
1. Introduction
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be a Hankel matrix with components i h j , j = 0, . . . , s + t, from some field D. The objective of this report is to

characterize the solutions of the block Hankel system

kHs,t ⋅ Q = 0, (2)

where kHs,t is of the triangular form

kHs,t =
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. (3)

We are more interested in characterizing solutions of the system

kHt−1,t ⋅ Q = 0. (4)

Consideration is given to the more general system (2) primarily to facilitate the development of results for the

case s = t − 1. This characterization is established in section 2 through section 6. For applications of block Han-

kel matrices, the reader is referred to [1,4].

Solutions of (4) correspond directly to a certain type of Padé approximant for bivariate power series

defined in section 7. Because of this correspondence, we are able to give a full characterization of this type of

Padé approximants as well. The relevance of this work in the general context of multivariate Padé approximation

is discussed in section 8.

We begin with some preliminary definitions and notational conventions. For k, t ≥ 0, let
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for i = 0, . . . , k









(5)

be a vector space of dimension (k + 1)(t + 1). It is assumed that the components

iq j , i = 0, . . . , k, j = 0, . . . , t are elements from D.

Let l be a non-negative integer. For any Q ∈ kVt , define

xl ⋅ Q = [ kQ, . . . , 0Q, 0, . . . , 0]† ∈ k+lVt (6)

and

xl ⋅ Q = [ k−lQ, . . . , 0Q, 0, . . . , 0]† ∈ kVt, (7)

where 0 is the zero vector of length t + 1. For any Q ∈ kVt , also define

yl ⋅ Q = [yl ⋅k Q, . . . , yl ⋅ 0Q]† ∈ kVt+l , (8)

where, for each i = 0, . . . , k,

yl ⋅ iQ = [iqt , . . . , iq0, 0, . . . , 0]† ∈ 0Vt+l .

Similarly, for any Q ∈ kVt , define

yl ⋅ Q = [yl ⋅ kQ, . . . , yl ⋅ 0Q]† ∈ kVt+l , (9)

where, for each i = 0, . . . , k,

yl ⋅ iQ = [0, . . . , 0, iqt , . . . , iq0]† ∈ 0Vt+l .

Associated with definitions (6), (7), (8) and (9) are the following mappings defined in the obvious way:

xl : kVt → k+lVt

xl : kVt → kVt (10)

yl : kVt → kVt+l

yl : kVt → kVt+l .
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It is easy to see that each of the mappings in (10) is linear, and that xl , yl and yl are injective. For notational con-

venience, we also adopt the convention that x = x1, x = x1, y = y1 and y = y1. Let S be a subspace of kVt . Then

the image of S by the transformation xl is denoted by

xl ⋅ S = {xl ⋅ Q : Q ∈S}. (11)

Clearly, xl ⋅ S is a subspace of k+lVt . A notation similar to (11) can be adopted for the other transformations in

(10), but such is not required in what follows.

2. Existence of a Solution

Denote the space of solutions of (2) by

k Ss,t =



Q : kHs,t ⋅ Q = 0




. (12)

Clearly, k Ss,t is a subspace of kVt . Denote the rank of kHs,t by krs,t and define −1rs,t = 0. A sufficient but not a

necessary condition for k Ss,t to be non-trivial is given by

Theorem 1. If s ≤ t − 1, then a non-trivial solution Q to (2) always exists.

Proof: Since kHs,t has (k + 1)(s + 1) rows, then

krs,t ≤ (k + 1)(s + 1).

Since there are (k + 1)(t + 1) unknowns in (2), then

dim (k Ss,t) = (k + 1)(t + 1) − krs (13)

≥ (k + 1)(t − s)

≥ k + 1.

The inequality (13) provides that for t > s (and in particular for s = t − 1), (2) has at least k + 1 linearly

independent solutions. The next few results are concerned with the nature of these solutions. Corresponding to

(11), for i = 0, 1, . . . , k, define

xi ⋅k−i Ss,t =




xi ⋅ Q : Q ∈ k−i Ss,t




. (14)
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Lemma 2. For i = 0, . . . , k, xi ⋅ k−i Ss,t is a subspace of k Ss,t .

Proof: Assume that Q′∈xi ⋅k−i Ss,t . Then, by the definition of the set xi ⋅k−i Ss,t , there exists

Q = [ k−iQ, . . . , 0Q]† ∈ k−i Ss,t ,

such that

Q′ = xi ⋅ Q.

Thus,

Q′ = [ k−iQ, . . . , 0Q, 0, . . . , 0]†

and clearly

kHs,t ⋅ Q′ = 0.

Therefore,

xi ⋅k−i Ss,t ⊂k Ss,t .

The result now follows since xi ⋅k−i Ss,t is a subspace of kVt .

Definition 3. Q is a fundamental solution of (2) if Q ∈ k Ss,t and Q /∈ x ⋅k−1 Ss,t .

Lemma 4. If

Q = [kQ, . . . , 0Q]† ∈k Ss,t ,

then Q is a fundamental solution in k Ss,t if and only if 0Q≠0.

Proof: Assume that Q is a fundamental solution in k Ss,t , and suppose that 0Q = 0. Let

Q′ = [kQ, . . . , 1Q]†.

Then Q = x ⋅ Q′ and Q′ ∈k−1Ss,t . Thus, Q ∈ x ⋅k−1 Ss,t . This contradicts the assumption that Q is a fundamental

solution in k Ss,t .

Conversely, assume that Q ∈k Ss,t and that Q is not a fundamental solution. Then, by Definition 3,
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Q ∈ x ⋅k−1 Ss,t , and consequently, there exists Q′ ∈k−1Ss,t such that Q = x ⋅ Q′. Thus,

[kQ, . . . , 1Q, 0Q]† = [k−1Q′, . . . , 0Q′, 0]†,

from which it follows that 0Q = 0. Therefore, if 0Q≠0, then Q must be a fundamental solution in k Ss,t .

Corollary 5. If

Q = [kQ, . . . , 0Q]† ∈ k Ss,t ,

then Q is a fundamental solution in k Ss,t iff

Q′ = [k−iQ, . . . , 0Q]†

is a fundamental solution in k−i Ss,t .

Proof: Since Q ∈ k Ss,t , then Q satisfies (2). From (2), it also follows that Q′ ∈k−i Ss,t . Thus, by Lemma 4,

0Q ≠ 0 iff Q is a fundamental solution in k Ss,t and Q′ is a fundamental solution in k−i Ss,t .

Theorem 6. If s≤t-1, then a fundamental solution in k Ss,t of (2) always exists.

Proof: We shall show that

dim (k Ss,t) > dim (x ⋅ k−1Ss,t), (15)

from which it then follows that there exists at least one Q ∈ k Ss,t such that Q /∈ x ⋅ k−1Ss,t . Since the mapping x

in (10) is injective, then

dim (x ⋅ k−1Ss,t) = dim(k−1Ss,t)

= k(t + 1) − k−1rs,t . (16)

Thus,

dim (k Ss,t) − dim(x ⋅ k−1Ss,t) = [(k + 1)(t + 1) − krs,t] − [k(t + 1) − k−1rs,t]

= t + 1 − (krs,t − k−1rs,t) (17)

≥ t − s.

In the last inequality, we hav e used the fact that
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krs,t − k−1rs,t ≤ s + 1,

since kHs,t has s+1 more rows than k−1Hs,t .

3. Quotient Spaces

Directly from the definition of a fundamental solution, it follows that the space k Ss,t of solutions to (2) is

composed of (1) fundamental solutions in k Ss,t and (2) solutions contained in the subspace x ⋅k−1 Ss,t . The same

observation can be made about the solution spaces k−i Ss,t , i = 1, . . . , k. Consequently, fundamental solutions in

each k−i Ss,t , i = 0, . . . , k describe the entire solution space k Ss,t . Unfortunately, fundamental solutions are not a

convenient concept to work with, because fundamental solutions in k Ss,t form a set and not a vector space.

As a remedy, we introduce the vector space of quotients kFs,t of k Ss,t with respect to the subspace

x ⋅k−1 Ss,t , namely,

kFs,t = k Ss,t / x ⋅k−1 Ss,t

= {Q + x ⋅k−1 Ss,t : Q ∈ k Ss,t }, k ≥ 1. (18)

For k = 0, we define trivially

0Fs,t = 0Ss,t . (19)

Clearly, fundamental solutions in k Ss,t are representatives of non-zero cosets of kFs,t , and conversely. Thus, rep-

resentatives of the cosets of any basis for kFs,t together with a basis for x ⋅k−1 Ss,t constitute a basis for k Ss,t .

Consequently, the problem of constructing a basis for k Ss,t (i.e., of characterizing the space of solutions of (2)) is

reduced to the problem of constructing a basis for each of the quotient spaces

k−iFs,t , i = 0, . . . , k. Since

dim (x ⋅k−1 Ss,t) = dim (k−1Ss,t), (20)

then

dim (kFs,t) = dim (k Ss,t) − dim (k−1Ss,t)

= t + 1 − (krs,t − k−1rs,t). (21)
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The next lemma is crucial in the following sections.

Lemma 7. For k ≥ 1, then

dim (kFs,t) ≤ dim (k−1Fs,t). (22)

Proof: For

Q = [kQ, . . . , 0Q]† ∈ k Ss,t ,

define

T (Q) = [k−1Q, . . . , 0Q]†.

Clearly, T is a linear transformation

T : i Ss,t → i−1Ss,t .

By Corollary 5, T has the property that Q + x ⋅k−1 Ss,t is the zero coset in kFs,t iff T (Q) + x ⋅k−2 Ss,t is the zero

coset in k−1Fs,t . Therefore (c.f., Marcus [13]), the mapping T : kFs,t → k−1Fs,t induced by T is a monomor-

phism, that is,

T(Q + x ⋅k−1 Ss,t) = T (Q) + x ⋅k−2 Ss,t .

As a consequence,

dim (kFs,t) = dim(T(kFs,t)) ≤ dim (k−1Fs,t).

Corollary 8. For k ≥ 1

krs,t − k−1rs,t ≤ k+1rs,t − krs,t . (23)

Proof: From (21) and Lemma 7,

t + 1 − (k+1rs,t − krs,t) ≤ t + 1 − (krs,t − k−1rs,t),

and (23) now follows.
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From (22), it follows that the dimensions of the quotient spaces kFs,t cannot increase with k, that is,

dim (0Fs,t) ≥ dim (1Fs,t) ≥ dim (2Fs,t) ≥ . . . .

Thus, if there are no fundamental solutions in i Ss,t (i.e., if dim (iFs,t) = 0), then there are no fundamental solu-

tions in j Ss,t , i ≤ j ≤ k.

When fundamental solutions do exist, we wish to distinguish between two cases by means of

Definition 9. For any i, 0 ≤ i ≤ k, the matrix kHs,t is i-maximal if dim (iFs,t) = 1, and i-nonmaximal if

dim (iFs,t) > 1.

Thus, from (21), kHs,t is i-maximal if and only if

irs,t − i−1rs,t = t. (24)

Corollary 10. If k Hs,t is i-nonmaximal for some i, 1 ≤ i ≤ k, then it is

(i − 1)-nonmaximal.

Proof: The result follows immediately from Theorem 7.

In the following sections, the notion of k-maximality is used to provide a condition for the uniqueness (in a

certain sense) of solutions to (2). When kHs,t is k-nonmaximal, we show that solutions of (2) can be expressed

in terms of "unique" solutions of other systems for which the Hankel matrix is k-maximal.

5. Uniqueness

If kHs,t is k-maximal, then by Definition 9 there exists a coset

Q * = Q * + x ⋅ k−1Ss,t , (25)

unique up to a multiplicative constant, which constitutes a basis for kFs,t . The representative vector Q * in (25)

is a fundamental solution in k Ss,t . In addition, if Q ∈ k Ss,t is any other solution of (2), then there exists a scalar

α such that

Q = αQ * + Q′,

where
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Q′ ∈ x ⋅ k−1Ss,t .

The same observation applies inductively to the solution spaces k−i Ss,t , i = 1, . . . , k, by which a basis for

the entire space k Ss,t can be built. A stronger result is given by

Theorem 11. If kHs,t is i-maximal for i = 0, . . . , k, then there exists Q * ∈ k Ss,t such that

{Q*, x ⋅ Q*, . . . , xk ⋅ Q * } (26)

is a basis for k Ss,t .

Proof: Let the unique non-zero coset in kFs,t be given by (25), where

Q * = [kQ*, . . . , 0Q*]†

is a fundamental solution in k Ss,t . Then by Corollary 5, [iQ*, . . . , 0Q*]† is a fundamental solution in i Ss,t ,

i = 0, . . . , k. By induction, we now show that a basis for k Ss,t is given by

{xk− j ⋅ [ jQ*, . . . , 0Q*]†}, j = 0, . . . , k. (27)

The theorem then follows from (27), because

xk− j ⋅ Q * = xk− j ⋅ [ jQ*, . . . , 0Q*]†.

Since 0Q * is a fundamental solution in 0Ss,t , and

dim (0Ss,t) = dim (0Fs,t) = 1,

then a basis for 0Ss,t is composed of the single vector 0Q *.

Now assume that a basis for i Ss,t is given by

{xi− j ⋅ [ jQ*, . . . , 0Q*]†}, j = 0, . . . , i. (28)

Since kHs,t is (i + 1)-maximal (i.e., dim (i+1Fs,t) = 1) and

[i+1Q*, . . . , 0Q*]† (29)

is a fundamental solution in i+1Ss,t , then the unique non-zero coset in i+1Fs,t is
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[i+1Q*, . . . , 0Q*]† + x ⋅ i Ss,t .

Therefore, a basis for i+1Ss,t is obtained by appending the representative vector (29) to a basis for x ⋅ i Ss,t . How-

ev er, using the inductive hypothesis (28), a basis for x ⋅ i Ss,t is given by

{xi+1− j ⋅ [ jQ*, . . . , 0Q*]†}, j = 0, . . . , i. (30)

The vector (29), together with (30), yield the required basis for i+1Ss,t .

Corollary 12. Let kHt−1,t be 0-maximal. If Q is a solution of (4), then there exist scalars α i , i = 0, . . . , k,

such that

Q =
k

i=0
Σ α i x

i ⋅ Q*, (31)

where Q * is a fundamental solution in k St−1,t .

Proof: By Theorem 6, a fundamental solution in k St−1,t always exists, and consequently

dim (kFt−1,t) ≥ 1.

Furthermore,

dim (0Ft−1,t) = 1,

since k Ht−1,t is 0-maximal. Thus, by Lemma 7

dim (iFt−1,t) = 1, i = 0, . . . , k.

(31) now follows from Theorem 11.

6. Characterization of Solutions

The construction of a basis for kFs,t is significantly more complex when kHs,t is k-nonmaximal, since now

dim (kFs,t) > 1. The objective of this section is to construct a representative of a single coset in iFs,t (only under

certain constraints on s and t) which generates a basis for iFs,t . Then, the representatives of the k + 1 generators

of the quotient spaces iFs,t , i = 0, . . . , k, yield a basis for the solution space k Ss,t of (2). We begin with a number

of preliminary lemmas.
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Lemma 13. If Q ∈ k Ss+1,t , then y ⋅ Q, y ⋅ Q ∈ k Ss,t+1.

Proof: The result follows from the definition of y and y, and a very careful comparison of the matrices

kHs+1,t and kHs,t+1.

Lemma 14. Let Q ∈ k Ss+1,t . Then the following statement are equivalent:

(1) Q is a fundamental solution in k Ss+1,t .

(2) y ⋅ Q is a fundamental solution in k Ss,t+1.

(3) y ⋅ Q is a fundamental solution in k Ss,t+1.

Proof: Since Q ∈ k Ss+1,t , then by Lemma 13, y ⋅ Q ∈ k Ss,t+1. But, 0Q = [0qt , . . . , 0q0]† = 0 if and only if

y ⋅ 0Q = [0qt , . . . , 0q0 , 0]† = 0. Thus, by

Lemma 4, (1) and (2) are equivalent.

Statements (1) and (3) can be shown to be equivalent in a similar fashion.

Lemma 15. Let Q ∈ k Ss+1,t . Then the following statements are equivalent:

(1) Q + x ⋅ k−1Ss+1,t is the zero coset in kFs+1,t .

(2) y ⋅ Q + x ⋅ k−1Ss,t+1 is the zero coset in kFs,t+1.

(3) y ⋅ Q + x ⋅ k−1Ss,t+1 is the zero coset in kFs,t+1.

Proof: The results are a direct consequence of Lemma 14 and the definition of a fundamental solution.

Define the mappings

y : kFs+1,t → kFs,t+1 (3

y : kFs+1,t → kFs,t+1 (33)

as follows: For an arbitrary coset

Q = Q + x ⋅ k−1Ss+1,t ∈ kFs+1,t , (34)

where Q ∈ k Ss+1,t is a representative, define

y ⋅ Q = y ⋅ Q + x ⋅ k−1Ss,t+1 ∈ kFs,t+1 (35)
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y ⋅ Q = y ⋅ Q + x ⋅ k−1Ss,t+1 ∈ kFs,t+1. (36)

This definition is shown to be unambiguous in

Lemma 16. The mappings y and y are monomorphisms of kFs+1,t into kFs,t+1.

Proof: We giv e a proof for y only. The result for y follows in a similar fashion.

We first show that y is well defined (i.e., y does not depend on the choice of representatives for cosets in

kFs+1,t). Suppose that Q, Q′ ∈ k Ss+1,t are such that

Q + x ⋅ k−1Ss+1,t = Q′ + x ⋅ k−1Ss+1,t . (37)

Then, Q − Q′ ∈ x ⋅ k−1Ss+1,t and consequently Q − Q′ + x ⋅k−1 Ss+1,t is the zero coset in kFs+1,t . Thus, by Corol-

lary 15, y ⋅ Q − y ⋅ Q′ + x ⋅ k−1Ss,t+1 is the zero coset in kFs,t+1. That is,

y ⋅ Q + x ⋅k−1 Ss,t+1 = y ⋅ Q′ + x ⋅k−1 Ss,t+1.

Thus, we have shown that if (37) holds, then

y ⋅ (Q + x ⋅ k−1Ss+1,t) = y ⋅ (Q′ + x ⋅ k−1Ss+1,t).

Next, we show that y is injective. For the coset

Q = Q + x ⋅ k−1Ss+1,t ∈ kFs+1,t ,

where Q ∈ k Ss+1,t , suppose that y ⋅⋅ Q is the zero coset in kFs,t+1. That is, suppose that y ⋅ Q + x ⋅ k−1Ss,t+1 is the

zero coset in kFs,t+1. Then, by Corollary 15, Q = Q + x ⋅ k−1Ss,t is the zero coset in kFs+1,t .

Finally, we show that y is linear. Let Q, Q′′ ∈ kFs+1,t . Then, there exist Q, Q′ ∈ k Ss+1,t such that

Q = Q + x ⋅ k−1Ss+1,t

and

Q′′ = Q′ + x ⋅ k−1Ss+1,t .

Then, for any scalars α and α’,

y ⋅ (αQ + α ′Q′′) = y ⋅ (αQ + x ⋅ k−1Ss+1,t + α ′Q′ + x ⋅ k−1Ss+1,t)
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= y ⋅ (αQ + α ′Q′ + x ⋅ k−1Ss+1,t)

= y ⋅ (αQ + α ′Q′) + x ⋅ k−1Ss,t+1

= (α y ⋅ Q + x ⋅ k−1Ss,t+1) + (α ′y ⋅ Q′ + x ⋅k−1 Ss,t+1)

= α (y ⋅ Q + x ⋅ k−1Ss,t+1) + α ′(y ⋅ Q′ + x ⋅ k−1Ss,t+1)

= αy ⋅ Q + α ′y ⋅ Q′′.

Denote the images of kFs+1,t under the tranformations y and y by y ⋅ kFs+1,t and y ⋅ kFs+1,t , respectively.

We then have

Lemma 17. If dim (kFs+1,t) ≥ 1, then

y ⋅ kFs+1,t ≠ y ⋅ kFs+1,t . (38)

Proof: Define

FS = {Q : 0Q ≠ 0 and Q ∈ k Ss+1,t } (39)

to be the set of fundamental solutions in k Ss+1,t . Then, FS is not empty, because dim (kFs+1,t) > 0. Clearly, by

the definitions of y and y in (8) and (9), there exists Q′ ∈ FS such that for all Q ∈ FS

y ⋅ 0Q′ ≠ y ⋅ 0Q. (40)

We now show that the coset

y ⋅ Q′ + x ⋅ k−1Ss,t+1 /∈ y ⋅ kFs+1,t .

(41)

For suppose otherwise. Then, there exists Q′′ ∈ k Ss+1,t such that

y ⋅ Q′ + x ⋅ k−1Ss,t+1 = y ⋅ Q′′ + x ⋅ k−1Ss,t+1.

Thus,

y ⋅ Q′ − y ⋅ Q′′ ∈ x ⋅ k−1Ss,t+1;

that is, y ⋅ Q′ − y ⋅ Q′′ is not a fundamental solution in k Ss,t+1. Consequently, by Lemma 4,



- 14 -

y ⋅ 0Q′ − y ⋅ 0Q′′ = 0.

But, 0Q′ ≠ 0, because Q′ ∈ FS. Thus, 0Q′′ ≠ 0, which implies Q′′ is a fundamental solution in k Ss+1,t . We hav e

therefore found Q′′ ∈ FS such that

y ⋅ 0Q′ = y ⋅ 0Q′′ = 0,

which violates the definition of Q′ in (40). Thus, (41) is true.

On the other hand, by Lemma 14, y ⋅ Q′ is a fundamental solution in k Ss,t+1. Therefore,

y ⋅ Q′ + x ⋅ k−1Ss,t+1 ∈ kFs,t+1 (42)

is a nonzero coset in kFs,t+1.

Corollary 18. If dim (kFs+1,t) ≥ 1, then

dim (kFs,t+1) ≥ dim (kFs+1,t) + 1. (43)

Proof: From (41) and (42), it follows that

dim (y ⋅ kFs+1,t) < dim (kFs,t+1). (44)

But, from lemma (16), y is a monomorphism so that

dim (kFs+1,t) = dim (y ⋅ kFs+1,t). (45)

The result (43) now follows from (44) and (45) .

Corollary 19. If dim (kFs+1,t) ≥ 1, then

krs,t+1 − k−1rs,t+1 ≤ krs+1,t − k−1rs+1,t . (46)

Proof: From (21),

dim (k Fs,t+1) = t + − (krs,t+1 − k−1rs,t+1),

and

dim (k Fs+1,t) = t + 1 − (krs+1,t − k−1rs+1,t).
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Thus, by Lemma 19,

t + 2 − (krs,t+1 − k−1rs,t+1) ≥ t + 1 − (krs+1,t − k−1rs+1,t) + 1

and (46) now follows.

Corollary 20. If dim (kFs,t) ≥ 1, then

krs−i,t+i − k−1rs−i,t+i ≤ krs,t − k−1rs,t , i = 0, . . . , s (47)

Proof: We proceed by induction to show that (47) is true and in addition that

dim (kFs−i,t+1) ≥ i + 1, i = 0, . . . , s. (48)

For i = 0, (47) and (48) hold true trivially. Now suppose (47) and (48) are valid for i ≥ 0. Then from (47) and

Corollary 19

krs−i−1,t+i+1 − k−1rs−i−1,t+i+1 ≤ krs−i,t+i − k−1rs−i,t+i

≤ krs,t − k−1rs,t

and (47) is true at i + 1. Also, (48) is true at (i + 1), because

dim (kFs−i−1,t+i+1) = t + i + 2 − (krs−i−1,t+i+1 − k−1rs−i−1,t+i+1)

≥ t + i + 2 − (krs,t − k−1rs,t)

≥ i + 2.

In the last inequality, we hav e used the fact that

krs,t − k−1rs,t ≤ t,

which again follows from (21) because

1 ≤ dim (kFs,t) = t + 1 − (krs,t − k−1rs,t).

If kHs,t is k-maximal, then dim (kFs,t) = 1. The quotient space kFs,t is then fully characterized by a single

non-zero coset in kFs,t . Characterization of kFs,t when kHs,t is k-nonmaximal is accomplished by means of
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Theorem 21. Let

γ k = t − (krs,t − k−1rs,t). (49)

If

krs,t − k−1rs,t ≤ min {s, t}, (50)

then there exists a fundamental solution Q(k) ∈ k Ss+γ k ,t−γ k
such that

{yγ k− j ⋅ y j ⋅ Q(k) + x ⋅ k−1Ss,t }, j = 0, . . . , γ k (51)

forms a basis for kFs,t .

Proof: From (21) and (50)

dim (kFs,t) = t + 1 − (krs,t − k−1rs,t) ≥ 1

Then, by Corollary 20 and (49), for i = 0, . . . , s,

krs−i,t+i − k−1rs−i,t+i ≤ krs,t − k−1rs,t = t − γ k . (52)

But, from (49) and (50),

0 ≤ t − γ k ≤ s.

Therefore, in particular, for i = s − t + γ k , inequality (52) becomes

krt−γ k ,s+γ k
− k−1rt−γ k ,s+γ k

≤ t − γ k . (53)

Now consider

kHs+γ k ,t−γ k
= (kHt−γ k ,s+γ k

)†.

Clearly,

krs+γ k ,t−γ k
− k−1rs+γ k ,t−γ k

= krt−γ k ,s+γ k
− k−1rt−γ k ,s+γ k

≤ t − γ k , (54)

using (53). Thus,
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dim (kFs+γ k ,t−γ k
) = t − γ k + 1 − (krs+γ k ,t−γ k

− k−1rs+γ k ,t−γ k
) ≥ 1.

Corollary 20 can therefore be applied once again to yield

t − γ k = krs,t − k−1rs,t

≤ krs+γ k ,t−γ k
− k−1rs+γ k ,t−γ k

. (55)

From (54), (55) and Corollary 20, it now follows that

krs+i,t−i − k−1rs+i,t−i = t − γ k , (56)

for all i such that t − s − γ k ≤ i ≤ γ k . Thus, from (21) and (56),

dim (kFs+i,t−i) = t − i + 1 − (t − γ k) (57)

= γ k − i + 1,

i such that t − s − γ k ≤ i ≤ γ k .

In particular, observe that

dim (kFs+γ k ,t−γ k) = 1. (58)

Therefore, in kFs+γ k ,t−γ k
, there exists a unique non-zero coset

Q(k) = Q(k) + x ⋅k−1 Ss+γ k ,t−γ k
,

where Q(k) is a fundamental solution in k Ss+γ k ,t−γ k
. We now show that Q(k) generates a basis for kFs+i,t−i , for

i = γ k , . . . , t − s − γ k . That is, we show that a basis for kFs+i,t−i , i = γ k , . . . , t − s − γ k , is giv en by

{yγ k−i− j ⋅ y j ⋅ Q(k)}, j = 0, . . . , γ k − i. (59)

We proceed by induction for decreasing values of i. For the initial step in the induction, i = γ k , we hav e

trivially that {Q(k)} is a basis for kFs+γ k ,t−γ k
. Assume now that (59) provides a basis for kFs+γ k ,t−γ k

, . . . , kFs+i,t−i . It

is required that we show (59) provides a basis for kFs+i−1,t−i+1. Since

{yγ k−i− j ⋅ y j ⋅ Q(k)}, j = 0, . . . , γ k − i,

is a basis for kFs+i,t−i , by Lemma 16, a basis for each of y ⋅ kFs+i,t−i and y ⋅ kFs+i,t−i are given by
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{yγ k−i− j ⋅ y j+1 ⋅ Q(k)}, j = 0, . . . , γ k − i (60)

and

{yγ k−i− j+1 ⋅ y j ⋅ Q(k)}, j = 0, . . . , γ k − i, (61)

respectively, since y and y commute. The union of (60) and (61)

{yγ k−i− j+1 ⋅ y j ⋅ Q(k)}, j = 0, . . . , γ k − i + 1 (62)

are all linearly independent in kFs+i−1,t−i+1, according to Lemma 17. By (57),

dim (kFs+i−1,t−i+1) = γ k − i + 2,

and since there are γ k − i + 2 cosets in (62), then (62) forms a basis for kFs+i−1,t−i+1. The induction is therefore

complete.

The theorem now follows by setting i = 0 in (59).

For a giv en matrix kHs,t , let

krs,t − k−1rs,t ≤ min {s, t}.

Then, by Corollary 8, it follows that

irs,t − i−1rs,t ≤ min {s, t}, i = 0, . . . , k.

Thus, Theorem 21 is valid for each submatrix iHs,t , i = 0, . . . , k. We then obtain

Corollary 22. Let kHs,t be such that

krs,t − k−1rs,t ≤ min {s, t}.

For i = 0, . . . , k, define

γ i = t − (irs,t − i−1rs,t) (63)

and let Q(i) be a fundamental solution in i Ss+γ i ,t−γ i
. If Q ∈ k Ss,t , then there exists scalars α i, j such that

Q =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i ⋅ yγ i− j ⋅ y j ⋅ Q(i). (64)
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Proof: From Theorem 21, a basis for k Ss,t is composed of the union of

{yγ k− j ⋅ y j ⋅ Q(k)}, j = 0, . . . , γ k

and an x-shift of a basis for k−1Ss,t . A basis for k−1Ss,t (and iteratively for the subspaces k−2Ss,t , . . . , 0Ss,t) is

obtained in a similar fashion by means of Theorem 21, and (61) now follows.

Theorem 23. Let s ≥ t − 1, and define

γ k = t − (krs,t − k−1rs,t). (65)

If γ k ≥ 0, then there exists a fundamental solution Q(k) ∈ k Ss+γ k ,t−γ k
such that

{yγ k− j ⋅ y j ⋅ Q(k) + x ⋅ k−1Ss,t }, j = 0, . . . , γ k, (66)

forms a basis for kFs,t .

Proof: If s ≥ t, then (65) and γ k ≥ 0 imply that

krs,t − k−1rs,t = t − γ k ≤ t = min {s, t},

and the theorem follows from Theorem .

If s = t − 1, then kHs,t has t more rows than k−1Hs,t , and consequently

krs,t − k−1rs,t ≤ t. (67)

If, in addition,

krs,t − k−1rs,t ≤ t − 1

in (67), then again condition (50) is satisfied and the theorem follows from Theorem 21. Finally, if s = t − 1 and

krs,t − k−1rs,t = t,

then kHs,t is k-maximal. Therefore, γ k = 0 in (65) and (66) and Q(k) is a representative of the unique non-zero

coset in kFs,t .
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Corollary 24. Let s ≥ t − 1, and define

γ i = t − (irs,t − i−1rs,t), i = 0, . . . , k. (68)

If γ k ≥ 0, then for any Q ∈ k Ss,t there exists scalars α i, j such that

Q =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i ⋅ yγ i− j ⋅ y jQ(i), (69)

where, for i = 0, . . . , k, Q(i) is a fundamental solution in i Ss+γ i ,t−γ i
.

Proof: By Corollary 8,

irs,t − i−1rs,t ≤ krs,t − k−1rs,t , i = 0, . . . , k.

Thus, in (68) γ i ≥ 0 for i = 0, . . . , k. From Theorem 3, a basis for iFs,t , i = 0, . . . , k is given by (66) with k

replaced by i. Then, Corollary 24 follows by arguments similar to those in the proof of Corollary

22.

7. Modular Padé Forms

In this section, we define modular Padé forms for a bivariate power series. It will be seen that the problem

of obtaining a modular Padé form is equivalent to that of solving an associated triangular block Hankel system of

the type defined in section 1. So, the results of the previous sections on the characterization of solutions for this

Hankel system fully describe the nature of the Padeé forms. We begin with the introduction of a suitable nota-

tion.

A bivariate power series A(x, y) is a formal power series in two variables x and y, i.e. a formal expression

of the form

∞

i=0
Σ

∞

j=0
Σ i a j x

i y j , (70)

where the coefficients i a j are from D. For i ≥ 0 and j ≥ 0, an expression O(xi y j) denotes an arbitrary bivariate

power series R(x, y) such that there exists a bivariate power series R′(x, y) and R(x, y) = xi y j R′(x, y). In this

case it is said that R(x, y) is of the order xi y j . Thus, for i0, j0, . . . , ik , jk ≥ 0, the expression

A(x, y) = O(xi0 y j0) + . . . + O(xik y jk )
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indicates that there exist power series R(0)(x, y), . . . , R(k)(x, y) such that

A(x, y) = xi0 y j0 R(0)(x, y) + . . . + xik y jk R(k)(x, y).

Bivariate power series with a finite number of non-zero coefficients are bivariate polynomials. If

P(x, y) =
∞

i=0
Σ

∞

j=0
Σ i p j x

i y j is a polynomial, then a minimal k≥0 and a minimal m≥0 such that

P(x, y) =
k

i=0
Σ

m

j=0
Σ i p j x

i y j

are called, respectively, the degree of P(x, y) in x and the degree of P(x, y) in y (in symbols, ∂x P(x, y) = k and

∂y P(x, y) = m). A pair (k, m) is called simply the degree of P(x, y) (in symbols, ∂P(x, y) = (k, m)). Also, the

expression ∂P(x, y) ≤ (k, m) is used to indicate that ∂x P(x, y) ≤ k and ∂y P(x, y) ≤ m.

A vector space of all bivariate polynomials Q(x, y) with ∂Q(x, y) ≤ (k, t) is denoted by k BPt . It is an easy

observation that the vector space kVt given in (5) and vector space k BPt are isomorphic in a natural way, i.e., if

Q ∈ kVt , where Q = [kQ, . . . , 0Q]† and iQ = [iqt , . . . , iq0]†, i = 0, . . . , k, then there exists a corresponding poly-

nomial Q(x, y) ∈ k BPt , namely

Q(x, y) =
k

i=0
Σ

t

j=0
Σ iq j x

i y j . (71)

This isomorphism is denoted by Polk,t and its inverse isomorphism by Veck,t . Thus,

Polk,t : kVt → k BPt.

Veck,t : k BPt → kVt ,

and with Q and Q(x, y) above, Q(x, y) = Polk,t (Q) and Q = Veck,t (Q(x, y)). Moreover, the shift transforma-

tions x, x, y and y from section 1 can be easily translated into operations on polynomials, which are given by the

following

Lemma 25: Let Q ∈ kVt . Then

1. Polk+l,t (xl ⋅ Q) = xl ⋅ Polk,t (Q),

2. Polk,t(xl ⋅ Q) = (xl ⋅ Polk,l (Q))mod xk+1,

3. Polk,t+l(yl ⋅ Q) = yl ⋅ Polk,t (Q), and
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4. Polk,t+l(yl ⋅ Q) = Polk,t (Q).

Proof:

Only case 2 is not trivial, and the proof is given for this case only. Let Q ∈ kVt . Then

Polk,t (Q) =
k

i=0
Σ

t

j=0
Σ iq j x

i y j .

Thus,

xl ⋅ Polk,t (Q) =
k

i=0
Σ

t

j=0
Σ iq j x

i+l y j

and

(xl ⋅ Polk,t (Q))modxk+1 =
k−l

i=0
Σ

t

j=0
Σ iq j x

i+l y j .

On the other hand, by the definition of the tranformation x,

xl ⋅ Q = [k−lQ, . . . , 0Q, 0, . . . , 0]† = [kQ′, . . . , 0Q′]†,

where iQ′ = [i−l qt , . . . , i−l qt]
† for i = l, . . . , k, and iQ′ = 0 for i = 0, . . . , l − 1. Thus,

Polk,t(xl ⋅ Q) =
k

i=l
Σ

t

j=0
Σ i−l q j x

i y j =
k−l

i=0
Σ

t

j=0
Σ iq j x

i+l y j .

Let the bivariate power series A(x, y) and non-negative integers k, m and n be given.

Definition 26. A bivariate rational expression P(x, y)/Q(x, y) is called a modular Padé (k, m, n)-form for

A(x, y) if ∂P(x, y) ≤ (k, m), ∂Q(x, y) ≤ (k, n) and the following order condition is satisfied

A(x, y) ⋅ Q(x, y) + P(x, y) = O(ym+n+1) + O(xk+1). (72)

By equating appropriate powers of x and y, it is easy to see that the polynomials

P(x, y) =
k

i=0
Σ

m

j=0
Σ i p j x

i y j and Q(x, y) =
k

i=0
Σ

n

j=0
Σ iq j x

i y j
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satisfy the order condition (72) if and only if its coefficients satisfy the following systems of linear equations:

k

i=0
Σ

n

j=0
Σ s−i at− j iq j = 0 ,  0 ≤ s ≤ k, m + 1 ≤ t ≤ m + n , (73)

and

k

i=0
Σ

n

j=0
Σ s−i at− j iq j + s pt = 0, 0 ≤ s ≤ k, 0 ≤ t ≤ m, (74)

where i a j = 0 if i < 0 or j < 0.

The systems of equations (73) and (74) can be expressed in matrix form as follows. Let kHn−1,n be the tri-

angular block Hankel matrix defined in (3), with components i h j determined by the coefficients of the power

series A(x, y),namely, for i = 0, . . . , k and j = 0, . . . , 2n − 1,

i h j =







i am−n+1+ j ,

0,

if m − n + 1 + j ≥ 0,

otherwise.

(75)

Let kGm,n be a triangular block Toeplitz matrix, such that

kGm,n =









0G .

.

.

.

.

.

kG

.

.

.

0G









,

where

iG =









i am−n

.

.

.

i a−n

.

.

.

.

.

.

i am

.

.

.

i a0









, (76)

for i = 0, . . . , k, where i a j = 0 if j < 0. Then, the system (73) is equivalent to

kHn−1,n ⋅ Q = 0, (77)

and the system (74) is equivalent to
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kGm,n ⋅ Q + P = 0, (78)

where Q∈kVn and P ∈kVm.

Clearly, the polynomials P(x, y)∈k BPm and Q(x, y)∈k BPn satisfy the order condition (72) if and only if

the corresponding vectors P = Veck,m(P(x, y)) and Q = Veck,n(Q(x, y)) satisfy equations (77) and (78). Thus,

there is a one to one correspondence between modular Padé forms and solutions to a block Hankel systems

which can be stated as

Lemma 27. P(x, y)/Q(x, y) is a modular Padé (k, m, n)-form for A(x, y) if and only if corresponding vec-

tors P and Q are solutions of systems (77) and (78).

Solutions of (77) and (78) are uniquely determined by solutions of the system (77) alone (i.e. any solution

of (77) can be substituted in (78) to calculate the vector P). This observation together with Lemma 26., gives a

procedure for the characterization of all modular Padé (k, m, n)-forms for A(x, y). First, the family of solutions

Q to the system (77) is determined, and then the family of solutions P is given by solving system (78) for P.

Then P(x, y)/Q(x, y), such that P(x, y) = Polk,n (P) and Q(x, y) = Polk,m (Q), are all modular Padé

(k, m, n)-forms for A(x, y).

General results from the previous sections are applied to obtain solution of equation (77), which as it was

shown in Corollary 24 can be expressed as a linear combination of shifts of solutions of a smaller system. It will

be shown that the solution P corresponding to equation (78) can be expressed as the same linear combination of

the same shifts of solutions P corresponding to solutions of these smaller systems.

It should be clear, from the definition of matrices kGm,n, that if Q ∈ k−iVn, 0 ≤ i ≤ k, then

kGm,n ⋅ (xi ⋅ Q) = xi ⋅ (k−iGm,n ⋅ Q), (79)

and also, that if Q ∈ kVn, then

kGm,n ⋅ (xi ⋅ Q) = xi ⋅ (kGm,n ⋅ Q). (80)

Solutions involving shifts yi and yi are more complex, and are addressed in

Lemma 28. If Q ∈ kVn−γ , for some γ, 0 ≤ γ ≤ n, is such that Q ∈ k Sn−1+γ ,n−γ , then

kGm,n ⋅ yγ −l ⋅ yl ⋅ Q = yγ −l ⋅ yl ⋅ kGm−γ ,n−γ Q, (81)
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for 0 ≤ l ≤ γ .

Proof: Let

Q = [kQ, . . . , 0Q], iQ = [iqn−γ , . . . , iq0], i = 0, . . . , k,

and define

P = kGm−γ ,n−γ ⋅ Q,

where

P = [k P, . . . , 0P], i P = [i pm−γ , . . . , i p0], i = 0, . . . , k.

If we set

P′′ = yγ −l ⋅ yl ⋅ P,

where

P′′ = [k P′′, . . . , 0P′′], i P′′ = [i p′′m, . . . , i p′′0], i = 0, . . . , k,

then the r.h.s. of equality (81) is equal to P′′.

Similarly, define

Q′ = yγ −l ⋅ yl ⋅ Q,

where

Q′ = [kQ′, . . . , 0Q], iQ = [iq′n, . . . , iq′0], i = 0, . . . , k.

Then the l.h.s. of equality (81) become

P′ = kGm,n ⋅ Q′,

where

P′ = [k P′, . . . , 0P′], i P′ = [i p′m, . . . , i p′0], i = 0, . . . , k.
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It will be shown that P′ = P′′, by proving that i0
p′j0

= i0
p′′j0

, for 0 ≤ i0 ≤ k and 0 ≤ j0 ≤ m. For 0 ≤ i0 ≤ k,

0 ≤ j0 ≤ j − γ

i0
p j0

=
k

i=0
Σ

n−γ

j=0
Σ i0−i a jo− j iq j .

Thus, for 0 ≤ i0 ≤ k, 0 ≤ j0 ≤ m

i0
p′′j0

=







i0
p j0−l ,

0,

l ≤ j0 ≤ m − γ − l,

otherwise.

Then, for 0 ≤ i0 ≤ k,

i0
p′′j0

=









k

i=0
Σ

n−γ +1

j=l
Σ

0,

i0−i a j0− j iq j−l ,

0 ≤ j0 < l, or

l ≤ j0 ≤ m − γ + l,

m − γ + l + 1 ≤ j0 ≤ m.

On the other hand, for 0 ≤ i0 ≤ k, 0 ≤ j0 ≤ m,

i0
p′j0

=
k

i=0
Σ

n

j=0
Σ i0−i a j0− j ⋅i q′j ,

where

iq′j =







iq j−l ,

0,

l ≤ j ≤ n − γ + l,

otherwise.

Therefore, for 0 ≤ i0 ≤ k, 0 ≤ j0 ≤ m,

i0
p′j0

=









k

i=0
Σ

n−γ +l

j=l
Σ

0,

i0−i a j0− j iq j−l , l ≤ j0 ≤ m,

0 ≤ j0 < l.

It remains to show that for 0 ≤ i0 ≤ k, m − γ + l + 1 ≤ j0 ≤ m
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k

i=0
Σ

n−γ +l

j=l
Σ i0−i a j0− j iq j−l = 0.

From the assumption that Q ∈ k Sn−1+γ ,n−γ , it follows that for 0 ≤ i0 ≤ k, m − γ + 1 ≤ j0 ≤ m + n,

k

i=0
Σ

n−γ

j=0
Σ i0−i a j0− j iq j = 0,

which is equivalent to

k

i=0
Σ

n−γ +l

j=l
Σ i0−i a j0− j iq j+l = 0,

for 0 ≤ i0 ≤ k and m − γ + 1 + l ≤ j0 ≤ m + n + l .

Definition 29. The power series A(x, y) is (i, m, n)-maximal if the matrix kHn−1,n is i-maximal.

By definition, the matrix kHn−1,n for a (0, m, n)-maximal power series, is 0-maximal. Thus, by Corollary

12, there exists a single fundamental solution Q *. Let P * = − kGm,n Q * be the corresponding solution to the

system (78), and let P * (x, y)/Q * (x, y) be corresponding modular Padé (k, m, n)-form.

The next theorem shows that if A(x, y) is (0, m, n)-maximal, then all modular Padé (k, m, n)-forms can be

characterized in terms of a single modular Padé (k, m, n)-form.

Theorem 30. All modular Padé (k, m, n)-forms for a (0, m, n)-maximal power series A(x, y) are of the

form P(x, y), Q(x, y), where

P(x, y) = (U(x)P * (x, y))mod xk+1

Q(x, y) = (U(x)Q * (x, y))mod xk+1,

and U(x) is an arbitrary polynomial in x.

Proof: Let P(x, y) = Polk,m (P) and Q(x, y) = Polk,n (Q) where P and Q are solutions to (77) and (78).

By Corollary 12

Q =
k

i=0
Σ α i x

i ⋅ Q*,

for some α0, . . . ,α k ∈ D. Thus
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P = − kGm,n ⋅ Q =
k

i=0
Σ α i(kGm,n xi ⋅ Q*)).

But, from (80),

kGm,n ⋅ (xi ⋅ Q*) = xi ⋅ (kGm,n ⋅ Q*),

and therefore,

P =
k

i=0
Σ α i x

i ⋅ P*.

Let U(x) =
k

i=0
Σ α i x

i . From Lemma 25, it follows that

Polk,m (P) = (U(x) P * (x, y)) mod xk+1 and

Polk,n (Q) = (U(x) Q * (x, y)) mod xk+1.

The above theorem characterizes modular Padé (k, m, n)-forms in a special case, when A(x, y) is

(0, m, n)-maximal. Full characterization is given below for the general case.

Given A(x, y), k, m and n, let Q(i), i = 0, . . . , k, be the fundamental solutions as given in Corollary 24.

Thus, the Q(i)’s are solutions to a system

iHn−1+γ i ,n−γ i
⋅ Q = 0.

Therefore, they are also solutions to a smaller system of the form (77), i.e.,

iHn−1−γ i ,n−γ i
⋅ Q = 0.

For i = 0, . . . , k, let P(i) be defined as corresponding solution of the form (78), i.e.,

P(i) = − iGm−γ i ,n−γ i
⋅ Q.

For i = 0, . . . , k, let

P(i)(x, y) = Poli,m−γ i
(P(i))

and
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Q(i)(x, y) = Poli,n−γ i
(Q(i)).

Thus, by Lemma 27, P(i)(x, y)/Q(i)(x, y) are modular Padé (i, m − γ i , n − γ i)-forms for A(x, y) where

i = 0, . . . , k.

The following theorem shows that any modular Padé (k, m, n)-form can be expressed as a function of mod-

ular Padé (i, m − γ i , n − γ i)-forms, i = 0, . . . , k.

Theorem 31. All modular Padé (k, m, n)-forms for A(x, y) are of the form P(x, y)/Q(x, y), where

P(x, y) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y j P(i)(x, y), Q(x, y) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y j Q(i)(x, y)

and α i, j , i = 0, . . . , k, j = 0, . . . , γ i are arbitrary scalars.

Proof: Let P(x, y) = Polk,m(P) and Q(x, y) = Polk,n(Q), where P and Q are arbitrary solutions to (77) and

(78). By Corollary 24,

Q =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i ⋅ yγ i− j ⋅ y j ⋅ Q(i).

Thus,

P = −
k

i=0
Σ

γ i

j=0
Σ α i, j kGm,n ⋅ (xk−i ⋅ yγ i− j ⋅ y j ⋅ Q(i)).

From (79), it follows that

kGm,n ⋅ (xk−i ⋅ yγ i− j ⋅ y j ⋅ Q(i)) = xk−i ⋅ iGm,n ⋅ (yγ i− j ⋅ y j ⋅ Q(i)).

Since Q(i) ∈ k Sn−1+γ i ,n−γ i
, i = 0, . . . , k, by Lemma 28, it follows that

iGm,n yγ i− j ⋅ y j ⋅ Q(i) = yγ i− j ⋅ y j ⋅ iGm−γ i ,n−γ i
Q(i).

But, iGm−γ i ,n−γ i
Q(i) = − P(i), and consequently,

P =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i ⋅ yγ i− j ⋅ y j ⋅ P(i).

An application of Lemma 25 to the vectors P and Q gives



- 30 -

Polk,m(P) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y j Poli,m−γ i
(P(i))

and

Polk,n(Q) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y j Poli,n−γ i
(Q(i)).

Thus,

P(x, y) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y j P(i)(x, y)

and

Q(x, y) =
k

i=0
Σ

γ i

j=0
Σ α i, j x

k−i y jQ(i)(x, y).

8. Concluding Remarks

The results presented in this report fully describe the nature of the solutions to the triangular block Hankel

system (2). The existence and non-uniqeness of the solutions are discussed. Crucial to the results is the notion of

fundamental solutions; fundamental solutions are characterized in terms of representatives of the cosets of a cer-

tain vector space of quotients. Theorem 11 describes the basis for the space of solutions when the matrix satisfies

a certain condition of maximality. When the matrix is not maximal, the general format of the solution is given by

Corollary 24.

The importance of this result comes from the relationship between the block Hankel system (2) and the

modular Padé forms defined in section 7. It is established that there is a one-to-one correspondence between

modular Padé forms and the solutions of a specific case of (2), namely the case where s = t − 1. The results pre-

sented provide a theortical framework for the effective computation of modular Padé forms.

In a more general setting, multivariate Padé approximants can be defined as follows. For a given integer d,

let I be a set of multi-indices given by I = {(i1, . . . , id ): i j∈Z+, j = 1, . . . , d}, where Z+ denotes the non-negative

integers. For x∈Rd and i∈I , let xi denote xi1
1 . . . xid

d . The definition of multivariate Padé approximant involves

choosing subsets IP , IQ and IE of I such that, for a given multivariate power series A(x) =
i∈I
Σ ai x

i , two polyno-

mials P(x) =
i∈IP

Σ pi x
i and Q(x) =

i∈IQ

Σ qi x
i can be found satisfying an order condition
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A(x)Q(x) − P(x) =
i∈I \,IE

Σ ri x
i . (82)

The choice of the index sets IP , IQ and IE of I is governed by many criteria. These criteria can be derived

by postulating that approximants have some convenient properties (e.g., invariance under certain transforma-

tions), or can be imposed directly on the index sets (e.g., symmetry). One aspect, not of least importance, is the

ease of effective computation of the approximants. For a specific choice of the index sets IP , IQ and IE of I , the

order condition (82) gives rise to a system of linear equations. Computation of all approximants satisfying the

order condition is equivalent to finding all the solutions of this system of linear equations.

For the bivariate case (i.e., d = 2), Chisholm [5,6,7,12] approximants are defined by

IP = IQ = {(i1, i2): 0 ≤ i1, i2 ≤ m}, and

IE = {(i1, i2): 0 ≤ i1 + i2 ≤ 2m};

whereas, for Cuyt approximants [8,9,10,11]

IP = {(i1, i2): mn ≤ i1 + i2 ≤ mn + m},

IQ = {(i1, i2): mn ≤ i1 + i2 ≤ mn + n}, and

IE = {(i1, i2): mn ≤ i1 + i2 ≤ mn + m + n}.

The index sets for modular Padé forms of section 7 are defined by

IP = {(i1, i2): 0 ≤ i1 ≤ k, 0 ≤ i2 ≤ m},

IQ = {(i1, i2): 0 ≤ i1 ≤ k, 0 ≤ i2 ≤ n}, and

IE = {(i1, i2): 0 ≤ i1 ≤ k, 0 ≤ i2 ≤ m + n}.

The corresponding system of linear equations for modular Padé forms is the triangular block Hankel system

kHn−1,n defined by (4).

The following question can be posed, which is a natural generalization of the results given in this report.

Let a generalized (k,m,n)-modular Padé form for a d-variate power series be defined by the order condition (82),

where the index sets are

IP = {(i1, . . . , id ): 0 ≤ i j ≤ k, j = 1, . . . , d − 1, 0 ≤ id ≤ m},

IQ = {(i1, . . . , id ): 0 ≤ i j ≤ k, j = 1, . . . , d − 1, 0 ≤ id ≤ n}, and

IE = {(i1, . . . , id ): 0 ≤ i j ≤ k, j = 1, . . . , d − 1, 0 ≤ id ≤ m + n}.
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The order condition (82), in this case, gives rise to a generalized block Hankel system. To what extent can the

results of this report be replicated? It seems that the success of a such a generalization would depend on whether

an equivalent of Lemma 13 can be formulated.

By rearranging rows and columns, the triangular block Hankel system (4) can be written as a full Hankel

system with triangular matrices as components. From this perspective, the problem of solving this system

becomes one of obtaining a (t-1,t)-Padé approximant for a univariate power series with triangular matrix coeffi-

cients. So, modular bivariate Padé approximants are a special case of univariate matrix Padé approximants. It

remains to determine how the characterization of solutions of the matrix Padé problem [2,3,14] corresponds to

the results in this report.
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