1. Introduction

Fori=0,...,klet

ihs -+ ihsy

be a Hankel matrix with components ;h;, j =0,...,s+t, from some field D. The objective of this report is to

characterize the solutions of the block Hankel system

kHst - Q=0, %)

where (Hy; is of the triangular form

OHs,t
kHst = : .t (©)

OHs,t L kHs,t

We are more interested in characterizing solutions of the system

kHi1t - Q=0. @)

Consideration is given to the more genera system (2) primarily to facilitate the development of results for the
case s=t - 1. This characterization is established in section 2 through section 6. For applications of block Han-

kel matrices, the reader isreferred to [1,4].

Solutions of (4) correspond directly to a certain type of Pade approximant for bivariate power series
defined in section 7. Because of this correspondence, we are able to give a full characterization of this type of
Pade approximants as well. The relevance of thiswork in the general context of multivariate Pade approximation

is discussed in section 8.

We begin with some preliminary definitions and notational conventions. For k,t = 0, let



kQ i Ot
WVi=1Q:Q=| . |, where ;Q=| . | for i=0,..., k
oQ i%
be a vector space of dimension (k + 1)(t + 1). It is assumed that the components

idj,i=0,...,k, j=0,...,t areelements from D.

Let | be anon-negativeinteger. For any Q €V, define

X-Q=[Q -+, 0Q 0, 0" €V

and

),(l'Q=[k—|Q7"'vOQ707”'1O]TEkvt,

where 0 isthe zero vector of lengtht + 1. For any Q € ,V,, aso define

yI'Q=[yI 'in"'iyl'OQ]TekVHI!

where, for eachi =0, ..., Kk,

yl 'iQ=[iqtvl"1iq01 0110]T EOV'[+|'

Similarly, for any Q € \\V,, define

vV Q=¥ Q- ¥ - 0Ql" €V,

where, for eachi =0, ..., Kk,

¥ iQ=1[0,--,0,iG, ", iG] " E V-

Associated with definitions (6), (7), (8) and (9) are the following mappings defined in the obvious way:
X Ve = Vs

X Ve = My

D kVe = KV

¥ Vi = WV

()

(6)

()

(8)

9)

(10)
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It is easy to see that each of the mappingsin (10) islinear, and that x', y' and y' areinjective. For notational con-
venience, we also adopt the convention that x = x}, x = x*, y = y and y = y*. Let Sbe asubspace of ,V,. Then

the image of S by the transformation X' is denoted by
x-S={x'-Q:Q €S} (11)

Clearly, X' - Sis a subspace of |, V,. A notation similar to (11) can be adopted for the other transformations in

(20), but such is not required in what follows.

2. Existence of a Solution

Denote the space of solutions of (2) by

kSst = {Q ‘kHst - Q= 0} (12)

Clearly, Ss; is asubspace of (V;. Denote the rank of (Hs; by «rs; and define _;rg; = 0. A sufficient but not a

necessary condition for S to be non-trivial is given by

Theorem 1. If s=<t -1, then anon-trivial solution Q to (2) always exists.
Proof: Since ¢Hs; has (k + 1)(s+ 1) rows, then

kst = (K+1)(s+1).

Sincethere are (k + 1)(t + 1) unknownsin (2), then
dim ((Sp) = (k+ D(t + 1) - yTs (13)
=(k+1(t-9)

=k+1

The inequality (13) provides that for t > s (and in particular for s=1t - 1), (2) has at least k + 1 linearly
independent solutions. The next few results are concerned with the nature of these solutions. Corresponding to

(A1), fori =0,1,...,k, define

X i Set = {Xi "QIQE Ss,t}- (14



Lemma2. Fori=0,...,k, X - ;S isasubspace of , S;;.

Proof: Assumethat Q' €x' - S;. Then, by the definition of the set X' -,; Ss;, there exists

Q=[1iQ ., 0Ql" ExiSst,

such that
Q=x-Q
Thus,
Q,= [ k—iQ!"'!OQ! 0;"';0]T
and clearly
kHs,t ' Q, =0.
Therefore,
X' ki Sst CieSsr
The result now follows since X' -y Ss isasubspace of V. ]
Definition 3. Q isafundamental solution of (2) if Q €Sy and Q & X -x_; Sy ]
Lemmad4. If

Q=0LQ . oQl" &Ss:

then Q is afundamental solutionin S, if and only if ;Q=O0.

Proof: Assume that Q is afundamental solution in Ss, and suppose that (Q = 0. Let

Q =[Q - ,1Ql"

ThenQ=x-Q and Q" §_;Ss;. Thus, Q € x-«_; Sg¢. This contradicts the assumption that Q is a fundamental

solution in  Sg;.

Conversely, assume that Q &S;; and that Q is not a fundamental solution. Then, by Definition 3,



Q € X k.1 Sst, and consequently, thereexists Q' &,_;Sg; suchthat Q = x- Q'. Thus,

[kQ! T lQ! OQ]T = [k—lQ’1 T OQ,1 O]Ti
from which it follows that (Q = 0. Therefore, if (Q=0, then Q must be afundamental solutionin  Sg;. [

Corollary 5. If

Q=[Q. -+, Q" €4Sty

then Q is afundamental solution in S, iff

Q = [1iQ, -+, 0Ql"

isafundamental solution in_;Ss;.

Proof: Since Q € Sy, then Q setisfies (2). From (2), it also followsthat Q" &, Ss;. Thus, by Lemma4,

0Q = 0iff Q isafundamental solutionin Sy and Q' is afundamental solutionin_; Ss;. ]

Theorem 6. If s<t-1, then afundamental solutionin S, of (2) always exists.

Proof: We shall show that
dim (Ss) > dim (X - _1Ssy), (15)
from which it then follows that there exists at least one Q € Sy such that Q & x - ;S Since the mapping x
in (10) isinjective, then
dim (X - _1Sst) = dim(x_1Ss;)

=k(t+1) - af st (16)

Thus,
dim (Ssp) — dim(x - 1 Ssp) = [(K+ 1)(t + 1) = yrse] = [K(t+1) = 1Fsy]
=t+1- (krs,t - k—lrs,t) 17

=>t-s.

In the last inequality, we have used the fact that



kst — k-1lst = S+ 1,

since (Hs; has s+1 more rows than ,_;Hsg;. ]

3. Quotient Spaces

Directly from the definition of a fundamental solution, it follows that the space Ss; of solutionsto (2) is
composed of (1) fundamental solutionsin Ss; and (2) solutions contained in the subspace x -_; Sg;. The same
observation can be made about the solution spaces _;Sg¢, i = 1,.. ., k. Consequently, fundamental solutions in
each S, 1 =0, ..., k describe the entire solution space Ss;. Unfortunately, fundamental solutions are not a

convenient concept to work with, because fundamental solutionsin Sg; form a set and not a vector space.

As a remedy, we introduce the vector space of quotients (F¢; of Sy with respect to the subspace

X k1 Ss,tv namely!
kFst = kSst I X ko1 S

={Q+ X1 S5t QEYSit, k=1 (18)

For k = 0, we define trivially

oF st = 0Sst 19

Clearly, fundamental solutionsin ,Ss; are representatives of non-zero cosets of (F, and conversely. Thus, rep-
resentatives of the cosets of any basis for (Fs; together with a basis for x -_; Sg; condtitute a basis for | Sg;.
Consequently, the problem of constructing a basis for Sg; (i.e., of characterizing the space of solutions of (2)) is
reduced to the problem of constructing a basis for each of the quotient spaces

kiFst, 1 =0,...,k. Since

dim (X -1 Sse) = dim (-1 Sg), (20)

then
dim (cFs;) = dim (¢ Ssy) - dim (-1 Ss)

=t+1- (krs,t - k—1rs,t)- (21)



The next lemmasis crucial in the following sections.

Lemma?. For k = 1, then

dim (Fs;) = dim (-1Fsy). (22)

Proof: For

Q=[Q, -+, 0Q" €¢Ssts

define

T Q) =[kaQ -, 0QI"

Clearly, T isalinear transformation

T:iSst = 1St

By Corollary 5, T has the property that Q + X - 1 Ss; iS the zero coset in (Fg, iff T(Q) + X ¢ o S is the zero
coset in _;Fs;. Therefore (c.f., Marcus [13]), the mapping T : (Fs¢ — «_1Fs¢ induced by T is a monomor-

phism, that is,

T(Q + X1 Sp) = T(Q) + X a2 Sy

As aconsequence,

dim (Fs) = dim(T(«Fsy)) = dim (i1Fsg).-

Corollary 8. Fork = 1

kst = k-1lst = ks1lst — kst (23)

Proof: From (21) and Lemma7,

t+1- (k+lrs,t - krs,t) st+1- (krs,t - k—lrs,t)a

and (23) now follows. ]



From (22), it follows that the dimensions of the quotient spaces  F; cannot increase with k, that is,

dim (oFs) = dim (;Fg;) = dim (oFgg) = -+ -

Thus, if there are no fundamental solutions in ;Ss; (i.e., if dim (;Fg;) = 0), then there are no fundamental solu-
tionsin ;Ss;,i =< j <k

When fundamental solutions do exist, we wish to distinguish between two cases by means of

Definition 9. For any i, 0 <i = k, the matrix (Hg; isi-maximal if dim (iFs;) = 1, and i-nonmaximal if
dim(iFst) > 1L ]
Thus, from (21), (H; isi-maximal if and only if

irs,t - i—lrs,t =t (24)

Coroallary 10. If (Hs; isi-nonmaximal for somei, 1 <i < k, thenitis
(i = 1)-nonmaximal.

Proof: The result follows immediately from Theorem 7. ]

In the following sections, the notion of k-maximality is used to provide a condition for the uniqueness (in a
certain sense) of solutions to (2). When (H; is k-nonmaximal, we show that solutions of (2) can be expressed

in terms of "unique" solutions of other systems for which the Hankel matrix is k-maximal.

5. Uniqueness

If (Hgt isk-maximal, then by Definition 9 there exists a coset

Q* =Q% + X kaSsps (25)

unique up to a multiplicative constant, which constitutes a basis for (Fs;. The representative vector Q * in (25)
is a fundamental solution in  S¢. In addition, if Q €S, is any other solution of (2), then there exists a scalar

a such that

Q=aQ*+Q,

where



Q EX 1St

The same observation applies inductively to the solution spaces ¢_jSg;, i = 1,..., Kk, by which a basis for

the entire space  Sg; can be built. A stronger result is given by

Theorem 11. If (Hg, isi-maximal fori =0,...,k, thenthereexistsQ * €S such that
{Q*, x Q- X-Q*} (26)

isabasisfor  Sg;.

Proof: Let the unique non-zero coset in «Fs; be given by (25), where

Q* = [kQ*, -+, 0Q*]"

is a fundamental solution in Sg;. Then by Corollary 5, [iQ*, -+, 0Q*]" is a fundamental solution in i Ssit

i =0,...,k. By induction, we now show that a basis for S, is given by

{Xk_j '[jQ*!"'!OQ*]T}! J =0,...,k (27)
The theorem then follows from (27), because

Z(k_j ‘Q* = xk-1 '[jQ*,"'-OQ*]T'

Since (Q * is afundamental solution in Sg;, and

dim (oSs) = dim (oFsy) = 1,

then abasisfor (S, is composed of the single vector oQ *.

Now assume that abasisfor ;S is given by

D [Q 0@ (=0, @)

Since yHg; is(i + 1)-maximal (i.e., dim (j,;Fs;) = 1) and

[i+lQ*v T on*]T (29)

isafundamental solution in;,; Ss;, then the unique non-zero coset inj, 1 Fg; IS
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[i+lQ*1 e :OQ*]T + X iSS,t'

Therefore, abasisfor ;,; S is obtained by appending the representative vector (29) to abasisfor x - ;Ss;. How-

ever, using the inductive hypothesis (28), abasisfor x - ; Sg; is given by

{Xi+1_j'[jQ*y"'on*]T}v j=0,...,i. (30
The vector (29), together with (30), yield the required basisfor ;,; S;. .

Corollary 12. Let (H;_;; be O-maximal. If Q isasolution of (4), then there exist scalars o, i = 0,..., K,

such that

RV Q*’ (31)

Q
Il
v
R
X

n
o

where Q * isafundamental solutionin (S_;;.

Proof: By Theorem 6, afundamental solutionin S;_;; aways exists, and consequently

d|m (kFt—l,t) = 1

Furthermore,

dim (oFi10) = 1,

since  H;_;; is0-maximal. Thus, by Lemma7

dim (Fia)=1i=0,....k

(31) now follows from Theorem 11.

6. Characterization of Solutions

The construction of abasis for ¢ Fg; is significantly more complex when (Hg; is k-nonmaximal, since now
dim (¢Fs¢) > 1. The objective of this section is to construct a representative of a single coset in ;Fg; (only under
certain constraints on s and t) which generates a basis for ;F4;. Then, the representatives of the k + 1 generators
of the quotient spaces ;Fg;,i =0,...,k, yield abasis for the solution space Sg; of (2). We begin with a number

of preliminary lemmas.
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Lemma13. If Q € Ss1; , theny- Q, V- Q €, Sypa.
Proof: The result follows from the definition of y and y, and a very careful comparison of the matrices

kHs+1,t and kHs,t+1- u

Lemmal4. LetQ €S;,q;. Thenthefollowing statement are equivalent:
(1) Q isafundamental solution in | Ss,q.
(2) y- Qisafundamental solutionin ,Sgy,s.
(3) ¥y Qisafundamental solutionin ,Sgy,;.
Proof: Since Q € (Sq,1, then by Lemma 13, y - Q € (Sst,1. But, 0Q = [oq, - -,Oqo]Jr = 0if and only if
Y+ 0Q =[0Gt 000 » 0" = 0. Thus, by
Lemmad4, (1) and (2) are equivalent.

Statements (1) and (3) can be shown to be equivalent in a similar fashion. ]

Lemmal5. LetQ €S;, ;. Thenthefollowing statements are equivalent:
(1) Q + X 4 1Ss,11 iSthe zero coset in (Fg,q ;.
(2) y-Q+ Xy 1Sst41 ISthezero coset in Fgy,g.

(3) ¥ Q + X _1Sst.1 isthe zero coset in (Fgt,1.

Proof: The results are a direct consequence of Lemma 14 and the definition of afundamental solution. =

Define the mappings

Y ikFsit = «Fsta (3

y: sz+1,t g sz,t+1 (33
asfollows: For an arbitrary coset

Q=0Q+ X" k1Ssi1t EkFsiats (34

where Q €S, 1 isarepresentative, define

Yy Q=Y Q+ X 1 1S5t1 ExFsiat (35)
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Y- Q=Y Q+ X 1 1S5141 ExFstet- (36)

This definition is shown to be unambiguousin

Lemma 16. The mappingsy and y are monomorphisms of (Fg,q; INt0  Fgy,q.
Proof: We give aproof for y only. Theresult for y followsin asimilar fashion.

We first show that y is well defined (i.e., y does not depend on the choice of representatives for cosets in

kFsi1t). Supposethat Q, Q' €S, 1 are such that

Q+ X k1Ssinr = Q' + X k1 Ssiat- (37)
Then, Q - Q" € X+ _1Ss,1¢ and consequently Q — Q" + X -x_; Ss,1; IS the zero coset in (Fg,;;. Thus, by Corol-
lary 15,y - Q - y- Q" + X _1Sst41 iSthe zero coset in (Fgy . Thatis,

Y Q+ X1 Sse1 = Y Q'+ X s Spet

Thus, we have shown that if (37) holds, then

Y (Q+ X1 1Ssi1p) =Y (Q" + X+ 1 Ssinp)-

Next, we show that y isinjective. For the coset

Q=Q+ X 118511 EkFsirts

where Q € Sq,1¢, supposethat y - Q is the zero coset in Fst,1. That is, supposethat y - Q + X - ¢_1Sst,1 iSthe

zero coset in «Fgt,1. Then, by Corollary 15, Q = Q + X - 1 Ss; iSthe zero coset in Fg,1¢.

Finaly, we show thet y islinear. Let Q, Q" € (Fg,q1;. Then, thereexist Q, Q" € Ss,;; such that

Q=Q+ X 1851

and

Q =Q + X 18514

Then, for any scalars ¢ and «,

Yy (@Q+a'Q)=y (aQ+ X _1Ss1t + @'Q" + X+ .1Ssi11)
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=y (@Q+a'Q" + X" 11Ssi11)
=Y (@Q+a'Q) + X 1S5
= (ay Q+ X 1Ss1) + (@'Y Q'+ X i1 Sspa1)
=a(y Q+ X 1Ssu1) + @'(Y Q' + X1 1Ss41)

=ay-Q+a'y-Q.

Denote the images of (Fs,;¢ under the tranformationsy and y by y - (Fg,1¢ and y - ¢Fg,1¢, respectively.

We then have

Lemma 17. If dim (xFg,1¢) = 1, then

y- sz+1,t =Yy- sz+l,t- (38)
Proof: Define
FS={Q:0Q=0and Q €Ss11} (39

to be the set of fundamental solutionsin Ss,;;. Then, FSis not empty, because dim (cFg,1¢) > 0. Clearly, by

the definitions of y and y in (8) and (9), there exists Q" € FSsuch that for all Q € FS

y-oQ = Y- oQ. (40)

We now show that the coset

Y Q + X k1S5t € Y kFsin-
(41)

For suppose otherwise. Then, there exists Q" €  Sg, 1 such that

Y Q + X 1S5 = Y Q7 + X (1S4

Thus,

y-Q -y-Q"EX 1S5

thatis, y - Q' - y- Q" isnot afundamental solutionin ,Ss;,;. Consequently, by Lemma4,
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Yy oQ -y 0Q"=0.

But, ¢Q' = 0, because Q" EFS. Thus, (Q" = 0, which implies Q" is a fundamental solution in \Sg,;;. We have

therefore found Q"' € FS such that

y-oQ =Y-0Q" =0,

which violates the definition of Q" in (40). Thus, (41) istrue.

On the other hand, by Lemma 14, y - Q" isafundamental solutionin Sgy,;. Therefore,

Y Q' + X 1S5t EkFspt

isanonzero coset in Fgy,1.

Corollary 18. If dim (xFg,1¢) = 1, then

dim (kFsg.a) = dim (Fs,q) + 1.

Proof: From (41) and (42), it follows that

dim (¥ - Fsi10) < dim (Fsp.a).

But, from lemma (16), y is a monomorphism so that

dim (kFsi10) = dim (7 - (Fs.a)-

Theresult (43) now follows from (44) and (45) .

and

Corollary 19. If dim (xFg,1¢) = 1, then

kKlste1 = k-1Fst+1 = klsi1t = k-1l et

Proof: From (21),

dim (i Fsten) = t+ = (kMsta1 = k-1l sts1)s

dim (Fsir) =t+1 = (kMsine = ko1l sen)-

(42)

43)

(44)

(45)

(46)
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Thus, by Lemma 19,

t+2 - (o1 = kealse1) 20+ 1= (kMsinr = kealsenr) + 1

and (46) now follows.

]
Corollary 20. If dim (Fs;) = 1, then
KMsoitei = k-1lsitsi SkPst = k1lst, 1 =0,...,S (47)
Proof: We proceed by induction to show that (47) istrue and in addition that
dm ( Fsit)zi+1,i=0,...,s (48)

For i = 0, (47) and (48) hold true trivially. Now suppose (47) and (48) are valid for i = 0. Then from (47) and
Corollary 19

KlMs-i—1tei+l = k-1l si-gteitl = kP soitei = k-1l s-it4i

= klst — k-1lst

and (47) istrueati + 1. Also, (48) istrueat (i + 1), because
dim (sz—i—l,t+i+1) =t+i+2- (krs—i—l,t+i+l - k—lrs—i—l,t+i+1)
=t+i+2- (kst — kalst)

=i+2

In the last inequality, we have used the fact that

kst — k-1lst = t,
which again follows from (21) because

1=dim (sz,t) =t+1- (krs,t - k—lrs,t)-

If (Hgt isk-maximal, then dim ( Fg;) = 1. The quotient space Fs; isthen fully characterized by asingle

non-zero coset in (Fg;. Characterization of (Fg; when (Hy; is k-nonmaximal is accomplished by means of
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Theorem 21. Let

vk =1 =(klst = k1l sp)-

krS,t - k—lrS,t = min {Sv t}v

then there exists a fundamental solution Q¥ €, S;,,, (_,, such that

{y}/k'j . yl . Q(k) + X- k—lSS,'[}’ ] =0,...,7¢

forms abasisfor  F;.

Proof: From (21) and (50)

dim (sz,t) =t+1- (krs,t - k—lrs,t) =1

Then, by Corollary 20 and (49), fori =0,...,s,

KMsitei = ketlsitei = klst = k-1lst = =7k

But, from (49) and (50),

Ost-y=s

Therefore, in particular, fori = s—t + y, , inequality (52) becomes

krt—yk,s+yk - k—lrt—yk,Sﬂq< =t- Vk-
Now consider
H = (H )t
K sty t=r kKT =y, st/

Clearly,

Kl stnat-rc = k=1l stpt-ne = kMtopsine = k=1l = s

St_yk!

using (53). Thus,

(49)

(50)

(51)

(52)

(53)

(54)
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dim (kFS+yk,t—yk) =t- Ykt 1- (kr5+yk,t—yk - k—lrs+yk,t—yk) =1

Corollary 20 can therefore be applied once again to yield
t—yk =klst = k-1fst

= K stpet-ne = k-1l sept-ne (55)

From (54), (55) and Corollary 20, it now follows that

Kl svitei = kel srit-i = U= 7k (56)

foralisuchthatt —s—y, <i = y¢. Thus, from (21) and (56),
dim ( Fsyiri) =t=1+1-(t-y) (57)
=yp—i+1,
isuchthatt —s—y <i < .
In particular, observe that

dim (kFS+yk,t—yk) =1 (58)

Therefore, in ¢Fs,,, 1, there exists a unique non-zero coset

Q(k) = Q(k) + X ko1 Ssm,t-yk’

where Q¥ is a fundamental solution in S, r,. We now show that Q¥ generates a basis for Fs,i,_;, for

i =7k ..., t—S—y Thatis weshow that abasisfor \Fe,it i, i = k..., t —S—y, isgiven by

(7T oyl QM) =0,y —i. (59)

We proceed by induction for decreasing values of i. For the initial step in the induction, i = y,, we have

trivialy that {Q®} isabasisfor \F Assume now that (59) provides a basis for F kFsiiti- It

Sty t=rk Strot-rer

isrequired that we show (59) provides abasisfor  Fg,i_11_,1. Since

{y}’k—i—j .yi 'Q(k)}, =0, -1,

isabasisfor  Fs, i, by Lemmal6, abasisfor each of y - (Fq,i and y - (Fg,; i are given by
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{y}’k—i—j .yi+1 . Q(k)}' =0, 7k (60)

and

{y}’k‘i_j+1 . yJ' ~Q(k)}, i=0,... -1, (61)

respectively, sincey and y commute. The union of (60) and (61)

{yyk_i_Hl'yj Q(k)}l J = O,...,}/k—i +1 (62)

areall linearly independent in Fs,_;¢_i,1, according to Lemma 17. By (57),

dim (kFsiicqtoiv1) =7k =1+ 2,

and since there are y — i + 2 cosets in (62), then (62) forms a basis for Fg,i_1i,1. Theinduction is therefore

complete.

The theorem now follows by settingi = 0in (59). [

For agiven matrix yHg;, let

kst — k1lst = Min{s, t}.

Then, by Corollary 8, it follows that

ifrst —iafsg =min{st},i=0,..., k.

Thus, Theorem 21 is valid for each submatrix jHgy, i = 0,..., k. Wethen obtain

Corollary 22. Let (Hs; be such that

KMt = k-1l'st = Min {s, t}.

Fori =0,...,k, define

vi=t- (irs,t - i—lrs,t) (63)

and let Q¥ be afundamental solution in; S, «_,,- If Q €Sy, then there exists scalars a; ; such that

<

‘0 ai X gyl QO (64)

M=

Q=

0]



-19-

Proof: From Theorem 21, abasisfor S, is composed of the union of

{7y QMY =0,

and an x-shift of a basis for _;Sg;. A basis for 1 Ss; (and iteratively for the subspaces ¢ ,Sg;, - - -

obtained in asimilar fashion by means of Theorem 21, and (61) now follows.

Theorem 23. Lets=1t -1, and define

re=1= (st = k1lst)-

If y = 0, then there exists a fundamental solution Q® €, S, ;. such that
{7ty QY g Sy =0k

formsabasisfor (Fs;.

Proof: If s=t, then (65) and y, = 0 imply that

kst = keilst = L=y =t =min{s,t},

and the theorem follows from Theorem .

If s=t -1, thenHg; hast morerowsthan ,_;H;, and consequently

kst — k-1lst = t.

If, in addition,

Klst = k-1lst = t-1

,0Sst) IS

(65)

(66)

(67)

in (67), then again condition (50) is satisfied and the theorem follows from Theorem 21. Findly, if s=t - 1and

kMst — k-1lst =T,

then  Hg, is k-maximal. Therefore, y, = 0 in (65) and (66) and Q™ is a representative of the unique non-zero

coset in  Fg;.
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Corollary 24. Let s=t -1, and define

vi=t _(irs,t _i—lrs,’[)r [ =0!"'!k' (68)

If y = 0, then for any Q € S;; there exists scalars «; j such that

<

M=

Q= . 2 a X<yl yIQy, (69)
0 j

where, fori = 0,...,k, Q" isafundamental solutionin;Ss,, 1, -

Proof: By Corollary 8,

if'st —i-1lst = klst = k-1lsts i=0,...,k

Thus, in (68) y; =0 for i =0,...,k. From Theorem 3, a basis for jFq, i =0,...,k is given by (66) with k
replaced by i. Then, Corollary 24 follows by arguments similar to those in the proof of Corollary

22. [}

7. Modular Pade Forms

In this section, we define modular Pade forms for a bivariate power series. It will be seen that the problem
of obtaining amodular Padée form is equivalent to that of solving an associated triangular block Hankel system of
the type defined in section 1. So, the results of the previous sections on the characterization of solutions for this
Hankel system fully describe the nature of the Padeg forms. We begin with the introduction of a suitable nota-

tion.

A bivariate power series A(X, y) isaformal power seriesin two variables x and y, i.e. aformal expression

of theform

§ > iaxyl, (70)

E 0

o

where the coefficients ja; are from D. Fori = 0and j = 0, an expression O(x'y!) denotes an arbitrary bivariate
power series R(x, y) such that there exists a bivariate power series R'(x, y) and R(x,y) = X'y/R(x, y). In this

caseitissaid that R(x, y) isof theorder x'y!. Thus, forig, jo, ..., ik jx = 0, the expression

A(X, y) = O(xoylo) + - + O(x'kyl¥)
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indicates that there exist power series RO(x, y), - - -, R®¥(x, y) such that

A(X, y) = XiOijR(O)(X’ y) o xikyjk R(k)(X, y)

Bivariate power series with a finite number of non-zero coefficients are bivariate polynomials. If

M8

P(x,y) =X X ip;x'y! isapolynomial, then aminimal k=0 and aminimal m=0 such that

j=0

Il
o

3

Px,y)=3 3 ipjxy

k
i=0 j

T
)

are called, respectively, the degree of P(x, y) in x and the degree of P(X, y) in y (in symboals, 9,P(x, y) = k and
dyP(x,y) = m). A pair (k,m) is caled simply the degree of P(x, y) (in symbols, dP(x,y) = (k, m)). Also, the
expression dP(x, y) = (k, m) isused to indicate that 0, P(x, y) < k and 9,P(X,y) = m.

A vector space of al bivariate polynomials Q(x, y) with 0Q(X, y) = (k, t) is denoted by  BP;. Itisan easy
observation that the vector space \V; given in (5) and vector space BP, are isomorphic in a natural way, i.e., if
QE .V, whereQ=[,Q,---,,Q]" and ;Q = [;q, -, %] , i =0, ..., k, then there exists a corresponding poly-
nomia Q(x,y) € BP;, namely

k .
QX y) =2 X ia;Xy. (71)

i=0 j=0

Thisisomorphism is denoted by Pol ; and its inverse isomorphism by Vecy ;. Thus,

Pol kit . kVt — kBPt.

VeCk’t . kBPt i kth

and with Q and Q(x, y) above, Q(x,y) = Poly; (Q) and Q = Vecy; (Q(x,y)). Moreover, the shift transforma-
tions x, x, y and y from section 1 can be easily trandated into operations on polynomials, which are given by the

following

Lemma25: LetQ €, V;. Then
1. Poli,e (X Q) = X' - Poly (Q),
2. Poli (' - Q) = (X' - Paly; (Q))mod x**1,

3. Poli (Y - Q) = y' - Poly, (Q), and
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4. Poly 1, (¥ - Q) = Poly; (Q).

Pr oof:

Only case 2 isnot trivial, and the proof is given for thiscase only. Let Q € ,V;. Then

kot o
Poli; (Q) =X X iq;x'y’.
i-0 -0
Thus,
| K o i+l i
x - Poli (Q) =3 X iq;x™y
i=0 j=0
and

K-l t o
(x' - Poly; (Q))modx* = 3 > iq;x"*'yl.

=0 j=0

On the other hand, by the definition of the tranformation x,

= [ Q-0Q,0,...,0" = [(Q’ ..., oQT",

where; Q" =[i_ G, - - -, il qt]T fori=1,..., k,and;Q'=0fori =0,..., | - 1. Thus,

=~

t o ol
ZI Iqjxly] 2|qlxl+l
j=0 i=0 j=0

Pol k,t(Z(I :

IIMW

L et the bivariate power series A(X, ¥) and non-negative integers k, m and n be given

Definition 26. A bivariate rational expression P(X, y)/Q(X, y) is caled a modular Pade (k, m, n)-form for
A(X,y) if IP(X,y) = (k, m), aQ(X, y) = (k, n) and the following order condition is satisfied
A(X, ¥) - Q(X, Y) + P(x, y) = O(y™"?) + O(x**). (72)

By equating appropriate powers of x and v, it is easy to see that the polynomials

P(x,y) =

Ms

i=0 j

T
o

k n o
ipyXy' and Q(x,) =220iqj><'y'
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satisfy the order condition (72) if and only if its coefficients satisfy the following systems of linear equations:

n
S_iat_jiq]'=0, Oss=skm+lst=m+n, (73)

i=0 j=0

and

K
2

n
i=0 j=

sid-jidj +sPt =0, O=ss=<k,Ost=m, (74)
0

where;a; =0ifi <0Qor j <O0.

The systems of equations (73) and (74) can be expressed in matrix form as follows. Let (\H,_; , bethetri-
angular block Hankel matrix defined in (3), with components ;h; determined by the coefficients of the power
series A(X, y),namely, fori =0,...,kand j =0,...,2n-1,

i Qmon+l+j if m—n+1+j20,

ihj = (79)
0, otherwise.

Let G, beatriangular block Toeplitz matrix, such that

G . . . G
kGmn = : o
G
where
|am—n Iam
G| . | (76
i&n if;‘o

fori =0,...,k, whereja; = 0if j <0. Then, the system (73) is equivalent to

an—l,n Q=0 (77)

and the system (74) is equivalent to
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ka,n ‘Q+P =0, (78)

where Qg V, and P & V,,.

Clearly, the polynomials P(x, y)&BP,, and Q(x, y)&BP,, satisfy the order condition (72) if and only if
the corresponding vectors P = Vec, n(P(x, ¥)) and Q = Vecy ,(Q(X, y)) satisfy equations (77) and (78). Thus,
there is a one to one correspondence between modular Pade forms and solutions to a block Hankel systems

which can be stated as

Lemma 27. P(X, y)/Q(X,y) isamodular Pade (k, m, n)-form for A(x, y) if and only if corresponding vec-

tors P and Q are solutions of systems (77) and (78). ]

Solutions of (77) and (78) are uniquely determined by solutions of the system (77) alone (i.e. any solution
of (77) can be substituted in (78) to calculate the vector P). This observation together with Lemma 26., gives a
procedure for the characterization of all modular Pade (k, m, n)-forms for A(X, y). First, the family of solutions
Q to the system (77) is determined, and then the family of solutions P is given by solving system (78) for P
Then P(x,y)/Q(X,y), such that P(x,y)=Pol,, (P) and Q(x,y)=Polyny (Q), are &l modular Pade

(k, m, n)-formsfor A(X, y).

General results from the previous sections are applied to obtain solution of equation (77), which as it was
shown in Corollary 24 can be expressed as a linear combination of shifts of solutions of a smaller system. It will
be shown that the solution P corresponding to equation (78) can be expressed as the same linear combination of

the same shifts of solutions P corresponding to solutions of these smaller systems.

It should be clear, from the definition of matrices (G, that if Q €V, 0=<i =K, then

KGmn - (X Q) =X - (iGmn - Q), (79)

and also, that if Q €V, then

ka,n : (Z(i : Q) = ),(i : (ka,n : Q) (80)

Solutions involving shifts y' and y' are more complex, and are addressed in

Lemma28. If Q €,V,_,,forsomey, 0=y < n,issuchtha Q €S, 1., n, then

ka,n ’ yy_l : yl Q= yy_l : yl : ka—y,n—}/ Q, (81)
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forO<1 =<y.

Proof: Let

Q =[kQ1"'10Q]1 iQ=[iqn—y1"'1qu]ri=01---1ka

and define
P =Gy Q,
where
P=[kP.,--.oPl, iP=[iPm,. -~iPal,i=0,....k.
If we set
Pr=y-y P,
where

P" =[P, -, oP"],iP"=[iPm iRl 1 =0,..., K,

then the r.h.s. of equality (81) isequal to P".

Similarly, define

Q=y'y-qQ

where

Q =[Q,---,0Ql iQ=1[idn i, 1 =0,...,k

Then thel.h.s. of equality (81) become

P = ka,n : Q,a

where

P,=[kP,1"'10P’]1 iP’=[ip;‘ni"'1ip(l)]1i=01"'1k'
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It will be shown that P" = P", by proving that ; pj, =i, P}, forO<ipg<kandO=< jo=m. ForO=<ip=<K,

O<josj-v

k n-y

ioPjo = 2 2 ig-i&jo-jidj-

i=0 j=

Thus,forO<ig=<k,0=<jo=m

ioPjp-ts I =Jjo=m-y -1,
iop/i/o=
0, otherwise.
Then, for 0 < ig < kK,
k n-y+1 )
> io=i Rjo-ji Aj-1 I<josm-y+l,
=0 j=l
io Py =
0, O<jo<!l, or m-y+l+1l=<jg=m.

Ontheother hand, forO<ig=k, 0= jo=m,

k n
i0Pjo =2 X iomij-j i s
i=0 j=0
where
iqj—ll |sjsn—y+|,
idj =
0, otherwise.

Therefore, forO<ig=k, 0= jo=m,

n-y +l
‘ 2 ig-i@j-ji -1 I'<jo=m,
i=0 j=l
=
|0plo -

O, 05j0<|.

It remainsto show that forO<ig=k,m-y +l+1=< jo=m
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K
> ZI io-i @jo=jidj-1 = 0.

From the assumption that Q € S;,_1,, -, , it followsthat forO<ip <k, m-y +1< jo = m+n,

k n-y

2 2 ii-jid =0,

i-0 j=0

which is equivalent to

n—y +l
_ > igi@jy-jidjy =0,
i=0 j=l
forO<ig=k and m-y +1+l<jg=sm+n+|. ]
Definition 29. The power series A(X, y) is (i, m, n)-maximal if the matrix (Hp_; , isi-maximal. ]

By definition, the matrix (H,_ 1, for a (0, m, n)-maximal power series, is O-maximal. Thus, by Corollary
12, there exists a single fundamental solution Q*. Let P* = - G, Q* be the corresponding solution to the

system (78), and let P * (x, y)/Q* (X, y) be corresponding modular Padée (k, m, n)-form.

The next theorem shows that if A(X, y) is (0, m, n)-maximal, then all modular Pade (k, m, n)-forms can be

characterized in terms of a single modular Pade (k, m, n)-form.

Theorem 30. All modular Padé (k, m, n)-forms for a (O, m, n)-maximal power series A(x, y) are of the

form P(X, y), Q(X, y), where
P(x,y) = (U(X)P* (x,y))mod x***

Q(x,y) = (U(X)Q* (x, y))mod X*%,

and U (x) isan arbitrary polynomial in x.

Proof: Let P(x,y) = Poly n (P) and Q(X, y) = Poly , (Q) where P and Q are solutions to (77) and (78).

By Corollary 12

M=
8
X
Q
¥

Q-.

I
o

for some ag, -, ax € D. Thus



k )
P=- ka,n : Q = ZO U‘i(kc':‘m,n),(I ' Q*))

But, from (80),

ka,n ’ (),(i : Q*) = ),(i : (ka,n : Q*)’

and therefore,

Kk )
LetU(x) =X «;x'. From Lemma25, it follows that
i-0

Polim (P) = (U(X) P* (x,y)) mod x**

Poly» (Q) = (U(X) Q* (x,y)) mod x**.

The above theorem characterizes modular Pade (k, m, n)-forms in a special case, when A(X,y) is

(0, m, n)-maximal. Full characterization is given below for the general case.

Given A(x,y), k, mand n, let Q¥ i =0,...,

Thus, the QU’s are solutions to a system

iHn—l+y,,n—y, : Q =0.

Therefore, they are also solutionsto a smaller system of the form (77), i.e,

iHn—l—yi,n—yi : Q =0.

Fori =0,...,k, let P© bedefined as corresponding solution of the form (78), i.e.,

PO - - iGmyny, - Q-

Fori=0,...,k,let

PO, y) = Poli -, (PY)

and
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and

k, be the fundamental solutions as given in Corollary 24.
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QV(x,y) = Pol; n, (QY).

Thus, by Lemma 27, PO(x,y)/Q¥(x,y) are modular Pade (i,m-y ,n-y)-forms for A(x,y) where
i=0,...k

The following theorem shows that any modular Pade (k, m, n)-form can be expressed as a function of mod-

ular Pade (i, m-y; ,n-y;)-forms,i =0,...,k.

Theorem 31. All modular Pade (k, m, n)-formsfor A(X, y) are of the form P(x, y)/Q(X, y), where

M~

7i o kK i L. .
Px,Y) =3 3 ax'yPOxy), Qx, y)=§ _20 ai ; Xyl QU(x, y)
= j=

i=0 j=0

and e j,i=0,..., k,j=0,..., y; are arbitrary scalars.

Proof: Let P(x, y) = Pol, m(P) and Q(x, y) = Poly ,(Q), where P and Q are arbitrary solutionsto (77) and

(78). By Corallary 24,

<

ai’ij_i . y’/i—j . yJ .Q(i)_
0

VR

Q=

0 ]

Thus,

=

vi . o
P=- @i kGmn - (X< gyl Q)

i=0 j=0

From (79), it follows that
ka,n . (Xk_i . y]’l_j . yJ . Q(I)) = Xk_i . iGm,n . (y}’l_j . y] . Q('))
Since Q" €Sy 14,0y, | =0,...,k by Lemma 28, it follows that

iGm,nyyi_j . yi .Q(i) - yyi—J . yi 'iGm—yi,n—yi Q(i)_

But, Gy, QY =~ PO, and consequently,

Y kei . . .
P=3 > ax<"-yl.yl. =108

i
i=0 j=0

An application of Lemma 25 to the vectors P and Q gives
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k i o ’
Poly m(P) = % ) ai ; Xy Pol; ., (PD)
and
POlkn(Q) ZO 2 aj,j Xk_-y]POI ny(Q(l))
i=0 j=0
Thus,
K i
PXY) =3 2 a X"y POxy)
i=0 j=0
and
k 7 i i
QAx.y) =2 2 L XYIQO(x, y).

8. Concluding Remarks

The results presented in this report fully describe the nature of the solutions to the triangular block Hankel
system (2). The existence and non-unigeness of the solutions are discussed. Crucia to the results is the notion of
fundamental solutions; fundamental solutions are characterized in terms of representatives of the cosets of a cer-
tain vector space of quotients. Theorem 11 describes the basis for the space of solutions when the matrix satisfies
acertain condition of maximality. When the matrix is not maximal, the general format of the solution is given by

Corollary 24.

The importance of this result comes from the relationship between the block Hankel system (2) and the
modular Pade forms defined in section 7. It is established that there is a one-to-one correspondence between
modular Padé forms and the solutions of a specific case of (2), namely the case where s = t — 1. The results pre-

sented provide atheortical framework for the effective computation of modular Pade forms.

In amore general setting, multivariate Pade approximants can be defined as follows. For a given integer d,
let | be aset of multi-indicesgivenby | = {(i4,...,iq):1;EZ", j = 1,...,d}, where Z* denotes the non-negative
integers. For x€R? and i €1, let X' denote xill. . xidd. The definition of multivariate Pade approximant involves

choosing subsets Ip, | and I ¢ of | such that, for a given multivariate power series A(x) = X & X', two polyno-
iel

mials P(x) = _2 p;x' and Q(x) = >aq x' can be found satisfying an order condition

i€lp i€lq
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AXQ(X) - P(X) = X riX. (82)

=

The choice of theindex sets Ip, I and | ¢ of | is governed by many criteria. These criteria can be derived
by postulating that approximants have some convenient properties (e.g., invariance under certain transforma
tions), or can be imposed directly on the index sets (e.g., symmetry). One aspect, not of least importance, is the
ease of effective computation of the approximants. For a specific choice of the index sets |, I and I of I, the
order condition (82) gives rise to a system of linear equations. Computation of all approximants satisfying the

order condition is equivalent to finding all the solutions of this system of linear equations.

For the bivariate case (i.e., d = 2), Chisholm [5,6,7,12] approximants are defined by
Ip=1lg={(i1,i): 0=iy,i; =m}, and
lge ={(i1,iz): O<iq+ip < 2m};
whereas, for Cuyt approximants[8,9,10,11]
Ip={(i1,i2): M <i;+i, = mn+m},
lg ={(i1,iz): M =<i; +i, = mn+n}, and
le ={(i1,i5): MN <iq{+i, = MmN+ m+n}.
Theindex setsfor modular Pade forms of section 7 are defined by
Ip ={(i1,i»):0=<i; =k, O=i,=m},
lo ={(i1,ip): 0=i; =k, 0=i,=n}, and
lge ={(i,i»):0=<iy <k, Os<i, =m+n}.

The corresponding system of linear equations for modular Pade forms is the triangular block Hankel system

«Hn1 defined by (4).

The following question can be posed, which is a natural generalization of the results given in this report.
Let ageneralized (k,m,n)-modular Pade form for a d-variate power series be defined by the order condition (82),

where the index sets are
lp ={(i1,...,ig):0=i; =k, j=1,...,d-1,0=ig = m},
|Q={(i1,...,id):05ijsk,j =1,...,d—1,0$id5n}, and

le ={(ix,....ig):O=ij<k j=1,...,d-1,0sig=m+n}
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The order condition (82), in this case, gives rise to a generalized block Hankel system. To what extent can the
results of this report be replicated? It seems that the success of a such a generalization would depend on whether

an equivalent of Lemma 13 can be formulated.

By rearranging rows and columns, the triangular block Hankel system (4) can be written as a full Hankel
system with triangular matrices as components. From this perspective, the problem of solving this system
becomes one of obtaining a (t-1,t)-Pade approximant for a univariate power series with triangular matrix coeffi-
cients. So, modular bivariate Padée approximants are a specia case of univariate matrix Pade approximants. It
remains to determine how the characterization of solutions of the matrix Pade problem [2,3,14] corresponds to

the resultsin this report.
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