4z−1
0.5z−2

1−0.1z−1

0.3z−1

1−0.4z−1
z−2

1−0.8z−1

)

Gl =

(
1

1−0.4z−1
−z−1

1−0.1z−1

z−1

1−0.7z−1
1

1−0.8z−1

)
(3.61)
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The following controller is implemented on the process:

Gc =

(
0.5−0.2z−1

1−0.5z−1 0

0 0.25−0.2z−1

(1−0.5z−1)(1+0.5z−1)

)
(3.62)

Input and output data under routine closed-loop operation of the process have
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Figure 3.7: Outputs of the process under routine closed-loop operation
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Figure 3.8: Control actions under routine closed-loop operation

been collected and shown in Figures 3.7 and 3.8. Noise contributions in the outputs

are estimated based on (3.52). Using process and disturbance models, the true LQG

curve for this process can be obtained. The process model has also been used to

calculate subspace matrix Lu. Based on the presented procedure, noise subspace

matrix, Le, is estimated from routine closed-loop data. Both the true and estimated

trade-off curves are plotted in Figure 3.9 which confirms the ability of this method

to estimate the noise model from routine closed-loop data.
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Figure 3.9: True and estimated LQG trade-off curves and actual variances

Figure 3.10: A schematic of Continuous Stirred Tank Heater process

3.5 Application on a pilot-scale process

The two proposed methods have been applied for performance assessment of a pilot-

scale process. The process is a continuous stirred tank heater (CSTH) and its

schematic is shown in Figure 3.10.

There are two controlled variables in the CSTH, the water level inside the tank

and outlet water temperature. Manipulated variables are the cold water flowrate

and steam flowrate. The head of the water in the inlet pipe as well as the steam

supply pressure and temperature can be considered as disturbances. This process is

under PID control by DeltaV control system. Tuning parameters of both level and

temperature controllers are given in Table 3.1.

After some preliminary tests, two ‘RBS ’ signals are designed using MATLAB for

testing the process under closed-loop conditions. Signals are applied to the setpoint
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Figure 3.11: CSTH outputs under closed-loop ‘RBS’ test
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Figure 3.12: PID control actions under closed-loop ‘RBS’ test
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Figure 3.13: Correlation analysis results on closed-loop test data from CSTH process
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Table 3.1: Initial tuning parameters of PID controllers in CSTH process
Level controller Temp. controller

Gain 1.1 0.9
Reset 75 90
Rate 0 0

Table 3.2: Modified tuning parameters of PID controllers in CSTH process
Level controller Temp. controller

Gain 1.5 1.4
Reset 100 80
Rate 0 8

of the two controllers and closed-loop data are collected with 2 seconds sampling

time and over 2 hours. The input and output of the process under the identification

test are shown in Figures 5.7 and 3.12. Correlation analysis results for the closed-

loop data can be seen in Figure 3.13 which suggests the value of N to be around

60. Subspace matrices are identified using the proposed closed-loop identification

method and the LQG trade-off curve for the process are estimated.

One hour of routine operating data has also been collected and used as a measure

of current performance. Figure 3.17 shows the trade-off curve as well as the current

control performance (named as ‘PID tuning 1’). The results indicates some

0 10 20 30 40 50 60

7

7.5

8

8.5

9

C
ol

d 
w

at
er

 fl
ow

ra
te

 (
kg

/h
) Identification test applied to CSTH process

0 10 20 30 40 50 60

8

8.5

9

9.5

10

S
te

am
 fl

ow
ra

te
 (

kg
/h

)

time (min)

Figure 3.14: RBS test signal used for open-loop identification of the process model

potential for improvement in performance. We have then used the IMC tuning

method followed by some fine tuning to get a better set of tuning parameters for the

two PIDs given in Table 3.2 and the corresponding performance point is shown in

Figure 3.17 by ‘*’ (named as ‘PID tuning 2’). From this figure, it can be inferred that

improvement in output variance comes with a small increase in the input variance.
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Figure 3.15: Open-loop response of the CSTH process to the test signal
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Figure 3.16: Closed-loop routine operating data from CSTH process

We have also implemented an LQG controller on this process based on the sub-

space LQG law [53]:

uopt
f = (LT

u Lu + λI)−1LT
u Lw

The LQG control algorithm was run in MATALB which was connected to DeltaV

control system through OPC. Performance of the controller for λ = 7 is shown in

Figure 3.17. It shows that the performance point of this LQG controller is closer but

does not lie exactly on the curve owing to the process nonlinearity and experiment

errors such as changes in the steam pressure and drift of steam temperature, etc.

We have also applied the estimation procedure of Section 4 on the CSTH pro-

cess for estimating noise subspace matrix from routine operating data. For this

purpose, we have performed an open-loop identification test on the process to iden-

tify the process subspace matrices Lw and Lu. Process inputs and outputs under

the identification test are shown in Figures 3.14 and 3.15, respectively. Subspace

matrices Lu and Lw are identified using the regression analysis method [57] and the

corresponding disturbance matrix Le is estimated by the method of Section 4 using
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Figure 3.17: LQG trade-off curves and actual performance points

the routine operating data set shown in Figure 3.16. The estimated LQG trade-off

curve is shown in Figure 3.17 with dashed line. The result shows an estimation of

the curve close to the one from experiment data.

50



3.6 Concluding remarks

In this chapter, a direct formulation of the joint input-output closed-loop subspace

identification method was proposed. A lack of consistency in the noise covariance

estimation was observed in many of the previous methods when used for the LQG

trade-off curve estimation. As a result, the direct formulation based on two separate

open-loop identification problems was proposed which provides consistency of the

noise variance estimation. The possible limitation of the proposed method is the

requirement of a linear controller. The results of the LQG benchmark estimation for

a simulation example and a pilot-scale continuous stirred tank heater process were

provided which verified the effectiveness of the presented method for estimation of

the LQG trade-off curve.

A procedure for estimating noise subspace matrix and noise variance from routine

closed-loop operating data was also proposed along with the consistency analysis.

Simulation and pilot-scale application results show the effectiveness of the presented

method for estimation of the LQG trade-off curve.
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Chapter 4

Performance Assessment of
Advanced Supervisory-regulatory
Control Systems with Subspace
LQG

4.1 Introduction

Automation systems are an essential part of almost any industrial process and con-

troller is the heart of an automation system. High performance control systems

require healthy controllers. However, surveys show that about sixty percents of in-

dustrial controllers have some kind of performance problem [86]. Controller perfor-

mance assessment has been one of the most interesting areas of research in the field

of control engineering during past decades. Performance assessment of advanced

process control (APC) systems is receiving increasing attention because of their

high design and implementation cost. Considerable academic as well as commercial

interests have been devoted to the monitoring of both univariate and multivariate

control systems [13, 31, 39, 47, 61, 59, 75, 76, 80, 89, 101].

Minimum variance control (MVC) benchmark by Harris (1989) [36] provided the

fundamental step to measure the performance and presents valuable information

about a lower bound on the process variance. However, the a priori requirements

of this approach are not easily obtainable in the case of multivariate process [27,

37, 38]. Many researchers modified and improved this method by means of different

estimation and identification methods to make it more applicable, especially for

MIMO processes [37, 46, 55].

The LQG benchmark approach considers variances of both input and output

and provides a ‘trade-off’ curve which represents a feasible range of performance for

linear controllers [14, 45]. In other words, this curve provides optimum values of

the output variance for a range of the variance of the manipulated variable. This
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method is based on a model of the process which has to be obtained through process

identification.

Process identification is a necessary step in many control applications. Subspace

identification methods provide an alternative approach to classic system identifica-

tion methods. Various methods of subspace identifications have been developed in

the past two decades [57, 64, 77, 91, 92, 96, 90]. Many studies have been devoted to

the closed-loop identification as well because of its extensive use in control-relevant

identification and controller performance assessment [64, 70, 88, 94, 95].

A method for the LQG trade-off curve estimation in the subspace framework was

presented in Chapter 3 which does not need an explicit process model. The work to

be presented in this chapter will also be established under the subspace framework.

Implementation of advanced supervisory controllers has been one of the most

demanded in control engineering, because of the resulted economic benefits. On

the other hand, these economic expectations and the cost of APC implementation

always raise questions about performance of these controllers. Enormous amount

of studies has been dedicated to this issue in both academia and industry using

many different approaches [1, 2, 3, 34, 44, 52, 67, 79, 86, 99, 100]. APC is normally

implemented on the process as a supervisory controller at the top of the existing

regulatory control system. This control structure is named ‘Cascade’ implementa-

tion by Lee (2000) [66] and has been discussed in details for the case in which the

advanced controller is model predictive control (MPC). Advantages and disadvan-

tages of this type of APC implementation were elaborated in comparison to the so

called ‘Direct ’ implementation. We will review both these cases briefly in the next

section. Performance assessment of the cascade control structure is considered in

this chapter which has not been studied in the above mentioned references. Ko

and Edgar (2000) [58] studied the performance assessment of classic cascade con-

trol loops which have a different structure comparing to the supervisory-regulatory

cascade control structure addressed in this chapter.

Comparing to our previous work on subspace LQG benchmarking for conven-

tional feedback control in Chapter 3, the advanced supervisory-regulatory control

of this chapter constitutes a special structure and results in different mathemati-

cal derivations in the control law, the benchmark, and performance indices. The

cascade structure provides us a much richer alternative in performance assessment.

In this chapter, we employ the concept of LQG benchmark and use subspace

framework as a tool to derive a method of performance assessment for the cascade

control system. Three possible scenarios for performance assessment in a cascade

supervisory-regulatory control structure are described and the LQG control design is

provided for each scenario. We also illustrate how to obtain the minimum input and

output variances under the LQG control in a model-free subspace framework. The
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results lead us to the LQG trade-off curves for performance assessment using certain

subspace matrices. A closed-loop subspace identification procedure for estimation

of the required subspace matrices is also provided based on the joint input-output

identification approach.

This chapter is organized as follows: In Section 2, a review on the available

options for implementation of supervisory advanced control on existing regulatory

control layer is presented. Section 3 describes how to use the LQG benchmark for

the performance assessment of the cascade control system. Procedures of designing

the LQG control and obtaining the trade-off curve are discussed in this section. A

closed-loop identification method for estimation of the required subspace matrices

and the input noise variance is provided in Section 4. In Section 5, two simulation

examples in MATALB and HYSYS are provided. Section 6 provides some concluding

remarks.

4.2 Implementation of advanced supervisory con-

trol on the regulatory control layer

This section is a review on the issue of interfacing advanced model-based control

systems with low-level regulatory controllers. Lee (2000) [66] provided a detailed

study on this issue with MPC as the supervisory control.

Consider a process which is under feedback control, e.g. PID control. An ad-

vanced process controller, e.g. a model-based controller, is designed to improve

performance of the control system. There are two main options for implementing

the advanced model-based controller on the existing regulatory control level. One

is called Direct implementation, which means breaking the regulatory loops, iden-

tifying a model of the open-loop process and applying the model-based controller

directly to the process (see Figure 4.1). The second option is called cascade control,

where the regulatory control level is kept in place and APC provides the setpoints

to this controller (see Figure 4.2). Process identification, handling the constraints

and disturbance rejection are the major sources of difference between these two

approaches [66].

Since the inputs of the model in the Direct approach are the valve positions,

valve limits can be entered directly into the APC algorithm as the input constraints.

Therefore, handling of input constraints can be done in a straightforward manner.

However, because the regulatory loops are taken out, one may lose the efficiency

in disturbance rejection. Note that the disturbance must propagate through the

process to affect the output before any control action can take place.

The cascade control structure, on the other hand, helps to eliminate the distur-

bances that may occur inside the loop more efficiently and quickly. In addition,

54



Figure 4.1: A schematic of Direct implementation.

Figure 4.2: A schematic of cascade implementation.

identification can be made easier since unstable or excessively slow dynamics are

stabilized or made faster by regulatory loops. However, since the valves are not

directly manipulated, handling of valve constraints becomes more complicated and

also performance of the control system depends on both supervisory and regulatory

controllers.

From a practical point of view, in most cases the regulatory control system

should be kept working all time, because usually performing identification tests on

the open loop system (without regulatory controllers) is not preferred by the process

engineers. Most of the APC systems have a shutdown option for the cases where

their computational algorithms (such as linear/nonlinear dynamic programming)

fail in computing the next step of the control action [79]. For such cases, having

a backup control system is necessary. Therefore, in most of the APC applications,

the regulatory control system, or at least some of the regulatory loops, are not

broken [66] which results in having cascade control structures. Optimal LQG design

and performance assessment of these cascade control systems are discussed in this

chapter.
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4.3 Performance assessment in a cascade control

structure using LQG benchmark

The question to be answered in this section is how to design a LQG controller in

a two-layer control structure and how to find optimal input and output variances

which leads us to the trade-off curve.

4.3.1 Classic design of the LQG controller

We consider a more general form of LQG formulation than the classical one: con-

trolled variables can be different from the measured variables as shown in the block

diagram of Figure 4.3. In this figure γt represents the external inputs, ut is the

control signal and yt and ξt represent the measured and controlled variables, respec-

tively. The process P is given by the following state space presentation:

P :





xt+1 = Axt + B1γt + B2ut

yt = C1xt + D11γt + D12ut

ξt = C1xt + D21γt + D22ut

The LQG control aim is to minimize the following objective function:

Figure 4.3: A schematic of classic LQG control configuration.

J = lim
t→∞

E{[yT
t yt] + λ[uT

t ut]}

The two main steps of the LQG control design, state estimation and optimal state-

feedback design, are given by [62]

x̂t+1 = Ax̂t + B2ut + KKAL(yt − C2x̂t + D22ut) (4.1)

ut = −KSF x̂t (4.2)

where
{

KKAL = (P1C
T
2 + B1D

T
21)[D21D

T
21]

−1

KSF = [DT
12D12]

−1(BT
2 P1 + DT

12C1)
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P1 and P2 are the solutions of two algebraic Ricatti equations. Favoreel et. al.

[32, 33] showed that, for the special case where ξt = yt, the LQG control law can

be expressed in terms of process and disturbance subspace matrices, Lu and Le,

assuming a finite-horizon LQG control objective. No explicit model of the process is

needed and no Ricatti equation is required to be solved in this method. Employing

this idea, Kadali and Huang [43, 53] further provided the expressions of input and

output variances under this LQG control law which is then used to obtain the trade-

off curve for performance assessment.

4.3.2 Subspace-based design of the LQG controller

Figure 4.4: A schematic of cascade implementation with general linear controllers.

Let’s start the derivation with the block diagram shown in Figure 4.4. In this

diagram, the real input to the process (regulatory level control action) is named u

while the setpoint of the regulatory controller, coming from the supervisory con-

troller, is named ū. In the LQG control objective, variance of the input and output

should be minimized which means minimizing the variances of u and y in Figure

4.4. Note that ū does not represent a physical control variable, but a setpoint to

the regulatory control loop.

For the cascade control structure of Figure 4.4, three possible scenarios can be

considered as follows:

1- The controller C2 (regulatory controller) is considered to be fixed and one is

looking for the best achievable performance in terms of input and output variances

by designing the supervisory controller C1.

2- The controller C1 (supervisory controller) is considered to be fixed and one is

looking for the best achievable performance in terms of input and output variances

by designing the regulatory controller C2.

3- None of the two controllers C1 or C2 are known and the goal is to design both

controllers in a way that optimal input and output variances are obtained.

It should be noted that in all three cases, input variance means variance of the

regulatory controller action u.
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Before starting the derivations, a very brief review on the subspace equations

under the closed-loop is given below.

Subspace definitions in a closed-loop system

In a closed-loop system such as Figure 5.1, two separate open-loop models can be

defined: a model from setpoint (rt) to the output (yt) and the other one from (rt)

to the controller output (ut). Similar to Equation (2.19), these two systems can be

presented by the following input-output relations [26]:

Figure 4.5: A typical closed-loop process.

Yf = ΓY
NXCL

f + LY RRf + LY EEf (4.3)

= LY W yr
p + LY RRf + LY EEf (4.4)

Uf = ΓU
NXCL

f + LURRf + LUEEf (4.5)

= LUW ur
p + LURRf + LUEEf (4.6)

where:

XCL
f =

(
Xf

Xc
f

)
, W yr

p =

(
Yp

Rp

)
, W ur

p =

(
Up

Rp

)
(4.7)

and Xc
f is the future state subspace matrix for the controller. The extended observ-

ability matrices, ΓY
N and ΓU

N , are defined similar to (2.12). The closed-loop subspace

matrices are given by

LY R = (I + LuL
c
y)
−1LuL

c
y

LUR = (I + Lc
yLu)

−1Lc
y

LY E = (I + LuL
c
y)
−1Le

LUE = −(I + Lc
yLu)

−1Lc
yLe

where Lc
y contains Markov parameters of the controller.
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Scenario 1

Subspace equations for the input and output in a closed-loop system are provided

by Equations (4.3) and (4.5). Similar relations for the lower loop of Figure 4.4 are

as follows:

Yf =Γy2
N Xcc2

f + LY Ū Ūf + Lcs
Y EEf (4.8)

=LY 2W
yū
p + LY Ū Ūf + Lcs

Y EEf (4.9)

Uf =Γu2
N Xcc2

f + LUŪ Ūf + Lcs
UEEf (4.10)

=LU2W
uū
p + LUŪ Ūf + Lcs

UEEf (4.11)

where Γy2
N and Γu2

N are extended observability matrices defined similar to (2.12) and

Xcc2
f =

(
Xf

Xc2
f

)
, W yū

p =

(
Yp

Ūp

)
, W uū

p =

(
Up

Ūp

)
(4.12)

and similar to LY R and LUR we have

LY Ū = (I + LuL
c2
y )−1LuL

c2
y

= Lu(I + Lc2
y Lu)

−1Lc2
y (4.13)

LUŪ = (I + Lc2
y Lu)

−1Lc2
y (4.14)

Lc2
y contains Markov parameters of the controller C2 and Xc2

f is the subspace matrix

for the future states of the regulatory controller C2. Lcs
Y E and Lcs

UE represent the

closed-loop relation from the input noise et to the output yt and C2 control action

ut, respectively. These notations will be explained in detail later in Section 5.

Using Equations (4.8) and (4.10), the finite-horizon LQG objective function can

be written as follows:

J = E{[yT
f yf ] + λ[uT

f uf ]}

=(Γy2
N xcc2

f + LY Ū ūf )
T (Γy2

N xcc2
f + LY Ū ūf )

+ λ(Γu2
N xcc2

f + LUŪ ūf )
T (Γu2

N xcc2
f + LUŪ ūf )

=(xcc2
f )T (Γy2

N )T Γy2
N xcc2

f + ūT
f LT

Y ŪΓy2
N xcc2

f

+ (xcc2
f )T (Γy2

N )T LY Ū ūf + ūT
f LT

Y ŪLY Ū ūf

+ λ(xcc2
f )T (Γu2

N )T Γu2
N xcc2

f + λūfL
T
UŪΓu2

N xcc2
f

+ λ(xcc2
f )T (Γu2

N )T LUŪ ūf + λūT
f LT

UŪLUŪ ūf (4.15)
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Taking derivative of (4.15) with respect to ūf gives

∂J

∂ūf

=2(xcc2
f )T (Γy2

N )T LY Ū + 2ūT
f LT

Y ŪLY Ū+

+ 2λ(xcc2
f )T (Γu2

N )T LUŪ + 2λūfL
T
UŪLUŪ = 0 (4.16)

which results in

ūf = −[LT
Y ŪLY Ū + λLT

UŪLUŪ ]−1(LT
Y ŪΓy2

N + LT
UŪΓu2

N )xcc2
f (4.17)

The state-feedback control in Equation (4.17) can also be written in terms of past

outputs and control actions using Equations (4.9) and (4.11) as follows:

ūf = −[LT
Y ŪLY Ū + λLT

UŪLUŪ ]−1(LT
Y ŪLY 2w

yū
p + LT

UŪLU2w
uū
p ) (4.18)

When implementing the controller, at each sampling interval, only the first con-

trol move is applied to the process and calculation procedure is repeated for the

next sampling interval.

Scenario 2

In this case, the measured (feedback) variable of the regulatory controller C2 (to be

designed) is different from its controlled variable, so the problem configuration would

be similar to the LQG design presented at the beginning of this section. Figure 4.6

shows the reconfiguration of Figure 4.4 and definition of the measured variable, ξ.

State space presentation of the process GT in Figure 4.6 is obtained in the following.

The block C̄1 in the figure can be presented by the following state-space model:

Figure 4.6: Reconfiguration of Figure 4.4 for Scenario 2.

C̄1 :

{
xc1

t+1 = Ac1x
c1
t + Bc1yt

ξt = −Cc1x
c1
t − (Dc1 + Im)yt

(4.19)
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where xc1
t ∈ Rnc1 , ξt ∈ Rm and ūt ∈ Rm. Substituting yt from Equation (3.1) in

the above equation followed by some matrix manipulations results in the following

presentation for GT :

GT :





(
xt+1

xc1
t+1

)
=

(
A 0

Bc1 Ac1

)(
xt

xc1
t

)
+

(
K

Bc1

)
et +

(
B

Bc1D

)
ut

yt = −
(
(Dc1 + Im)C Cc1

) (
xt

xc1
t

)
− (Dc1 + Im)et

−(Dc1 + Im)Dut

ξt = −
(
C 0

) (
xt

xc1
t

)
+ et + Dut

(4.20)

Using Equation (4.20), both controlled and measured variables, yt and ξt, can

be presented in terms of the control action, ut, and the input noise by the following

subspace equations:

Yf =Γy1
N Xcc1

f + LyUUf + LyEEf (4.21)

Ξf =Γξ
NXcc1

f + LξUUf + LξEEf (4.22)

=LΞW ξu
p + LξUUf + LξEEf (4.23)

where Xcc1
f =

(
Xf

Xc1
f

)
and W ξu

p =

(
Ξp

Up

)
. Other subspace matrices can be easily

defined using Equation (4.20), similar to the definitions of Section 4.3 for open-loop

system.

Now, the two steps of the LQG control design can be performed in the subspace

framework. First, the state vector xcc1
f can be estimated from (4.22) as

x̂cc1
f = [Γξ

N ]−1(ξf − LξUuf )

and then controlled variable can be estimated using the estimated state as follows:

ŷf = Γy1
N x̂cc1

f + LyUuf

= Γy1
N [Γξ

N ]−1ξf + (LyU − Γy1
N [Γξ

N ]−1LξU)uf (4.24)

For simplicity in notation, we define

Γyξ , Γy1
N [Γξ

N ]−1

Γyu , LyU − Γy1
N [Γξ

N ]−1LξU

Now, the LQG objective function can be expressed as

J =ŷT
f ŷf + λuT

f uf

=(Γyξξf + Γyuuf )
T (Γyξξf + Γyuuf ) + λuT

f uf

=ξT
f ΓT

yξΓyξξf + uT
f ΓT

yuΓyξξf + ξT
f ΓT

yξΓyuuf + uT
f (ΓT

yuΓyu + λI)uf (4.25)
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Taking derivative of J with respect to uf and substituting ξf from (4.22) yields

∂J

∂uf

=2LT
ξUΓT

yξΓyξξf + 2ΓT
yuΓyξξf + 2(ΓT

yuΓyu + λI)uf

=2(LT
ξUΓT

yξΓyξ + ΓT
yuΓyξ)ξf + 2(ΓT

yuΓyu + λI)uf

=2(LT
ξUΓT

yξΓyξ + ΓT
yuΓyξ)(Γ

ξ
N x̂cc1

f + LξUuf ) + 2(ΓT
yuΓyu + λI)uf

=0 (4.26)

which results in the following state-feedback control law:

uf =[LT
ξUΓyξΓ

T
yξLξU + ΓT

yuΓyξLξU + ΓT
yuΓyu + λI]−1(LT

ξUΓyξΓ
T
yξ + LT

ξUΓyξ)Γ
ξ
N x̂cc1

f

(4.27)

Similar to Scenario 1, this control action can also be presented in term of past

inputs and measured outputs using (4.23).

Scenario 3

In this case, the objective is to design both controllers C1 and C2 at the same time

to obtain the minimum input and output variances. A reconfiguration of Figure

4.4 is shown in Figure 4.7 where block C is the combination of two sub-controllers.

Clearly, controller C is the same as the conventional LQG feedback controller.

Figure 4.7: Reconfiguration of Figure 4.4 for Scenario 3.

The LQG design for control block C in this figure has been developed in [32, 33,

53] as

uf = −[LT
u Lu + λI]−1LT

u ΓN x̂f

= −[LT
u Lu + λI]−1LT

u Lwwp (4.28)

which provides the global optimum solution to the finite-horizon LQG problem. It

should be noted that none of the control designs in first two scenarios can result in

a better performance comparing to (4.28). However, there might be many combi-

nations of controllers C1 and C2 that can provide the above control action. As an
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example, C2 can be chosen as a simple unit gain and C1 be given by

uf = yf − [LT
u Lu + λI]−1LT

u Lwwp (4.29)

In other words, different controller sets may result in the optimal variance for

the output and the regulatory control action. Therefore, no unique solution can be

provided for C1 and C2 at the same time. However, the optimal values of the input

and output variances are unique and can be used for the purpose of performance

assessment.

It should be noted that we assumed the same sampling interval for both super-

visory and regulatory controllers. Extension of this study for the case of different

sampling times is not considered in this thesis.

In the next section, we show how to drive the optimal input and output variances

in terms of the input noise variance which is the key step to obtain the LQG trade-off

curve for cascade supervisory-regulatory control.

4.3.3 Estimation of the LQG benchmark from closed-loop
data

In this section, the approach of [43] is extended to the calculation of input and

output variances under the LQG control for each scenario of the cascade supervisory-

regulatory control structure. For better understanding of the derivation, we shall

start with the last scenario.

Scenario 3: the global optimum

To derive closed-loop variance, we follow the approach of Ko and Edgar (2000) [60].

In the closed-loop process of Figure 4.4, assume that at time t = 0 a single random

noise e0 enters the process when the system is at the steady state. Then the following

propagation of e0 results:




y0

y1

· · ·
yN−1


 =




D 0 · · · 0
CB D · · · 0
· · · · · · · · · · · ·

CAN−2B CAN−3B · · · D







u0

u1

· · ·
uN−1


 +




I
CK
· · ·

CAN−2K


 e0

(4.30)

or in a compact form

y0|N−1 = Luu0|N−1 + Le,1e0 (4.31)

and similarly for u0|N−1

u0|N−1 = LUŪ ū0|N−1 + Lcs
UE,1e0 (4.32)
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where L
UŪ

is given by (4.14) and Le,1 is the first block column of Le. Lcs
UE,1 is the

first block column of Lcs
UE. Lcs

UE is the subspace matrix representing the relation of

input noise to the regulatory control action and its detailed expression will be given

in Section 4.

Combining Equations (4.31) and (4.32), one can get

y0|N−1 = LuLUŪ ū0|N−1 + LuL
cs
UE,1e0 + Le,1e0 (4.33)

Recall the finite-horizon LQG control objective function

J = E(
N−1∑
i=0

yT
i yi + λuT

i ui) (4.34)

This objective function can be written as

J =E(yT
0|N−1y0|N−1 + λuT

0|N−1u0|N−1)

=E{[LuLUŪ ū0|N−1 + LuL
cs
UE,1e0 + Le,1e0]

T [LuLUŪ ū0|N−1 + LuL
cs
UE,1e0 + Le,1e0]

+ λ(LUŪ ū0|N−1 + Lcs
UE,1e0)

T (LUŪ ū0|N−1 + Lcs
UE,1e0)} (4.35)

Expanding Equation (4.35), omitting the subscript (0|N − 1) and taking derivative

with respective to ū yields

∂J

∂ū
=2LT

UŪLT
u LuLUŪ ū + 2LT

UŪLT
u LuL

cs
UE,1e0

+2LT
UŪLT

u Le,1e0 + 2λLT
UŪLUŪ ū + 2λLT

UŪLcs
UE,1e0 = 0

which gives

ūopt
0|N−1 =− [LT

UŪLT
u LuLUŪ + λLT

UŪLUŪ ]−1{LT
UŪLT

u (LuLcs
UE,1 + Le,1) + λLT

UŪLcs
UE,1}e0

=− [LT
UŪ (LT

u Lu + λI)LUŪ ]−1{LT
UŪ (LT

u [LuLcs
UE,1 + Le,1] + λLcs

UE,1)}e0

=− L−1
UŪ

[LT
u Lu + λI]−1 [LT

UŪ ]−1(LT
UŪ )︸ ︷︷ ︸{L

T
u [LuLUE,1 + Le,1] + λLcs

UE,1}e0

I

=− L−1
UŪ

[LT
u Lu + λI]−1{LT

u [LuLcs
UE,1 + Le,1] + λLcs

UE,1}e0

=− L−1
UŪ
{[LT

u Lu + λI]−1LT
u Le,1}e0 − L−1

UŪ
{[LT

u Lu + λI]−1(LT
u Lu + λI)︸ ︷︷ ︸Lcs

UE,1}e0

I

=− L−1
UŪ
{[LT

u Lu + λI]−1LT
u Le,1 + Lcs

UE,1}e0 (4.36)
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Using Equations (4.32) and (4.36), uopt
0|N−1 can be obtained by

uopt
0|N−1 = LUŪ ūopt

0|N−1 + Lcs
UE,1e0

= −{[LT
u Lu + λI]−1LT

u Le,1}e0 (4.37)

Now, Equation (4.31), gives yopt
0|N−1 as

yopt
0|N−1 = {I − Lu[L

T
u Lu + λI]−1LT

u}Le,1e0 (4.38)

Similar to the approach of [43], one may write uopt
0|N−1 as a vector form




ψ0

ψ1
...

ψN−1


 = −[LT

u Lu + λI]−1LT
u Le,1 (4.39)

and yopt
0|N−1 as a vector form




γ0

γ1
...

γN−1


 = {I − Lu[L

T
u Lu + λI]−1LT

u}Le,1 (4.40)

When the random noises occur at every sampling instant, we can apply the

principle of superposition to get the optimal sequence of control inputs as

uopt
0 = ψ0e0

uopt
1 = ψ0e1 + ψ1e0

uopt
2 = ψ0e2 + ψ1e1 + ψ2e0

...

uopt
N−1 = ψ0eN−1 + ψ1eN−2 + · · ·+ ψN−1e0

uopt
N = ψ0eN + ψ1eN−1 + · · ·+ ψN−1e0

...

uopt
t =

N−1∑
i=0

ψiet−i

and, similarly for yopt
t we get

yopt
t =

N−1∑
i=0

γiet−i
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Output variance and control actions variances can now be written as

V ar[ut] =
N−1∑
i=0

ψi V ar[et] ψT
i (4.41)

V ar[yt] =
N−1∑
i=0

γi V ar[et] γT
i (4.42)

Remark. The optimal variance of the regulatory control action and the output

in Equations (4.41) and (4.42) are consistent with the previous results of Kadali and

Huang [43, 53].

Scenario 1

A procedure similar to the past section can be performed starting from the following

equations, assuming a single random noise e0 has entered the process at time t = 0:

u0|N−1 = Lc2
y (ū0|N−1 − y0|N−1) + Lcs

UE,1e0 (4.43)

y0|N−1 = Luu0|N−1 + Le,1e0 (4.44)

Substituting (4.43) in (4.44), one can calculate y0|N−1 as

y0|N−1 = [I + LuL
c2
y ]−1{LuL

c2
y ū0|N−1 + LuLUE,1e0 + Le,1e0} (4.45)

Similarly for u0|N−1

u0|N−1 = [I + Lc2
y Lu]

−1{Lc2
y ū0|N−1 + Lc2

y Le,1e0 + LUE,1e0} (4.46)

It is shown in the Appendix A that

[I + LuL
c2
y ]−1 = [I + Lc2

y Lu]
−1 , Π (4.47)

The LQG objective can now be written as

J =E(yT
0|N−1y0|N−1 + λuT

0|N−1u0|N−1)

=E{(LuL
c2
y ū0|N−1 + LuLUE,1e0 + Le,1e0)

T ΠT Π(LuL
c2
y ū0|N−1 + LuLUE,1e0 + Le,1e0)

+ λ(Lc2
y ū0|N−1 + Lc2

y Le,1e0 + LUE,1e0)Π
T Π(Lc2

y ū0|N−1 + Lc2
y Le,1e0 + LUE,1e0)}

(4.48)

Taking derivative of the above objective function, solving for ū0|N−1 and some

simplifications results in

ūopt
0|N−1 =− [ΠLc2

y ]−1[LT
u Lu + λI]−1{(LT

u Lu + λI)ΠLUE,1 + (LT
u + Lc2

y )ΠLe,1}e0

(4.49)
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which gives the uopt
0|N−1 as

uopt
0|N−1 =(ΠLc2

y )ūopt
0|N−1 + ΠLUE,1e0 + ΠLc2

y Le,1e0

=− {[LT
u Lu + λI]−1(LT

u + Lc2
y )Π− ΠLc2

y }Le,1e0 (4.50)

This control action results in the following output:

yopt
0|N−1 = {I − Lu[L

T
u Lu + λI]−1(LT

u + Lc2
y )Π + LuΠLc2

y }Le,1e0 (4.51)

Now, the input and output variances can be obtained in a similar way as the

derivations of Equations (4.41) and (4.42).

Scenario 2

Starting from the following equations, the expressions for uopt
0|N−1 and yopt

0|N−1 in this

case can be obtained using the same procedure as in the past two subsections:

ξ0|N−1 = Lc̄1
y Luu0|N−1 + Lc̄1

y Le,1e0

ū0|N−1 = −Lc1
y y0|N−1 + LŪE,1e0

y0|N−1 = ū0|N−1 − ξ0|N−1 (4.52)

where Lc̄1
y contains the Markov parameters of C̄1 controller presented in (4.19) and

LŪE,1 is the first block column of LŪE which will be explained in detail by (4.71) in

Section 5.

The final results for the optimal input and output are as follows:

uopt
0|N−1 ={Lu[L

T
u Lu + λI]−1LT

u − [Lc̄1
y ]−1Lc1

y [I + LuL
c̄1
y ]−1}Le,1e0 (4.53)

yopt
0|N−1 ={(I − Lu[L

T
u Lu + λI]−1LT

u )

− Lu[L
T
u Lu + λI]−1LT

u [Lc̄1
y ]−1Lc1

y [I + LuL
c̄1
y ]−1}Le,1e0 (4.54)

4.3.4 Interpretation of the trade-off curves in cascade supervisory-
regulatory structure

Based on the results of the past subsection, one trade-off curve can be obtained for

each of the three scenarios defined in Section 4.2. The one calculated for scenario

3 represents the best achievable performance which is the conventional feedback

LQG performance. Similar to Section 3.3, the following performance indices can be

defined to evaluate the current control system performance relative to the optimal

performance:

η3
y ,

(V opt
y )

(Vy)
, η3

u , (V opt
u )

(Vu)
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Figure 4.8: Typical LQG trade-off curves for a cascade structure.

where V opt
y , Vy, V opt

u and Vu are defined similarly in Figure 4.8.

The trade-off curve obtained for scenario 1 can be used to calculate the possible

performance improvement by supervisory controller (C1) without tuning the existing

regulatory controller (C2). Similar to the above definitions, η1 and E1 can be defined

for this case by

η1
y ,

(V o1
y )

(Vy)
, η1

u , (V o1
u )

(Vu)

Similarly, the trade-off curve of scenario 2 indicates the improvement in perfor-

mance which can be obtained by re-tuning/re-designing the regulatory controller

without changing supervisory control. η2 and E2 indices can be defined and used

for quantification of the performance as

η2
y ,

(V o2
y )

(Vy)
, η2

u , (V o2
u )

(Vu)

Also, comparing these curves with each other and with the LQG curve provides

us with the insight to decide which control layer(s) to be used for performance

enhancement. This issue will be elaborated more by two illustrative examples later.

4.4 Identification of the required subspace matri-

ces from closed-loop data

Based on the results of Section 3, certain subspace matrices and the noise variance

are required to calculate the input and output variances and obtain the LQG trade-

off curves. In the following, we present a closed-loop subspace identification method
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for estimation of the required subspace matrices and the input noise variance. This

method is an extension to the joint input-output identification approach presented

in Chapter 3. The problem is divided into three separate open-loop identification

problems, one from the setpoint, rt to the output, yt, one from rt, to ut and the

other one from rt to ūt. The following represents the details of the algorithm.

For the cascade structure of Figure 4.4, three basic subspace equations for the

process, controller C1 and controller C2 can be derived as follows, respectively (see

Equation(2.9)):

Yf = ΓNXf + LuUf + LeEf (4.55)

Ūf = Γc1
N Xc1

f + Lc1
y (Rf − Yf ) (4.56)

Uf = Γc2
N Xc2

f + Lc2
y (Ūf − Yf ) (4.57)

Xc1
f and Xc2

f are the future state matrices for the controllers C1 and C2, and Γc1
N

and Γc2
N are the related extended observability matrices. Lc1

y and Lc2
y contain the

Markov parameters of the controllers C1 and C2.

Substituting Equation (4.57) in (4.55) yields

Yf = ΓNXf + LuΓ
c2
N Xc2

f + LuL
c2
y Ūf − LuL

c2
y Yf + LeEf

Using Ūf from Equation (4.56), we get

Yf =ΓNXf + LuΓc2
N Xc2

f + LuLc2
y Γc1

N Xc1
f + LuLc2

y Lc1
y Rf − LuLc2

y Lc1
y Yf − LuLc2

y Yf + LeEf

=(ΓN LuLc2
y Γc1

N LuΓc2
N )




Xf

Xc1
f

Xc2
f


 + LuLc2

y Lc1
y Rf − Lu(Lc2

y Lc1
y + Lc2

y )Yf + LeEf

which gives Yf as

Yf =[I + LuL
cc
y ]−1(Γcs

NXcs
f + LuL

c2
y Lc1

y Rf + LeEf ) (4.58)

where

Γcs
N = (ΓN LuL

c2
y Γc1

N LuΓ
c2
N )

Lcc
y = Lc2

y Lc1
y + Lc2

y (4.59)

Xcs
f =




Xf

Xc1
f

Xc2
f




In a compact form

Yf =Γy
NXcs

f + Lcs
Y RRf + Lcs

Y EEf (4.60)
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where

Γy
N = [I + LuL

cc
y ]−1Γcs

N

Lcs
Y R = [I + LuL

cc
y ]−1LuL

c2
y Lc1

y (4.61)

Lcs
Y E = [I + LuL

cc
y ]−1Le (4.62)

Using the regression analysis method [57], the first term in (4.60) can be repre-

sented based on the past setpoints and outputs which yields

Yf = Lcs
Y W yr

p + Lcs
Y RRf + Lcs

Y EEf (4.63)

in which W yr
p is given by (4.7).

Substituting Equations (4.55) and (4.57) in (4.56) and following the similar pro-

cedure as (4.60), one can write Uf as

Uf =(−Lc2
y ΓN Lc2

y Γc1
N Γc2

N )Xcs
f + Lc2

y Lc1
y Rf − (Lc2

y Lc1
y + Lc2

y )LuUf − (Lc2
y Lc1

y + Lc2
y )LeEf

=Γu
NXcs

f + Lcs
URRf + Lcs

UEEf (4.64)

where

Γu
N = [I + Lcc

y Lu]
−1(−Lc2

y ΓN Lc2
y Γc1

N Γc2
N )

Lcs
UR = [I + Lcc

y Lu]
−1Lc2

y Lc1
y (4.65)

Lcs
UE = −[I + Lcc

y Lu]
−1Lcc

y Le (4.66)

Representing the future state term by past data Hankle matrices Up and Rp using

linear regression, we have the following relation for Uf :

Uf =Lcs
U W ur

p + Lcs
URRf + Lcs

UEEf (4.67)

where W ur
p is given by (4.7).

Similarly, for Ūf the following expression can be obtained:

Ūf = Lcs
Ū W ūr

p + Lcs
ŪRRf + Lcs

ŪEEf (4.68)

where

W ūr
p =

(
Ūp

Rp

)

Lcs
ŪR = Lc1

y {I − [I + LuL
cc
y ]−1LuL

c2
y Lc1

y } (4.69)

= {I − Lc1
y [I + LuL

cc
y ]−1LuL

c2
y }Lc1

y (4.70)

Lcs
ŪE = −Lc1

y [I + LuL
cc
y ]−1Le (4.71)
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Rf can be chosen as a random binary signal uncorrelated with W yr
p , W ur

p , W ūr
p

and Ef (past inputs and outputs and future noise), and then least squares estimation

can be used to estimate closed-loop subspace matrices in (4.60) , (4.67) and (4.68)

as follows:

(L̂cs
Y L̂cs

Y R) = Yf

(
W yr

p

Rf

)†
(4.72)

(L̂cs
U L̂cs

UR) = Uf

(
W ur

p

Rf

)†
(4.73)

(L̂cs
Ū L̂cs

ŪR) = Ūf

(
W ūr

p

Rf

)†
(4.74)

The first row of Ŷf is the one step ahead prediction of the output. So the

innovation sequence can be estimated by

êf = (eN eN+1 · · · eN+j−1)
T

= Yf (1 : m, :)− Ŷf (1 : m, :) (4.75)

where (1 : m, :) represents first m rows and all columns of the matrix. Using êf , the

block Hankel matrix for noise, Êf , can be built. Now define

Ξu
f , Uf − Ûf = Lcs

UEÊf

So, for Lcs
UE we have

L̂cs
UE = Ξu

f Ê
†
f (4.76)

Similarly, one may define

Ξy
f , Yf − Ŷf = Lcs

Y EÊf

which gives L̂cs
Y E as follows:

L̂cs
Y E = Ξy

f Ê
†
f (4.77)

Lcs
ŪE

can also be estimated in a similar way.

Now, open-loop subspace matrices of the process and controllers should be es-

timated using the identified closed-loop matrices. Based on Equations (4.61) and

(4.65), the following derivation can be provided using the matrix inverse lemma:

Lcs
Y R[Lcs

UR]−1 =[I + LuL
cc
y ]−1Lu(L

c2
y Lc1

y )[Lc2
y Lc1

y ]−1(I + Lcc
y Lu)

=Lu[I + Lcc
y Lu]

−1(I + Lcc
y Lu)

=Lu (4.78)

which can be used to estimate Lu. To estimate Le, we have to first estimate Lcc
y

from closed-loop matrices by

−Lcs
UE[Lcs

Y E]−1 = [I + Lcc
y Lu]

−1Lcc
y Le[Le]

−1(I + LuL
cc
y )

= Lcc
y [I + LuL

cc
y ]−1(I + LuL

cc
y )

= Lcc
y (4.79)
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Substituting (4.79) in (4.62) gives

Lcs
Y E = [I + LuL

cc
y ]−1Le

= [I − LuL
cs
UE[Lcs

Y E]−1]−1Le (4.80)

Finally,

Le = {I − LuL
cs
UE[Lcs

Y E]−1}Lcs
Y E

= Lcs
Y E − LuL

cs
UE (4.81)

The subspace matrices representing the two controllers should also be estimated.

Note that Lcs
ŪE

can be identified in a similar way to the estimation of Lcs
UE. It is

straightforward to show that

Lc1
y = −Lcs

ŪE[Lcs
Y E]−1 (4.82)

Using Equations (4.59) and (4.82) we get

Lcc
y = Lc2

y + Lc2
y Lc1

y = Lc2
y (I + Lc1

y )

= Lc2
y {I − Lcs

ŪE[Lcs
Y E]−1} (4.83)

Substituting Lcc
y from (4.79) in (4.83) yields

−Lcs
UE[Lcs

Y E]−1 = Lc2
y {I − Lcs

ŪE[Lcs
Y E]−1}

which gives the following estimation of Lc2
y :

Lc2
y = −Lcs

UE[Lcs
Y E]−1{I − Lcs

ŪE[Lcs
Y E]−1}−1

= −Lcs
UE [ {I − Lcs

ŪE[Lcs
Y E]−1}Lcs

Y E ]−1

= −Lcs
UE[Lcs

Y E − Lcs
ŪE]−1 (4.84)

Remark. Note that the proposed closed-loop identification procedure consists

of three separate open-loop identifications. Consistency analysis of the regression

analysis approach is provided in [57] for open-loop identification and in Chapter

3 for joint input-output closed-loop identification. Consistency analysis similar to

Chapter 3 can be performed here to show that for a sufficiently large value of N ,

asymptotic consistency is obtained in the estimation of the subspace matrices and

the input noise variance.
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4.5 Simulation

In the first example, two linear controllers are used as C1 and C2 in a cascade

structure to control a SISO process. This allows us to evaluate the proposed closed-

loop identification method. Next example provides more realistic simulation where

C1 is replaced with a linear MIMO LQG controller running in MATLABr and C2

is PID control running in HYSYS.

4.5.1 Example 1

The process to be controlled is described by the following state-space representation

[92]:

xt+1 =




0.6 0.6 0
−0.6 0.6 0

0 0 0.7


 xt +




1.616
−0.348
2.631


 ut +



−1.15
−1.52
−3.20


 et

yt =
(−0.437 −0.504 0.093

)
xt − 0.775ut + et

The low-level controller is a PI controller, [0.1+0.05/s], and the high-level con-

troller is given by

xt+1 =

(
1 0
1 0.01

)
xt +

(
1
1

)
ut

yt =
(

0.02 0.01
)
xt + 0.2ut
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Figure 4.9: Identification data for Example 1 collected under cascade control.
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Figure 4.10: Real and estimated LQG trade-off curves for Scenario 3 (a), Scenario
2 (b) and Scenario 1 (c).

The first step in this example is to evaluate the presented closed-loop identifi-

cation procedure. For this purpose, 4000 points of identification data are collected

from the closed-loop system with a RBS test signal, generated by MATLABr func-

tion ‘idinput ’, injected through the system setpoint. A sequence of white noise

disturbance with variance 0.01 is applied to the process. Simulation data are plot-

ted in Figure 4.9. Using the proposed joint input-output identification method for

the cascade structure, subspace matrices are estimated and used to obtain three

trade-off curves shown in Figure 4.10. In the figures, the true trade-off curves, ob-

tained from the original model, are also shown for the sake of comparison. These

figures verify the proposed closed-loop subspace identification method.

A set of routine closed-loop operating data is also collected to obtain the current

performance of the control system.

Figures 4.10 presents three possibilities for improving the performance. If one

can re-design or re-tune both of the regulatory and supervisory controllers, the

curve in Figure 4.10(a) would be the limit of achievable performance. For instance,
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Figure 4.11: LQG trade-off curves and actual performance point.

this curve shows the possibility of decreasing the output variance by 67% without

increasing the control effort relative to the existing controller.

If only changing or re-tuning of the supervisory controller is possible, then the

estimated curve in Figure 4.10(b) shows how much improvement may be achieved.

For the same input variance, re-tuning only the supervisory controller can result

in (1 − 0.0152/0.0275) × 100 = 45% reduction in the output variations. A similar

statement can be proposed for the regulatory controller according to Figure 4.10(c)

which shows that regulatory controller re-tuning may lead to (1− 0.0161/0.0275)×
100 = 42% variance reduction in the output.

Figure 4.11 shows all three trade-off curves and the current performance point.

This figure provides more insight for comparing different strategies of performance

enhancement. It shows that for this example, the minimum achievable output vari-

ance by increasing the C2 control effort is (1− 0.0109/ 0.0275)× 100 = 61% where

as the one from manipulating C1 is (1 − 0.0128/ 0.0275) × 100 = 54%. Also, it

is evident that if control action variations more than Vu = 0.0057 is acceptable,

then regulatory controller (C2) re-tuning can be more effective to reduce the output

variance.

In the next example we provide a more realistic simulation using a MIMO process

simulated in HYSYS and controlled by a cascade LQG-PID structure.
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4.5.2 Example 2

The process used in this simulation is a plug-flow reactor (PFR) which is used in

many industrial processes particularly those in which a solid catalyst is required.

This reactor has a vessel packed with solid catalyst. In a tubular reactor, tempera-

ture and composition vary along the length of the reactor which makes the process

dynamics complicated. A schematic of this process is shown in Figure 4.12 along

with the HYSYS folwsheet. The reaction considered is the chlorination of propy-

lene. The reaction rate and operating data are given in [72]. There are two parallel

gas-phase reactions. The first forms allyl chloride and HCl as follows:

C3H6 + Cl2 → CH = CH2Cl + HCl (4.85)

The second forms 1,2 dichloro propane

C3H6 + Cl2 → CH2Cl − CHCl + HC3 (4.86)

Figure 4.12: A schematic of Plug-Flow Reactor and Hysys flowsheet.

The reaction rate is a first order dependent on the partial pressures of the re-

actants. The reaction takes place in a pipe which is 2 inches in diameter and 15

feet in length. The inlet gas fed to the reactor is 0.85 lb −mol/hr at 392 ◦F and

29.4 psia with a composition 80 mol% propylene and 20 mol% chlorine. Pressure

drop through the reactor is 3.7 psi at design conditions. If the reactor is operated

adiabatically, the temperature of the gas leaving the reactor is predicted by HYSYS

as 272.4 ◦C and the chlorine concentration is 9.89 mol%.

A control valve on the gas feeding the reactor is designed for a 20 psi drop when

50 % open at design flowrate. A flow controller manipulates this valve to control
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feed flow. Feed flowrate is considered as a disturbance variable. Outlet pressure is

controlled by valve V 6 and reactor temperature is controlled by coolant water flow

rate.

Two PI controllers have been designed for temperature and pressure control (see

Figure 4.12), and tuned based on a relay-feedback test [72]. Proportional gain and

integral time are set to be 5 and 40 for TC3 and 1 and 2 for PC3, respectively.

Temperature should be maintained at its setpoint of 272.4 ◦C and pressure at 177.2

Kpas.

The first step to design a LQG is to identify a linear model of the lower-level

closed-loop process (including current PID controllers). The MOESP identification

method from MATLABr system identification toolbox is used to identify a model for

the LQG controller. Weighting factors are chosen 15 for both control actions. LQG

algorithm is implemented in a MATLABr code and MATLABr is connected to

HYSYS in a real-time manner to apply LQG control. For this purpose, the ‘hysyslib’

toolbox [12] has been used after some required modifications for the current version

of HYSYS. Therefore, HYSYS is used for process simulation and PID control, and

MATLABr is used for running the LQG algorithm.

Now, for the purpose of performance assessment, a set of data should be collected

from the process under LQG-PID control to estimate the LQG trade-off curves. For

this purpose, two RBS test signals are generated in MATLABr and are applied to

the setpoints of the LQG controller which manipulates the HYSYS PID controllers.

LQG controller outputs (sepoints to the PID level), low-level PI control actions and

process outputs under the test are shown in Figure 4.13. During the test, a white

noise signal with valiance of 0.03 is applied to FC3 setpoint which is treated as a

disturbance to the process. Note that FC3 controller is used in this simulation only

to apply changes to the feed flowrate as a disturbance.

Using the proposed joint input-output identification method, the required sub-

space matrices are identified and trade-off curves for the three scenarios are ob-

tained and shown in Figure 4.14. A set of routine operating data has also been

collected which is used to determine the performance of the current cascade LQG-

PID control system as shown in the figure by the ‘*’ symbol. Based on the results,

(1 − 0.7/1.39) × 100 = 75% decrease in the output variance is possible with the

same control effort if LQG control is used, while re-tuning only the LQG controller

may provide up to (1 − 0.7/1.39) × 100 = 50% improvement and re-tuning PID

controllers may provide (1− 0.59/1.39)× 100 = 48% improvement. The curves also

show that at the current working point, increasing the control effort does not have

much effect on reducing the output variance.

To verify that the optimal performance as suggested by the LQG trade-off curves

can be achieved, the two optimal designed controllers for scenario 1 and 2 and the
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LQG control are also applied on the process using the identified subspace matrices.

The resulting performances are shown in the figure by ‘o’, ‘×’ and ‘+’ symbols,

respectively. These points are very close to the optimal curve although do not

exactly lie on the corresponding trade-off curves.

4.6 Concluding remarks

In this chapter, we investigated the problem of subspace LQG design and perfor-

mance assessment for control systems with a supervisory-regulatory structure usu-

ally resulted from applying advanced controllers on the regulatory control systems.

This type of cascade control implementation was briefly reviewed in this chapter

and compared to the Direct method of implementation. LQG control was employed

as the benchmark for performance assessment in this study. Three possible LQG

designs in a cascade control structure were studied. For each case, we proposed the

controller design and provided the expression of input and output variances which

led us to obtain the LQG trade-off curves. As a result, three trade-off curves could

be obtained which provided three possibilities for control performance improvement

depending on which controller (supervisory, regulatory or both) is chosen to be re-

designed or re-tuned. The derivations of the LQG and constructions of the trade

off curves were provided in the subspace framework. It was shown that the trade-

off curves can be obtained from certain subspace matrices without the need of an

explicit model. A closed-loop subspace identification method was provided based

on the joint input-output identification approach to estimate the required subspace

matrices from closed-loop data. A simulation on a SISO example in MATLABr

was used to elaborate the proposed method of performance assessment and verify

the proposed closed-loop identification method. Another simulation study using

MATLABr and HYSYS was also performed on a multivariate process which pro-

vided more realistic application results.
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4.7 Appendix A

Lemma. The following relation holds for Lu and Lc2
y :

[I + LuL
c2
y ]−1 = [I + Lc2

y Lu]
−1

Proof. We show that the above relation holds for any two matrices which have

the same structure as Lu. Consider the following 4× 4 generally defined matrices:

M1 =




a 0 0 0
b a 0 0
c b a 0
d c b a


 M2 =




e 0 0 0
f e 0 0
g f e 0
h g f e




Now, simple matrix multiplication shows

M1M2 = M2M1

=




ae 0 0 0
be + af ae 0 0
ec + fb + ag be + af ae 0
de + fc + bg + ah ec + fb + ag be + af ae




Therefore, we have

[I + M1M2]
−1 = [I + M2M1]

−1

This result can be easily extended for any other size of the matrices.
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Figure 4.13: Supervisory and regulatory control actions and process outputs under
RBS test.
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Chapter 5

Subspace approach to
identification of step response
model from closed-loop data

5.1 Introduction

Motivations: Most system identification methods, particularly the subspace iden-

tification method, estimate state space models or equivalent parametric models.

Practical process control applications, such as tuning of PID or design of MPC,

however require nonparametric models particularly the step responses. It is often

necessary to convert the parametric models to the nonparametric ones. Practical

experiences have shown such a conversion can often result in unexpected results

including even a wrong sign of the process gain. It is well known that one of the

subspace matrices obtained from the intermediate step of subspace identification

contains process impulse response coefficients. Can we directly estimate the step

response model from this matrix? Can this direct extraction of the step response

models be more reliable than the conventional approach? With these questions

in mind, this chapter explores a practical solution to estimation of step response

models from closed-loop data directly.

Subspace identification approach has found its applications not only for process

modeling but also in other areas of control engineering such as predictive control

[29, 54, 102] and controller performance assessment [43, 53]. In many recent novel

applications of subspace identification methods, the complete procedure of subspace

identification is not required, but only the first step which is the estimation of the

intermediate subspace matrices is needed. In other words, these applications only

need the process impulse response coefficients embedded in these subspace matrices.

This approach is often called as “model-free” approach in the literature.

In this regard, direct estimation of the process step responses from closed-loop

data can be considered as a useful application of subspace identification in practice.
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This application has a close relation to the subspace predictive control. The results

are specially useful for MPC controller design or model validation form closed-loop

data.

The step response model of the process can be easily obtained from the esti-

mated impulse response coefficients by integration. However, more than one set of

the impulse response coefficients are contained in the estimated subspace matrices.

Therefore, it is important to make the best use of all the estimated parameters for

the step response calculation. A proper estimation of the step response can be ob-

tained through weighted average of estimated impulse response coefficients if their

variances are available.

The particular subspace matrix of interest in this study, which is denoted by Lu,

contains a series of impulse response coefficients in a Toeplitz structure

Lu =




D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0
CA2B CAB CB · · · 0
· · · · · · · · · · · · · · ·
CAN−2B CAN−3B CAN−4B · · · D




(5.1)

The process step responses can be obtained by integration over these impulse

response coefficients. Normally, because of the noise effect, the estimated L̂u does

not have the above Toeplitz structure. Each column consists of a finite number

of impulse response coefficients and the matrix provides N different sets of the

impulse response coefficients with decreasing lengths. In fact, the matrix contains

N estimates for the first impulse response coefficient, N−1 estimates for the second

coefficient and so on. The question which motivated this study is how to properly

use all the coefficients provided in this matrix.

A simple answer is to take average over the diagonals for each coefficient. In

this paper, we show that there is a more efficient approach to solve this problem.

This approach requires the element-by-element variance calculation of the above

subspace matrix. We shall discuss this issue with details in the following sections.

The asymptotic properties of different subspace identification methods have been

studied in the past decade. Open-loop identification methods have received more

attention in this regard [5, 6, 7, 8, 9, 11, 17, 19, 23, 35, 49, 51, 81]. The asymptotic

distribution for the MOESP-type methods has been established in Bauer and Jans-

son (2000) [11] and extended to more general cases in Jansson (2000) [49]. Discussion

on the influence of past and future horizons as well as the weighting matrices on the

asymptotic variance can be found in Gustafsson (1999) [35], Jansson (1997) [48],

Bauer and Jansson (2000) [11] and Chiuso and Picci (2003) [17]. The Asymptotic

analyses for state approaches such as Canonical Variate Analysis (CVA) [63, 64]
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and CCA [78] were presented by Bauer (1998, 1999, 2000) [5, 9, 10], Buaer and

Ljung (2002) [7] and Chiuso (2007) [16]. Similar discussion on N4SID can be found

in Bauer (1998) [5] and Chiuso and Picci (2004) [19]. A detailed review on the

asymptotic properties of the open-loop methods is provided in Bauer (2005) [8].

Some authors have provided the results of statistical analysis on the closed-loop

subspace identification. In particular, Chiuso and Picci have explored this issue in a

series of papers for different closed-loop methods [15, 16, 18, 20, 22, 23, 29] including

the SSARX method by Jansson (2003) [50], the innovation estimation method of

Qin and Ljung (2003) [83] and the Whitening filter or predictor-based approach [20].

The main focus in most of the above mentioned studies is on the asymptotic

properties of the estimated system matrices. For this purpose, the framework of

stochastic systems and stochastic realization theory have been employed extensively.

In this paper, we are concerned with the variance of the estimated impulse response

coefficients for practical applications, so we will avoid using the complex mathemat-

ical notations. Furthermore, the closed-loop method of interest in our work is the

joint input-output identification method of Chapter 3 which divides the closed-loop

problem into two open-loop identification problems and makes the analysis more

straightforward.

It should be noted that the previous studies do not provide the element-by-

element variance for the subspace or system matrices, as provided in this paper. For

this purpose, we present a sequential version of the joint input-output identification

method based on the idea of enforced casual modeling [81].

This chapter is organized as follows: in Section 2, a brief review on the joint

input-output subspace identification of Chapter 3 is provided. Section 3 presents

the main results the joint input-output method and the variance calculation for the

impulse response coefficients. Section 4 provides the results of two Monte-Carlo

simulations and two experimental application of the proposed method. Concluding

remarks are given in Section 5.

5.2 A review of the joint input-output identifica-

tion

This section provides a review of the joint input-output closed-loop identification

method of Chapter 3 for which a modified version will be presented in the next

section.

This method provides a direct estimation of process and disturbance Markov

parameters in subspace matrices Lu and Le. The following is a brief review on the

method. In the closed-loop system of Figure 5.1, two separate open-loop models can

be defined: a model from setpoint (rt) to the output (yt) and the other one from
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(rt) to the controller output (ut). Similar to Equation (2.19), these two systems can

be presented by the following input-output relations:

Figure 5.1: A typical closed-loop process.

Yf = LY W yr
p + LY RRf + LY EEf (5.2)

Uf = LUW ur
p + LURRf + LUEEf (5.3)

where:

W yr
p =

(
Yp

Rp

)
, W ur

p =

(
Up

Rp

)
(5.4)

Based on this method, two lease squares estimation should be performed

(L̂U L̂UR) = Uf

(
WU

p

Rf

)†
(5.5)

(L̂Y L̂Y R) = Yf

(
W Y

p

Rf

)†
(5.6)

Ûf and Ŷf are found by the orthogonal projection of the row space of Uf and Yf .

Then, the estimation of the innovation sequence is performed as follows:

êf = Yf (1 : m, :)− Ŷf (1 : m, :) (5.7)

After constructing Êf by the use of êf , LUE can be estimated as:

L̂UE = (Uf − Ûf )Ê
†
f (5.8)

Finally, L̂u and L̂e are estimated by

L̂u = L̂Y R(L̂UR)−1 (5.9)

L̂e = −(L̂UR)−1L̂UE (5.10)

In the next section, we present a modified version of this joint input-output

identification method that breaks the problem into N separate least squares for

which the variance evaluation is provided.
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5.3 A modified method and variance calculation

The two least squares in (5.5) and (5.6) are actually being used to solve two open-

loop identification problems, so the variance of estimations can be obtained for the

elements of L̂UR and L̂Y R (to be discussed shortly). However, because of the matrix

inversion and matrix product in equation (5.9), the element-by-element variance

evaluation for L̂u is too complex for practical use.

The purpose of this study is to provide a proper method to use the estimated

impulse response coefficients, to reduce the influence of the noise. Because of the

above mentioned complication in the variance evaluation of L̂u, we take an alter-

native approach to solve the problem. Assuming the variance of estimation for all

elements in L̂UR and L̂Y R is available, one may first refine these matrices by proper

variance-based weighted averaging and then use (5.9) to calculate L̂u. In this way,

L̂UR and L̂Y R have the Toeplitz structure and the final L̂u estimated from Equation

(5.9) will also have the Toeplitz structure. Therefore, the variance calculation for

L̂u is no longer required. Note that this approach is in fact more effective, since it

attenuates the noise effect before it propagates to L̂u through Equation (5.9).

For this purpose, we employ the idea of casual subspace model identification of

[81] to present a sequential version of the above joint input-output identification

method for which the element-by-element variance evaluation can be performed.

5.3.1 Sequential joint input-output identification with en-
forced casual modeling

As explained, the problem of interest narrows down to variance calculation for all

the elements in L̂Y R and L̂UR. For this purpose, we break Equations (5.2) and (5.3)

into N row equations to estimate each row of LY R and LUR by a separate least

squares. Taking this approach not only makes it possible to calculate element-by-

element variance of L̂Y R and L̂UR, but also provides the possibility to remove the

non-casual input terms from the estimation. These terms are conveniently included

in the second term of the right hand side of Equations (5.2) and (5.3) for performing

subspace projections. The coefficients of these non-casual terms should be zeros

theoretically. However, their presence increases the number of model parameters

to be estimated and thus results in higher variance. This idea is elaborated in the

open-loop subspace identification approach with enforced causal models by Qin et.

al. (2005) [81]. The authors showed that enforcing casual models decreases the

variance in the estimation of subspace matrices. However, they did not provide the

variance for each element in the subspace matrices.

In the following, we provide the element-by-element variance for L̂Y R and L̂UR

which are then used to improve the step response estimation. This analysis can also
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provide the variance of estimation for L̂Y and L̂U . Since the variance expression for

L̂Y R and L̂UR follow the same procedure, we provide the detailed analysis only for

LY R. First, we consider the case of single-input single-output process. Based on the

subspace definitions given in Section 2, Equation (5.6) can be expressed as




yN · · · yN+j−1

yN+1 · · · yN+j

...
...

...
y2N−1 · · · y2N+j−2




=




l1,0 · · · l1,N−1 l1,N · · · l1,2N−1

l2,0 · · · l2,N−1 l2,N · · · l2,2N−1

...
...

...
...

...
...

lN,0 · · · lN,N−1 lN,N · · · lN,2N−1







y0 · · · yj−1

...
...

...
yN−1 · · · yN+j−2

u0 · · · uj−1

...
...

...
uN−1 · · · uN+j−2




+

+




h
(1)
1 0 · · · 0

h
(1)
2 h

(2)
1 · · · 0

...
...

...
...

h
(1)
N

h
(2)
N−1 · · · h

(N)
1







uN · · · uN+j−1

uN+1 · · · uN+j

...
...

...
u2N−1 · · · u2N+j−2




+




g
(1)
1 0 · · · 0

g
(1)
2 g

(2)
1 · · · 0

...
...

...
...

g
(1)
N

g
(2)
N−1 · · · g

(N)
1







eN · · · eN+j−1

eN+1 · · · eN+j

...
...

...
e2N−1 · · · e2N+j−2




(5.11)

where h
(j)
i ∈ R1×1 (i, j = 1, 2, · · · , N), represents the jth estimate of the ith impulse

response coefficient in LY R. Our purpose is to find the variance of estimation for

ĥ
(j)
i . Using a similar notation, the elements of LY E are denoted by g

(j)
i ∈ R1×1. Note

that g
(i)
1 = 1.

The first row of Equation 5.11 can be re-arranged into the following standard

regression form:




yN

yN+1

...
yN+j−1




=




y0 · · · yN−1 u0 · · · uN−1 uN

y1 · · · yN u1 · · · uN uN+1

...
...

...
...

...
...

...
yj−1 · · · yN+j−2 uj−1 · · · uN+j−2 uN+j−1







l1,0

...
l1,N−1

l1,N

...
l1,2N−1

h
(1)
1




+




eN

eN+1

...
eN+j−1




(5.12)

Using a compact format yields

Y1 = X1θ1 + ε1 (5.13)

where the definitions of Y1 ∈ Rj−1,1, X1 ∈ Rj−1,2N+1, θ1 ∈ R2N+1,1 and ε1 ∈ Rj−1,1

can be simply inferred by comparing (5.12) and (5.13).

Equation (5.12) represents a linear regression problem with j − 1 equations and

2N + 1 parameters to be estimated. The variance of estimation for θ̂1 is given by

[69]

V1 , Cov(θ̂1) = σ2
ε1

(XT
1 X1)

−1 (5.14)
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where σ2
ε1

is the white noise variance and is estimated by

σ2
ε1

=

∑j−1
i=1 (yi − ŷi)

2

(j − 1)− (2N + 1)
(5.15)

The last element in Cov(θ̂1) provides the variance for the first estimation of the

first impulse response coefficient, ĥ
(1)
1 , as

Λ
(1)
1 = V1(2mN + 1 : 2mN + m, 2lN + 1 : 2lN + l) (5.16)

where MATLABr notation is used in (5.16).

Now, consider the second row in Equation 5.11. This equation can also be re-

arranged in the form of a linear regression as in Equation (5.17):




yN+1

yN+2

...

...
yN+j




=




y0 · · · yN−1 r0 · · · rN−1 rN rN+1

y1 · · · yN r1 · · · rN rN+1 rN+2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

yj−1 · · · yN+j−2 rj−1 · · · rN+j−2 rN+j−1 rN+j







l2,0

...
l2,N−1

l2,N

...
l2,2N−1

h
(1)
2

h
(2)
1




+




g
(1)
2 eN + eN+1

g
(1)
2 eN+1 + eN+2

...

...

g
(1)
2 eN+j−1 + eN+j




(5.17)

Similar to (5.13), the compact form of Equation (5.17) can be derived as

Y2 = X2θ2 + ε2 (5.18)

where Y2 ∈ Rj−1,1, X2 ∈ Rj−1,2N+2, θ2 ∈ R2N+2,1 and ε2 ∈ Rj−1,1.

Equation (5.18) is a linear regression with j−1 equations and 2N +2 parameters

and the last two parameters, h
(1)
2 (the second estimate of the first coefficient) and

h
(2)
1 (the first estimate of the second coefficient), are of interest here. However, the

residual of regression (5.17), ε2, is not white. Therefore, the variance of estimation

must be calculated by [87]

V2 , Cov(θ̂2) = (XT
2 X2)

−1XT
2 Rε2X2(X

T
2 X2)

−1 (5.19)

where Rε2 ∈ Rj−1,j−1 is the covariance matrix of the non-white noise. The variance

of estimation for ĥ
(1)
2 and ĥ

(2)
1 is given by

Λ
(1)
2 =V2(2mN + 1 : 2mN + m, 2lN + 1 : 2lN + l) (5.20)

Λ
(2)
1 =V2(2mN + m + 1 : 2mN + 2m, 2lN + l + 1 : 2lN + 2l) (5.21)
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Note that calculating Rε2 requires the knowledge of g
(1)
2 from the noise subspace

matrix LY E. This issue will be discussed in Remark 1. A simple approximation of

Rε2 can be obtained directly from the residual of the estimation. The residual ε2 is

estimated by

ε̂2 = Y2 −X2θ̂2 (5.22)

which can be used to estimate R̂ε2 .

Following the same procedure for the rest of the rows in Equation (5.11) results in

another N − 2 linear regressions, all with non-white residuals. For each regression,

the same calculation as in (5.19) provides the variance of the estimated impulse

response coefficients. Therefore, performing total of N least squares provides the

estimation of all non-zero elements in L̂Y R and their corresponding variances as well

as L̂Y .

The estimation of L̂U and L̂UR can also be obtained from Equation (5.3) in the

same way along with the variance of all parameters in L̂UR.

Remark 1. After the estimation of L̂Y , L̂Y R, L̂U and L̂UR, Equation (5.8) can

be used to estimate L̂UE. Similarly, L̂Y E can be estimated at this point. Therefore,

the required noise parameters, g
(j)
i , for the calculation of Rεi

are available.

Remark 2. Generalization of the presented analysis to the MIMO case does not

change the variance calculation procedure. For the case of a multi-input process,

the same number of regressions must be solved, but the size of unknown parameters

vector (e.g. θ1 or θ2) and the regressor increase. For the ith regression, we will

have θi ∈ R(l+1)N+l×1, because h
(j)
i is no longer scalar but has the dimension of

h
(j)
i ∈ Rl×1 and lk,i ∈ Rl×1 for i = N, · · · , 2N−1. The regressor size will also change

to Xi ∈ R(j−1)×l(N−1).

In the case of multi-output process, the number of least squares to be solved

increases from N to mN . Therefore, the same analysis can be used for the variance

estimation in the MIMO case.

Remark 3. Note that except for the first regression, the noise term is not

white for which the weighted least squares is required for the optimal solution. In

the presented method, these regressions are approximately solved by simple least

squares. In fact, this is a common approximation in most of the subspace methods.

Based on Remark 1, the knowledge of g
(j)
i ’s and the corresponding noise covariance

matrices, Rεi
, are available at this point which makes it possible to perform weighted

lease squares. This would improve the accuracy in the estimation of the impulse

response coefficients. It should be noted that in the improved case, the variance of
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estimation should be calculated by [69]

Cov(θ̂i) = (XT
i R−1

εi
Xi)

−1 (5.23)

From the computational point of view, this second step of weighted lease squares

doubles the number of regression equations to be solved, thus increases the compu-

tation cost.

Now, the estimate of L̂Y R and L̂UR and their corresponding element-by-element

variances are available. Consider the estimated L̂Y R and its corresponding variance

matrix as

L̂Y R =




ĥ
(1)
1 0 0 · · · 0

ĥ
(1)
2 ĥ

(2)
1 0 · · · 0

ĥ
(1)
3 ĥ

(2)
2 ĥ

(3)
1 · · · 0

...
...

...
...

...

ĥ
(1)
N ĥ

(2)
N−1 ĥ

(3)
N−2 · · · ĥ

(N)
1




(5.24)

Cov(L̂Y R) =




Λ
(1)
1 0 0 · · · 0

Λ
(1)
2 Λ

(2)
1 0 · · · 0

Λ
(1)
2 Λ

(2)
1 Λ

(3)
1 · · · 0

...
...

...
...

...

Λ
(1)
N Λ

(2)
N−1 Λ

(3)
N−2 · · · Λ

(N)
1




(5.25)

where each element in Cov(L̂Y R) represents the variance of estimation for the cor-

responding element in L̂Y R.

A weighted average of ĥi’s can be obtained by

have
i =

( ∑N−i+1
j=1 (Λ

(j)
i )−1/2

)−1 ( ∑N−i+1
j=1 (Λ

(j)
i )−1/2ĥ

(j)
i

)
(5.26)

This averaged value can be regarded as a better estimation of all hi’s in L̂Y R.

Substituting hi’s with have
i results in a Toeplitz structure for L̂Y R. Performing a

same procedure to refine L̂UR forces the final estimation of L̂u to be Toeplitz as

well.

Remark 4. Note that in practical applications, the non-Toeplitz structure of

the estimated L̂Y R and L̂UR could be not just because the noise effect, but also as

a result of time-varying process dynamics.

In the next section, we provide two Monte-Carlo simulations on SISO and MIMO

examples followed by the application results from two pilot-scale experiments to

evaluate the proposed method.
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5.4 Simulations and pilot-scale application

To evaluate the proposed method of this paper, we run Monte-Carlo simulations on

a univariate and a multivariate system. The results of application on a pilot-scale

Continuous Stirred Tank Heater (CSTH) and a pilot-scale four-tank process are also

provided in this section.

5.4.1 SISO Example

This example is the first example of Chapter 3 in which the system description is

given by

xt+1 =




0.6 0.6 0
−0.6 0.6 0

0 0 0.7


 xt +




1.616
−0.348
2.631


 ut −




1.147
1.520
3.199


 et

yt =
(−0.437 −0.504 0.093

)
xt − 0.775ut + et

A PI controller, [0.1 + 0.05/s], is used to control the process. The test signal

is designed by MATLABr command ‘idinput ’ with Nyquist frequency of 0.12 and

magnitude of 1. Variance of the input noise is 0.01.

The impulse response coefficients of the system are estimated using the proposed

sequential joint input-output identification method followed by a weighted averaging

step. The system step response then is calculated by integration. For the sake

of comparison, we also implement the original closed-loop subspace identification

method of [26] (as described in Section 2) as well as the ‘innovation estimation’

method of Qin and Ljung (2003) [83, 68] which provide direct estimation of the

subspace matrix Lu. Since the variance of impulse response coefficients in these

two methods is not available, simple averaging is used for the final step response

estimation. For a comparative study, we also simulate the representative closed-

loop identification algorithm [93, 94] and the CVA method, for which MATLABr

codes are available, although these latter two methods cannot provide the required

subspace matrix directly. For the last two methods, the step response coefficients are

calculated from the identified state space model. We run 50 Monte-Carlo simulation

using each method. The results are shown in Figures 5.2 and 5.3.

Figure 5.2 shows that consistency of the estimation as well as the lowest variance

is obtained using the proposed method. Figure 5.3 shows that the original method

of [26] and the method of [83] provide consistent estimation too, but with higher

variance. It also indicates that both the method of [93, 94] and the CVA method

deliver bias, although CVA provides lower variance. This is expected since CVA

normally applies to the open-loop identification.
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Figure 5.2: Monte-Carlo simulation results using sequential regressions followed by
weighted averaging of impulse response coefficients.

5.4.2 MIMO Example

Consider a 2×2 process with open-loop transfer function matrix Gp and disturbance

transfer function matrix Gl given as [45]:

Gp =

(
z−1

1−0.4z−1
0.5z−2

1−0.1z−1

0.3z−1

1−0.4z−1
z−2

1−0.8z−1

)

Gl =

(
1

1−0.4z−1
−z−1

1−0.1z−1

z−1

1−0.7z−1
1

1−0.8z−1

)
(5.27)

The following controller is implemented on the process:

Gc =

(
0.5−0.2z−1

1−0.5z−1 0

0 0.25−0.2z−1

(1−0.5z−1)(1+0.5z−1)

)
(5.28)

Similar to the previous example, 50 Monte-Carlo simulation runs are performed

by each of the methods and results are presented in Figure 5.4 and Figure 5.5,

respectively.

Similar to example 1, the proposed method of this paper provides higher perfor-

mance in the step response estimation over all other methods.

5.4.3 CSTH experiment

The process in this experiment is a continuous stirred tank heater (CSTH) and its

schematic is shown in Figure 5.6.

There are two controlled variables in CSTH, the water level inside the tank and

outlet water temperature. Manipulated variables are the cold water flowrate and

steam flowrate. The head of the water in the inlet pipe as well as the steam supply
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Figure 5.3: Monte-Carlo simulation results using four different methods of closed-
loop subspace identification.

pressure and temperature can be considered as disturbances. This process is under

PID control by DeltaV control system.

After some preliminary tests, two ‘RBS ’ signals are designed using MATLAB for

testing the process under closed-loop conditions. Signals are applied to the setpoint

of the two controllers and closed-loop data are collected with 5 seconds sampling

time and over 2 hours. The input and output of the process under the identification

test are shown in Figure 5.7.

The proposed method of joint input-output identification by sequential least

squares and weighted averaging of impulse response coefficients is implemented on

the collected data. The value of N is selected to be 50, so it provides the step

responses for 250 seconds. The results are presented in Figure 5.8 which verifies the

utility of the proposed method for this applications. The step responses between

different inputs and outputs have been captured by this method.

5.4.4 Four-Tank experiment

The Four-Tank process consists of four equally-sized transparent tanks with ori-

fices. The system also has two water pumps and split-valves, which determine the

distribution of water flow into the tanks. The two left and right flowrates are ma-

nipulated using the pumps and the levels of the lower tanks are controlled variables.
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Figure 5.4: Monte-Carlo simulation results using sequential regressions followed by
weighted averaging of impulse response coefficients.

Split-valves are fixed on 50%. A schematic of the process is shown in Figure 5.9.

Two ‘RBS ’ signals are designed using MATLABr to test the process under

closed-loop conditions. The process outputs and inputs under the test are shown in

Figures 5.10. Closed-loop data are collected over 90 minuets with sampling time of

5 seconds. The choice of N = 80 results in the step responses of length 400 seconds.

The results are shown in Figure 5.11 which demonstrate again the utility of the

proposed method for step response estimation in practical applications.

5.5 Concluding remarks

The problem of direct step response estimation from closed-loop data using sub-

space approach was considered. The joint input-output identification method was

employed. It is known that the intermediate subspace matrix containing impulse

response coefficients of the process provides N sets of impulse response coefficients

with different lengths. To use all the estimated impulse response coefficients for the

step response calculation, one requires the variance of all parameters individually to

perform a weighed averaging on them. A solution to this problem was proposed by

breaking the high-dimension linear regression step of the subspace identification into

a series of N one-dimension least squares from which the variance of estimation can

be obtained for each impulse response coefficient. Also, the non-casual input terms

which normally appear in the subspace identification algorithms can be avoided

by using this approach, which together with the weighted average of the impulse
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Figure 5.5: Monte-Carlo simulation results using four different methods of closed-
loop subspace identification.

Figure 5.6: A schematic of Continuous Stirred Tank Heater process.
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Figure 5.7: CSTH outputs and control actions under closed-loop ‘RBS’ test.
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Figure 5.8: Real and estimated step responses of CSTH process.

response coefficients yield in lower variance of the estimates. Two Monte-Carlo sim-

ulations were used to compare the performance of the proposed method with four

other closed-loop subspace identification methods. The results of two pilot-scale

experiment were also provided to verify this method for practical applications.
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Figure 5.9: Real and estimated step responses of CSTH process.
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Figure 5.10: Four-tank process outputs under closed-loop ‘RBS’ test.

97



0 100 200 300 400
−5

0

5

10

15

20
x 10

−3

to
 L

ef
t L

ow
er

 L
ev

el
 (

m
)

from Left flowrate

 

 

0 100 200 300 400
−0.005

0

0.005

0.01

0.015

0.02

0.025

time (sec)

to
 R

ig
ht

 L
ow

er
 L

ev
el

 (
m

)

0 100 200 300 400
0

0.005

0.01

0.015

0.02

0.025
from Right flowrate

0 100 200 300 400
0

2

4

6

8
x 10

−3

time (sec)

Real step response

Estimated step response

Figure 5.11: Real and estimated step responses of Four-tank process.
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Chapter 6

Conclusions

6.1 Concluding Remarks

The main contributions of this thesis can be summarized as follows:

• An insightful study on the mechanism of the open-loop subspace identifica-

tion method for the noise-free case was provided including a simple numerical

example of the regression analysis method which have not been provided in

any of the subspace identifications literatures.

• An alternative direct formulation of the joint input-output subspace identifi-

cation method was proposed for performance assessment based on the LQG

benchmark. This direct formulation enabled us to provide consistency analysis

for the proposed method. A practical approach for estimation of the required

number of rows in the data Hankle matrices was also derived. The result

was to offer a data-driven method to obtain consistent estimate of the LQG

trade-off curve.

• A subspace approach to obtain the LQG curve from closed-loop routine op-

erating data was provided for the case where a model of the process (not the

disturbance model) is available, such as in model-based controllers. Consis-

tency of the estimation was proven as well.

• The proposed method of subspace-based performance assessment was applied

on a pilot-scale Continuous Stirred Tank Heater (CSTH) process.

• The subspace LQG control was designed for control systems with supervisory-

regulatory structure for the objective of controller performance assessment.

Three possible scenarios for performance improvement was considered and the

LQG control was provided for all three cases. As well, the LQG trade-off

curve for each case was developed using certain subspace matrices without the

requirement of explicit models.
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• To complete the study, a closed-loop subspace identification method based on

the joint input-output identification approach was provided to estimate the

required subspace matrices and the noise covariance under the supervisory-

regulatory control.

• A sequential implementation of the closed-loop joint input-output subspace

identification was proposed which was used to estimate the process step re-

sponse model directly from closed-loop data. The variance calculation for all

elements in the required subspace matrix was provided and used for weighted

averaging of the estimated impulse response coefficients resulting in a more

accurate estimation of the step response model. Use of the complex mathe-

matical tools was avoided to make the results applicable for practical applica-

tions.

• The proposed method of direct step response model estimation was imple-

mented on the pilot-scale CSTH process and a pilot-scale four-tank process.

• Two Graphic User Interfaces (GUI) were generated for closed-loop subspace

identification and controller performance assessment based on LQG bench-

mark.

6.2 Recommendations for future work

Research initiatives on the topic of the current research and the following related

field are worthy of future investigations:

• An insightful study on the mechanism of the noise-free subspace identification

method was provided in this thesis. Generalization of this study to the case

of noisy data can be very useful to improve the performance of the subspace

identification methods.

• Since there is some estimation error in any identification method, using the

results of identification to obtain the LQG curve leads to some uncertainty

in the trade-off curve. Very few available methods for quantification of this

uncertainty have relied on very complex mathematical tools. Initiatives can

be taken to propose simpler analysis regarding this problem.

• One practical approach to estimate an upper bound for the number of rows

in the data Hankle matrices (N) from closed-loop data was provided in this

thesis. Since the identification results depend on this value, it is worthwhile

to investigate how an optimal value of N can be estimated for closed-loop

subspace identification.

100



• The proposed controller performance assessment method for the supervisory-

regulatory control systems is limited to linear controllers, but nonlinear con-

trollers like constrained MPC and PID controllers with limited output are

common in industry. Development of a subspace method applicable to the

constrained controllers would provide a more practical tool.

• The element-by-element variance calculation was provided for a modified ver-

sion of the joint input-output identification in this thesis. The results of this

study improved the step response model estimation from closed-loop data.

This type of analysis may also be performed for some of the direct closed-loop

subspace identification methods.
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Appendix A

Graphic User Interfaces

For the purpose of generalizing some of the algorithms presented in this thesis,

we have generated two Graphic User Interfaces (GUI) for multivariate controller

performance assessment and closed-loop subspace identification. In this appendix

these two GIUs are briefly introduced.

Graphic user interfaces have provided some degree of simplicity in using MATLAB-

coded algorithms. Many new released MATLAB toolboxes provide this facility.

Based on this fact and to follow the previous efforts made in the Computer Process

Control (CPC) group in this regard, we generated two GUIs based on the material

of this thesis. The first one called ‘LQGPA’, can be used for controller performance

assessment using LQG benchmark and the second one is called ‘CLsysID’ and pro-

vides a tool for closed-loop subspace identification. We review the provided options

by each GUI in the following.

A.1 LQGPA

LQGPA has been produced to provide different options for multivariate controller

performance assessment based on the LQG benchmark. A snapshot of this GUI is

shown in Figure A.1. Different modes of operation have been considered in this tool

and it can be used both in simulation and industrial studies There are four option

available in this GUI in term of the model/data requirements. If a complete model

of the process and disturbance dynamics is available, it can be used for to solve the

LQG problem and provide the trade-off curve. Identification data collected from

the process under open-loop or closed-loop condition can also be used to generate

the LQG trade-off curve. In the case where a model-based controller is in use, the

available controller model (normally, only the process model) and a set of routing

closed-loop operating data (no designed excitations are required) is another option

to estimate the LQG curve. This information is used in the GUI to estimate the

noise model and the noise covariance matrix for performance assessment.
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Different performance indices are calculated based on the current control perfor-

mance. The overall minimum variance index is calculated for each output as well

as the overall least error index, overall least cost index and global cost index [41].

All simulation models or data must be changed to a ‘compact’ format before

being used in the tool. A function is provided with the GUI to perform this trans-

formation. Some SISO and MIMO models and data sets have been included in the

toolbox.

Figure A.1: A snapshot of the LQGPA.
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A.2 CLsysID

CLsysID has been produced for the purpose of closed-loop multivariable process

identification using subspace identification. A snapshot of this GUI is shown in Fig-

ure A.2. The methods of closed-loop joint input-output identification presented in

Chapter 3 has been implemented in this GUI. The first step of estimating the sub-

space matrices has been replaced by the sequential least squares approach proposed

in Chapter 5. Final system matrices are estimated using the method of Knudsen

(2001) [57] reviewed in Chapter 2. The model order is estimated by the GUI, but

there is an option for the user to change the order. An upper bound on the number

of rows in the data Hankle matrices, N (The past and future horizons) is also es-

timated and used in the GUI based on the correlation analysis on closed-loop data

(see Chapter 3), but the user is also allowed to make changes in this parameter

which may results in some improvements. A reasonable range for this parameter is

provided for the the user.

The final estimated model can also be refined by PEM method for possible

improvement. Model validation options based on prediction fit and residue test are

provided by the GUI.

Direct estimation of the process step responses, as discussed in Chapter 5, is also

available. Continuous-time models can also be fitted to the estimated step response

coefficients using nonlinear regression method available in the MATLAB statistics

toolbox. Continuous-time first-order plus time-delay (FOPTD) or second-order plus

time-delay (SOPTD) models are fitted to the step response coefficients based on

an automated procedure. This type of continuous-time models are used in some

industrial MPC packages. A snapshot of the estimated step response coefficients

and the fitted continuous-time models are shown in Figure A.3 for a 2× 2 example.
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Figure A.2: A snapshot of the CLsysID.
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Figure A.3: An example of the continuous-time step response model estimation
using CLsysID.
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