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ABSTRACT

Using a Friedmann-Robinson-Walker minisuperspace model with a mini-
mally coupled homogenous scalar field we search for, and discover, wormhole-
type solutions, which connect two asymptotically flat Euclidean spaces, when (a)
V=234"and (b) V = 1",‘,—2¢2 + 24%. For these potentials, stationary configura-
tions satisfying the boundary conditions of asymptotic flatness necessitate that
the scalar field be imaginary. All solutions found can be labeled by an asymptotic
constant; however, in distinction from all previously found wormhole solutions,
they do not possess a conserved charge. In the case of potential (a) all solutions
found have negative actions whereas for potential (b), there exist regions of the
(m, A) parameter space for which the solutions have negative, zero, and positive
action. The existence of such solutions may seriously undermine current argu-
ments concerning the resolution of the “Large Wormhole Problem” of Fischler
and Susskind. Those wormholes with negative action would, presum»'1v, not be
included into the path-integral for the vacuum to vacuum quantui. -~ .plitude.
The criterion used to choose those wormholes that should contribute to the path-

integral differs from one previously conjectured by Halliwell and Hartle.

We also consider a “small universe” model cosmology, consisting of closed
spatial sections of constant negative three-curvature. Investigation of the allowable
three-topologies provide a typical repetition scale between mult;.-+ images of a
single object. Assuming minimal topological complexity for the three-topology,
typical repetition scales concurrent with those seen by Broadhurst, Ellis, Koo
and Szalay in a deep sky pencil beam galaxy survey are found, and a possible

mechanism for microwave isotropy is discussed.



PREFACE

The University of Alberta Faculty of Graduate Studies and Research currently
accepts two styles of thesis: the ‘traditional format’ and the ‘paper format'. I

have prepared this thesis in the paper format.

The first chapter contains introductory information concerning quantum
cosmology and background material pertinent to Chapters 2 and 3. The material
in Chapter 2 is based on a paper “Wormholes without a conserved charge”, by J.
Twamley and D. N. Page (to be submitted). The research presented in Chapter 3
was performed in collaboration with D. N. Page. D. N. Page also derived nost of
the equations in section 4.4, which were checked and written in a presentable form
by J. Twamley. Chapter 4 is based on a paper presented by J. Twamley at the
Banff Summer Institute on Gravitation entitled “It’s all done with mirrors: Large
scale structure in a hyperbolic small universe model”, in the Proceedings of the
Banff Summer Institute in Gravitation, eds. R. Mann and P. Wesson, to appear
(World Scientific, Singapore, 1991). Also included is a concluding chapter sum-
marizing the results of the thesis. Two technical appendices concerning numerical
techniques needed in Chapters 2 and 3 follow the conclusion, and a curriculum

vitae is given,
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CHAPTER ONE

INTRODUCTION

1.1 Quantum cosmology

Quantum cosmology is the application of quantum theory to the dynamics
of the whole Universe. It attempts to combine the two most successful descrip-
tions of nature, general relativity and quantum theory, into a complete quantum
description of the cosmos. It aspires to answer some of the most fundamental
questions concerning the origin and evolution of the Universe, the existence of a
classical world, and the existence of a universal arrow of time. Such questions
have previously been considered beyond the realm of physics to even formulate,

let alone fathom.

The basic premise of quantum cosmology is to treat the nature of matter,
and of spacetime itself, as fundamentally quantum. Classical behaviour on macro-
scopic scales is believed to arise from both the dynamical structure and the initial
conditions present within a complete theory of quantum cosmology. It 1s also
expected that quantum cosmology will provide an essential description of the uni-
verse when a length scale L (such as the curvature length scale |R,,, 0 |~1/2) becomes
as small as, or smaller than, the Planck length L = (hG/c®)'/2 ~ 1.616 x 10~%3cm.
Near such singularities, classical mechanics ceases to be a valid approximation of
the underlying quantum theory and recourse to the full theory of quantum gravity,

@ le quantum cosmology, must be employed.

Research into the field of quantum cosmology was pioneered by DeWitt [1],



Misner [2] and Wheeler [3] in thr 1960s. Combining Einstein’s theory of general
relativity as expressed as an action integral by Arnowitt, Deser and Misner (ADM)
[4], with the techniques of quantising constrained Hamiltonian systems devised by
Dirac [5], early researchers were able to analyse the dynamics of model cosmolo-
gies via a Schrodinger-like equation known as the Wheeler-DeWitt equation [6].
During the 1970’s however, interest in quantum cosmology waned. With the in-
troduction, in the early 1980’s, of the Euclidean Path-Integral methods, together
with proposals for boundary conditions for the universe by Hartle, Hawking and

Vilenkin [7,8,9], interest in the field was re-kindled and has waxed until today [10].

In the major part of this thesis we search for, and discover, wormhole-like
solutions to the complexified (in the /=1 sense) Euclidean Einstein field equa-
tions. Very little is known concerning the behaviour of complex solutions of the
Einstein’s field equations, and the discovery of these solutions not only adds to
our present understanding but also significantly increases the small menagerie of
specific wormhole solutions of the Einstein’s field equations. More pressing moti-
vations for this work arise from two currently topical areas in quantum cosmology.
The first concerns recent research on the rigorous implementation of the Euclidean
path-integral formalism for quantum cosmology, while the other studies the low-
energy effects of including Euclidean wormhole configurations into the Euclidean
path-integral for quantum cosmology. Essentially, the solutions discovered in this
thesis are the first wormhole solutions not to possess a conserved charge and thus
demonstrate that a conserved charge is unnecessary for a wormhole solution. They
also show that previous arguments attempting to resolve the “Large Wormhole
Problem” of Susskind and Fischler [11], cannot be used in settings where such
non-charge-conserving wormholes are present. It is also found that, in some cases,

the actions of the wormholes discovered can be negative. Inclusion of such config-



urations in the path-integral could prove disastrous. The contour of integration
in the Euclidean path-integral presumably should be chosen so as not to include
such wormholes. The criterion for such a choice differs from that hypothesized in

reference [12].

In the following sections of this introductory chapter we briefly describe the
Euclidean path-integral formalism as applied to quantum cosrnology, the problem
of the contour of integration, and the postulated effects of wormholes in the Eu-
clidean path-integral. The descriptions provide essential background material for

the in-depth motivations given in the beginnings of Chapters 2 and 3.

In Chapter 2 we adopt a Friedmann-Robertson-Walker (FRW) cosmological
model minimally coupled to a scalar field with a quartic self-interaction. Rotating
the scalar field to imaginary values, the Euclidean Einstein field equations are nu-
merically integrated, yielding two separate wormhole configurations whose throats
are held open by virtue of the non-linear aspect of the dynamics rather than by a

conserved charge. In both cases we find the overall action to be negative.

In Chapter 3 we again adopt a FRW cosmological model with the scalar
field minimally coupled and with a potential V(¢) = T2—2¢2 + %gﬁ“. Rotating the
scalar field to the imaginary axis, an intricate structure of wormhole “spectra”
is revealed through numerical and analytical analysis. Wormholes with negative,

zero, and positive actions are found.

In Chapter 4 we divert ourselves from quantum cosmology per se, and
present a cosmological model of a “smail universe” possessing closed and com-
pact spatial sections of constant negative curvature. We analyse the distribution
of ghost images (ghost images are images of objects whose light has not taken

the shortest path before being observed) and compare the findings of the model



with the extraordinary observational results of Broadhurst, Ellis, Koo, and Szalay
[13], who have reported the discovery of long-range phase coherence in the galaxy

distribution of a deep sky pencil beam survey.

1.2 Euclidean Path-Integrals in Quantum Cosmology

To consider the theory of quantum cosmology in its entirety is extremely
difficult. In practice, the quantum cosmologist is restricted to one of three gross
approximations: the microsuperspace, the minisuperspace, and the midisuper-
space approximations. In the microsuperspace approximation, the four-geometry
M, and matter fields S in M, are completely specified by a finite set of numbers.
In the minisuperspace approximation, M and § are described by a finite set of
functions of a small number of variables, whereas in the midisuperspace approx-
imation [14], one must specify an infinite number of functions. In this thesis we
will restrict ourselves to the minisuperspace approximation. The validity of such
an approximation is suspect as we are, in effect, setting both the values of the ig-
nored degrees of freedom and their conjugate momenta simultaneously to zero (see
[15] for an analysis on the effects of enlarging the minisuperspace). However, it is
hoped that certain gross features exhibited by these toy models will be reflected

in the full theory.

The central idea of quantum cosmology is to describe the whole universe by
a wave function V. Just as quantum mechanics gives the probability of finding a
particle in a certain state at a given time, quantum cosmology gives the probability
of finding a certain three-geometry 3g, given by a three-surface ¥ with a specified
three-geometry h;;, with matter fields ® residing on I, representing a configuration

of the Universe. In the latter case, however, the wave function does not depend on



time and is only a function of the geometry 3g and matter configurations ¢. The

concept of time can only be extracted when the theory exhibits classical behaviour.

Historically, early researchers used Hamiltonian or Dirac quantisation to cb-
tain a Schrédinger-like operator which annihilates ¥[h,®, T, giving the Wheeler-
DeWitt equation. We begin with the ADM form for the Lorentzian action of a
closed cosmology which we minimally couple to a scalar field with a potential

V(4). Choosing 167G = 1 for simplicity,

1
_ [ apr_a /204, _ -4.1/2 13 _liume _ a,1/2 4.
S—/ R(—%g)"/*d*z 2/; K'g dm+_/[2(v¢; V(d))]g d'r .

(1.1)
Introducing a 3+1 split of the four-geometry
ds? = —(Ndt)® + gi; (da' + N'dt) (dz’ + N'dt) (1.2)
and introducing the second fundamental form
, 1 (g
Kij =355 (73?1 - Ny — Nj]i) ; (1.3)

the action becomes

I= / Ldt= [ dtd®z,/gN [(K;,-K‘j ~K*+°R)+ 75 (%dﬂ ~ Nigg,; + %N"Nﬂd».,-d).j)

~1090:i6; - V(8) - (1.4)
The primary constraints, a la Dirac, are
wEé-I—.’/—:,w"E—@—,:ﬂ. (1.5)
0N 6Nt

Identifying the momenta conjugate to g;; and ¢ as 7/ and 74, respectively, we can

write the Hamiltonian as

H=/d3z (=N + 7N+ NH + NH) (1.6)



where

.. 1 1 .
H= Gijkﬂruﬂ'k"*' _ég—l/27r: _g—1/2 3R+_2_gl/2 (g!J¢,i¢,j + 2v) = gl/2 (2Gg _ T(?) ,

(1.7)
H = —27rff ~ " (2gitk — Gira) ik 4 gijfﬁ(.z-% = 91/2 '(2G°i - TOi) ) (1.8)
and
G:. =l-1/2 . a: it — Gii 1.9)
ijkl = 29 (gikgst + gitgjk gii9xt) (1.

is the DeWitt supermetric.

Varying the action with respect to 7/ and 7, gives their relation to g;; and
é. Varying with respect to N; and N gives the secondary constraints, H' =0 and
H = 0, which are respectively known as the supermomentum constraint equations
and the Hamiltonian constraint equation [1]. We follow the method of Dirac quan-
tisation by promoting the classical constraints to quantum annihilation operators,
which act on the wavefunction, by p = p = ——ia%. The primary constraints be-
come #¥ = —i2¥ = 0 and #'¥ = —i&f = 0, indicating that ¥ is independent
of N and N'. The secondary constraint H'¥ = 0 can be shown to imply that ¥
is unchanged under any series of infinitesimal diffeomorphisms of the three-space
[2,16]. Thus, the pertinent argument of ¥ is the actual three-geometry 3¢ of the
surface £. The other secondary constraint, H = 0, gives the Wheeler-DeWitt
equation [1,3]
A =[G o LD o igies, V@) ¥ =0
6gi; bgu 2 b¢?
(1.10)
As G;;x depends on g;;, there is a non-trivial operator-ordering ambiguity in HY =

0. Two natural choices of factor ordering are [1,17],

HY = (—%V’ + U) =0, (1.11)



or

S _1_ 2 n—2 _
'H\Il_( 24 +8(n_1)R+U)\I/_0, (1.12)
where
1, k
U= [ d2g'*N() [—3R +5990.0,+ v] : (1.13)

V? is the Laplacian in the auxiliary metric
1 ..
ds® = G,pdXAdXB = / &z N7 (z) [EG"kl(z)ﬁg,-jﬁgu + g‘/26¢5¢] , (1.14)

and n is the dimension of ds?, where we have set N' = 0 for simplicity. [Note:
typically (1.12) is used in the context of a minisuperspace model where 7 is finite.
However, it is not clear that (1.12) is well defined in the full superspace as one

must regularize the the quantities appearing in (1.12).]

However, in the late seventies, it was recognised that this formalism pos-
sessed a number of serious deficiencies. The first concerns the Hamiltonian ap-
proach and the need for a 3+1 split of the four-geometry M, of which £ is a
three-section. This splitting essentially restricts the overall four-geometry M, in
which the three-geometry (h,T), the argument of ¥, is embedded, to have the
product topology X x R, where X is the topology of . A deficiency in the
Lorentzian path-integral approach concerns the difficulty in cheosing a physically
natural class of Lorentzian four-geometries to include in the path-integral which
yields a particular amplitude, i.e., the ground state. Perhaps the most damning
shortcoming of Lorentzian techniques is that they forbid a change in the topology
of the three-geometry . Since the conception of quantum cosmology in the early
1960’s, the phenomenon of a topological change in the structure of space-time has
been much sought for by many researchers (18,19]. However, it has been shown
[20], that the imposition of a Lorentzian four-metric on any compact (with or

without boundary) four-manifold essentially implies that the Euler number of the



four-manifold vanishes. This condition, however, does not forbid the existence of
handles in the fou:-geometry. Imposing the desirable conditions of stable causality
and global hyperbolicity essentially renders the topology to be X x R. [Definitions:
A spacetime (M, g,;) is stably causal iff there exists a differentiable function f on
M such that V°f is a past-directed timelike vector field. A spacetime (M, gas)
which possess a Cauchy surface is said to be globally hyperbolic. {21]]

With these deficiencies in mind, and in analogy with the situation in quan-
tum field theory in flat spacetime, Hawking proposed rotating time to be imag-
inary and adopting Feynman’s path-integral approach to quantisation [18]. He
thus avoided the above deficiencies. One now utilises Euclidean r+:etrics, for which
topology change is allowed. With the path-integral approuch. these different
topologies can, in principle, all be included in the calculation of ¥. (However,
in practice, except for a small number of examples, e.g. Regge Calculus [22], a
3+1 skeletonisation of space-time is made to evaluate the path-integral.) The
path-integral approach also lends itself to standard imaginary time techniques of
quantum field theory which can calculate the partition function for thermody-
namic ensembles together with the ground and excited states of the system [18].
This, along with the “ease” of visualising Euclidean four-geometries, partially led
to the “No-Boundary” proposal of Hartle and Hawking for the ground state of the

universe.

However, the analogy between quantum cosmology and quantum field the-
ory in flat spacetime suffers from a very serious problem, namely the unbound-
edness of the gravitational action from below. Because of the freedom to add an
arbitrary constant to tne Lagrangian without effecting the dynamics in ordinary
quantum theory, calculation of decay rates, ground state energies, etc. via the

path-integral is pessible for systems with energy spectrums bounded from below.



For gravity, however, the action cannot be arbitrarily re-adjusted and moreover,
the action, under conformal deformations of the four-geometry, may become arbi-

trarily negative. To see this set g;; — gi; = Q?¢;;. The Euclidean action transforms

as

1
167G Jm

2 2 _ 4 ___1_ 2 (1~ _ KO 3
(2R +6(VQ)? - 2A9*) /gd'z 55 b @ (K - K°) Vhdz |
(1.15)

where Ig is the Euclidean action, A the cosmological constant, A, the induced

Iglgl= -

metric on the boundary, K the actual extrinsic curvature of the boundary oM,
while K is the extrinsic curvature cf the boundary if the interior was flat. The
(VQ)? term can make the action arbitrarily negative. Since the path-integral is of

the form

Z(C) = /C DG e~ '5l9) (1.16)

where C is some collection of Euclidean space-times, (i's, DG is the measure, and
Ig[G] is the Euclidean action over G, we see that the path-integral will badly

diverge.

1.3 The Contour of Integratio: in the Euclidean Path-
Integral

From the remarks above, th- Fu..idean path-integral for quantum cosmol-

ogy can be —ritten as

¥[h,2,7] = 3 [ D9Dx exp (IslG, x, M)) - (1.17)

I is the Euclidean action for the metric G and matter field configuration x on a
four-manifold M. The integral is over an as yet unspecified class C of metrics and

matter fields on M, and the sum is over four-manifolds with a boundary ¥ on



which the arguments of the wavefunction are specified. The functional integrals
are over four-metrics G and matter fields xy on M that give the required arguiments

of the wavefunction, i.e. (h,®), on the boundary ¥.

To make the construction (1.17) rigorous, three essential ingredients must
be specified: the class of manifolds to be summed over, the measure associated
with the functional integrals, and the contour of integration within the space of
metrics on M. In quantum cosmology we are primarily interested in four-manifclds
M where T is closed and compact. If one implements the Hartle-Hawking no-
boundary proposal for the ground state of the universe, ¥ = OM, and ¥ is the
only boundary of M. ¥ may be connected or disconnected. However, for technical
reasons, L is almost always taken to be connected (see however [23]). Specification
and enumeration of those M to be included in (1.17) has been considered by
Hartle [24]. One can also consider compact four-manifolds without boundary. The
resulting path-integral would be expected to yield the vacuum partition function.
It is this amplitude that the complete wormhole solutions, found in Chapters 2
and 3, will contribute to. Various forms for the measure have been advanced
[25]. Recent work [26,27] has suggested that the complex analytic structure of
the measure may influence the choice of integration contour. However. the central

point of interest to us is the contour of integration.

Except for very simple models, the naive Wick rotation ¢ — —i7, as sug-
gested by Hawking, fails to give a convergent path-integral. One is thus forced to
rotate the contour of integration and integrate over complex metrics. For the case
of asymptotically flat spacetimes there exists a prescription by Gibbons, Hawk-
inz and Perry (GHP) [28], which, by means of a complex rotation of the con-
formal degrees of freedom, avoids the manifest divergence of (1.17) when V is

made arbitrarily large in (1.15). However, even if the problem associated with

1C



the conformal instability is solved, the path-integral may not converge since there
still exists ultra-violet divergences in the theory as it is nonrenormalizable. As
stated by Hartle and Schleich {22,29], the bad behaviour of the path-integral in
the case of asymptotically flat spacetimes is essentially due to the inclusion of
non-physical gauge degrees of freedom into the functional integrals. For linearised
and perturbative gravity, these redundant variables can be explicitly isolated and,
using the GHP prescription, their integration contours rotated to the iraginary
by hand. The resulting path-integral, now in terms of the physical degrees of
freedom, is manifestly convergent. In short, the GHP prescription decomposes the
four-metrics G in the functional integral into conformal equivalence classes repre-
sented by a metric §,, satisfying ‘R(§) = 0, and a conformal factor defined by
9u = Q%§,,. Setting Q@ = 1+ Y, one integrates over imaginary Y, with Y van-
ishing asymptotically. Returning to (1.15), one finds that the Y integration over
imaginary values does not have a divergence due to the action being unbounded
below (as it would for real Y'), whereas the integration over the conformal equiva-
lence class would also not give actions unbounded below by virtue of the positive
action theorem of Schoen and Yau [30]. However, as pointed out by Hawking [18],
not all asymptotically flat spacetimes can be decomposed into the above descrip-
tion (particularly those spacetimes far from Einstein vacuum solutions). Also the
GHP conformal rotation may adversely effect the positivity of a conformally non-
invariant matter action and thus the path-integral over the matter fields would fail
to converge unless the contours for these integrations were rotated as well. Thus,
even for the case of asymptotically flat spacetimes, the Gibbons-Hawking-Perry

prescription is not the complete elizir veritas.

In quantum cosmology we are moreover interested in closed cosmologies.

There, the literal application of the GHP prescription has only succeeded in very
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few models [31]. The central obstacle is the absence of a positive action theorem
for closed cosmologies. Without such a theorem, the convergence of the integration
over the metric class specified by *R(7) = 0 is not guaranteed. In the presence of a
cosmological constant A, the condition ‘R = 4A has been proposed but again, one
has no guarantee that the integration over this class will converge. Furthermore,
not all four-metrics can be continuously connected to either of these conditions.
Likewise, there is no known method, as in linearised gravity, to isolate the physical

degrees of freedom.

For these reasons it seems worthwhile to examine simple models where all
the convergent contours of integration can be explicitly found. By identifying
those contours which yield physically appealing quantum amplitudes, one may
find characteristics of the chosen contours which are common to the models and
which may possibly apply to the full theory of quantum cosmology. A program
to study the complex contours in simple models has been carried out by Hartle,

Halliwell, Louko and others [22,12,26,32).

To see how one generally proceeds in such an analysis, we adopt a minisup-
erspace model with a 3+1 split. Denoting the configurational coordinates (hgs, X)
by ¢°. their conjugate momenta by 7%, setting N' = 0 for simplicity, and calling
the arguments of the wavefunction (h, ®), ¢f,,, the reparametrisation invariance

of the action,

6.94° = (1) {¢®°  H}, bemo = €(t) {7a, H}, (1.18)
0N =¢(t), €0)=¢1)=0, (1.19)

may be completely broken by the gauge fixing condition

CEN_“(”G’QO”N):O ’ (1.20)



where u is an arbitrary function of 7,,¢*, N. The path-integral now has the form
¥ [gfna) = / Dr,Dg*DN§[()Ace~IElmaM | (1.21)

where A is the Faddeev-Popov measure associated with the gauge fixing condition

¢. In the N = 0 gauge, (1.21) becomes
U g2 ] = / dNDrDge~lslrnal (1.22)

where the functional integral over N has reduced to an ordinary integral over N. In
some cases, the convergent contours for the dN integral can be factored completely
from the DnDq contours and the final result can be studied by steepest descents.
More often this factoring cannot be done. While no rigorous method of evaluating
(1.22) is known, a prescription for approximating (1.22) is presented in [27]. In
the semiclassical limit, we expect the path-integral to be well approximated by a

stationary-point evaluation of (1.22),

Pighnal ~ Z C:exp [—Ig; (4fna)] - (1.23)

where C; is the prefactor and Ig; are the stationary solutions to the complex
Einstein field equations with the prescribed boundary conditions ¢,,. For a given
boundary configuration ¢g,,, there may exist several stationary solutions (here
labeled by i). Some may occur for real, imaginary and complex, values of N
and can represent a Euclidean, Lorentzian and genuinely complex spacetime (by
complex spacetime we imply a complex four-metric on a real four-manifold, i.e.,
9u,(2%) is a complex tensor field of the real variables z). The resulting contour of
integration may be deformed into sections of steepest descent curves connecting
these stationary solutions. The choice of contour will determine which of the

C; are non-zero and thus will enter the semiclassical expansion for ¥. Different
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contours can represent separate proposals for the ground state of the universe (i.e.

Hartle-Hawking vs. Vilenkin’s tunnelling proposal).

A list of five criteria, aimed at selecting those contours which yield the
most physically appealing quantum state for the universe, have been advanced by
Halliwell and Hartle [12]. These are: (i) The integral defining ¥ should converge.
(ii) The resulting ¥ should satisfy the constraints implementing diffeomorphism
invariance i.e. the Wheeler-DeWitt and x equations. With an invariant choice
of measure and either an infinite or closed complex contour of integration for N,
it has been shown that this criterion is fulfilled. (iii) The wavefunction should
imply classical spacetime when the universe is large. This is predicted when (a)
alternative histories for the spacetime geometry do not interfere on scales far above
the Planck length, and (b) the histories are highly correlated according to classical
laws. Typically, in the semiclassical limit, these conditions imply that the action
can be written as I§ = I¢ — iIf, where I; varies much more rapidly than It (iv)
In the limit where spacetime is classical, a consistent quantum field theory for the
matter fields ® on the classical backgrounds must be recovered. (v) From current
wormhole arguments, the contour should be consistent with the vanishing of the
low-energy effective A. They then conjectured that in the same way that four-
spheres with Re(,/g) > 0 possess negative action, wormholes with Re(y/g) > 0

possess positive action.

It is this conjecture which is called into question by the results of Chapters
2 and 3.

The status of this research program is as yet unclear. In the models studied,
choosing a particular boundary proposal and implementing the above criteria may

fail to give a suitable contour or may yield a non-unique result.
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1.4 Wormholes in the Euclidean Path-Integral

In this section we briefly describe current arguments concerning the effects

of including wormbholes into the Euclidean path-integral for quantum cosmology.

A number of authors have argued that rhe inclusion of wormhole configura-
tions may cause the low-energy effective coupling constants to float unpredictably
[33,34]. Coleman has argued that this effect may explain why the cosmological
constant is zero [34]. Fischler and Susskind have shown that the couplings of large,
smooth, spherical four-geometries by small wormholes leads to wormholes becom-
ing dense in spacetime on all possible scales (The “Large Wormhole Problem”)
[11]. To avoid this disastrous consequence, Coleman and Lee have suggested that
for wormholes possessing a conserved charge, the summation over small worm-
holes creates a charge non-conserving interaction which drains the charge from
Jarge wormholes, thus de-stabilizing them [35]. Such an effect has been demon-
strated by Iwazaki [36]. The “Large Wormhole Problem” is discussed in more
detail in the introduction to Chapter 2. Here we describe the derivation of the

probability distribution function for the coupling constants (2.1.1) [37].

Beginning with (1.17) for the ground state wavefunction for a singly con-
nected boundary with no matter fields (for simplicity), we sum over all connected
four-manifolds M, for which & = OM. Although one is assuming the no-boundary
proposal for ¥y, it is asserted that the results found are insensitive to the partic-
ular boundary conditions used. It is also assumed, though questionable, that the
Euclidean path-integral method, as applied to quantum cosmology, is correct, and
an appropriate mechanism for dealing with the conformal divergence of gravity
is available. (For a critical examination of the assumptions made in these ar-

guments see reference [38]). One then splits the integration over M into (a) a



sum over smooth large connected four-manifolds (M) that have T = M, (b) a
. sum over smooth large disconnected four-manifolds with no boundary (M), (¢) a
sum over small wormhole configurations connecting these two. One then considers
the effective _agrangian obtained by integrating out the configurations on scales
smaller than p, where p is larger than the wormhcle scale. The effect of a worm-
hole connecting & and z' can be mimicked by the insertion of the bi-local operator
¥i; C71,)8:8;, where CY ~ exp(—~Iwy) and where §; is a complete set of local
scalar densities. The Euclidean path-integral expectation value of an observable
W in a singly connected universe, smooth on scales less than p, with coupling

constants A, and no wormholes, is

ch dg e—I(G,A)W

< W >,= fM dg TRy (124)
Including one wormhole we get
<W i~ [ dgeOW x 109 [ deds'ti(a)oi(=) . (1.29)

The sum over any number of wormholes attached to one large smooth universe is
<Ws [ dgweT P exp (%C"J’ [ dedetbi(@)osah) . (126)

To make this a local theory we use €'/ 209VY; / 11 daye~1/2P7eies=eVi ywhere
p

D;; = C3'. Noting that I(G,)) = X; [ dz 6(z), we have

<W >~ [ ] daget/207ee [ dgwe24l . [ dapy(@) < W >rsa
¢ (1.27)
where p(a) = ¢~1/2D7eiai ) (o) and Oy(a) = / dg e~1192t9] i5 the Euclidean
vacuum partition function for a large smooth universe without wormholes. The

expectation (1.27), is now a sum over coupling constants!
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Considering the sum (b), each addition of a large smooth four-geometry
introduces a factor / dG' e~ 1192+l into the a-integral. The sum once again ex-

ponentiates,

<W >~ [da e—1/2D"aia; exp (f dg’ 3—1[0'.“""]) I dge—I[Q,,\+a]w

[ da p(a) <W >xria (1.28)
where
pala) = /2P @ 0y(@)e02(0) (1.29)
and
Oy a) = /Md dG e~ 1193l (1.30)

Thus from (1.27) and (1.28), we see that one effectively has a statistical distribu-

tion for the coupling constants ay.

To approximate (1.27) while assuming the low-energy effective action is the
Einstein-Hilbert action, we take the leading-order contribution of O, to arise from
saddle points for which the real part of the action to be that of half a four-sphere.
The dominant contribution to O, arises from saddle points for which the real part

of the action is that of a whole four-sphere, i.e.
O’.\ Ne_re_éflr’ (92~e'EE;§TK . (131)

Summing over the coupling constant a; = A, the most probable value predicted by
these distributions is A = 0. However, summing over the coupling constant 1/16xG
appears also to yield G — 0. Equation (1.27) is identical to that discovered by
Baum and Hawking while equation (1.28) was suggested by Coleman. Although
they both lead to a desirable prediction for A, the inclusion of coupling constants
other than A in (1.28) results in the “Large Wormhole Problem”. This is explained

below.
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CHAPTER TWO

WORMHOLES WITIIOU'T A CONSERVED CHARGE

2.1 Introduction

Recent work has shown that the inclusion of topologically non-trivial four-
geometries in the Euclidean path-integral formulation of quantum gravity may
have severe effects on the low-energy effective coupling constants [2]. Essentially,
the inclusion of Planckian wormholes which either connect large disconnected four-
geometries, or connect separate regions of the same large four-geometry, may cause
the effective low-energy coupling constants to ‘float’ unpredictably. We now adopt
the rules of wormhole calculus (though questionable) and assume a) the Euclidean
path-integral method is a viable formulation for quantum gravity, and b) worm-
holes connect large four-geometries together which are smooth on the scale of the
wormhole. Having done this, one can evaluate a probability distribution function
for the coupling constants through a semi-classical approximation of the parti-
tion function. In the approximation that the large four-geometries are large four-

spheres, this probability distribution function takes the forin (3]

o =la(gA+ )

P(a) ~ e~ 1Diaiojg=la g€ okt , (2.1.1)
where the a's are the low-energy corrections to the coupling constants and Iy(g, A+
a) is the action of a four-sphere with the altered couplings. We see that the ef-
fective low-energy coupling ‘constants’ are now functions of the a’s. The most
probable configuration is that which maximizes the argument of the double ex-

ponential in (2.1.1). Keeping the first three coupling constants A, x,v (v is the
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coefficient of the R? term), semi-classical evaluation of action of a four-sphere [3]

gives the argument of the second exponential to be

1
[A(p) + 1] [*(p) + a2]

Maximizing (2.1.2) with respect to the a’s gives us A.sfective — 0. This process is

+[r(p) + as] . (2.1.2)

most efficient with small wormholes. However, to study the behaviour of x (the
gravitational constant) and 4 one must introduce infra-red cutoffs [4,5]. Naively,
one would expect v.ss and all higher order effective coupling constants to be forced
to their maximum allowable values. However, Preskill [5] has advocated that the
determination of the unique minimum of 1/x.s; will fix all other couplings through
renormalization effects. Either way, the processes effecting shifts in all coupling
other than A are most efficient if large wormholes are dense in spacetime on all

possible scales. This is the infamous large-wormhole problem.

A number of authors [5,6,7] have suggested mechanisms attempting to re-
solve the large-wormhole problem. The presence of a conserved charge plays a key
role in the operation of these mechanisms!. However, as pointed out by Polchinski,
[7] the large-wormhole problem will occur for any classical wormhole solution. In
this chapter we present new classical wormhole solutions to the Euclidean Ein-
stein field equations «!:ich connect two asymptotically flat regions. In distinction
from all other previously known solutions, these wormholes do not possess any
conserved charge. It is not clear that the mechanisms whick have been suggested
with reference to charged wormholes [6] will still apply to these new solutions.

The large-wormbhole problem may reappear.

!Preskill [5] did not utilize this charge but instead advocated that small wormholes will crowd
out large wormholes. However, Polchinski showed (7] that this can only lead to a finite suppression
of large wormholes and consequently cannot beat the infinite enhancement caused by (2.1.2}
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2.2 Description of Model

For simplicity we will adopt the k = +1 Euclidean Robertson-Walker O(3)-

invariant metric ansatz, appropriately scaled for later convenience,
ds? = %(-;- [N’(t)dt2 + a’(t)dQ?,] , (2.2.1)
T

where d§2? is the standard O(3)-1uvariant metric on the unit S}, andh=c=1

The scalar field will be taken to be

3 1/2
=\1n ' 2.
¢ (47rG) o) (2.2.2)
with a self-interaction potential
~ 9
= 2.2.
7(8) = () V&) - (2.2.3)

The Euclidean Einstein-Hilbert action, with the York-Gibbons-Hawking boundary

term [8] at the S® boundaries at ¢, is
1
_ 4 e ( 2 3 [ S 7
I / dxf[ SR+5V8) +V(<I>)] _/gMd:n/ﬁsﬂG(I\ )
= = / * Nt —ad2 +d®$ —a+ 2a3V) + —a2(t )+ laz(t )
2 T eT T

== / Ndt (GapXAXP +2U) + PESE I (2.2.4)

2 2"

where K is the trace of the actual extrinsic curvature of the boundaries in the
metric (2.2.1), Ko is that of the corresponding flat metric inside the same boundary,

an overdot denotes N~!d/dt,
ds? = GapdXAdX® = —add® + a®d¢? = €%*(—da?® + d¢*) (2.2.5)
is the metric on the (a, ¢) minisuperspace, a = Ina, and
1

U=-Za+ a*V(¢) (2.2.6)
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is the minisuperspace potential.

The classical Euclidean equations of motion are

2H = Gap X XP - 2U = a (-’ +a*¢* +1-2a°V) =0 , (2.2.7)
. a, dv
—th — — — i
o+306- g5 =0, (2.2.8)
a+2ad*+2aV =0 , (2.2.9)

giving the trajectories of a particle of mass-squared ~2U in the metric (2.2.5), or

spacelike geodesics in the conformally-related metric

d3? = 2Uds* = (a® — 2a*V) (da? —~ a?d¢?) = e* (1 - 2¢V) (da? - dg?)
(2.2.10)

We are looking for wormhole solutions connecting two asymptotically flat
regions, so @ — 1 as t — too, and ¢ — @1 with V(d4) =0 and dV'(¢4)/d¢d = 0.
We will primarily be interested in solutions with finite action (2.2.4) as ty — +oo,

though wormholes with infinite action may also be relevant in certain circum-

stances [9,10].

It is well known that no real wormhole solutions exist for pure gravity
[11,12]. It is essentially necessary for the Ricci tensor, and hence for the matter
stress-tensor, to have at least one negative eigenvalue [13]. This does not occur
for a real scalar field with a non-negative potential V(4). In our O(3)-symmetric
model, this is illustrated by the fact that equation (2.2.9) does not allow a worm-
hole throat with @ > 0 if ¢> > 0 and V > 0. This restriction can be circumvented
by going to imaginary ¢ = ip, which makes ¢2 = —$? < 0. For a massless
imaginary scalar field (V = 0), wormhole solutions have been found {14]. These

have a conserved charge, the value of 74, which is the momentum conjugate to ¢.
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Solutions exist for any value of 74 and have a linear throat size proportional to

712
¢ .

We are interested in discovering solutions with no conserved charge and so
consider non-constant V(#). The simplest potential one might consider is V' =
1m?¢? = —im?%p? for a massive scalar field. Unfortunately, Jungman and Wald
[15] show that no wormholes are possible for a real scalar field with ¢dV/d¢ > 0,

and their argument also applies virtually unchanged for an imaginary scalar field

with @dV/dy < 0, which includes the massive field case with m? > 0.

To avoid this limitation and yet use a potential which is rion-negative for

real ¢, we shall consider the simplest nontrivial example, which is

V= %iq)‘ , (2.2.11)
or
v = Lagt = Lyt (2.2.12)
= 4 = 4 (p s
wish A = A/2r2. It is convenient to use the conformal radial coordinate
Ndt
n= / / Ndte™™ | (2.2.13)

with a prime denoting d/dn = aN~1d/dt, so the action and equations of motion

become
%/ﬂ (a'2 +a%p"? + a? — :;—)\a“tp“) + %ai + %a"l , (2.2.14)
a?4+p? =1-22V(p)= 1- 51\62‘” o* (2.2.15)
o’ =2(p? —e*V(p)) = 2p7 — —/\62" 4 (2.2.16)



Lp” = _zal(Pl - ezad‘/ (‘P) —_ _2ar‘pr _ /\620(,03 . (2'2.17)

di

Another coordinate system which allows a more descriptive portrayal of the dy-
namics are the polar coordinates

al

_2_ ’

T =

0=2p . (2.2.18)

Rescaling the lapse to be N = v/a and denoting uid: by a hat, the action and

equations of motion become

g = —% /ti+ dtv (1“'2 + o+ 1 - r-i/-\aﬂ") +re s (2.2.19)
P22t =1—arV = 1- r;\gd : (2.2.20)

F—rf? =-2V = —i\;g : (2.2.21)

rb+20 = -—21'% = -"’1\23 . (2.2.22)

The solutions are spatial geodesics of

ds® = e (1 — 2e2°'V(cp)) (da2 + d¢2) = ¢ (1 - é—)\ezanp") (da2 + d<p2)
(2.2.23)

and

Argt
16

d&® = (1 - 4rV(9)) (dr* + r?d6?) = (1 ) (dr? + r2d6?) (2.2.24)

in the above two sets of coordinates. Constructing the Hamiltonian and utilizing
Hamilton’s equations one can eliminate the time parameter dependence and obtain

a second order ordinary differential equation relating the geometry and matter.
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For the case where one has a cartesian minisuperspace metric which is conformally

. flat with conformal factor F(a,y) (i.e. (2.2.23)) the dynamics obeys

o 1 do\?*l (& dp B
For a polar parametrized minisuperspace metric which is conformally flat with

conformal factor P(r,6) (i.e. (2.2.24)) the dynamics obeys

d*r 2 (dr\* 1 dr 2 dr dV
Fr (@) tE|Tt (de) ] (—2" + ;@79) - (2220)
For the present model we have
4o A 6 4
Fla,p)=—€e""+ 369 (2.2.27)
A o
P(T‘,O) =1- :—l‘-6'7‘0 , (2228)

which, when inserted into (2.2.25) and (2.2.26), yield

dZSO_ 1204— d‘P 32a4d 2a3
_"‘”( gAe ) R V(z"éke "”)d e :

do?
(2.2.29)
d*r 2 (dr\’ Ao\, [dr)® 4 (dr\] A6®
a‘@;—?"{‘?(@) —(1— 16) [7‘ +(a§) [9—;(@')] 32 (2230)
For large a (2.2.29) has the 2symptotic form
d*z 3 o 3 odz dz dz\°
T = O(e™*)O [z L bl B B , (2.2.31)

with z = e*¢ = ap, so whes we can neglect the right hand side we get an

asymptotically conserved quantity

1, 1
( ) 52 + 4/\z , (2.2.32)
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which is the energy of a unit-mass particle in the potential —1z2 4 $Az4, if the

time is taken to be a.

If we eliminate the arbitrary constant associated with the zero of 7, equa-
tions (2.2.15)-(2.2.17) or equation (2.2.29) has a two-parameter set of solutions.
In one asymptotic region, the two parameters may be taken to be E and an asso-
ciated phase angle of the oscillations of 2, the integration constant ay obtained in

solving (2.2.32) for

dz

az/ L
\/2E+22— %Az“

2|k =< (1 + %)} +ao , (2.2.33)

= 121

cn”

1+4e¢€ 2

e=(1+4\E)/? | (2.2.34)

Alternatively, the two parameters may be taken to be the minimum value of a and

the value of ¢ (or ¢) there.

Although all of the solutions are asymptotically flat, when E # 0 the scalar
field ¢ = z/a undergoes oscillations of amplitude decreasing only as «~!, which
is too slow for the action (2.2.14) to remain finite as ny — *oo. For a complete
finite-action wormhole solution, we need E; = E_ = 0 in both asymptotic re-
gions. These two conditions on the two-parameter set of generic solutions may be

expected to lead to a discrete set of finite-action solutions.

An alternative, more intuitive approach to finding asymptotically flat Eu-
clidean wormhole solutions can be found through the examination of the asymp-
totic behaviour of ¢ for various potentials V(¢). From the equations of motion
(2.2.7)-(2.2.9) we see that the asymptotic behaviour of the solutions corresponding
to the decaying ¢ mode for a potential

A
V(¢) ~ é-l;aﬁ’” : 2.35)
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where p > 3/2 and A > 0, is that of V = ¢, i.e. like the Giddings-Strominger
wormhole {14]. For real ¢ Jungman and Wald’s argument disallows wormhole
solutions. For imaginary ¢ = iy the same argument shows that no wormholes are
allowed when p is odd (as we mentioned above for the massive case with m? > 0).
The simplest case for which wormholes might exist is thus p = 2. For V =0
equations (2.2.15)-(2.2.17) (with A = 0) can be solved exactly to give

pgs =tanle M 4o, | (2.2.36)

ags = (2ccosh 2n)'/? | (2.2.37)

which is the well-known Giddings-Strominger solution expressed as a massless
scalar field [14] with —2¢ being the asymptotic charge a?(dyp/dn). For this solution
Pgs tends asymptotically to two different values ¢4 where |p, —¢_| = 7/2. The
action is zero by virtue of scale invariance and the fact that it extremizes the

Euclidean action. The asymptotic behaviour is approximately

Pgs — P4~ €7 | ay, ~ Jee . (2.2.38)

Returning to the case V = %99", equation (2.2.15) yields
d
a":l% = -2 - / aF(p)dy | (2.2.39)

where F' = dV/dp. For V = 0 the solution is identically the Giddings-Strominger
wormhole. For V = -;‘-QS", with ¢ — 0 as n — +o00, the solution tends asymp-
totically to the Giddings-Strominger wormhole. Thus to a first approximation,
the asymptotic behaviour of ¢(n) and a(n) for large +7, may be obtained from
(2.2.39) by approximating ¢ and a on the right hand side by ¢,, and a,, with
¢+ = 0. This gives,

d
L 2 — /ag,F (p = @g)dn . (2.2.40)
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Inserting (2.2.36) and (2.2.37) we obtain

dy 1 cA
- =~ -1 4 e —8n 2.2.
dn cosh2n[ + i ]+O(c ) (2.2.41)
which upon integration gives
1 - _ A -8
p~tan” e "~ 3ce "+ 0> , (2.2.42)

or more generally (V = %,‘ﬁzp)

M—1)Petn(1-7)
~tan~le 2" — ¢
i 8(1 - p)(2p - 3)

Using equation (2.2.16) and integrating twice with the boundary conditions o' =

+ O(e~m) | (2.2.43)

@ =1 at 7 = 400, and choosing a suitable integration constant to obtain (2.2.37)

when A = 0, we get

A
ax %ln(2ccosh 2n) — gce‘s" +O(e™1) (2.2.44)
1/2 A e o =9
a = (2ccosh 27)'° |1 — 3¢ "+ O(e™) , (2.2.45)

or, for the more general potential (2.2.35),

3Ac(—1)pe~20(2r-1)
4p(2p - 1)(2p - 3)

By iterating (2.2.39) and (2.2.16) one can obtain a more accurate asymptotic

a = (2ccosh 2p)"/? [1 - ] + O(e=rttiny (2.2.46)

solution.

If E = 0 ir one asymptotic region, say E_ = 0 at n = —o0, then in that
region one can find a late time asymptotic solution for ¢ as a function of a by

assuming the asymptotic form for ¢ and a to be

o b :
i1
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ed .
o(t) = ; t% . (2.2.48)
This form yields dominant behaviour at ¢ = co when inserted into the equations
of motion (2.2.7-2.2.9). Inserting these expansions into any two of the equations
of motion, one can solve iterativly for the unknowns b;, c;. Inverting the functional

dependence a(t) to give t(a) and substituting back into (t) we obtain

1
p=c.a’- l/\c:ia"4 + (gc3 + —1—A2c5_) a+ (—}g,\cs_ - —)\SCZ) a®

8 3° 64 48 512
6 171 1
+ (gci + 12—8-6)\%7_ + MX‘C&) a4+ 0(a??) (2.2.49)

where c_ can be taken to be the second free parameter, which in the expansion
(2.2.48) corresponds to ¢, (see Appendix A for a symbolic computer program
which confirms this calculation). We integrated equations (2.2.15)-(2.2.17) (one of
the latter two of which is redundant) by a fourth-order Runge-Kutta ODE solver
from one asymptotic region (large a..) where E_ = 0 and ¢ had the asymptotic
form (2.2.49), through the throat, and out to the other asymptotic region (large
a;), where E, was evaluated. The function E(c.) showed two zeroes for positive
c., corresponding to two discrete wormholes (see Figure (2.1)). Using Brent’s

root-finding algorithm, we found the two solutions occurred at
(i) c- = ¢; ~ 0.486421 A~ ~ 9.6015 1" (2.2.50)

(if) c- = cp ~ 6.0055 \~" = 118.5438 37" . (2.2.51)

The symmetry ¢ « —¢ implies that there are two other wormholes with the same

geometry but opposite values of ¢, given by c. = —¢; and c_ = —c.

If we choose the gauge N = 1 and set ¢t = 0 and 1 = 0 at the throat, then

for both wormholes a is an even function of ¢ and 5. Solution (i) has ¢(t) and



(1) also even, but Solution (ii) has ¢ an odd function of ¢ or 7 (see Figs. (2.2)
and (2.3)).

The values of a at the throat are

(i) @ = a; =~ 1.04307 A~Y/% ~ 4.634340"1/2 | (2.2.52)
(ii) @ = a; ~ 0.75575 A71/% =~ 3.3577A~1/2 . (2.2.53)
For Solution (i}, 4 = —a;' < 0 at t = 0, and the minimum value of a occurs at

t = ty = +0.650888 1~1/2, where
a(£to) = Guning ~ 0.94981131 A7V/2 ~ 4.2199371/2 (2.2.54)

For Solution (ii), @ = 2a;' > 0 at t = 0, and a; is the global minimum of
a. Remembering that @ is a dimensionful quantity in the metric (2.2.1), the

dimensionful three-volumes of the minimal surfaces in the two cases are thus

3/2 3
(i) 272L2 = 277 (i—g) &,y ~ 145.00224-%2G¥2 | (2.2.55)
3/2 .
i) 2723 = 272 (2C a3 ~ 73.04990~%/2G%/? | (2.2.56)
2 3r

and the linear sizes of the three-surfaces of circumference 27 arc
(i) Ly ~ 12.2141271/2GV/2 | (2.2.57)

(ii) Ly ~ 9.7187A°/2GY/? | (2.2.58)

where we have expressed these quantities in terms of the coupling constant A in
the origina. potential (2.2.11). Note that G/> = Mp! = Lp ~ 1.616 x 10~®3cm is
the Planck length.

The Euclidean action for the complete wormhole solution may be split up

into a gravitational part, a kinetic matter part and a potential matter part, i.e.
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Ig = Ig+Ix+1Iy. By considering the constant or scaling conformal transformation
 of the metric, gy — §u = Qg,, where Q = 1 + ¢, setting the first variation of

the action to zero gives

Ig+ I = —2Iy | (2.2.59)

or Ig = —Iy. Referring to (2.2.14) we see that Iy > 0 and thus the total Euclidean
action must be negative. By performing the transformation ¢ — ¢ = k¢ and
setting the first variation of the action to zero, we see that Ix = —2Iy and thus
from (2.2.59), Iz = 0 identically. When we take t3 — +o0 or 73 — oo to obtain
the complete wormhole solutions, the numerical results of the Euclidean action Ig

(2.2.4) or (2.2.14) are
() I, ~ —0.479314 A} & —0.46128 X | (2.2.60)

(ii) I ~ —2.26035 A1 ~ —44.6175 7! . (2.2.61)

It is of interest to note that there exits finite action, spherically symmetric solutions
in flat space with imaginary ¢ obeying the boundary conditions ¢ — 0, |a| — 1
ast — too and ¢ = 0 at ¢ = 0. The relevant equation for ¢ in flat space is

d’p | 3dy 3
:iﬁ-l-;:i?-i-)\(p =0, (2.2.62)

where the solution for ¢, obeying the above boundary conditions is,

p= %_f{.L;\;:)g , (2.2.63)
which is the imaginary field analogue of the Fubini instanton [17]. The total action
for this solution is Jg = —4 A~'. Thus, one might consider comparing the action
for each of the two wormhole solutions with the action for two copies of flat space
ie. —2A"1x -2.666 1. Since the actions (2.2.6V) and (2.2.61) are negative, it

appears that these wormholes are enhanced rather than suppressed. The action
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for a single wormhole is bounded below, however. The possible consequences of a

negative action for these wormholes is discussed in chapter 3.

Because the scalar field ® has a nontrivial potential V(&) = %:\@“, the

conjugate momentum

oL . 8G .,
= em————— = —y]— 2

Ty EEIED) /<I>'pd z \’ 5o (2.2.64)

(defined using the Lorentzian action
I = / Ldt=ilg , (2.2.65)

and the choice of gauge

N =i 3w\ 2.9 66
=1 (-2—5) (........ )

so that ¢ becomes the proper Lorentzian time) is not conserved but rather obeys

the equation

7g = N1 %3 = —%\/SG,\a%f’ . (2.2.67)

However, the right hand side tends to zero sufficiently rapidly in the asymptotic

regions of the wormhole solutions that 7 tends toward the constant values

(i) me(t = —00) = —me(t = +00) = m = —-2?;\/§5c, ~ —18.1049G"/23 71 |

(2.2.68)
(ii) mp(t = —00) = me(t = +00) = ™y = —§V8Gc2 ~ —223.5339 GV,
(2.2.69)

in each asymptotic region of the two wormhole solutions. These may be viewed
as the asymptotic charges of the wormhole. Note that the asymptotic charges are
opposite for Solution (i), so that the wormhole effectively adds asymptotic charge
to both flat regions it connects (or drains charge if one takes the sign-reversed

solution c_ = —¢,). Solution (ii) connects two flat regions where the asymptotic
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charges are equal. Here the wormhole appears as normal, acting as a sink for
asymptotic charge ou one side and as a source on the other side, but again the

charge g is not conserved within the throat.

A more pictorial description of the two wormhole solutions can be obtained
by going to the polar coordinate representation (2.2.24) where the dynamics obey
the second order ODE (2.2.26). Using the polar coordinates (2.2.18) the two
solutions are plotted in Figs. (2.4) and (2.5). The dynamics is that of a particle
with unit mass moving in a potential U = (r%ﬂ‘ —1)/2. The scalar curvature of

the auxiliary two dimensional minisuperspace (2.2.24) is given by

_ A82(Ar6* +46° + 48)
- e\
64r (1 ~ 6 )

This diverges for § = £2/(Ar)"/4, that is, when P(r,6), the conformal factor in

R

(2.2.70)

the miinisuperspace metric (2.2.24) as defined in equation (2.2.26), is zero. The
loci of various values of P(r,8), (including zero) are shown in Figs. (2.4) and
(2.5). In this auxiliary minisuperspace, all the dynamics occurs within the region
P > 0 while the typical trajectory will avoid the infinite barrier P(r,8) =0 (see
for example the behaviour of the type (ii) wormhole solution). However, on the
surface P = 0 we see from (2.2.20) that 7 = § = & = ¢ = 0 indicating a complete

time reversal of the dynamics. However, in equation (2.2.26) we have eliminated

the time dependence and so the behaviour of Eg—z is regular at P = 0. For this to
be so we must have

dr ré

E Pz — Z (2.2.71)

This is demonstrated in the type (i) wormhole behaviour. Figure (2.5) shows the
detail near the origin and displays the multiple covering of the plane by these

coordinates. This is due to 8 not being restricted to the interval [—, +7].
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Solution (ii) also possesses at least one Lorentzian section. This occurs at
the time symmetric surface at the throat’s center where ¢ = 0 and the extrinsic
curvature vanishes. The Lorentzian section represents the Lorentzian evolution of
a O(3)-symmetric three-geometry from a singularity to a maximum size (that of
the time symmetric three-geometry of the Euclidean wormhole) and recollapse to
a singularity. In this evolution the Lorentzian extrinsic curvature is zero uniquely
at the point of maximum expansion (see Fig. (2.6) for details of this Lorentzian
evolution). We note that there may exist other Lorentzian sections which may be
obtained through complex transformations. We have not, however, succeeded in

discovering such transforms.

For a fixed ) there exists a maximurn size for a classical wormhole solution
with finite action. Thus naively it appears that the unbridled fury of the large
wormhole problem is somewhat abated and only the two finite action solutions are
dense in spacetime. It could well prove, however, that the relaxing of the dilute
gas approximation will allow the solutions with infinite action (if evaluated out to

infinity) to be patched together, thus allowing wormholes of arbitrary size.
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-6.8 34 0.0 3.4 6.8

Figure 2.3: Behaviour of wormhole solution (ii) in the throat region. This solution corre-
sponds to c_ = 6.0055 A1, The separate graphs refer to: (a) A}/2a(2), (b) ¢, and (c) Aa®¢.
Note: we have compressed ¢ by a factor of 5 for curve (c) so that the large ¢ behaviour is
apparent,
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Figure 2.5: Detail near the origin of types (i) and (ii) wormholes in polar coordinates.
Also shown are loci of constant conformal factor P = (1 — r6%/16) (see Fig. (2.4) for
values). Note the spiraling behaviour of these contours due to the multiple covering of the
coordinate system (2.2.18).
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Figure 2.6: Behaviour of Lorentzian section of type (ii) wor w.hole. The section is taken
at the time-symmetric three-geometry where ¢ = 0 and kL«renvzian momenta conjugate
to the Lorentzian matter field = —iyp is real. The Lorentzian evolution is plotted in
coordinates z = .5asinh ¢, y = .5acosh ¢. Graph (a) is the evolution of the Lorentzian
geometry. Graphs (b) represent F = (a* — 2a%¢*) = 0 i.e. where the conformal factor for
the auxiliary minisuperspace (which has a Lorentzian signature) vanishes (see (2.2.24)).
We note that on the y-axis ¢ = 0 and thus the Euclidean and Lorentzian sections join at
the intersection of (a) and the y-axis in this plot.
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CHAPTER THREE
WORMHOLES IN A im?¢* + i)\cﬁ“ POTENTIAL

3.1 Introduction

In a previous paper [1], (hereafter known as paper I), we presented an
explicit solution of the Euclidean Einstein field equations which connects two
asymptotically flat Euclidean four spaces. This was the first such solution not
to possess a conserved charge. In this paper we present a second solution using a
different potential, which again connects two asymptotically flat four spaces and
does not possess a conserved charge. In distinction from the model discussed in
paper I, the solution presented here displays a much richer spectrum of eigensolu-
tions and related dynamics and arises, in a sense, from a more “natural” potential

V(¢) = m?¢?/2 + A¢*/4, where we set ¢ to be imaginary (¢ = —i¢ real).

The discovery of these solutions dispels the conjecture [5], that a wormhole
throat of non-zero size is only possible if the wormhole possesses a conserved
charge. The conservation of the current associated with the charge resists the
collapse of the throat. With the exception of the solution in I, all previously found
wormbhole solutions possessed a conserved charge related to a cyclic coordinate

appearing in the lagrangian.

The presence of a conserved charge associated with the wormhole has played
an integral part in current arguments addressing the “Large Wormhole Problem”
[3,4,2). Preliminary results of recent work concerning the inclusion of Euclidean
wormhole configurations into the path integral formalism of quantum gravity in-

dicate that wormholes may cause the fundamental coupling constants to float
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unpredic.ably [4]. However, when one attempts to evaluate the probability distri-
_ bution function for these “constants” semiclassically, together with the prediction
that GA — 0, one finds that wormholes are predicted to be dense on all possible
length scales[2]! To circumvent this, Coleman has hypothesised that large worm-
holes, having a large conserved charge, are de-stabilised by smaller wormholes|5].
The small wormholes bleed off the charge of the larger one, and thus the large
wormbhole problem has been resolved. This may be the case for theories wherein
the wormhole solutions possess a conserved charge, but not so for the wormholes
dealt with below and in paper 1. In these theories the large wormhole problem
re-appears to the extent that the wormholes predicted to exist will be dense in

spacetime.

Referring to the results of paper I, we see that even though the charge a9,
where a is the scale factor and ¢ is the imaginary scalar field, was not conserved
throughout the wormhole, one can still label the separate wormhole solutions by
il.2 asymptotic values that this charge takes in the flat regions connected by the
wormhole. However for the wormhole described below, this is not so. The sepa-
rate solutions can indeed be labeled by the asymptotic value of a particular quan-
tity. This quantity is not that of paper I but is instead the asymptotic constant

a®?e™p, where p = —i¢.

Another property of the solutions described below, not shared by any
other known wormhole solution with an imaginary scalar field (i.e. Giddings-
Strominger|[6], V = Ap%[1]) is this: For any non-negative integer Nmax, it is
possible to choose ranges for the parameters A and m such that there will exist
at least Npax pairs of wormhole configurations with each pair possessing NV zero
crossings of the imaginary scalar field ¢, where N ranges from 0 to Nyax. Other

characteristics, including the minimum throat size, are elucidated below. How:-
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ever, of more import is the consideration of the actions of the wormholes of paper
1 and those described below (hereafter known as paper I1). The Ayp* wormholes of
paper I both have negative actions whereas those of paper II have negative, zero

and positive actions depending on N and the quotient p = m/ VA

a) Contour of Integration

One of the motivations for this work arises from recent research on the “Problem of
the Contour of Integration” in the path integral approach to quantum gravity[7,12].
This problem occurs when one attempts to constrr.ct a sum over histories formu-
Jation for the transition amplitude between two three surfaces ¥, &' with matter
fields S, S’ defined on them, in an effort to create a Feynman-like quantisation
scheme for gravity. One essentially sums over all four-geometries M, and matter
fields S, that interpclate between (X, S) and (', §"), weighted by exp(—Ig), where
Ij; is the total Euclidean action of the interpolating geometry M and matter fields
S. However, this path integral is ill-defined, as the Euclidean gravitational action
is unbounded below for geometries possessing conformal variations. Thus, it be-
comes necessary to rotate the contour of integration in the path integral to become

complex. One thus sums over complex intermediate geometries and matter felas.

For the case where the four-space is asymptotically flat, a prescription for
the rotation of the contour has been aavanced by Gibbons, Hawking and Perry/(8].
This leads to convergent meaningful results in a number of examples[9]. If the four
geometry is closed, as in the case of quantum cosmology, no prescription exists. A
program to search quite generally for convergent contours has been carried out by
3. J. Halliwell, J. Hartle and J. Louko[7,12]. In this program, the emphasis is on

finding a suitable complex contour which is capable of describing the wavefunction
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of the Universe, i.e., they implement a number of proposed cosmological boundary
conditions for the beginning of the universe at T (the no-boundary proposal of
Hartle and Hawking [10] and the tunnelling proposal ~* Vilenkin {11]). Having
examined a number of minisuperspace mcdels without inatter content, Halliwell
and Hartle proposed a list of criteria which the contour should obey[12]. These
are (1) The integral defining the wavefunction should converge. (2) The wavefunc-
tion should satisfy the constraints implementing diffeomorphism invariance. (3)
Classical spacetime, when the universe is large, should be predicted. (4) The cor-
rect quantum field theory si:+s 1d be predicted. (5) To the extent that wormholes
make the cosmological constant dependent on initial conditions, the wavefunction

should predict its vanishing. Of interest to us is criterion (5).

Preliminary analysis by Halliwell and Hartle [12], of semi-classical solu-
tions of the complex Einstein field equations satisfying the no-boundary boundary
conditions, indicated that for every solution possessing Re(,/g) > 0 with action
I,, there existed a complementary solution with Re(1/g) < O having an action
I,, whose real part satisfed Re(Iz) = —Re(l1). [Later analysis by Halliwell and
Louko has shown that in more complicated models, the topology of the space of
geometries of the particular minisuperspace in question may conspire to restrict
one to either the positive or negative sector of Re(/g) > 0 within the model.]
It was then conjectured in reference {12}, that whereas Re(,/g) > 0 implies neg-
ative action for four-spheres, Re(,/g) > 0 implies positive action for wormholes.
Similarly, wormhole configurations possessing Re(,/g) < 0 would have negative
action. Thus, wormholes with Re(,/g) > 0 would be suppressed and such con-
figurations would then be included into the contour of integration. Wormholes
with Re(,/g) < 0 and therefore Re(Ig) < 0, would not be suppressed and, just

as the imaginary analogue of Fubini instantons [13] with negative action do not
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dominate the path integral for fiat spax * s 4¢* theory, so too should ti.e lominant

contribution to the contour not arise from such sadw. :oin‘s with negative action.

From the results of papers I and II we see this conjecture not to be valid
when the matter action is considered. Inclusion of imaginary matter configurations
have a significant effect on ihe sign of the action. For the case at hand, taking
the potential V = A¢!/4, or V = m?¢?/2 + A¢*/4, the transition amplitude
between two asymptotically flat Euclidean snaces for particular ranges of m and
), would include wormhole configurations where ¢ is purely imaginary and where
the action can become negative. Wormhole production would then proceed at an
exponential rate[14]. The wormholes found in papers I and II all have Re(,/g) >
0 while Ir can become negative. These wormholes would presumably not be
included in the contour of integration. However, for some ranges of m and A,
wormholes II possess zero and positive actions. These would seem more likely
to be included into the path integral. Thus, when the matter action is included
and one allows fully complex matter configurations, Re(,/g) ceases to be a good
indicator concerning the treatment of a particular stationary point of the action
as the dominant contributor to the path integral if one wishes the suppression of

large wormbholes.

The negative actions in wormholes I and II are not due to the unbound-
edness of the conformal mode of the gravitational action, but rather due to the
kinetic term of the scalar field lagrangian having the “wrong sign”. We note that
in both models I¢ > 0. In the other known wormhole solution possessing an
imaginary scalar field, i.e. the Giddings-Strominger solution[6], the action is iden-
tically zero by virtue of scale invariance and the equations of motion. This “wrong

sign” for the kinetic energy of the scalar field is necessary for the construction of

a wormhole solution in the minisuperspace ansitze we consider. It appears quite
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likely that utilisation of imaginary matter fields will generically lead to negative

actions except in special rases of high symmetry in the lagrangian.

To summarise, large wormholes are not suppressed by the criterion Re(,/g) >
0. Furthermore, if one requires that large wormholes be suppressed, then the cri-
terion Re(,/g) > 0, taken alone, fails to include the appropriaie saddle points of
the action into the contour of integration. This differs from what was conjectured
in [12]. The probable reason for the failure of this criterion is the appearance of a

negative matter action due to the imaginary nature of the scalar field.

In the fuilowing sections we proceed with a derivation of a wormhole-
yielding potential within the particular metric ansatz we use. We then perform
some preliminary analytical analysis and obtain asymptotic solutions labelled by
a parameter y for the wormhole solutions in the large ¢ domain. The numerical re-
sults concerning the first six wormholes are then described, giving the positions in
the two dimensional parameter space (X, 1) where a valid wormhole solution exists
together with the actions and individual characteristics of the separate wormholes.
We then briefly describe some analytical approximations which treat the ¢ oscil-

lations as adiabatic and which agree very well with the numerical data.
3.2 Description of model

As in our previous paper [1], we will adopt the k¥ = +1 Euclidean Roberzson-

Walker O(3)-invariant metric ansatz,
2 _2G a2, 2 2
dsf = 3 [N?(t)de + a*(t)de23] (3.2.1)

appropriately scaled for future convenience, where dQ% is the standard O(3)-

invariant metric on the unit $2, and h = ¢ = 1. The scalar field will be taken to
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be of the form

3 1/2 \
® = (Z-—é) (1) , (3.2.2)
with a self-interaction potential
(@)= {5) V) (3.2.3)
\8G? ) |

Using these definitions the Euclidean Einstein-Hilbert action, with the Gibbons-

Hawking boundary term [15] at the S° boundaries ¢4, is

I = / 'z /g [————-R 4 (v<1>)2 + f/(cp)] - J/aM d%‘/}_‘s;G (K — Ko)

_ 1l 2, 332 3 1, 1,
—5/1— th(—aa +a’¢*—a+ 2a V)+§a (t+)+§a (t-)

t . .
= % " Ndt (GapXAXE +2U) + %ai +ia (3.2.4)

t

where K is the trace of the actual extrinsic cuivature of the boundaries in the
metric (3.2.1), Ky is that of the corresponding flat metric inside the same boundary

while an overdot denotes N~'d/dt.

The metric on the (a, ¢) minisuperspace (DeWitt reduced supermetric) is
ds? = GpdXAdX? = —ada® + a®d¢® = €*(—da® + d¢?) (3.2.5)
where a = In a, while the minisuperspace potential is
1 3
U= —5a +a’V(¢) . (3.2.6)

The classical equations of motion are

9H = GapXAXB —2U =a(-a*+a?$* +1-2'V) =0 , (3.2.7)
a, dv
¢ +3- ¢—&; 0, (3.2.8)
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i+ 2a¢*+2aV =0 , (3.2.9)

" describing the dynamics of a particle of mass-squared ~2U in the metric (3.2.5),

or & spacelike geodesic in the conformally related metric

ds? = 2Uds? = (a2 - za‘*v) (da2 - a2d¢2) = ¢l (1 . 2e2°v) (da2 - d¢"~’)
(3.2.10)

We are interested in wormhole solutions connecting two asymptotically flat
regions, so @ — %1 as t — +oo, and ¢ — ¢; with V(¢1) = 0 and dV(¢y)/dé = 0.
In [1] (hereafter known as paper one), we showed the existence of two such worm-
hole configurations where & is made imaginary and a self-interaction potential of
the form V = -}:\@4 = 1)\¢* was used. In both of these configurations ¢ crossed
zero at most once, the total action was negative, and only two separate configu-

rations existed for any given value of .

In this paper we will elucidate the behaviour of similar asymptotically Eu-
clidean wormhole solutions using a less simplistic, more realistic self-interaction

potential. We will also impose the natural restrictions that
V(®)eR VOoeR , (3.2.11)

V(®) >0 VPeR . (3.2.12)
We now investigate the possible form of the potential V().
a) Form of the potential V(¢)

It is well known that no real wormhole solutions exist for pure gravity [16,17].
It is essentially necessary for the Ricci tensor, and hence for the matter stress-

tensor, to have at least one negative eigenvalue [18]. With the metric (3.2.1)
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and with restrictions (3.2.11,3.2.12) and treating ® as a real field, no wormhole
configurations are possible in this model, as (3.2.9) does not allow a wormhole
throat if V(¢) > 0. More generally, it has been shown by Wald and Jungman
[19] that for real @, asymptotically flat Euclidean wormholes with ¢ tending to 0
sufficiently rapidly in both asymptotic regions, are not possible if ® dV(®)/d® > 0.
Their argument also rules out similar wormholes for imaginary @ if ®dV(®)/d® <
0. However, imaginary scalar field wormholes have been discovered. By going
to imaginary ¢ = iy, which makes $? = —p? < 0, configurations possessing
negative eigenvalues for the stress-energy tensor can arise. For a massless scalar
field (V = 0), wormhole solutions have been found [6]. (The asymptotic values of
& differ at the two ends, circumventing the Wald-Jungman theorem while leaving
the wetric itself asymptotically flat.) These possess a conserved charge, the value
of 7,, which is the momentum conjugate to ¢. Solutions exist for any value of
7¢ and have a linear throat size proportional to \/ms. The total action for these
solutions is zero by virtue of scale invariance. For a quartic interaction potential
V(¢) = 2¢*, wormhole solutions have also been found [1]. These solutions do
nol possess a conserved charge but can be characterized by the asymptotic value
of mg in the asymptotically flat regions. The two solutions found correspond to
(i) opposite values of mg, (ii) equal values of 7y, at the two asymptotically flat
regions. For a fixed valne of A, only two solutions (or four, when one considers the
symmetry ¢ — —¢), with specific values of 7y, exist. The total action for each of

these wormholes is negative.

The action and equations of motion, in terms of ¢ = —i¢, are
__im 2, 3.2 3u7(s 12 2
Ig = ~3 f Ndt (aa +a’p*+a—2a V(up)) + 3 (a+ + a_) , (3.2.13)
2H = —a (% + a’p® — 1+ 20"V (ip)) =0 , (3.2.14)
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dV (ip)

¢ F3ap =— , 3.2.15
do ( )
. .2 .
a=2a (cp - V(up)) . (3.2.16)
The limits t; — oo are taken in (3.2.13) to evaluate the action of a complete
wormbhole. If we assume that V(ipy) = 0, %‘:i) = 0, but f‘_;(_’;&t_)_ < 0, in
¢’ «

the limit ¢4 — Zoo, then ¢ approaches ¢4 exponentially as ¢t -+ +o00, and the
solutions have finite action. We will choose a potential such that these conditions
may be satisfied to get a finite action solution; however, one need not necessarily
have ¢ decaying exponentially for finite action. Near the throat region we wish ¢

to oscillate more than once for most of our solutions. Again referring to equation

(3.2.1%), this requires Eﬂ;(_zgo) > 0 for some range of ¢. For asymptotic flatness
V(i
we also need V(ipy) =0, dViipx) = 0.
dy
Assuming V() to be of the form
4_ g2
V()= A [; n a"’] o', (3.2.17)

and setting ¢4 = 0, all of the above requirements are satisfactorily met except

[

V(®) £ 0V® € Rand f%:;;’;i) £ 0. Since ¢! = (—i®)? = ¥4, the form of V(P)
is unchanged,

Lt P 3.2.18

V@)= | 5o e (3:2.18)

and is shown in figure (3.1). Numerical analysis has shown the existence of asymp-
totically flat wormhole configurations'. However, this form of potential violates
the positivity of V for real & and is, by construction, quite artificial. A more

realistic V(®) is suggested by Fig. (3.1). We will assume V(¢) to be of the form

~

~2
~ m A
V(®) = —&*+ >0, (3.2.19)
2 4
'Taking a® =~ 0.1815, ) = 1, integrate out from the throat with the scale factor at the throat
set to unity.
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V(p)

4

Figure 3.1: Plot of V() vs. © where V() = A {’ ‘Taz’] vt

Y ra

2 A

V(¢) = T.-)—¢’+Z¢‘, (3.2.20)
2 A

V(@ip) = _m7¢2+z¢4, (3.2.21)

With this potential all of the above criteria are satisfied.
3.3 Preliminary Analytical Analysis

By performing a constant conformal transformation g, — §,, = Q%g,,, the
classical equations of motion (3.2.7-3.2.9) are left unchanged if one also rescales
the potential by V — V = Q-2V. Using this freedom to scale out A from V, and

denoting p = m/AY/2, the action and equations of motion become
t 4
Mg = --;- /‘_* Ndt (aa’ +a*p?+a+d [pchz - %D + % (a2 +a2) (33.1)
4

_ 1 3af 2, :2, -2 2.2 ¥ 1/, 2
==3/ Ndte (a + @ + 7 4+ ple -5 +§(a++a_) ,  (3.3.2)

-~
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G2+ @t = —2V(p)te e = plot -";- +e (3.3.3)
e davie)
$+3a¢ =——é(i= o —¢° (3.3.4)
@
4
G=3¢"— e = P 4207~ 2W(p) = —a? + 207+ pPP - L . (3.3.5)

-~

For ease of visualization and future analytical approximations, we will also intro-

duce the polar coordinates

a2
r=_, 0 =2¢ . (3.3.6)

The action and equations of motion in these polar coordinates are

t .
Mg = —= / " vdt (P 4 126 41— 40V () + (ry 1) (3.3.7)
2 i
1 t+ N - r6?
= —._‘2./1_ vdt (r2 +7r262 +1— 6 (6‘2 - 8;12)) +(ry +72) (3.3.8)
~2 | 272 - r® ¢ 2 2
P46t =1 —4rV(0) = 1- — (62 - 87) | (3.3.9)
16
F—rf® = —2V(8) = & Gy (3.3.10)
= -2 =3 75 I 3.
2 A dv 8/ ., 5
rf+ 276 = —2r— =—§(9 —4?) (3.3.11)
where N = v/a and a hat denotes —d—
vdt

As noted above, the solutions describe the dynamics of a particle of mass-
squared —2U moving in the flat auxiliary minisuperspace (3.2.5). They are also
that of a particle of mass-squared

4

F(a,p) = e*° (2e2°V(go) - 1) = ¢ (eh [pchz - %] - 1) , (3.3.12)
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moving in the alternate flat metric da? + dy?, or of

2
P(r,0)=1-4rV(8)=1- % (62 - 8u?) r (3.3.13)

in the flat metric dr? 4+ r2df?. Alternatively, the solutions are spatial geodesics of

di* = F(a,p) (da:2 + dgoz) , (3.3.14)
= P(r,8) (dr* + r*d6?) (3.3.15)

in (a, ) and (r, ) coordinate systems.

Eliminating the time parameter, one finds that the evolution is governed by

a second-order ordinary differential equation, given, in the above two coordinates,

by
dp 1 dy 0 dp 0
£ [1 + ( ) ] ( 5 aa) (InF) , (3.3.16)

in the cartesian coordinates (a,¢), and by

d*r dr 2 dr\? . 2drdV
=7 — -2 ———
r+ - ( \ + + (dﬂ) ] ( 27 + =40 d9) , (3.3.17)

de? dé /
in the polar coordinates (3.3.6). Inserting the explicit forms (3.3.12),(3.3.13) into

(3.3.16) and (3.3.17), we get
dp 2
1+ (Ec_x)

I\ &
2f 22 P |Y4¥P
(140t - 5]) G

(3.3.18)
and
dr_ o 2fdr)t
7 7
ré? -1 dr\? dr [/
(1 - (6° -8;12)) [12 + (a'a) ] [o (62 - 8u?) — = (67 — 44 (dG)] 3
(3.3.19)
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Equations (3.3.18) and (3.3.19) will prove useful in deriving the asymptotic be-

. haviour of the wormbhole solutions.

It is also instructive to compute the two dimensional scalar curvaturc of

the conformally flat metric (3.3.14)

2p _ 68 + 4(6° — 4p?) [6* (v — 4p?) + 167] + 128162

PP (r.0)° (3.3.20)
This diverges when P = 0, which occurs on the curve
16

However, equation (3.3.17) does not obstruct particular trajectories from crossing
P = 0. In fact, equations (3.3.16) and (3.3.17) are insensitive to a change in
signature of the metric {3.3.14) from (+,+) to (—,—). This makes sense, as
we have eliminated the time in obtaining (3.3.16) and (3.3.17). Euclidean time
dynamics is restricted to those regions of configuration space where F(a,¢) > 0 (or
P(r,8) > 0), while Lorentzian time dynamics is restricted to those regions where
F(n,¢) <0 (or P(r,f) < 0). Trajectories in the auxiliary minisuperspace can
cross the F(a,p) = 0 (or P(r,8) = 0) curve and will be regular there. However,
re-inserting the time dependence, one sees that on the curve F(a,p) = 0, & =
¢ = 0 and the Euclidean time dynaics of any trajectory in the («,¢) auxiliary
minisuperspace that reaches the F(a,¢) = 0 curve from the F > 0 region will
have a time-symmetric bounce in both the geometry and matter and hence return
to the F' > 0 region. Crossing F = 0 would correspond to analytically continuing
the Euclidean time (or the lapse function N) to imaginary values, and would give

a transition to a Lorentzian geometry. Regularity of dr/d6% at P = 0 gives

dr rV
78 |P=0 = (ﬂ_) , (3.3.22)
0
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and the tangent at P =0 is

. (d A V.
T:(a—g)f'+r0=r[%f+0] . (3.3.23)

Since the gradient of P, in the metric dr? + r?d6?, is given by

. 7
VP=—4d‘ [V-

bubdl —-r+é} , (3.3.24)
g | &

we see, from (3.3.23), that these trajectories meet the ~urve P = 0 normally.

Up to a minus sign, the lagrangian in equation (3.3.8) is that of a unit-

mass particle of zero total energy moving in the potential —P/2 in the flat metric

dr? + r*d#?. By (3.3.13), we get

. -~ - dV - R dV .
d=—V(2rV(8)) = —2VVr — 2r— V8 = —2V(8)F — 2—0 , (3.3.25)
d8 dé
1 -
== [6° (8u® — 62) § + 46 (47 - 6) 9 . (3.3.26)

where i, 8 are the radial and angular unit vectors. In Figure (3.2) we plot contours
of constant P in the polar coordinates (r,6). The double troughs at § = £2u, the
boundary P = 0 (where R diverges), and the “false vacuum” at 6 = 0 are clearly
evident. The force vector field (3.3.26) (appropriately normalized to be visible) is
also plotted.

3.4 Numerical Analysis

a) Introduction

Eliminating the arbitrary constant associated with the origin of time, equa-
tions (3.3.3-3.3.5), or equations (3.3.16,3.3.17) have a two-parameter set of solu-

tions. Since the form of V(8) was chosen to yield an exponential solution for ¢
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at large «, choosing the decaying mode of ¢ leaves us with a one parameter set of
solutions. We then integrate in the —¢ direction, through the wormhole throat and
out to the other side. Imposing the boundary condition that ¢ — 0 ast — —20
yields a wormhole configuration connecting two asymptotically flat regions. Im-
posing a single boundary condition on a one parameter set of solutions should give

a discrete “spectrum” of allowable wormhole configurations.

A more intuitive understanding can be obtaired through consideration of
the actual form of V(). The potential V' has the standard mexican-hat shape.
If one begins with & = ¢ = 0 at a throat where ¢ = o, one needs V(po) > 0
or |pol > V2u. Then the scalar field ¢ will roll down V and will generically
execute damped oscillations about either of the two true vacuums. Naively, if one
increases |o|, thus increasing the initial energy Eo, one expects  to make a larger
number of oscillations crossing ¢ = 0 before settling in either true vacuum. By
continuity, there exits discrete |po] where ¢(t = oo) = 0, and the field is in the

“false vacuum” state.

However, because of the non-linear appearance of the friction terms in
(3.2.15), the dynamics is rather more complicated. Allowing more general bound-
ary conditions at the throat, we now partially summarize the numerical and ana-

lytical results,

(a) Wormbholes only occur for p < p. =~ 0.402.

(b) For fixed u < g, allowing |¢| to range from |90 maz| to 1v2u| yields an even
number of wormhole configurations where N, the number of zero-crossings of
¢, changes in unit steps, increasing from zero to a maximum and decreasing

back to zero.



(¢) As u(< p.) decreases, the maximum N obtainable increases in unit steps.

(d) Only two type of wormholes are found, (i) those with & = ¢» = 0 at the throat,
and (ii) those with @ = ¢ = 0 at the throat. An even N wormbhole is of type

(i), while an odd N wormbhole is of type (ii).

These observations may be heuristically modelled as follows. Referring to
paper one [1}, the generic behaviour of ¢ in the 3¢* potential for late times was
oscillatory, decreasing in amplitude as a™!, too slow for a finite action. However,
introducing the —'—"52-992 term creates a small barrier which will eventually halt
the oscillation of ¢ about zero. By making this barrier as small as we wish and
arranging ¢(t = £oo) = 0, any given N type wormhole with finite action may be

obtained. The action, however, will grow with increasing N.

The friction term, —~3&¢, tends to dominate the dynamics if |pu| > |0 mazr|-
For |o] > |¢0 maz|, ¥ Will not cross zero but will settle in the nearest false vacuum.
For |90] < |¢0 maz|, ¢ decreases and the friction losses are overcome by the initial
energy Eg, thus en‘abling  to cross zero. Decreasing |po| increases the margin of Ey
over the friction losses, thus allowing ¢ to cross zero more than once. Decreasing
@o still further will eventually reduce this margin as Ey also decreases. Thus N
decreases. Decreasing |po| to 2 will not result in a wormhole as Ey = 0 while

the friction is still present. Thus N decreases to zero.
We ncw describe the numerical analysis in detail.
b) Preliminary Numerical Analysis

The asymptotic analysis of equations (3.3.3-3.3.5), (3.3.16,3.3.17) is quite
different than that of V(p) = J¢* [1). The dominant behaviour near small ¢ (large
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t) may be uncovered by noting
u2 )
f3=203+§1+§5), (3.4.1)

where z = a®%p and where we have discarded non-linear terms in ¢. Thus, for

large t, assuming |a| — 1,& — 0 as t — o0,
p(t) = 172 (Ae™ + Bet™) . (3.4.2)

Retaining the first two terms on the right hand side of (3.4.1) we get

d’z 2, 3
Et—2~[# +Zt'2']Z—0 . (3.4.3)

The decaying solution to (3.4.3) is

s T T(1+ &k +1/2)t1/2
2'“”““”)’¢;€ X G = k4 1/2) (3.4.4)

where K, is the first order modified Bessel's function. Thus a first approximation

gives

axt (3.4.5)

YR A-Ill--{t—}ﬁl : (3.4.6)

One can re-iterate these equation to obtain further refinements. Doing this results

in

3 7 75
~ 2 ~2ut Y _ .
amtt A e M T T oeee T ’ (34.7)
K, (ut
sz‘T). (3.4.8)

However, this method tends not to give uniformly convergent results and the
estimation of the degree of approximation is difficult. Instead, we will assume the

following forms for a, ¢

o0 [><]
axt+e Tl Z bt e TtY? Y ear ™, (3.4.9)

n=0 n=0
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where 7 = p*. Inserting these into the equations of motion and solving for the

. coeflicients by, c, gives

3c? 3 11
~ 1 —2ry=2C [ Z - -3 ] 4.
axt+e y 1+T 32T2+O(T )N (3.4.10)
3 15
~ cemT1-3? 2 - -3
g ce "t [1+ 8 " To8.2 + O(7 )] , (3.4.11)

where ¢ = ¢o. A symbolic computer code (see Appendix B) was written to solve

the coefficients an, bn,cn,d, appearing in the trial expansions

[ ] [e o]
axt+e e Z byt e Vt0 Z cnT ", (3.4.12)
n=0 n=0
o0 oo
o~ e Tt Y dat "+ e3717%/2 Y et . (3.4.13)
n=0 n=0

Other than the expressions appearing in (3.4.12) and (3.4.13), no combinations of
exponentials and powers of t,7 of lower power give consistent equations for the
coefficients. With these forms for a and @, one can include the ¢* term in (3.3.4).
The resulting solution is

a =~ t+e'27t‘2—c—

4

4t 3272 12873

32[1 3 11 103

4645 61305 1855455 W] (34.14)
50454 T 81925 ~ 655367¢ T OV )]
456 33 7 ]

_ . -4
2r a0m e T O

45¢*

—-41‘t-—5
te 128

1+

re [Ty
p = ‘#‘\/ghl(‘f)

ot 15 107 18632 205005
_ -37 -9/2___ v _ -5
LT [ + 5.~ 122 T sarrs 37768 T O )]
(3.4.15)
Thus
£\ "3
o(a) ~ ca™?e " ~ p (;) eX T (3.4.16)
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where

z=pa and x+ -g—ln x=h( 7). (3.4.17)

We now obtain an expression for a test function, the zeros of which indicate
the presence of asymptotically flat space. Integrating through the wormhole and
beyond, ¢ will generically undergo decaying oscillations towards +u, the minimum
of the potential. Assuming ¢ ~ o = +¢ and neglecting ¢, equation (3.3.3) may

be integrated to give

sinh(/2Vot) , (3.4.18)

a~

1
V2V,
& =~ \/2V5 coth(y/2Vet) '=5° \/2V4 (3.4.19)
where Vo = p*/4.
For small perturbations in ¢ about u, ¢ = ¢ + z, say, equation (3.3.4)

becomes

dv
@+ 3ap+ 5o P+ —\3[—2#% +2% =0 . (3.4.20)

Taking = = Ac™ + c.c., we obtain

. . [, 3u? R
W = :{:w-{-ry—:t\/é;t 1——1—6— -27—5, (3.4.21)

~ twotty , (3.4.22)
where w = V2p and |0] & \J/wd +¥2 If we define § = Ae'“, then
r=S+5", t=iwS—-w'S", (3.4.23)

which can be solved for S(z, &) and $*(z,#). Computing the norm §5~ = |A|’e™*"*
yields

(3.4.24)

a7 e[Sz

4(wd +v?)
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From equation (3.4.19) we can eliminate t = a//2V;, and using the definitions of

wg and v we finally obtain

32 o
|AP = € = €™ [2/12(99 -+ —;-—2-(<p —p)p+¢° . (3.4.25)

(Note: if, instead, ¢ tends towards —pu, we replace pu with —gu in (3.4.25)). Defining
Ex = lim,_._o €, this £, will be larger if the trajectory spends more time near
¢ = 0 before rolling down into the trough. To obtain the desired test function, we
calculate

sign()

F=lim =2 (3.4.26)

Before discussing the results of the numerical analysis, let us first consider

the total action of an asymptotically flat Euclidean wormhole,

R 3 9 /1 1
_ 4 _ 2 2 R R I iR |
Ie = /‘/gd 1’[ ToxG 581G V%) T i@ ( gt ¥t g¥ )] o (34:20)
=Ig+Ix+1v , (3.4.28)
oo '
= _% / Ndta® (a +26% 4+ 7% 4+ HF + n2p? — %w‘) : (3.4.29)

For the wormhole to be a solution of the Einstein field equations, the action must
be stationary with respect to small perturbations in the metric and matter ficld.
Making the scaling or constant conformal transformation, g,, — 02g,,, the action

becomes
I - IGQ2 + IKQ2 + IvQ4 . (3.4.30)
Assuming (1 = 1 + ¢, the first variation of the action is

61 = (2Ig + 2Ix + 4Iv)e . (3.4.31)

Setting this to zero yields
Io+ Ix = -2Iy (3.4.32)
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which gives

=-1Iy . (3.4.33)

Integrating Iy by parts, using the equations of motion and boundary conditions

at infinity, one can show

+00
Ix = ~Iy — % Ndtdp* | (3.4.34)

that is I < —Iy, irrespective of the sign of Iy. Inserting this into (3.4.32) we
obtain
Ic =—-Iv + Z Ndta <p4 . (3.4.35)

-—00

This agrees with paper one [1], since for V = }Ap*,
1 oo
Iy =7 / Ndta®p* (3.4.36)

and thus Iz = 0. With the purely quartic potential Iy > 0 and by (3.4.34),
I = —2I,. (This can also be obtained through an infinitesimal variation of the
action with respect to ¢.) The sign of the present potential term, and hence the
total action, cannot be determined as the potential is the difference of two positive

quantities. However, from the expression
1 oo 1
Iy = —;/ Ndt a® (ng92 - 5994) , (3.4.37)

and realising that for small ¢ the pp? term dominates, it would appear that
wormholes with a smaller value of ¢ throughout the evolution, and especially near
the throat, will have a more positive action. One could, for instance, take the
maximum value of ¢ as an indicator. Note however, the liminf |p| = v2p. This

general argument is born out in the numerical analysis.

In chapter two, we compared the total wormhole action with twice the

action of a flat space, imaginary field, solution with the same potential. To find a
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similar flat space solution for the present potential one must solve

¥ o__ 2 3
= —o = @)= et et (3.4.38)

This is a generalized Lane-Emden equation, and the existence of spherically sym-
metric solutions obeying the boundary conditions dp/dr(r = 0) = 0, ¢(r =
00) = 0 has been shown for g(y) > 0 [20]. However, for g(y) as given in (3.4.38),
numerical analysis strongly suggests that no solutions satisfying these particular
boundary conditic- ¢ vist. Thus, we conjecture, for real @, non-trivial solutions

exist, while for v ==+ :*- ®, no solutions exist.

c) Numerical aesuiis

To integrate the equations of motion, a fourth order Runge-Kutta algo-
rithm was used. The pertinent portions of this code are described in Appendix
B. Initial numerical experiments integrated outwards from the throat (¢ = 0) with

the boundary conditions
a=¢p=0, or a=¢=0, (3.4.39)

at t = 0, with a (¢ = 0) chosen such that ¢ 2$° 0. The general characteristics of
these solutions, as described in subsection a), were obtained during these initial
experiments. To allow the possibility of throat configurations more general than
those specified by (3.4.39), we impose the boundary conditions at large +t through
the use the of the asymptotic solutions (3.4.14) and (3.4.15). Examining the zeros
of F(x) (3.3.12,3.4.17) for a fixed p, yields all the possible wormholes occurring
at this value of y. Brent’s algorithm was used to pin-point the roots of F(x) [21].

The zeros of F(x, 1) corresponding to the first six wormholes are shown in figure
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(3.3). These numerical results were obtained by a rather lengthy computer code

which is briefly described in Appendix B.

As mentioned in item {b) in subsection a), the set (x, p) for which F(x, p) =
0, for a particular N, is doubled valued in u (with x fixed), and single valued in
x (with g fixed). Only two types of wormhole configurations were found. Even
N curvss represent wormholes with & = ¢ = 0 at the throat, while odd N curves
represent wormholes with & = ¢ = 0 at the throat (see figure (3.4) for information

concerning the scale factor and natter fields for wormholes with y = 0.2).

From figure (3.4), we note that large x corresponds to smaller |?| through-
out the evolution. [Note: in figure (3.4) x increases from graph (A) to (B) to (C) to
(D) as =1 be seen from figure (3.3). Also note that iminf |omax] = V2p which for
p = .2 gives liminf ¢ = 0.283. This limiting configuration is approached closest by
graph (D) in figure (3.4).] If & wormholes occur at a particular y, then the K/2
wormholes with larger x represent those wormholes referred to in our previous
heuristic model with low initial energy (Ep), increasing friction and N decreas-
ing to zero in unit steps. The A/2 wormholes with lower x are those wormholes

possessing an increasing margin of Ey over friction as max || decreases.

From figure (3.3), for an N-type wormhole to exist, u < pprax,. For N =0,
fimax, = 0.402. However, as can be seen in figure (3.5), an empirical estimate of

402

HMAXy ~ m (3.4.40)

models the results quite well. Also plotted in figure (3.5) is the curve x = 51;5 or
w = xp = 0.5. Thus, when w &~ 1/2, for fixed g, N is maximized, whereas for

fixed N, p is maximized, that is

d
—(uN) ~0 . (3.4.41)

w=1/2
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The large x asymptotic behaviour of these curves is well modeled by the

formula
1

(M + D)2’
as can be seen in figure (3.6) where (3.4.42) is plotted for M =0, ..,3.

\ ~ (3.4.42)

Information concerning the minimum scale factor, the matter action and
the gravitational action along each N-type wormhole curve in the (y, ¢) parameter

space was also gathered by this program.

Information concerning the minimum scale factor, and hence, the volume of
the minimal hypersurface 27%a},, , is presented in figures (3.7,3.8). As a function
of u, arin is double valued, while as a function of y it is single valued. For fixed
i, ap N monotonically increases as N ranges from zero to a maximum and back
to zero again. Thus, ay;ny may be used to label the “spectrum” of wormholes for

a fixed p.

Of more interest, however, is the behaviour of the action. In figures (3.9,3.10)
we plot the matter action, gravitational action and total action suitably scaled in

order o enhance the behaviour at small values of the action. As we predicted in

section a), I > 0, whereas Ir = I + Ipy = — Iy changes sign when
1 e 1
Iv=~3 / Ndtd® (,1,2,92 - 54,9") =0 . (3.4.43)
For N = 0,..,5, the approximate parameters (Xo,, foy) Where Iz = -I. =0

is shown in figure (3.11). For a specific N, when x < xo,, the total action is

negative. Note that xo, > 5—;’;— Thus there exist certain small ranges of ;2 where
N

the number of negative action wormholes (N;_) exceeds the number of positive

action wormbholes (N, ). However, for most of the range of u, N;, = N,_.

For a more concrete visualization of the various wormhole configurations,
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we plot the solutions for g = 0.2 in the cartesian coordinates (a,¢) and polar
coordinates (r,0) in figures (3.12) and (3.13). See table (3.1) at the end of this
chapter for the roots of F(x,u = 0.2). Also plotted in figure (3.12) is a non-

Label | N X

D 0 | 11.881919

Table 3.1: Table of roots of F(y,u = 0.2) giving four wormhole solutions.

wormbhole solution where ¢» falls into one trough. Clearly visible are the two types
of wormholes. with ap;n monotonically increasing and »? decreasing with each
new wormhcle solution. Also featured in figure (3.13) are the constant contour
lines of P (3.3.13) beginning with P = 0. From figure (3.12) it is clear that type
(1) wormhc'es possess three turning points in the scale factor a or a - one at P =0
(& = ¢ = 0) and two where the tangent of the trajectory is vertical (see also figure
(3.4)). Type (ii) wormholes have only one turning point in a. that is, where ¢ =0

at a = apmyn.
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Figure 3.5: Empirical fitting to the numerical results in figure (3.3). The vertical lines
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Figure 3.6: Empirical fitting to the numerical results in figure (3.3). The thin curves are
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Figure 3.7: Dependence of the minimal scale factor AM2apsyn, on p, for the N = 0,..,5
wormbholes.
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Figure 3.8: Dependence cf the minimal scalc factor M/3gpe1n, on X, for the N = 0,..,5
wormbholes.
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Figure 3.9: Dependence of the gravitation and matter actions Alg, Aly on x for the
N =0,..,5 wormholes. The action has been scaled by sinh™" to magnify the behaviour at
small actions.
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Figure 3.10: Dependence of the total actionA/g on x for the N = 0,..,5 wormholes. The
action has been scaled by sinh™! to magnify the behaviour at small actions.
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3.5 Analytical Approximations

In this section, we briefly outline the key assumptions and calculational
steps needed to arrive at an approximate analytical form for the curves displayed
in figure (3.3). We also derive an approximate analytical expression for the action.
The central premise of the approximation scheme is that |22| << 1 and |48 << 1
during a single oscillation in ¢, which we may expect to be valid for large N.
We are thus able to calculate the adiabatic change in various quantities, and in
particular, the change in @, during a quarter cycle of . We can then integrate .ZAﬁ-l
as if it were j’;—;ﬁ, where n is the number of quarter cycles, from le] =1 to |&! =0,
to obtain an estimate for ¥, the total number of quarter cycles of ¢ occurring in
the evolution of ¢ as |aj ranges from 1 — 0. (A quarter cycle is the evolution

between successive zeros of »¢.) The number of zeros of @ throughout the whole

evolution of the wormhole is then given by N = & — 1.

We begin by noting that asymntotically ¢ — 0 as ¢ — oo. However, as
the evolution proceeds towards the throat, @ will deviate from zero and will roll
down into the trough. It will then execute a number of quarter oscillations. The

asymptotic expression for ¢ can be written as

N\ —3/2
Y~ U (_‘1_) etlar-a) (3.5.1)

a

or introducing = = pa, x = ma,,

T -3/2
~ /1 —_ ex—z ) (3.5.2
2 ( x) )
where x is related to ¢ (3.4.17) by

X + g—ln x =In(cu?) =6, (3.5.3)
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or

Xz6—gln 5, (3.5.4)

for large x. ¢ will cross the trough roughly at a = @, or z = x (but see below for a
small correction). For future reference, we now obtain the approximate behaviour

of |a| for z > x. Introducing the variables

, Y= P (3.5.5)

and eliminating time from the equations of motion we can obtain

dp _dy 2 1/2
o = o= F (~—2<1 Vztz-— 1) , (3.5.6)
aii—:i =5 = 4 (—3(12Vz +z— 1) . (3.5.7)
da da
For z = pa > 1, ¢ <€ p we have (3.4.16)
g\ 2
Y (-’i—) exThe (3.5.8)

which is obtainable from (3.5.6) in the approximation —2a*V"z > 2z — 1, i.e. at

large a, and ignoring ©* in V. With these same approximations, (3.5.7) yields
z—1=3zp° . (3.5.9)

We now find an approximate solution for ¢ which is valid up to a point near the
end of the second quarter cycle, where ¢ crosses zero for the first time. Using the

variables ,y and 2z, equations (3.5.6),(3.5.7) and (3.5.9) become

dy 2 22 1 2
:CE =F [y (1 -y ) z+ 5,1;(2 - 1)] y (3510)
:cd—i = —4z [3y2y2 (1 - y2) iz 42— 1] , (3.5.11)
:—1=6ulzy? . (3.5.12)
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Introducing the quantity Z = (= —1)/(2p?27z2), from (3.5.10) we can express Z as

_ (dy/ds)’ —y*(1 = ?) _
2= 0 ety (3.5.13)

Inserting the asymptotic cxpansion (3.5.2) for y we see that y?(1 — y?) ~ 5Z and
thus we can consider Z a constant in (3.5.10) and write
dU 3 1/2
= ~ Fy (1+— —yz) . (3.5.14)
dr T
Setting = = ¥, a constant, in equation (3.5.14), integrate and match to (3.5.8) to

get

3 [ 3
yzﬁSech[ﬁ(r—\+5an>], B = 1+-\~ . (3.5.15)
Inserting (3.5.12) into (3.5.11) we get

dz 2.2.2 2 2 -
E;~—12,uzy [(1-3/)1—{—;] ) (3.5.16)

which, with ¥ = f(z — x) as the new integration variable and using (3.5.15),

becomes

. U 28 2 3.,
d [ TAX —“”ﬂ*} (3.5.17)

— =~ 124%dY
2 a cosh® ¥ cosh’ ¥

Integrating in from z = oo, (where ¥ = 00, z = 1) we get, to leading order in y.
1 3/2
jz1—4p2x[1i (1—y2) ’] . (3.5.18)

The upper sign holds during the first quarter cycle, as y increases from 0 to 1
(where ¢ = 0), and the lower sign holds during the second cycle, when y decreases
back to 0. Equation (3.5.15) breaks down near the end of the second quarter
cycle, as y actually crosses the ridge at y = 0 rather than simply asymptotically
approaching it as it would if z stayed at unity. However, (3.5.18) should be valid
through most of the second quarter cycle, so long as |z — x| € x > 1, and so0
(3.5.15) is valid with g = 1.
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We now begin the calculation of the change in various quantitics over a
quarter cycle of . During the analysis we will make several assumpticns, some of

which will be recursively justified by the results.

We first calculate

over a quarter cycle. We make the assumption the

z is approximately constant during a cycle. This will be shown to hold for & large.

Using (3.5.10) with

) (3.5.19)

we can obtain

1 dt
$=¥21/2(y72n_1)1/2/ [(1—t2) (1+_}nt_2_)]1/2 ) (3520)

Y

y?n—l
where y = ymt and y2 (y2 - 1) = Z. Integrating between the limits of t = 0 (at
which ¢ = 0), and ¢ = 1, (at which ¢ = 0), we obtain

)%5! ~ (28 1) K2y 11 (3.5.21)

where K(4?) is the complete elliptic integral of the first kind,

21+ Vivaz

) 3.5.22
2V1+4+4Z7 ( )
V1447 -1
d =ER=1- == , 3.5.23
and mi =k W1t az (3.5.23)
k2 _ k'z
or Z= —(1“7) . (3.5.24)
@k —1)

A .
To estimate —ail, note from (3.5.18) that ¢ just crosses the trough at
z

¢® = p® or y? = 1/2 for the first time when z ~ X+1In(vV2+1) - 2In 2, and ¢

reaches its maximum (the completion of the first quarter cycle) at z = y — ':;’ln 2.
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Thus, for x > 1, the first part of the first quarter cycle (y* = 0 to y? = 1) has
Azx

<« 1. Equation (3.5.15) would give an infinite Az for the completion of the

second quarter cycle (to y = 0), but that formula breaks down and should be

replaced by (3.5.21), which gives %E' ~ In x < 1lfor 1 € z ~ x, using the

2x

1 16
expansion K(m; <« 1) = 5 In ("—L-)
1

over a quarter oscillation. Equations (3.5.10) and

We now calculate

(3.5.11) may be divided to give
-y +22]
VIv? (1 ~y?) + 2]

Letting y = ym (1~ X?) with Z = y2 (y2 — 1), we can integrate (3.5.25) from y = 0

51—{ = :i:12/12z3/2

% (3.5.25)

to y = ym, giving

Azl 202K - 1) [(z-1) oy 4plz2'/? )
‘T'“ e | e F(A)_m3/2F(L), (3.5.26)
where
F(k) = (1- #) KG#) + (20 - 1) EGR?) | (3.5.27)

and where E(k?) is the complete elliptic integral of the second kind. Since k! =1
for z =1, and F(1) = 1, we see that |Az| ~ 4u2z where z ~ 1, which agrees with

(3.5.18) where = = y.

From the definitions of k* and Z we can also compute

A(K?) ~ -2 (2A~.2-1)3’2G(k2)m“z“/2, (3.5.28)

AZ  2(2k-1)?

zZ T Ba-k) G(k?) (3.5.29)

where G(k?) = (1 — ) K(K?) + (2k* — 1) E(k?) . (3.5.30)
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Since G(1) =1, |A(k?)| < 1 and |AZ| < 1lforzx1and s> 1,  rugh AZ[Z is

large because Z is small.

Now, for k% ~ 1,

Az - :

—l ~ 4p*z. Thus, our initial assumption that = changed
z

little during an oscillation = u?z <« 1. We now adopt the new variable v = |¢| ==

2= and find that

2ulz
Av = -F(k*)——"— 3.5.51
) (3.5.31)
~ —2u’r when &%~ 1. (3.5.32)
Az!
Using l?x} <1, '%l—ll < 1 we can write
dv 2u’z ,. ‘
dZ 2G(m v
E ~ m I (3:\5.34)
dz 1/2 =
n ~ = (1-2m) " K(m)v , (3.5.35)
d y
T 2(1 = 2my )2 Gl (3.5.36)
dn x

where n is the number of quarter cycles, and (3.5.24) gave m; = 1 — k?. We are

now assuming ¥ is large and taking the continuum approximation for n.
By integrating (3.5.33) we can get an estimate for T,

To integrate (3.5.37) we must have z(v) and F(v). To find z(v) let us call u =

1 - v%. We see that

: (3.5.37)
[1 + 2’-"’ zp?F(k?)

dln Z v dZ _ G(k®)
dinu  2Zvdy F(kz)

Inu = / dZ F (3.5.39)

(3.5.38)

and thus,
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From (3.5.23) we have

1 1
Z == | —— 1] , 3.5.40
4 {(1 — 2m,)’ ] ( )
yielding
z _ dmy (3.5.41)

Z mA-m)(l-2m)
Inserting (3.5.41) into (3.5.39) we have

Ao dm; miK(m) + (1 ~ 2m;) E(m,)
In(1-v ) =hux / my (1 —my)(1 - 2m,) [me(ml) +(1- 2m1)E(m‘)] .
(3.5.42)

Now, to provide a rough estimate of (3.5.42), we make the approximation of the
square bracket above, F/G, as

F
6 ~1-— my . (3543)

This is not as crude as it may first appear, as

F 1 F 1 16
G =3 o T 1 — . J.
Cloey =2 g lmgmb g mi<l (3.5.44)

Since Z < 31— will be small for large 2 ~ x, the maximum possible m; ~ Z
2L4x

will also be small. A more accurate estimate is F/G ~ 1 — %mf/ °, Inserting the

approximation (3.5.43) into (3.5.42), integrating, and matching to (3.5.18) at the

end of the first quarter cycle, where

1-12= 1—|d2|=1—;1-=4p2(6—gln 8) =4p®x , (3.5.45)
we get
1 2,271
m [1+ £ ux ] . (3.5.46)
Inserting (3.5.46) into 1 + 4Z = (1 — 2m,;)~?, and using the definition of Z, we
finally obtain
1—p2 ]7V?
TRy [1 + 52 xz] . (3.5.47)
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Using the approximation F ~ 1 — m, together with (3.5.47) and (3.5.46),
we can now evaluate the integral (3.5.37),

1 1 ~1/2 ~1/
T = WX/O dv (1 -2 +;12x2) / (1 -2 +2p2x2) ik (3.5.48)

1 -1/2 -
~ %X (1 + 2;12)(2) F (cot Y ux |k? =;‘+—*-2"£,“;;) , (3.5.49)

where y &~ § — %ln 8, 6 =In(cp'/?) and F is the incomplete elliptic integral of the

first kind. Letting w = gy we can obtain expressions for N and ¥ for w > 1,

E=N+1~ 2/% or puI ~ i , (3.5.50)
and for w < 1,
S=N+1~— o %) (l—ng)-wlng(\/‘.i-%l)] . (3551)
V2 w 4
We note that .
diw(uZ) =0, (3.5.52)
w~0.51
giving
Nuax =2Zp4x ~0.39u7" . (3.5.53)

In figure (3.14) we compare X(z,p), as predicted by (3.5.49), with the
numerical results. The fit is surprisingly good. Thus, we can alternately label
the curves by N, the number of zeros of ¢ throughout the whole evolution, or by
%, the number of quarter oscillations of ¢ on one side of the throat. This again
indicates that only two types of wormholes exist, types (i) and (ii) referred to in
section a). From figure (3.15), we see that the fit is best when pw < 1, that is,
when the adiabaticity condition for z is satisfied. However the results for pw <1

are reasonably good.

The estimates (3.5.52) and (3.5.53) also match well with the empirical es-
timates shown in figures (3.5) and (3.6).
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a) Approzimation to the action

From section b),
Ig=~Iy = — / SNVt . (3.5.54)
Introduc .ig v = @, the action can be written as

is = / avie (3.5.55)

v
where the potential V = —p?p + o* = pfy? (y2 — 1). Using the variable r = pa

and referring to section 3.3, we obtain

Bd 1 — 2
Mg = 2J(zpin) where J(X) = A Iyi V) (3.5.56)

Differentiating J with respect to z and using (3.5.10),
dJ 2y (1 - y?)

=3 7z
Ay~ Tl (1- ) + 2]

From (3.5.29) one can show that AZ ~ 2/z for k? ~ 1 (Z < 1), and so we may

(3.5.57)

treat Z as a constant in (3.5.57) during a quarter cycle. Letting y? = y2 (1 — X?),
integrating (3.5.57) from X = 0 to X = 1 yields

dJ V 3 [A2—1+k2\’2](1 Xxz)/?
g~ (24 3/2_/

- ey dX (3.5.58)

[( k) (1-3k%) K(k’ )+ (2K — 1) E(k?)] —%2—9')3/—2 (3.5.59)

where 4? is defined in (3.5.22). Referring to (3.5.27) and (3.5.30) we may thus

write
. (3F —2G)z*
BF = 2G)z” 3.5.60
dn 3(1 — 2m,)*? ( )
which, together with (3.5.33), gives
dJ x? G
o~ [3 zF] , (3.5.61)
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In orde- tc i1 tegrate (3.5.61) from v = 1 to v = 0, we must have r(1) and
G(v)/F(v). Using the approximation (3.5.43) for F/G, (3.5.47) for z(r) and
letting w = uy, we arrive at
4 (9,2 _ 2
aa X210
3 (2w?+1—12)

which, when integrated, finally gives

(3.5.62)

234

Mo = 210X = X = =

[(1 + 20.'2)1/2 — sinh™! —%——] . (3.5.63)

Limiting form of Alg are,

234 2
Wl My ~ X V2 , (3.5.64)
3 w
w?
w>1 A ~— | (3.5.65)
3t

Eliminating «w from (3.5.64) and (3.5.65) through the use of (3.5.50) and
(3.5.51) we have

8T4
w1l Mg ~-— [lnlne~In [752) I (3.5.56)
4ln €
1 v
w>1 /\IE ~ +W R ('5067)

2v2
pE
In figures (3.16) and (3.17) we compare the behaviour predicted by (3.5.63)

where ¢ =

with the numerical results. Keeping in mind the exponential compression of the

action in this figure, the comparison is again remarkably good. The action (3.5.63)

sinh™ 4 = 1/1 + % , (3.5.68)

where A = \—/_IZ, which gives w = wy & 0.46865. In figure (3.18) we again graph

1s zero when

the numerical results of figure (3.11) and superimpose the curve X = wo/p. The
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comparison of the analytical approximation (3.5.68) with the numerical results is
not quite as impressive as in figure (3.14). However, an empirical result for the

zeros of the action wgap = 0.75 shows that the discrepancy is relatively small.

93



2

©

8

Fe

g4

2

0
-2 ' . - -8 ‘ : L

0 0 20 30 4 9 © 2 0 4

S i T T S 1 L] LB
”/—‘- -
~
/
]
! Nes
|
|
1 L |
© 20 30 40
x

Figure 3.16: Comparison between numerical and analytizal results for the action of worm-
hole solutions with N = 0,..,5. The solid curves are the numerical results, whil2 the
dashed curves are the analytical approximations.
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CHAPTER FOUR

LARGE SCALE STRUCTURE IN A HYPERBOLIC
SMALL UNIVERSE MODEL

4.1 Introduction and Astrophysical Observations

Until December of 1989 the largest scale astrophysical structure discovered was the
“Great Wall” [3]. It measures approximately 170 hy'Mpc (where hg is the Hub-
ble constant in units of 100km/s) in diameter. However, in February 1990 new
results from four deep space pencil beam surveys along the north-south galactic
axis were reported in Nature by Broadhurst, Ellis, Koo and Szalay (BEKS) [4].
Their results cover a distance in excess of 2000 hg'Mpc. They found a remarkably
regular distribution of galaxies along their line of sight with most galaxies lying
in narrow bands or walls separated by a characteristic distance of 128 hg'Mpc
(where o = 1 in their original calculations). Since publishing, BEKS have sub-
jected their data to more rigorous statistical tests. In May 1990 Szalay reported
[5] that the characteristic distance of 148 hy lI\/'Ipc had passed all tests even when
parts of a survey or even a complete survey is discarded. F urthermore, preliminary
results from two other deep space pencil surveys were presented. Similar galaxy
distributions were seen although the gctual galaxy count was not as high as the
north-south survey. As regards the degree of phase coherence of the data (the
degree to which the data is approxiinated by a periodic distribution) BEKS, by
examining the higher harmonics in a Fourier deceznposition of the galaxy distri-
bution, have found greater phase coherence in the north-south data than in the

other two surveys. Furthermore, they found that the phase coherence present was
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optimized if one chooses 3 < 1 and quoted the characteristic distances for the
north-south survey to be 135 hy'Mpc while the other surveys gave 109 hy*Mpc
and 125 hy'Mpc for Qo = .1. Also, as has been pointed out by Davis [6], the
statistical significance of the degree of phase coherence present cannot be easily
judged since it was found a posteriori. BEKS claim that they have found a defini-
tive characteristic distance associated with each survey but do not claim that they

have found conclusive evidence for a periodic structure.

Leaving the issue of phase coherence aside, the discovery of significant struc-
ture on such a large scale is very surprising. Structure on this scale is totally
unexpected and inccmpatible with most cosmological models to date. The central
difficulty lies with the compatibility between the stringent bounds for the isotropy
of the cosmic microwave background radiation (cbr for short) and the anisotropies
needed to form the large scale structure. Currently COBE (Cosmic Background
Explorer) data has constrained %—T to be less than 10~ for the cbr on angular scales
exceeding 2° and stronger constraints are expected this year. In this paper we de-
scribe a model which can ‘naturally’ solve this problem and gives similar galaxy
distributions to those reported by BEKS. Our model is that of a small universe
[7). A small universe cosmological model is a generic term for any cosmological
mode] which possesses compact, closed spatial sections. Models of this type have
appeared in the literature but have been largely discounted, partly due to poor

astrophysical data and partly due to apparent ‘philosophical prejudices’ [8].

For reasons given below, we will only consider models which are locally
isotropic and homogenous and in particular, possess constant negative spatial
curvature i.e. a three dimensional compact hyperbolic manifold. The predictive

power of the model is somewhat curtailed due to insufficient understanding of the
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properties of three dimensional hyperbolic manifolds. Indeed the study of such
manifolds plays an important part in the current research of topology. However
we feel that the predictions made are sufficient at this time to differentiate it
from other models [9], and it provides a very simple description of the large scale
structure without recourse to CDM, HDM etc. while explaining the observed
isotropy of the cbr. We have alse not included an inflationary era. One can
indeed include inflation; however, we wish to show that it is not necessary from

the viewpoint of the large-scale structure and cbr isotropy.

4.2 Description of the small universe model

A small universe model which is locally %sotropic and homogenous is locally iden-
tical to a Friedmann-Lemaitre-Robinson-Walker (FLRW) universe [7]. This re-
stricts one to small universe models possessing three surfaces with constant three

curvature. This greatly simplifies the mathematical treatment of the model.

The essential property that we will make use of is the multiple imaging
of an object within a small universe. If the size of the universe is small enough,
and the object is old enough, light from the ob ject will have travelled around the
universe a number of times and consequently multiple images of that object will

be seen by the observer.

To obtain a small universe model with a constant curvature three surface,
one makes suitable identifications of the FLRW space (ur.iversal covering space)
under a freely acting discrete isometry group. The closed compact three space is

in fact the quotient space of the universal covering space,

covering manifold: M
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closed compact inanifold: M = M /T

where T is a freely acting, properly discontinuous isometry group of M. However
not all I' result in closed comp:+~: three spaces. The problem of finding and
classifying all such T is known as the Clifford- Klein space-form problem [10,11].
A simple example is the construction of a toroidal topology from R? through the
identification of opposite sides of a parallelepiped. One can form other topologies
with zero three curvature by rotating opposite sides by =, Z etc. beivre identifying.
In fact there are ten distinct tupologies possible in the flat case [10,11]. In the case
of positive three curvature there are an infinite number of possible topologies, all
of which have been classified. In the case of constant negative curvature however,
an infinite number of distinct topologies have beer found, but not all. It is this

case that will be of interest to us.

Compact hyperbolic three spaces with constant negative curvature best
represent our Universe. Observational evidence strongly suggests that Q < 1 so
that our Universe has overall negative spatial curvature [12,13]. There is, of course,
a prevalent theoretical prejudice that Q should equal unity as predicted by most
inflationary models. However there is as yet no observational evidence to support
this belief [12], and it appears that current scenarios for the ‘missing mass’ (cold
dark matter etc.) will be sorely pressed (if not dismissed entirely) through new
limits on the cbr isotropy from COBE. Perhap: the strongest evidence that we are
living in a low density universe comes from Peeble’s galaxy trajectory simulations
for the local group [13]. Thus, we will assume @ < 1 and a small universe with a

hyperbolic space section with constant negative curvature.

The metric for the model is the same as that of the corresponding covering
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space, i.e. the open FLRW universe
ds* = a(n)? [—dn® + dx* + sinh®(d6? + sin? 6d¢?)] , (4.2.1)
where a(n) is the scale factor and the proper time is given by

t=c! _[ a(n)dn. (4.2.2)

In the radiation-dominated regime

a(n) = a.sinhy ,

1
Q = ; 2,
M) = o (4.23)

whereas in the matter-dominated regime we have

a(n) = a-(cosh(n)—l) ,
) = —2 (4.2.4)

1+ cosh(y)
One can obtain a current estimate for the scale factor to be a(ng) = 7110—_”8;- hy'Mpe,

where .1 < Q< 1land 4 < hy< 1.

A major difficulty with all previous small universe models has been the
arbitrariness of the universe size (or fundamental cell size). The ‘natural’ scale to
pick is the Planck scale, but choosing a Planck volume at the Planck time results
in a current volume which is at least sixty orders of magnitude to small. In this
paper, we shall adopt the position that the boundary conditions governing the
evolution of the universe be imposed at the present epoch. We then use these
boundary conditions to evolve the :nodel to previous epochs and compare the

predictions with observations.

However, for the hyperbolic case, in distinction from both the closed and

flat cases, Thurston and Jorgenson [14], have shown that given the curvature, the
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three volume cannot be arbitrarily small. More specifically, they were able to
show that for a given curvature, the set of all hyperbolic three manifolds can be
well ordered by their volume and that this set has a lower bound, i.e., a manifold
of least volume. Mateev and Fomenko [15] have also showed that this set is also
order -d with respect to the ‘topological complexity’ of the member manifolds, i.e.,

low volume manifolds are the least complex.

We shall now suppose that, given the discrete spectrum of the set of all
hyperbolic 3-volumes/topological complexity, the Universe is either in or near the
ground state of least volume/complexity. We appeal perhaps to some mc: = fun-
damental theory-a theory of quantum topology-in which topologies are ws:ghted
by a topological action and states of minimum volume and/or ‘complexity’ domi-
nate. Admittedly this supposition remains essentially unjustified. Nonetheless it
is as well founded as the assumption normally made that the Universe is spatially
infinite or that the Universe is in the ground state as made in the No-boundary
proposals to the wavefunction of the Universe [16]. In any case, we take the mini-
mum volume/complexity conjecture as a working hypothesis and aim to calculate
typical repetition distances for ghost images and physical consequences for the

isotropy of the cbr.

Unfortunately, although one knows that the volumes of the hyperbolic man-
ifolds are bounded from below, the actual manifold (cell) of least volume/complexity
remains as yet undiscovered. Recent estimates and bounds are as follows. In
1978, Thurston [14] found a cell with a volume of .984%. In 1986, R. Meyerhoff
[17] showed that the minimum volume must be greater than .00082¢%. In 1988
Mateev, Fomenko {15] and independently Weeks [18] found a cell of volume .94a.

In what follows we take the Meyerhoff volume as a lower bound and the Weeks,



Mateev, Fomenko (WMF') volume as an upper bound for the volume of the as yet

undiscovered minimal volume manifold.

With respect to the presence of large scale structure in the model, what
are the relevant physical quantities one wishes to calculate? What will interest us
is a typical spatial repetition distance between ghost images. To be more specific
let us take the simple case of a two dimensional toroidal topology. This topology
can be represented through the identifications of opposite sides of a rectangle in
IR2. Let us take the sides of this rectangle to be equal to L. Now if we imagine
placing some observer in the center of such a rectangle, the observer (because of
the identifications) will perceive a crystaline network of images of herself (see Fig
(4.1) in reference [7]). One can define three relevant distances associated with
the distribution of the images. Define & to be the greatest distance from the
observer within which no ghost images will be seen. Define %2- to be the smallest
distance from the observer beyond which one will onl; -we ghost images. One can
also define a typical repetition distance scale which “alls between L1 and L2 by
taking the diameter of a two dimensional ball wi.:.se volume enuals that of the
fundamental cell L = 2’; . Thus the observe: sk.::id expect to see, on average, at
least one ghost image within a distanece ’% in u pancil beam survey along any given

line of sight.

The case of the hyperbolic manifold is siightly more difficult. All hyper-
bolic manifolds of constant curvature are globally non-homogenous and thus the
distances L1, L2 will depend on the position of the observer in the manifold. How-
ever L will still represent a typical repetition scale for the manifold and in partic-
ular will remain an upper bound for L1. To obtain L we equate the volume of a

hyperball to the volume of the fundamental cell and extract the diameter of the
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ball,
V = ma®(sinh(2x) — 2x)

where L = 2ax. Thus, along any given line of sight, one should see at least one

ghost image within the distance %

Using Meyerhoff’s lower bound and the WMF upper bound one obtains,

Lpfeyernos s 174 -1
= hi'M 4.2.
Y v (4:2.5)
Lwmr _ 1776 hg 'Mpc. (4.2.6)

2 V1-Q

One can check these predictions against observations. Sokolov and Schvarts-

mann [19] estimate % > 300 hy'Mpc based on the observation of ever richer

Abell clusters out to a redshift of approximately 0.1. Gott [20] estimates % >
200 hg'Mpc based on the absence of ghost images of the Serpens-Virgo cloud in
the survey region of the Soniera-Peebles galaxy map [21]. [Note: estimates are
adjusted to conform with the convention for hy used here.] Both the Meyerhoff
and WMF cells are compatible with the above observational constraints for res-
onable values of (23! We will also point out that the actual feat of identifying
two objects in a two dimensional deep sky map as being images of a single object
is very difficult, if not impossible, and thus one should take these observational
estimates with a grain of salt, so to speak. We again make the distinction between
the quantity %, which is the distance from an observer within which at least one
ghost image should be seen on average in a pencil beam survey along any given
line of sight, and the quantity L, the typical scale associated with the fundamental

cell.

To summarize, we have hypothesized that the universe may be modeled as
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a manifold with topology RxH3/T where H? is a three- nsanifold with constant
negative curvature and T is a freely acting discrete isometry group of H®. Fur-
thermore, we conjecture that the Universe is near the ‘ground state’ of minimum
volume and topological corpicxity and find that our conjecture is in accord with

observational constraints.

4.3 Predictions and observational tests

Due to the extremely limited information we have concerning the Universe and our
inability to perform true cosmological ‘experiments’, cosmological models have had
much more success at ‘post-diction’ than prediction. Nonethcless. prediction of
observable phenomena remains an essential prerequisite for useful models. While
the predictive power of our model is partially curtailed by limitations in the cur-
rent understanding of compact hyperbolic manifolds, we find that certain general

predictions can be made. We outline these below.

We consider first the question of the cosmic microwave isotropy. Let « be
the observed angular width of the fundamental cell at decoupling, as scen from the
present epoch. The mechanisms which produce cbr isotropy on angular widths less

than a are distinct from those which produce isotropy on larger angular widths.

Take the case where the angular scale of observation is less than a, ie.,
6 < a. The most obvious mechanism for achieving isotropy would be the complete
thermalization of the universe before the surface of last scattering. For this to
occur the universe must necessarily become causally connected with itself, i.c.,

the entire cell must come within the cosmological horizon before the time of last
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scattering. The surface of last scattering o~~urs at a red shift

l+z= a(no)

= = 1500 . 4.3.7
a(nals) ( )

Equations (4.2.3), which are appropriate for the radiation dominated phase, yield

Nsls = Xsls = 0.063 '1_ -1. (438)
V 2

Thus, assuming that the fundamental cell is roughly spherical, so long as it has a

volume

V < ma®(sinh 2x41s — 2Xa1s) » (4.3.9)

the entire universe would be causally connected before the surface of last scattering

and thermalization could occur.

For the Meyerhoff volume, equation (4.3.9) will be satisfied for Qp < .54.
This is compatible with observation and so causal connectivity will occur well
before the surface of last scattering. Hence, thermalization before the surface
of last scattering is a mechanism which can account for microwave isotropy on
angular scales less than a. For the WMF limit, condition (4.3.9) will only be
satisfied for €2y < 0.011, which is not compatible with observation and thus, since
the WMF cell is so much larger than the Meyerhoff cell, causal connectivity will
not be achieved. It should be pointed out that even though causal contact is a
necessary condition it is not sufficient for total thermalization before the surface of

last scattering. Suitable physical mechanisms for thermalization are also required.

However, a number of other mechanisms can contribute to microwave isotropy
at small angular widths. For instance, Kaiser and Silk [22] emphasize that there ex-
ists considerable ambiguity in the theoretical treatment of small scale anisotropies

due, in part, to an uncertain thermal history of the universe from 30 < z < 1000.
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Factors which contribute to the small scale isotropy are re-ionization and the fi-
nite thickness of the surface of last scattering. Also, Gott points out that at small
angular separations anisotropies may be randemized through interactions of the
microwave radiation with dust [20]. Kaiser and Silk estimatc that these factors

may well result in microwave isotropy up to angular widths of approximately 2°,

For 3y = .1 the WMF cell has an apparent angular width of 2°. Such
a value for (g is compatible with observational constraints. Hence, even if the
volume of the Universe is equal to (or less than) that of the upper limit (WMF

cell), microwave isotropy can still be accounted for at angular widths less than a.

On angular scales greater than o, microwave isotropy is enhanced by the
multiple imaging. More precisely, two apparently causally disconnected regions of
the sky, each of angular width 6 >> a, appear to be at the same temperature
because each region consists of many identical replicas of the fundamental cell.
The larger the regions are the more exactly their temperatures should correspond.
Crudely speaking, the degree of isotropy should increase by a factor of ( &)? as one
increases the angular width, 66, of the sampled regions. One would also expect
anisotropy to be most prominent at angular widths of 2°. Under special condiiions
(eg. relatively large fundamental cell, no re- ionization, thin surface of last scat-
tering and/or a relatively large value for ) our proposal can allow for microwave
anisotropies at these scales. If indeed some anisotropy were eventually found,
ideally the model would predict that the anisotropy would be periodically tiled
across the sky. However the scattering of the microwave radiation by the above
mentioned mechanisms, would distort and smear the tiling effect thus obscuring
the periodic pattern. Since the model can predict isotropy for angular widths less

than a, it can predict isotropy at all angular widths.
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We shall next deal with the appearance of large scale structure in the model
and how this relates to the BEKS data. As we have shown previously, the typical

spatial repetition scale for the model is

= 350 -

LMeyernoss = T hg "Mpc (4.3.10)
= 3600
Lwmr = WiEson o hg'Mpc. (4.3.11)

In what follows we will simulate a pencil beam survey in our model and will find
that even though we have exact periodicity of the universe, a typical pencil beam
survey will not be able to observe this periodicity in a ‘clean’ manner. In fact
it turns out that it is extremely unlikely that the consecutive groups of galaxies
seen in a encil beam survey are ghost images of each other. This has profound

implications as regards the BEKS data as we shall see.

The first point to note is that along a typical pencil beam the repetition
lengths bet ween images of a particular object can be quite different from the lattice
periodicities. Let us consider two simple examples. Consider again the tessellation
of R produced by the torus (see Fig 4.1). We will take the special case when both
sides of the fundamental cell are equal in length, L, = L. = L. Position
the observer at the center of the fundamental cell and position another object,
say a galaxy, at some generic position in the cell. The galaxy will produce a
crystalline pattern of ghost images as seen by the observer. However for a pencil
beam survey the observer will typically not see periodic ghost images of the galaxy
with period of order L. For simplicity, consider the case where the object galaxy
is the observers own and that the pencil beam and object are infinitesimally thin.
There will then only exist four directions where the periodicity of the images seen
in the pencil beam equals L. For all other directions the period between repeated

images is greater than L. Indeed, if the tangent of the angle between the pencil
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Figure 4.1: A tessellation of R? by a torus where the fundamental cell has dimensions
L x L. For an observer located at g, infinitesimally thin pencil beam surveys in different
directions would demonstrate different periodicities.

beam and the primary axes of the lattice is irrational then the period is infinite.
More realistically, if the pencil beam and object are of finite extent but thin then
one would again expect generic directions to display periods between ghost images

significantly larger than L.

For our second example let us add some simple realistic extended structure
into the fundamental cell, for example a great wall. Ghost imaging will create
a crystal lattice of great walls separated by great voids (see Fig 4.2). For an
observer positioned at the center of the cell, a pencil beam survey along a particular
direction will intersect consecutive ghost images of the great wall at different points
in the imaged walls. Since the actual Great Wall is not uniform and we are indeed
positioned slightly off center one would not expect to see the same number of

galaxies in consecutive peaks in the galaxy distribution along the beam. Such
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an effect 1s seen in the BEKS data. The galaxies seen in the second, third and
some subsequent peaks of the pencil beam data would not be ghost images of
galaxies in the first peak. Eventually there will come a point where the pencil
beam will intersect a repeated ghost image but as we have argued above, this
distance will typically be far greater than the scale of the lattice. Thus, the model

seems consistent with the experimental data observed.

One will also note that exact phase coherence of the galaxy distribution is
only achieve | ;. »ng certain special directions. To be more concrete let us define
characteristic lengths L;n;, and L., associated with the interior and exterior of
the walls by,

Ly~ Vi;%zt
Leat % (Veeus = Vit )3.

A pencil beam survey should indicate two separate characteristic scales: that of
the great wall, which we will take to be 100 — 200 h;*Mpc [3], and that of the
external voids, which could range from 0 to 3600 h;'Mpc. Thus the problem of
explaining the BEKS data takes a bizarre twist. The difficulty is not to explain
a characteristic length scale of 100 — 200 hy'Mpc, the appearance of such a char-
acteristic length in the data is guaranteed by ghost imaging of the great wall and
hence its characteristic length. The problem is to explain the absence of the other

characteristic length, that associated with the voids.

One possible, but we feel not probable, resolution to the above dilemma
would be that there exists a large disparity between the lengths L,,,, and L.
In this case the characteristic length of the voids may be smeared out making it
difficult to detect in a pencil beam survey along a typical line of sight. We feel
that effects of this sort are not seen in the BEKS data.
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Figure 4.2: A tessellation of R2 by a torus where the fundamental cell contains a ‘great
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However a neater explanation for the absence of the second characteristic
length suggests itself. Suppose that structure in the universe appears on a maxi-
mal scale within the fundamental cell. Since what constitutes the ‘inside’ or the
‘outside’ of the great wall depends entirely on where the observer is located in the
fundamental cell we will invoke a type of cosmological principle with respect to the
structure and require that L;,; &~ L..,. In this case the two characteristic lengths
predicted by our proposal now ¢cincide at somewhere between 100 — 200 kg Mpc.
For this we require L ~ 200 — 400 h;'Mpc. This is certainly possible with the
Meyerhoff cell and perhaps with also the WMF cell.

This maximal structure hypothesis is particularly interesting because it
suggests a gestalt shift in the way we interpret the universe. Since the development
of FLRW theory, cosmologists have worked under the edict that the universe gets

increasingly isotropic at large scales. For the last decade or so we have been
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repeatedly surprised by structure on ever larger scales. Here, we discover that the
general structure of the BEKS data might be expected precisely if structure were

to appear on the largest possible scale within the Universe.

Needless to say, attempts to explain detailed observations with our proposal
at this stage of its development are speculative. None the less, even at this stage

it may be possible to devise observational tests for the proposal.

One test would be to look for anisotropy at angular widths (eg. ~ 2°). If
any is found, it should be regularly ‘tiled’ across the sky. However, this does not
provide an ideal test because the absence of this tiling, due to the smearing effect
of dust and the other factors mentioned above [20,22], is entirely compatible with

our model.

Another test, which at first glance might seem profitable, would be the
identification of multiple ghost images of a particular fundamental structure as
they appear in a two dimensional projection of the heavens. However, as has
been pointed out by Ellis and Schreiber [7], attempting to identify a periodic
structure by studying the spatial distribution of repeated ghost images in the sky
may prove very difficult. Ghost images observed in different parts of the sky will
present completely different orientations of the fundamental object thus making
spatial correlations extremely difficult to discern. Furthermore, ghost images are
not expected to be identical to the originals due to evolution effects, obscuration,
proper motions (if significant) and selection effects. Evolution effects could be

minimized by comparing ghost images of equal redshift.

The strongest test would be to conduct a deep space three dimensional

survey. Qur proposal predicts periodic three dimensional structure must occur
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with periodicity less than 3600 g Mpc. Again this tessellation will not be perfect
for the above mentioned reasons of evolution and proper motion. Again one can

compensate to some extent by comparing those images of the great wall at equal

redshifts.

Finally, it is important to point out that our proposal has an important ad-
ventage over virtually all inflation proposals; its predictions for microwave isotropy
do not depend on the properties of unobserved particle fields. It predicts the exis-
tence of large scale structure while maintaining microwave isotropy—a goal which
may be difficult to meet ‘naturally’ by any other theory. Central predictions of our
proposal emanate from a simple topological constraint. This constraint allows us
to conjecture a resolution of the ‘scale problem’; that is, the problem of determin-
ing an appropriate volume for the Universe. Qur conjecture leads directly to the
prediction of ghost imaging at scales below 350 to 3600 hg'Mpc for .1 < < 1.
From this, we suggest that the characteristic scale of between 100 and 200 hg'Mpc
in BEKS’s observations may be due to nothing more than ghost imaging of the

great wall.
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CHAPTER FIVE

CONCLUESINNS

We now conclude with a short review and make some comments concerning

future research on the topics covered in this thests.

In Chapter 1 we presented a brief overview of quantum cosmology and
in particular, emphasised the Euclidean path-integral approach, the contour of

integration, and the effects of wormholes on the low-energy coupling constants.

In Chapter 2 we used a FRW cosmology minimally coupled to an imagi-
nary scalar field with a quartic self-interaction. Using numerical techniques, two
asymptotically flat Euclidean wormhole configurations were found. In both cases
the geometry was strictly real while the matter fields were either symmetric, with
 strictly positive or negative, or antisymmetric, with ¢ crossing zero only once.
The action for both wormholes was negative and arose solely from the matter

sector.

In Chapter 3 we again used a FRW cosmology minimally coupled to an
imaginary scalar field with the potential V(¢) = $m?¢? + 1A¢*. Using analytical
and numerical techniques, an elaborate “spectrum” of asymptotically flat worm-
hole configurations was found. Wormholes only occurred for p < p. =~ 0.402
(u = m/\//—\).For i < pe, there are Npax + 1 pairs of wormholes, where Npsax
is the maximum number of zero crossings of ¢. These configurations could be
labelled by an asymptotic constant x. The loci of wormhole solutions in the (x, ¢)
parameter space for the first six wormholes were obtained numerically, and ap-

proximately by analytical means. The solutions c¢ri1ld also be labelled by their
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minimal scale factor size apyn. The action was found to be negative, zero, or

positive depending on the values of (x, i) for that particular wormhole solution.

In Chapter 4 we considered a small universe cosmological model possessing
closed and compact spatial sections of constant negative curvature. We found that
the available topologies were well-ordered by volume and complexity. Hypothesis-
ing that the universe is in the “ground state” of lowest topological complexity, we
obtained a crude estimate of the typical repetition distance between consecutive
ghost images of an extended object along a given line of sight. This estimate
matclied the observational evidence found by Broadhurst, Ellis, Koo, and Szalay

in a deep sky pencil beam galaxy survey.

Regarding the discovery of these new non-charge-conserving wormbholes;
although the large wormhole problem does not occur to the extent that it does
in the Giddings-Strominger wormhole (this is because the Giddings-Strominger
wormhole is scale invariant and any size solution is possible, whereas these new
solutions possess a maximum size), we still expect the double exponential in the a-
probability distribution function to cause all the wormhole solutions, with positive
action, to be dense in spacetime. However, as has been pointed out by Polchinski
and Iwazaki [1], if the wormhcles occur on vastly seperate scales (as in the model
of Chapter 3 when g < p.), th. going beyond the dilute approximation and
including the smallest wormholes into the base lagrangian, may very well result
in a new field theory which does not admit the large wormhole solutions that
existed in the dilute approximation. While the wormhole actions are bounded
below, those with negative actions are expected to proliferate exponentially. These

configuration would, presumably, not be included in the path-integral.

One is also interested in the stability properties of these wormholes. How-
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ever, it is unclear whether the perturbations to test for such stability should be
real, imaginary, or generally complex. Further investigation concerning the im-
plications of imaginary fields is also warranted. As was explained in Chapter
1, current research on the contour of integration suggests that one must choose
complex contours for the gravitational =>4 matter sectors. However, only one
contour analysis including gravity and matter ha been investigated {2]. Further,
it appears that imaginary matter fields are generally picked out by the stationary
configurations when one imposes momentum boundary conditions in the Euclidean
path-integral [3]. One is thu. interested in discovering the physical implications
of imposing such momentum boundary conditions within the framework of the

Euclidean path-integral.

Regarding the small universe model, we presented a mechanism wherein,
perhaps, microwave isotropy on all angular scales could be predicted without re-
course to inflation. However, the situation may possibly be greatly improved. It
is well known that the geodesic flow on compact manifolds of no-wiere positive
curvature is ergodic and is a classic example of chaos [4]. Thus the mixing of
the cmwbr may be, in part, ergodic. Further research and computer simulation is

needed to judge these effects.
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APPENDIX A

PROGRAMS RELEVANT TO CHAPTER 2

1.1 Symbolic code to calculate asymptotic expansion

In this appendix we give the Macsyma ((©Symbolics) code which derives the large time
asymptotic expansion of the solution for which ¢ decays t.o zero. This was also computed
to the same accuracy by hand. This code is only exact in ¢(a) to order 1/a'®. However,
by increasing the number of unknown coefficients b[i], cfi], it is a trivial matter to ob-
tain a greater accuracy. This was implemented on Macsyma version 309.3 runnizg on a
VAX11/70.

/* We will obtain an asymptotic expansion for phi(a) for the Friedmann */
/* Robertson Walker model with a minimally coupled scalar field with a */
/* quartic self-interaction term */
/* Jason Twamley Jan 9th 1991 */

* *x

/* We first deiine an expansion for the scale factor and phi in terms of t */
/* for large t b~haviour */
a:t+sum(b[iJ*t'{-2*i-1),i,1,5);
p:sum(c[ij*t™(-2*i},i,1,5);
/* We next construct the Hamiltonian constraint where the lapse N=1 and we */
/* represent lambda by | */
ham:diff(at)"2+a"2*diff(p,t)"2-14+.5*1*a"2*p"4;
/* We then taylor expand this in inverse powers of t */
ham1:taylor(ham,[t,0,12,asymp]);
/* We then isolate the coefficients of the powers of t and label them as */
/* eql,eq2,eqi etc. To be solved as a system eql=0,eq2=0 later */
eql:coeff(haml,t,4); :
eq2:coefl(ham1,t,6);
eq3:coeff(ham1,t,8);
eq4:coeff(ham1,t,10);
eq5:coeff(ham1,t,12);
/* We now construct the phi dynamical equation */
peq:diff(p,t,2)4-3*diff(a,t)*diff (p,t) /a+1*p"3;
/* We again taylor expand in t */
peq1:taylor(peq,[t,0,12,asymp));

* We again isolate the respective coefficients and label then eqj to be */
/* solved eqj=0 later */ '
eq6:coeff(peql,t.6);
eq7:coeff(peql,t,8);
eq8:coeff(peql,t,10);
eq9:coeff(peql,t,12);
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/* We now have a set of 9 equations for 10 unknowns bfi],c[i] i=1..5 */

/* We now solve these */
root:expand(solve([eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9),

[b[1],b(2],b[3],b[4],b[5] .<[2],c[3},c[4]<[5]]));

/* Save this is a file */

save([root],root);

/* To speed up execution we can comment out the solve function above and */
/* just load the results from the file "root”. */

/* loadfile("root”);

/* We have expanded the solution to get the a; -t in separate fractions */
/* We have also chosen that the arbitrary const. .. be c[1] */

/* We now evaluate a and phi for these coefficients */

ais:ev(a,root);

phiis:ev(p,root);

/* We now invert the a relation to get a first approximation to t */
tlong:-ais+t+am;

/* Where am is the symbol for the scale factor */

/* We now re-insert t again into this definition to get a better esiimate */
/* for t(am). Note: doing this a second time gives an even better esiimate */
/* but get much too complicated */
tmedium:coeff(tlong,t,0)+coeff(tlong,t-3)*t"(-3)+coeff(tlong t,-5)*t°(-5);
tshort:coeff(tlong,t,0)+coeff(tlong,t,-3)*t"(-3);

tveryshort:am;

tinv:ev(tlong,t=tmedium);

tinviev(tinv,t=tshort);

tinv:ev(tinv,t=tveryshort);

/* Now Taylor expand in am */

tinv:taylor(tinv,[am,0,9,asymp));

/* Substitute t(am) into phi{am) */

phireallyis:ev(phiis,t=tinv);

/* taylor expand in am */

phireallyis:taylor(phireallyis,[am,0,10,asy myp]);

expand(%);

1.2 Fortran code to generate evolution of geometry and

matter for V = 3¢*

We now list the Fortran code uscd to generate the relevant data concerning the Eu-
clidean time evolution of the scale factor a and imaginary matter field ¢ = 2p with a

self-interaction potential V = %df‘ = %go“. This code was adapted from reference [1). The
other main portion of code used in chapter 2 was Brent’s root findir: algorithim which

was also adapted from reference [1].

ccceeceecececeececeecceecceccecceccecececeeceecceececccceccececeecceececececeeceececceccececce
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Program Phi_fourth_model Jason Twamley (Last Rev: Jan 30 1991)
Description:

This program evolves the geometry and matter fields of a FRW type
minisuperspace model minimally coupled to an imaginary scalar
field with a self-interaction term lambda*phi~4. The behaviour of
the relevant quantities are output to two files for further use.
Initial conditions are specified in the subrcutine setup(). Three
main initial conditions are used:
a) asymptotically flat perturbation from the Giddings-Strominger
solution (see Chapter 2 page 13),
b) starting from the center of the throat with both da/dt=0 and
dphi/dt=0$,
c) s;gxging from the center of the throat with da/dt=0 and
phi=0.

Necessary inputs for the program are:
IVariable: Description (Type D=double precision, C=double complex)

anoaan
oooDoov

aooono0

| XDXSAV: the seperation in parameter time t between saved data points.
| Hi: the initial step size for the Runge-Kutta integrator.

| EPS: the degree of fractional accuracy desired.

1 HMIN: the lower limit on step size.

I X2: the final parameter time t.

IFILENAME: the base name of the filename to save the data.

| the data is stored in two files — FILENAME.DAT and

| FILENAME1.DAT

| eta: asymptotic time to evaluate the asymptotic solution -

| value of 5 - 10 fine.

! a0: can either be the 1 parameter specifying the asymptotic

| solution or the throat size in b) or c) above.

| xlambda: the value of lambda.

| N: the lapse.

I xtop: the ceiling of the scale factor below which one saves data
! points in xdxsav intervals of parameter time.

Also present are calls to low level graphics library routines in
SYS$USEFUL:1ib.olb which are capable of producing an interactive
graph of several relevant quantities.

ccceeeeeccecececcececceeececccceecceceecceecceeeccecceccceecceccececcececcceccece

PROGRAM Phi_fourth_rmodel

IMPLICIT DOUBLE COMPLEX (A-H,P-W,Y-Z)
IMPLICIT REAL*8 (X)

double complex lap
REAL*8 EPS, Hi, HMIN, const
REAL*8 X1, X2
reals4 ar(1000), xx(1000)
CHARACTER*20 FILENAME1, FILERAME2
COMMON /PATH/ KMAX, KOUNT, XDXSAY, XP(20000), YP(10,20000)
COMMON /lapse/ lap, xlambda
DIMENSION YSTART(10)
Variables: Eps,H1,Hmin,X2,Filenamel,Filename2,Xdxsav -- as above
lap : complex lavise
const : constrain'.
X1 : initial parameter time
ar : y abscisga for graphics
xXx : x abscizsa for graphics
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Kmax : max number of data points that can be saved

Kount : actual number of data points saved
Xp ¢ array of saved parameter times

YP : array of saved variables

xlambda : lambda

NVAR=6

WRITE(6,*) ’Hekasdbdsktdssdsbsbhsbdbbdbinstabntbabittprtehbhssnsn’
WRITE(G,*)

WRITE(6,*) ’Pathways of the Universe ---- V=lambda*Phi»*4’
WRITE(6,*)

WRITE(S,*) 2#tkikibmkdnssddbiddbddhhddbkhhhhhd b nhh bk s r o ghn b
WRITE(6,110)

FORMAT(’ ’,’Enter the time step between recorded points 0,8
READ(5,*) XDXSAV

WRITE(6,120)

FORMAT(’ ’,’Enter the required accuracy L, 8)

READ(S5,*) EPS

IF(EPS.EQ.0.0) EPS=1.0E-15

WRITE(6,130)

FORMAT(’ ’,’Enter the initial step size :,8)
READ(5,*) H1

IF(HE1.EQ.0.0) Hi=1.E-11

WRITE(6,135)

FORMAT(’ ’,’Enter in minimum step size L8
ZAD(5,*) HMIN

IF(BMIN.EQ.O0.) THER HMIN=1.E-30

WRITE(S, 140)

FORMAT(’ ’,’Enter the final time to integrate to (begin at t=0):’,$)

Remember..if you are using method a) above we integrate inwards so
X2=-1 whereas for b) and c) we set X2=+1,

READ(5,*) X2

X1=0.0

WRITE(6,150)

FORMAT(’ °’,’Type in Data Filename 11,8
READ(5,22) FILENAME1

IJ=INDEX(FILENAME1,’.’)~1

IE=INDEX(FILENAME1,’ ’)+1
FILENAME2=FILENAME1(1:1J)//°2'//FILENAME1(IJ+1:1IE)
FORMAT(A10)

KMAX=20000

Set up the initial conditions for the variables and their derivatives
and the lapse and lambda. The contents of the various ystart(1:6) are

ystart(1): phi(t)

ystart(2): dphi(t)/dt

ystart(3): dalpha(t)/dt

ystart(4): alpha(t)

ystart(5): matter action

ystart(6): gravitational action without boundary corrections
where t is the parameter time (multiply by the lapse to get the proper
time) and alpha=log(scale factor)

call setup(ystart)

Initial values for the actions
ystart(5)=demplx(0.0d40,0.0d0)
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ystart(6)=decmplx(0.0d0,0.0d40)

Initialize the Hamiltonian constraint to zero.
CONST=0.0d0

write(6,301) )
format(’ Do you wish to save the trajectory(y=1):’,$)

read(5,*) iy

Save the initial scale factor for the gravitational action boundary
correction
ai=cdexp(ystart(4))

Do the integration...
CALL ODEINT(YSTART,EVAR,X1,X2,EPS,H1,HMIN,NOK,NBEAD,CORST)

WRITE(6,220) const
FORMAT(’ During this run the maximum abs value of the constraint:’,

e16.6)

Low Level graphics routines to graph certain variables
write(6,1256)
read(5,*) ig
do i=1,kount
xx(i)=xp(i)
a=cdexp(yp(4,i))
dphi=yp(2,i)/lap
phi=yp(1,i)
cons=dphi*a##*3
i1f{ig.eq.1) then
ar(i)=dreal(a)
else if(ig.eq.2) then
ar(i)=dreal(phi)
else if(ig.eq.3) then
ar(i)=dreal(cons)
else if (ig.eq.4) then
ca=cdexp(yp(4,1i))
cp=yp(1,i)
cda=yp(3,i)*ca
cdp=yp(2,1i)
cz=ca*cp
if{i.eq.1) then
dpdalpha=(cp**2-xm#*+2}/cp/ (cp**2/2.0d0~xm**2)

se
dpdalpha=ca*(cdp+1.d-14)/(cda+l.d-14)
end if
cdz=ca*cp+ca*dpdalpha
ckonst=,5d0%cdz**2- bd0kcz**2+,25d0*cz**4

ar(i)=dreal(ckonst)

end if
end do

el

Graphing calls

call clear_plot

call cltrans

call setnam(’YAUT0’,2.)

call setnam(’XAUTO’,2.)

call gplot(xx,ar,kount,1)

call transparent_mode(0)

if(ig.eq.4) write(6,*) ’Final E:’,ar(kount)
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1010
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write(6,1258)
format(’ i View a’,/,’ 2 View Phi’,/,’ 3 View Cons’,/,’ 4 E’,
/,* 5 Exit?’,
/,* Choice:’,$)
read(5,*) ig
it(ig.ne.5) goto 556
if(iy.ne.1) goto 655

COpening files to save data points
OPEN(20,FILE=FILEXAME1,STATUS=’NEW’,recl=255)
OPEN(21,FILESFILEFAME2,STATUS=’NEN’ ,rec1=2565)

Save final scale factor for boundary cerrection to action
ae=cdexp(yp(4,kount))

do i=1,kount
a=cdexp(yp(4,i))
phi=yp(1,i)

Rescale by 1/lap to get proper time derivatives
da=yp(3,i)*a/lap
dphi=yp(2,i)/lap

cons=the conserved quantity a"{3}dphi/dt in the Giddings-
Strominger wormhole
cons=dphi%a%#*3

Action have reversed signature because we are integrating in -t

direction.
Matter action
ActionMatter=-yp(5,i)

Gravitational action with boundary correction
ActionGrav=-yp(6,i)+.5d0*(ai**2+ae**2)

Hamiltonian constraint
CTEMP=-Yp(2,i)**2-Yp(3,i)**2+lap*lap*(~xlambdaryp(1,i)*=&/2.0d0
+CDEXP (-2.0#Yp(4,1)))

Defining z and dz to calculate the asymptotic constant
$E=\f§1}{2}\t{dz}{d\alpha}"{2}-\1{1}{2}2‘{2}+\f{1}{4}2’4$
z=a¥phi
dz=a*phi+a*a*(dphi+1.d-8)/(da+1.d~8)

ckonst=,5d0*dz#*#2~ .5d0*2**2+,26d0*z%*4

write(20,1010) xp(i),dreal(a),dreal(phi),dreal(da),dreal{dphi),
dreal{cons)

write(21,1020) xp(i),dreal(actionmatter),dreal(actiongrav),
dreal (ctemp)

end do

format(6(e16.10,2x))

format(4(e16.10,2x))

CLOSE(20)

close(21)

WRITE(6,#*) ‘We have written ’,KOUKT,’ entries to file’
WRITE(6,#*)’Thats all Mate....Gday’
END
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Subroutine to calculate the derivatives of the four first order ODEs
which describe the dynamics. Also the Matter and Gravitational actions
are integrated.

000000

CCCCCCELECECCECCCCCCCCCCELCCCCCCELECLELSTIISCCCCCECCCECCCEECCECECCECCCCCCCCe
SUBROUTIEE DERIVS(X,Y,DYDX)
DOUBLE COMPLEX Y,DYDX,n
DOUBLE PRECISION f.xlambda
DIMEBSION Y(4),DYDX(4)
common /lapse/ n,xlambda,xtcp

c Dynamical first ordexr ODEs
DYDX(1)=Y(2)
DYDX(2)=-xlambda*Y(1)**3+n¥n~3,.0*Y(3)*Y(2)
DYDX (3)=~xlambda/2.0d0*Y (1) **4*n*n-Y(3)**242,0+Y(2)#%2
DYDX(4)=Y(3)

c Katter action
dydx(5)=-0.5d0*(cdexp(3.0d0*y(4) )*y(2)*+2/n
* ~xlambda*y(1)*+*4/2.0d0*n*cdexp(3.0d0*y(4)) )
c Grav action
dydx(6)=-0.5d0*( cdexp(3.0d0xy(4))*y(3)**2/n+n*cdexp(y(4)) )

RETURN
END

cceceeeeeceececeececeececceceeececceceececececcccececeeccececcecceeccecececcececceceececccececcccecececccccecece

Subroutine which actually does the fourth order Runge~Kutta integration
with adaptive step size. This is based on similar routines in

c
c
c
< NUMERICAL RECIPES by W. H. Press, B. P. Flannery, S. A. Teukolsky
c and W. T. Vetterling.

c

c

€CCCCCCCCCEELECECCCCCCCCCCCCECCCCCCCCECCCECCCCCCCCECCECECCCECCCECCCCCECECCCCeee
SUBROUTIKE ODEINT(YSTART,NVAR,X1,X2,EPS,H1,HMIK,ROK,NBAD,CONST)
IMPLICIT DOUBLE COMPLEX (A-E,P-W,Y-2)
INPLICIT REAL#8 (X)
double complex lap
REAL#*8 X,X1,X2,EPS,H1i,HMIN,XSAV,H,HDID,HNEXT,CONST,CMAX
PARAMETER( MAXSTP=5000000, NMAX=10, XTW0=2., XZER0=0., XTINY=1.E-30)
COMMON /PATH/ KMAX,KOUNT,XDXSAV,XP(20000),YP(10,20000)
COMMON /lapse/ lap,xlambda,xtop
DIMENSION YSTART(HVAR),YSCAL(NMAX),Y(EMAX) ,DYDX(NMAX), K xdeltaa(4,2)

X=X1
H=DSIGN(E1,X2-X1)
NOK=0

NBAD=0

KOUNT=0
CONST=0.0d0

c We set the maximum allowable size to which the hamiltonian constraint
c may grow before we signal an error.

CMAX=1.E-2
DO 11 I=1,KVAR
Y(I)=YSTART(I)
11 COXNTINUE
X5AV=X-XDXSAV*XT%0
DD 16 ¥STP=1,MAXSTP
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13

14

15

16

*

CALL DERIVS(X,Y,DYDX)
DO 12 I=1,NVAR

YSCAL(I)=cdabs(Y(I))+H+*cdabs(DYDX(I))+XTINY

CONTINUE
IF(KMAX.GT.O) THEN

Modify to save only those data points which have a scale factor smaller

than xtop

IF(DABS(X-XSAV) .GT.DABS (XDXSAV) .and.

dexp(dreal(y(4))) .lt.xtop) THEN

IF(KOUNT.LT.KMAX-1) THEN

KOUNT=KOURT+1
XP (KBUNT)=X
DO 13 I=1,EVAR

YP(I,£0UNT)=Y(I)

CORTINUE
ISAvV=X
ENDIF
ENDIF
ENDIF

IF((X+H-X2)*(X+H~X1) .GT.XZERO) H=X2-X
CALL RKQC(Y,DYDX,NVAR,X,R,EPS,YSCAL,HDID,HNEXT, IFLAG)

IF(IFLAG.EQ.1) THEN

WRITE(6,*) ’Hit a bouandary in RKQC’

RETURN
ENDIF
IF(HDID.EQ.H) THENR
NOK=KOK+1
ELSE
NBAD=NBAD+1
ENDIF

IF((X-X2)*(X-X1).GE.XZERO) THEN

DO 14 I=1,NVAR
YSTART(I)=Y(I)
CONTINUE
IF(KMAX.NE.O) THEN
KOUNT=KOUNT+1
XP(KOUNT)=X
DO 15 I=1,NVAR
YP(I,KOUNT)=Y(I)
CONTINVE
ENDIF
RETURK
ENDIF
IF(DABS(HNEXT).LT.BMIN) THEK

WRITE(6,*) ’Hit a boundary in ODEINT’

RETURN

We evaluate the abs(constraint)

CTEMP=-Y(2)*#2-Y(3)#*#2+1ap*lap*(-xlambda*y(1)*+4/2.0d0

CONST=DMAX1(CONST, cdabs (CTENP))

+CDEXP(-2.0+Y(4)))

We stop the traj if this becomes too high..

IF(CONST.GT.CMAX) THEN

WRITE(6,*) ’Constraint becoming appreciable’

WRITE(6,*) ’Halting progress’
RETURN
ENDIF

H=BNEXT
CONTINUE
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12
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14

11

PAUSE ’Too many steps.’
RETURK
ERD

SUBROUTINE RK4(Y,DYDX,K,X,H,YOUT)

IMPLICIT DOUBLE COMPLEX (A-H,P-¥,Y-Z)

IMPLICIT REAL#*8 (X)

~CAL*8 H,X,HH,XH,HE

PARAMETER( EMAX=10 )

DINENSION Y(¥),DYDX(N),YOUT(K),YT(EMAX),DYT(NMAX),DYM(KMAX)

HH=H*0.5

H6=R/6.

XH=X~+HH

DO 11 I=1,N
YT(I)=Y(I)+HH*«DYDX(I)

CONTINUE

CALL DERIVS(XH,YT,DYT)

DO 12 I=1,N
YT(I)=Y(1)+HH+«DYT(I)

CORTINUE

CALL DERIVS(XH,YT,DYM)

po 13 I=1,N
YT(I)=Y(I)+B+DYM(I)
DYM(I)=DYT(I)+DYM(I)

COXTIRUE

CALL DERIVS(X+H,YT,DYT)

DO 14 I=1,N
YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(1)+2.*DYM(I))

CONTINUE

RETURN

END

SUBROUTINE RKQC(Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT, IFLAG)

IMPLICIT DOUBLE COMPLEX (A-H,P-W,Y-Z)

IMPLICIT REAL*8 (X)

REAL*8 X,EPS,HDID,ENEXT,XSAV,HTRY,H,HH,ERRMAX

PARAMETER( NMAX=10, XPGROW=-0.20, XPSHRINK=-0.25, XFCOR=1./15.,
XONE=1., XSAFTEY=0.9, XERRORCOE=6.E-4)

DIMENSION Y(N),DYDX(N),YSCAL(N),YTEMP(NMAX),YSAV(NMAX),DYSAV(HMAX)

IFLAG=0

XSAV=X

DO 11 I=1,N
YSAV(I)=Y(I)
DYSAV(1)=DYDX(I)

CONTINUE

H=HTRY
BH=0.5%H
CALL RK4(YSAV,DYSAV,N,XSAV,EH,YTEMP)
X=XSAV+HH
CALL DERIVS(X,YTEMP,DYDX)
CALL RK4(YTEMP,DYDX,N,X,HH,Y)
X=XSAV+H
IF(X.EQ.XSAV) THEN
WRITE(6,*) ’Stepsize not Significant in RKQC’
IFLAG=1
RETURN
ENDIF

CALL RK4(YSAV,DYSAV,N,XSAV,H,YTENP)
ERRMAX=0.

131



DO 12 1I=1,N¥
YTEMP(I)=Y(I)-YTEMP(I)
ERRMAX=DMAX1(ERRMAX, cdabs(YTEMP(I)/YSCAL(I)) )

12 CONTINUE

ERRMAX=ERRMAX/EPS

IF(ERRMAX.GT.XONE) THEK
H=XSAFTEY*H* (ERRMAX**XPSHRINK)
GOTO 1

ELSE
HDID=H
IF(ERRMAX.GT.XERRORCON) THEN

HNEXT=XSAFTEY#H* (ERRMAX+*XPGROW)
ELSE

HNEXT=4.+H
ENDIF

ENDIF

DO 13 I=1,N
Y(X)=Y(I)+YTEMP(I)*XFCOR

13 CONTINUE

RETURN

END

CCCCCCCCCCLCLCCLCLCCCCCCCCLCLLECCCCCCLCCCCCCCCCCCCCCCCCCCCETCCCCCCCCCCCCCCCCCCCEC

c
c Subroutine to setup the initial values of the dynamical variables

c and set the lapse and ceiling of recorded points. Three alternative
c codes are present with the unnecessary portions commented out.

c

c

CCCCECCCCCCECCCEEECEEECCCCCCCCCECCCCCCCCECCCCCECCCEECECCCCCCTCCCCCCCCECCEEECe
subroutine setup(y)
implicit double complex (a-h,o-w,y-z)
implicit real*8 (x)
double complex n
dimension y(10)
COMMOK /lapse/ n,xlambda,xtop

c We first enter the conformal time eta to obtain an asymptotic soln.
c Eta approx 5-10 are good.
write(6,101)

101 format(’ Enter the asymptotic time (complex)’,t45,’:',$)
read(5,*) xr,xi
t=dcmplx(xr,xi)

c We next enter the a coefficient. This is either the parameter that
labels the asym. flat solutions at infinity in a) above or specifies
c the throat size in b) or c).

write(6,111)
111 format(’ Enter the a coefficient (complex)’,t45,’:’,$)

read(5,*) xr,xi

a0=dcmplx (xr,xi)

write(6,121)
121 format(’ Enter the coupling coeff (real)’,t45,':’,$)

read(5,*) xlambda

(4]

c This section of code calculates the initial data for the asymptotic
c solution.
t£=2.0d0*t

a=a0*cdsqrt ((cdexp(t)+cdexp(-t))/2.0d0)
f1=-3.0d0*xlambda*a0#+2/(48.0d0)*cdexp(-3.0d0*t)
=ascdexp(f1)
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alpha=cdlog(a)

phi=cdexp(-t)
£2=-a0#*2¢xlambda*cdexp(-2.0d0*t)/16.d40
phi=phi+£2

After calculating a we display the value and decide how far we wish to
integrate. Unnecessary for method b) and c).
write(6,131) dreal(a),dreal(phi)
format(’ Scale Factor a’,t30,’:’,e16.10,

/,' Matter Field phi’,t30,’:’,e16.10)
write(6,141)
format(’ Enter the complex lapse’,t30,’:’,$)
read(5,*) xr,xi
n=demplx(xr,xi)
write(6,161)
format(’ Enter xtop’,t30,’:’,$)
read(5,*) xtop

This section of code continues that of the evaluation of the

asymptotic solution and calculated the derivatives with the given lapse
dphi=(-2.0d0*cdexp(~t)+a0*+2+xlambda/4.0d0*cdexp(-2.0d0*t))
dphi=dphi/a*n

da=(cdexp(t)-cdexp(~t))/(cdexp(t)+cdexp(-t))
ga=ga+3.0dO*xlambda*aO**Z*cdexp(-3.0dO*t)/B.OdO

a=da*n
dalpha=cdsqrt (-dphis#2+n*n*(-xlambda/2.0d0*phi**4+1.0d0/a**2))

Tn.8 section of code is used to start the evolution at the throat
a=a0

alpha=cdlog(a)

dalpha=dcmplx(0.0d0,0.0d0)

With dphi/dt=0 at the throat
phi=cdsqrt(cdsqrt(2.0d0/xlambda/a/a))
dphi=dcmplx(0.0d0,0.0d0)

or with phi=0
phi=demplx(0.0d0,0.0d0)
dphi=n/a

y(1)=phi
y(2)=dphi
y(3)=dalpha
y(4)=alpha

write(6,40) cdexp(y(4)),y(1),y(3)*cdexp(y(4))/n,y(2)/n
format(’ a=’,2(e16.10,2x),/,

» phi=*,2(e16.10,2x),/,

' d=’,2(e16.10,2x),/

» dphi=’,2(e16.10,2x))

Evaluate the hamiltonian constraint and see how well we have managed
to preserve the constraint. If it is above 10#*(-10) we are borderline
and we usually want to begin with the constraint near 10%*(-14)
CTEMP=-Y(2)##2-Y(3) #*2+n*n+(~xlambda*y(1)**4/2.0d0+CDEXP(-2.0+Y(4)))
write(6,161) cdabs(ctemp)

format(’ Hamiltonian Constraint :?,816.10)

re;nrn

en
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APPENDIX B

PROGRAMS RELEVANT TO CHAPTER 3

2.1 Symbolic code to calculate asymptotic expansion

In this section we give the Macsyma ((©Symbolics) code which derives the large time
asymptotic expansion of the solution of the Euclidean field equations for a Friedman-
Robertson-Walker cosmology coupled to an imaginary massive scalar field, for which ¢
decays to zero as { — oo. 0(§nly the lowest order solution was computed by hand. In this
code we solve for a(t) and ¢(t). To obtain the asymptotic expansions quoted in Chapter
# 3 (3.4.14), (3.4.15) we proceed in two steps. The first is to assume the trial solutions

6
a(t)~t+e 27172 Z b,tr™" (B.1)
n=0
6
(1) ~ e~ 71732 Z T, (B.2)
n=0

where T = mt. We then solve for by, ¢,. The next program assumes the trial expansions

6 4
axt4+e T2y byt e Y dar (B.3)
n=0 n=0
6 1
oae TN T 4 em3T92 > et . (B.4)
n=0 n=0

and assames the lower order results we had calculated previously for b,, c,. These trial
expansions are inserted into the Hamiltonian constraint and the ¢ dynamical equation.
However, to increase speed, only the relevant orders in the exponentials are calculated.
The coefficients of the next highier order exponentials are isolated and the determining
equations for d, and e, are solved. This was implemented on Macsyma version 309.3
running on a VAX11/70. The following is the symbolic computer code. Comments are
enclosed by /* comment */.

/* This symbolic computer code generates the trial expansions solutions
for the scale factor and the matter field and inserts them into the
Einstein field equations for an Euclidean Freidman-Robertson-Walker
geometry coupled to an imaginary massive scalar field. There are 14
unknowns. 13 equations are obtained relating the coefficients and

these 13 equations are solved for all the coefficients b, and ¢, in terms
of the coefficient ¢g - the single arbitrary parameter

Jason Twamley, Feb 1991
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We first construct the asymptotic trial expansion*/
a:t+exp(-2*m*t)*t"(-2)*sum(bfi)*t*(-i),i,0,6);
prexp(-m*t)/t"(3/2)*sum(c[i]*t*(-i)i,0,6);

[* We now construct the Hamiltonian constraint equation and the phi
dynamical equation, suitably expanded to isolate all the coefficients of
exp(-k*m*t) where k is an integer */
ham:diff(a,t)"2-14+a"2*(diff(p,t)"2-m"2*p~2)$

ham:expand(%)$

phieq:diff(p,t,2)*a+3*diff(p,t)*diff(a,t)-m"2*a*p$

phieq:expand(%)$

/* We isolate the coefficient of * .c lowest power exponential term in the
Hg;niltonian and extract the noui-zero coefficients of inverse powers of
t

eqa:coeff(ham,exp(-2*m*t));

eql:coeff(eqa,t,-2);

eq2:coeff(eqa,t,-3);

eq3:coeff(eqa,t,-4);

eq4:coeff(eqa,t,-5);

eg5:coeff(eqa,t,-6);

eq6:coeff(eqa,t,-7);

eq7:coeff(eqa,t,-8);

/* We isolate the coefficient of the lowest power exponential term in the
phi dynamical equation and extract the non-zero coefficients of inverse
powers of t */

egb:expand(coeff(phieq,exp(-m*t))*t*(5/2));

eq8:coeff(eqb,t,0);

eq9:coeff(egb,t,-1);

eq10:coeff(eqb,t,-2);

eqll:coeff(eqb,t,-3);

eql2:coeff(eqb,t,-4);

eql3:coeff(eqb,t,-5);

/* We now save these equations (for safety’s sake) to a file temp. */
save(ternp,eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13);

/* We solve all 13 equations for the 13 unkrowns and save the resulting
solution to another file templ, for future reference. */
solve([eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12 2ql3]]
b[0],b[1],b{2],b[3],b[4],b[5],b[6],c[1],¢[2],c[3],c[4],c[5},c[6]]);

roots:%$

save(templ,roots);

We now present the second code which calculates the asmptotic expansions (3.4.14) and
(3.4.15) quoted in chapter 3.

/* In this code we calculate the coefficients d,, and e, occurring in
the enlarged expansions for a(t), varphi(t).
We assume the following trials expansions for the scale factor and the
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matter field.
Jason Twamley, Feb 1991 */

a:t+exp(-2*m*t)/t"2*sum(b[i]*t"(-i)
+exp(-4*m*t)*sum(d[i]*t"(-i),i,0,4)/
prexp(-m*t)/t"(3/2)*c[0]*

sum(gamma(1l+k+1/2)/(k!*gamma(1-k+1/2)*(2*t*m)"k) k,0,6)
+exp(-3*m*t}/t°(9/2)*sum(e[i]*t°(-1),i,0,4);

/* We have inserted the lowest order terms in p. These were obtained from the
previous code but are, in fact, the terms arrising in the large time

expansion of K;(—m * t), that is the modified Bessel’s function of

first order. We now read in the results for the coeflicients b,, obtained

by the previous program and substitute these coefficients into the

expression for a(t).*/

loadfile(templ);

a:ev(a,roots);

1,0,6)
t°5;

/* We now define some terms that will be useful in isolating certain
expression and begin collecting those terms of lowest order. */
exl:exp(-m*t)$

ex2:exp(-2*m*t)$

ex3:exp(-3*m*t)$

ex4:exp(-4*¥*m*t)$

aa:t$
ab:coeff(a,ex2)*ex2$
ac:coeff(a,ex4)*ex4$
pa:coeff(p,ex1)*ex1$
pb:coeff(p,ex3)*ex3$
da:expand(diff(a,t))$
dp:expand(diff(p,t))$

daa:1$
dab:coefl(da,ex2)*ex2$
dpa:coeff(dp,ex1)*ex1$
dpb:coeff(dp,ex3)*ex3$
a2:expand(a‘2)%
p2:expand(p~2)$
da2:expand(diff(a,t)"2)$
dp2:expand(diff(p,t)"2)$

da2a:1$

da2b:coeff(da2,ex2)*ex2$
da2c:coeff(da2,ex4)*ex4$
dp2a:coeff(dp2,ex2)*ex2$
dp2b:coeff(dp2,ex4)*ex4$

a2a:t"2$
a2b:coeff(a2,ex2)*ex28
a2c:coeff(a2,ex4)*ex4$
p2a:coeff(p2,ex2)*ex2$
p2b:coeff(p2,ex4)*ex4$
ddp:expand(diff(p,t,2))$
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/* We now evaluate the Hamiltonian constraint equation to the two lowest terms
in the exponentials. Macsyma cannot handle the evaluation of the Hamiltonian
with the full expressions for the relavent quantities, so we must perform

some preliminary pruning of the expressions so as to finally obtain the

lowest terms in the Hamiltonian */

hl:da.z- 1

+a2a*dp2a+a2a*dp2b+a2b*dp2a

-m"2*a2a*p2a-m"2*a2a*p2b-m 2*a2b*p2a$ ‘
ham:expand(h1)$

/* We isolate the coefficients of the two lowest exponentials */
eqa:coeff(hamex2);
egb:coeff(ham,ex4);

/* We examine the highest power of t to occur in the coefficient of
exp(-2*m*t) and find that the coefficient is zero as expected. */
hit:hipow(eqa,t);

/* We obtain the highest power of t to occur in the next highier term and
obtain 5 determining equations for the 10 unknowns d,, e,. */
hit:hipow(egb,t);

eql:coeff(eqb,t,hit-1);

eq2:coeff(eqb,t,hit-2);

eq3:coeff(eqb,t,hit-3);

eqd:coeftl 2gb,t,hit-4);

ea5:caeff{egb,t,hit-5);

J* We 2 alculate the varphi dynamical equation and repeat the above
anaiysis, *

phiewexnand( (aatab)*ddp+3*(daa*(dpa+dpb)+dab*dpa)-m™2¥p*(an+ab))$
eqc:coeiiinhieq,ex1);

eqd:coefi{phieq,ex3);

hit:hipow(eqc,t); /* This is again zero as expected. */
hit:hipow(eqd,t);

eqb:coeff(eqd,t,hit);

eq7:coeff(eqd,t,hit-1);

eq8:coeff(eqd,t,hit-2);

eq9:coeff(eqd,t,hit-3);

eq10:coeff(eqd,t,hit-4);

/* We now solve the 10 de.rrinining equations for the 10 unknowns
d,, e, and save the results to the file temp2. */
solve([eql,eq2,eq3,eq4,eq5,eq6,eq7,eq8,e¢9,eq10],[
d[0},d[1},d[2],d(3].d[4].e[0],e[1],e[2],e[3],e[4]]);

big_roots:%$

save(temp2,big.roots);
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2.2 Integration Routine

The basic integration routine differs only slightly from the program described in Appendix
2. The central differences are in the subroutines setup() and derivs(). In setup() we
specify the arbitray constant cg, as defined in the above section, and the large time for
which (3.4.14) and (3.4.15) are to be evaluated. The relation between ¢y and x is given by
equation (3.4.17) where ¢ = cg. The time ¢ is chosen large enough so that the accumulated
numerical error in the total integration is smaller than 1%. The subroutine derivs() now
reads

[ofof of ot of of of of of of of o o o of Hed oY S o T A o{ o o] el sl ol oL o o sl of of o el e ol T o o Y e el of o e ol o] e o] T T o ed o el of o] ef o o ] ol A o o] el f ] o o of o] o o

Subroutine to calculate the derivatives of the four first order ODEs
which describe the dynamics. Also the Matter, Gravitational, Kinetic
and Potential actions are integrated.

OO0 O0O0

CCCCCCCCCCCCCCECCCCCCCCCCCCICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCoTCl
subroutine derivs(x,y,dydx)
double complex y,dydx,n
double precision x,xmu
dimension y(10),dydx(10)
common /lapse/ n,xmu

c Euclidean trajectories
dydx(1)=y(2)
dydx(2)=-y (1) **3%n*n-3, 0%y (3)*y (2) +xmu**2*y (1) *n*n
dydx(3)=-2.0d0/2.0d0%y (1) **4xn*n-y(3) *%2+2. 0%y (2) **2+
* xmuk*2xy (1) **2%n*n
dydx(4)=y(3)

¢ All actions pick up 2 minus sign as we are integrating in the -t
c direction.
c Matter action
dydx(5)=-(-0.5d0*(cdexp(3.0d0%y(4))*y(2)**2/n
*  -(y(1)*%x4/2.0d0-xmu**2xy (1)**2)*n*cdexp(3.0d40*y(4)) ) )
c Grav action
dydx(6)=-(~0.5d0*( cdexp(3.0d0*y(4))*y(3)**2/n+nxcdexp(y(4)) ) )
c Kinetic part of matter action
dydx(7)=-(-0.5d0*(cdexp(3.0d0*y(4))*y(2)**2/n) )
c Potential part of matter action

dydx(8)=-(~0.5d0* (- (y(1)**4/2.0d0-xmu**2%y(1)**2)*n*
* cdexp(3.0d0*y(4)) ) )

return
end

2.3 Program Description

In this section we briefy describe the program used to find, and trace out, the loci of valid
wormhole solutions in the two dimensional parameter space (x,u). The general behaviour
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of these curves were obtained though initial numerical experiments and it was suspected
that a curve of a particular N-type wormhole was single valued in x. Using the above
described integration routine and computing the test function (3.4.26) as t — —o0, the
first K'/2, with lower x, of a total number of K possible wormholes for a fixed io= 0.01
were found. To find the zeros of the test function F(x,u = 0.01), Brent’s algorithim was
used in the y direction {1). Each of the K/2 roots, (xs,ug), of F, (now known as “base
roots”) has a different value of N. These base roots are then given to a program that
evaluates the zeros of F(x = xy, 1) associated with a given value of N. That is, it searches
in the +p direction until it brackets a zero of F that corresponds to a N -type wormbhole.
It then utilizes Brent’s algorithm again in the u direction to find the root to the required
precision. Then, x is increased by a fixed amount, x — x + Ax, and the process of finding
the appropriate root of F corresponding to a wormhole with the same N is repeated. To
increase the speed of execution and to ensure that the subsequent roots found be ong to the
same continuous curve in the (x,4) parameter space, the previous position of the root is
remembered and the search for a root for the incremented value of y along the %y direction
begins at the remembered value of u. The positions (x>p) of all roots corresponding to
the particular base value of N are saved to a file. The program begins anew with the next
base root of F found at 4 = 0.01 and creeps up the y axis, tracing out the continuous
contour of F = 0 in the (), u) plane corresponding to the new value of N found at the
base root. Also gathered during the final numerical integration, when Brent’s alorithim
has found the root to the required precision, is information concerning the minimum scale
factor aprn, the gravitational anJ) potential actions for the wormhole. These quantities
are also saved to the file. On a more technical point, Brent’s algerithini can ouly pin-point
the zero of F to a certain accuracy (machine accuracy ~ 10~14). Corsequently, for x large,
it is unable to adjust the (x,u) parameters so that ¢ remains near zero for a long time.
The wormhole is then taken to extend from the starting point, with £ positive and large,
through the wormhole, and into the region where ¢ is negative. We stop the evaluation of
the actions at the point in the negative t domain where |a| — 1 is minimum.
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