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Abstract 
 
Steel moment frames are often used in structures to provide lateral strength and 

stiffness to the structure. These frames are subject to failure modes including 

buckling in the out of plane direction in a lateral-torsional buckling mode. This 

failure mode is influenced by interactions of the members through their 

connections. While the flexural behaviour has been studied in depth and for some 

time, the effect of torsional warping interaction between members has not been 

studied extensively. 

 

This work presents an analysis of the effect of including the effects of warping 

interaction or neglecting them, as is done in the current design practice. The 

issues of inelastic behaviour are considered, as well as the case of torsionally 

sensitive members. A joint element model is created to treat the warping 

displacements and their continuity through the joint. 

 

The study finds that the current practice of neglecting the warping displacement 

continuity appears to be a conservative assumption. It is recommended that the 

present practice of neglecting the effects of warping in analysis of frames 

continues. 
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Nomenclature 
 
Symbol Description 

a Torsional bending constant, mm 

A Area, mm2 

b Plate width (usually flange of I shaped section), mm 

Cb Equivalent moment factor (AISC) See also ω2 below. 

Cf Factored compressive load effect. N 

Cr Factored compressive resistance, N 

Cw Warping constant, mm6 

E Young’s modulus, MPa (taken as 200 GPa for steel) 

Fy Yield strength, MPa 

{Fi} Vector of nodal forces, finite element analysis 

G Shear modulus, MPa 

h Distance between flange centroids, mm 

Ip Polar moment of inertia, mm4 

Ix Moment of inertia, major axis, mm4 

Iy Moment of inertia, minor axis, mm4 

J St Venant torsional constant, mm4 

kx Effective length factor, strong axis 

ky Effective length factor, weak axis 

kw Effective length factor, warping 

K Effective length factor 

[ke] Stiffness matrix, elastic 

[kg] Stiffness matrix, geometric 

L Length, mm 

Lb Beam length, mm 

Lc Column length, mm 

Mcrw Elastic buckling moment considering effective lengths, N mm 

Mu Elastic buckling moment, N mm 

Mu+ Elastic buckling moment considering pre-buckling deflections, N mm 

Mu0 Elastic buckling moment without modifications, N mm 

Mf Factored applied moment, N mm 



 

Mr Factored moment resistance, N mm 

Mω Bimoment in joint element development, N mm2 

Nx Number of elements across a joint element 

Ny Number of elements down a joint element 

Nz Number of elements between front and back faces of a joint element 

Rw Ratio of Mu to the elastic buckling moment considering effective length 
factors or other slenderness effects. 

P Applied load, N 

Pt Load applied to flange tip for joint element, N 

Px Buckling load, strong axis, N 

Py Buckling load, weak axis, N 

Pz Buckling load, torsional, N 

rp Polar radius of gyration, mm 

Rw Ratio of buckling strength of a restrained beam to that of a simply 
supported beam, considering the effective length factors of the beam. 

t Plate thickness, mm 

Ta Torque applied to member due to axial load, N mm. 

Tr Resisting torque in member, N mm. 

U1 Moment magnifier factor (P-δ effect and moment gradient) 

w Uniformly distributed load value, N/mm 

  

α Multiplier for axial load, frame analysis. 

β Factor in S16 beam-column equation 

Γ Eigenvalues 

δ Maximum displacement over length of member, measured from a line 
joining the member ends. 

Δ Displacement of member ends relative to each other. 

{δi} Vector of nodal displacements 

θ Angle of twist at a location along a member, radians 

θ' Rate of twist of a member along its length, radians / mm 

λ Column slenderness ratio 

κ Moment gradient, dimensionless. 

ν Poisson’s ratio. (Taken as 0.30 for steel) 



 

ω Equivalent moment factor for beam-columns. (S16 previous to 1989.) 

ω2 Equivalent moment factor for beam buckling. Also a general modifier 
for the elastic buckling moment. 
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1. Introduction 

Many steel structures are based on the concept of a “moment frame”, a set of steel 

structural elements, known as beam-columns, that resist vertical (usually gravity 

based) loads and horizontal (usually wind or earthquake) loads. Within these 

frames, the interconnected members can act as a single structural element 

providing strength and rigidity to the structure. However, the members have long 

been considered to act as independent elements in design (Massonnet, 1976). 

From a design perspective, steel frames are designed to prevent the attainment of 

their maximum loads based on individual member stability or strength. 

The Canadian design method for steel structures is based on the CSA standard 

CAN/CSA S16-01, “Limit States Design of Steel Structures” (CSA 2005). This 

will be used as the primary design document in this thesis, and will be referred to 

as “S16”. Design standards in general are based in the current building codes. The 

National Building Code of Canada (NRC 2005), referred to as “NBCC”, is the 

building code for most jurisdictions in Canada, although it may be amended for 

local conditions. 

The design of beam-columns in S16 is based on satisfying four checks, based on 

various considerations and analysis procedures. In this work, only “Class 2” or 

better sections are considered. These are steel shapes that will not fail by local 

buckling of their elements (flanges or webs) before the attainment of a fully 

plastic section. Also, only doubly symmetric “I” shaped sections are considered. 

These are commonly used in steel frames and experience the warping 

deformations that are of interest. Hollow structural sections (HSS) are also 

commonly used in frames, but are selected due to their high torsional stiffness, of 

which the warping contribution is only a small part. 

This work will present an evaluation of the torsional warping restraint provided 

by the connections of frame members on the stability of the frame. Interactive 

restraint between members requires that one member provides the extra restraint 
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when the other demands it. In other words, the stronger member is “supporting” 

the weaker one. It may be possible that, in the traditional design of beam-

columns, the designer may be assigning a larger resistance to the member which 

is providing this “support” ignoring the extra demands on that member. This 

would lead to a potential for the member to fail before the frame’s ultimate design 

loads, potentially leading to collapse. The focus of this investigation is on how the 

deformations at member connections affect the behaviour of the frame and the 

members. The particular effect studied is the torsional warping displacements; 

how they are transmitted between members and what consequence the shared 

displacements have on the stability of the members and structure. 

1.1. Specific aspects of this work 

This work is motivated by the desire to determine if the mutual warping 

interaction at frame connections provides a benefit or liability in the context of 

unbraced moment frames. Since the torsional restraint of beam-columns has 

received limited attention, there may be conditions where the demands of the 

torsion from the warping of one member may cause supporting members to fail 

before they might otherwise be expected to fail. 

Full moment connections are required for this study. These connections permit the 

moments in one member to act on the connected members. As the warping 

displacements can be thought of as lateral bending actions, the moments and 

rotations for these degrees of freedom must be continuous. As described earlier, 

the warping behaviour can be thought of as the independent bending of each 

flange in opposite directions. This is similar to the out-of-plane bending of the 

member, save that the flanges would both move in the same direction. As a 

consequence of this similarity, it is difficult to separate the warping “effects” from 

the other moment and rotation effects on the connection and thus it is difficult to 

idealise this in a physical model. In an experimental program it would be difficult 

to isolate the lateral bending and the warping effects to see how these affect the 

buckling capacity. 
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While the limitation of consideration to class 1 or 2 “I” sections mirrors the 

special beam-column equations in S16, there are other reasons for this limitation. 

Closed sections, such as hollow structural sections (HSS), are very stiff 

torsionally, by the sole virtue that the St. Venant torsional constant is large, equal 

to the polar moment of inertia of the cross section. There is no warping for 

circular sections, and even for rectangular sections the St Venant torsion is large, 

so that the influence of warping is low. Other warping-sensitive sections with 

mono-symmetric sections (reduced flange “I” sections with unequal flange 

widths, or channel sections) or asymmetric sections (such as angles) are not 

commonly used in moment frames due in part to the complications arising from 

the eccentricity between the shear centre and centroid, and in part to difficulties in 

providing connections between members for full moment support.  

The objective is to see whether the interaction of members, loads and 

deformations related to warping at steel frame joints will cause earlier instability 

or greater stability of the frame. It is hoped that this analysis will be of benefit to 

designers in determining the member sizes and connection detailing for such 

frames. 
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2. Literature Review and Background 

A principal concept of research is to build on the work of the past. This chapter 

will track some of the larger steps that have been made in the same direction as 

this work. 

2.1 General structural mechanics 

A brief description of the major topics used in this work will be presented here. 

2.1.1 Bending and torsion 

The flexural considerations used in this thesis will be based on the Bernoulli-

Euler beam theory, where the strain distribution is linear over the cross-section. 

The applied torque is assumed to be resisted by two primary mechanisms, St. 

Venant torsion and warping torsion. Other mechanisms are not included in the 

analysis or other considerations. As torsional warping is of particular interest in 

this work, a short description is included herein. Where the term “warping” is 

used herein, it is meant to imply torsional warping. 

St Venant torsion is the general response to torsion wherein the material 

experiences a shear stress relative to its distance from the rotational centre for 

closed sections that permit the stress to follow the closed path formed by the 

cross-section. For open sections, where the shear stress must travel both directions 

in each cross section element, the “skin” of each element carries the same shear 

flow in opposite directions, and this reduces linearly to zero at the centre of the 

element. The geometric property used for modelling this part of the torsion 

restraint is the St Venant torsional constant J, which for thin walled open sections 

can be approximated by one-third of the sum of the element length times the 

thickness cubed for all elements. Closed sections are very effective in resisting 

torsion, as the closed loop permits all material to participate to its full extent, and 

open sections are much less effective. 
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tbJ  [2-1] 

 

The doubly symmetric “I”-shaped cross section will be used throughout this work. 

This cross section shape experiences a relatively large amount of warping. As the 

“I”-shaped member’s ends rotate relative to each other, the member’s flanges will 

act as beams, bending in opposite directions (Figure 2-1). The moments in the two 

flanges will be equal, but acting in opposite directions. This two-moment 

combination is termed a bi-moment. The applied torque that twists the member is 

resisted by the flexural shear in the flange, multiplied by the distance between the 

flanges. As shear is the moment gradient along the beam length, the magnitude of 

the bi-moment must vary along the length of the member in order to restrain this 

torque. The effect of warping decreases with the length of the beam, whereas the 

effect of St Venant torsion remains relatively constant. Therefore, the importance 

of warping will be lessened for longer members. 

The warping displacements may be fairly small, but their restraint can cause 

significant increases in the torsional stiffness of the member. 

A study on combined torsion and flexure (Bremault et al. 2008) indicates that for 

many beams, flexural and torsional displacements cause serviceability problems 

before they exceed their strength. This is attributed to, in part, the softening 

effects of approaching lateral-torsional buckling capacities. However, for 

members stiff enough to provide sufficiently small deformations, the strength 

interaction can be delimited by a simple multi-linear curve. At its most severe, 

this is a straight line linking the point of maximum torsional strength and zero 

applied moment to the point of zero applied torque and maximum moment 

capacity. 
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2.1.2 Local buckling behaviour 

While not the main topic of this investigation, there are cases where buckling 

phenomena affecting the cross section of the member play a role in the analysis 

and design of beam columns. There are two specific categories of importance. 

One is the buckling of the plates that form the cross sectional elements of the 

member in question. This is a buckling action of plates loaded in compression in 

the plane of the plate. The other is distortional buckling, where the web of the 

beam deflects out of plane. In both cases, the cross section of the member 

becomes deformed, and thus becomes unsymmetrical, leading to weakening of the 

member. 

Local buckling is controlled in design through the use of limits on the plate 

slenderness, and the classification of the cross section based on those limits. The 

limits are based in part on classical plate buckling theory. The classification used 

by S16 is: if any part of the cross-section buckles before the material reaches its 

yield stress, the section is deemed Class 4; if no part will buckle before first 

yielding occurs, but will before full yielding of the section, the section is called 

Class 3; if all parts can sustain full plastification before buckling, it is Class 2; and 

if all parts can withstand full plastification of the section and develop sufficient 

additional rotation for “subsequent redistribution of the bending moment1”, it is 

Class 1. Dawe and Kulak (1986) provide an analysis of the local buckling 

requirements for beam-columns. 

Distortional buckling is a more general buckling behaviour, but also one that 

affects the shape of the cross section. In this mode, the web bends out of the plane 

formed by its original position (Figure 2-2). This mode is not formally recognised 

in S16, but is in CSA S1362 (CSA, 2007). While generally regarded as a mode 

that particularly affects members with very slender webs, there can be cases 

where distortional buckling is of interest in hot rolled members (Albert et al. 

1992). 

                                                 
1 § 11.1.1 (a), S16 
2 § C3.1.4 beams, § C4.2 columns, S136-07 
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2.1.3 Buckling and out-of-plane behaviour 

Structural instability is caused by the combined effects of a load and the 

displacements caused by the load. As a load increases, the displacements caused 

by that load also increase. The destabilising effect increases as the combination of 

the load and its own displacement, and will increase in a non-linear manner. The 

displacement is resisted by the stiffness of the structure, up to the point where the 

displacements can grow without restraint. 

This is called a “second order” effect. First-order effects are described as 

displacements and member forces that would result solely from the loads applied 

to the structure without other considerations. Second-order effects take into 

consideration the forces and moments resulting from the structural displacements 

and the applied forces acting on the deformed structure. In particular, the engineer 

is concerned about loads which cause displacements that continuously increase as 

these second order effects are calculated. This has been styled as “P-∆” (or “P-δ”) 

analyses – “P” representing the load itself and “∆” the displacement caused by the 

loading. The “∆” effects are from relative displacements of member ends, 

whereas the “δ” effect results from deformation of the member between its ends. 

While the term “buckling” is used often, the behaviour of real structures does not 

typically follow the “bifurcation” model of classical buckling described below. In 

general as the critical load is approached, there is a rapid loss of stiffness3, and 

potentially a loss of strength, that can precede a collapse. This complete 

“mechanism” is referred to as instability. The instability comes as the load’s 

effects increase more than linearly with the application of the load and there is a 

point where the effects overcome the structural resistance. In some cases, other 

structural mechanisms can start to pick up the load and its higher order effects to 

provide an increase in post-buckling strength. 

                                                 
3 This was noted by Southwell (1932) and exploited as a plot of increasing flexibility versus lateral 
deflection to graphically determine the critical load. 
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The particular condition under consideration in this study is that of out-of-plane 

behaviour. In out-of-plane responses, the structure moves perpendicular to the 

plane in which the major moments and forces act. The mechanisms underlying the 

out-of-plane instability failure are lateral-torsional buckling, an instability due to 

applied moments about the major axis and the decrease in axial capacity due to 

the applied axial load and the buckling capacity, either lateral flexural or 

torsional. In the case of those sections where the centroid is not coincident with 

the shear centre, the axial load capacity may be governed by a combined flexural-

torsional buckling failure mechanism. The governing equations for these 

mechanisms follow. 

The most common buckling mode is flexural buckling, in which bending causes 

member instability. This bending is caused by the moment produced by the axial 

load and the member’s deflection due to bending or initial imperfections (Figure 

2-3). This moment is resisted by the flexural stiffness of the member. While this 

bending can occur about either principal axis, weak axis bending is of the greater 

importance to this work. This mode of buckling is represented by the following 

form:  

( )2

2

Lk

IE
P

y

y
y

π
=  [2-2] 

Also caused by axial loading is a phenomenon known as torsional buckling. As 

the member twists, the elements of the cross-section become inclined to the axis 

of the member The compressive axial force produces a lateral, or shearing, 

component that forces the member to twist further (Figure 2-4). The ratio of 

compressive load to torsional shear is equal to the product of the distance from the 

centre of rotation to the point under consideration, and the twist expressed in 

terms of the twist gradient (θ', radians per length). The centre of rotation is the 

shear centre. The twist gradient (θ') is equal to the derivative of the twist angle (θ 

radians) with respect to the distance along the length of the member. The moment 

arm for each particular shear component is also its distance from the shear centre. 
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Considering the compressive force to be uniformly distributed across the section, 

the forcing torque is:  

'2
'

2
'

' θ
θθθσ p

p
a rP

A

PI
dAr

A

P
dArrT ==== ∫∫  [2-3] 

 

The torque is resisted by the torsional stiffness of the member, which in turn has 

two components; a St. Venant torsional component and a warping component, as 

shown in Equation [2-4]. Equation [2-5] represents this failure mode for doubly 

symmetric cross-sections, where the shear centre and centroid are coincident. In 

those cases where the shear centre and centroid are not coincident, there is an 

interaction between the flexural and torsional buckling due to the displacement of 

the axial load as the centroid rotates about the shear centre. 

'''' θθ wr CEGJT −=  [2-4] 

( ) 












+= GJ

Lk

CE

I

A
P

w

w

p
z 2

2π
 [2-5] 

 

The warping portion of the torsional resistance becomes larger for shorter lengths. 

Many sources, for example Vacharajittiphan and Trahair (1974), use the 

formulation of another torsional constant, ( ) ( )GJECa w= , which has the 

dimensions of length, in describing the length of a member under torsion. A 

member that has a high L/a ratio is considered “long” and is governed by St 

Venant torsion. One with a low L/a ratio is governed by warping torsion. 

For lateral-torsional buckling, the governing equation is presented as [2-6]. This 

phenomenon results from the assumed beam deflections resulting from a major 

axis bending moment causing twisting of the beam, producing a component of the 

applied moment that exerts bending about the weak axis (Figure 2-5); and an out-



 10 

of-plane bending that produces a component of the major axis moment that causes 

a torque about the beam axis (Figure 2-6). As these two components are linked 

(the torque is caused by displacements from the lateral bending and the lateral 

bending is caused by the rotation caused the torque), both the lateral bending 

stiffness and torsional stiffness must be considered. This is separated into three 

parts: a factor to account for the effects of the shape of the moment distribution 

along the member ( )2ω , the weak axis flexural stiffness, and the torsional 

stiffness.  

( ) ( )
( ) ( )zpy

w

w

y

y
u PrPGJ

Lk

CE

Lk

IE
M 2

22

2

2

2

2 ωππ
ω =+=  [2-6] 

 

The latter part of equation [2-6] shows the critical moment in terms of the axial 

buckling loads. The second component is the torsional buckling load multiplied 

by the polar radius of gyration about the shear centre, rp. These expressions rely 

on the beam being restrained from twisting at its ends. Without rotational support, 

the member would “fall over” rather than buckle. 

All of these modes will interact in reducing the member’s capacity from its ideal 

ultimate strength if the moment and axial compression act simultaneously. This 

inter-modal interaction is a fundamental concept underlying beam-column theory. 

Many approximate relationships are proposed to measure this reduction, such as 

equation [2-7], which provides a reduction in lateral-torsional buckling capacity 

due to the “softening” effect of an axial load applied to equation [2-6], along with 

the increased moment due to the moment magnifier factor( )xPP−1 . However, 

for design purposes, these are presented in the form of interaction inequalities. 

These interaction relationships will be discussed in more detail in a following 

section. 







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−
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

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−
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P

P

P

P
M=M 1110  [2-7] 
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2.1.4 Plasticity and imperfections 

The stability considerations above are based on members remaining elastic 

throughout their deformation. In actual steel structures, the initiation of inelastic 

behaviour often occurs at load levels lower than those required to produce elastic 

buckling. As the stiffness of the member is drastically lowered when yielding 

starts, and as stability is a function of stiffness, the instability effects increase as 

parts of the section begin to yield. 

The manufacturing process for sections under consideration involves the 

deformation of hot steel bars through rollers, which shape the bar into the form of 

an “I”. The resulting shape cools unevenly. The parts that cool first (the flange 

tips, then the middle of the web) also gains stiffness and strength first and can 

sustain stresses while the rest of the cross-section still possesses a very low yield 

strength. As the bar continues to cool, the hotter steel continues to shrink, 

“pulling” on the cooler, more rigid steel. At the end of the cooling process, there 

is an internal set of stresses in the bar, ranging from compression at the points of 

first cooling (flange tips) to tension at the points that cooled last (the flange-web 

junctions). These are called residual stresses and can govern where the member 

will start to yield when external stresses are applied (Kulak and Grondin4, 2006). 

As the flange tips are furthest from the centroid, they have the greatest influence 

on the flexural stiffness of the member, and as they have residual compressive 

stresses, they will yield first in compressive loading. Thus, the typical residual 

stress pattern is disadvantageous for stability. 

The geometric imperfection of the member influences the strength and stiffness as 

well. The nominal case considered by the theoretical stability equations is for a 

member that is perfectly straight; perfectly prismatic (every cross section along 

the length has the same measurements); and perfectly shaped (there is no 

deviation from the perfect “I” shape – the individual pieces of the cross section all 

                                                 
4 Section 4.3 “Behaviour of Cross-Section” 
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meet at right angles and are piecewise straight). The major concern for all overall 

buckling modes is that the member is straight. If it is not straight, there are second 

order moments created in the member as soon as it is loaded, which softens the 

member. For torsional buckling, the is also a concern that the member has no 

initial twist, which would immediately impart a torque into the member when 

loaded. 

In general these imperfections, both material and geometric, will reduce the 

strength of the member. This phenomenon has been known for some time. Ayrton 

and Perry (1886) developed their column strength equation to incorporate the 

effects of inelasticity and geometric imperfections in columns, and they reference 

earlier works by Tredgold and Gordon who also made similar approximations for 

columns. 

2.1.5 Member interaction 

The influence of the interaction between members in frames is well known and 

has been studied in the context of flexural buckling for a long time. The basic 

equations produced graphical design aids as long ago as 1936 by N.J. Hoff (per 

CRC Guide (1960)5) and have continued to be used in the effective length 

nomographs. The latter are also known as the Jackson-Moreland alignment charts, 

from the firm that originally produced them in 1957. The aids are used to 

determine the effective length for flexural buckling of columns in sway and non-

sway frames. These charts are integral parts of the design process of columns and 

beam-columns in many jurisdictions, including Canada. (Appendix G of CSA 

S16-01 provides an example of these.) These charts consider only the mutual 

flexural restraint offered by the flexural stiffnesses of connected members. An 

example of the side-sway prevented (braced frame) nomograph is reproduced in 

Figure 2-7. 

Trahair (1968a) coined the phrase “interactive buckling” to describe the behaviour 

of interconnected beams when they experience joint lateral-torsional buckling. 

                                                 
5 pp 26-27 



 13 

The influence of end restraints has been considered to increase the lateral-

torsional buckling behaviour of members, in general. Flint (1951) notes that if the 

ends are permitted to rotate, or in his words there is “elastic torsional movement 

of the end supports” then there is decreased capacity compared to equation [2-6] 

(with ky = kw = 1). However, the general expression depends on total torsional 

fixity at the ends, so this is to be expected. 

Schmitke and Kennedy (1984) provide an excellent summary6 of the history of 

interactive buckling of continuous beams. The reader is directed there for a more 

thorough description of work until that time. 

Trahair (1968b) presents a discussion of the extreme case of a beam completely 

fixed at one end and pinned at the other (a “propped cantilever”) and leads into a 

discussion of the interaction between multi-span continuous beams (Trahair, 

1968c). While the first paper discusses I-sections briefly, both papers focus on 

narrow rectangular sections. Trahair (1968b) introduces an iterative method of 

finding the critical load for rectangular sections. This technique had some 

problems in reaching convergence for I-shaped sections if the St Venant and 

warping expressions ( )'θGJ  and ( )2'''
wEC Lθ  are approximately equal. A 

numerical solution technique, specifically the finite difference method, was 

recommended. However, a first order finite difference method technique proved 

to be unsatisfactory and a finite integral method was used as the final solution. 

The second paper describes a linear interaction equation that illustrates the 

increase in the critical load when two or three adjacent, loaded spans of a 

continuous beam are considered. The loading described was for single point loads 

at midspan, and uniformly distributed loads. 

The interaction between members and its influence on lateral torsional buckling 

has not been incorporated into the design process in Canada7.  

                                                 
6 Chapter 5, “Continuous Beams” 
7 Masarira (2002) implies that DIN-18800 and DIN-4114 may incorporate some of this in their 
joint stiffness considerations. 
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Work by Nethercot and Trahair (1976a, 1976b) used the flexural buckling charts 

for mutual restraint considerations to determine the effective length of continuous 

beams. Continuing work, such as that of Schmitke and Kennedy (1985) did not 

directly consider the restraint based on the nomograph, but also concentrated only 

on the flexural resistances of the members and their mutual influence. The 

resistance from the torsional components, and especially that of the restraint of 

torsional warping deformations, is not included in the factors under consideration. 

2.2 Frame analysis 

The particular condition under consideration in this study is that of out-of-plane 

behaviour. This is a situation where the displacement of the structure is out of the 

plane formed by its members. This plane is typically also the plane in which all 

loads are applied, if the frame is considered to be a planar structure. In real 

structures, the loads are not applied strictly within the plane of the frame. The out-

of-plane failure mechanism is not critical in unbraced structures (Wongkaew 

2000) unless the lateral (flexural) buckling stiffness is substantially less than the 

in-plane buckling stiffness. 

A key part of frame analysis is to account for the P-∆ effects in the analysis 

(Wood, et al. 1976a). Recommendations were given in appendices of previous 

editions of S16 (CSA, 1989) for including these effects in the analysis. 

The concept of notional loads has been introduced in frame analysis to permit first 

order analyses to adequately model the second order effects of loads. In Canadian 

design, these were first introduced into S16 in 1989 (CSA 1989). “Notional” loads 

are so-named because they are not actual loads applied to the structure, but are 

rather a conceptual tool. They provide a simulation of the effects experienced by 

the frame from the second order effects. Usually, notional loads in a frame 

analysis are point loads introduced into the structure laterally (horizontally) at the 

floor level, and are some fraction of the gravity (vertical) loads added to the 

structure at that floor. However, in strictest practice, these are to be added to the 
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structure at the same point (or height) that the respective vertical load is 

introduced into the structure. 

At a minimum, the notional load should represent the equivalent moment 

produced by a reasonable allowance for the initial vertical imperfections (out-of-

plumb) in the columns of the frame. For example, if the code of practice for a 

given standard were to permit an out-of-plumb ratio of 1/500 times the length of 

member, the minimum notional load would be 0.002 times the gravity loads. This 

produces an overturning moment equal to the vertical load times the initial off-

plumb value. 

Other uses for notional loads and modifications from the base condition are 

explored in Clarke and Bridge (1995). Some design standards use modifications 

to account for the number of storeys, yielding of the members or their 

connections, or the slenderness of the columns. At least one standard, the AISC 

(2005) Specification, uses a reduced stiffness (reduced modulus) approach in 

conjunction with the notional load to determine the frame design requirements. 

2.3 Current member design 

This work considers the provisions of the current Canadian steel building design 

standard (S16-01, CSA 2005) with respect to frame and beam-column design. 

These provisions and their development are detailed in Essa and Kennedy (2000). 

A summary of the historical development of Canadian steel beam-column design 

to this point is provided by MacPhedran and Grondin (2007b).  

Beam-columns are analysed and designed individually, separated from their 

environment in the frame. The loads on the member are determined from a 

structural frame analysis, and considered, through an interaction inequality, with 

the individual member capacities for axial and flexural loads. While the mutual 

member restraint mentioned earlier can be used to account for restraint in braced 

frames, unbraced frames are analysed slightly differently and the restraint is 

incorporated into the loads applied to the member. This translates into the use of 
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effective length factors less than one for the columns in a braced frame, and the 

use of an effective length factor of one for columns in a sway-permitted frame. 

The frame analysis specified by the design standard incorporates the inelastic 

behaviour of the structure and second order effects of loading. This is specified 

via notional loads in the current version of the standard. With the approach used 

in S16, the notional load is actually larger than the nominal value (1/500) required 

to match initial imperfections. A higher value of the notional load is used as that 

gives results consistent with more exact analyses that account for the effects of 

distributed plasticity (Kennedy et al. 1993). The notional load is applied at each 

storey and is 0.005 times the gravity loads applied at that storey. By representing 

the geometric imperfections and presumed deformation with a load, the notional 

load “transforms a sway buckling problem into a bending strength problem” 

(Essa and Kennedy, 2000) simplifying the analysis. In other words, the notional 

load replaces the initial imperfections and the sway effects are accounted for by 

the second order analysis. Thus, the entire P-∆ effect is compensated for, and the 

effective length factor of columns in sway frames analysed with notional loads 

can be set to 1, rather than the longer effective lengths previously used. 

Trahair (1986) outlines the types of failure associated with beam-columns. These 

are: exceeding the cross sectional strength of the member; buckling of the 

member in the direction of applied moments, usually in the plane of the frame; 

buckling of the member  perpendicular to the applied moment, usually out of the 

plane of the structure; and the potential that biaxial bending will exceed the 

member strength. Each of these points is addressed by S16 separately. For the 

members considered here, Class 1 and 2 I-shaped sections, the design objective is 

to provide members sized so that the inequality [2-8] is satisfied for these 

conditions. 
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The components on the left hand side of [2-8] are: the factored load effects, Cf 

and Mf , where the moment may be applied about either or both the strong (Mfx) or 

weak (Mfy) axes; the factored resistances, Cr and Mr; and the factor, U1, that 

accounts for the increased moment due to the axial load and the P-δ effect 

( )xPP−1  and the decrease in moment severity due to moment gradient, κ, 

( )4.04.06.01 ≥−= κω , as determined by Austin (1961). The value 0.85 is a shape 

parameter that is specific to I-shaped sections. 

Strength: The conditions are based on using differing values for the factored 

resistances in the equation. The first condition is that the plastic strength of the 

section is not exceeded. Equation [2-9a] is invoked for this contingency. The 

maximum strength parameters are used for strong-axis bending and compressive 

resistance – the lengths for beams and columns are taken to be zero. This check 

need only be done for braced frames, as stability concerns will govern in sway 

permitted frames. 
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Overall buckling : The second condition is a stability criterion (Equation [2-9b]) 

considering the effects of column buckling. Here, the column resistance is 

calculated for the weaker plane that has an applied moment, usually the major or 

“strong” axis. This value is calculated with an effective length factor of 1. Lateral-

torsional buckling of the section in bending is not considered in this check. The 

effects of bending about the weak axis are increased as the member’s compressive 

slenderness ratio about the weak axis increases, to account for plastic softening of 

the cross section (Essa and Kennedy, 2000). 
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Lateral torsional buckling : The third criterion is the one of most interest in this 

work, where lateral torsional buckling is considered in determining the strong axis 

factored moment resistance, and the column factored axial resistance is based on 

the weakest buckling mode, usually this is the flexural weak axis buckling mode.  

( )
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Biaxial bending: As the moment contributions are reduced in the interaction 

equations above, it may be that a member controlled by bending may “pass” the 

other interaction equations, but still not have the capacity to support the bending 

moments. To prevent these situations, equation [2-9d] is included to check if the 

moment capacity is exceeded. 
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As an example of the theoretical basis for these equations, the following is a 

modification of Trahair’s (1993) derivation8 of a simple interaction relationship 

based on equation [2-7]. If the reduced moment capacity, Mu, was considered as 

the applied moment, M, at the same time as the axial load, P, equation [2-7] could 

be expressed as: 
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The inequality is introduced to demonstrate that smaller values of M are “safe”. It 

is conservative to replace both terms Py and Pz on the right hand side with the 

lesser of the two, simplifying the expression under the radical. Assuming the 

lesser to be Py, this rearranges to: 

                                                 
8 pages 207-208 
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That is the same as equation [2-9c], considering elastic behaviour, strong axis 

bending, uniform moments and general cross sections. If the torsional buckling 

load, Pz, governs, this case would also be treated by equation [2-9c], as the 

designer must check the lowest axial capacity. 

Typically, design aids are available to the designer from the steel industry 

associations. The Canadian association provides a general handbook (CISC, 

2006) as well as publications specific to torsional design (CISC 2002). The 

American institute also provides a handbook, as well as design guides for 

torsional behaviour (Seaburg and Carter, 1996). 

2.4 Literature review 

This section presents a discussion of two main topics: the first is the development 

of the theory of torsion and beam-column action; and the other is the development 

of frame analysis and how it affects the design of beam columns.  

2.4.1 Torsion and beam columns 

Torsion represents an important component of the out-of-plane strength of 

members. With wide flange sections, the warping portion of the torsional stiffness 

can be a significant contribution, especially for shorter beam lengths.  

The consideration of buckling of beams has been investigated for over a century. 

Trahair (1993) indicates9 that A.G.M. Michell (1899) and L. Prandtl 

independently published on lateral torsional buckling in 1899, for narrow 

rectangular sections; and S.P. Timoshenko introduced warping torsion into the 

equation in 1905. The work by Wagner (1936) presented the general torsional 

analysis for open shapes, including warping. 

                                                 
9 pages 3-4 
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Vlasov (1961) is also a significant contributor to the work on torsional behaviour. 

The details of Vlasov’s work include the concept of effective length factors for 

the warping and flexural components of the lateral torsional buckling 

phenomenon. This concept, if not the exact values calculated by Vlasov, will be 

used later in the analysis of the finite element results found in this work. 

There are two works of note with respect to practically restraining warping in 

experimental tests. Each of these shows the difficulties in trying to restrain the 

warping displacements. 

Dinno and Gill (1964) tested small specimens machined from 5/8 inch square 

steel rods into I shapes with solid ends to determine the effects of plasticity on the 

torsional behaviour. In order to restrain warping, the solid ends were 2 inches 

long – over 3 times the dimension of the cross section – a very stiff member when 

warping is considered. 

Ojalvo and Chambers (1977) tested specially stiffened I-shaped beams. The 

stiffeners were composed of two channel sections welded to both flanges and the 

web of the beam at both ends. These provided “warpingly stiff” beams, as the 

ends were almost encased in a tube section. These tests showed that even very 

stiff warping restraints do not provide full torsional warping rigidity and can only 

provide a certain amount of extra rigidity. 

Vacharajittiphan and Trahair (1974) presented a set of finite element analyses of 

joints between equal sized steel I-sections considering the warping restraint at the 

joints. They came to the conclusion that ignoring the restraint is conservative, but 

produced equations similar to those for the flexural restraint nomographs. One 

comment was that for three pairs of stiffeners, the joint could be considered rigid 

with respect to warping.  Ojalvo (1975) responded to some of the points raised, 

indicating that some of the end restraints were not sufficiently rigid, leading to the 

paper described previously. 
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While an important work that should be mentioned in this context, Ettouney and 

Kirby’s (1981) work focuses on the influence of warping restraint on beam 

strength only, but provides a finite element beam element which considers 

warping. An application to short members in three dimensional frames is 

presented. 

Yang and McGuire (1984) present a description of a finite element that models 

variable restraints of the warping of members. This restraint was provided by 

warping “springs” that provide a flexibility of 0 (warping fully restrained) to 1 

(fully free to warp). Further development of this work led to a development of an 

element that would model non-linear geometric behaviour (Yang and McGuire, 

1986), including the presentation of a geometric stiffness matrix to permit 

eigenvalue solution of the buckling problem. 

Krenk and Damkilde (1991) consider stiffened connections for equal sized I-

sections. Finite element models were constructed of two members whose webs are 

coplanar and that meet at an angle. They mention the importance of cross-section 

distortion of the members at the joint as being part of the member interaction, and 

propose a small “spring-like” stiffness matrix to account for this interaction. 

Morrell et al. (1996) investigated similar two-member “frames” made of steel 

channel sections. These again had equal sized sections joined, only at right angles, 

with various stiffener configurations. One member was loaded in torsion and the 

other acted only to restrain that load. Distortion of the joint was also noted as 

being important. The warping of the loaded member determined to amount and 

direction of twisting of the frame. 

There are two recent studies into the behaviour of frames considering the warping 

restraints at shared joints. 

Masarira (2002) presented a study that looked at the interaction of members and 

joints considering warping. This considered finite element models of several joint 

types with an applied bi-moment to determine the warping stiffness. A set of 
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equations are presented to determine the joint stiffness and an approach is 

proposed using a coefficient for the stiffness of the joint when analysing the 

strength and stiffness of the frame. These coefficients are used in the German 

design standards DIN/18800 and DIN/4114 for consideration when determining 

the lateral torsional buckling capacity of members. 

Zinoviev and Mohareb (2004) also investigated portal frames, in the form of pipe 

racks, in terms of out-of-plane behaviour. The frames investigated are laterally 

unsupported, with fixed column bases, and thus likely to fail in out-of-plane 

behaviour. Two joint configurations were investigated as to their warping 

stiffness through finite element analysis using shell elements. The design 

procedure proposed uses geometric stiffness matrices and determines the 

eigenvalue thereof to find the critical loadings.  

Tong et al. (2005) also present transmission of warping through joints in two 

member frames. In this case, only one type of joint is presented, a mitre joint with 

a diagonal stiffener. This joint configuration, illustrated in figure 2-8, is one 

where the connecting members’ flanges and webs are joined, and the flanges that 

would otherwise cross the web are removed. A diagonal stiffener joins the flange 

intersections. A stiffness modification is introduced into the analysis to account 

for the warping restraint of the diagonal stiffener. When compared to direct 

transmission of warping, this advanced treatment shows a small reduction in the 

rotation of the members, and little to no difference for the lateral displacements of 

the column or beam. 

Masarira (2002), Zinoviev and Mohareb (2004), and Tong (2005) used numerical 

simulation exclusively. There have been limited experimental data available. 

While not directly related to stability and frames, two reports involving reduced 

beam section tests in seismic frames, Chi and Uang (2002) and Zhang and Ricles 

(2006), do mention certain aspects of warping at connections in steel moment 

frames. Chi and Uang mention that early lateral-torsional buckling in beams with 

a reduced cross section (a configuration used in seismic frame design to force 
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plastic hinges to form outside the connections) cause the beam’s axial force to 

produce an eccentric thrust against the columns, producing a torque in the 

column. They also mention that deep beams will produce a high warping stress in 

columns. Zhang and Ricles determined that Chi and Uang may have 

overestimated the warping contribution but also indicate that the columns did 

undergo significant torsional rotation post failure. 

Both of these experimental studies involve significant plastic deformation of the 

columns and beams after cyclic loading, involve post buckling behaviour, and are 

beyond the scope of this research. However, they do indicate possible future 

directions. 

2.4.2 Frame analysis 

The history of the development of steel frame analysis and design is lengthy. 

Baker (1936) presents an interesting account of the progress at that time in 

Britain. Baker’s presentation was to introduce a new British national code of 

practice formulated by the Steel Structures Research Committee. This included 

extensive recommendations including such topics as wind load variance with 

height, and live load reduction factors, but more relevantly, effective lengths for 

columns (K = 1, except for continuous columns, K = 0.7 and intermediate values 

between), analysis methods and assumptions (such as simply supported beams on 

continuous columns), and design equations (the Perry-Robertson formula). This 

was also the point in time at which Massonnet (1976) begins his review of the 

history of beam-column design. 

The evolution of the Canadian design process, outlined in MacPhedran and 

Grondin (2007b), started from more humble beginnings, as fairly simple stress 

addition formulae originally without consideration of slenderness for beam-

columns, but changed rapidly during the periods of intensive research into beam-

columns. Shortly after the British changes listed above, the Canadian standard 

S16-1940 moved to include slenderness effects as well. The “new” Canadian 

standard adopted the Perry-Robertson column strength formulation. Since that 
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time there has been continuous refinement in the methods used in frame analysis 

and beam-column design. A comparison between the current methods 

summarised previously and these earlier standards shows that the designer today 

has (or should have) a greater comprehension of frame behaviour and design 

methodology for steel beam-columns. 

The corollary of this is that the methods of design for frames, or rather the process 

of sizing beam-columns has become complex, and intensive for the engineer. 

While some standards have tried to maintain simplicity, for example the AISC 

Specification (AISC 2005), which uses a two part two equation to cover all modes 

of failure, others (such as S16) have tried to match the growing complexity with 

more equations to handle the various modes, and still others, like EuroCode 3 

(CEN 2005)  use more exact coefficients to properly account for the P-∆ and P-δ 

second order effects in the beam column equations. 

Currently, there is much discussion on the alliterative techniques of “Advanced 

Analysis” and “Direct Design”. A brief description of this can be found in 

Surovek et al. (2006), but the idea behind “advanced analysis” is that it is an 

analysis that considers all the relevant structural “limit states,” given sufficient 

information on the structure – the material, including inelastic properties, residual 

stresses; and the geometry, including initial geometric imperfections. The 

Europeans have coined the mnemonics “GMNIA” for Geometric and Material 

Nonlinearities and Imperfections Analysis and “SOPHIA” for Second Order 

Plastic Hinge Analysis of imperfect members (Ofner, 1997) for these analysis 

procedures. These analyses present member behaviour including the effects of 

“stability” – or second order effects of loadings and the resulting deformations – 

and plasticity to directly establish if the members have the strength to support the 

given loads. Thus all beam-columns could be reduced to only a “strength” check – 

a more direct design method, and a continuation of the notional load concept to all 

frame failure conditions. 
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One of the early researchers of beam-column analysis and design, Charles 

Massonnet, provided the summary below as to why current beam-column design 

practice does not present the full picture of frame design. 

“However, the story is not ended, because the concept of 
the classical isolated beam-column is an 
oversimplification for two reasons:   
first, an actual beam-column is an object behaving in a 
three-dimensional space, and ought to be studied as such. 
This justifies the growing trend towards research and 
experiments on columns subjected to buckling with bi-
axial bending, of which we have still much to learn. 
Such research is also justified by the fact that there is a 
trend toward designing and analyzing structures as space 
frames, in which it becomes necessary to introduce the 
biaxial bending of columns.   
second, and perhaps more important, is the fact that the 
isolated beam-column is an object that only exists in 
theoretical models and testing machines. All actual 
columns are linked, in one way or other, to the remainder 
of the structure, and the behavior of each column is 
influenced by the overall behavior of the structure.”  
    Massonnet, (1976) 
 

While many advances have been made in the intervening time, much of what the 

above quote says is still true. One point that Massonnet did not explicitly mention 

is that in the analysis of beam-columns with bi-axial bending the torsional 

behaviour must also be considered. A contemporary work by Chen and Atsuta 

(1977) demonstrates this requirement, and their illustrative diagram has been 

reproduced in Figure 2-9. The combination of axial load and biaxial bending 

moments (Figure 2-9a) can be converted to a single eccentric point load (Figure 

2-9b) that should express the sum of all the external loads. However, if the three 

components were expressed separately as point loads (Figure  2-9c, 2-9d, and 2-

9e) there is an imbalance in the sum of these point loads that can be only resolved 

by the addition of a bimoment (Figure 2-9f).  

To date, those studies of member interaction and compatibility of warping 

deformations do not test the assumptions made in the analyses for current design 

practice that these effects can be neglected in design. There has been no 
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examination to see if there is a harmful consequence of this practice. This study is 

being conducted to determine if there is an inherent problem or if there is an 

unexploited benefit that can be made from including these factors in our design 

process. 
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Figure 2-1 Torsional warping displacement of section. (After Attard & Lawther, 1989) 
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Figure 2-2 Distortional buckling 
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Figure 2-3 Flexural and torsional buckling of column 
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Figure 2-4 Torsional buckling detail 
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Figure 2-5 Lateral-torsional  buckling of beam – twist and weak axis moment 
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Figure 2-6 Lateral-torsional  buckling of beam – torque produced by lateral flexure 
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Figure 2-7 Nomograph for effective length of columns in sway prevented frames. 
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Figure 2-8 Mitre joint with diagonal stiffener 
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(c) Distributed axial force (F = 4 P) (d) Strong axis bending, (Mx = 2 P d) 
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(e) Weak axis bending, (My = 2 P b) (f) Warping bi-moment 

 
Figure 2-9 Decomposition of a bi-axially loaded beam-column into axial, flexural and 
torsional components. (After Chen and Atsuta (1977), Figure 1.6.).  
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3.  Finite Element Analysis of Torsional Warping 

Effects on Frame Buckling 

3.1 Introduction 

The finite element method is a numerical analysis technique that uses 

approximate solutions over small subsets, or elements, of a partial differential 

equation problem to gain an approximate solution to the whole problem. The 

collection of elements and the boundary conditions for the problem are called a 

model. While approximate, the solutions for the model can approach the exact 

solution very closely. 

There are several conditions that must be satisfied to obtain good results from 

finite element analyses. The foremost is that the model must match the physical 

problem. That is, the loading and restraints on the model must closely represent 

those in the physical problem. The geometry of the physical specimen must be 

accurately brought into the numerical model. The material properties assumed in 

the finite element analysis also need to be similar to those used in the physical 

test. Such properties as the stress versus strain relationship – for steel, this would 

include the modulus of elasticity, and yield strength at a minimum – should be 

taken from the actual materials being used. The analyses presented in this chapter 

are elastic only – the effects of yielding are not incorporated into the analyses 

presented here. 

The modelling technique must also be appropriate to the type of analysis 

performed and the required results. The element types need to be able to model 

the effects of interest. In the particular case under consideration, the elements 

must be able to provide support for inclusion of torsional warping effects in its 

formulation. Solid and shell elements would support this effect as a consequence 

of their modeling of the full behaviour of the shape. However, beam elements 
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must support an extra degree of freedom to model the warping. For specialised 

analyses, it is also required that the analysis procedure can provide the desired 

results. For those models that require non-linear material or geometric analyses, 

the analysis procedure must support an iterative analysis process. The model and 

boundary conditions must also be amenable to convergence, as this also has a 

great influence on successful non-linear analysis, even with programs capable of 

non-linear analyses. 

The model may also be sensitive to the geometry of the elements. The elements 

might work best when they have particular dimensions – as an example, the 

element may have been developed for a case where all of the element edges are 

approximately the same length and the effectiveness of the element decreases as 

its aspect ratio deviates from the ideal. In the case of equal length sides, the ideal 

is an aspect ratio of 1.0. The element may also work better when oriented in a 

particular direction with respect to the principal stresses or strains. 

The mesh, or general arrangement of the elements, can also influence the 

accuracy of the model and how well the solution conforms to the real response of 

the physical problem. In general, the more elements that are used in the model, 

the better the solution is. However, the analyst can use different meshing 

techniques to use the elements in appropriate locations. Parts of the model that 

have higher strain gradients would require elements placed more closely together 

than would other parts with lower strain gradients. Elements that have a more 

complex approximation (higher order elements) can also be used to increase the 

accuracy in some of these regions of interest. 

For structural and solid mechanics problems, the analysis uses a particular type of 

element based on generalised displacements (these include translations and 

rotations), or degrees of freedom, and forces (including moments) to model 

portions of the whole structure. The structure is discretised into elements and 

nodes supporting degrees of freedom. In general, the more degrees of freedom 

that are provided in a model, the more accurate the model is. (This is a highly 
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simplified statement as there are many factors to consider, such as the relative size 

of the elements, and where they are located in the model.) 

The following is an assessment of how well finite element analysis performs in 

the study of the stability of frames, incorporating the effects of torsional warping. 

This includes a discussion of problems or shortcomings with available elements 

and analysis procedures, as well as their adequacies. A summary of the results of 

basic beam and column buckling analyses considering warping effects are also 

presented. 

3.2 Brick and Shell Elements 

“Brick” elements are solid elements that only permit translational displacement 

degrees of freedom at their nodes. In the three dimensional models, they can 

appear as “wedge” (5 faces) or hexahedral (6 faces) bricks, and, in the most 

simple configuration, tetrahedral (4 faces) elements. The lack of rotational, and 

thus flexural, degrees of freedom is usually compensated for by using more 

elements. The larger number of degrees of freedom increases the accuracy of the 

solution, more closely approximating true flexural behaviour. 

Shell elements are structural finite elements that support both translational and 

rotational degrees of freedom at each node. This permits both “in-plane” and 

“out-of-plane” forces to be studied. In-plane, these are the membrane forces and 

the “drilling” moment. The drilling degree of freedom accommodates the twist of 

the material within the plane of the element. This is expressed as a rotation about 

the plane perpendicular to the surface of the element. Out-of-plane degrees of 

freedom are shear, perpendicular to the plane of the element, and two orthogonal 

moments. While similar behaviour can be captured by the solid elements, the shell 

elements directly support moment and rotational degrees of freedom, which is 

more convenient for the analyst. Using shell elements reduces the total number of 

degrees of freedom in the model, and the detail required for the mesh. 
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The shell elements used in this study are the Abaqus elements called “S4” and 

“S4R”. Both are general purpose quadrilateral elements. The “S4R” element type 

has been used quite successfully in previous numerical stability studies (Grondin, 

et al., 1998). It uses a reduced integration method, where the number of Gaussian 

integration points for an element is reduced. This technique is used to reduce the 

stiffness of the element, which is often overestimated by the formulation method 

(Bathe1, 1996). In the case of the quadrilateral element, this reduces to one Gauss 

point and this can cause other numerical problems. As there is only one reference 

point, there are displacement modes that can be mistakenly identified by the finite 

element analysis solver. These are referred to as “zero energy” or “hourglass” 

modes (Abaqus 2002)2. There are corrections that can be applied to the element 

stiffness matrix to compensate for this, but the earliest analyses in this program 

used the “S4” element to avoid the hour-glassing problem. 

3.3 Beam-Columns 

Beam-columns, as has been noted previously, are a general member in the 

construction of steel structures. They can be modeled by a one-dimensional 

element in structural finite element analysis. General beam-column elements 

provide displacement degrees of freedom in all three translational Cartesian 

directions, as well as rotations about all three axes. Using local coordinate 

systems, this translates into the requirement for the element to support an axial 

load, bending about two perpendicular (i.e. principal) flexural axes, and torsion 

about the element’s axis. These elements are typically considered as a straight-

line segment, but those developed with higher order shape functions may be 

curved. 

Barsoum and Gallagher (1970) introduced the first elements to include support for 

warping degrees of freedom. This work permitted analysis of both the warping 

and St Venant torsional behaviour for open cross-sections like wide-flange 

                                                 
1 § 5.5.6 “Reduced and Selective Integration” p. 476 
2 § 3.6.5 “Finite-strain shell element formulation” 
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sections. By extension, torsional, torsional-flexural and lateral-torsional 

instabilities could be modelled. The element thus created has an extra degree of 

freedom at each node to support the warping behaviour. 

While elements with warping capabilities continue to be developed, for example 

as recently as Alemdar and White (2008), where a version of this element was 

developed for the commercial finite element program RAM Advanse, the 

technology is currently mature enough to use existing elements in the analysis of 

steel frames and their stability. However, many of the common programs used in 

analysis of frames do not yet include this ability and thus the design procedure 

commonly used must evaluate the torsional aspects separately (Galambos, 1998). 

There is also work ongoing to develop elements with enhanced capabilities. 

Extended capabilities include the nonlinear, non-uniform warping stiffness3 

(Trahair, 2003), exact formulations (Mohareb and Nowzartash, 2003), and plastic 

hinge for simple analyses (Ziemian et al., 2008). While these have much promise 

for analysis in the future, the elements used in this work were the ones available 

in commercial packages. 

3.3.1  Use of beam elements in current programs. 

Current programs that use beam-column elements with warping degrees of 

freedom include Abaqus (2002) and ANSYS (2002), among others. The Abaqus 

element is called B32OS, and the ANSYS element is named BEAM189. These 

are three dimensional beam elements that assume an open section, i.e. one with 

potentially significant torsional warping. Both elements are quadratic, having 

three nodes along their length. There are some differences between the 

implementations, but in general the force degree of freedom for warping is a bi-

moment, produced when the flanges develop opposing shears and thus opposing 

moments, separated by the distance between the flanges. The displacement degree 
                                                 
3 Also referred to as the Wagner, corkscrew, or helix effect. Extreme fibres travel further laterally 
than interior fibres under torsion, forming a helix. Compatibility of displacements across the 
section forces the exterior fibres to lengthen and interior fibres to shorten, producing a resisting 
torque, which acts to stiffen the member. 
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of freedom is the in-plane rotation angle of the flange in ANSYS and the flange 

tip displacement out of the plane of the cross section in Abaqus. The choice of 

this implementation in Abaqus means that joining beam members of differing 

cross section collinearly requires a constraint equation to be used in all cases to 

ensure compatibility of warping deformations. In ANSYS, the constraint 

equations are required for sections with differing heights. While unused in this 

work, the elements in both programs also support Timoshenko beam theory, 

allowing the provision of including shear deflections as well as flexural 

deflections. 

For non-linear analysis involving displacements, the element formulation involves 

the concept of “co-rotational” elements, which are formulated expressly 

separating the rigid-body and “flexible” body displacements (Felippa and Haugen, 

2005). This mirrors the separation of P-∆ and P-δ effects considered in frame and 

beam-column analysis. However, the underlying assumptions require that the 

“local” member deformations are much smaller than the rigid body 

displacements. This is usually the case for sway-permitted frames, though braced 

frames may experience the opposite effects (Essa and Kennedy, 2000). Accuracy 

can be increased by using smaller elements. In this case, the element deformations 

are reduced, and the member deformations are captured as rigid body 

displacements of the smaller elements. 

Higher order beam elements, as mentioned above, may also be used to increase 

accuracy, in place of, or along with, smaller elements. These elements have nodes 

between their “ends” that will capture internal deflections, and thus can include P-

δ effects directly in the element moments. 

3.4 Buckling analyses 

While the finite element analysis technique has historically been used for analysis 

of stresses and strains in structures, it can be, and has been, used for buckling 

analyses as well. The techniques for elastic buckling and inelastic behaviour are 
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slightly different, but both can be handled by advanced finite element analysis 

programs. 

3.4.1  Elastic buckling behaviour 

A strictly elastic buckling analysis can be done using a “geometric stiffness” 

matrix and an eigenvalue solver. The geometric stiffness matrix is a matrix that 

includes the second order effects of loads and the subsequent softening 

(compressive loads) or stiffening (tensile loads) of the structure. 

The complete solution to the finite element problem is presented in Equation [3-

1], with the elastic stiffness of the system [ke] and geometric stiffness [kg] 

simultaneously acting on the global displacements to produce the global load 

vector. 

{ } { }e g i ik k Fδ    + =    
 [3-1] 

 

There are many references through which one can find geometric stiffness 

derivations. Rajasekaran (1977) presents the geometric stiffness matrix for a 

beam-column element including warping effects. Chang (2004) provides the 

derivation of a beam-column element’s geometric stiffness matrix for a higher 

order element formulation, although the warping degree of freedom is not 

incorporated. 

The general solution is to take the general stiffness matrix and combine it with the 

geometric stiffness matrix with a multiplier, usually scalar. When the sum is zero, 

the physical implication is that the overall stiffness of the structure has vanished. 

The general form of this is shown in Equation [3-2], with the scalar multiplier 

being the vector, Γ, known as the eigenvector. As this problem deals with matrix 

manipulation, the result of zero is the same as the determinant of the resulting 

reduced stiffness matrix being zero. This reflects the classical bifurcation concept 
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of buckling and gives a good approximation of the elastic buckling load for the 

structure. The method by which the critical load is determined is by eigenvalue 

extraction (Bathe4, 1996, Bathe and Wilson, 1976). 

{ } 0e gk k   − Γ =  
 [3-2] 

 

This is an elastic solution. It is impractical to use the eigenvalue procedure for 

inelastic behaviour, as the geometric matrix must be updated to account for the 

softening due to yielding. If the matrix must be updated, the analysis can more 

easily incorporate the effects of displacement in the updated matrix and use a non-

linear analysis considering the updating of geometry and material properties, than 

use multiple eigenvalue solutions. 

The eigenvalue extraction procedure is used by many finite element programs, 

and specifically by Abaqus and ANSYS. The first analyses done by this method 

for several cross sections examining the lateral-torsional buckling mode showed 

remarkable differences from the capacities predicted by elastic theory. An 

example of the results of this form of analysis is presented in Figure 3-1. Here, a 

W200x27 beam is analysed for various lengths and two different end conditions, 

using both shell and beam elements. The two end conditions are included to 

illustrate different extremes of behaviour. Simply supported conditions, where the 

effective length factors with respect to warping and lateral flexure are equal to 1, 

give the simplest results. The second case, where the beams ends are still simply 

supported considering flexure, but fixed so that the flanges do not warp, represent 

a much more complex situation. In this case there is interaction between the 

warping and lateral flexure modes, and the effective length factors are related. In 

this case ky is 0.940 and kw is 0.492 (Galambos, 1968). For longer members, both 

types of elements give the same results, in very good agreement with the elastic 

buckling theory. For shorter members, however, there is a decrease in strength. 

                                                 
4 Chapter 11, Solution Methods for Eigenproblems 
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This decrease is relative to a theoretical, increasing buckling moment. The shell 

elements are capturing the effects of local buckling, and can be readily explained 

using elastic buckling theory. 

3.4.2  Discrepancies in beam element elastic 

buckling 

The beam elements used in Abaqus show a decrease in buckling capacity relative 

to theory. This is shown in Figure 3-2 as a contour plot of the ratio of the results 

of the eigenvalue buckling solution to the theoretical buckling moment. This is for 

simply supported beams, with a uniform moment applied. The diamond markers 

in the upper portion of the figure (well within the 99% boundary) represent the 

length for which the elastic buckling moment is equal to the full plastic capacity 

for all of the wide flange rolled shapes available in North America. This length is 

a reasonable measure of the limits on the effect of elastic behaviour in the 

members. It is shorter than the limit at which the design standard S16 

acknowledges full elastic behaviour, i.e. the length at which the buckling moment 

is two-thirds of the plastic moment. The length used is also longer than the limit 

used by S16 to indicate that the behaviour is fully plastic, where the buckling 

moment is approximately 2.15 times the plastic moment. 

Beams elements are not capable of modelling local buckling of the beam web or 

flanges. Therefore, the decrease in buckling capacity below the theoretical value 

requires additional explanation. Other potential explanations for the difference 

between the beam analysis results and the theoretical predictions also fail. If this 

were a reduction due to shear flexibility that is being captured by the Timoshenko 

beam theory, changing the cross sectional area or shear stiffness factor should 

change the buckling load. It does not. If this were a higher order torsional effect, 

such as the Wagner effect mentioned earlier, the buckling load should increase. 

(This element should not capture that effect in any case.) As the detailed analyses 

showed that the capacity did not vary with the cross sectional area, the torsional 
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axial buckling capacity is not a direct influence. It may be, given that the effect is 

most pronounced at higher torsional stiffness, that there may be a numerical 

truncation or underflow error occurring when flexibilities are being used. The 

latter possibility is impossible to check without access to the inner workings of 

the solver. So, while the differences between beam theory and element behaviour 

are as of yet unexplained, they can at least be measured, and a subsequent 

parametric analyses (MacPhedran and Grondin, 2007a) provided the relationships 

presented below. 

Figure 3-3 presents the results of an Abaqus eigenvalue analysis for a beam 

simply supported with respect to flexure, but fixed with respect to warping at the 

ends. As was done in Figure 3-2, the eigenvalue results were divided by the 

theoretical buckling moment to illustrate the discrepancy. The discrete results 

from the Abaqus analysis are joined by a grid, to enhance the continuity of the 

results and plotted as the lighter solid line, and the prediction Equation [3-3] is 

plotted as the darker dashed line. 
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The value Rw in the above equation is the ratio of the lateral-torsional buckling 

moment for restrained beams, crwM , to that for a simply supported beam, crM . 

For this particular case, a simply supported beam, the theoretical solution should 

be a flat plane at a value of 1.0. 
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Equation [3-4] illustrates that warping restraint affects longer members less than 

shorter members. Theoretically, the value Rw for a very long beam would be 1/ky, 

and that for a very short beam would be 1/(kykw), though this would not be 

achievable in real structures, as other failure modes governed by material 

properties or local buckling would be more critical. This also implies that any 

negative effects of warping would also affect shorter beams and beam-columns 

more than shorter members. 

Analysis results from ANSYS are plotted on Figure 3-4. The surface of the 

analysis results presented in Figure 3-4 are the equations: [3-3] for Abaqus, and 

[3-5] for ANSYS. These equations were developed by visually fitting a surface to 

the finite element analysis results. A numerical procedure, such as least squares, 

was not used as the equations contain a singularity at the point where the 

denominator is zero that causes numerical problems. The match between the 

equation’s predictions and the finite element solution are very close at locations 

far from the points 

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The beam-column elements perform satisfactorily when compared with a simple 

lateral-torsional buckling beam-column model (Equation [2-7]). Figure 3-5 shows 

the results of the finite element analysis compared to the predictions of the 

equation. The contours in this figure show the ratio of the results from Abaqus 

buckling analysis to the results predicted by elastic theory for lateral torsional 

buckling in the presence of an axial load. The extremes of equal moments of 

inertia about both axes and axial load equal to the buckling load were not 

included. In the case of the axial load being equal to the buckling load, the applied 



 47 

moment that would cause lateral-torsional buckling would be negligible, and this 

would reduce to a pure flexural Euler buckling analysis. In the case of equal 

moments of inertia about the orthogonal axes, lateral torsional buckling should 

not happen. The effects of major axis curvature are neglected in the predictive 

formula used in the comparison made in Figure 3-5, as this exercise was intended 

to illustrate how the finite element program handles this phenomenon. 

While the capacity predicted by finite element analysis did vary with the moments 

of inertia about the major and minor axes, there was no measurable influence 

from the ratio of these two values. This indicates that the effect of curvature is not 

being considered during the analysis. The effect of curvature about the axis of 

flexure, which is related to the ratio of the moments of inertia about the plane of 

bending and the orthogonal plane, has been long known to influence the buckling 

moment (Michell 1899, Flint 1951). This is due to a coupling of the curvature of 

the member about the strong axis to the curvature about the weak axis and to the 

twist about the long axis, as shown by Trahair and Woolcock (1973). This is 

neglected in the usual derivation of the lateral-torsional buckling expression, 

Equation 2-6. Equation 3-6 from Trahair and Woolcock (1973) illustrates the full 

effect, including torsion and flexure. In this equation, 0uM  is the lateral torsional 

buckling moment ignoring the effect of major axis curvature, *
uM  is the lateral-

torsional buckling moment corrected for the effect of bending curvature; and Ix 

and Iy are the moments of inertia about the axis of bending and the out of plane 

axis, respectively. These two axes are also the principal axes of the beam. If Ix is 

less than Iy, then the solution requires imaginary numbers. This is consistent with 

the observation that beams bent about their weak axis typically do not experience 

lateral torsional buckling (Yura and Widianto, 2005). 
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Considering only the effects of the first term, which relates the lateral bending 

stiffness to major axis bending stiffness, the increase in capacity for current rolled 

“W” sections from North American rolling mills can be up to 25% (MacPhedran 

and Grondin, 2008). This increase is presented for all ratios of Iy/Ix in Figure 3-6. 

This benefit is only apparent for elastic analyses, as inelastic effects will provide 

an upper limit for beam capacity. 

While it may appear that the torsional component is as important as the flexural 

one in determining the increase in strength, EIx will always be larger than GJ. The 

maximum J occurs in closed sections where it is the same as the polar moment of 

inertia, Ip. The ratio of Ip to Ix is at its maximum value of 2 when Ix = Iy. As 

equation 3-7 shows, this expression reduces to a function of Poisson’s ratio. As 

Poisson’s ratio is positive for normal materials5, this will ensure that the increase 

in strength due to the torsional component will always be finite. For steel with a 

nominal Poisson’s ratio of 0.3, the maximum increase in the buckling moment 

due to the St. Venant torsional component is a factor of 2.08. 
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The stiffening effect of major axis curvature is likely excluded from the analysis 

due to the effect being considered a pre-buckling phenomenon. That is to say, it is 

a higher order effect than simple buckling. However, this can be seen as 

advantageous as most design standards ignore the effect, so that the analysis 

results may be misinterpreted. Fortuitously, this exclusion avoids some numerical 

problems, as including the effect could give rise to division by zero or the 

determination of the square root of a negative number. The buckling analysis may 

be inaccurate for real-world conditions, where it is unlikely for beams to 

experience lateral-torsional buckling when bent about their minor axis. 

                                                 
5 Materials that have a negative value for Poisson’s ratio are called “auxetic.” Auxetic materials 
are very rare and are not used in structural engineering. 
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Exceptions to this exist if the beam loads are applied above the shear centre 

(Kennedy et al., 1993) or if there is a significant pre-existing curvature, i.e. 

camber, that must be countered by the applied moment (Yura and Widianto, 

2005). However, since this effect always increases the capacity of the member, 

the results of analyses neglecting it are conservative when used for structural 

design. 

3.4.3  Inelastic buckling behaviour 

The ultimate load states of many steel frames go well past the point of first yield 

(ASCE 1971). The high ductility of steel that permits this behaviour is exploited 

in the design of frames that must carry lateral seismic loadings to dissipate the 

energy put into the structure. 

The steel that has yielded is not considered to provide any stiffness (Yura, 2006) 

in stability analysis and thus the buckling capacity is lowered once yielding 

occurs. In design this is often accounted for by using a tangent (reduced) modulus 

of elasticity to represent the weakening of the member (Galambos, 1998). In finite 

element analysis, this can be taken into account when updating the system 

stiffness matrix for the structure, as the analysis progresses. If the displacements 

of the structure are also reflected in the updated matrix, both the second order 

effects and the effects of plasticity are incorporated into the solution. 

As there are possibilities for the analysis to stop prematurely when instabilities are 

reached in the numerical model, special techniques may need to be employed to 

generate a solution in the analysis of inelastic instability. Such a technique used 

by Abaqus is the Riks method (Riks 1979, 1984). This is a method for following 

the equilibrium path of an analysis, where that path may include unloading of the 

structure, such as for a “snap-through” buckling problem, where a structure will 

suddenly lose stiffness, then regain it at a larger displacement, thus permitting the 

analyst to progress past the point of instability and providing post buckling 
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behaviour. This requires that the stiffness matrix be updated to reflect the new 

position of the structure. 

The Riks method approaches the solutions of instability problems as being an 

equilibrium “path” of the load vector (scaled by a varying scalar value) versus a 

generalised displacement vector. Starting at a known point on the equilibrium 

path, a solution is sought further down the path, at a distance called an “arc 

length.” The initial arc length is specified by the user of Abaqus (2002). The 

direction from the known solution point to the next trial solution is determined by 

the tangent to the equilibrium path at the known point. This produces an assumed 

applied force and a displacement vector. The trial solution is tested for 

convergence, or equilibrium between applied load and the restoring force from the 

displaced structure. If there is an imbalance in the two forces, the assumed applied 

force and displacements are adjusted. However, the new trial solution is restricted 

to load and displacement vectors in a set that is orthogonal to the initial tangent. If 

this problem were reduced to a 3 dimensional one, the solution set would be a 

plane, perpendicular to the initial tangent to the equilibrium path.  

If convergence cannot be reached within a previously specified number of 

iterations, the procedure goes back to the last known equilibrium point and uses a 

shorter arc length to provide a trial solution.  

3.4.4  Buckling analyses used within this work 

Both elastic and inelastic buckling analyses are used in this work. The elastic 

buckling analysis provides a tool to see how a frame will behave when loaded, 

while considering differing warping interactions between the frame members. The 

elastic buckling analyses give a good picture of the maximum benefits or 

penalties that are possible when the effects of warping interaction are included in 

analyses. 

Members analysed in this study were not significantly susceptible to the deviation 

of the FEA lateral torsional buckling behaviour from the theoretical behaviour 
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noted above, in section 3.4.2. No corrections were made for the effect of major 

axis curvature. This was ignored as those effects are neglected in design of these 

members, and were also not provided in the generally available analysis. 

The inelastic buckling analyses used in this work included non linear geometric 

analysis, wherein the stiffness matrix is updated to include the displacement of the 

structure at each load step. The solution technique also includes the Riks analysis 

technique  

3.5 Deformation of joint configurations 

The effect of joint configuration on frame behaviour was investigated 

(MacPhedran and Grondin, 2005). For this portion of the work, several joint 

configurations, summarised in Figure 3-8, were modelled using S4 shell elements. 

These joint configurations were selected as they have been modelled by other 

researchers (Vacharajittiphan and Trahair (1974), Ojalvo and Chambers (1977), 

Krenk and Damkilde (1991), Wongkaew and Chen (2002)) and include the 

common joint details, as well as some that are less common. Common joint 

details that do not transfer significant moment, for example shear tabs or web 

clips that only connect one member by its web, are not included as they do not 

impart significant moment or torsion, and thus no warping is transferred between 

the joined members. 

Modelling was done with the W200x27 rolled wide flange section. This section 

was chosen due in large part to its relatively high torsional bending constant, 

JGCE w , of 1088 mm. This implies that the effects of warping are applicable 

for a relatively long beam length, and would illustrate better the effects of 

warping interaction between the members. The section is also a class 2 section in 

flexure for yield strengths below 460 MPa, so that a plastic hinge could be formed 

before local buckling of the section. The beam also has a short minimum bracing 

requirement. The characteristic length, Lu, value (i.e. the maximum unbraced 

length for which the fully braced capacity can still be developed) is 2.04 m for 
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300 MPa steel to 1.63 m for 450 MPa. These values are based on CAN/CSA-S16-

01 (CSA, 2005). 

There can be significant imbalances in the warping deformation of the flanges 

when the flanges are not equally restrained. This is exemplified in the case of one 

story versus two story frames modelled in the first phase of this project 

(MacPhedran and Grondin, 2005). Here, elastic buckling analyses were conducted 

for two types of frames modelled using shell elements. Nodal displacements, a 

measure of the warping stiffness of the joint, were measured for a unit torque of 1 

kN m⋅ . This warping stiffness relates fairly closely to the complexity of the 

connection and to the elastic buckling strength of the frame. 

One frame type was a simple portal frame (Figure 3-9), the other a two storey 

frame (Figure 3-10). In the two storey frame, the joints under consideration were 

those at the structure’s mid-height. All joint types were included for the single 

storey frame. However, for the two storey frame, the impractical joint types were 

not included. (These are those joint configurations where the column flanges are 

not continuous through the joint.) In these analyses, the single storey frames were 

loaded with a uniformly distributed load on the beam. The two storey frames were 

loaded only on the lower beam, again as a uniformly distributed load. The 

buckling load is calculated as a multiplier of the applied load. Thus, the total 

buckling load is the product of the original load and the buckling multiplier. 

The results for the analyses of these frames are presented in Table 3-1. The single 

storey frame is listed on the left; the two storey frame is on the right. The 

buckling load, presented as the total uniformly distributed load is given, followed 

by the maximum warping displacements of the top and bottom flanges of the 

beam determined as described above. The actual buckling load is less interesting 

than the relative change in buckling capacity as determined by the joint 

connection details. To focus on the relative change in this factor, the buckling 

load is normalised with respect to the lowest buckling strength, in this case the 

beam through joint. This value is also presented in the table.  
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The joints in the single storey frame show a discrepancy between the warping 

displacements in the top flange, which is restrained only by the joint, and the 

bottom flange, which is restrained by the joint and column. The restraint provided 

to both flanges by the continuous column in the two storey frame permits the 

warping displacements of the two flanges to become more similar. Thus, the lack 

of restraint for the top beam flange in the single storey frame induces an 

unsymmetric warping displacement in the connection. This is somewhat 

problematic if the warping bi-moment and displacements are assumed to be 

equally distributed to both flanges, as they will be in models using beam 

elements. 

3.6 Inelastic modelling in a frame context 

In the second phase of this project (MacPhedran and Grondin, 2006), models were 

developed to investigate how the inelastic behaviour of the members influenced 

the structural response. The W200x27 cross section was used in modelling a 

series of portal frames. The frames formed by these sections were loaded with a 

uniformly distributed load acting vertically down through the shear center of the 

beam. 

The models were constructed of the S4R shell element type. The modelling 

process for the frames was to analyse the frame with the elastic buckling (i.e. 

eigenvalue) solver of Abaqus and then apply the eigenvectors (buckled shapes) to 

the shape to introduce initial imperfections to the model. The maximum 

imperfection was scaled to L/200 (0.005L), which is somewhat larger than the 

maximum likely imperfections, which are on the order of L/1000. The value of L 

is the length of the horizontal beam in the frame. The larger imperfections were 

used to promote the onset of buckling in the frame. Only the first buckling mode 

was applied at this level, two higher modes were applied at half this value. 

However, higher modes did not play a large part in the model’s response. The 

models with initial imperfections were then re-analysed using the Riks approach. 
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Beam end restraints were modelled as two conditions. The first consists of a set of 

displacement constraints on the bottom flange of the beam at the beam-to-column 

connection. These prevented the displacement of the flange out of the plane of the 

frame. This was to prevent unrestrained twisting of the column. The other set was 

applied to all the nodes at the beam-to-column joint, allowing only displacements 

in the plane of the frame, and preventing twist of the beam while allowing 

warping of the cross-section. The two end conditions were applied to examine the 

differences in the restraint provided. The flange restraint models a more practical 

restraint, where a single point is restrained at the joint, and the joint stiffness is 

used to prevent twist at the joint. The full section restraint more closely models 

the joint conditions when beam elements are used. That case would assume that 

there is no deformation of the joint and the webs of the members. An example of 

one joint modelled is shown in Figure 3-7. The first restraint condition is shown 

as solid arrows on the lower flange, the second end restraint consists of the solid 

arrows and the hollow arrows. 

As lateral-torsional buckling has a significant post-buckling strengthening effect, 

(Ioannidis et al., 19936, Woolcock and Trahair, 19747) the major indicator of 

lateral-torsional buckling was the loss of lateral stiffness in the models. This loss 

of stiffness was evidenced by reversals in the deformations or rapidly increasing 

lateral deformations. This can be seen in Figure 3-11, which shows the results of a 

plastic analysis of a portal frame made of W200x27 members. 

The strength increase in the frame when modelled with two yield strengths, 

300 MPa and 400 MPa, are summarised in Table 3-2. The strength increase 

matches the predictions of Kirby and Nethercot (1979), wherein the strength ratio 

is about that of the square root of the yield ratios. 

While not reflected in the analytical model, the non-uniform warping behaviour 

from the “helix” effect could also increase the stiffness of the member (Trahair, 

                                                 
6 A numerical study of I-shaped, stocky beams, was conducted. 
7 Slender rectangular cantilever, I-shaped cantilever and I-shaped simply supported beam, 
experimental and numerical work. 
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2003). This effect is a torsional strengthening of the member due to extension of 

the extreme fibre, and resulting compression of the member’s core. This effect 

would be captured somewhat by the shell models, though not at all by beam 

element models. This effect is considered to be negligible in the cases modelled 

here, as the rotation required to mobilise this mechanism is very high. 

3.7 Member interaction using beam elements 

The ultimate phase includes elastic modelling of portal frames with beam 

elements to determine the interaction of members considering the warping 

displacements supported by those elements (MacPhedran and Grondin, 2007a). 

The frames considered are similar to that in Figure 3-9. 

As the beam elements support the option of disabling or enabling warping 

connectivity at the ends of the members, the influence of this mechanism can be 

separated in one model or incorporated into another. A comparison of these two 

models illustrates the effect of warping displacements on buckling analyses. The 

beam elements also support plastic behaviour, and can give an idea of how the 

warping can affect the inelastic buckling strength. 

3.8 Chapter summary 

This chapter presents a brief overview of the finite element analysis used in this 

work. There are some discrepancies between the results of the analysis and the 

theoretical solutions of the test cases used. For most practical situations, the 

results from the analysis are conservative, but not overly so, in that they will 

slightly under-predict the capacity of the structure when compared to theoretical 

strength predictions. The results can be extremely different from the theoretical 

predictions, but those cases are outside the practical range of conditions: the 

affected members are either very short or closed sections. 
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The results from beam elements are affected by numerical artefacts that, while 

inexplicable, do not greatly affect the strength predictions for practical lengths 

and sizes of beams. 

The stiffness of a frame model increases with the amount of complexity of the 

connections at the joints of the frame. This may seem an obvious observation, yet 

it is a behaviour that is not well captured in the beam element models.  
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Table 3-1 Summary of joint displacements for frame, all members W200x27, 
3000 mm columns. 

One Bay, One Storey Portal Frame One Bay, Two Storey Frame 

Beam 
Length 
(mm) 

Joint 
(See 

Figure 
3-8) 

Buckling 
Load, 
kN/m 

Warp of 
Top 

Flange 
(mm) 

Warp of 
Bottom 
Flange 
(mm) 

Relative 
Buckling 

Load 

Buckling 
Load, 
kN/m 

Warp of 
Top 

Flange 
(mm) 

Warp of 
Bottom 
Flange 
(mm) 

Relativ
e 

Bucklin
g Load 

4000 
Beam 
Through 19.4 0.385 0.370 1 

        

  Mitre 20.7 0.406 0.402 1.07         

  
Column 
Through 26.9 0.374 0.362 1.39 32.6 0.362 0.359 1 

  Box 32.9 0.185 0.144 1.70 43.9 0.121 0.115 1.35 

  
Mitre + 
Diagonal 32.9 0.205 0.235 1.70         

  
Box + 
Diagonal 40.7 0.067 0.057 2.10 51.2 0.056 0.057 1.57 

  
Warping 
Rigid 50 N/A N/A 2.58 63.7 N/A N/A 1.95 

6000 
Beam 
Through 11.1 0.512 0.485 1         

  Mitre 12.1 0.535 0.529 1.09         

  
Column 
Through 12.8 0.496 0.474 1.15 15.5 0.476 0.471 1 

  Box 15.3 0.245 0.168 1.38 19.8 0.153 0.142 1.28 

  
Mitre + 
Diagonal 15.6 0.248 0.305 1.40         

  
Box + 
Diagonal 17.8 0.086 0.067 1.60 22.2 0.070 0.070 1.43 

  
Warping 
Rigid 20.8 N/A N/A 1.86 26 N/A N/A 1.68 

8000 
Beam 
Through 6.9 0.571 0.533 1         

  Mitre 7.7 0.592 0.584 1.11         

  
Column 
Through 7.5 0.552 0.521 1.08 9.1 0.527 0.520 1 

  Box 8.7 0.282 0.170 1.25 11.1 0.170 0.153 1.22 

  
Mitre + 
Diagonal 9 0.261 0.343 1.30         

  
Box + 
Diagonal 9.8 0.097 0.070 1.41 12.1 0.077 0.077 1.33 

  
Warping 
Rigid 10.6 N/A N/A 1.53 13.7 N/A N/A 1.51 

10000 
Beam 
Through 4.7 0.598 0.550 1         

  Mitre 4.9 0.617 0.607 1.05         

  
Column 
Through 4.9 0.578 0.538 1.05 6 0.549 0.541 1 

  Box 5.5 0.307 0.162 1.18 7 0.178 0.156 1.18 

  
Mitre + 
Diagonal 5.4 0.260 0.367 1.15         

  
Box + 
Diagonal 6.1 0.104 0.069 1.30 7.6 0.080 0.080 1.26 

  
Warping 
Rigid 6.7 N/A N/A 1.44 8.4 N/A N/A 1.40 
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Table 3-2 Strength ratios, based on portal frame 

Beam Length (mm) Joint Type 
(Figure 3-8) 

Yield Stress (MPa) 
2000 3000 4000 6000 8000 

300 30.0 32.5 32.5 30.6 28.7 
400 34.3 37.1 37.1 35.5 33.5 

Beam Through 

Ratio 0.875 0.877 0.877 0.862 0.855 
300 46.5 41.0 37.1 33.0 30.0 
400 55.2 47.8 42.8 37.3 33.4 

Mitre 

Ratio 0.842 0.858 0.867 0.885 0.898 
300 63.8 56.2 49.2 41.3 37.2 
400 80.1 67.9 59.4 50.1 45.1 

Column Through 

Ratio 0.797 0.827 0.829 0.823 0.826 
300 74.4 69.3 62.1 52.3 47.2 
400 93.9 85.9 76.1 64.5 60.6 

Box 

Ratio 0.793 0.807 0.816 0.812 0.779 
300 81.4 81.8 75.4 67.0 63.4 
400 104.6 101.9 92.0 84.6 80.2 

Stiffened Box 

Ratio 0.779 0.803 0.819 0.792 0.791 
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Figure 3-1 Analysis of buckling moment using various elements. 



 60 

 1  10  100  1000  10000

 1

 0.25

 10

N
or

m
al

iz
ed

 L
en

gt
h,

 L
/a

Torsional Ratio Ip / J

1.00
1.00

0.99

0.95

0.80

0.600.400.20

0.90

W sections

 

Figure 3-2 Ratio of finite element analysis results to buckling equation 
prediction. Includes points of transition to inelastic behaviour for standard W-
shapes. 
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Figure 3-3 Difference between the Abaqus results and equation [3-3] for constant 
moment, beam ends are pinned-pinned with respect to flexure, and fixed-fixed 
with respect to warping. 
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Figure 3-4 ANSYS results for lateral torsional buckling analysis of simply 
supported beam, compared with the fitted surfaces for ANSYS and Abaqus. 
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Figure 3-5 Ratio of FEA results to beam-column equation (Eq. [2-7]) prediction. 
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Figure 3-6 Ratio of theoretical critical moment accounting for major axis 
curvature to simplified formulation versus the ratio of out-of-plane to in-plane 
moment of inertia. 
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Figure 3-7 Detail of stiffened box joint from finite element model. 
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Figure 3-8 Joint Configurations 
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Figure 3-9 Finite element model of single storey building. 
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Figure 3-10 Finite element model of a two storey frame. 
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Figure 3-11 Load versus lateral displacement for the midpoint of beam in single 
storey frame, 8 m W200x27 beam with box joints, bottom flange restraint and 
elastic material.  
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4 Frame Analysis 

How does the consideration of warping affect the analysis of the stability of steel 

frames? To answer this question, the inter-member and inter-modal interaction 

considering torsional warping must be addressed. As the situation is only of 

interest in determining the predicted design capacity and the elastic behaviour of 

the members and structure of the frame, a comparison needs to be made of how 

the members interact, and how this interaction is changed when the torsional 

warping is considered in the analysis. 

This chapter will consider this question using a single storey portal frame to 

investigate the effect of warping on the analysis of the forces / stability in the 

frame. This is done through elastic buckling analyses, as the intent is to determine 

if the elastic stability is affected by warping. 

4.1 Background: Frame behaviour, analysis and 

design 

A brief examination of the current design and analysis processes is presented in 

the following. There are many resources (Galambos, 1998, Kulak and Grondin, 

2006) that describe frame behaviour, analysis and design. The main point of most 

reviews is that the analysis and subsequent design must consider the second order 

effects on the structure as lateral loads and gravity loads are applied to the frame. 

The Canadian design procedure in CSA-S16 (CSA, 2005) is presented as a 

representative method. Most other design philosophies follow similar procedures 

(Galambos1, 1998), The S16 method requires either a second order analysis or a 

first order analysis modified by moment magnifiers to account for the P-∆ effects. 

                                                 
1 Chapter Sixteen, Frame Stability, Section 16.5. This covers design procedures for four of the 
major English language steel design standards, including the AISC Specification, EuroCode 3, 
Australia’s AS4100 and S16. This chapter is the process of being updated to cover the current 
versions of these standards, 
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These analyses would include the application of “notional loads,” lateral loads 

applied to the structure to account for the imperfections in the vertical alignment, 

or “out-of-plumb” of the vertical members (ASCE, 1997). The Canadian approach 

for notional loads is to use a load of 0.005 times the gravity load, more than 

would be required to match the out-of-plumb imperfections of the vertical 

members (Clarke and Bridge, 1995). The larger value is meant to account for the 

softening effect of member yielding in the structure (Essa and Kennedy, 2000). In 

general, the application of notional loads is a globally accepted practice, with 

variations in detail. For example, the American analysis (AISC, 2005) uses a 

reduced stiffness to account for material softening and lower notional load of 

0.002 times the gravity load that only reflects the out-of-plumb of the structure 

(Surovek, et al. 2005). 

The moment magnifier approach requires separate calculation of the gravity load 

effects, preventing sidesway with external restraints if required, and of lateral load 

effects, that include any restraining forces that were required in the gravity load 

analysis to prevent sway. The lateral load analysis will always include the 

notional loads. As this is a linear elastic (first order) analysis, the effects from 

each load can be combined in a linear fashion. The lateral load effects are 

multiplied by a moment magnifier, called U2 in S16, and added together with the 

unmodified gravity load effects. 

Full second order analyses that consider the secondary moments from load 

displacement do not require moment magnifier factors. However, these are not 

linear analyses and so each load combination requires a separate analysis, whereas 

the magnified first order analyses permit the linear scaling and combination of the 

load effects. Notional loads would still be required for elastic analyses to account 

for initial out-of-plumb and material inelasticity. However, the magnitude of the 

notional load may be reduced for those analyses that incorporate any geometric 

imperfections in the original model. 
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Full second order analyses that include the effects of inelastic behaviour, initial 

geometric imperfections and residual stresses (“Advanced Analyses”) would not 

require notional loads. In these cases, the conditions captured by the notional load 

are taken into account by direct inclusion of the initial out-of-plumb and 

incorporation of inelastic behaviour in the analysis of the frame members. 

4.1.1  Advanced analysis 

If the analysis were to consider all of the relevant details in the frame, then many 

of the other approximations, such as effective length factors, moment magnifiers, 

and the current design column and beam column curves can be eliminated. The 

primary requirement is that the second order effects must be accounted for – the 

displacements of the structure must be considered in the analysis, and equilibrium 

must be found for the forces on the deformed structure. The initial displacements, 

or geometric imperfections, in the frame and members must also be included in 

the analysis. The out-of-plumb is described above, but the displacement of 

member between its ends also contributes to the second order effects. The initial 

out-of-straight imperfection of the member, and the shape of the imperfection 

must also be incorporated into the model. For flexural stability, initial rotation of 

the beam and displacements of the beam perpendicular to the direction of bending 

also have an effect on the lateral-torsional buckling behaviour. Also, the true 

position of loading needs to be considered throughout the analysis. This can be 

important for conditions such as the position of loads relative to the vertical 

position of a beam’s shear centre. All of the flexural and torsional responses 

would need to be considered for complete second order modelling. An argument 

can be made to include axial member deformations due to the compressive (or 

tensile) loads they experience, but these deformations would be small compared 

to the gross displacement of member ends relative to each other due to flexural 

shortening. 

Material nonlinearities and imperfections are also required. This would include 

the initial imperfections that result from residual stresses in the cross section 



 73 

created during its fabrication. These play a great part in how the cross section first 

yields and how plastification progresses in the member. The material’s stress-

strain behaviour is also needed to model this behaviour. 

The behaviour of the connections in the frame also contributes to the behaviour of 

the structure. This thesis addresses a portion of this topic. While this work 

considers that fully stiffened moment connections are used and that these keep the 

connected members at the same angles throughout deformation, there are many 

connection details that permit some differential rotation between the connected 

members2. Current design provisions only require that the member’s angle of 

twist be considered. Specifically, the member is considered to be prevented from 

twisting at brace points. The torsional warping behaviour is neglected for the most 

part. 

The true cross section should also be modelled – the thickness of the member’s 

web and flanges, their length, any imperfections in the shape of the cross section, 

such as out-of-square, out-of-parallel, or web off-centre can also have an effect, as 

can the amount of twisting imperfection along the length of the member. At this 

point, it must be noted that in all practical senses, there is a limit to the accuracy 

of the analysis. For the most part, the analysis is to provide guidance on the final 

design of the structure, when the real geometry of the frame is roughly known and 

the member sizes unknown. Details at the level of the cross section would be 

impossible to establish in the finished structure, and cannot be modelled. The 

analyst can only use idealised values for many of the parameters considered 

above. Idealised imperfections for the geometry, the stress-strain behaviour of the 

material and the residual stress magnitude and patterns can be used. 

Analyses that fully model the second order effects and imperfections in the 

members and the structure also no longer require buckling checks, and the design 

check is strictly a strength check. This offers obvious advantages for the designer. 

However, the analysis is very intensive and can be time consuming. The 
                                                 
2 These are known as partially restrained connections. See Surovek et al. (2005) for some design 
guidelines 
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analyst/designer is required to model all potentially critical load commbinations 

individually. The other method permits the designer to model only the base load 

cases – dead, live, wind, etc. – and combine those analysis results. The latter is 

much simpler. Also, there are only few inexpensive programs that are capable of 

carrying out these analyses. Thus, this is not a truly viable option. As well, 

considering lateral torsional buckling, many of the analysis packages do not 

provide sufficient capabilities to adequately model the torsional warping effects 

and structural response so that the full advanced analysis advantage can be used 

(Galambos, 1998). While research has been done to incorporate torsional effects 

in advanced analysis (Trahair and Chan, 2003, Wongkaew and Chen, 2002), this 

has not yet found its way into the standard design methodology. 

Member behaviour after yielding begins plays a critical part in the detailed plastic 

analysis of steel frames. The stiffness for both warping and lateral flexure drops 

fairly rapidly with the onset of inelastic behaviour, as the flange tips are affected 

first in compression. This reduction is due to higher compressive residual stresses 

being generated at the flange tips during the fabrication of I shaped sections, and 

those areas would reach their yield stress first. Once the material starts to yield, 

the stiffness of the yielded portion of the cross section is effectively reduced to 

zero. The effective warping constant and the lateral bending stiffness are more 

sensitive to the loss of stiffness in the flange tips, than in the tensile yielding of 

the web-flange junction. As noted by Wongkaew and Chen (2002)3, there is a 

further complication in that an initially symmetric I-shaped section no longer acts 

as a doubly symmetric section after yielding. Even assuming yielding patterns that 

are perfectly symmetrical about the weak axis, the shear centre will shift towards 

the stiffer, i.e. tension, flange. 

Inelastic behaviour also provides a common limit to the strength developed in 

structural steel members. Members that can sustain large deformations without 

local buckling, have a maximum design capacity that is restricted to the full 

plastic capacity of the section. Elastic instability effects will reduce the member 

                                                 
3 Page 950 
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strength below full plastic strength, but cannot increase the member capacity 

above that value. 

Local yielding in the members can lead to large localised inelastic deflections as 

noted in the testing programs of Chi and Uang (2002) and Zhang and Ricles 

(2006). However, this is a condition that would be beyond the point of failure in 

most design philosophies and would be the subject for post-failure or structural 

integrity design considerations. 

4.1.2  “Double ωωωω” 

A further argument for the advancement of “advanced analysis” for the design of 

frame members is a phenomenon that Trahair (1986) calls “double ω”. There is a 

problem in accounting for the “moment magnifier” effect of the axial load and the 

moment distribution in a beam column. The effect, simply stated, is that there is a 

secondary moment created as the product of the axial load and the lateral 

displacement of the member due to the applied moments. (This is the P-δ effect. 

This may include a pre-existing δ0 deflection, which is the out-of-straightness of 

the member.) 

The problem, as Trahair indicates, is that the then-existent moment magnifier 

value, the equivalent moment factor, ω, did not properly converge to 1.0 as the 

applied axial load approached zero. As the same ω factor was used in the 

calculation of the lateral-torsional buckling moment, he used the term “double ω” 

to describe this. 

This had been previously mentioned by Massonnet (1959) when he wrote4, 

comparing an interaction formula similar to the S16 formula with another 

formula: 

“For large values of this ratio [M/Mp], […] the interaction 
formula slightly over-estimates the strength of the 

                                                 
4 Point 2, page 107. 
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column. This slight defect is a result of using the same 

expression ( ) 21
2
2

2
1 4.03.0 MMMMM equiv ++= for both 

phenomena, i.e. collapse by bending in the plane of 
applied moments and buckling by torsion-bending 
normal to this plane. Actually two different expressions 
should be used to cover these cases, but at the expense of 
simplicity in the interaction formula. In the opinion of 
the author, there is no need to introduce such a 
complication.” 

Trahair apparently had a differing opinion and did suggest more complex 

formulae for the appropriate consideration of both the axial and flexural 

components in ω for moment magnification, based in large part on the work of 

Cuk and Trahair (1981). Among current design standards, Eurocode 3 (CEN, 

2005) also presents a fairly complex computation of an expression equivalent to 

ω. As Massonnet indicated, these do complicate the design. 

However, this all presumes that only a first order, elastic analysis is required to 

determine the design load effects. If a complete second order analysis, including 

all flexural and torsional behaviours and all imperfections, is performed on the 

members, as well as on the frame in general, all of the higher order effects are 

accounted for in the member load effects. The member loads already reflect the 

moment magnification, and this eliminates the need for U2, U1, and thus ω1, 

greatly simplifying member selection. The effects of moment uniformity, 

reflected in ω2, would also be included in the analysis results. 

As mentioned earlier, most analysis packages do not include modelling of the 

torsional behaviour of the member, especially with respect to torsional warping. 

For these packages, and even those that support this mechanism, the modelling of 

the second order effects with respect to torsion-related imperfections is difficult. 

The imperfections that are of concern are lateral out-of-straightness imperfections, 

where the member deviates horizontally from the line joining the ends and 

rotational defects, where the principal axes of the member rotate with respect to 

the configuration at the ends. The former imperfection provides an initial 

curvature that produces a torsional component from the applied strong axis 
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moment, as well as a torque from the product of beam shear and the lateral 

distance from the line joining the endpoints. The latter imperfection produces an 

initial weak axis bending component of the bending moment, which is nominally 

applied to the strong axis, and a larger torque from vertical loads that do not occur 

at the shear centre of the cross-section. 

Kim and White (2008) propose a modelling imperfection whereby the 

compression flange has a sinusoidal “sweep” of L/1000, and the tension flange 

has no lateral imperfection. This produces both a twist and a curvature 

imperfection in the member. However, the model used was for shell elements, and 

this imperfection is not possible for beam elements. 

In turn, the warping displacements in the beam flanges due to the applied loads on 

the beam may drive the column to an earlier than otherwise predicted axial 

buckling failure. The interaction that is considered here is that the displacements 

will cause an equivalent initial twist in the column, or a forcing torque, that would 

accelerate the torsional buckling of the column. Any reduction in the torsional 

buckling capacity would also reduce the lateral torsional buckling capacity of the 

member. 

The torsional buckling of an axially loaded member is initiated by the rate of 

change in the angle of twist of the member, as it relates to the length of the 

member, and the axial load. The beam’s warping displacements are caused by the 

component of the applied major axis moment that produces torque on the beam. 

The warping displacements are thus fairly small. The twist-per-unit-length 

considering the elastic warping of the members would be low, if the column is 

reasonably stiff in torsion. Torsional buckling of the column for doubly 

symmetric sections (i.e. I-shaped sections) would not likely occur. 

4.2 Interaction and Interactive Buckling 

The interaction between the members and this interaction’s effect on the buckling 

strength of the structure can be determined through various methods. Schmitke 
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and Kennedy (1985) present a method that can be used to model the interactive 

buckling of a collinear set of beams. The example used in that paper was also 

modelled in the Abaqus finite element program to see how well the results of that 

method and of finite element analysis agreed. A continuous beam with the cross-

sectional properties of a W310x28 rolled section was modelled as in Figure 4-1 

(a). 

The beam conditions in the Schmitke and Kennedy work were such that the beam 

was very close to the inelastic buckling point as defined in S16.1–M84, the then 

extant Canadian steel design standard. As the design curve for steel beams has not 

changed in this standard since the advent of limit states design in 1974, these 

provisions are still in effect. The behaviour was considered sufficiently close to 

that of elastic beams so that elastic buckling theory can be used. Thus, the beam 

was analysed for the elastic eigenvalue buckling magnifier load. The beam 

capacity predicted by Schmitke and Kennedy was 1.050 times the given loading 

condition. The finite element analysis predicts a buckling capacity 1.078 times the 

given load. This difference is due to the capacity predicted by Schmitke and 

Kennedy being based on the design standard’s capacity prediction as that 

calculation includes inelastic effects, ignored in this finite element analysis. 

However, there is another aspect to the work presented here that is beyond the 

simple case of a collinear beam presented in Schmidtke and Kennedy. The 

members are no longer to be considered as collinear, but are perpendicular to each 

other, as in Figure 4-1 (b), forming a single storey, single bay, braced frame. To 

ensure that the analyses used for frames are as effective as those used for collinear 

beams, the frame configuration should also be analysed for the inter-member 

interaction phenomenon. To model such a frame in a manner similar to the 

collinear beam, there must be no interaction between bending moments and axial 

loads. To prevent this force-moment interaction, all four joints of the structure 

were constrained so as to prevent the introduction of axial loads into all members. 

This also prevents relative displacements of the joints, making the structure a 

braced frame. 
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One difference between the collinear beam and braced frame that must be 

considered when comparing the analysis results is the torsional fixity of the 

members. In the collinear beam, the segments are all restrained against twist at 

their ends. In the frame, if this condition is strictly applied, the joints between 

vertical and horizontal members would be restrained against both twist and lateral 

rotation, a much stiffer restraint than in the collinear beam. To offset this, the 

possible restraint conditions were all modelled to see which of these best related 

to the original problem. These results are presented in Table 4-1. As expected, if 

all members are restrained at the joint, the strength is higher than for a continuous 

beam. If no additional restraint is provided – the twist of each member is 

restrained by the lateral flexural stiffness of the perpendicular member – then the 

structure is somewhat weaker. However, if the vertical members were the ones 

restrained from twisting, implying that the horizontal member was restrained from 

bending laterally at the joints, the strength (1.079) is in close agreement with that 

of the collinear beams (1.078). 

4.3  Interaction in Frames 

The frame analyses results presented below are based on elastic eigenvalue 

buckling analysis. This incorporates a form of second order analysis, though it 

does not incorporate the imperfections of the frame nor of its members. As this is 

an elastic analysis, any effects of inelastic behaviour are also ignored. It is 

recognised that the warping effects may be significantly influenced by inelastic 

behaviour, elastic analyses are the first step, as the focus of this work is to 

examine the warping behaviour of the members, which will be more pronounced 

in the elastic domain. 

The primary frame model used in this part of the study is a single storey, single 

bay, unbraced moment frame. The schematic of this frame is illustrated in Figure 

4-2.  
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As the target is to determine the stability contribution of the continuity in 

torsional warping through the frame, the frame was first analysed with warping 

displacements discontinuous at the joints. This required that the members 

connected at each joint all be independent with respect to warping. In the finite 

element model, the warping degree of freedom on the members at the nodes 

representing the joints was released. This frame model is then analysed to 

determine its buckling loads. 

In the physical realm, this is an impossible situation. A moment connection at the 

beam to column connection will transmit moments about both the strong and 

weak axes. Thus, the bi-moment resulting from the warping deformation must 

also be transmitted into the connection, as it can be considered as weak axis 

bending of the member, but with the flanges bending in opposite directions. The 

physical test that separates the flexural fixity from the warping fixity is 

impossible. However, in structural analysis the standard frame modelling 

philosophy ignores the warping effects. 

The second analysis incorporates the warping displacements being transmitted 

into the members connected at each joint. This is done by directly connecting the 

warping degrees of freedom of joined members together at the connection. In 

cases where the joint connects members of differing sizes, a correction is made to 

adjust the warping from one member to that in the other member. This is 

accomplished in Abaqus by the use of constraint equations, which can force the 

transfer of partial displacements between elements. This is required in Abaqus as 

the degree of freedom for the torsional warping displacement is the maximum 

displacement of the flange. The correction is calculated as the ratio of the column 

width to the beam width, so that the warping deflection of the beam is multiplied 

by the ratio and used as the warping deflection in the column. This relationship is 

applied using constraint equations, which are created using the *EQUATION 

command in Abaqus. 
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The two elastic buckling analyses produce critical loads that are multiples of the 

applied loads. To assess the effect of considering warping in analysis, the 

buckling load from the analysis considering warping was divided by that 

determined from the analysis that neglected warping, for the same moment/axial 

load ratio. The ratio of buckling loads provides an indication of how the warping 

affects the capacity – either increasing or decreasing the capacity if the ratio is 

greater than 1.0 or less than 1.0, respectively. It also directly gives a measure of 

the amount of increase or decrease. 

The applied loading should ensure that the column and beam both be close to their 

respective buckling capacities. If the frame were loaded with a uniformly 

distributed load on the beam, the relationship in Equation [4-1] would need to be 

satisfied to produce lateral-torsional buckling in the beam simultaneously with 

weak axis buckling in the column. This would give the nonlinear relationship for 

beam to column length in Equation [4-2]. 
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However, this would require very stiff beams to produce the loading required for 

simultaneous buckling of both members. As an example, W200x27 columns 

would require short span beams of W690x125 sections for shorter columns. To 

enable the beams to be stiff enough to support the required loadings, the beam 

was braced at mid-span against lateral displacement and twist. Short span beams 

would likely exhibit considerable inelastic behaviour, rather than elastic buckling. 

This was considered undesirable behaviour for this project, as the effects of 

warping on the frame strength would not be as large when the frame’s resistance 

is governed by fully plastic capacity. Also, while deep beams and relatively 

slender columns are used in practice for frames, the majority of previous research 
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(Krenk and Damkilde 1991, Morrell et al. 1996, Tong et al., 2005) used beam and 

column members of the same size. To include these types of frames here, the 

method of loading should permit equal sized members. Also, the loading method 

used should not exclude members of different sizes. 

The loadings chosen for the models were moments and vertical loads applied at 

the connections, as shown in Figure 4-2. The gravity load was set to be a ratio of 

the buckling capacity, α, ranging from 0 to 1. The moment capacity of the beam 

was then calculated using the reduced buckling moment capacity in the column, 

Mcc, and the buckling moment capacity of the beam, Mcb. While these did not 

always produce the exact critical load due to variability in the support conditions 

assumed in determining the buckling loads, the loads are scaled appropriately 

during the buckling analysis. 

Lateral torsional buckling often governs the design of beam-columns in braced 

frames. Out-of-plane buckling is rare in frames that are not braced against in-

plane sway displacements, but are braced against out-of-plane sway. For out-of-

plane buckling to occur, the expression yxyx IIkk // ≤  must be satisfied 

(Wongkaew, 2000). This is difficult, as kx in this context is greater than one. Of 

the relatively few standard rolled wide flange sections that satisfy this criterion, 

the W200x27 section was chosen for modelling the majority of the frames. This 

had been selected as a representative section earlier in the project as it met several 

other criteria, including a relatively long “a” (torsional bending constant, 

( ) ( )GJECw ) value and not being susceptible to local buckling before full 

section yielding, i.e. it is at least Class 2 in bending for commonly available steel 

grades. 

The columns in the frame model have initial maximum imperfections of 0.002L 

out-of-plumb. This is a linearly scaled defect, so that at one end of the column the 

value of the imperfection is zero, and at the other end the imperfection is 0.002L. 

The column also has an out-of-straightness imperfection of 0.001L. This 

imperfection is a half sine wave, with a maximum value half the distance between 
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supports. As the beams are braced at their midspan, they have a maximum out-of-

straightness of 0.0005L, and the imperfection is a full sine wave over the length of 

the beam. A rotational imperfection was not included, as the beam element 

doesn’t support this. Each element must be rotated a certain amount – the nodes 

cannot be assigned a rotation. 

4.3.1  Base plate fixity 

Varying base plate fixity conditions were modelled to test the effect of the far end 

conditions on the change in frame performance due to warping consideration at 

the member connections. The three support conditions modelled were: a fully 

fixed conditions, where all displacements, rotations and warping are restrained at 

the base plate; a simple or “pinned” connection where the base plates only 

provide restraint from translation and no resistance to rotation or warping; and a 

pinned support with full warping and translational fixity (“warping rigid”), but no 

rotational restraint. The last condition would be equivalent to a very thick plate 

welded to the end of the column, preventing torsional warping of the column’s 

cross section, but the plate is still free to rotate at the base. 

 These conditions are modelled by manipulating the beam element’s restraint 

conditions on the appropriate degrees of freedom. For the fixed base, all seven 

degrees of freedom are prevented from displacing. For the pinned base, only the 

three translational degrees of freedom are fixed. And for the pinned, but rigid with 

respect to warping, base the degrees of freedom restrained are the three 

translational and the warping degree of freedom. 

The conditions for the two pinned base conditions were selected as providing 

extremes bounds for the actual restraint provided at the base of columns. The 

simple support condition is somewhat less than the actual restraint typically 

provided, as recognised in S16, where column bases that are treated as “simply 

supported” may be given a higher restraint than a pinned support5. The warping 

                                                 
5 Appendix G, CAN/CSA-S16-01, clause G4. 
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displacements at the base plate would not be fully restrained, as no base plate 

could provide that much rigidity. However, this will give an “upper bound” 

solution to the problem. The true warping behaviour of the base plates would lie 

between the two conditions used for the pinned bases. 

4.4 Analysis Results 

The model described above was analysed using Abaqus. Other variables were 

introduced to compare various effects to the reference configuration of an 

unbraced frame composed entirely of W200x27 members, with column base 

plates that provide full rigidity with respect to bending about both major axes, and 

thus, full warping fixity. 

The element type used is a three dimensional beam element, Abaqus beam 

element B32OS. The “2” in the designation means that the underlying shape 

function is quadratic, which requires a midspan node. The “OS” indicates that this 

is an open-section element, meaning that it supports the warping degree of 

freedom. While not pertinent to the analyses herein, the element also supports 

Timoshenko beam theory, where shear deformations are incorporated into the 

stiffness matrix. For the purposes of this analysis, shear deformation does not 

affect the buckling behaviour of the element, and the difference between the 

Timoshenko beam element behaviour and that of a Bernoulli-Euler beam is 

negligible. However, the standard Bernoulli-Euler beams in Abaqus incorporate 

cubic shape functions, though they lack the warping degree of freedom. To ensure 

that sufficient degrees of freedom were used to adequately capture the buckling 

responses, several of the quadratic elements were used to model each frame 

member. Each member was modelled with segments that were 250 mm long. 

The analysis results are presented starting with Figure 4-3. Each frame is typically 

represented by a pair of graphs, one showing the “surface” for the analysis results 

for varying lengths of beam, given a constant column height, and for varying load 

ratios (α) as presented in Figure 4-2. This graph is presented in an orientation that 
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provides the best view of the surface’s features. The second graph is a contour 

plot of the surface, presented in the standard two-dimensional plot format. The 

values measured are the increase in capacity considering warping transmission, 

relative to the buckling capacity that does not assume warping displacement 

transmission. They do not represent absolute buckling capacities. This capacity 

ratio, designated Rw on the graphs, was chosen so that differing frame 

configurations could be compared directly. 

4.4.1  Effect of base plate 

The first effects that are apparent are those that represent the effects of the base 

plate fixity. Three base plate conditions were selected to represent the available 

idealised end constraints: a base plate that prevents all translations, rotations and 

warping, hereafter called the “fixed base”; a base plate that prevents all 

translations, but does allow free rotations and warping displacement, the “pinned 

base”; and a pinned base that prevents warping displacements, the “warping rigid 

base.” The results for a representative frame using 4 m columns is presented 

through Figures 4-4, showing the fixed base condition, 4-5, showing a pinned 

base connection and 4-6, showing a warping rigid base. 

There are marked differences between the fixed base condition and the others. 

However, the difference between the pinned base and warping rigid base is 

negligible. In general, this holds true for most of the frames analysed. The 

torsionally susceptible column discussed below is the only one for which the 

warping rigidity of the base plate makes a difference. 

The fixed condition presents an interesting profile, with a “valley” separating two 

increased capacity regions. These represent different buckling modes for the 

frame, dominated by column buckling behaviour for higher axial loads and 

shorter beams and beam buckling behaviour for longer beams and lower axial 

loads. The “valley” marks the decline of the contribution of each mode. 
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4.4.2  Effect of torsional susceptibility 

The length at which torsional buckling of a column will govern over flexural 

buckling about the weak axis is found by setting the torsional and flexural 

buckling loads equal (Equation 4-3) and solving the resulting relationship. This 

results in the series of steps outlined below (Equations 4-4 and 4-5), using doubly-

symmetric I-shaped sections where the warping constant, Cw, can be represented 
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For the standard rolled steel I-shape sections available in North America, most of 

the values of L2 in equation [4-5] are negative, indicating that the torsional 

buckling load is always higher than the weak axis flexural buckling load, for 

effective length factors of 1.0 for both weak axis bending and warping. Of the 67 

shapes found to be susceptible to torsional buckling, the longest length for which 

torsional buckling will govern is 3235  mm, for a W360x134 section. The mode 

transitions for these 67 cross sections are shown in Figure 4-7 plotted as the weak 

axis slenderness ratio for a yield strength of 350 MPa versus member length at 

which the failure mode changes from torsional buckling to flexural buckling on 

the horizontal axis. Bjørhovde (1972) indicates that for a slenderness less than 

0.15, the full yield strength can be reached, so many of these transitions would 

occur after the full yield capacity was reached. Converting the transition points 

from slenderness to column strength using the S16-01 column formula for 
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flexural buckling gives Figure 4-8 where the column strength relative to the full 

section capacity is shown as a function of the transition length. 

The columns that are most slender flexurally at the transition to torsional buckling 

are sections that do not meet the local buckling requirements in compression for a 

yield strength of 350 MPa. Most of those sections do not meet the web local 

buckling requirement. The most slender section (W360x237) has a slenderness 

ratio of 0.31 at the transition length (2390 mm), which gives a design strength of 

96.9% of the yield strength according to the provisions of S16–01 (CSA, 2001). 

Data points circled on these graphs indicate that the member indicated will 

experience local buckling before the predicted load can be reached. 

Those members that do not meet the web slenderness requirement for columns 

and should be designed according to CSA S136-07 (CSA, 2007). Some of these 

sections do not satisfy Class 2 slenderness requirements for flexure. Most lengths 

at which the buckling mode changes from weak axis flexural buckling (just longer 

than the transition length) to torsional buckling (just shorter than the transition 

length) are such that the column behaviour is almost completely dominated by 

inelastic behaviour, at least for the common yield strength of 350 MPa. This is 

shown in Figure 4-8, as the minimum strength of any column is 0.91 times its full 

yield capacity. 

Local buckling and inelastic considerations were set aside to permit an elastic 

buckling comparison with the considerations used previously for sections 

susceptible to flexural buckling. An elastic buckling analysis using the procedure 

described above for a portal frame was conducted with a W360x134 section. This 

section has a transition length of 3235 mm. The elastic buckling analysis does not 

consider the local buckling of the cross section. (The plates composing the section 

are not included in the section properties used to determine the stiffness of the 

finite elements used.) It also is not restricted by inelastic effects, so any buckling 

effects will not be masked by yielding. 
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The results from these analyses are similar to those for the other cross sections in 

that the strength is never reduced by considering the effects of warping. However, 

there is an interesting development in that there is a large range of beam lengths 

and axial load ratios for which there is almost no change in capacity ratio, Rw, 

when considering warping deformations. This occurs for the case of fixed-based 

columns (Figures 4-9, 4-10, and 4-11) and pin-based columns with plates capable 

of restraining warping (Figure 4-13). This is not evident in those frames with 

simply supported column bases (Figure 4-12).  These all occur in those cases with 

longer beam lengths and higher axial load ratios. This indicates that the critical 

buckling modes for this frame do not include a torsional component, and are 

unaffected by the beam’s warping. 

The frames with pinned column supports do not show marked differences in the 

capacity increase over the range of analysed conditions. There is an increase in 

capacity throughout, but the surface plot of the analysis (Figure 4-12) shows 

gradual changes to the increases, and a flatter profile throughout. This indicates 

that the frame strength is influenced primarily by the columns being stiffened 

torsionally by the rest of the frame. The exception to the trend mentioned earlier 

in pinned ends occurs here. A comparison of the pinned base plate (Figure 4-14) 

and the pinned, but warping rigid plate (Figure 4-15) shows that there is little to 

no change in buckling capacity. This likely illustrates a change of buckling modes 

from torsional buckling to flexural (major axis) buckling for these conditions. 

4.4.3  Deep beams 

The majority of the work done by other researchers up until the start of the 21st 

century was done considering the horizontal and vertical members in the frame 

were of the same cross section. This was primarily the focus of the work 

described herein as well, but the work of Chi and Uang (2002) and Zhang and 

Ricles (2006) indicate that the use of a larger beam can produce post-failure 

behaviour that shows significant warping displacements. 
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Tests conducted by Zhang and Ricles (2006) include composite action between 

the steel members and concrete floor slab. While this is the construction method 

that would be expected in real structures, the floor slab would stiffen the beam’s 

top flange, reducing the amount of warping experienced by the frame. It would 

also provide significantly higher warping resistance to all members of the frame at 

service, and perhaps ultimate, load levels. 

Extending the observation made earlier that if one were to look at achieving the 

simultaneous buckling of both column and beam, a larger beam would not require 

central bracing that was required for the more slender beam modelled above. This 

type of frame needs to be examined. 

A representative frame was modelled, using W200x27 vertical members with a 

W690x125 horizontal member. The model was constructed similarly to those 

mentioned previously, and included the warping displacement correction 

described earlier. The results from these analyses are plotted similarly in Figure 4-

16, for a representative fixed based frame, Figure 4-14 for a pinned base frame, 

and Figure 4-15 for a warping rigid base. 

The frames with simply supported columns have no significant differences for the 

two different warping restraint base conditions. There is a marked difference in 

the fixed base column condition (Figure 4-16), where noticeable increases in 

capacity for short beam lengths and high axial loads contrast with relatively (and 

absolutely) low increases for long beams and high moments. This may reflect that 

the influence of warping effects is less significant for long beams. 

4.4.4  Braced frames 

Braced frames are more susceptible to out-of-plane buckling, as the P-∆ effects 

are not as severe for strong axis buckling. The columns of these structures are 

more susceptible to weak axis buckling, and also lateral-torsional effects. A set of 

frames, similar to the unbraced set described above but braced against sway by a 

single restraint at the right column, were analysed using the same conditions and 
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measurements as above. Both of the single cross section frames are presented – 

the W200x27 frame and the W360x134 frame. The results of these analyses are 

presented as Figures 4-17 through 4-23. 

One important difference from the unbraced frame analysis previously conducted 

with the torsionally sensitive W360x134 members is the disappearance of the 

“plateau” where the buckling capacity is unchanged by the inclusion of warping. 

A comparison of Figures 4-10 and 4-20 illustrate this difference. This change 

supports the presumption that the buckling modes for those conditions are not 

affected by warping, and indicates that these cases are dominated by the strong 

axis buckling of the columns, as suggested by Wongkaew (2000). 

Contrasting the braced and unbraced frame behaviour for the frame composed of 

W200x27 sections for both columns and beam draws a different picture. The 

unbraced frame behaviour (exemplified by Figures 4-3 and 4-4 for 4 m columns 

with fixed bases) and that of the braced frame (the analogue braced frame is 

shown in Figure 4-18) shows negligible differences in the values of the warping 

effect. This forces the conclusion that for frames with columns that buckle about 

the weak axis, the braced condition does not significantly affect the effect of 

warping transmission. The effect of column length in braced frames can be seen 

by comparing Figure 4-17 with Figure 4-18. The frame with a longer column 

length has a primary buckling mode based on the column for a longer range of 

beam lengths than frame with shorter columns. This difference in behaviour can 

also be seen in the frames with W360x134 members, represented in Figures 4-20 

and 4-21. 

A comparison between Figure 4-18 and Figure 4-19 illustrates that the effect of 

base plate restraint can be fairly important. In Figure 4-19, the frame with a 

pinned column base shows a uniform strength increase, indicating that a single 

buckling mode is dominant for all beam lengths considered. This is also reflected 

in Figures 4-22 and 4-23, where the single mode is dominant over the lengths and 

loads investigated. There is a small exception to this, in Figure 4-23, for the 
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region of the graph representing high axial load and long beams, where another 

mode appears dominant. As this mode is not affected by warping restraint, this 

mode would be a flexural buckling mode in the columns. 

4.4.5  Effect of warping direction 

There are two conditions for continuity of the warping displacements (Basaglia, et 

al. 2007), one where the warping displacements may be transferred directly 

through the joint, and another where they reverse sign. Which of these are active 

depends on the joint configuration. The typical displacement is the one in which 

the warping displacements are directly transferred. The reversed direction occurs 

with some diagonal stiffener configurations. The cases presented below have been 

modelled with both direct warping displacements and reversed warping 

displacements. The reversed warping was also modelled to determine if this 

condition could be forcing instability in the rare conditions where it is produced. 

The warping displacements have been noted as being either directly applied or 

reversed in direction when they are transmitted through the connection. For the 

most part, the differences between the results from these two analyses are small. 

The effect is plotted for the fixed and pinned column support conditions for the 

two column lengths of 3000 and 4000 mm. The frames composed of W200x27 

members in Figures 4-24 (fixed base, unbraced); 4-25 (pinned base, unbraced); 4-

26 (fixed base, braced); and 4-27 (pinned base, braced). The W360x134 frames 

are shown in Figures 4-28 (fixed base, unbraced); 4-29 (pinned base, unbraced); 

4-30 (fixed base, braced); and 4-31 (pinned base, braced). 

The fixed base columns show more complex surfaces for these plots. In part, this 

seems to change in concert with the dominant buckling mode. There does not 

appear to be one warping direction that is more advantageous for strength. In 

some cases, such as Figure 4-27, the direct warping transfer provided more 

strength (ratios larger than one) and in others, exemplified by Figure 4-28, the 

reversed warping provided more strength (ratios smaller than one). In most cases 
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the range was about 4% strength increase for either condition. However, the 

torsionally sensitive cross section (W360x134) did display more variance. The 

range is from 1.04 in Figure 4-25 to 0.926 in Figure 4-30. 

4.4.6  Effect of column length 

Several column lengths (2 m, 3 m, 4 m, 5 m and 6 m) were also modelled to 

examine the effect that the relative lengths of beam and columns have on the 

effects of mutual warping restraint on the system buckling loads. The results from 

selected frames are presented in Figures 4-32 to 4-48. Each curve on the charts 

represents the change in frame capacity for varying beam lengths for a single 

column length. The relevant column length, in millimetres, is noted in the legend 

of the graph. A single series of curves present the strength increases for a 

particular α (ratio of applied axial load to buckling capacity) value. These charts 

show the increase in buckling capacity for the direct warping transmission case. 

For each frame, three load cases are selected (those being axial loads of 30, 50, 

and 70 percent of the buckling load, i.e. α = 0.3, 0.5 and 0.7). These are 

representative of the general trends for most of the frames analysed. Only two 

column base conditions, fixed and pinned, are represented in the graphs. The 

condition of pinned base, with a rigid warping condition, follows the same general 

trend as the pinned base case. 

The most obvious effect is that shorter columns experience a larger change in 

buckling strength compared to that of longer columns for pinned base columns. 

Examples of this can be found in Figures 4-34, 4-38, 4-40, 4-42, 4-45, 4-46, and 

4-48. This effect agrees with the general thought that warping is more important 

for shorter members and any effects, beneficial or adverse, would be larger for 

shorter members. However, there are exceptions to this trend, particularly in the 

case of fixed column bases and shorter beam lengths, such as can be found in 

Figure 4-32. 
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Some of the gains do seem unrealistic. There appears to be an increase to more 

than twice the capacity for short columns and short beam combinations. Figure 4-

48 is likely the best example of this. It must be noted that for simply supported 

member, Equation [3.5] predicts buckling capacities to rise to over 2 if the 

warping were completely suppressed at both ends. The apparent greater 

stabilisation effect for shorter columns must be countered by noting that in 

practical columns, yielding and plastic behaviour will dominate the capacity. 

Thus, these “gains” are not achievable in real frames. 

A comparison of normalised beam lengths, that is where the data is graphed with 

the beam length divided by the column length, shows some common patterns for 

the capacity changes. One striking example is for the frame with W200x27 

columns and a W690x125 beam, shown in Figures 4-36 and 4-37. The pattern 

shown there is quite similar to the increase in buckling capacity for a beam with 

simple supports and warping restraint shown in Figure 3-1. The same comparison 

made with other pairs of graphs shows other interesting trends.  

Frames with pinned column bases show no definite trends whether the beam 

lengths are normalised or not. The comparable pairs of figures: Figures 4-34 and 

4-35 using W200x27 for all members; and Figures 4-38 and 4-39 for W200x27 

columns with W690x125 beams, show the same lack of sensitivity to a change in 

beam length. While the corresponding normalised graph is not shown for Figures 

4-42 and 4-45, the graphs also show no apparent correlation between beam length 

and frame resistance. 

The frames constructed with the W360x134 members, presented in Figures 4-40 

and 4-41 for the unbraced, fixed base configuration, show that for high axial 

loads, the transition to the strong axis buckling mode occurred at the same beam 

length. As this buckling mode dominates the high axial load region of the graph, 

the normalised graph does not show a good correlation between the behaviours of 

the frames based on the normalised beam length. The corresponding braced frame 

shown in Figures 4-46 and 4-47 shows no similar transition to strong axis 
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buckling, and presents a better correlation for the normalised beam length graph. 

The unrealistic strength increase for short columns is also shown in Figures 4-46 

and 4-47.  

The behaviour of the braced frame with fixed column bases composed of 

W200x27 members, is presented in Figures 4-43 and 4-44. Figure 4-43 shows that 

behaviour of the frames with longer beams and lower axial loads matches when 

the absolute beam lengths are compared. However, the transition point between 

buckling modes matches the normalised beam length much better, as shown in 

Figure 4-44. 

In all, there are features in the behaviour of the frames that are better represented 

by the normalised beam lengths, particularly for the transition between column 

buckling and beam buckling modes. The beam buckling mode correlates more to 

the absolute beam length. The frames with no rotational support at the base do not 

show a trend with either the absolute or normalised beam lengths. 

4.5 Summary 

Finite element analysis can capture the interaction of members in buckling when 

considering moment (rotation) transfer at the member connections, as illustrated 

in section 4.2 above. This has been extended later in this chapter to look at the 

transfer of bi-moments (or flange warping displacements) across member 

connections. 

This chapter also presented the results of a series of frame models that measured 

the contribution of mutual warping restraint on the elastic stability of steel 

moment frames. The five basic frames models presented are summarised in Table 

4-2. 

For each frame, there are three base conditions modelled for the columns: fixed, 

simply supported and simply supported but rigid with respect to warping. There 

are 5 column heights (lengths) represented 2, 3, 4, 5 and 6 m, and 13 beam 
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lengths: 3 m to 15 m, with a 1 m increment. There were 11 load cases that 

spanned the buckling capacity of the frame, considering the axial load in the 

columns to be from zero load to full buckling capacity. For each of these load 

cases, the columns were loaded in a combination of axial and flexural loads that 

would bring them close to the buckling point. This was done to measure the 

influence of the warping deformations at or near the critical loads. Three types of 

warping transmission at the beam-to-column connection are also considered for 

the comparison: no warping transmission (the base case), full direct warping 

transmission, and fully reversed warping transmission. There are small 

differences between the latter two cases, but these are not significant when 

compared to the differences between the case of no warping consideration and full 

treatment of the warping displacements. 

In almost all cases, the buckling capacity of the frame is increased when the 

warping of the beam and that of the column are jointly considered, when 

compared to the typical case where warping is neglected in the analysis of the 

frame. Transitions between various buckling modes are apparent in many analysis 

results, where the buckling capacity shows differing profiles. A striking example 

is Figure 4-11, where three modes are evident. However, some frames simply 

show a monotonic buckling increase over the capacity determined without 

consideration of the transmission of warping displacements. 

There are no cases where the buckling strength is decreased. However, there are 

cases where there is no apparent increase in capacity when warping transmission 

is considered. Some columns in unbraced frames will be controlled by strong axis 

column buckling and are unaffected by the strengthening effect provided to other 

frames by warping. However, bracing the frame will tend to change the dominant 

buckling mode of columns to a lateral (weak axis) or, in some extremely rare 

cases, torsional buckling mode. 
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Table 4-1 Lateral buckling strength for various configurations of members. 

Restraint conditions Ultimate Strength 

co-linear beams 1.078 

joints restrained for torsion for horizontal member 1.011 

joints restrained for torsion for vertical members 1.079 

joints restrained for torsion for all members 1.162 

joints restrained only by member interaction 0.917 

 
 
Table 4-2 Frames presented herein. 

Column Section Beam Section Unbraced Braced 

W200x27 W200x27 X X 

W200x27 W690x125 X – 

W360x134 W360x134 X X 
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Figure 4-1 Models for interactive lateral torsional buckling. (a) co-linear beams 
after Schmitke and Kennedy (1985) (b) braced frame formed with same beams 
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Figure 4-2 Portal Frame 
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Figure 4-3 Strength increase due to warping, 4 m columns, W200x27 beams and 
columns, fixed base. 
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Figure 4-4 Alternate view of Figure 4-3, strength increase due to warping, fixed 
base 
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Figure 4-5 Strength increase due to considering warping, 4 m columns, W200x27 
beams and columns, pinned column base (flexible base plate) 
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Figure 4-6 Strength increase, 4 m columns, W200x27 beams and columns, rigid 
base plate (pinned end, warping rigid). 
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Figure 4-7 Transition length from torsional to flexural (weak axis) buckling for 
all standard rolled sections. 
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Figure 4-8 Torsional to flexural buckling transition and column slenderness 
reduction. 
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Figure 4-9 Strength increase due to considering warping, 4 m columns, 
W360x134 beams and columns, fixed column base. 
 



 104 

1.05
1.2

1.15

1.11.05

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

α, axial load/P
e

Beam length, mm

R
w

 1

 1.1

 1.2

1.1

 
 

 0  0.2  0.4  0.6  0.8  1

α, axial load/Pe

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

B
ea

m
 le

ng
th

, m
m

1.2

1.15

1.1

1.05

1.1

1.1

1.05

 
Figure 4-10 Strength increase due to considering warping, 3 m columns, 
W360x134 beams and columns, fixed column base. 
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Figure 4-11 Strength increase due to considering reversed warping deformations, 
3 m columns, W360x134 beams and columns, fixed column base. 
 



 106 

1.6

1.5
1.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

α, axial load/P
e

Beam length, mm

R
w

 1.3

 1.4

 1.5

 1.6

1.4

 
 

 0  0.2  0.4  0.6  0.8  1

α, axial load/Pe

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

B
ea

m
 le

ng
th

, m
m

1.6

1.5

1.4

1.4

 
Figure 4-12 Strength increase due to considering reversed warping deformations, 
4 m columns, W360x134 beams and columns, simply supported, flexible column 
base. 
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Figure 4-13 Strength increase due to considering reversed warping deformations, 
4m columns, W360x134 beams and columns, simply supported, rigid column 
base. 
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Figure 4-14 Strength increase due to considering reversed warping deformations, 
4 m columns, W690x125 beams and W200x27 columns, pinned, flexible column 
bases. 
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Figure 4-15 Strength increase due to considering reversed warping deformations, 
4 m columns, W690x125 beams and W200x27 columns, pinned, warping fixed 
column bases. 
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Figure 4-16 Strength increase due to considering warping deformations, 3 m 
columns, W690x125 beams and W200x27 columns, fixed column bases. 
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Figure 4-17 Braced frame, all members W200x27, 3 m columns, fixed column 
base. 
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Figure 4-18 Braced frame, all members W200x27, 4 m columns, fixed column 
base. 
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Figure 4-19 Braced frame, all members W200x27, 4 m columns, simply support 
column base. 
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Figure 4-20 Braced frame, all members W360x134, 3 m columns, fixed column 
base 
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Figure 4-21 Braced frame, all members W360x134, 4 m columns, fixed base, 
reversed warping. 
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Figure 4-22 Braced frame, all members W360x134, 4 m columns, simply 
supported base. 
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Figure 4-23 Braced frame, all members W360x134, 4 m columns, warping rigid 
base. 
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b) 
Figure 4-24 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W200x27 frame, fixed column bases, unbraced. 
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b) 
Figure 4-25 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W200x27 frame, simply supported column bases, unbraced. 
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b) 
Figure 4-26 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W200x27 frame, fixed column bases, braced. 
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b) 
Figure 4-27 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W200x27 frame, simply supported column bases, braced. 
 



 122 

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

α, axial load/Pe
Beam length, mm

R
at

io

 0.92
 0.94
 0.96
 0.98

 1

 
a) 

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

α, axial load/P
e

Beam length, mm

R
at

io

 0.96
 0.97
 0.98
 0.99

 1

 
b) 
Figure 4-28 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W360x134 frame, fixed column bases, unbraced 
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b) 
Figure 4-29 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W360x134 frame, simply supported column bases, unbraced 
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b) 
Figure 4-30 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W360x134 frame, fixed column bases, braced 
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b) 
Figure 4-31 Ratio of strengths for direct warping to reversed warping, a) 3 m and 
b) 4 m columns, W360x134 frame, pinned column bases, braced. 
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Restraint Effect at α=0.3
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Figure 4-32 Length effects, W200x27 members, fixed base, unbraced frame. 
Column lengths are shown in the figure legends. 
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Restraint Effect at α=0.3
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Figure 4-33 Length effects, W200x27 members, fixed base, unbraced frame, 
normalised 
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Restraint Effect at α=0.3
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Figure 4-34 Length effects, W200x27 members, pinned base, unbraced frame 
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Restraint Effect at α=0.3
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Figure 4-35 Length effects, W200x27 members, pinned base, unbraced frame, 
normalised 
 



 130 

Restraint Effect at α=0.3
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Figure 4-36 Length effects, W200x27+W690x125 members, fixed base, 
unbraced frame 
 



 131 

Restraint Effect at α=0.3

1

1.05

1.1

1.15

1.2

1.25

1.3

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Beam Length / Column Length

R
w

2000
3000
4000
5000
6000

 

Restraint Effect at α=0.5

1

1.05

1.1

1.15

1.2

1.25

1.3

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Beam Length / Column Length

R
w

2000
3000
4000
5000
6000

 

Restraint Effect at α=0.7

1

1.05

1.1

1.15

1.2

1.25

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Beam Length / Column Length

R
w

2000
3000
4000
5000
6000

 
Figure 4-37 Length effects, W200x27+W690x125 members, fixed base, 
unbraced frame, normalised 
 



 132 

Restraint Effect at α=0.3
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Figure 4-38 Length effects, W200x27+W690x125 members, pinned base, 
unbraced frame 
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Restraint Effect at α=0.3
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Figure 4-39 Length effects, W200x27+W690x125 members, pinned base, 
unbraced frame, normalised 
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Restraint Effect at α=0.3
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Figure 4-40 Length effects, W360x134 members, fixed base, unbraced frame 
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Restraint Effect at α=0.3
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Figure 4-41 Length effects, W360x134 members, fixed base, unbraced frame, 
normalised 
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Restraint Effect at α=0.3
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Figure 4-42 Length effects, W360x134 members, pinned base, unbraced frame 
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Restraint Effect at α=0.3
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Figure 4-43 Length effects, W200x27 members, fixed base, braced frame 
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Restraint Effect at α=0.3
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Figure 4-44 Length effects, W200x27 members, fixed base, braced frame, 
normalised 
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Restraint Effect at α=0.3
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Figure 4-45 Length effects, W200x27 members, pinned base, braced frame 
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Restraint Effect at α=0.3
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Figure 4-46 Length effects, W360x134 members, fixed base, braced frame 
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Restraint Effect at α=0.3
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Figure 4-47 Length effects, W360x134 members, fixed base, braced frame, 
normalised 
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Restraint Effect at α=0.3
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Figure 4-48 Length effects, W360x134 members, pinned base, braced frame 
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5. Joint Element with Warping Capability 

The proper continuity of warping displacements across member discontinuities 

(structural connections) is not ensured with the use of finite element beam 

elements, particularly for stiffened connections. This is due to the constraints on 

the beam element, which include the lack of a mechanism to model the restraint 

provided by the stiffeners in the joint. To circumvent this problem, a joint element 

was developed to join beam elements and maintain warping displacements 

through the connection. 

The new element accepts the warping degrees of freedom from the connected 

beam elements and redistributes the warping to all connected members. This also 

permits small torsional displacements within the joint itself. However, there is no 

flexural nor translational stiffness provided by the element. 

The basis for the element is Abaqus’ shell element, S4. This element has several 

features that were deemed essential. Primarily, the element supports the “drilling” 

degree of freedom. This is the capability to support a moment whose action is 

within the plane of the element itself. Alternatively, this can be described as a 

moment vector perpendicular to the element. 

As this element provides a flexible interface between the connected members, it 

will reduce the warping resistance experienced by the members at the joint. It acts 

as a partially restrained connection, allowing the connected members to warp with 

a “spring” type interface between them, rather than the rigid connection described 

in Chapter 4. 

The new element forms the basis of a new set of elastic buckling analyses to 

investigate the effect of considering warping continuity on the elastic stability of 

frames. 
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5.1 Other joint elements 

Special elements to model joints and connections in structures have been 

available for some time, though the frequency of their use seems to be increasing. 

These elements permit the analyst to model the characteristics of the connections 

between members, without the need for modifying the member elements 

themselves. However, there are arguments made for considering special cases in 

member elements, such as plastic hinges, as special joint elements (Krishnan, 

2004). 

Krishnan (2004) describes a special element that models the panel zone of a 

connection – the area of “web” that the connecting members share – in steel 

moment frames. This permits analysis of the shear deformations in the joint and 

how this affects the connected members and the frame behaviour. 

A similar joint for reinforced concrete structures is described by Lowes, et al. 

(2004) for earthquake analyses. As reinforced concrete members and structures 

are usually more massive than their counterparts in structural steel, the 

connections take up considerable distances in most directions, affecting the 

geometry of the frame model. With this joint element, the reinforced concrete 

beams and columns can be modelled using their clear spans between joints and 

the joints can be modelled individually to account for local effects within the 

joint. 

5.2 The shell element 

The joint element discussed here is composed of S4 shell elements within 

Abaqus. This element is chosen in preference to other element types, such as the 

hexahedral “brick” element, as the shell element permits the direct inclusion of 

moments as well as forces. This allows the direct mapping of the flexural and 

axial degrees of freedom of the beam element to the corresponding degrees of 

freedom in the shell element. In order to accommodate all of the degrees of 

freedom required, a shell element supporting all six degrees of freedom in the 
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translational and rotational directions is selected. As the plate thicknesses are 

small compared to the other dimensions in the joint, thick element theory, where 

higher order effects on the stresses through the element’s thickness are 

considered, are not applicable and thin shell theory will be used.  

The shell element stiffness matrix can be thought of as being divided into two 

sub-elements, one for the out-of-plane (bending and shear) actions and one for the 

in-plane (membrane) actions. These are shown in Figure 5-1. One of the in-plane 

actions is the drilling degree of freedom that permits a torque to be applied 

perpendicularly to the element, causing rotation of the element in its own plane. 

This is very important in the analyses performed herein, as the drilling degree of 

freedom will map to one of the flexural degrees of freedom of the connecting 

beam element or the beam’s torsional degree of freedom. 

As the sensitivity of the entire joint element relies on that of the base element 

type, an analysis of the suitability of the elements was conducted. The available 

shell elements from Abaqus, S4 and S4R, are compared to one used in the 

program Aladdin (Austin, et al. 2000) as developed by Jin (1994), in Table 5-1. 

This table compares the displacements for a cantilever beam example used in Jin 

(1994). The structure being modelled is a plate acting as a cantilever beam 12 

inches deep, 48 inches long and 1 inch thick. The material used has a modulus of 

elasticity of 30000 psi, and a Poisson’s ratio of 0.25. A point load of 40 pounds is 

applied to the tip. The theoretical solution is 0.3553 inches of deflection. The first 

four models use a mesh of square elements. The two columns denoted by an 

asterisk (*) employ a mesh of irregularly spaced nodes, as shown in Figure 5-3. 

There are some problems noted with S4R, the element with a reduced number of 

integration points. This element uses one integration point in its formulation, 

compared to four in the case of S4. This reduced number of integration points can 

soften the element’s apparent stiffness, as shown by the very large displacements 

for small numbers of elements. While the error does disappear with more 

elements in the joint model, the S4R does not perform as well as the full 
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integration element, S4. Therefore, the S4 element was selected as the basis for 

the assemblage. 

However, there is less error if the structure is modelling using more elements. A 

comparison of models of an open shape with several elements shows less 

difference for models using S4 and S4R elements. The structure in question is a 

cantilever beam composed of an I-shaped cross section, with flange widths of 10 

inches, a web depth of 10 inches, plate thicknesses of 0.25 inches and a length of 

40 inches, The material has a modulus of elasticity of 10000 ksi and a Poisson’s 

ratio of 0.3. The loading is composed of two opposing point loads applied in the 

plane of the flanges of 1600 pounds each, producing a torque on the beam. The 

mesh size in Table 5-2 is twice the number of elements across the height of the 

web or the number across the width of the flange. The number of elements along 

the beam is the same as the number across the flange. The results as reported by 

Jin (1994) and results from Abaqus are summarised in Table 5-2. 

5.3 The assemblage, or joint element 

The beam elements that are used to model the beam-columns in the frame 

support, among other degrees of freedom, the warping degree of freedom. The 

other degrees of freedom, bending and lineal displacements, will be transmitted 

directly between members at the nodes of the model. The warping degrees of 

freedom for connected members connect via the joint element. In order for the 

warping displacements to be transmitted from one member to another at a joint in 

a frame, the joint element must accept the warping displacements from both 

members. 

The joint itself is to be modelled as an assemblage of shell elements, each using 

the S4 element described above. However, the natural degrees of freedom of the 

shell elements and those it is meant to capture from the beam element are not 

compatible, in that there is no direct method of connecting the beam element’s 

warping degree of freedom to the shell element. Also, the number of elements in 
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the joints would outnumber those in the rest of the frame. This would mean that a 

fairly simple structure’s model could become overly complex with the inclusion 

of the joint element, and the results of interest – those of the beam-columns – 

would be lost in the detail results of the joint element. To alleviate these 

problems, some additional computation is required to reduce the complexity of 

the joint element and to align its degrees of freedom to those applied from the 

beam elements. 

The joint configuration chosen for this element is one where the flanges of the 

column are continued vertically through the connection, and “continuity plates”, 

or horizontal stiffeners, are welded to both sides of the web and to the column 

flanges. There are, of course, many configurations that can be used in these 

connections, as shown in Figure 3-7, but the “box” configuration was chosen as it: 

represents a fairly common configuration; is compatible with multilevel frames; 

and provides physical continuity between all nodes. The last condition would not 

be satisfied for a mitre joint, for example. This geometry is shown in Figure 5-2. 

Each of the four faces of the element formed by one of the “flange plates” will 

need to provide support for a degree of freedom that connects with an attached 

beam-column element’s warping degree of freedom. While not modelled in this 

element, it is possible that the out-of-plane faces may need to provide this degree 

of freedom if there were the need to model torsional warping continuity for beam 

framing into the “open” sides of the joint. This configuration is unlikely, as the 

beams framing in that direction would typically use only a shear connection. It is 

not practical to establish a moment connection for beams framing into the weak 

axis of a column. 

Figure 5-4 shows the degrees of freedom for one “face” of the joint assemblage 

that provide the warping displacement to support the warping degree of freedom 

of the beam element that frames into that face. A unit warping displacement from 

the beam will cause unit deformations at each corner of the plate forming this 

face, in the directions shown. This will provide a twisting displacement in the 
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assemblage that will produce the deformed shape shown in Figure 5-5 (in the 

same orientation as Figure 5-4) and in Figure 5-6 (looking into the open face of 

the joint). Note that both Figures 5-5 and 5-6 have the warping deformation acting 

in the opposite direction to the degrees of freedom shown in Figure 5-4. 

The joint in the frame is to be considered as a rigid joint with respect to bending, 

so that the connected members are considered to rotate together. Therefore, the 

joint element will not be rotationally flexible. Also, the panel zone is not 

considered to be flexible with respect to the axial or shearing loads in the 

connected member. Therefore, the translational and rotational degrees of freedom 

are all expressed at the centre of the assemblage, represented by the three lines at 

the centre of the assemblage shown in Figure 5-7. The diagonal lines indicate the 

face to which warping is applied and the arrows at the corner nodes show the 

direction of the degree of freedom expressed in the joint element for the warping 

behaviour of the beam column. 

5.3.1  Sensitivity test 

There are a number of considerations for determining the appropriate density for 

the mesh of the joint element. While the final condensed matrix is the same size, 

that being determined by the number of degrees of freedom that are expressed, it 

still reflects the complexity of the parent mesh used. More complex meshes will 

take more time to generate initially, but should not affect the general solution 

time, once condensed. However, the complexity of the original joint model should 

be kept reasonably low. 

The joint element was modelled using S4 elements and various configurations to 

find how large the aggregate element should be, in terms of the number of shell 

elements. The base configuration is as shown in Figure 5-2 with four elements 

across the face of the joint element. The base number of elements of the joint 

element was varied to produce the results in Figures 5-8, 5-9 and 5-10. For the 

first two figures, the base model employed 32 elements across the face of the 



 149 

joint, and only reflected S4R elements. Figure 5-9 presents the results of the 

analysis excluding the outlier point in Figure 5-8, that being the point for 2 

elements across the face of the section. This better illustrates the trend of the other 

points. A more complex model using 64 elements as the basis was also modelled 

using a later version of Abaqus, version 6.7, and the results of that analysis are 

presented in Figure 5-10. Two element types were used for the models – the fully 

integrated S4 shell element and the reduced integration S4R shell element. The S4 

element shows a larger error for coarse meshes than does the S4R element. 

However, the S4 element shows a smoother, more predictable curve. The 

differences in error between the S4 and S4R elements are very small after 

reaching 28 elements. A comparison of these two studies indicates that the mesh 

may be not yet be optimal, in that the error is still not zero even with the 64 

element mesh density. However, the time required to condense one of these larger 

matrices is several times the solution time for the entire frame model. 

A total of eight S4 elements across the face of the joint was chosen as a 

compromise between solution time and error in the joint model. The error is 

approximately 3% but the number of degrees of freedom is reasonable at about 

3300. While the S4R elements appear to perform better at this density, their 

tendency to produce a more erratic error curve was considered to be a factor 

against using them. 

5.4 Substructuring 

Substructuring is the process used by Abaqus to generate the joint element. 

“Substructure” is the term used in the Abaqus documentation for a technique that 

other finite element analysis products call “super-elements.” A substructure is an 

assembly of several individual finite elements for which only certain degrees of 

freedom are “exposed” and available for use in the global stiffness matrix 

(Abaqus, 20021). The other degrees of freedom of the individual elements are 

hidden internally by a process called “static condensation” (Bathe and Wilson, 

                                                 
1 Section 7.2, “Substructuring” Abaqus Analysis User’s Manual 
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19762). This can be thought of as the solution of the stiffness matrix formed by 

the individual elements for unit displacements applied in succession to the desired 

degrees of freedom, while the other expressed degrees of freedom have a zero 

displacement. As the degrees of freedom from the substructure are more closely 

connected than would be the degrees of freedom of a regular element matrix, the 

condensed stiffness matrix will typically be more fully populated than standard 

element stiffness matrices. That is, there will be relatively fewer zeroes in the 

condensed matrix than a typical element stiffness matrix. 

The substructuring capabilities of the finite element analysis program were used, 

rather than assembling the super element “manually” and then eliminating the 

undesired degrees of freedom. The manual method would require incorporating a 

subroutine that pre-calculates the reduced stiffness matrix in a closed form 

solution that incorporates the local geometry, such as plate thicknesses and 

widths, and material properties, such as the modulus of elasticity, as parameters. 

This approach is known in Abaqus as a “user element.” This method would be a 

more complex process for the analyst, requiring generation and compilation of the 

routine outside Abaqus. The substructure method is implemented entirely within 

Abaqus. 

To map the warping degree of freedom from the beam element to the 

displacements in the substructure element, the corner displacements in the 

direction of the beam’s axis are constrained to be equal to each other through the 

use of the *EQUATION3 command. The *EQUATION constraint sets up linear 

equations where the displacement of one degree of freedom is tied to other 

degrees of freedom. In this case, each alternate corner node of the joint element is 

set to have equal and opposite displacements in the direction of the attached 

beam. This requires three constraint equations per face, and removes the relevant 

degrees of freedom for the first node in each equation. 

                                                 
2 Section 10.3.1, pages 388-395 
3 Section 20.2.1, “Linear constraint equations” Abaqus Analysis User’s Manual 
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( )( ) ( )( ) ( )( )( )1112126 −−++++= yzzxyx NNNNNNDOF  [5-1] 

 

The total number of degrees of freedom in the full joint element can be found 

from Equation [5-1] where Nx is the number of elements across the face of the 

joint, Ny is the number of elements “down” one vertical face and Nz is the number 

along a horizontal face. The total number of degrees of freedom would increase at 

about the same rate as Nx
2. An aspect ratio of 3:2 for both Ny: Nx and Nz: Nx 

produces a total of 870 degrees of freedom for 4 elements across the joint face, 

3318 for 8, 12966 for 16 and 203910 for 64. The solution of a stiffness matrix of 

this size would be relatively slow, especially when compared to the stiffness 

matrix for a small frame. 

While it may be noted that the final element still only expresses 10 degrees of 

freedom, no matter how detailed the underlying geometry, this more complex 

geometry still needs to be calculated. The large original matrix must be condensed 

to the smaller desired matrix and this requires processing time, even if it is done 

once per typical joint. 

As the forcing degree of freedom for the substructure is still a force, while that on 

the warping degree of freedom is a bi-moment, the stiffness from the substructure 

must be converted from a force to a bi-moment by multiplying by the flange 

width, b, and depth between flange centroids, h, as per Equation [5-2] from Chen 

and Atsuta (1977)4. This simplification can be done as the flange moments, Mft in 

the top flange and Mfb in the bottom flange, will be opposite and equal to each 

other and equal to b P, where P is the flange tip force. 

[ ] hbPhMMM
h

M flfbft ==−=
2ω  [5-2] 

 

                                                 
4 Equation 6-9, page 273. 
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5.4.1  Deficiencies of the joint element as a 

substructure 

The connection element is not as accurate as detailed models of the connection 

using shell or solid elements to model all the members and the connections. The 

major reason for this is imposed by the limitation that the beam elements framing 

into the connection consider warping only by a single degree of freedom. While 

this is consistent with other simplifications of the beam element, it does not allow 

for the discontinuous warping of the cross section, experienced when the 

connection has differing support conditions for opposite flanges. An example of 

this is the connection at the top “corner” of a frame, with the lower flange of the 

horizontal member connected rigidly to the vertical member, and the upper flange 

free. In this instance, the upper flange has a larger distortion than the lower 

flange. At a joint where the vertical member is continuous, the warping of the 

beam flanges are closer to being equal. (See Table 3-1 for numerical values of this 

phenomenon.) 

The joint element also does not fully capture the torsion within the joint. This 

could be incorporated fairly readily by expressing the torsional, or drilling, degree 

of freedom of each flange plate in the substructure. However, this almost doubles 

the nodes and, thus, the complexity of the joint. However, because the joint 

covers a very short length, the warping behaviour would be the primary torsional 

component for the joint, and the additional effects from twisting within the joint 

would be small. 

The substructure cannot be used with Eigenvalue buckling analyses in Abaqus as 

the program does not generate the geometric stiffness matrix for the element, and 

will not allow the element to act as a complex “spring” restraint otherwise. 

While the constraint equations use the local coordinate system for the element in 

defining the warping degree of freedom as local displacement degrees of freedom, 

these are translated into global coordinates in Abaqus in general analyses. When 
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the local coordinates do not align with the global coordinate system, as is the case 

with non-linear geometric analyses involving the co-rotational aspects of the 

elements, there is a cross-link between the degrees of freedom at a node that are 

related to the substructure’s faces, and should be handled separately. The two 

supposedly independent degrees of freedom become related to each other through 

the global degrees of freedom. This cross-linking leads to a situation whereby the 

local degrees of freedom become related to each other, and ultimately to 

themselves, causing a dilemma that Abaqus cannot resolve. This is an over 

constrained problem, however the cross-linking of the degrees of freedom is only 

required for the static condensation, and if the resulting reduced stiffness matrix 

was used in place of the substructure, this over-constraint would be avoided. 

As noted previously, the stiffness from the substructure must be converted from a 

force degree of freedom to a bi-moment degree of freedom. 

To avoid the above mentioned problems, the joint element is converted from the 

substructure to a user element that allows eigenvalue analysis. This also negates 

the problem of cross linking of constraints, as the exposed degrees of freedom can 

be manipulated outside the constraints of the super element. 

The element does not fully incorporate the interaction that the joint experiences 

with other forces, particularly the bending moments that are applied to the faces 

of the joint. To partially account for these, the plates forming the box element 

were restrained from bending about their weak axis at the edge of the joint. This 

would result from the restraint provided to the plates by the moment causing 

strong axis bending in the joint, already considered in the rigid connection formed 

by the beam-column members framing directly into each other at the joint. This 

modification did not greatly affect the stiffness of the joint element. 

5.4.2  Using the substructure in Abaqus 

While other finite element analysis programs employ this method of 

substructures, albeit under other names, each has its own terminology and 
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syntaxes for using the process in its program. A short description of the specifics 

of the Abaqus implementation is included here to explain the process. 

The substructure is generated the same way that any model is created in Abaqus. 

The nodes are laid out to follow the geometry of the model. The elements are 

meshed between these nodes and are given the material and geometric section 

properties they require. A “load step” is then run to perform the static 

decomposition of the substructure to produce the reduced stiffness matrix with the 

expressed degrees of freedom. The substructure is stored as a database file in the 

same directory as the analysis will be executed. 

Once the substructure has been formulated, it is treated as another element. The 

substructure nodes that support expressed degrees of freedom are matched with 

nodes in the full model. That is, the analyst must place nodes in the full model 

that are at the same locations as those in the substructure. These nodes are used to 

define the orientation of the substructure as an element in the full model. The 

degrees of freedom at these nodes will be connected to the degrees of freedom 

from the connecting elements. This sharing of degrees of freedom would typically 

be done through constraint equations. Simply using the same nodes as the beam 

would not connect the flexural and axial degrees of freedom. Also, if the 

substructure element is defined at one location, the element must be “translated” 

to the appropriate location with a “*SUBSTRUCTURE PROPERTY” command. 

As the translation is represented by the distances moved in three dimensions from 

the original definition to the new location, it is convenient to define the 

substructure centered at the origin, and use the nodal coordinates at which the 

members meet for the translation distances. 

A PERL script to generate the required substructure in Abaqus commands is 

included in Appendix “A”. PERL is a programming language that is available for 

most computer platforms (Wall et al., 2000).  
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The stiffness matrix from a substructure is generated by the use of the Abaqus 

command “*SUBSTRUCTURE MATRIX OUTPUT” during the run that creates 

the substructure.  

5.5 Frame analysis with the joint element 

To illustrate the effect that the stiffened connection has on frame stability, the 

frames composed of W200x27 members and columns with fixed base plates, 

discussed in the previous chapter, were re-analysed incorporating the substructure 

element in the model. 

In the first step of the analysis, the joint element was formed as a substructure and 

its stiffness matrix was generated. In this particular case, the stiffness matrix was 

collected for the joint element having only two expressed degrees of freedom: the 

warping degree of freedom for the vertical face; and the warping degree of 

freedom for the horizontal face. These two degrees of freedom provide three 

stiffness components: one for each warping degree of freedom, plus an interaction 

between the two warping degrees of freedom. As the warping deformation 

produces no net force on the element, the warping stiffness can be thought of as a 

single degree of freedom stiffness, affecting only the displacements of the joint 

element. The stiffness matrix from the substructure was multiplied by the depth 

and width of the connection as described in Equation [5-2] to maintain 

consistency between the expected “force” degrees of freedom. 

These three stiffness components were applied as three springs on the frame. It is 

also possible to use the stiffness matrix directly as a “user element”, but since 

both approaches result in the same stiffness being applied to the model, the same 

buckling capacities result from either procedure. If any stiffness component is 

negative, the user element would have to be used, but all stiffness values are 

positive for this substructure. 

Unfortunately, the Abaqus spring element will not directly operate on the warping 

degree of freedom, so an indirect method of connecting the springs was required. 
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New “dummy” nodes were created to match each of the end nodes of the beam 

elements meeting at the joint. The warping degrees of freedom at the end nodes of 

the beam elements meeting at the joint were each tied to a supported (i.e. lineal) 

degree of freedom of one of these dummy nodes. The direct warping stiffness 

from the corner joint matrix was attached as a SPRING1 element to the dummy 

node. The SPRING1 element is an element that connects to one degree of 

freedom and acts as a spring to produce a force on that degree of freedom when it 

is displaced. This is considered to be a spring that links the degree of freedom 

with the “ground”. This physically represents the restraint of the joint node on the 

warping degree of freedom of the beam or column. The interaction between the 

warping of the elements meeting at the joint is expressed as a SPRING2 element 

between the two supported degrees of freedom of the dummy nodes. As a 

comparison to the SPRING1 element, the SPRING2 element links two degrees of 

freedom and generates a force between them as the two degrees of freedom 

experience displacement. This model is illustrated as schematic in Figure 5-11. 

The rectangular beam elements are connected to the dummy nodes via constraint 

equations, linking the beam elements’ warping degrees of freedom to the dummy 

nodes’ lineal degrees of freedom. The SPRING1 elements connect the dummy 

nodes to ground and the SPRING2 element connects the two warping degrees of 

freedom. 

The results of these analyses are displayed in Figures 5-12 to 5-16. These figures 

show the relative change (always an increase) in buckling capacity between 

frames that are modelled without a connection between members on their warping 

degrees of freedom, and members that have their warping degrees of freedom 

connected through a joint element. The frames are the same general format as 

those presented in Chapter 4 – a beam supported by two identical columns. Each 

graph shows the results for one column height, but with several beam lengths. The 

horizontal axes of the graphs are the beam length and ratio of the applied axial 

load to the column buckling load, Pe, considering the effective length of the 

columns (an effective length factor of ky = 0.7 is used). The immediate 

observation is that the strength increase is significantly lower than that found in 
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the rigidly connected frames presented in Chapter 4. Apparently, the rigid 

connection over-estimates the warping restraint when compared to the joint 

element. 

However, it is difficult to completely restrain, or in this case transmit, warping 

displacements in structures. Work by Ojalvo and Chambers (1977) included 

testing of I-shaped beams with channel sections welded to the beam ends. These 

channel sections were intended to prevent warping of the flanges as the webs of 

the channels were welded to the beam flange tips, and the channel flanges were 

welded to the web of the beam. This is a greatly stiffer connection than any 

modelled herein. The test results are summarised in Table 5-3. The first two 

columns in the table designate the particular test by beam section and length. The 

third column is a ratio of the test load to the unrestrained buckling capacity. The 

fourth column is the ratio of the theoretical buckling moment for a beam with 

warping completely restrained to the buckling moment for a simply supported 

beam. The last column presents the ratio of these two values – the test result over 

the fully restrained moment capacity. This shows that the very stiff restraints were 

able to provide only about 90% of the theoretical value. 

The rigid connections between the members’ warping degrees of freedom used in 

Chapter 4 illustrate the maximum effects of mutual warping interaction. The 

weaker interaction demonstrated by the joint element indicates that this maximum 

may be significantly more than the amount of warping that can be transmitted by 

the connection. 

As the increase in stiffness is small, there is not a great deal of detail visible in 

Figures 5-12 to 5-16. However, the buckling multiplier is largest for shorter 

beams at low axial load ratios, as in Figure 5-12 for the shortest column, and 

dropping to one or near one at the maximum axial load ratio. As the columns 

increase in length, the increase in strength affects longer beams, as can be seen in 

the progression from 3 m columns in Figure 5-13, where only the shorter beam 

lengths are affected, through the 4 m columns presented in Figure 5-14, showing a 
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rather steep drop-off in strength increase for longer beams. The trend is almost 

complete in Figure 5-15, for 5 m columns where only the longest beams at the 

lowest axial load show the decrease in strength and finishes in Figure 5-16, where 

the entire graph shows a uniform plateau for buckling capacity increase. 

As a check on the influence of the stiffness of the joint element, the stiffness of 

the springs was increased by a factor of 1000 and another set of analysis models 

generated. These are presented in Figures 5-17 to 5-21 and show a significant 

increase in buckling strength. With the larger increase in capacity, the progression 

of a change in strength following the length of the column from 2 m in Figure 5-

17, to 3 m in 5-18, 4 m in 5-19, 5 m in 5-20 and 6 m in 5-21 is illustrated better 

than with the unmodified element. This parallels some of the findings in the 

rigidly connected frames discussed previously, where the ratio of the length of the 

beam to the length of the column was shown to be a predictor of this buckling 

behaviour. 

5.6 Summary 

This chapter outlined the creation of an assemblage of elements to represent the 

warping at a stiffened moment connection in a steel frame. It also presented how 

this could be adapted to form a mechanism to directly model the warping stiffness 

at the joint in a frame situation. 

The joint element acts as a spring, and is much more flexible than the direct 

connections provided by rigidly connecting the beam-column elements together. 

This reduces the strengthening contributions of the mutual warping interaction. 

Because of the reduced stiffness introduced by the joint element when compared 

to the rigidly connected warping degrees of freedom in the analyses presented in 

Chapter 4, it is likely that the results from simple buckling analyses connecting 

the members together may be optimistic. However, the frame does not experience 

any weakening due to this interaction, strengthening the conclusion that the 

warping interaction in frames is not deleterious to the frame behaviour, and that 
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ignoring that contribution in the design of frames is not unconservative. Also, the 

strengthening effect considering the flexibility of the joints appears to be 

negligible, at least in some cases. 
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Table 5-1 Comparison between Aladdin and Abaqus elements, tip deflection of a 
fixed cantilever with rectangular cross section (inches) 

Meshes 4 x 1 8 x 2 16 x 4 4 x 1* 8 x 2* 

Jin (1994) 0.34 0.35 0.35 0.31 0.35 

 % error 3.04% 1.38% 0.282% 13.71% 2.76% 

Abaqus S4 Element 0.35 0.35 0.36 0.55 0.38 

 % error 1.83% 0.619% 0.873% 54.5% 7.94% 

Abaqus S4R Element 55.01 0.47 0.39 33.30 0.47 

 % error 15400% 33.4% 8.98% 9270% 33.4% 

 

Table 5-2 Lateral displacement of flange tip for I-shaped cantilever experiencing 
torque, (inches) 

Meshes 2 4 8 16 

Jin (1994) 0.139 0.147 0.149 0.150 

ANSYS 5.0 (From Jin, 1994) 0.063 0.111 0.137 0.146 

SAP 90 (From Jin, 1994) 0.104 0.131 0.144 0.148 

Abaqus S4 Element 0.140 0.149 0.152 0.153 

Abaqus S4R Element 0.181 0.158 0.154 0.154 
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Table 5-3 Results from tests from Ojalvo and Chambers (1977) compared to 
theoretical warping fixed beam. 

Shape 
Normalised 
Length (L/a) 

Normalised 
Test Strength 

Theory 
Ratio Test / 
Theory 

W21x49 2.73 3.28 3.62 0.91 

 4.10 2.89 3.15 0.92 

 5.47 2.63 2.82 0.93 

 6.83 2.46 2.61 0.94 

 8.20 2.34 2.46 0.95 

W30x99 2.18 3.45 3.85 0.90 

 3.27 3.09 3.42 0.90 

 4.36 2.81 3.08 0.91 

 5.45 2.61 2.83 0.92 

 6.54 2.47 2.65 0.93 

W18x50 2.26 3.42 3.81 0.90 

 3.39 3.05 3.37 0.90 

 4.52 2.78 3.03 0.92 

 5.65 2.58 2.79 0.93 

 6.78 2.45 2.61 0.94 

W24x100 1.89 3.55 3.97 0.89 

 2.84 3.22 3.58 0.90 

 3.79 2.94 3.24 0.91 

 4.74 2.73 2.98 0.92 

 5.68 2.58 2.78 0.93 

W21x112 1.91 3.55 3.96 0.90 

 2.86 3.22 3.57 0.90 

 3.81 2.94 3.24 0.91 

 4.77 2.73 2.97 0.92 

 5.72 2.58 2.78 0.93 

W12x53 1.67 3.63 4.06 0.89 

 2.51 3.33 3.71 0.90 

 3.34 3.06 3.39 0.90 

 4.18 2.85 3.13 0.91 

 5.02 2.68 2.92 0.92 

Average    0.9142 

CoV    0.0170 
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a) 

 

b) 

Figure 5-1 Shell element with degrees of freedom separated into a) flexural (out 
of plane) and b) membrane (in-plane) degrees of freedom  
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Figure 5-2 Joint element mesh, 4 elements across the face 
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Figure 5-3 Irregular mesh for cantilever (Jin, 1994) 
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Figure 5-4 Displacement degrees of freedom in the joint element that form a 
single warping degree of freedom.  
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Figure 5-5 Joint element with warping displacement applied to one face, through 
the unified degree of freedom. 
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Figure 5-6 Side view of element with displacement on the warping degree of 
freedom. 
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Figure 5-7 Schematic of joint element showing the linear degrees of freedom 
expressed for the warping displacement. 
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Figure 5-8 Error in the S4R shell element model, relative to results from 32 
element wide model. 
 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

4 6 8 10 12 14 16

Number of Elements Across Face

E
rr

o
r 

fr
o

m
 3

2 
E

le
m

en
t 

M
o

d
el

 
Figure 5-9 Relative error in the S4R shell element model, based on 32 divisions 
on the edge 
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Figure 5-10 Error in corner displacement relative to 64 elements across the face 
of the joint element. 
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Figure 5-11 Schematic of spring model. 
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Figure 5-12 W200x27 frame – fixed base 2000 mm columns, joint element. 
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Figure 5-13 W200x27 frame – fixed base 3000 mm columns, joint element. 
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Figure 5-14 W200x27 frame – fixed base 4000 mm columns, joint element. 
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Figure 5-15 W200x27 frame – fixed base 5000 mm columns, joint element. 
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Figure 5-16 W200x27 frame – fixed base 6000 mm columns, joint element. 
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Figure 5-17 W200x27 frame – fixed base 2000 mm columns, stiffer joint 
element. 
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Figure 5-18 W200x27 frame – fixed base 3000 mm columns, stiffer joint 
element. 
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Figure 5-19 W200x27 frame – fixed base 4000 mm columns, stiffer joint 
element. 
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Figure 5-20 W200x27 frame – fixed base 5000 mm columns, stiffer joint 
element. 
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Figure 5-21 W200x27 frame – fixed base 6000 mm columns, stiffer joint 
element. 
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6. Inelastic frame behaviour 

The frame analyses performed in this work also included consideration of 

inelastic behaviour. This is an important aspect of the behaviour of steel 

structures, and is an important limit state for structural stability, for all forms of 

buckling. Part of the reason for the importance of inelastic behaviour is that an 

attractive aspect of steel in structural design is the ductility that steel provides 

beyond its first yield. However, inelastic behaviour is not accounted for in the 

linear buckling analyses, nor fully in the joint element analyses presented in 

Chapter 5. This work was done as the second phase of this project (MacPhedran 

and Grondin, 2006). 

Inelastic lateral torsional instability has been investigated for over 60 years 

(Galambos, 1998). The results of investigations on several restraint conditions 

have been presented in numerous texts such as Chen and Lui (1991) and Trahair 

(1993). The results presented here show the same effect as shown elsewhere – the 

inelastic behaviour places limits on the maximum strength of the frame. The 

analyses also show interesting behaviour in the frame as the dominant modes 

change from those determined by stiffness to those determined by yield strength. 

This helps illustrate post-buckling behaviour of the frame. 

6.1 Inelastic buckling considerations 

While elastic buckling and fully plastic behaviour are generally well understood 

and defined limit states for structures, their inelastic buckling is not as 

straightforward. Several approaches have been proposed to approximate inelastic 

buckling behaviour in design. Examples for lateral-torsional buckling behaviour 

in steel beams include ECCS (1976), which gives a smooth curve over the full 

range of behaviour, and CSA-S16 (CSA, 2005) and the AISC Specification 

(AISC, 2005) which both provide a three part design curve with specific sections 

considering fully plastic behaviour, inelastic buckling and elastic buckling joined 

at limiting values for the slenderness ratio. Both the ECCS and S16 approaches 
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use a slenderness ratio based on the fully plastic capacity of the beam divided by 

the elastic buckling capacity. The AISC approach is based on the length of the 

beam and specified lengths below one of which the beam is considered to develop 

its full plastic moment capacity and beyond the other where elastic buckling is 

assumed to be unaffected by residual stresses. 

Part of the work presented herein was to investigate the effect of end conditions 

that provide varying amounts of warping restraint on the inelastic lateral torsional 

buckling of beams. These end restraint conditions of members in steel frames 

were generated using several common frame joint geometries as shown in Table 

6-1. These were modelled in the context of a simple single bay, single storey 

frame (Figure 6-1). Various beam lengths were used in the frame, incorporating 

the effect of elastic and inelastic lateral torsional buckling as well as attainment of 

the plastic moment capacity as the ultimate limit state. 

The elastic buckling moment for a beam, not considering higher order effects, can 

be represented as 

2 2 2

2 2 2 2
1y

crw
y w

� EI GJ � a
M = +

k L k L
⋅  [6-1] 

 

where the value a, the torsional bending constant, relates both material and cross-

section properties, including Cw, the warping constant, and is expressed as 

( ) ( )wa E C G J=  The effective length factors, ky and kw, associated with the 

lateral buckling and warping lengths, are both 1.0 for a simply supported beam. 

The flexural component can be removed from the flexural torsional buckling 

capacity for a restrained beam by dividing by the capacity for a similar simply 

supported beam, leaving only the effective length factors related to the end 

restraint conditions, and a value relating L to the torsional constant (L/a). This 

ratio was expressed previously as Rw in Equation [3-4]. 
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However, when yielding is considered, the effects of axial, flexural and warping 

strains and stresses become much more tightly coupled. This is because the strains 

developed from all loading conditions can interact to cause differing yielding 

patterns, and the effects of warping and flexure can not be treated separately as 

they can in the elastic case. This interaction of yielding patterns leads to complex 

yield surfaces as illustrated by Daddazio et al. (1983) who studied warping in Z 

sections. The work of Yang et al. (1989), although less broad in its scope than that 

of Daddazio et al., shows the complex interaction of yielding in various modes for 

I shaped sections. Both of these works illustrate that the interactions between 

yielding stresses due to the applied loadings are too complex to uncouple easily. 

For this reason, the results of the elastic eigenvalue analyses of the frames should 

not be directly compared to the inelastic instability analyses. However, these can 

be contrasted to show the general effects of inelastic behaviour and how it would 

affect the predictions based on the elastic behaviour. 

Current research on the topic of inelastic buckling, such as Trahair and Hancock 

(2004) and Ziemian et al. (2008) use reduced stiffness to predict buckling, but 

include the use of elastic end restraints. 

It is usual to include residual stresses in studies of inelastic buckling, as these tend 

to reduce the overall buckling capacity of the members. However, the softening 

effect was considered to reduce the influence of the warping displacements from 

the perspective of stability. In order to maximize the effects of the warping 

interactions, residual stresses are not included in the models here. It is recognised 

that this will over-predict the capacity for the structure compared to the real 

structure, the effects under investigation will be increased by neglecting the 

residual stresses. 

6.2 Modelling 

The finite element analysis reported in this chapter was conducted using the finite 

element program Abaqus, version 6.4, running on Sun W1100z computers. The 
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frame models were discretised using the shell element type S4R. A discussion of 

S4R and S4 elements was presented in Chapter 5. However, there are two points 

not included there. First, the reduced integration allows the shell element to avoid 

shear locking to which the fully integrated element may be prone. However, there 

can be some zero-mode instability problems with the reduced integration element 

(also known as hour-glassing). This mode is caused by a lack of apparent in-plane 

shear stiffness with the integration scheme. Abaqus provides a mechanism to 

resist this by providing extra in-plane stiffness. This has been shown to avoid 

hourglassing with minimal side effects. The element has a large displacement 

formulation, with finite strains. The S4R element has been used successfully to 

model the complex behaviour of structural members with geometric and material 

non-linear behaviour in stiffened steel plates (Sheikh et al., 2003), in beam – 

column – infill plate assemblies (Schumacher et al., 1999) and multi-storey steel 

plate shear walls under cyclic loading (Behbahanifard, et al. 2003). While it has 

been noted in the previous section on the elastic corner element that the S4R 

element has some disadvantages when compared to the S4 element, these were 

not considered to be relevant for this part of the work. 

The beam and columns of the portal frame model were meshed using 4 shell 

elements across the flange width and 6 elements through the web. Element 

dimensions along the length of the beam were determined to produce an element 

aspect ratio of 1.00 in the flanges. The aspect ratio for the elements in the web 

was 1.05. The web elements were slightly larger in the through-beam direction 

than they were along the beam length. The mesh for the box joint with diagonal 

stiffener is presented in Figure 3-6. 

Five joint conditions, illustrated in Table 6-1, were explored in the study. While 

the mitred end condition is not a usual connection detail in hot rolled steel 

construction, it has been extensively studied in previous works, for example 

Krenk and Damkilde (1991). The column through and beam through conditions 

represent moment connections with no stiffeners. The others are moment 

connections with varying amounts of stiffeners added. 



 181 

Figure 6-1 shows a typical portal frame used for this investigation. The columns 

were 2000 mm long and the beam length varied from 1000 mm to 8000 mm. This 

range was used to include a wide range of beam behaviour, from full plastic 

moment to elastic lateral torsional buckling. 

The beam and columns cross-section chosen for this study was a W200x27 wide 

flange hot rolled section. This section was chosen for its large torsional bending 

constant, noted as “a” in this work. The value of “a” is 1088 mm for this section. 

It is also one of the sections that will experience lateral torsional buckling when 

used as columns in side sway permitted frame. This is a class 2 (compact) section 

in flexure for yield strengths up to 460 MPa. The critical unbraced length (Lu) at a 

yield strength of 300 MPa is 2.04 m, based on CAN/CSA–S16–01 (CSA, 2005). 

This is the length at which the member is assumed to be too short to buckle either 

elastically or inelastically, and at which it will carry its full plastic capacity. 

The frames were loaded with a uniformly distributed load acting vertically down 

through the shear center of the beam. The analyses determine the critical load in 

terms of a multiplier for this load. 

Each frame was analysed using the elastic eigenvalue solver of Abaqus, which 

provided an indication of the elastic buckling (or bifurcation) load for later 

comparison to the inelastic analysis results. The eigenvalue analysis also 

produced a set of eigenvectors used for creating initial imperfections in the model. 

For the models represented here, only the first beam buckling mode was 

incorporated in the initial imperfection. These initial imperfections were scaled to 

limit the maximum initial imperfection to 1/200 of the member length (0.005L). 

Higher modes were included in preliminary models in this part of the study, but 

these did not appreciably affect the buckling loads, nor the deflected shape. The 

higher mode imperfections had been scaled to half of the first mode value. A 

nonlinear analysis was then performed, using these initial imperfections, an elastic 

/ perfectly plastic material model using two yield strengths of 300 MPa and 
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400 MPa, and updated Lagrangian formulation technique using the modified Riks 

procedure (Riks, 1984) available in Abaqus. 

Two sets of end restraints were modelled on the beams: full restraint and flange 

restraint. In the flange restraint set, the out-of-plane displacement of the bottom 

flange of the beam was restrained all along the beam-to-column connection. This 

boundary condition was implemented to prevent out-of-plane buckling of the 

columns while allowing twisting via the distortion of the beam’s web at the 

supports. For the full restraint set, all nodes of the cross-section of the beam at the 

beam-to-column joints were constrained to move only within the plane of loading, 

thus preventing twisting of the beam’s cross-section without preventing warping. 

These two end restraint conditions are presented in Figure 3-6, in Chapter 3. 

6.2.1  Analysis results 

The elastic buckling analyses are relatively easy to interpret. The result is a single 

load multiplier for each buckling mode extracted. The inelastic buckling results 

are more difficult to interpret in that there is no easily identifiable point of 

instability for some cases. The load versus lateral displacement loads must be 

examined to determine the “buckling load”. 

The plots for applied load and lateral displacement are presented in Figures 6-2 

through 6-11 for the cases analysed. In each set the upper diagram is for a frame 

constructed of 300 MPa steel and the lower is for 400 MPa steel. Figures 6-2 

through 6-6 are for the fully restrained beam end, and Figures 6-7 through 6-11 

are for the analyses where only the bottom flange was restrained. The lateral 

displacement plotted on the horizontal axis was obtained at the centre node of the 

beam. The vertical axis on the graphs represents the load proportionality factor – 

the load multiplier for the initial loading. 

Figures 6-2 and 6-7, which represent the shortest beam lengths (2 m), show the 

expected buckling phenomenon. The load rises to a peak, and then falls off. Later 

in the load path, the beam centre moves back to its original position with no 
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change in load. This is due to a decrease in the lateral stiffness of the member, 

which can result from either reaching the buckling capacity of the member or the 

plastic moment capacity. At that point, the beam does not have the stiffness to 

hold the beam away from the plane of the frame, and will return back to a zero 

lateral deflection. This can be a fairly abrupt transition, also known as a snap-

though buckling mode. 

The stiffer joint details retain this behaviour in the next beam length of 4 m, 

shown in Figures 6-3 and 6-8, but the more flexible details show an increased 

load accompanying the return of the beam centre towards its original position, 

particularly in Figure 6-8. This trend continues in the 6 m beam frames, shown in 

Figures 6-4 and 6-9, to the point where the load resistance developed on the return 

path is higher than the load experienced in the rise to the peak load. 

In all of the preceding figures, the frames reach a peak load, and the load drops 

before the beam starts its return to the original position. This peak load is 

considered the failure load and all of the other behaviour – the load decrease, the 

reversal in lateral deflection and any subsequent strength gains – are all post-

failure mechanisms. 

This trend does not appear to be continued in the longer beams. Figures 6-5, 6-6, 

6-10, and 6-11 show the behaviour of frames where the load is increasing up to 

the point of reversal of lateral deformation, and then continues to increase after 

the point on the curve where the reversal occurs. Because the reversal in lateral 

displacement indicates a change in the stiffness of the structure, the load at which 

the reversal occurs was considered to be the failure load. The failure load may 

have been before this, even though the load carried by the structure was still 

increasing, but the load – displacement relationship does not give a good 

indication of where the failure should be considered to have happened. The results 

of the analyses considering these criteria for determining the failure load will be 

used in the following section. 
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The process is shown by the progression of an analysis with a typical frame. In 

the series of pictures starting with Figure 6-12, a frame formed with a 6 m beam 

and using a yield strength of 300 MPa is followed through the load-displacement 

path. In the first figure, lateral movement has just begun. The analysis results for 

this frame were presented in Figure 6-9(a) as the beam through end condition. In 

Figure 6-13, the lateral displacement of the beam continues, even with large 

rotations the frame capacity is increasing. After the peak loads are achieved, the 

situation shown in Figure 6-14 is approached, where the beam’s lateral movement 

is back towards its original location. In the final stages, illustrated in Figure 6-15, 

the beam and frame have failed completely. The beam’s axes have changed 

orientation at midspan and the columns have buckled. The beam’s centre is 

almost back to the original plane of the frame. 

The results of the analysis for the stiffer end conditions of the entire beam end 

being restrained are presented in Figure 6-16 for a 300 MPa yield strength and in 

Figure 6-17 for 400 MPa yield strength. These charts represent the strength 

determined from all of the frame analyses previously presented in Figures 6-2 

through 6-11. The horizontal axis is the length normalised by the torsional 

bending constant, a. As the value of a is just over one meter for the members 

considered in these graphs, so these are close to the length in meters. The values 

are converted from the uniformly distributed load, w, in the solution to an end 

moment of 122wL , the theoretical maximum elastic end moment. For both yield 

strengths, there is a noticeable difference between the beam capacity based on the 

end restraints. This is considered an indication that the moments at the ends of the 

beam could not reach the full capacity for those end details and the connections 

acted as partially restrained details, offering a reduced end capacity. The rapid 

drop in capacity for the shortest beam in all cases is due to the location of failure 

moving to the column from the beam. The higher strength steel has a higher 

capacity than the 300 MPa steel, as expected. 

The inelastic analyses are compared to the elastic eigenvalue analyses in Figures 

6-18, for 300 MPa, and 6-19, for 400 MPa. There is a trend in all of the frames 



 185 

analysed for the ratio of results of the inelastic analysis to those of the elastic 

analysis to decrease linearly with the length of the beam. While this is somewhat 

expected, the inelastic strength shows a higher capacity than the elastic capacity 

for longer beams. This is due to the post-buckling strength in the beam permitting 

the beam to carry more load than predicted by the buckling analysis. 

The same data is presented for the weaker end restraint condition where only the 

bottom flange at the beam-to-column connection is restrained from displacing out 

of the plane of the frame. The moment capacities, as described above, are 

presented in Figure 6-20, for 300 MPa yield strength, and Figure 6-21, for 

400 MPa. These figures show a larger difference between the “weaker” joint 

details of column through, beam through and mitre joints. However, Figures 6-22 

and 6-23 show that the same general trend is present as in the results from the full 

beam end restraint presented in Figures 6-18 and 6-19. 

The yield strength of the material does influence the buckling strength of the 

beam. Given two yield strengths of 300 MPa and 400 MPa, the ratio of the critical 

loads for similar conditions were in proportion to the square root of the ratio of 

the yield strengths, as predicted by Kirby and Nethercot (1979). Table 6-2 

presents the critical moments for five beam lengths and five joint types and the 

ratio between the moments for the two yield strengths presented. The ratio of the 

critical strengths for the 300 MPa steel versus the 400 MPa steel has a mean value 

of 0.832 with a standard deviation of 0.036. The approach from Kirby and 

Nethercot indicates a value of 0.866. This indicates that the phenomenon 

investigated for most frames is actually inelastic buckling, and not plastic hinge 

formation. For shorter (and stiffer) beams, the ratio decreases. For extremely short 

beams, inelastic buckling would be replaced by full section yield, and the strength 

ratios would become that of the yield strength ratio of 0.75.   

An extensive numerical investigation of elastic lateral torsional buckling of beams 

was presented by Nethercot and Rockey (1971). This was one of the first studies 

of elastic lateral-torsional buckling to use computer methods, and was completed 
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before the release of the first beam-column elements that supported warping 

(Barsoum, 1972). The technique used approximate methods for determining the 

effects of loading and restraint and determined effective moment factors for 

various lengths of beams. One of the results from that investigation was an 

equivalent moment factor (Cb) for uniformly distributed loads and various end 

support conditions. For beams loaded with a uniformly distributed load at their 

shear centres, these factors are expressed as Equation [6-2] for beams fixed at 

their ends with respect to warping, and Equation [6-3] for beams fixed at their 

ends with respect to bending about their weak axis. The class II and III 

designations are those of Nethercot and Rockey. 

( ) ( )aLaL
Cb

263.1106.4
2.1

2
++=  (Warping fixed: Class II) [6-2] 

 

( ) ( )aLaL
Cb

02.0184.1
9.1

2
+−=  (Laterally fixed: Class III) [6-3] 

Figures 6-24 and 6-25 present a comparison of Cb, as proposed by Nethercot and 

Rockey with the results from the elastic eigenvalue analysis conducted in this 

study. The curves from Nethercot and Rockey appear as solid lines for laterally 

and warping fixed conditions. The data presented here appear as broken lines. The 

three weaker end conditions are found to be considerably weaker than the laterally 

fixed condition presented by Nethercot and Rockey. The stiffened connections 

appear to be at least as strong as the laterally fixed condition, but no end condition 

appears to provide full warping restraint. However, all those conditions follow the 

same trends as the curves presented by Nethercot and Rockey for a laterally fixed 

condition. The stronger end joint conditions from this study lies between 

Nethercot and Rockey’s curves for the laterally fixed and warping fixed 

conditions. 

While it was expected that the short beams would experience more benefit from 

the connections that have higher warping rigidity, the results appear to show that 
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the longer members also experience proportionally greater benefits from the 

stiffer connections. This is due to the greater stiffness in connecting the beam to 

the columns, and the resulting increase in mobilising the post buckling strength of 

the full structure for the beam. 

As a comparison, the current Canadian structural steel design standard, 

CAN/CSA S16-01 (CSA, 2005) recommends a value of 1.0 for Cb (or in the 

nomenclature of S16, ω2) in that the end moments are equal. There is no explicit 

guidance for load cases such as the uniformly distributed load applied here. This 

will be remedied in a future edition to account for the moment distribution in 

similar cases. In any event, the value of ω2 cannot exceed 2.5, while Nethercot 

and Rockey’s values can exceed 2.5. In all, the design standard is conservative in 

its recommendations. 

6.3 Summary 

This chapter presents the results of a series of inelastic analyses for a set of steel 

frames to determine the effect of plasticity on the behaviour of the frames. The 

results of the inelastic analyses were compared with bifurcation or eigenvalue 

buckling analyses of similar frames. 

The inelastic analyses do not have a definitive point of instability in the same 

fashion that bifurcation buckling does, and the point for instability was chosen 

considering the shape of the graph of load and lateral displacement. This could 

give some optimistic values when compared to elastic buckling analyses for long 

members, as there can be some significant post-buckling strength reserve in 

beams experiencing lateral-torsional buckling (Trahair, 1996). As well, as has 

been noted earlier in this work, there can be an increase in buckling capacity for 

shallower sections due to the pre-buckling deflection of the member. (The first 

approximation for the W200x27 sections investigated here would be on the order 

of a 7% increase.)  
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As could be expected, the inelastic effects dominate the behaviour of shorter 

members, and significantly reduce the capacity from the predicted elastic 

buckling capacity. Longer members experience some benefit in the inelastic 

analysis over the elastic buckling analysis, due to effects ignored in the buckling 

analysis. These would include the effect of the relative stiffnesses about the major 

and minor axes of the member and the post-buckling increase in strength for 

beams, as discussed in Chapter 3. 

The weaker end conditions, the “column through”, “beam through” and mitre 

joints do not provide sufficient restraint to develop the strength predicted by 

current design equations. 

However, the major effect of inelastic buckling is the obvious one. As shown in 

Figures 6-18, 6-19, 6-22, and 6-23 the effects of plasticity significantly reduce the 

capacity of the structure for shorter members from that predicted by elastic 

buckling. As the warping effects predominate for shorter members, plasticity does 

negate at least some of the effects of warping restraint in increasing the buckling 

strength of steel members. However, there may still benefits for the frame’s 

stability to have greater warping restraint, even over the range of intermediate 

beam lengths. 
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Table 6-1 Frame joint configurations 

 

 

 

 

 

Mitre Joint Beam Through Box 

 

  

Stiff Box Column Through 
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Table 6-2 Summary of inelastic critical moments (kN m) and ratios for modelled 
yield strengths 
 

Beam Length (mm) 
Joint Type Yield Strength (MPa) 

2000 3000 4000 6000 8000 
300 30.0 32.5 32.5 30.6 28.7 
400 34.3 37.1 37.1 35.5 33.5 Beam Through 

Ratio 0.875 0.877 0.877 0.862 0.855 
300 46.5 41.0 37.1 33.0 30.0 
400 55.2 47.8 42.8 37.3 33.4 Mitre 

Ratio 0.842 0.858 0.867 0.885 0.898 
300 63.8 56.2 49.2 41.3 37.2 
400 80.1 67.9 59.4 50.1 45.1 Column Through 

Ratio 0.797 0.827 0.829 0.823 0.826 
300 74.4 69.3 62.1 52.3 47.2 
400 93.9 85.9 76.1 64.5 60.6 Box 

Ratio 0.793 0.807 0.816 0.812 0.779 
300 81.4 81.8 75.4 67.0 63.4 
400 104.6 101.9 92.0 84.6 80.2 Stiffen Box 

Ratio 0.779 0.803 0.819 0.792 0.791 
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Figure 6-1 Typical frame model, fully stiffened joints (box and diagonal 
stiffeners). 
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Figure 6-2 Results for 2000 mm beam second order analyses, full restraint. a) Fy 
= 300 MPa, b) Fy = 400 MPa. 
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Figure 6-3 Results for 4000 mm beam second order analyses, full restraint. a) Fy 
= 300 MPa, b) Fy = 400 MPa. 



 194 

a) 

Column
Lo

ad
 p

ro
po

rt
io

na
lit

y 
fa

ct
or

Lateral displacement, mm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  50  100  150  200  250  300

Beam
Mitre

Box

Stiff Box

 

b) 

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

Column

 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200  250  300

Beam

Mitre

Box

Stiff Box

 
Figure 6-4 Results for 6000 mm beam second order analyses, full restraint. a) Fy 
= 300 MPa, b) Fy = 400 MPa. 
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Figure 6-5 Results for 8000 mm beam second order analyses, full restraint. a) Fy 
= 300 MPa, b) Fy = 400 MPa. 



 196 

a) 

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250

Beam

Column

Mitre

Box

Stiff Box

 

b) 

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300

Beam

Column

Mitre Box

Stiff Box

 
Figure 6-6 Results for 10000 mm beam second order analyses, full restraint. a) Fy 
= 300 MPa, b) Fy = 400 MPa. 
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Figure 6-7 Results for 2000 mm beam second order analyses, bottom flange 
restraint. a) Fy = 300 MPa, b) Fy = 400 MPa. 



 198 

a)

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120  140  160  180

Beam

Column

Mitre

Box

Stiff Box

 

b)

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  20  40  60  80  100  120  140  160  180

Beam

Column

Mitre

Box

Stiff Box

 
Figure 6-8 Results for 4000 mm beam second order analyses, bottom flange 
restraint. a) Fy = 300 MPa, b) Fy = 400 MPa. 
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Figure 6-9 Results for 6000 mm beam second order analyses, bottom flange 
restraint. a) Fy = 300 MPa, b) Fy = 400 MPa. 



 200 

a) 

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200  250

Beam

Column

Mitre

Box

Stiff Box

 

b) 

Lo
ad

 p
ro

po
rt

io
na

lit
y 

fa
ct

or

Lateral displacement, mm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250

Beam

Column

Mitre

BoxStiff Box

 
Figure 6-10 Results for 8000 mm beam second order analyses, bottom flange 
restraint. a) Fy = 300 MPa, b) Fy = 400 MPa. 
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Figure 6-11 Results for 10000 mm beam second order analyses, bottom flange 
restraint. a) Fy = 300 MPa, b) Fy = 400 MPa. 
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Figure 6-12 Initial lateral displacement, in frame with 6 m beam and 2 m 
columns, out of plane restraint on all nodes at beam to column interface. All  
members W200x27, Grade 300W. 
 

 
Figure 6-13 Further lateral displacement, same frame as in Figure 6-12. 
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Figure 6-14 Beam returning towards plane of frame, same frame as in Figure 6-
12. 
 

 
Figure 6-15 Beam acting as catenary / weak axis bending, same frame as in 
Figure 6-12. 
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Figure 6-16 Moment capacity based on wl2/12 for a frame with full beam 
restraint, Fy=300 MPa. (l is the beam length, in mm)  
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Figure 6-17 Moment capacity based on wl2/12 for a frame with full beam 
restraint, Fy=400 MPa. (l is the beam length, in mm) 
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Figure 6-18 Second order inelastic analysis compared to elastic buckling capacity 
for a frame with full beam restraint, Fy=300 MPa.  
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Figure 6-19 Second order inelastic analysis compared to elastic buckling capacity 
for a frame with full beam restraint, Fy=400 MPa. 
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Figure 6-20 Moment capacity based on wl2/12 for a frame with bottom flange 
restraint, Fy=300 MPa. (l is the beam length, in mm) 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Length (L/a)

M
o

m
en

t 
ca

p
ac

ti
y,

 w
l2 /1

2 
(k

N
m

)

Beam Through
Mitre
Column Through
Box
Stiff Box

 
Figure 6-21 Moment capacity based on wl2/12 for a frame with bottom flange 
restraint, Fy=300 MPa. (l is the beam length, in mm) 
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Figure 6-22 Second order inelastic analysis compared to elastic buckling capacity  
for a frame incorporating bottom flange restraint, Fy=300 MPa,  
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Figure 6-23 Second order inelastic analysis compared to elastic buckling capacity  
for a frame incorporating bottom flange restraint, Fy=400 MPa, 
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Figure 6-24 Equivalent moment coefficient from elastic analysis, full beam 
restraint. 
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Figure 6-25 Equivalent moment coefficient from elastic analysis, compression 
flange restrained 
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7. Design Implications 

To this point, discussion has focussed almost exclusively on analysis. However, a 

guiding interest in structural engineering research is into applications for 

incorporating the results of structural analysis into the design of safer and more 

economical structures. 

Thus, the question that must now be answered is “what are the implications of this 

work on the design of structures?” The initial hypothesis of this study was that the 

interaction of warping between members of a structure would reduce the 

structure’s capacity. If this were the case, there would be a need to require a 

correction for member loads used in design. 

On the face of this presentation, the conclusion is that the effects of warping in the 

joints of steel frames can be safely ignored in their design. The analyses that 

include them are more complex than would normally be required for such 

structures and ignoring these effects is a conservative assumption, much like the 

current practice of ignoring any stiffening effects of major axis curvature. The 

warping effects also dominate the torsional behaviour for shorter members. This 

is the same range of lengths that are governed by local buckling. In the case of the 

members considered in this work, this means that at least part of the cross section 

will have yielded before the design capacity is achieved.  

7.1 Increase in Strength 

Current design methods already neglect a component of extra strength. If the extra 

stiffness of beams with respect to major axis curvature1 (as per Trahair and 

Woolcock, 1973) were included in design consideration, there could be significant 

increase of the member capacity. For example, using the moments of inertia for a 

W360x216 section would require a simple calculation to determine the ratio of the 

                                                 
1 Also noted in Chapter 3 of this work. 
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buckling moment, uM +  (calculated using the procedure proposed by Trahair and 

Woolcock), to the nominal lateral-torsional buckling moment, 0uM . 
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This would increase the elastic buckling moment by over 25%, and thus increase 

the design capacity for any but the shortest members, for which the inelastic 

behaviour would govern. However, this is not included in standard practice 

(MacPhedran and Grondin, 2008). 

The calculation to determine the strength increase due to the inclusion of the 

warping contribution is much more involved than the relatively simple Equation 

[3-6], and would provide a much smaller increase in strength. The results from the 

previous chapter show increases only of the order of a few percent, and those are 

for shorter members, where plasticity consideration are more important than the 

elastic buckling strength. 

7.2 Post Failure Considerations 

While not part of the scope of this project, a discussion of the tests from Chi and 

Uang (2002) and Zhang and Ricles (2006) was raised earlier. These tests looked 

at the effect of plastic hinging and large rotation of reduced beam sections 

(typically used as “fuses” in seismic resisting frames) on the behaviour of a frame. 

There was significant plastic deformation of the members involved, mostly 

resulting from the localised warping of the connection, following plastic hinging 

in the adjacent reduced beam sections. These tests were conducted past the point 

that normal design methods would consider the ultimate strength of the frame 

members. The warping displacements experienced in those tests would be 

considered to occur after structural failure. There may be a need for these 

displacements to be considered for the structural “robustness” or structural 
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integrity design of the structure to ensure that extreme loading events do not cause 

disproportionate failure. 

7.3 Design Interaction Equations 

S16-01 (CSA, 2005) standard has a separate equation that considers lateral 

torsional buckling in beam-columns that will not experience local buckling before 

the development of full plastification of the cross-section (noted as Class 1 or 

Class 2 sections). This equation was introduced in S16.1-M89 (Kennedy, Picard, 

and Beaulieu, 1990) to address previous problems with lateral torsional buckling 

in S16 (Trahair, 1986; Kennedy and Qureshi, 1988). The current equation uses 

“shape” specific factors to reduce the moment contribution to the beam-column 

equation of 0.85 for strong axis bending and (0.60 + 0.40λy), but not greater than 

0.85, for weak axis bending. These mirror the factors used for the strength 

interaction equation, which in turn reflect approximate linear expressions for the 

idealized plastic behaviour. The strength relationships are based on earlier plastic 

design expressions, Equations 7-2 and 7-3, (ASCE, 1971)2. Previous editions of 

S16, from 1984 (CSA, 1984) and dating back to 1974, used factors of 1.0 for 

stability checks (MacPhedran and Grondin, 2007). The current S16 also uses 

factors of 1.0 for sections that will experience local buckling between the 

conditions of first yielding of the cross section and full plastic behaviour of the 

cross section (Class 3 sections). 
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A case can certainly be made for the moment ratio reduction factors if the 

members are reasonably short, that is, if they are governed by inelastic or fully 

                                                 
2 Page 137 
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plastic behaviour. Longer, or more slender, members will act in a fashion closer to 

the fully elastic behaviour, so that the inelastic effects, and thus the reduction 

factor, are reduced. The increase in the moment ratio factor for weak axis bending 

indicates that this has been considered in the equations.  

However, the S16 cross section strength curve (Equation [2-9 (a)]) 

approximations appear to be unconservative for low ratios of P/Py (Galambos and 

Surovek, 2008)3. This may appear to conflict with data from Dawe and Lee 

(1993), which show that the test data fall mostly above the design curve4. This 

discrepancy can be explained by noting the ultimate flexural strength of a number 

of short beam tests exceeding the calculated plastic moment. This can be found in 

collections of such data, as in White and Kim (2004), but is also shown in two of 

the tests by Dawe and Lee. 

The American steel design specification (AISC, 2005) approximates the 

interaction curve with the two part equation in Equation [7-4]. For the portion of 

the curve with higher axial loads (Equation [7-4 (a)]) a reduction factor of 8/9 is 

applied to the factored moments. This equation is slightly more conservative than 

the S16 equivalent, as the AISC expression uses moment reduction factors of 

(approximately) 0.89 compared to the maximum S16 factor of 0.85. As well, for 

the portion of the curve where the moments are dominant, (Equation [7-4 (b)]) the 

moments are not reduced. 
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Equation [7-4 (b)] addresses the portion of the S16 interaction equation that was 

noted above as being unconservative. Low values for the applied axial load 
                                                 
3 An example that shows this unconservative prediction is Figure 4.36 
4 Table 4, ultimate M/Mp, this is not plotted in Dawe and Lee, 1993, but is plotted as Figure 9 in 
Essa and Kennedy, 2000. 
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(compared to the full yield strength of the cross section) do not greatly reduce the 

moment capacity. This lessened reduction is handled by the change in emphasis 

from the axial load in [7-4 (a)] to the moment load in [7-4 (b)]. 

Ziemian, et al. (2008) indicate that Equation [7-4] may be unconservative in some 

cases. One particular case is a beam-column of a W360x79 cross section, a 15 

foot length (4572 mm), with an applied axial force of 382 kN and an applied 

moment of 349 kN·m. These loads are calculated to be right on the envelope 

defined by interaction Equation [7-4 (b)] using a resistance factor of 1.0. Finite 

element analysis shows this predicted capacity over-estimates the failure load by 

20%. The interaction equation from S16 (CSA, 2005), Equation [2-9 (c)], is less 

conservative, predicting a nominal resistance that is 125% of the FEA result. 

(This is primarily due to the previously mentioned higher aggressiveness of the 

lower moment reduction factors in the S16 equation.) The interaction equation 

that does not use moment reduction factors gives a better prediction, though it 

predicts the beam-column capacity to be 11% higher than the FEA result. The 

failure loads predicted by the finite element analysis are too low to produce 

plastic hinging in the member. The member is too stocky to experience elastic 

lateral-torsional buckling, so the behaviour would be governed by inelastic 

buckling. It seems that even the unreduced moments may be optimistic in 

predicting member strength. 

The plastic design manual (ASCE, 1971) does not use a similar reduction for 

lateral torsional buckling.5 Also, a theoretical development of the interaction 

between the axial and lateral torsional instabilities6 shows that there should be no 

reduction for cross-section shape, considering purely elastic behaviour. 

 

                                                 
5 Page 162, ASCE 1971. 
6 As presented in Chapter 2 of this thesis. 
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7.4 Comparison With Standards 

Figure 7-1 illustrates the results from one of the previous analyses as the raw 

magnifiers from the eigenvalue buckling analysis. Three points from these curves 

were selected to demonstrate how the predictions fit with the design equations. 

These points were selected to give a sample frame for each of the following cases: 

moment governed; column axial load governed; and an intermediate point, on the 

“ridge” of the surface. For each frame chosen, a nonlinear, elasto-plastic analysis 

was performed to obtain the ultimate strength of the frame for that loading, given 

the ratio between axial load and moment. The results from both the elastic 

eigenvalue buckling analysis and second-order elasto-plastic analysis are 

presented in Table 7-1. The strengths of frames analysed considering the warping 

displacements to be continuous through the joint connections are higher than the 

analyses that considered the warping to be free (unrestrained) at the joints. This 

held true for both eigenvalue and second-order analyses. In these frames, all 

members are W200x27 sections. The column height and the beam length are 

presented in Table 7-1. 

The results from the second-order elasto-plastic analysis were used as the 

loadings for an elastic frame analysis for a typical frame analysis program (S-

Frame v6.21) to generate the member forces using a P-∆ elastic analysis. These 

results were used with the AISC (Equation [7-4]) and CSA S16 design equations 

to produce the values presented in Table 7-2.  

For the Canadian design procedure, a notional load of 0.5 % of the gravity loads 

was used in-plane, and for AISC, notional loads of 0.2 % of the gravity loads 

were applied in the in-plane direction, as the frame is braced in the out-of-plane 

direction. For the AISC design procedure, a reduced stiffness factor is applied to 

account for the inelastic effects for analysing the frame. The AISC Specification 

sets the reduced stiffness (EI*) as EIEI bτ8.0* = , where τb, a factor that accounts 

for the softening due to yielding, is ( )( ) 0.114 ≤−= yfyfb PPPPτ . The reduction 

factor used in this case was 0.9τb, as Surovek-Maleck and White (2004) note that 
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the 0.8τb value used in the AISC Specification has been factored with a resistance 

factor of 0.9. 

The design equations appear to be conservative for the frames analysed. The 

capacity of the column in frame 3 would be estimated at about 52% of its capacity 

determined by analysis using the S16-01 approach and at about 62% using the 

procedure in the AISC Specification. Part of the reason for the apparently large 

difference between the design equations and the inelastic analysis is a lack of 

recognition by the elastic analysis of the redistribution of moments in the structure 

as yielding progresses in an indeterminate frame. This redistribution is also 

affected by the reduction of flexural member stiffness due to lateral torsional 

instability. This latter effect is also not usually recognised in the elastic analysis. 

7.5 Costs 

The hidden face of the work is that of economy in construction. While ignoring 

the warping displacements at the joints of the frame may be safe, would including 

them in the design considerations improve the economy of the structure? In all, 

while there would be extra demands placed on joint design, and engineering time, 

taking advantage of the strength developed by the warping restraint would result 

in a reduction in the weight of steel. 

One aspect that would be required to ensure the proper development of the 

warping resistances would increase effort in joint design and detailing. The extra 

demands placed on the joint from the bimoment would change the predicted local 

joint loading, including the potential for tensile demands on welds that may be 

assumed to carry only compression. This could necessitate more complex design 

of the joint connections. However, the effects of the warping interaction appear to 

be small enough that the current analyses, which neglect these effects, do not 

produce any significant under-estimation of the connection loads. In any event, 

the increased reliability index for connections would lead to member failure 

before connection failure. 
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Current construction trends are such that the cost of materials is a decreasing 

proportion of the total cost of a structure over time (Carter, et al., 2000, Ruby and 

Matuska, 2009). Ruby and Matsuka show how, over the past 25 years, the 

proportion of the cost of the steel in a structure to the total cost of the completed 

steel erection has declined from about 40% in 1983 to 27% in 2008. This is not a 

uniform decline, but the trend is evident. It may be more economical to use 

heavier sections than are strictly required by the design standards. It is also 

advantageous to use less complex connection detailing, as shop costs (basically 

labour) have remained steady at about one-third of the total cost. 

7.6 Summary 

In summary, ignoring the effect of warping of the joints appears to be safe. 

Analyses that include the interaction between the members of a frame result in a 

higher capacity than that predicted by the current analysis procedure. Including 

the effect of the interaction in design is complex, and would give minimal 

decreases in steel material costs. As fabrication costs are higher than material 

cost, the savings realised by incorporating the increase in strength due to mutual 

warping restraint may be more than offset by the increased design and fabrication 

costs. The implication for design is that maintaining the status quo would be the 

preferable course of action. 
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Table 7-1 Analysis results for selected frame configurations for eigenvalue and 
second-order elastic-plastic analysis 
 Frame 1 Frame 2 Frame 3 
Column Height (mm) 4000 4000 4000 
Beam Length (mm) 11000 12000 13000 
Nominal Papp/Pey 0.00 0.60 1.00 
Peigen (warp free) kN 0.00 527 819 
Peigen (warp cont.) kN 0.00 573 821 
P2nd (warp free) kN 0.00 382 673 
P2nd (warp cont.) kN 0.00 409 675 
Meigen (warp free) kN·m 201 114 15 
Meigen (warp cont.) kN·m 207 124 15 
M2nd (warp free) kN·m 130 78 12 
M2nd (warp cont.) kN·m 142 84 12 
 

Table 7-2 Design results from North American design guidelines 

CSA–S16–01 Design 
Equations 

AISC Design 
Equations Frame 

Column Beam Column Beam 

1 1.13 0.42 1.14 0.40 

2 1.27 0.29 1.33 0.47 

3 1.92 0.27 1.61 0.71 
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Figure 7-1 Buckling load magnifier for 4 m W200x27 columns with W200x27 
beam. 
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8 Summary and Conclusions 

The current design approach of isolating members from rigid frames before 

considering the effect of warping does not account for the possible interaction 

between beams and columns. The purpose of this work was to investigate the 

possibility that the warping deformations experienced by members in a steel 

frame may cause failures at lower loads than would be expected in current design 

procedures. There was concern in this regard due to the possibility that the local 

warping deformation of the members at the joint would create additional forcing 

torque to decrease the lateral-torsional buckling capacity of the members. This 

project was considered to be a good candidate for investigation through finite 

element analysis because of the capability of beam elements to support the 

warping degree of freedom in current high-level analysis programs. The project 

does not lend itself to experimental examination, in that while we can, and do, 

separate the warping and flexural behaviours in the analysis and design of steel 

structures, the behaviours are inextricably linked. The warping of I-shaped 

sections is analogous to bending of the flanges in opposite directions about the 

member’s weak axis. Thus it is inexorably linked to the weak axis flexure that is 

already included in moment connections. 

As the work was analytical, an examination of available FEA elements was 

conducted to determine how well they perform for this type of analysis. The beam 

elements used were ones supporting warping degrees of freedom, but having 

quadratic formations, requiring several elements per member to better capture 

buckling effects. The elements behaved well when compared to Vlasov’s (1961) 

theory when fully restrained end conditions were applied. Theoretical predictions 

for combined bending and axial loading were also well satisfied by the beam 

elements. 

There are two cases where the elements deviate from expected behaviour. One 

case results in lowered capacity for very short elements or those that would be 
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very stiff torsionally. These members appear to have an inexplicable decrease in 

buckling strength compared to theory. The range of members affected by this 

phenomenon is small and not within the practical range of member sizes or 

shapes. The other case is for an effect where the in-plane curvature will affect the 

buckling strength. This effect prevents lateral-torsional buckling in a straight 

beam bent about its weak axis. This effect is ignored in the Abaqus buckling 

analysis and the analysis will give a buckling moment for a beam bent about its 

weak axis. This is presumably due to the increased capacity being a pre-buckling 

effect and not capable of being included in this type of analysis. 

Despite these drawbacks, the elements were considered to be adequate for the 

required analyses. 

The major part of the project involved using the beam elements to form a simple 

frame and these frames were analysed with and without warping continuity 

through the joints. The project analysed several frame configurations and found 

that the effects of mutual warping deformations did not negatively affect the 

frame capacity.  

A “corner element” was developed using the substructuring capabilities of the 

Abaqus finite element analysis software to model the effects of a typical joint 

configuration. The stiffness provided by this linking element was considerably 

less than that of the continuous connection formed by directly connecting the 

warping displacements in the frame as described above. The more flexible 

connection means that the direct connection analyses described above will give 

unconservatively high values for buckling loadings on frames. 

The elastic buckling analyses also neglect the limits placed on the structure by 

plastic behaviour. This will prevent the structure from achieving the upper bound 

given by buckling analyses for many structures with short members. The 

strengthening effect of considering warping continuity is higher for shorter 

members, so the net result is that the greatest elastic buckling capacity increases 

will not be reached in practical structures, as these will be limited by plastic 
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behaviour. Some shorter members may have capacity limits given by local or 

distortional buckling effects on the cross section or its component plates. 

8.1 Conclusions 

The current practice of neglecting the influence of mutual warping restraint 

between members in the analysis and design of steel frames appears to be a 

conservative practice. Certainly from the perspective of elastic buckling, this is a 

safe practice. The extra work involved to include these displacements in analysis 

is considerable. Developing the increased capacity derived from this relationship 

in the design of steel frames is likely not of benefit in the design process, 

particularly for frames constructed from rolled sections. 

Any benefical effect of this warping restraint is not applicable to members where 

the governing limit state is not lateral-torsional buckling, or a torsional buckling 

mode. This means that members that will fail in elastic buckling about their strong 

axis, which includes most columns in unbraced frames (Wongkaew, 2000), do not 

experience any increase in capacity due to this effect. Also, there is no benefit for 

those members in which formation of plastic hinges occurs before buckling or any 

significant second order effect develops. This would be the case for braced frames 

(Essa and Kennedy, 2000). The development of the first plastic hinge is often the 

governing limit state. Because of this criterion, there is less benefit to the frame’s 

capacity from the mutual warping restraint than there is for fully elastic frames, as 

the hinge capacity represents the maximum loads that can be resisted by the 

frame. 

Even in those members where there is a benefit, the advantage varies with respect 

to a number of variables, including the ratio of axial to flexural loadings, base 

conditions and relative stiffnesses of the joined members. This would mean that 

any attempts to take advantage of the benefits require significant analysis to judge 

their benefit for any given load case. There are numerous load cases that may be 

critical in the design of frames, due to the already complex nature of beam-

column design and frame analysis. Even effects that are simpler to calculate, such 
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as the increase in theoretical buckling moment for stockier sections is not 

generally considered. (Eurocode 3 (CEN, 2005) includes these effects in a general 

sense, by including two separate design strength curves for stocky and slender 

beams.) 

The joint element indicates that the warping stiffness developed in the connection 

is not as large as the rigid connection assumed by direct beam-element 

connections would indicate. While it is apparent that the joint element would be 

more flexible than a rigid connection, this element appears to be extremely 

flexible. 

8.2 Further work 

It must be noted that the members and frames studied do not cover the multitude 

of all possible combinations. The structures and sections examined were thought 

to be the most sensitive to the effects of warping deformations on their torsional 

stability. However, there may be unexamined structures that provide further 

insight into the problem. In particular, sections with very wide flanges would 

provide more warping, but also have a larger weak axis moment of inertia that 

would increase the lateral torsional buckling capacity. Channel sections may also 

be affected more by reason of their torsional properties. 

While the loads applied are also selected to maximise the effects of the warping, 

these are not typical of the loadings experienced by real structures. Actual 

loadings will give rise to different conditions that may trigger unexpected modes, 

and investigations of those conditions might also give an insight not provided by 

the ones used herein. 

The joint element is very flexible relative to the rigid connections assumed in the 

direct beam to beam modelling. Its formulation could be revisited to determine if 

there should be incorporation of the other behaviours, such as weak axis flexure 

or twist. The interactions between all deformations are complex and may need to 

be assessed to gain a better understanding of the joint behaviour. 
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The entire problem of lateral-torsional buckling in beam columns is still open for 

greater exploration. There may be unconservative implications in the formulae 

used in design of very long Class 1 and Class 2 sections in the Canadian design 

standard, as compared to the design of Class 3 sections. That interaction equation 

is a different problem from the one addressed in this work.  

There are instances beyond the scope of this work that indicate problems with 

warping in post-failure scenarios (Chi and Uang 2002, Zhang and Ricles 2006) 

when reduced section (“dog-bone”) beams are used in moment frames. 

Investigation of the effects of mutual warping restraint in conditions of extreme 

loadings may benefit structural integrity investigations in preventing progressive, 

or disproportionate, collapses. 

The effects of warping deformation in the connections of moment frames are 

currently neglected in the analysis and design of the frames. A study of these 

effects and their impact on connection design and detailing may prove of value in 

the future. This is particularly of concern with the work above by Chi and Uang 

(2002), and Zhang and Ricles (2006). 
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Appendix A: Substructure generation 

The substructure described in Chapter 6 can be difficult to form by hand. 

However it can be easily generated with an automated program. The following 

script is presented as one method of generating the box connection substructure 

element. 

There are several variables that can be initialised by the analyst to enable 

customisation of the substructure for various configurations. The first is the 

number by which the substructure will be referenced. The others are the 

geometric parameters for the depth between the flange (or continuity) plates in the 

joint, and their thickness. The script uses the same thickness for both plates. 

While differing thicknesses could be used, the beam element attached to the 

substructure is defined assuming uniform warping resistance and would not 

accept the non-uniform warping restrained provided by unsymmetric conditions. 

The same data is entered for the vertical plates, and the thickness of the web. 

The last parameter is the width of the substructure, in terms of shell elements. 

This gives the analyst the option of using a different mesh density. 
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#!/usr/local/bin/perl -W 
# 
# Define substructure element for box joint 
# 
# Element number for library 
$ElemeNum = 200; 
# Required inputs for "box" type joint 
# Centre to centre depth of beam, thickness of horizontal plates 
$depthb = 210 - 10.2; 
$thik1 = 10.2; 
# Centre to centre width of column, thickness of vertical plates 
$depthc = 210 - 10.2; 
$thik2 = 10.2; 
# web thickness 
$webt = 5.8; 
# full width of joint 
$width = 133; 
# 
# Width by number of elements 
$nelem = 16; 
# 
# This part writes the substructure element(s) 
# 
print "*HEADING\n This is a superstructure for a box type 
joint\n"; 
# 
# define geometry for joint 
# 
# The centre of the element is nominally at 0,0,0 
# 
$nelemup = int($depthb/$width * $nelem); 
if (($nelemup % 2) == 1) {$nelemup++;} 
$nelemfr = int($depthc/$width * $nelem); 
if (($nelemfr % 2) == 1) {$nelemfr++;} 
$nodenum = 1; 
#  Generate all nodes for joint 
$dx = $depthc/$nelemfr; 
$dy = $depthb/$nelemup; 
$dz = $width/$nelem; 
print "*NODE\n"; 
 
for ($h=0; $h<=$nelemfr; $h++) { 
$x = ($h - $nelemfr/2)*$dx; 
for ($i=0; $i<=$nelemup; $i++) { 
    $y = $dy*($i - $nelemup/2); 
    for ($j=0; $j<=$nelem; $j++) { 
 $z = $dz*($nelem/2 - $j); 
 print $nodenum,",", $x,",", $y,",", $z,"\n"; 
# Flag corner nodes 
 if ($h == 0) { 
     if ((($j==0) || ($j == $nelem)) && (($i==0) || ($i == 
$nelemup))) { 
  if (($j==0) && ($i==0)) { 
      $nodea = $nodenum; 
  } elsif (($j==0) && ($i==$nelemup)) { 
      $nodec = $nodenum; 
  } elsif (($j==$nelem) && ($i==0)) { 
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      $nodeb = $nodenum; 
  } else { 
      $noded = $nodenum; 
  } 
     } 
 } elsif ($h == $nelemfr) { 
     if ((($j==0) || ($j == $nelem)) && (($i==0) || ($i == 
$nelemup))) { 
  if (($j==0) && ($i==0)) { 
      $nodee = $nodenum; 
  } elsif (($j==0) && ($i==$nelemup)) { 
      $nodeg = $nodenum; 
  } elsif (($j==$nelem) && ($i==0)) { 
      $nodef = $nodenum; 
  } else { 
      $nodeh = $nodenum; 
  } 
     } 
 } elsif (($x == 0) && ($y == 0) && ($z == 0)) { 
     $cntrnode = $nodenum; 
 } 
 $nodenum++; 
    } 
} 
} 
# Nodes for "back" plate 
print "*NSET, NSET=NODEA\n ".$nodea."\n"; 
print "*NSET, NSET=NODEB\n ".$nodeb."\n"; 
print "*NSET, NSET=NODEC\n ".$nodec."\n"; 
print "*NSET, NSET=NODED\n ".$noded."\n"; 
print "*NSET, NSET=FACEBA\n 
".(($nelemup/2)*($nelem+1)+$nelem/2+1)."\n"; 
# Nodes for "front" plate 
print "*NSET, NSET=NODEE\n ".$nodee."\n"; 
print "*NSET, NSET=NODEF\n ".$nodef."\n"; 
print "*NSET, NSET=NODEG\n ".$nodeg."\n"; 
print "*NSET, NSET=NODEH\n ".$nodeh."\n"; 
print "*NSET, NSET=FACEFR\n 
".(($nelemup/2)*($nelem+1)+$nelem/2+1+($nelem+1)*($nelemup+1)*$ne
lemfr)."\n"; 
print "*NSET, NSET=FACETP\n 
".($cntrnode+($nelemup/2)*($nelem+1))."\n"; 
print "*NSET, NSET=FACEBO\n ".($cntrnode-
($nelemup/2)*($nelem+1))."\n"; 
# Node for "centre" 
print "*NSET, NSET=CENTRE\n ".$cntrnode."\n"; 
# 
# set up elements 
# 
print "*ELEMENT, TYPE=S4R, ELSET=BACK\n"; 
$elem=1; 
for ($n=0; $n<$nelemup; $n++) { 
    for ($m=1; $m<=$nelem; $m++) { 
 print 
$elem.",".($n*($nelem+1)+$m).",".($n*($nelem+1)+$m+1).",". 
 
 (($n+1)*($nelem+1)+$m+1).",".(($n+1)*($nelem+1)+$m)."\n"; 
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 $elem++; 
    } 
} 
# 
print "*ELEMENT, TYPE=S4R, ELSET=FRONT\n"; 
$noffset = ($nelem+1)*($nelemup+1)*$nelemfr; 
for ($n=0; $n<$nelemup; $n++) { 
    for ($m=1; $m<=$nelem; $m++) { 
 print 
$elem.",".($n*($nelem+1)+$m+$noffset).",".($n*($nelem+1)+$m+1+$no
ffset).",". 
 
 (($n+1)*($nelem+1)+$m+1+$noffset).",".(($n+1)*($nelem+1)+$m
+$noffset)."\n"; 
 $elem++; 
    } 
} 
# 
print "*ELEMENT, TYPE=S4R, ELSET=TOP\n"; 
$noffset = ($nelem+1)*($nelemup); 
for ($n=0; $n<$nelemfr; $n++) { 
    for ($m=1; $m<=$nelem; $m++) { 
 print $elem.",". 
    ($noffset+$m+$n*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+1+$n*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+1+($n+1)*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+($n+1)*($nelem+1)*($nelemup+1))."\n"; 
 $elem++; 
    } 
} 
# 
print "*ELEMENT, TYPE=S4R, ELSET=BOTTOM\n"; 
$noffset = 0; 
for ($n=0; $n<$nelemfr; $n++) { 
    for ($m=1; $m<=$nelem; $m++) { 
 print $elem.",". 
    ($noffset+$m+$n*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+1+$n*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+1+($n+1)*($nelem+1)*($nelemup+1)).",". 
   ($noffset+$m+($n+1)*($nelem+1)*($nelemup+1))."\n"; 
 $elem++; 
    } 
} 
# 
print "*ELEMENT, TYPE=S4R, ELSET=WEB\n"; 
$noffset = int($nelem / 2)+1; 
for ($n=0; $n<$nelemfr; $n++) { 
    for ($m=0; $m<$nelemup; $m++) { 
 print $elem.",". 
    ($noffset + $m*($nelem+1) + 
$n*($nelem+1)*($nelemup+1)).",". 
    ($noffset + ($m+1)*($nelem+1) + 
$n*($nelem+1)*($nelemup+1)).",". 
    ($noffset + ($m+1)*($nelem+1) + 
($n+1)*($nelem+1)*($nelemup+1)).",". 
    ($noffset + ($m)*($nelem+1) + 
($n+1)*($nelem+1)*($nelemup+1))."\n"; 
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 $elem++; 
    } 
} 
# 
print "*SHELL SECTION, ELSET=BACK, MATERIAL=STEEL1\n"; 
print $thik2,"\n"; 
print "*SHELL SECTION, ELSET=FRONT, MATERIAL=STEEL1\n"; 
print $thik2,"\n"; 
print "*SHELL SECTION, ELSET=TOP, MATERIAL=STEEL1\n"; 
print $thik1,"\n"; 
print "*SHELL SECTION, ELSET=BOTTOM, MATERIAL=STEEL1\n"; 
print $thik1,"\n"; 
print "*SHELL SECTION, ELSET=WEB, MATERIAL=STEEL1\n"; 
print $webt,"\n"; 
# 
print "*MATERIAL, NAME=STEEL1\n"; 
print "*ELASTIC\n 200E3, 0.3\n"; 
print "*DENSITY\n 7.7E-9\n"; 
# 
# Constraints 
# 
print "*EQUATION\n"; 
print "** Back face\n"; 
print "2\n"; 
print "NODEC, 1, 1, NODEA, 1, 1\n"; 
print "2\n"; 
print "NODEA, 1, 1, NODEB, 1, 1\n"; 
print "2\n"; 
print "NODEB, 1, 1, NODED, 1, 1\n"; 
print "** Front face\n"; 
print "2\n"; 
print "NODEG, 1, 1, NODEE, 1, 1\n"; 
print "2\n"; 
print "NODEE, 1, 1, NODEF, 1, 1\n"; 
print "2\n"; 
print "NODEF, 1, 1, NODEH, 1, 1\n"; 
print "** Top face\n"; 
print "2\n"; 
print "NODEC, 2, 1, NODED, 2, 1\n"; 
print "2\n"; 
print "NODED, 2, 1, NODEH, 2, 1\n"; 
print "2\n"; 
print "NODEH, 2, 1, NODEG, 2, 1\n"; 
print "** Bottom face\n"; 
print "2\n"; 
print "NODEA, 2, 1, NODEB, 2, 1\n"; 
print "2\n"; 
print "NODEB, 2, 1, NODEF, 2, 1\n"; 
print "2\n"; 
print "NODEF, 2, 1, NODEE, 2, 1\n"; 
# 
# Generate element 
# 
print "*STEP\n"; 
# Note that type is of format Zn where 0<n<10000 
printf "*SUBSTRUCTURE GENERATE, TYPE=Z%d, OVERWRITE, RECOVERY 
MATRIX=YES\n",$ElemeNum; 
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print "*RETAINED NODAL DOFS, SORTED=NO\n"; 
# Lines to generate dof's - NodeNumber, dof_start, dof_end 
print " ".$cntrnode.","."1,6"."\n"; 
print " ".$noded.","."1"."\n"; 
print " ".$nodeh.","."1"."\n"; 
print " ".$nodeg.","."2"."\n"; 
print " ".$nodee.","."2"."\n"; 
# End of definition 
print "*END STEP\n"; 
 

 




