Il e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des sevices bibliographiques

335 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Yout the Vol reforence

Our e Noltre 1ofoonce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumisg au
microfilmage. Nous aveiig fout
fait pour assurer une wiialité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualit¢ d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta

Environment Editor

by

-/ Qinlin Tang

LN

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Masters of Science

Department of Computing Science

Edmonton, Alberta
Fall 1992

Ly |

National Library Gibliothéque nationale

of Canada du Canada

Canadian Theses Service Service des théses canadienaes
Ottawa, Canada :

KTA ON4

The author has granted an irevocable noa-
exclusive licence allowing the National Library
of Canada to reproduce, fodn, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons. |

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
Substantial extracts from it may be printed or

otherwise reproduced without his/her per-
mission.)

L'auteur a accordé une licence irévocable et

“non exclusive permettant & la Bibliothdque

nationale du Canada de reproduire, préter,
distribuer ou vendre des coples de sa thése
de quelque manidre et sous quelque forme
que ce soit pour metire des exemplaires de
cette thése a 1a disposition des personnes
intéressées.

L'auteur consesve ta propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle<ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation,

ISBN ©@-315-77235-2

(el

Canad4

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Qinlin Tang
TITLE OF THESIS: Environment Editor

DEGREE: Masters of Science
YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to UNIVERSITY OF ALBERTA LIBRARY to
reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis not exten-
sive extracts from it may be printed or otherwise reproduced without the author’s
written permission.

Perinanent Address:
#42, 11008-88Ave.
Edmonton, Alberta
Canada, T6G 0Z2

Date: /}7) p‘[30 ? =}

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research, for acceptance, a thesis entitled Environment Editor
submitted by Qinlin Tang in partial fulfillment of the requirements for the degree
of Masters of Science.

..................

77 >
= S
: ././‘./‘./.W?D.O. ST
#7_ Dr. Jim Hoover

Y/

Dr. Allen Carlson

Abstract

Researchers believe viriual reality environments with aesthetic implications will open
a new dimension for arts by changing the way art is created and experienced. This
thesis is concerned with the issues related to virtual reality as a new artistic medium.

RAG, which is a recently proposed artistic virtual reality system, has been
introduced to explore methods and tools for building virtual reality applications in
arts. The cnvironment editor, which is one of the components of this system, has
been implemented in this thesis.

The environment editor is a software tool that provides artists with an easy-
to-use design tool where the artists design and preview their art works: the virtual
cnvironments. The objects in a virtual environment are organized in a hierarchical
manner. The DataGlove is used in the environment editor as a 3D interaction device

for directly manipulating the objects in a virtual environment.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Mark Green, for his support
and inspiration. His vision and dedication lay the ground work of this thesis. | am
also grateful to the members of my committee - Dr. Jim Hoover and Dr. Allen
Carlson for their evaluation of this thesis. I would like to acknowledge Chris Shaw
for the videotaping and Robert Lake for providing the nice working environment in
the graphics lab. Exceptional thanks are due to Yigong Wang. whose advice guided
this thesis from its onset. Without his support, my task would have been more
difiicult. Above all. I am deeply indebted to my parants, brother and sister for their
love, understanding and patience, for staying so close to me, and for being such good

listeners.

To my parents

Contents

1 Imntroduction

1.1
1.2
1.3
1.4
1.5

2.1

2.2

24
2.5
2.6
2.7

What Is Virtual Reality?

Survey of Previous Work on Virtual Reality

..............

................

The Future Possibility of Virtual Reality
RAG - A Virtual Reality Application in Arts

Thesis Outline

...............................

A Virtual Reality Environment - RAG

Terminology

2.1.1 Event and Behavior

........................
..........

...............................

System Architectureof RAG
Object Modeling Language (OML)
Object Compiler
Environment Editor
Environment Compiler
The Viewing Program
2.7.1 Event Determination

2.72 BehaviorExecution

28

2713 ImageGeneration

274 Sound Production
Delivery Vehicle
2.8.1 Deliverv Vehicle Hardware
282 Delivery Vehicle Software

3 Environment Editor and Its Implementation

3.1

3.3

3.4

3.5

The Working Space
LD Assumptions. L
3.1.2 Setup of the Working Space
Overview of Environment Editor Design
3.2.1 Functions of Environment Editor
3.2.2 User Interface Layout of the Environment Editor
Space Editor
3.3.1 Space Boundary Editing
332 Space Content Layout
3.3.3 Event-Behavior Table.

3.3 3.1 Structure of Event-Behavior Table

3.3.3.2 User Interface to the Event-Behavior Table
334 Space Modification,
Object Editor
3.4.1 Object Hierarchyin FDB
3.4.2 Generation of Object Instances
3.4.3 Master Editing and Instance Creation.
Environment Editing Subsystem
3.5.1 Environment Creation and Modification

3.5.2 OtherOperations

4 Manipulation of 3D Objects 44

4.1 Methods for Editing Objects, 2B
4.1.1 DataGlove 15

4.1.1.1 Editing Path3 Parameters, 15

4.1.1.2 Setting Transformations 16

4.1.2 Grids and Potentiometers IR

4.1.3 Buttons and Scrollable Lists 1))

4.1.4 DataGlove vs. Potentiometers fl

4.2 Grabbing Operations 51
42,1 TheProblems 52

4.2.2 The Grabbing Algorithm 53

4.3 Space Boundary Constraints 6

5 Conclusions and Future Work 60
A The Database Schema 63
B User Manual 66
B.1 Environment Creation 66
B.1.1 Useof ObjectEditor 70

B.1.2 Useof Space Editor 7l

B.1.3 Environment Layout 72

B.2 Environment Modification

List of Figures

[

6

-1

8

9

10

The system architecture of RAG.o oo v ee oo 14
‘The delivery software. oo oo 22
The setup of the environment coordinate system. 26
The layout of the environment editor.« . oo oo v e el 30
The event-behaviortable. oo v e v 35
The high level structure of the environment database. 38
‘['he low level structure of the environment database. 39
The grabbing algorithm.o oo 54
The high level menu structure of the environment editor. 67
The menu structure of the object editor.o v v e 68

The menu structure of the space editor.o oo oo e e 69

Chapter 1

Introduction

Over the past few years computer hardware costs have fallen dramatically; software
costs have also decreased. although less rapidly than hardware. What remains to be
addressed is the optimization of the interface between the user and the computer and
the maximization of user efficiency. The concept of virtual reality provides the user
with a more communicative interface with the computer. Virtual reality environments
being developed are aimed at making computers more responsive to human modes of
communication including gestures, postures, speech and sound.

Researchers believe that virtual reality environments with aesthetic implica-
tions will open a new dimension for art by changing the way art is created and
experienced [Kru83]. Artistic virtual reality environments can perceive human activ-
ities and respond through aesthetically pleasing images and sounds. The beauty of
an art work in the virtual reality form is experienced throngh the interaction process
between the viewer and the virtual r~ality. The blueprints for virtual reality in art
have been drawn up. But what is the right approach to building virtual reality ap-
plications in the arts? This thesis is a step towards providing a tool for constructing
artistic virtual reality environments, the model of which is conceived at University of

Alberta, and explores the issues related to this process.

1.1 What Is Virtual Reality?

Many ideas of virtual reality first came from science fiction. In science fiction, virtual
realities are realistic models of the real world created by computers and composed of
sensing, display and control systems. In principle, the virtual reality environment in
seience fiction can respond to a viewer’s position, voice, smell and taste. It can also
respond to the viewer’s movement, posture and gesture.

IHowever, technology won't catch up with the science fiction writers’ imagj-
nation for several years. With the recent hardware advances, such as the advent of
the DataGlove and EyePhone, computer scientists are in the position to fully explore
virtual reality applications. The DataGlove and EyePhone are considered to be the
standard input and output devices in virtual reality. The DataGlove is an instrument
using fiber-optics to measure bend degree of a single finger joint and a sensor to de-
termine the hand’s position. The DataGlove has exciting potential in virtual reality
environments as it combines the precision, control and agility of the human hand.
The EyePhone is a piece of equipment that is mounted in front of the eyes. It uses
\vo television sets, one for each eye. Each eye is provided with a slightly offset view
of the same image generated by computer. By adding depth perception, the user can
sec stereo pictures through the EyePhone. There is also a sensor on the top of the
EycPhone that is used to trace the user’s head position. With the aid of this sensor,
the user can enjoy the illusion of scanning a virtual panorama as he moves his head.
I"hus, the EyePhone achieves a dynamic stereoscopic effect of a 3D environment. The
combination of the DataGlove and EyePhone can provide the user with the sense of
reality in the virtual environment. This kind of environment is called Virtual Reality.

From the computer scientist's point of view, virtual reality is a new type of user
interface. The evolution of the user interface technology has occurred in three stages.
Before the 1980’s, user interfaces were basically command line interfaces. The input

devices such as keyboards and single window display screens were usually restricted

to one dimensional text input. Through out the 1980's, user interface design has
been dominated by the two dimensional metaphor. This metaphor cousists of the
multi-window display screen and two-dimensional input device - the mouse. The user
interface design technology at this stage is suitable for office tasks like documentation
processing and programming [Gre T].

However, a wide range of applications, particularly those that can be repre-
sented in 3D, still call for a more advanced user interface technology. For example,
scientists want to visualize a huge amount of data from satellites; architects want
to walk through the prototypes of their designs to get feedback before actually con-
structing them; chemists want to “be there” inside a molecule to do their experiments.
Obviously, 3D user interface technology has to be explored to satisfy the needs of these
types of applications. Virtual reality was born for this purpose, providing a means
for the user to interact with the computer in a more intuitive and direct format than
ever before. Therefore, virtual reality is also a 3D user interface that places the user
in the 3D environment and allow the user to directly manipulate the environment.

Virtual reality has three key components: image viewing, behavior and in-
teraction. Visual images help the user to interpret the information being presented
by the computer. These images may represent real objects, such as building frames,
or abstractions such as patterns of fluid flow, or micro-world phenomena, such as
protein structure. Virtual reality is created, it does not just mimic reality. It can go
beyond reality, by modeling in concrete form abstract entities such as mathematical
equations. Real-time image production is essential to virtual reality since the virtual
environment needs to provide the user with the visual sense of response to his or her
interaction. These images behave the way the objects or abstractions they represent
would behave. Behavior modeling needs heavy computation in many cases, becanse
it often involves solving extensive sets of equations over and over again. Finally, the

uscr interacts with a virtual reality environment in a direct way by moving around

and observing the environment from many different angles, pointing and grabbing

virtual objects in the environment, even by talking with the environment.

1.2 Survey of Previous Work on Virtual Reality

Mimicing reality such as in flight simulation systems foreshadowed virtual reality.
Clomputers simulate the sound, force and motion that approximate the aerodynamic
hehavior of an airplane, and computers also provide the images corresponding to the
movement of the airplane. The pilot, therefore, can be trained in such a simulated
airplane flying over virtual terrain. The flight simulation system shows the ability
of modern computer technology to mimic reality. It is natural to speculate if it is
possible to extend the simulation capabilities of computer technology to solve other
problems.

The Walkthrough project conducted by Frederik P. Brooks and his colleagues
al University of North Carolina at Chapel Hill is one of the early virtual reality
systems [Bro86]. The Walkthrough project aims at providing a tool in which virtual
buildings, designed but not yet constructed, can be explored by “walking through”
them in order to refine the specification. The system allows the viewer to navigate
through the virtual building, experiencing new views instead of viewing the building
{rom a stalic position, or from a pre-planned cruise path in order to obtain a deeper
understanding of the spatial relations of the architecture.

The system structure of the Walkthrough system consists of six modules. The
builder subsystem is responsible for constructing and modifying the building model.
The master model is a relational database system containing the building’s compo-
nents which are inputed by the Builder module. The master model is organized in an
casy-to-manipulate form. The working model is another database constructed for fast

view generation, The viewer instancer module makes views from the working module

and also drives the dispiay devices. The view specifier module is the user interface of
the system. Finally, the toolbox module contains algorithms and data manipulation
routines needed by the other modules.

Traditional CAD-CAE systems for building architecture basically assist the
designer in producing the building structure. The significance of this work is that
it helps the designer to visualize and explore buildings in a 3D environment while
he is in the design stage. However, the system does not provide enough interactive
capabilities for the viewer to directly manipulate the prototype of the buildings during
the viewing process.

Virtual reality is not restricted to simulating a model of the real world, but
can also be a touchable model of the systems that cannot ordinarily be tonched
such as the micro-world. Why do we need to see and feel a untouchable world?
Psychological research shows that adding a haptic element to a displayed system can
enhance the perception of the described system [FPJB*90]. For instance, imagine
a chemist examining two molecules: an enzyme and its substrate. He knows the
structure of both the enzyme and its substrate and the two molecules are displayed
on the screen. The chemist wants to find out what part of the enzyme interacts with
what part of the substrate. Imagine being able to feel the shape of the enzyme, the
chemist probes the active point of the enzyme with his finger. The enzyme thus exerts
a strong chemical attraction on the substrate. The chemist can instantly feel the pull
of the interatomic forces that join the two molecules. Can this imagination be true?

The GROPE system, which is aimed at achieving the effects described above, is
a haptic display system for molecule chemistry that has been developed at UNC. The
GROPE system has three generations. The first generation GROPE-I is a 2D force
feedback system for teaching about force fields [BB71] in Physics. The second genera-
tion: GROPE-1I is a 3D system which can evaluate the molecular forces [Bro77]. The

new generation, GROPE-III enables chemists to see and feel the interactions between

molecules, such as an enzyme and its substrate [FPJB+90).

The Walkthrough system and the GROPE system basically use gestures to
\iteract with the environment. In what other ways might a user want to interact
with a virtual reality besides non-verbal manipulations of the virtual world such as
gesturing? Talking to a computer seems to be more convenient. More than ten years
ago Richard A. Bolt of the MIT demonstrated the feasibility of voice recognition in
computer interaction [Bol80] [Bol31].

Bolt’s voice recognition experiment was conducted in a media room that had
a wall-sized screen for display and a number of input devices for gesture input. The
experiment was designed to use speech to manipulate an information database in-
stead of typing in the commands from a keyboards. As the computer needs more
precise description for the pronouns such as “this” or “that”, some pointing gestures
were designed to aid the computer in handling the pronouns. Bolt’s system is an
experiment concerning ditect means of computer interaciion which is one aspect of
the virtual reality.

Voice reccgnition systems have become more and more sophisticated through
the 1980%s. IBM Corporation’s Thomas J. Watson Research center has built a system
with a vocabulary of 20,000 words. This system is able to distinguish between words
with very similar propunciation. However, the technology for voice recognition has
not yel been integrated into most virtual reality environments.

The ability of modern computers to create aesthetically pleasing images and to
orchestrate the sound, animation and interaction between the user and the computer
shows the great potential of the applications of virtual reality in arts. The earliest
application of virtual reality in arts is that of Myron Krueger. In his book “Artificial
~ Reality” [Kru83), he proposed that virtual reality, which he called artificial reality,
had the potential to become a new aesthetic medium by changing the viewer’s role

from passive observer to active participant.

An experimenta] system called VIDEOPLACE was conceived in 1969 by Krueger's
group, and has been undergoing continuous implementation since 1974 [MWIKH85] [Kru91].
The VIDEOPLACE system is built in a dark room with a large video projection screen
on one of the walls and a video camera mounted below the screen. The user stands
in front of the video projection screen during the experiments. The user’s image is
viewed by the video camera and joined with other graphic objects displayed on the
projection screen. The graphic objects have behaviors which react to the movements
of the user’s image in real-time.

The latest version of the VIDEOPLACE system is able to create the real-
time interactions between two people in different locations. A second system called
VIDEODESK has been developed. It consisted of a light table with a camera
mounted above and aimed down at the table’s surface where the computer moni-
tor resides. An image of the user’s hands is displayed on the screen. VIDEOPLACE
and VIDEODESK are connected together so that the interactions can be shared by
the users in the two environments [Kru91).

The VIDEOPLACE system is quite different from other virtual reality systerus
in the way that the user does not have to wear any interaction devices in order to
interact with the virtual reality as other systems do. This demonstrates an alternative

approach to the design of virtual reality applications.

1.3 The Future Possibility of Virtual Reality

Looking back in history, when television first came out, it was viewed as a toy that
artists did not pay much attention to. In the past decades, however, television has
exerted a great influence on our life. Virtual reality is only in its carly stage. People
have not figured out how wide the applications of this technology can be. But like

television, the new iechnology will predictably exert a tremendous influence on our

-3

daily life in the near future.

In an ideal virtual reality environment, the user will have various ways to com-
municate with this environment. He or she can see the environment, can hear sound
from the environment, or even can smell or taste virtual objects in the environment.
Virtual reality will be a new universe where some aspects of reality are enhanced since
many of the constraints and limitations of reality can be overcome while others are
simply deleted.

Some people imagine that one day humans will be able to create a perfect
world to live in by using virtual reality technology. They might be able to stay at
home and simply press a button to switch on virtual reality. Then they might travel
{0 a tropical beach, have a meeting with colleagues there or enjoy the sun. People do
not actually leave their real homes when all these things happen. They might even
be able to walk into the television and interact with the characters on a television
show. They might also be able to visit a virtual moon while experiencing the feeling
of wandering around the real moon. It is also imagined that one day people can go
back in time and experience everything in the past. The experience that the user
gets from virtual reality is like being able to take a trip without actually having to
go Lhere in some sense.

The concept of virtual reality has opened up a rich variety of computer appli-
cations. Virtual reality can be used in science, arts, the study of history and many
other fields. Both computer technology and human imaginations will push this new

technology in directions that are beyond foresight.

1.4 RAG - A Virtual Reality Application in Arts

Virtual reality opens up a new dimension for arts as this technology can be used to

construct visually and sonically pleasing 3D environments with which viewers can

directly interact. The responsive environruent develops a new relationship with its
viewer and its art. In the traditional art forms, a viewer takes a passive role and
solely enjoys the visual and aural beauty of an artist’s work. However, a viewer is
no longer passive in virtual reality. He or she is able to manipulate objects in the
artistic environment and experience different versions of beauty based on a rich variety
of alternatives composed and provided by the artist. The interaction will take the
viewers into an exploration of their own senses and mental processes. The viewers’
actions complete the piece of art work. In some sense, the viewers also participate
in the creation process of the virtual realitics. As a result, virtual reality is a new
aesthetic medium for artists and viewers.

The responsive environment described above is named Responsive Art Gallery,
which has two features. One is that it keeps a link to the traditional art forms
by providing aesthetically pleasing environments, and the other is that it adds an
interactive and responsive element which allows viewers to participate in the creation
of the art works. We use RAG to stand for Responsive Art Gallery. The system
design of RAG has been proposed recently at University of Alberta [Gre90]. The
aim of constructing this system is to explore practical methods for creating artistic
scenarios for virtual reality, and to build the basic computer software and hardware
that will support various future virtual reality projects.

Three groups of people - computer scientists, artists and users (or viewers) are
destined to work as a team in completing RAG. The computer scientists provide a set
of software tools that support the construction of RAG, and also provide the basic
vocabulary for building scenarios of RAG.

The artists use the tools and the vocabularies to design and construct sce-
narios of RAG. The design and construction tasks include specifying the geometric
and behavioral properties of the objects in the environment, and establishing the

connection between events and hehaviors.

When the artists finish their tasks, the users will be able to enter RAG and
explore the beauty of art work in the gallery. The interaction between a user and
the gallery starts when he or she triggers pre-arranged events and the environment
responds to these events.

RAG is not just a single piece of art work, but a powerful medium that can
he used to compose a wide variety of artistic scenarios. The relationship between
the viewer's actions and the environment’s response is composed by the artists. A
scenario of RAG can be realistic or fantastic. The artists’ imagination is the only

constraint.

1.5 Thesis Outline

T'his thesis is concerned with the design and implementation of the environment editor
component of RAG. This work is part of RAG. The interfaces hetween components
are described in [Gre9l].

The remainder of this thesis is organized in the following way. Chapter ?
claborates on the system architecture of the art gallery by presenting the concepts
involved and interfaces to the environment editor. Chapter 3 presents the design
and implementation of the environment editor in detail. The work is focused on
the editor’s functionality and the user interface part. Chapter 4 describes several
techniques used to manipulate 3D objects in a virtual reality environment. These
techniques are intensively used by the environment editor. Chapter 5 discusses some
future features of the environment editor and concludes this thesis. The appendices
include the database schema for the environment editor and a user manual describing

how to use the editor.

10

Chapter 2

A Virtual Reality Environment -

RAG

The preceding chapter has given several definitions of virtual reality from different
perspectives. This chapter will give an example of such a virtual reality environment
that explores this new area further and lays the foundation of this thesis. This virtual
reality environment is named RA4Gthat is proposed in [Gre90)]. Since the environment
editor, which is the main concern of this thesis, is part of this environment, it is

important to discuss the system architecture in detail.

2.1 Terminology

Before we proceed to discuss the system architecture of RAG. it is necessary to give

the definitions of some terms used in the rest of this thesis.

2.1.1 Event and Behavior

An event is a signal that informs other parts of the environment that something has

happened. A name is associated with each event to identify the event. Usually, the

viewer’s action, or changes in the geometry or position of objects in the environment
may cause events to occur.
Behavior is the task that an object performs in response to a certain event. It

is usually associated with objects(Refer to the definition of object).

2.1.2 Object, Object Prototype and Object Instance

“ntities that have geometrical and behavioral properties in the environment are called

objects. An object must have the geometric property, but may or may not have the
behavioral property.

An object’s geometric property defines the object’s shape in the environment.
An object’s geometry can be hoth static and dynamic during its life time in the
environment. An object’s appearance can change in response to certain events.

The behavioral part of an object definition describes how the object responds
to the events that occur in the environment. Each behavior has a name, a set of
parameters, and a procedure that performs the action for the behavior.

The geometry and behavior of an object originally defined by the computer
scientists forms an object prototype. An object prototype is the abstract description
or the skeleton of the object in a parameterized form. An object instance is a concrete
entity derived from its prototype whose parameters have heen customized by the

artist.

2.1.3 Space

A space is defined as a region of the environment that can be treated as a unit. Space
has the following properties. For each space, there js a constant mapping between
cvents and object behaviors, but the mapping can vary from one space to another. A
space by itself has no visible representation. It only becomes visible when an object

is added into the space. Space is a closed region defined by a collection of polygons.

12

2.2 System Architecture of RAG

The system architecture of RAG is presented in Figure 1. As mentioned in Chapter
1, there are three groups of people involved in the virtual reality environment of
RAG, therefore, RAG is built in three layers. The computer scientist works at the
lowest layer. Their main concern is to construct the basic building blocks of RAG.
The descriptions of objects and spaces are written in a specification language called
Object Modeling Language or OML. The OML program will be processed by the
OML compiler to produce a set of vocabularies that define prototypes of objects and
spaces. These prototypes are the abstract description of objects and spaces that will
be instantiated into concrete objects and spaces.

The artists work at the middle layer to design the environment with a software
tool called the environment editor. The prototypes of objects and spaces are the ma-
terials for constructing the environment. Their geometric and behavioral parameters
have to be edited through this environment editor. The object prototypes can he
constructed into composite objects by using a master-instance relationship that is a
standard graphics technique. This task is also done by using the editor. In addition,
the editor provides a user interface for artists to easily associate events with object
behaviors. Later on, an object’s behavior is automatically triggered when its asso-
ciated event occurs. After the artist finishes his/her design, the virtual art gallery
environment is stored in the frame based database system (FDB) [Dep90a).

The data structure of FDB used to represent the environment in the editor is
tuned to facilitate editing and manipulating objects or spaces, while the data struc-
ture used in the viewing program, to be described below, must support fast display
and efficient interaction with the environment. Therefore, another tool, called the
environment compiler, is used to convert the environment stored in FDB into the
data structure for the viewing program, which is broken into two subsets of data

structures: one for displaying the environment, and the other for event determination

13

Object
Compiler Object
Prototypes
l Y
Eavironment {___, | Environment
Artist Editor Compiler
Viewing
prasmnaenndiie. e ———
progran O
Environment
Delivery
S s
Vehiclie

Figure 1: The system architecture of RAG.

and behavior execution.

The top layer of the system which includes the viewing program and delivery
vehicle is mainly operated by the user or the viewer of the art gallery. The viewing
program is responsible for generating images of the visible parts of the environment
to the viewer. The viewing program also needs to determine the events that have
been generated by the user or the objects in the environment and then execute the
associated object behaviors to response to these events. As a sequence of event
determinations and behavior executions gradually and gracefully change the images,
the viewers experience a variety of beautiful art works.

A delivery vehicle is used to place the user in the art gallery environment so
that the user can virtually view or even interact with the environment. The virtues
of employving a delivery vehicle are that more than one user could view and interact

with this art gallery at the same time, and that these users can control their viewing

14

positions and moving speeds individually.

RAG proposed by University of Alberta aims at exploring the methods and
tools for building and editing highly interactive virtual reality environments, while
many existing virtual reality environments are more or less a viewing system of static

polygon databases [CB+90].

2.3 Object Modeling Language (OML)

The object modeling language is a high-level textual language which is built on top
of the C language. OML is used to define the geometric and behavioral information
of the object and space prototypes used in RAG.

The structure of a program written in OML is basically a series of object or
space prototype definitions. For the definition of each object, there are three sections:
parameter section, geometry section and behavior section.

The parameter section contains the names and types of all the parameters used
in the geometry and behavior sections. The geometry section consists of a sequence
of statements of the OML geometry modeling language. These statements are used
to construct the object’s geometry. The behavior section is specified using a behavior
description language based on the relation model [Sun92]. The OML language has

been conceived and is being implemented at University of Alberta [Cre92].

2.4 Object Compiler

The object descriptions written in OML are converted into object prototypes by
the object compiler. An object prototype provides all the necessary information to
generate and modify an instance of the object. The information in a prototype is
mainly retrieved by the environment editor and environment compiler in the form of

procedure calls. An object prototype only defines the “skeleton” of the object. An

15

instance of the object is created from the skeleton by the environment editor.

Based on Lhe three sections of an object described in OML, the object compiler
generates three groups of procedures that will be used by the environment editor and
the environment compiler. The first group of precedures, called the parameter editor,
provides functions to assign values to object parameters defined in OML’s parameter
section. The environment editor provides a simple interface to edit these parameters.
Therefore, the procedures in this group are frequently called by the environment
editor.

The second group of procedures are used to construct the object’s geometry
in an environment. The objects are produced when their construction procedures are
called with the parameters set up by the first group.

The third group of procedures is responsible for object behavior. The en-
vironment editor provides an easy-to-use user interface to associate an event with
an object behavior. The system will automatically call the procedure defining the

hehavior when the event corresponding to the behavior occurs.

2.5 Environment Editor

The environment editor is a software tool that provides artists with a user-friendly
interface to assist them to create or modify the virtual art gallery environment. The
input to the environment editor is a file containing object prototypes. The output
of the editor is the environment database which contains all the information of the
objects and spaces in the environment. The environment database is stored using the
FDB.

This thesis describes the design and implementation of the environment editor
in great detail starting in the next chapter. Therefore, a detailed description of it is

not presented in this chapter.

16

2.6 ¥Environment Compiler

The data structures produced by the environment editor are organized into an easy-to-
edit form. The efficiency of displaying and interacting with the environment has not
been taken into account in these data structures. It is critical to have data structures
supporting the fast display of the environment since the user has to interact with
the environment in real-time. Delays in displaying objects will cause the user to
be physically uncomfortable in the virtual reality environment. The environment
compiler’s main task is to convert the data structures produced by the environment
editor into the data structures suitable for the viewing program.

The environment compiler generates two sels of data structures. One set is
used in displaying the environment, and the other set is used for interacting with the
environment including event determination and behavior execution.

The data structures for display are based on the BSP tree technique that
partitions the environment into a number of well-behaved regions where the hidden
surface problem can be solved efficiently. The event determination also uses a BSP
tree constructed from the spaces in the environment. With the BSP tree, it is casy to
determine events, such as when a viewer leaves or enters a space, by simply traversing

the tree to find the space that the viewer is currently occupying.

2.7 The Viewing Program

The viewing program has four major tasks that deal with event determination, be-
havior execution, image generation and sound production. The user directly interacts
with the environment through the viewing program running on the delivery vehicle.
In addition to techniques specific to virtual reality, the viewing program nceds to
use advanced 3D graphics techniques such as hidden surface removal, illumination

models, and computer animation. This section only gives an overall idea of how this

17

viewing program works.

2.7.1 Event Determination

'There are three sources of events: the viewer, the environment itself and the objects
within the environment. The user’s actions could generate some predefined events.
The environment also has a few events that occur independently of the viewers and
the objects in the environment. Objects also may generate events to trigger the
hehaviors of other objects.

The actions that a viewer can perform to generate events can vary. However,
for simplicity, the sys(~m includes the following user’s actions: the viewer’s body
posture and body movement within a space, leaving or entering a space, grabbing an
object and various other pre-defined hand gestures. All these actions are treated as
the source of events. When one of these events occurs, the environment makes an
appropriate response to it. When the viewer moves into or out of one of the spaces,
the environment may respond dramatically.

The environment is designed to be a four dirensional space in a certain sense.
Time is one of the dimensions taken into account. A calendar and a clock are used
‘11 the environment to simulate the change of seasons and the passage of time. The
environment calendar generates events periodically to inform the change of seasons.
Ihe clock’s ticks yield another set of events to broadcast the time change from moment
to moment. To these environment events, autonomous objects within the environment
may respond by showing different behaviors. Thus the environment shows different
phenomena as the environment evolves.

The events generated by an object can vary depending on the space that the
object is in, the situation when the event happens and the relations among objects.
For example, when a shark approaches a fish, an event will be generated and the

fish will respond by moving away from the shark. This type of event is defined in

18

the process of defining object behaviors. An object behavior that may cause other
chiects’ response corresponds to such an event.

The events generated in the environment are queued in an cvent list. The
environment events are handled by maintaining a list of the objects that are supposed
to respond to the events. Thus, when an environment event occurs, the object list
is examined and the object behavior for the event is performed. Object events are
determined by an event recognition procedure. When an object executes a behavior,
this procedure is invoked to check whether an event has occurred. Then the generated
event is added to the event list.

Determination of the events generated by the viewer are slightly more difficult,
than the other two types of events. The events generated by hand gestures are
determined in the following way. Each space is associated with a set of hand gestures
that can happen in the space. Each gesture can gencrate a list of events. The
relationship between the gesture and its events are represented by a standard gesture
table for each space. The DataGlove software determines if the user is making any of
the recognized gestures, and then a gesture table lookup is performed to determine
which events are occurring.

In order to handle arbitrary body motion, a set of event recognition procedures
is attached to each space. Each procedure recognizes a particular type of event. As
mentioned above, these events include space entry and space exit events. The BSP
tree techniques can be used to determine a viewer's position, and thus space entry or
space exit events can be determined. When an event is determined, it is added to the

event list that is used for behavior execution described in the next section.

2.7.2 Behavior Execution

The event determination step produces a list of the events that have occurred. The

environment editor sets up a mapping table between the events and the object be-

19

haviors that respond to these events. This table is called the event-behavior table.
Behavior execution involves scanning through the list of events and for each event

excenting the corresponding behavior procedure defined in the event-behavior table.

2.7.3 Image Generation

I'his module is responsible for producing images of objects in the environment. The
objects in the environment are represented by a group of BSP trees and an object tree
generated by the environment compiler. There is only one object tree produced by
the environment compiler for each environment. Each object in the environment has
one or more BSP trees generated by the environment compiler. The image generation
module provides procedures to handle the object tree and BSP trees. The image is
produced by traversing the object tree based on the viewer’s current position. During
the traversal of the object tree, the objects invisible to the viewer are eliminated,
while the visible objects are displayed by traversing their BSP trees.

A head-mounted display is used to view the environment in this system. Thus,
two separate images with a slight offset must be produced for stereo display. This is

done by the head-mounted display software.

2.7.4 Sound Production

Sound production is important to create an attractive and interesting art gallery.
Because of the limitations of current hardware and soitware support, however, a
minimal sound production facility is supported in this system. The basic idea is that
when certain behaviors are executed, a set of the MIDI data required to generate
the sounds in the current time step is produced and sent to the sound synthesizer

attached to the system. The details of this are beyond the scope of this thesis.

yAY

2.8 Delivery Vehicle

The delivery vehicle consists of both a hardware system and a software system that
are required for viewing and interacting with the environment. It is the front-end of

the system for both single viewer and multiple viewers.

2.8.1 Delivery Vehicle Hardware

The hardware system of the delivery vehicle must have the following capabilities. It
should allow the users to interact with RAG as if they were inside the gallery. it
should also be able to display and update the visible images of the environment in
real-time as the viewer’s position changes from one location to another.

There are a number of input and output devices that can be used for the
delivery vehicle. However, there is no fixed hardware configuration for the delivery
vehicle since the configuration depends upon the art work involved, the budget for
the display and the current hardware technology.

The DataGlove is the standard virtual reality input device. It can be used
to determine the hand position and gesture. The Polhemus is another input device
for determination of the head’s position. It is reported that a new input device, the
DataSuit, is being developed that covers the entire human frame in addition to the
functionality of the DataGlove. Image processing technology can also be used as an
input method. In this approach, several video cameras view the environment from
different angles. The positions of the viewer’s body parts can be determined using
advanced image processing techniques. However, this approach is expensive in terms
of hardware and software. In addition, it is hard to determine hand gestures due to
its low sampling resolutions.

The output devices include the head-mounted display, EyePhone and several

computers with at least moderate graphics capabilities. Another good, but expensive

File I/0

Event Determination

Behavior Execution

1
1 |

Qutput Input
Synchronization Synchronization
e MIDI Input Device
Generation | | Output privers

Figure 2: The delivery software.

alternative for the output device is a large screen installed on the walls of the room.
Each wall gives a different view of the environment. In this approach, the participants
(normally a few) will have a much better perception of the environment and they can

casily move around to view the environment from different positions.

2.8.2 Delivery Vehicle Software

Delivery vehicle software is composed of a set of program modules which perform the
following tasks: interfacing to the underlying operating system, calling the viewing
program for event determination and behavior execution, synchronizing input and
output devices, providing image display of the environment, and handling a wide
range of input and output devices. Figure 2 shows a possible approach for config-
uring the delivery vehicle software. Logically, the delivery software shown in this

configuration includes eight modules, each performing specific tasks.

2

23

The input driver module is the interface between the raw input device sucl
as the DataGlove and the rest of the system. With this module, other parts of the
system can be structured independently of the specific hardware used for the system.
The delivery vehicle software only recognizes three types of logical input devices:
hand, body and gesture regardless of the actual physical devices.

The input synchronization part is designed to simultaneously handle multiple
input devices, and synchronize and repackage data from different input streams to
satisfy expectations of other modules. Similarly, the output synchronization module
synchronizes multiple output devices, especially for producing two images on two
workstations required for a stereo display.

The file I/O module communicates with the underlying OS to store and re-
trieve data to and from the logical storage such as the UNIX file system.

Event determination and behavior execution have been discussed in the view-
ing program section. These modiies are responsible for calling procedures in the
viewing program when the input or output devices generate some cvents.

The sound production module takes care of sending MIDI data to the sound
synthesizer attached to the delivery vehicle and producing synthesized sounds for the
environment.

The image generation module is the most difficult part. It requires sophisti-
cated graphics software and hardware support. If the hardware used in the art gallery
supports the popular graphics capability like pipelining viewing transformation, 31)
clipping, and polygon filling, the module may be easy to implement. If not, the soft-
ware has to be powerful and fast cnough to handle these tasks. The basic functions
of the image generation module have been addressed in the viewing program section.

The details of this module can be found in [Gre90] and are omitted from this thesis.

Chapter 3

Environment Editor and Its

Implementation

As discussed in Chapter 2, the environment editor plays an important part in the RAG
system. The environment editor in fact provides the artists with an easy-to-use design
tool where the artists design and test{or preview) their art works: the environments.
The term environment is sometimes used as a synonym for artistic scenario of RAG
it the rest of this thesis. In addition to accomplishing the principal functions of the
environment editor, the main aim of the user interface of the environment editor is
to make it as fricndly as possible.

In this chapter, we mainly concentrate on the implementation of the environ-
ment editor. As we go through the implementation, the concepts and techniques used

in the environment editor are discussed in detail.

3.1 The Working Space

In this section, we discuss the setup of the working space where the artists, the input
devices and the environments are placed. The term working space is used because the

artists work interactively with the computer to create or display the environments in

this space.

3.1.1 Assumptions

Three assumptions have been made for the sake of simplification. The first assump-
tion is that each environment uses a standard Cartesian coordinate system with the
positive direction of the = axis pointing up. Thus, this assumption defines the ori-
entation of the world coordinate system for all environments. This assumption does
not have any impact on the range of environments that can be produced, but sim-
plifies environment design and some interaction techniques. and makes it ecasier to
share designs. The second assumption is that the ground plane of the working space
happens to be the : = 0 plane in the coordinate system mentioned above. Again,
this assumption reduces the difficulties in implementing some interaction techniques
and makes it possible to share designs. The third assumption is that the = axis of the
coordinate system for each space always points in the same direction as the = axis of
the environment coordinate system. This assumption simplifies the space constraint

algorithm which will be described in the next chapter.

3.1.2 Setup of the Working Space

The position and orientation of the hand in DataGlove are originally described in
the device coordinate system. The room in which the user, the DataGlove and the
computer reside has a rectangular shape and its own room coordinate system. One
corner of the room is selected as the origin of the room coordinate system. This
corner defines the z, y and z axcs of the room coordinate system. The z axis of the
room coordinate system points up. and the floor is the z = 0 plane. The x and y
axes go along the two boundaries of the floor and meet at the corner. The mapping
from device coordinate system to the room coordinate system can be viewed as a

constant since the origin of the device, which is located at the Polhemus source of the

£ (env.)

y(env.)

L X(enV.)

z (room) A

' DataGlove /

x (room) | I

Figure 3: The setup of the environment coordinate system.

DataGlove, is fixed most of the time. The actual mapping is stored in the .workspace
file that can be accessed by any application. The structure of this file and the touls
available for workspace mapping are described in [Dep90b]. Finally, the room, the
displayed objects and the DataGlove are described in the same working space by the
environment coordinate system. The setup of the environment coordinate system is
indicated in Figure 3.

The z axis of the environment coordinate system is defined to be parallel to
the horizontal boundary of the display screen while the y axis is set to point inside the
display screen. The z axis of the environment coordinate system points up vertically
and the z = 0 plane resides on the floor of the room according to the two assumptions
made in the previous section. The standard unit <f measurement in the environment
coordinate system is set to be 0.2 meter, while that of the room coordinate system is

the meter.

26

3.2 Overview of Environment Editor Design

The environment editor performs a number of functions based on its role in the RAG
system. The design principles for the editor are the friendliness of its graphical user
interface, the consistency of the interfaces with other components, and the satisfaction

of the requirements for the design of environments.

3.2.1 Functions of Environment Editor

The environment editor can logically be divided into the object editor, the space editor
and the environment editing subsystem, which perform a number of operations on
the following entities: object prototypes, object instances, masters, instances, spaces
and the environment. These operations include creation, modification, deletion and
storing of the entities.

As discussed in the previous chapter, the environment editor is used to create
and modify the RAG scenarios that one or more users can interact with through
the use of the delivery vehicle. Each environment is constructed from spaces and
objects. Each object is made up from instances of masters. Each master is created
from object instances and the existing masters. Each object instance is produced by
parameterizing an object prototype. Therefore, creating and modifying an environ-
ment is composed of steps to create or modify spaces, objects, masters, instances,
and object instances.

An environment consists of one or more spaces, each of which can contain any
number of objects. A space serves as a unit in which the objects can be treated in a
uniform way. The major tasks of the space editor are to construct spaces that have
relatively simple structure !, and to layout objects in these spaces.

The prototypes of objects defined by OML are the ahstract descriptions of

1A space can be predefined as a special object prototype by OML. The geometric definition is
the main concern of this kind of prototype.

(A

objects that are relevant to the environment that the artists want to design. They
are separately defined objects without being composed together to form new higher-
level objects. A prototype may be thought of as defining a family of basic building
blocks whose members vary in a few parameters. One of the main responsibilities
of the environment editor is to instantiate the object prototypes and use them to
construct more complex objects.

The environment editor uses the master-instance technique to create hierar-
chical objects. The object instances are used as building blocks to create higher-level
entities, which in turn serve as building blocks for yet higher-level entities, and so
on. This approach can save a lot of effort in designing the same kind of objects. The
operations on masters are divided into two parts: one for creation and modification
of object instances, and the other for creation and modification of masters.

After masters are instantiated and added into spaces, the remaining tasks are
to define the dynamic aspects of the spaces and position the spaces in the environment
to finalize the environment creation. As described before, each space defines a set of
events, and each object has one or more behaviors that can respond to certain events
that have occurred in the space. To control the dynamic behavior of objects, the
editor provides a siple user interface to associate events with object behaviors, The
user interface creates an event-behavior table for each space, that will be used by the
viewing prog: zm. Adding spaces into the environment is the same as adding objects
into spaces or masters. Techniques for these common operations are in fact shared
by the object editing session, the space editing session and the environment editing
session.

In addition to these basic functions, the editor also provides various ways to
store, retrieve, and display the entities such as objects, spaces and environments. To
assist viewing or manipulation of objects in the environment, some minimal 3D effects

are added to the viewing section of the editor.

28

3.2.2 User Interface Layout of the Environment Editor

The environment editor has been implemented on a SGI Personal IRIS 1) in the
UNIX environment. The screen layout of the environment editor is shown in Figure 4.
The environment editor divides the display screen into the following five areas - button
area, 3D viewing area, editing area, text input and output area and menu area, which
are labeled as 1, 2, 3, 4 and 5 in Figure 4 respectively.

All the buttons used in the environment editor are uniformly placed in the
button area. The corresponding action takes place when a button is pressed. There
are three sets of buttons, which can be used to initialize the three input tools associ-
ated with the DataGlove, grids and potentiometers. There is also a group of buttons
which serve as the editing commands in the environment, such as “Ok”, “Exit” andl
“Redo”.

The 3D viewing area is basically used as the editing and viewing window for
the environment. A perspective projection is used to define the 3D viewing space.
The environment editor allows the artists to adjus. ¢ viewing parameters from *-ost
parts of the environment editor in order to observe the environment from different
angles.

The editing area assists with the editing and viewing of the entities in the
environment. This area has two subareas. The left subarea is a window for sclecting
and viewing objects and spaces. The right subarea is reserved for potentiometers and
2D grids.

The text area is used for displaying help message and inputing text and com-
mands.

The menu area is divided into an upper and lower subscction. 'The upper
section is the environment editor menu systeni. The menu system consists of several
submenus and is organized in a hierarchical structure. The menu system will be

described in detail in later sections. The lower part of the menu area is used to

BRI

A e e

Buttons

B
x4
X

AT
3%
R
SR

RN

/?;i//wmw

SR

R

@

oo
P
T

M 2K

interactive Inputs @

Oblect or Space Vie e res Scrollable List

1 DA

S TRTA L TR A AL A LA AR AL R LA ANTAAAA SN A A ARAAAA ARNATATA A AR

N Text Input or Status line @
:
R AN A AR SR RS
R T ;

Figure 4: The layout of the environment editor.

iz, Vi ronme nt Vi ew Sub-section Menus

30

display the names of all the types of entities in an environment database. Each list
contains the names of the entities with the same type. For example, the list of all the

masters in an environment database can be shown in this area.

3.3 Space Editor

Imagine that you are in an elevator on the top floor of a building. The building has the
same number of floors as your present age. You push the “down” button and begin to
descend slowly in time. You descend until reaching the year of your choice and stop
the elevator. When the door opens, you enter a place that you can remember from
that time. Examples of places which might be worth revisiting include: the honse you
grew up in, the school you first went to, and vacation places. After you arrive, take a
fantasy walk through the place and interact with the things and people in the place
that you used to be familiar with. You can choose one type of interaction activity,
such as playing a hand-ball game with your old buddy in the school playground.
To comnstruct such a scenario, each of these places can be considered as a space.
The concept of space enables the designer to group a set of entities and to associate
messages, meanings and rules with them systematically. This section describes how
a space is created through the environment editor.

The space editor is one of the three subsystems of the environment editor. It is
used to construct and modify spaces. Specifically, the subsystem involves the following

activities: space boundary editing, space content layout, and space modification.

3.3.1 Space Boundary Editing

Since a space has no visible representation and only serves as a container, its geomet-

rical structure is relatively simple. This simple shape simplifies the impl :mentation of

cmmman Qlacla ahacmnd annnan wtll stemnlifo tha araradira af cnaca doacian and cnand

31

up event determination that the viewing program has to consider.

Technically, a space is defined by a collection of polygons. Like the definition
of the geometry of other objects, the space boundary is input by defining a group of
visible polylines although they are invisible when they are presented to the viewer.
‘Therefore, the space boundary design is pretty straightforward.

The simplest way to define a space boundary is to use a predefined object
prototype as the space boundary. With the editor, the artist only needs to instanti-
ate the prototype with desired parameter values. Instantiating object prototypes is
described in a later section.

Another way to construct a space uses a cross section parallel to the z-y plane
plus a vertical profile, that is the minimum and maximum z values for the space. In
this approach, the editor provides an editing area for the design and modification of
the cross section. In this area, the artisis enters a sequence of points of a 2-D convex
polygon for the cross section, by using the rubber-band technique. Modifications to
these points such as moving, deleting or adding a point into the existing polygon are
also allowed. Two potentiometers are used to input the minimum and maximum 2z
values. Spaces created by this way, therefore, are convex polyhedra? with cylindrical

shapes.

3.3.2 Space Content Layout

A space becomes meaningful only if it contains one or more objects. The objects
inside a space arc called the space content. Thus space content layout is just the
matter of laying out objects in the space.

As wiil be seen, an object in a space is actually an instance of a master that
is created by the artist through the editor. Creating masters and the instances of

a master is described in the subsequent sections. For now, wr assume that a set of

32

masters have been created and their names are listed in the list area. To layout the

space content the following steps are used:

e Select a master from the master list.

e Transform the master from the master coordinate system to the space coordi-

nate system, thus an instance of the master(or an object) is created.

e Add the object to the space. Note that the boundary of the space is always

displayed during these design stages.

The transformations from master coordinates to space coordinates can be any
combination of rotation, scaling, and translation. There are two ways to input the
transformation parameters. One way is to use a set of nine potentiometers that gives
the values of a nine-tuple: (tz, ty, tz, sz, sy, sz, rx, ry, rz). fo. ty, Lz are the
distances of translation along the z, y and = axes, sz, sy, sz are the scaling factors
along the z, y and z axes, and rz, ry, rz are the angles of rotation about the r,
y and z axes. As done traditionally in computer graphics, a 4 x 4 malrix, which
is the concatenation of translations, scalings and rotations, is used to represent the
result of the transformation. The other way to input transformation parameters is
to use the DataGlove. The DataGlove can smoothly rotate, resize and move the
selected object, and place it within the boundary of the space. During cach of the
DataGlove operations, the corresponding matrix is formed and concatenated to the

current transformation matrix.

3.3.3 Event-Behavior Table

The way to define the rules and meanings of a space is through the connection between
a list of events associated with it and the behaviors of the objects within the space.

An event occurrence is the cause of certain object hehaviors, these behaviors are the

33

effect of the event. To perform specific behaviors when an event occurs, it is required

to establish an event-behavior table that maps events into behaviors.

3.3.3.1 Structure of Event-Behavior Table

An event-behavior table is associated with each space. When an event occurs in a
space, the system will look at the event-behavior table of that space and execute the
hehaviors corresponding to that event defined in this table.

Normally, the events in a space are linked as a list. So are the objects in the
space. The behaviors associated with an object are also represented by a linked list.
We refer to them as the event-list, object-list and behavior-list respectively. In order
Lo refer to cach item in a list, a code is assigned to each item. The code is determined
hy the position of the item relative to the first item of the list. For example, the first
event in the event-list has code 0, the second has code 1, the third has code 2 and so
on.

The event-behavior table is a 2-D array whose row and column correspond to
events and objects, respectively, in the space. The item (7,7) in the array records
the behavior of the object j that event i invokes. Initially, this array is set to Null(a
behavior code that is never used such as 255). A Null value at (z,j) means that event
i will not cause object j to do anything. Figure 5 illustrates the structure of the
event-behavior table, where event 2 is mapped into behavior 3 associated with object

l.

3.3.3.2 User Interface to the Event-Behavior Table

The space editor submenu provides a menu entry for creating the event-hehavior table
for a pre-specified space. Once this menu item is selected, three lists: the event list
of the space, the object list of the space and the behavior list of a selected object

are displayed in the editing area. Each of the three lists has the first item as the

34

Figure 5: The event-behavior table.

default selection. After pressing the button “Associate”, the user can re-select any
combination from these three lists. The behavior list is, however, refreshed ecach
time a new object is selected, to list tiie hehaviors associated with the newly selected
object.

When the selection is made, the “Ok” button is pressed in order to update the
event-behavior table. This action simply sets the corresponding element in the event-
behavior table to the newly selected behavior code. In addition to establishing the
mapping, the user interface also allows the user to view the contents of this mapping.
To do so, a button called “Display” is provided to enter the display mode.

In the display mode, as done above an event list is shown, and then a behavior-
object list is displayed which contains a list of behavior names with their object names,
These behaviors are those intc which the event currently selected in the event list is
mapped. The purpose of displaying the event-behavior table is to allow the user to
check the mapping or modify the event-behavior table.

To maintain the correctness of the event-hehavior table, the table needs 1o be

updated properly when an object is deleted from a space. When this happens, all

.

35

the columns to the right of the column for the deleted object are shifted one position
to the left. Addition of an object to a space does not affect the table as the new
object is appended to the end of the object linked list. This is because the column
corresponding to the new object in the event-behavior table is automatically set to

Null.

3.3.4 Space Modification

Often, the designed space is not appropriate after it is placed in the environment.
‘I'he space designer may want to make changes to the design. The environment editor
provides the means to refine the space boundary, edit the space contents, modify the
cevent-behavior table, and transform the whole space in the environment.

By sclecting the name of the desired space from the space list, the artist can
inake changes to the space boundary. The way of accomplishing this modification is
sitnilar Lo the initial space design described in Section 3.3.1. Similarly, the artist is
able to change the transformation of any object in the space. This can be done by
using the DataGlove to translate, rotate or scale the object, or the potentiometers to
reset the transformation parameter values. The procedure for modifying the event-
behavior table is as follows. First, enter the event-behavior section, then select the
event to be modified, and select the object that contains the behavior responding to
the event. After the selections are done, the event-behavior table will be updated to
reflect the new setting. Modification of the event-behavior table is more or less the
same procedure as setting it up. Before making any changes, it may be helpful to

view the event-behavior table by selecting the “Display” button.

36

3.4 Object Editor

The geometric models in the environment have a hierarchical structure. For example.
a human figure is composed of the upper part and the lower part. The upper part is
composed of two arms, upper body, neck and head. The lower part is composed of
two legs and two feet. The object editor subsystem of the environment editor is used

to construct this hierarchy. The object editor has the following functions.

1. Assign and edit the parameters of the object prototypes to create object in-

stances.

o

. Edit object instances.

3. Delete object instances.

4. Create masters from the object instances and existing masters.
5. Edit masters.

6. Delete masters.

3.4.1 Object Hierarchy in FDB

An environment created by the environment editor is organized in a hierarchical
structure and stored in FDB. In FDB the entities of an environment are stored in
frames. The hierarchical structure in FDB can be broken into two different levels. The
high level structure consists of the environment frame, and a set of space frames that
belong to the environment frame. The low level contains composite objects, masters,
instances, object instances and primitives. The whole structure is represented by the
frame hierarchy in FDB based on the GMP modeling schema [Dep89]. A new version

of GMP has been implemented that follows the structure described in this section.

37

Environment

Space Space

zzzzzza
Boundary Contents Behavior T matrixz

Figure 6: The high level structure of the environment database.

Figure 6 shows the high level frame structure of the environment. The root
frame represents the environment. Its children are the frames representing the spaces
in the environment. Each space frame has four key slots: Boundary, Behavior, Con-
tents and T_matrix. The boundary slot points to a composite frame that describes
the geometry of the space. The behavior slot contains the event-hehavior table of the
space. "The contents slot is associated with another composite frame that has all the
geometric information about the objects in the space. The T.-matrix slot stores the
transformation matrix from the space coordinates to the environment coordinates.

The low level structure, as shown in Figure 7, is rooted by a composite frame
that has a collection of child frames, which point to subparts of the object. The child
{rame contains a transformation matrix and a pointer to one of the following frames:
primitive, obj.inst, instance, or another composite frame. The iransformation matrix
in a child frame is used to transform the child object into its parent’s coordinate
system,

The primitive frame does not point to any other frame. It only points to a
file that contains a collection of polygons stored in a standard format. The obj.inst
frame contains the object prototype name and a pointer to a composite frame that

defines the geometry for the object instance. Note that the composite frame is created

38

Composite

Child Child Child Child
2xzrzza v ar s

Primitive Obj_inst Instance Composite

Composite Master

!
m&

Couposite

Figure 7: The low level structure of the environment database.

when an object instance is generated from its prototype. The instance frame has a
slot pointing to the frame that stores the definition of its master. With the master-
instance technique, the instance frame makes it possible to create a family of the same
type of object with minimal storage. The transformation matrix for each instance
is stored in the child frame. Like th= object instance, the master frame points to a
composite frame that is created in the master creation section. Thus, a master can
have another master as its child. The creation of a master is described in the following

subsections.

3.4.2 Generation of Object Instances

The input of the environment editor is a vocabulary of object prototypes with a set
of routines that operate on these prototypes. The object prototypes and the routines

are generated by the object compiler. The set of routines can also be considered as

39

part of the environment editor since the editor calls these routines to retrieve the
information about the object prototypes.

Object instances, forming the bottom level of the object hierarchy, are created
from object prototypes. The environment editor cannot edit the structure of an object
prototype, but has the ability to assign any valid value to the parameters of an object
prototype, and then regenerate the object. The regenerated object is considered as
an object instance.

Object instance creation starts with selecting an object prototype from the
list of prototypes. Once the prototype has been identified, its parameters are listed
on the screen. The routine OML._get_parameters() is used to retrieve all the param-
cters of the given object prototype. Based on the types of the parameters, several
interactive techniques are used to input the values for these parameters. The current
implementation of the environment editor allows input of the followiny six parame-
ter types: integer, floating point number, 2D point, 3D point, 2D polyline and 3D
polyline. The detailed methods for inputing these types of parameters is described in
Chapter 4, which is dedicated to a number of important techniques used in the envi-
ronment editor. After the parameter values are obtained from the user, the routine
OML_parameter.value() is called to set the given parameters to their corresponding
values. Then the user is asked to input a name for the instance and the routine
OML_interpreter() is called to create an obj.inst frame in FDB and produce poly-
gons that describe the geometry of the object instance. As described above, all the
geometry information for the object instance can be reached through the obj.inst
frame.

The system keeps an object list that contains all the object instances having
been created. As requested, the editor can show the object list in the list area. To
modify a. existing object instance, first, the instance needs to be identified from the

object list, second, the object is displayed, and then the normal section for inputing

40

parameter values is activated. From there, the user can change the parameters to

regenerate the object instance.

3.4.3 Master Editing and Instance Creation

A master is a composite object that has been assigned a name by the designer. The
composite object is composed from a collection of the object instances or the existing
masters. A master has its own master coordinate system. Creating a master is
equivalent to placing a collection of object instances or existing masters in the master
coordinate system.

Master creation starts with selecting the type of object to ks added: object
instance or master. The environment editor shows either the object instance list or the
existing master list according to the designer’s choice. Then a set of potentiometers
or the DataGlove can be used to establish the transformations from the selected
object’s coordinates to the master coordinates. Once an object instance is in-place,
the designer can add another object to the master using the same procedures, The
added objects can b viewed as the children of the master. The name of the new
master is added to the master list and can be used to create other masters.

Internally, when master creation starts, a master frame is created. Since the
master frame points to a composite frame, these in-place objects are linked together
as the children of the composite frame. The transformation matrix of each object
is recorded in the corresponding child frame of the composite frame. If an object is
created from one of the existing masters, an instance frame is created. The instance
of the pre-defined master is added to the new master.

Modification of an existing master includes deletion of objects from the master,
addition of new objects to the master, and rearranging the objects in the master.

To delete an object in a master, first we need to identify the object to be

deleted either by selecting it from the object list of the master or by grabbing it using

41

the DataGlove. The deletion takes place when the designer confirms the deletion
operation by entering “yes” from the text area. The other two operations of modifying

a4 master are similar to the methods used in creating a master.

3.5 Environment Editing Subsystem

As shown in Figure 6, the environment is composed of a number of spaces, each
of which contains a set of objects. The key operation of the environment editing
subsystem is to place the created spaces in the environment coordinate system or the
world coordinate system. Since a space as well as the objects in the space must be
created hefore a space is placed in the environment, this subsystem is the highest
level operation. It can be regarded as the super-subsystem of the other two editors:
the space editor and the object editor.

The functions of the environment editing subsystem include the following.

1. Creating a new environment:

e creating spaces by calling the space editor module.

o adding spaces to the environment.
2. Editing existing environments.

o adding new spaces into an environment.
o modifying spaces in an environment.
e removing spaces from an environment.

e cditing the event-behavior table of a space in an environment.
3. Saving an environment to the disk.
1. Retrieving an environment from the disk.

5. Viewing the complete environments.

42

3.5.1 Environment Creation and Modification

The environment editor provides a list of the spaces in an environment in the scrol-
lable list area of the screen. The user can select a space from the space list. The
selected space is then added into the environment by using the DataGlove or a set
of potentiometers for entering transformation parameters. The space coordinate sys-
tem is transformed to the environment coordinate system when the selected space is
added to the environment. The transformation matrix is stored in the t_matrix slot
of the space frame. These operations for transforming spaces to the environment are
the same as those for transforming objects into a master, or transforming instances
into a space.

Again, the environment editing subsystem also allows the user to remodel a
created environment. New spaces can be added into an existing environment by
selecting a space from the space list. Any space in an existing environment can be
deleted also by selecting it from the space list. The event-behavior table for cach space
in the environment can be modified. In addition to the modification of spaces, the
subsystem also allows the modification, addition and deletion of the objects inside

a space. This is done by revisiting the space editor module and the object editor

module.

3.5.2 Other Operations

Several menus provide other functions that are used in environment editing. They arc
“Save”, “Delete” and “View”. When the “Save” item is selected, the environment
being created or modified is stored in a FDB database and the old version of the
environment is overwritten. When “Delete” is selected, the user is asked to confirm
whether to delete the environment from the database or not. If so, the envirommnent
is deleted from the disk. Th» “View” menu item can be selected to view the desired

environment from differeni! angles by adjusting viewing parameters.

Chapter 4

Marnipulation of 3D Objects

One of the objectives for the environment editor is user friendliness. Advanced inter-
action techniques are essential in order to achieve this goal. In addition to accom-
plishing the basic functions of the environment editor, this thesis has also explored
several interaction techniques for manipulating 3D objects in the environment editor.
These methods vary from simple but useful scrollable lists to directly interacting with
31) objects using the DataGlove. In this chapter, these interaction techniques and

the algorithms for manipulating 3D objects are discussed in detail.

4.1 Methods for Editing Objects

The environment editor provides the artist with a friendly interface to create and
edit the RAG scenarios. The following six types of interaction techniques: Data-
(ilove, grids, potentiometers, scrollable lists, buttons and hierarchical menus are used
to invoke commands, select entities, edit parameters of object prototypes, perform

transformations. and so on.

4.1.1 DataGlove

One of the important features of the environment editor is the use of the DataGlove
as an input device. The DataGlove is suitable for entering values of three dimensional
parameter types in object creation and setting transformations for objects and spaces.
It is also convenient for sending commands to the editor using various gestures. The
virtue of employing the DataGlove as an input device is that it provides a more
natural and efficient way to manipulate the objects in the 3D environment than the
conventional 2D devices such as the mouse.

The DataGlove software package built at University of Alberta provides two
kinds of mechanisms: gesture recognition, and position and orientation determination
of the DataGlove. With the DataGlove software package, the environment editor is
able to implement the direct interaction paradigms by using DataGlove. The direct

interaction paradigms using the DataGlove are described in the following subsections.

4.1.1.1 Editing Path3 Parameters

A path3 type is a sequence of points in a 3D space, with adjacent pairs of points
connected by straight lines. To view the 3D polylines, three small windows are sel
up in the editing area on the screen. The window on the left is used to display the
3D polylines using a perspective view. It is called the display window. The middle
window and the window on the right are used to display parallel projections of the
3D polylines onto the z-y and z-z planes, respectively. They are called r-y and r-z
projection planes. The user directly manipulates the 3-1) points of the polyline in
the left window. A rubber-band technique has been employed to draw a line hetween
the previously input point and the current position of the Data’“ove. The other
two windows are designed to make interactive input easy. With the two projection
windows, the user has a better view of the 3D polyline, aud thus can accurately

position the input points.

To use the DataGlove to enter a 3D polyline, a set of gestures is used, including
cnler-point, end-input, grab-poini, and move-path3 gestures. When the DataGlove
makes an entering-point gesture, the current position of the DataGlove is entered as
one point of the path3. A sequence of these gestures defines a path3. The last point
of the path3 is entered by making the end-input gesture. When a point is entered,
a new line is drawn in the display window. At the same time, the -y and z-z
projections of the line are drawn in the corresponding projection windows. Each of
the twa projection windows has a grid in the background, which is helpful for editing
the polyline.

The environment editor allows the user to modify an existing path3 by relo-
cating one point or the whole polyline. If the hand is close to a point of the polyline
and the grab-point gesture is made, the point can be moved to a new position as the
hand is moved. The end-input gesture is used to finalize the new position. The whole
polyline can be moved by making a move-pathd gesture. In order to grab a desired
point, the twe projection windows can be used to help the user to move his/her hand

close enough to the point.

4.1.1.2 Setting Transformations

Another important use of the DataGlove is to establish and edit the transformations
from the object coordinate system to the master coordinate system when an object
is added to a master, from the master coordinate system to the space coordinate
system when a master is added to a space, and from the space coordinate system to
the environment coordinate system when a space is added to an environment. The
{ransformatisa can be broken down into three separate transformations: translation,
rotation and scaling along x, y and z axes. There is a predefined gesture for each of
these three transformations.

When a translation gesture is made, the object currently grabbed by the

46

DataGlove! starts moving in the direction of the movement of the DataGlove. The
distance which the object moves is proportiopal to the distance the DataGlove moves.
Two constants, TRAN.TOL and {factor, are used to determine when and how to move

an object. The following formulas are adopted in the system.
if(|Az] > TRAN_-TOL) tx =tz + Ar x tfactor;

if(|Ayl = TRAN.TOL) ty =1ty + Ay x tfactor;
if(|Az]| 2 TRANTOL) tz=tz+ Az x tfactor.

From the above formulas, the translation operation takes place when the Data-
Glove’s movement is greater than the tolerance TRAN_TOL. The Ar. Ay and Az are
the displacements of the DataGlove along =, y and = axes. The factor determines the
actual distance of the object’s motion. The values of TRAN_T'OL and tfuctor can be
changed on the fly by the user. Note that the DataGlove uses the world coordinate
system.

For scaling, if the DataGlove moves along the positive x direction in the world
coordinate system, the scaling parameter sx increases at a constant speced. If the
DataGlove moves along the negative x direction, the scaling parameter su decreases
at a constant speed. An object can also be scaled in y and z directions, individually. If
the DataGlove moves in an arbitrary direction, the x, y, z components are calenlated

individually, and the scaling is executed sequentially along cach of x, y, z directions.
if(Ax > SCALETOL) sz = sz + sfaclor:

if(Ax < =SCALETOL) sz = sx~sfactor;
if(Ay > SCALETOL) sy = sy + sfaclor;

if(Ay < ~=SCALETOL) sy = sy~ sfactor;

1For any transformation gesture, a grabbing gesture must be made first to identify the entity to
be transformed.

47

if(bz> SCALETOL) sz=sz+ sfactor;
if(Az < -SCALETOL) sz=sz~ sfactor.

T'lie scaling operation takes place when the DataGlove's movement is greater
than a scaling tolerance SCAL_TOL. The constant sfactor is used to control the speed
of the scaling. Again, the values of these two constants can be adjusted by the user
in the environment editor.

Similarly, the rotation by the DataGlove takes place when the DataGlove's
movement exceeds a given tolerance ROT_TOL. The displacements of the DataGlove
in x, v, z directions are tested against ROT. TOL. The angle of the rotation along the

X. y, 7z axes is the constant rfactor for each valid rotation gesture using the DataGlove.
if(Ax > ROT'.TOL) rx =rz + rfaclor;

if(Ar < ~ROTTOL) rzx=rr—~ r factor;
if(Ay > ROT.TOL) ry=ry+rfaclor:
if(dy < -ROTTOL) ry=ry-— rfactor;
if(Az 2 ROT-TOL) rz=rz+rfaclor:

if(d: < ~ROT.TOL) rz=rz~ rfactor.

4.1.2 Grids and Potentiometers

Besides the DataGlove, grids and potentiometers are two other input techniques used
in many places of the environment editor. A potentiometer is basically used to input
any numerical type data such as angles of rotation and scaling factors. A grid is
usually used to input 2D polygons or polylines.

The grid package is independent of the environment editor. The functions in
this package can be used in other software running on the IRIS. To satisfy the need

of the environment editor. this package provides the following features:

49

o The units of x axis and y axis are set up dynamically.
o The intervals along the x and y axes of the grid are adjustable.
¢ The color intensity of the grid is changeable.

o Input points can be snapped to the closest grid intersection. The snapping

function can be turned on or off.

o A rubber-band technique is used to define polygons or polylines.

The user starts entering a polygon by pressing the left button of the mouse.
A rubber-band line is drawn between the previous input point and the current cursor
position. When the left button is pressed again, the rubber-band line becomes one
of the edges of the polygon, and is statically drawn on the screen. When the user
presses the right button, the polygon is closed by the edge between the last inpnt
point and the first input point. Similarly, a polyline can be entered in this way. In
entering points, if the snapping function is turned on. each point to be entered is
snapped to the nearest grid intersection. With this function, the user can precisely
position a point.

The potentiometers package is also independent of the environment editor. It

mainly provides the following features.

e The type of values of the potentiometers can be either integer or float,
o The domain of the potentiometers can be set up interactively.

o The interval of the potentiometer values is adjnstable.

o The intensity of the potentiometer color is changeable.

e Snapping can be turned on or off. With the snapping on, the indicator jumps

at the specified intervals.

The potentiometer has been used in the following places.

e The transformation matrix can be set by using a bank of # potentiometers to
specify x, y, and z components of each of the basic transfoimations: rotation,
scaling and translation. The approach of using potentiometers enables the user

to define the transformations more precisely than using the DataGlove.

e The viewing parameters are adjustable in most parts of the environment editor

by using a set of potentiometers.
e point2? and point3® type parameters are entered using potentiometers.

o The settings of the DataGlove transformation constants (refer to the previous

section) uses a set of potentiometers.

4.1.3 Buttons and Scrollable Lists

There are many uses of buttons in the environment editor. A button serves as an
action trigger. When it is pressed, a certain action takes place, or a certain mode is
activated. The implementation of the button program is straightforward and can be
re-used in other software systems.

The scrollable list package is another portable program. It is implemented on
top of the existing menu package with some modifications. The menu is static, that
is. all menu items are added to the menu and the layout is then calculated, while the
scrallable list is dynamic in the sense that an item can be added at any time and the
lavout is calculated dynamically whenever a new item is added. When the number of
items exceeds the height of the list area, a scroll bar is added beside the list. With the
scroll bar, the user can scroll the list items up or down by pressing the arrows located

at the top and the bottom of the bar, respectively. An indicator is used to indicate

2point? parameter is defined as a point in 2D space.
3point3d parameter is defined as a point in 3D space.

50

which portion of the list is visible at the current time. The selection mechanism in
the scrollable list is the same as the menu.

The scrollable list programs have the following uses. As described in Chapter
3, each environment created by the environment editor has one space list, one master
list and one object prototype list. Each space in the environment also has its own
object list. To present these lists to the user, the environment editor displays them
in the list area in which the user simply selects an item and the item is highlighted to
indicate the selection. In addition, the scrollable list is also used to list the created

environments from which the user can select to edit the selected enviconment.

4.1.4 DataGlove vs. Potentiometers

Both the DataGlove and potentiometers can be used to perform transformations of
objects in the environment. However, *¥»y have different features i terms of the
motion smoothness and the preciseness of the end condition. Using the DataGlove,
the objects being transformed go through intermediate configurations in real-time
until they reach their final destination. The DataGlove provides smooth transforma-
tion. But, the objects jump to their new location without going through intermediate
configurations when a set of potentiometers is used. On the other hand, the trans-
formations can only be terminated on an aesthetic pleasing end condition by using
DataGlove. The user’s hand in DataGlove stops gesturing when the object’s position
looks good to him/her. However, the potentiometers enable the user to enter precise

end conditions.

4.2 Grabbing Operations

Selecting a desired object in the environment is the first step in manipulating objects.

The DataGlove can be used to select an object by issuing the grabbing gesture. Thus,

the user can pick up the virtual objects in a natural way as he does with real objects.

In this section, we discuss the grabbing mechanism in the environment editor.

4.2.1 The Problems

When the user attempts to grab an o'sizct in the enviroment using the DataGlove,
two conditions must be saiisfied. First, . atalGlove must be close enough to
the object to be grabbed. Second, a grabbing gesture has te. "~ made before i
grabbing operation takes place. Once an object is grabbed, th: environment editor
should report that an object is sclected and the grabbed object should be labeled as
a selected object.

In order for the user to position his hand in the environment. an articulated
hand that spatially corresponds with the user’s real hand, and is directly controlled
by the DataGlove is displayed on the screen. With the articulated hand, the user is
able to move his hand towards the desired object and decide whether the grabbing
gesture needs to be issued or not. If the grabbing gesture is made and no object is
close enough to be grabbed by the DataGlove, nothing will happen. When the desired
object is indeed grabbed, the selected object is flashed.

There are several problems with grabbing operations.
o How to decide whether an object is close enough to be grabbed by DataGlove.
o Hlow to measure the distance between the DataGlove and the object.

o How to distinguish the desired object from crowded objects.

The DataGlove provides a natural and direct means to select objects. However,
when the desired object is obscured by other objects or objects are close to it, the
DataGlove can fail to identify the object. In order to solve this problem, we provide
the user with an object name list from which the user can select an object by picking

its name.

94

4.2.2 The Grabbing Algorithm

As mentioned above, we assume that an object is grabbed if the position of the
DataGlove is close enough to the object and the grabbing gesture has been made.
Thus the environment editor needs to measure the distance between the DataGlove
and the object and detect the grabbing gesture.

An environment created by the environment editor consists of a set of spaces,
each of which is composed of a set of objects. Each object is an instance of a master.
A master is a composite object with a name. A composite object is made from
other composites, instances of masters, object instances, and primitives. The whole
environment is composed of an object hierarchy trec of which the leaves are primitives.
By traversing the tree, we eventually get a collection of primitives, each being a
collection of polygons. Without losing generality, therefore, we make an assumption
that an environment created by the environment editor is composed of a collection of
polygons, that is, the gexinetry of each object in the environment is actually shaped
by a collection of polygons.

The pseudo code for the grabbing algorithm is shown in Figure 8. Basically, the
grabbing algorithm looks for the first polygon that is close enough to the DataGlove
position by traversing the object hierarchy tree. In the object hierarchy tree, the
leaves of the tree are primitives. The function grabbing.an_object recursively searches
through masters, instances, composites, child frames, and object instances until a
primitive is found. If the primitive is what is expected, the recursive procedure stops;
otherwise, the function continues on to other branches of the tree. The function
map_to-object is responsible for mapping a frame retrieved from the FDB database to
the object data structure in the environment.

The high level structure of an environment is stored in the FDB database.
The primitives are stored in a separate file. The file name and the entry tag of cach

primitive in the primitive file are, however, stored in the primitive frame in the FDB.

53

int grabbing_an_object(glove, obj, Tmat)
Hand glove;

Object obj;

Trans_matrix Tmat;

{
int obj_type, fr, tag;
Object child;

Trans_matrix 1, Tmat0;
obj_type = getvalue(obj->db, obj~>frame, Fheader);
switch (obj_type) |
case (master):
Jr= gewvalue(obj->db, obj~>frame, Definition);
child = map_to_objecy(fr, obj->db 5
return (grabbing_an_object(glove, child. Tmat));
case (instance):
fr = getvalue(obj—>db, obj->frame, Master_frame).
child = map_to_object(fr, obj~>db);
return (grabbing_an_objec(glove, child. Tmat));
case (composite):
[r = getvalue(obj~>db, obj->frame, Child_list_start):
Tmat0 = Tmat;
whie (fri=-1) {
child = map_to_objecl(fr, obj->db);
if (grabbing_an_objec!(glove, child, Tmat) == GRABBED)

return GRABBED;

else(
fr = getvalue(child~>db, child~>frame, Child_list_next);
Tmat = Tmat0;

}

}
return UNGRABBED;
case (child):
t = getvalue(obj->db, obj~>frame, T_malrix);
Tmat = (* Tmat;
[r = getvalue(obj~>db, obj->frame, Definition);
child = map_lo_object(fr, obj->db);
return (grabbing_an_object (glove, child, Tmat));
case (gbject instance):
[r = getvalue(obj~>db, obj->frame, Definition);
child = map_to_object (fr, obj->db);
return (grabbing_an_object (glove, child, Tmat));
case (primitive):
tag = getvalue(obj->db, obj->frame, Prim_tag);
return (grabbing_a_primitive(glove, tag, Tmat)).
defaults:
return UNGRABBED:;

Figure 8: The grabbing algorithmn.

To handle the low level modeling details, the polygon modeling package developed
at University of Alberta is used. The polygons of the primitive are retrieved in the
function grabbing.a.primitive. Then, the function grabbing_a_primitive calculates the
distance between the DataGlove and the primitive to determine whether the primitive
is grabbed or not.

Given the DataGlove position G, and the set of edges E that define an object,

the distance between the DataGlove and the object is defined as

d(&) = mind(e).

e€EE

The distance between the DataGlove position G and an edge ¢ of the object is defined

as the Euclidean distance between the DataGlove and the closest point on the edge.
d(e) = min{|p— G| : p € €}.

The edge is defined in the parametric form, P(1) = Po+ t{P, — F,) where (0 <1 < 1),
Py and P; are the end points of the edge. According to geometric theory, the closest
point Pp;n will occur at either one of the two end points of the edge or the intersection
of the edge and its perpendicular line passing through G, if the intersection exists.
P(t) is the intersection point when (G — P(t))- v = 0 where v = P — 4. Expanding

this, we get
(G—Po—'t‘l’)‘():(),
[~ P)-v=tv-v,

__(G"Po)‘v
T vy

t

Plugging ¢ into the function for the edge, we obtain the point closest to G,
Ppin = Po + Lg——;,-?uv If t is within [0, 1], that means Py € P, Thus, the distance
between P,;, and G is the distance that we want. If ¢ is not in [0, 1}, P is on

the extension of the edge. In this case, the distances from G to the end points of the

55

edge, Py and Py, are calculated. Suppose that the distances obtained are d; and da,
respectively. Thus the distance we want to obtain is equal to the minimum value of

d; and dj.

4.3 Space Boundary Constraints

The concept of space introduced into the environment editor has two purposes: to
group a set of objects as the content of a space, 30 that they can be manipulated as one
unit and assigned rules and meanings by the events-behavior table: and to restrict
the objects in the space to lie completely within the space. The space boundary
constraint means that the objects in a space are not allowed to move out of the space
boundary. The space boundary constraint is applied when an object is added into a
space or when an object is moved, scaled and rotated in a space.

‘I'he space constraint algorithm is developed for the following two tasks:

o An object is tested for containment within its space boundary when it is added

into the space and when it is transformed in the space.

o Performing the transformation on the objects with the restriction that the ob-

jects always stay within the space boundary.

The space constraint algorithm described below is based on the following as-
sumiptions. All the primitives that define an object are convex polyhedrons. The z
axis of the space coordinate system always points up according to the assumption
made in Section 3.3. A space boundary is a convex polyhedron taking a cylindrical
shape with the cross section parallel to the z-y plane being a convex polygon. Thus,
the first task of the algorithm is to determine whether all the vertices of an object are
inside the space boundary. If so, the object is in the interior of the space boundary.

To determine if a vertex (r,y, 2) is inside a space requires two steps. First,

the : value should be greater than the minimum z of the space and less than the

a6

maximum z of the space. Second, the (z,y) should be inside the cross section of the
space that is parallel to the z-y plane.

Given a simple polygon P and a point @, the algorithm for determining
whether the point @ is in the interior or the exterior of P is based on the follow-
ing lemma.

Lemma. Let ! be a horizontal ray that starts from Q to the right of the point.
Let k be the number of intersections of I with the boundary of P. Then k is odd if
Q@ is in the interior of P; k is even if @ is in exterior of P.

The proof of the above lemma can be found in [Prep85].

The second task of the space constraint algorithm is to modify the trans-
formation that will be applied to the object if that transformation would move
the object outside of the space boundary. The transformation of an object is the
concatenation of a sequence of rotations, scalings or translations along the r, y
and z axes. The transformation end conditions are represented by a nine-tuple
(tz,ty,tz, sz,sy,sz,rz,ry,rz). The transformation corresponding to cach clement
in the nine-tuple is executed individually. Let ¢y be one of the element in the nine-
tuple (tz, ty, tz, sz, £y, sz, 1z, 1y,72), T(eo) be the transformation matrix with the end
condition ep, V be the point set defining the space region, and I’ be the point set

defining an object, P C V. We define é(ep) as

maz{ e [PxT(e)CV, 0<e<L e} ileg>0
6(80) =

min{ e |[PxT(e)CV, 02e>¢} ifeg<t

According to the above definition, §(ey) is equal to e if the object P2 is still in the
interior of the space boundary V after the transformation with the end condition
eo applied to the object. Otherwise, 6(eg) is an extreme value in the interval of
eo and 0, such that by the transformation 7'(6(eo)), the object is transformed to a
position where it is still in the interior of the space boundary, yet attaches to the space

boundary. We use the transformation bisection method to find 8(cq) shown below.

5T

function 6(¢y): real
begin
if (P x T'(¢o) C V) return(eg);
else begin
A:=0; B:=ep; M:=4—§§;
while (|A - B| > ¢)
begin if(PxT(M)CV) A:=M,;
else B:=M;
M:= —‘—‘12'—'1
end
return(A);
end
end
Suppose the object in a space is to be transformed with end condition ¢g. €9 >
0. If the object is still in the interior of the space houndary after the transformation,
then 6(co) = €o. Otherwise, the transformation bisection method looks for é(eo).
Suppose we have an interval [0, €], and the interval has such a property that the
objeet is in the interior of the space boundary after being transformed with end
condition 0, and that the object is not in the interior of the space boundary after
being transformed with end condition eo. We look at the midpoint of the interval.
If the object is in the interior of the space boundary after transformed with the end
condition 2. then we know &(eg) lies in the interval [%, eo]. Otherwise, &(eo) lies in
the interval [0,]
Now we have a new interval (cither [0,2] or [£.eq) depending on whether
the object is in the interior of the space boundary after being transformed with end
condition eg) that has the same property as the original interval. So we apply the

same procedure to the new interval. We can repeat this sequence of steps, each time

A9

narrowing the possible interval in which 8(eg) must lie. Eventually the size of the
interval will become so small that we can treat it effectively as zero and say that the
proximity of §(eo) lies at the point that results.

The above transformation biseetion method applies to each clernent of the nine-

tuple ({z,ty,tz, sr, sy, sz,ra,ry,rz) when an object within a space is trausforined.

Chapter 5

Conclusions and Future Work

‘I'his thesis has examined the issues related to virtual reality as an artistic medium.
RAG, which is a recently proposed artistic virtual reality system. has been intro-
duced to explore methods and tools for building virtual reality applications in arts.
The environment editor, which is one of the components of the system, has been
implemented.

‘The environment editor uses a set of object prototypes defined by the object
modeling language, which is used to define the geometry and behavior of objects
appearing in virtual environments. as its input. The environment editor enables the
artists to set up the parameters of object prototypes, instantiate object instances,
construct objects and spaces, as well as build environments. The objects in an envi-
ronment are organized in a hierarchical manner. A set of routines are provided to deal
with the hierarchical structuring of objects, master-instance relationship and transfor-
mation iu a virtual environment. The environment editor provides a FDB framework
into which virtual environments can be stored. Other components of RAG thus can
retrieve the environments from the FDB database.

Iu addition to providing the above basic functionalities, the environment ed-

itor also accommodates a rich set of building blocks for graphical user interfaces.

Scrollable lists. buttons, grids. potentiometers and menu systems are all useful to
many kinds of graphical applications. In the environment editor. they are the critical
input Joutput means for the user to communicate with the editor.

The DataGlove is used in the environment editor as an interactive device for
directly manipulating the objects in a virtual environment. Direet manipulation of
objects is the key to a successful design of a piece of art work. It has two advantages.
First, direct manipulation of objects makes it more efficient to design 3D scenes than
two dimensional tools like potentiometers. Second, it gives the designer (the artist)
a fecling of being inside the environment. In this way, the artist feels less that he is
playing with a computer tool but more that he is creating art work.

In this environment editor, the DataGlove is used to control the three axes
concurrently in order to apply transformations to objects. It is also used to grab
objects. However. when using the DataGlove to grab an object in space. the grabbed
object does not appear to be trapped by the hand in the DataGlove in a patural,
physically credible way. The user’s hand does not have foree feedback and tactile
feedback. In an ideal approach to grabbing a virtual object by DataGlove. the user
would have visual and haptic feedback of grabbing something in his/her hand as
he/she does in reality.

Simulating the geometric deformation of the hand during a grabbitg action
is a very complex problem [RGY91). Some progress on this topic has been made
recently [JPGT89] [Iwa90] [RGY1]. To animate hand grabbing provides a challenging
topic for future improvement of the environment cditor.

To achieve force feedback and tactile feedback effects, scientists and engineers
are exploring methods or devices for creating force and tactile feedback. A new version
of the DataGlove with force and tactile feedback has recently appeared. Onee the
technology for this kind of DataGlove is mature, the environment editor using the

new DataGlove facilities as input means will be more realistic and effective.

61

While visual and haptic feedback is one problem for using the DataGlove in the
environment editor, conveying depth information of 3D scenes to the viewer is another
complicated problem. The current implementation of the environment editor provides
litmited support for depth perception. Hidden surfaces are removed by the Z-buffer
method. Constant shading with pseudo colors is added on the surfaces of objects.
It is obvious that these two simple methods are insufficient. In fact, it is almost
impossible to judge how far an object is away from another object in environment
editor. Tn particualar, it is quite difficult to place an object precisely in a 3D scene
most of the time. To improve depth perception, the proposals are outlined in the
following paragraph.

Rendering the objects using a lighting model can help to determine the dis-
tances between objects. If the shadows of objects are modeled ana ey are updated
according 1o the motion of the objects, the user can easily place or move an object
to the desired locations. Apparently. this approach substantially increases interactive
response time.

In performing tasks such as placing an object precisely in a 3D scene. the 3D
snap-dragging techniques [Bie90] can be used. The 3D snap-dragging uses a gravity
function. a 31 cursor and a set of alignment objects. The gravity function enables
the 31) cursor to spap o vertices, curves and surfaces in the scene. An alignment
object(line, plane or sphere) can be placed at an object’s vertex or control point to
provide the user with the ruler and compass in the 3D space. The 3D cursor can also
suap to an alignment object. Interactive transformations follow the motion of the 3D
cursor. As the 3D cursor continues to snap to scene objects and alignment objects
during transformations, objects can be placed precisely.

All the above problems reniain unsolved. But some suggestions have heen
given to improve the environment editors. The author leaves them for interested

rescarchers.

Appendix A

The Database Schema

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

TYPE
TYPE

FRAME

END

transForm
vector

behaviortable

space_list LIST
obj_inst list LIST
master_list LIST
comp_list LIST
child_list LIST

environment

name ="";
spaces = 0;
space_list,
obj_insts = 0;
obj_inst_list,
masters = 0;
master list;
composites = (O
comp _list,
next_tag = I;

FRAME

END
FRAME

END
FRAME

END
FRAME

END
FRAME

END

space META
fheader = 1;
name ="";
t_matrix;
cur_rotate;
cur_scale;
cur_translate;
boundary = ~1;
behavior = 0;
contents = -1,

in_environment = 0;

master META
fheader = 2;

name="",
definition = ~1I;

instance META
fheader = 3;
master_frame;
next = ~1;

composite META
fheader = 4;
children = 0,
child_list;

child_frame META
fheader = 5;
I_matrix;
cur_rotate;
cur_scale;
cur_translate;
definition = ~1;

64

FRAME

END
FRAME

END

primitive META
fheader = 6;
file_name ="";
prim_tag;

obj_inst META
fheader = 7;

"o

name =)

prototype_name = " ";

definition = -1,

Appendix B

User Manual

The environment editor is a tool that provides the artists with functions for creat-
ing and modifying virtual environments. The menu trees of the environment editor,
shown in Figure 9. Figure 10 and Figure 11, reflect the system structure of the editor.
Fuvironment creation and environment modification are two major functions of the
environment editor. The “Create Environment” submenu and the *Remodel Envi-
ronment” submenu invoke these two logically independent parts of the environment
editor(see Figure). The user interface of the environment editor has been described
partially in the previous chapters. This appendix mainly focuses on explaining the

sequences for generating a new environment or modifying an existing environment.

B.1 Environment Creation

To create an environment, the first step is to enter the name of the new environ-
ment from the text area of the screen. An environment is composed of a number of
spaces. Racl space contains a number of objects. So the sequence for constructing an

environment should start with creating objects. Thus, the object editor is invoked.

‘submenu

Create Environment

Magn Mand

nvi ronment Editor

Environment

67

subeneny

Remodel Environment

Submenu

Submenu

Envi ronment Layout

select
Space

Space Edltor

Object Editor

pelete
Space

Transform
Space

Transform
Space

Edit Space
Boundary

Select
Space

Transform
Ob ject

Edit Space

Submenu Evt pen Tabl

Edit SpaCe contents

Figure 9: The high level menu structure of the environment editor.

68

Submeny " E

Object Editor

o

Submany

Submeny

Master Editor

Prototype Editor

Delete
Ob ject
Instance

Celete
Master

Save

Save

Ob ject
atance . B R Master
Edit Submanu 0 submenu
Ob jact -
{nstance Create Master Edit Master

Delete

child
Select

child
Translate

child

Create
child

Add
Child

Figure 10: The menu structure of the object editor.

69

i;Suhhﬁnﬁ

Space editor

Define EVU benh Table

Space Boundary Editor

~Submenu

Space Content Layout

Create
Space

Delete
Space

Save
Space
Select
Space

Create
Object

Transtorm
Cpject

Ada
Objec:

Figure 11: The menu structure of the space editor.

B.1.1 Use of Object Editor

The object editor is able to create a list of masters which will be used to create objects
in an environment. The object editor has two parts - the object prototype editor and
the master editor. The object prototype editor is responsible for creating and editing
a list of object instances generated from the object prototypes. The master editor is
responsible for creating and editing a list of masters created from the object instances
and the existing masters.

"The first step to object creation is invoking the object prototype editor and
creating a list of object instances. The object prototype editor provides the means to
assign and edit the parameters of an object prototype. After assigning the parameters
of a selected object prototype, an object instance is automatically generated by the
environment editor.

‘T'he master editor is used to create and edit masters. A master consists of a list
of children, each of which can be created by the following steps. The user first selects
the type of child to be created, cither object instance or existing master, then selects
an entity from the zorresponding list. The left mouse button is used to select different
entities. The selected entity is displayed in the editing area. Once a desired entity
is found, press the middle mouse button to exit the selection mode. Then the child
can be placed in the master by sclecting the “Add Child” menu item. After a child
is added to the master. it still can be transformed or deleted. The above procedures
can be repeated a number of times to create a list of children for a master. Then the
menu item “Save Master™ must be used to append the new master to the master list
of an environment. Editing an existing master involves editing the children of the
master or adding new children to the master. So the first thing in master editing is to
select a child from the master using the DataGlove. A selected child is flashed once
when it is grabbed. A selected child can be transformed or deleted from the master.

To add new children to the master, use the same procedure as master creation.

70

B.1.2 Use of Space Editor

After a list of masters have been created by the object editor, the user needs to exit the
object editor and go back the environment creation submenu. Then the space editor
can be invoked to create the boundary of a space, lay out the objects in the space and
define the event_behavior table associated with the space. For simplicity, all the space
boundaries are convex cylinders. To create a space boundary, two potentiometers are
used to enter the minimum and maximum 2 values for the space, then a grid is used
to enter the cross section parallel to the z-y plane. The user enters a convex polygon
for the cross section. Then the name of the space is entered and the space is appended
to the space list of the environment by selecting the “Save Space Boundary™ menu
item.

The space content layout submenu is used to fill a selected space with a number

of objects. To do so, the user first selects a space boundary. Then the user selects a

master from the maste: list . - s an instance of the master and positions it within
the space boundary. The instaiv: .. s becomes an object in the space. The object is
checked by the environi.: - =+ v 10 see if it is internal to the space boundary. ‘The

environment editor notifies the user from the text area if the object is not internal
to the space boundary. The user can adjust the object and place it in interior of the
space boundary. After all the desired objects have been laid out in the space, the
“Save Space Contents” menu item must be called to store the space contents in the
environment database. After selection by the DataGlove or from the object list, an
object becomes an active entity in the space and can be deleted or transformed.
The menu item “Define Event-Behavior Table” should be called after the space
has been filled with objects. The user interface to the event_behavior table has been

described in Section 3.3.3.2.

B.1.3 Environment Layout

The last step of the environment creation is to lay out the environment with the
spaces that have heen created. First a space is selected from the space list. Then
it is placed in the environment. A space in the environment can be transformed or
deleted. To save the created environment on the disk, press the "Save Environment”

ment item.

B.2 Environment Modification

Environment modification can be the following operations - editing a space in the
environment, deleting a space from the environment or adding a new space to the
environment. Editing a space in the environment includes the following operations
- transforming the entire space. editing the space boundary. editing space contents.
and editing the event hehavior table associated with the space.

There are two ways of editing a space in an environment. One is editing the
space in the environment coordinates by invoking “edit space” submenu. The other
way is invoking the space editor since the “Remodel Environment™ submenu can
directly access the space editor(sce Figure 9). Thus, a space can be selected from
the space list and modified in the space coordinate system. The modification of the
space wili be automatically propagated to the environment. Also a new space can be
created and appended to the space list of the environment and can then be placed in
the environment.

Objects in an environment can be transformed or deleted. and new objects
can be added to an environment by invoking the “Edit Space Contents” submenu(see
Figure 9). In order to modify the internal structure of an object in the environment,
the user has to modify the internal structure of the master {from which the object is

derived. Thus, the object editor must be invoked. Again, the “Remodel Environment”

submenu can directly access the object editor. The modifications of the master will

be automatically propagated to all the objects that it derives.

Bibliography

(BBT1]

[Bievo]

[”()IS()]

I“ulh’l]

[Bro77]

[Bro86]

[CB+90)

1.J. Batter and F.P. Jr. Brooks. Grope-i: A computer display to the
sense of feel. In Information Processing. Proc. [FIP Congress. pages

™Y 763, 1971,

.. A. Bier. Snap-dragging in three dimensions. Compuler Graphies.

24(2):193 204, 1990.

R. A. Bolt. Put-that-there: Voice and gesture at the graphics interface.

In Proceedings of Siggraph, pages 262270, 1980.

R. A. Bolt. Gaze-orchestrated dynamic windows. In Proceedings of Sig-

graph, pages 109 119, 1981,

I. P. Jr. Brooks. The computer scientist as toolsmith: Studies in inter-

active computer graphics. Information Processing, pages 625-634, 1977.

. P. Jr. Brooks. Walkthrough - a dynamic graphics system for simu-
lating virtual buildings. In Werkshop on Interactive 3D Graphics, pages

921, 1986.

Y. Harvill C. Blanchard, S. Burgess et al. Reality built for two: A
virtual reality tool. In Proceedings on Interactive 3D Graphics, pages

35 -36, 1990.

[Dep89]

[Dep90a)

[l)op?)ﬂb]

[FPJIB*90]

[Grr90)

[Gre9l]

[Gre92]

[Gre 7}

[Twa90]

[JPGT89]

Dept. of Comiputing Science. Univ. of Alberta. GMP: A General Purpos

Modcling Package. 19389,

Dept. of Computing Science. Univ. of Alberta. FDB: A Frame Bused

Database System. 1990,

Dept. of Computing Science, Univ. of Atberta. Mmnimal Reality(ME):

Toolkit for Virtual Reality Applications, 1990.

J. J. Batter F. P, Jr. Brooks, M. Oul-Young et al. Project grope haptiv
displays for scientific visualization. Computer Graphies, 24(1: 177 185,

1990.

M. Green. An artistic scenario for virtnal reality. Technical report, Univ.

of Alberta. Fdmonton. AB T6G 211, 1990,

M. Green. Environment editor specification, ‘Technical report. Univ. of

Alberta, Edmonton, AB T6G 2HI1, 1991.

M. Green. Object modeling language specification. Technical report,

Univ. of Alberta, Edmonton, AB T66 2H1{, 1992,

M. Green. The virtual reality papers, volume 1. Technical report, Univ.

of Alberta. Edmonton, AB T6G 2H1, CS-TR-90-7.

H. Iwata. Artificial reality with force-feedback: development of desk-
top virtual space with compact master manipulator. In Proceedings of

Siggraph, 1990.

N. M. Thalmann J. P. Gourret and D. Thalmann. Simulation of ob-

ject and human skin deformations in a grasping task. In Procecdings of

Stggraph, 1983\
A

-1

P4

s M. W Krueger. Artificial Reality, Addison-Wesley Publishing Company.

19K3.

[ru9l] M. W. krueger. Artificial Reality 11 Addison-Wesley Publishing Com-
pany. 1991
[MAWKING] 1. Gionfriddo M. W. Krueger and K. Hinrichsen. Videoplace - an arti-

ficial reality. In CHI Proceedings, pages 35-40. 1983,

[RGYT] H. Rijpkema and M. Girard. Computer animation of knowledge-based

human grasping. Compulcr Graphies, 25(4):339 3480 1991,

[Suny2] H. Sun. A Relation Model for Animating Natural Behavior in Dynamic

Incironments, Ph) thesis. Pniveof Alberta, 1992,

