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Abstract—Renewable energy systems (RESs) are pivotal in
the transition to eco-friendly smart grids. The complexity and
uncertainty of RESs, driven by uncontrollable natural forces
like sunlight and wind, bring challenges to integrating RESs
into modern power systems. Electromagnetic transient (EMT)
simulation is an effective method for studying the integration
of RESs. Currently, the EMT simulation of RESs is limited
to small-scale and lumped RES models due to the model
complexity and nonlinearity, which cannot reflect the detailed
characteristics of large-scale RESs in practice. This paper in-
troduces a data-oriented, machine learning-enhanced approach
to achieve massively parallel EMT simulation on CPU-GPU,
designed to efficiently model and simulate large-scale, detailed
RES. It incorporates data-driven machine learning modeling of
RES via artificial neural networks and integrates these models
using a data-oriented entity-component-system framework. The
model training was based on reliable model data produced by
traditional physical EMT models and the results were validated
with MATLAB/Simulink. The RES components are grouped into
a microgrid connected to a synthetic AC/DC system based on the
IEEE 118-Bus system, achieving an acceleration performance
of 400 times faster than traditional CPU nonlinear iterative
computations with 2 million RES entities.

Index Terms—Artificial neural networks, data-oriented pro-
gramming, entity-component-system, energy storage, electromag-
netic transients, gated recurrent units, graphical processors, solar
farms, wind farms, machine learning, renewable energy systems,
parallel processing

NOMENCLATURE

I. INTRODUCTION

Renewable energy systems (RESs) are pivotal in the transi-
tion to eco-friendly smart grids. Yet, the inherent complexity
and uncertainty of these systems, arising from the unpre-
dictability of natural forces such as sunlight and wind, present
significant challenges in power system control and opera-
tion [1]. Detailed electromagnetic transient (EMT) simulation
plays an important role in the analysis of control and operation
for RES integrating power systems [2], [3]. However, there
are more than 300,000 PV panels in a 100MW solar power
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ANN Artificial Neural Network
CPU Central Processing Unit
DFIG Doubly-Fed Induction Generator
ECS Entity-Component-System
EMT Electromagnetic Transient
GPU Graphical Processing Unit
GRU Gated Recurrent Unit
GSC Grid Side Converter
MLP Multi-Layer Perceptron
MSE Mean Squared Error
PV Photovoltaic
RES Renewable Energy System
RNN Recurrent Neural Network
RSC Rotor Side Converter

farm [4], while each module may have an impact on the entire
solar farm performance in partial shading scenarios [5], [6].
The same problem also exists for battery groups where the
battery management system needs to take care of inconsis-
tencies within the series battery array to maintain the optimal
performance [7]. The traditional approach of detailed EMT
simulations to address these challenges faces scalability issues
due to the computational burden of modeling extensive RES
components. For example, the nonlinearity of the PV model
requires the Newton-Raphson method to assemble a huge
global Jacobian matrix in each iteration, adding prohibitive
computational complexity for large-scale power systems with
many PV arrays.

A common solution is to utilize massively parallel hardware:
Graphical Processing Unit (GPU) to solve large groups of
RES components concurrently [8], [9]. However, the non-
linearity of these models limited the solution methods and
parallel efficiency as GPUs are not good at complex logics
such as branch predictions; nonlinear methods such as the
Newton-Raphson method are iterative and needs frequent data
exchange between host and device memory, which brings
significant overheads. Furthermore, it is challenging to adapt
and reimplement complex RES EMT models to highly efficient
and scalable GPU codes, making it difficult to keep pace with
rapidly evolving new energy and power storage technologies.

Therefore, this paper proposed to utilize ANN technologies
to increase the efficiency of EMT simulation of large-scale
systems with RES. ANN is a machine learning technology
that can be conceptualized as a mathematical approach to
multivariate nonlinear regression [10], which is suitable to
reflect the nonlinear RES behaviors including partial shading
of a PV array and battery charging/discharging behaviors.
The recent breakthroughs and significant successes of artificial
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intelligence and machine learning in many areas such as
weather forecasting [11], where the ANN-based model pro-
vides more accurate predictions and significantly accelerates
the forecast process compared to the traditional numerical
solutions. These machine-learning technologies have attracted
significant attention from power system researchers as well.
The deep-learning methods are popular for long-term and
steady-state power system analysis such as power output fore-
cast, stability assessments, and control [12]–[14]. The ANN
technologies are also popular for transient stability analysis:
[15] proposed an ANN-based method to approximate the
nonlinear Lyapunov function which can simplify the control
design for complex power systems; [16] proposed novel graph
neural network structures with data-driven frameworks for
transient stability assessments. However, the adoption of ma-
chine learning technologies in power system EMT simulation
is still in its early stages. Some research works such as [17]–
[19] have demonstrated the benefits of using ANN and RNN
technologies to accelerate real-time EMT models on FPGAs.
However these works are early explorations aimed to deal
with traditional components in small-scale power systems for
specific scenarios, and such research hasn’t been extended to
RES modeling. Moreover, the integration of the ANN models
into conventional EMT solvers is important for practical large-
scale simulation applications but it was not comprehensively
explained in previous research works.

To apply machine learning ANN techniques in accelerating
the simulation of large-scale renewable energy models and to
extend the previous machine learning EMT model research to-
wards a broader and more practical vision, this paper primarily
elucidates two key propositions:

• The development and training strategies for neural net-
work modeling of renewable energy generation and en-
ergy storage systems. Nonlinear time-variant components
are modeled with the gated-recurrent unit (GRU) and
time-invariant components such as PV arrays are modeled
with the feed-forward network which is also called multi-
layer perceptron (MLP). The main focus is on modeling a
PV array with multiple independent solar irradiance input
variables since solar farms contain a lot of PV panels and
each input irradiance may cause significant performance
differences under partial shading scenarios. A Monte-
Carlo method is proposed to serve as an effective and
practical solution to generate sufficient data for training
an accurate machine-learning model for these multivariate
nonlinear components under simulation environments.

• This paper employs data-oriented entity-component-
system (ECS) architecture and GPU instancing strate-
gies to incorporate the ANN model of RES into the
EMT power grid simulation program, achieving a highly
pragmatic and scalable CPU-GPU massively parallel
computing solution. The importance of efficient imple-
mentation and integration of machine learning models
is often underestimated. This oversight may obstruct
the full realization of the models’ potential impact on
both theoretical advancements and practical applications.
Compared to previous research, the proposed design not

only establishes a complex multivariate ANN model for
photovoltaic panel arrays but also elevates the application
of the model to a practical level. The integration of ANN
models via ECS and plugin-based architectures enables
seamless substitution for traditional RES models.

The model training was based on reliable model data produced
by traditional physical EMT models and the results were
validated with MATLAB/Simulink. The RES components are
grouped into a microgrid connected to a synthetic AC/DC
system based on the IEEE 118-Bus system, achieving an
acceleration performance of 400 times faster than traditional
CPU parallel nonlinear iterative computations with more than
2 million RES entities.

II. RENEWABLE ENERGY SYSTEMS
NEURAL-NETWORK-BASED MODELING
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Fig. 1: Neural network structures: (a) MLP neural network
structure; (b) GRU neural network structure.

Traditional EMT models of RESs are mostly nonlinear
and require Newton-Raphson’s nonlinear iterative method to
solve a nonlinear differential-algebraic equation system. Such
nonlinear characteristics not only bring heavy computational
burden and convergence problems but also limit the efficiency
of parallel computing. Machine-learning techniques such as
neural networks can effectively capture the nonlinearity of the
physics in RESs and provide an accurate approximation to
reduce the complexity. It is a fully data-driven process without
many human decisions. Moreover, compared to hand-crafted
nonlinear or linearized equivalent models, which have vari-
ous internal structures and complex computational processes,
models trained using neural networks present a consistent
matrix computation structure. This uniformity is particularly
suited for GPU parallel computations. Thus, machine-learning
reinforced RES models can efficiently leverage optimized
GPU-accelerated linear algebra libraries such as CUBLAS and
CUDNN, without concern for their varying types or internal
structures. In addition, the ANN models use Float32 numbers
which is faster than Float64 required by the Newton-Raphson
method on GPUs. The following subsections introduced the
basic concept of MLP and GRU neural networks used to
model RESs and the training strategies of PV arrays, doubly-
fed induction generator (DFIG) wind farms, and batteries.

A. Multi-Layer Perceptron
The MLP is one of the simplest forms of feed-forward

ANNs. It serves as a foundational technique in modern neural
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network machine learning, yet is sufficiently powerful to
address many real-world nonlinear fitting problems. As shown
in Fig. 1 (a), it contains one input layer, multiple hidden layers,
and one output layer. The state variables between hidden layers
are connected by activation functions which must be nonlinear
functions such as tanh, sigmod, or ReLU . MLP can be
expressed by

z = f(Wx+ b) (1)

where x is the input state vector, b is the bias vector, W is
the weight matrix, f is an activation function and z is the
output vector of each layer. Although the structure is simple,
it is enough to approximate many nonlinear functions of EMT
models. Training an MLP model is to solve an optimization
problem defined by

min
W,b

L(y, ŷ) (2)

where y is the output from training or validation dataset, ŷ is
the prediction data from trained model, and L is a loss function
to compute the error between ŷ and y, which can be a mean
squared error (MSE) function as the following:

MSE =
1

n

n∑
i=1

∥yi − ŷi∥2 (3)

where n is the total number of samples in the dataset and
||yi − ŷi∥| is the L2 normalization for yi − ŷi. The MSE
loss function squares the prediction errors, emphasizing larger
deviations more significantly. This is particularly meaningful
for training nonlinear models due to their complex and in-
consistent output characteristics for different data inputs. By
penalizing larger deviations more heavily, MSE helps ensure
that the model does not overlook outliers, thereby enhancing
its generalizability across varied data points.

Gradient descent is often used to solve this minimization
problem, which is given by

Wnew = Wold − α∇WL (4)
bnew = bold − α∇bL, (5)

where the gradients ∇WL and ∇bL are computed by back-
propagation, and α is a factor called learning rate which
controls how large the old value change in the gradient
direction. The principle of this MLP training process is also
valid for other types of neural networks.

B. Gated Recurrent Unit

GRU networks are based on MLP but have a more complex
and specific structure for time-series inputs and outputs. As
shown in Fig. 1 (b), the typical GRU is expressed by

zt = σ(Wxzxt + Uhzht−1) (6)
rt = σ(Wxrxt + Uhrht−1) (7)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)) (8)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (9)

where zt is the update gate output; rt is the reset gate
output; h̃t is the output candidate hidden; ht is the GRU
unit output; Wxz,Wxr,W are the input weights which are

considered; Uhz, Uhr, U are the recurrent weights and σ is
the sigmoid function. The update gate controls the degree to
which the hidden state from the previous time step, ht−1,
should be updated with the new candidate hidden state, h̃t. It is
computed using the sigmoid function, which scales the output
between 0 and 1. The reset gate is responsible for determining
the amount of information from the previous hidden state,
ht−1, that should be retained when computing the output
candidate, h̃t. Similar to the update gate, it also employs
the sigmoid function. The output candidate represents a new
hidden state based on the input xt and the previous hidden
state ht−1. The reset gate, rt, is used to control the influence
of ht−1 on the output candidate. The output candidate is
computed using the hyperbolic tangent function. The final
output, ht, is computed by combining the previous hidden
state, ht−1, and the output candidate, h̃t, with the help of the
update gate, zt. GRU networks are suitable for stateful time-
variant components and can reflect more complex behaviors
with the price of additional computing steps.

C. Machine-Learning MLP Modeling for Photovoltaic Array

As shown in Fig. 2 (a), a PV array is constituted by a series-
parallel connection of multiple photovoltaic panels. The major
electrical characteristic of a PV array is its I−V characteristic
under various conditions.

The PV array has 16 independent solar irradiance Irr for
each PV panel and a port voltage input Vt. The output is
chosen to Iout so that the model can be represented by a
current source in EMT simulations. Unlike traditional PV
panel performance rating and modeling that require ideal ex-
perimental data collected from laboratories, machine-learning
methods can analyze any relevant data to capture and model
PV array characteristics under various conditions, including
partial shading. However, the data collected from real-world
power grid operations are often insufficient for EMT sim-
ulations, as the current granularity of sampling is typically
only suitable for steady-state and medium to long-term fore-
cast purposes. In this case, previous machine-learning EMT
research efforts often relied on traditional simulation systems
to generate training data, which is a reliable data source and
can help researchers achieve the purpose of accelerating tradi-
tional models. However, these systems usually involved fewer
model inputs and scenarios, leading to a lack of emphasis on
the data generation process itself. For multivariate nonlinear
models such as the PV arrays, the first challenge is generating
sufficient training data to cover the vast data space introduced
by more and more variables.

As shown in Fig. 2 (b), the Monte Carlo method is applied
to effectively cover the vast state space of the PV array.
Furthermore, the ability of Monte Carlo simulations to be
easily parallelized enables the full exploitation of modern
computing resources, greatly improving the efficiency of data
generation. The training data are produced by traditional EMT
simulation of the nonlinear PV model based on the methods
and model parameters in [8]. Although the data are derived
from simulated circuits, the accuracy of the physical model
was verified with real-world experimental data [20] and can
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produce ideal data for training. The irradiance data for each PV
array is generated randomly from a normal distribution with a
mean of 1000W/m2 and a standard deviation of 300W/m2.
Meanwhile, the port voltage is uniformly sampled from zero to
the maximum operational voltage. Usually, using uniform dis-
tributions simplifies the data generation process as it ensures a
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consistent and even spread of data points, which are easier to
manage and process. However normal distributions can better
reflect real data sampling and help explore imbalanced dataset
impacts on machine learning. In practical scenarios, electrical
equipment typically operates within its rated design conditions,
only entering extreme operational states under exceptional
conditions. Thus, employing a normal distribution to generate
the data effectively reflects the real system’s general sampling
characteristics, which may provide useful information for
machine-learning EMT modeling research with real-world data
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in the future. In this imbalanced dataset, it is expected that,
with the current use of the MSE loss function and associated
training strategies, good model generalizability and accuracy
can still be achieved. However, the prediction errors in areas
with lower sampling probabilities might be greater than those
in the densely sampled central regions. This results in the
training dataset shown in Fig. 2 (c), which covers the full range
of operational voltage and a wide range of I−V characteristics
under various irradiance combinations.

A training dataset with 20 million samples was obtained
from the testing network. Because the model depends on many
independent inputs, it is vital to use dynamic learning rates to
achieve good fitting results. Meanwhile, the dropout strategy
is used to improve the model’s generalization capability and
with a dropout rate of 0.25, the error on the validation set
was reduced by approximately 20% after using the dropout
strategy.

After verifying the accuracy of the trained model with the
validation dataset as shown in Fig. 2 (d), the model can be
deployed into the EMT simulation program to represent the
original PV array. As shown in Fig. 2 (e), the PV array is
represented by a controlled current source for EMT circuit
simulation. The output current is predicted by the MLP
network comprising four hidden layers, and each layer has
64 cells.

With the proposed training data setup and machine-learning
strategies, the trained MLP model yields satisfactory results
as shown in Fig. 3 (a) and (b). The MSE of the training
dataset is about 1e-5 while on the validation dataset, the
MSE is around 7e-5, proving the feasibility of the data-driven
machine-learning-reinforced modeling for large-scale RESs.

D. Machine-Learning GRU Modeling for Wind Farm and
Energy Storage

The GRU models were trained using data from a DFIG wind
farm and a Lithium-ion battery group simulation as shown in
Fig. 4. The wind farm test circuit is from [21] and the battery
is based on the model used in [9]. The models only use a
single layer of GRUs to avoid error accumulations between
neural networks. The general machine-learning procedure is
similar to the PV array model.

The GRU models use uniformly distributed input variables
for convenience. The major difference for GRU is that the
GRU uses a sequence of time-series data as inputs so the
continuous nature of input signals cannot be violated when
generating the data. In this case, each set of parameters should
produce a contiguous data series within a single Monte Carlo
test execution, rather than adjusting parameters mid-run. To
simulate fault scenarios, the faulty waveforms can be generated
from pre-defined user cases. In this model training, an external
three-phase-to-ground fault is added to the datasets used for
training the wind farm’s GRU model, which takes up 5% of
the total data samples.

Fig. 5 shows the MSE and validation results of the wind
farm and Lithium-ion battery GRU models. Due to the uniform
distributed datasets and the complexity of GRU, the training
process is much shorter. It takes only 100 epochs to obtain ac-
curate results for both models. Fig. 5 (a) shows the comparison
between current waveforms of a three-phase-to-ground short
circuit fault, where the short circuit resistance is 0.01Ω and the
fault duration is 60 milliseconds. The short-circuit fault was
applied at the grid connection port of the wind farm. It shows
that the GRU model for wind farms successfully captured the
fault event even though the fault waveform rarely appears in
the dataset. The wind farm model needs a longer GRU input
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sequence to obtain an accurate GRU model as shown in Fig. 5
(b). This is mainly caused by the coupled and time-varied
three-phase AC electrical inputs.

The inputs and outputs for the wind farm and battery group
model are shown in Fig. 4 and Fig. 6 (b) and (c).

III. DATA-ORIENTED CPU-GPU HETEROGENEOUS
PARALLEL SIMULATION FOR MACHINE-LEARNING RES

MODELS

The model parameters of proposed machine-learning-
reinforced RES models for PV arrays, wind farms, and battery
groups are summarized in Fig. 6. The following subsections
will introduce a data-oriented approach for integrating these
ANN models into power system transient simulations, aiming
to achieve high performance through CPU-GPU heterogeneous
acceleration.

A. Data-Oriented EMT Simulation

Power system EMT simulation is based on circuit nodal
analysis. The circuit nodal-voltage equation system is a distinct
algebraic equation system derived from Kirchhoff’s Current
Law. In the case of linear circuits composed of RLC com-
ponents and sources, this equation system can be represented
by∑

i = iL + iC + iR

= GL

∫
vdt+GC

dv

dt
+GRv = is,

GL = BT
L [

1

L
]BL, GC = BT

C [C]BC , GR = BT
R[

1

R
]BR,

(10)
where B is the oriented incidence matrix whose rows corre-
spond to the physical components and columns correspond to
nodes, v is the nodal voltage vector, L is the inductance, C
is the capacitance and R is the resistance, is is the vector of
current injections by sources and GR,L,C are called admittance
matrix.

If the continuous-domain integrals and differential terms in
(10) are subjected to Laplace transform, the frequency-domain
equations required for power system steady-state and transient
stability analysis are obtained. On the other hand, if discretiza-
tion methods such as the Trapezoidal Rule are applied, the
discrete equations for EMT simulations are derived, which
can be expressed as

Y vn+1 = In+1
eq , (11)

Y =
∆t

2
GL +

2

∆t
GC +GR, (12)

In+1
eq = is + (

2

∆t
GC − ∆t

2
GL)vn − iLn + iCn (13)

where Y and In+1
eq are admittance matrix and the equivalent

current sources generated from Trapezoidal Rule discretiza-
tion, respectively; ∆t is the time-step of simulation and n
denotes the nth step of the simulation and all states at n = 1
should be known. Once the voltage vector vn+1 is obtained
through linear equation-solving methods such as LU Decom-
position or Gaussian Elimination, the system can proceed to

the next iteration using the recursive formula (13). This allows
the discretized equation system to continue iterating for further
time steps. More details about power system transient can be
found in [22].

Based on (11)-(13), the power system EMT simulation
program and solver are built using the Rust language and
the Bevy ECS framework [23]. The adoption of the ECS
architecture for EMT simulation was first proposed in [24].
ECS serves as a data-oriented architecture, emphasizing the
efficient layout, storage, and retrieval of data.

Within the data-oriented ECS framework, data and meth-
ods are distinctly separate, reflecting the procedural style
of C programming. However, this design choice is not a
step backward; rather, it provides unparalleled flexibility and
performance, making it a preferred approach in modern C-
style GPU programming.

As shown in Fig. 7 (a), in the Bevy ECS framework,
each electrical component and renewable energy source is
abstracted as a unique entity, described by a set of distinct
data components. For example, a “resistor” entity includes
components like resistance value, admittance for circuit matrix
solving, and circuit position. In contrast, a “capacitor” entity
would have additional components like an equivalent current
source, besides its capacitance value, equivalent admittance,
and circuit position. Importantly, to unify the treatment in the
solver for both three-phase and single-phase circuit elements,
an entity with a three-phase topology component will automat-
ically spawn three single-phase child entities to generate three-
phase resistors, capacitors, inductors, and power sources. For
some coupled three-phase components such as transformers
and transmission lines, there is a special computing system
that performs specialized computations on their three-phase
components, while they still spawn single-phase child entities
for interfacing with the solver. This avoids the need for special
three-phase treatments, thereby maintaining solver consistency
for single-line DC and three-phase AC power systems.

As shown in Fig. 7 (b), the simulation loop consists of three
stages, which is the same compared to traditional simulation
tools such as PSCAD/EMTDC or other circuit simulators.
However, the three stages are generic containers for systems
and they serve as schedulers that can generate directed acyclic
graphs for parallel executions of systems. All systems are
grouped into plugins and users can choose the plugins they
need at the runtime. This architecture highlights the ECS
framework’s flexibility, promoting maximal data components
and system reuse. Consequently, this makes integrating new
algorithms and models more adaptable and efficient. The entity
composition and the flexible plugin features in Bevy ECS
will play a significant role in realizing massively parallel
computing elegantly in the later subsections.

B. ANN Model Integrations

Fig. 8 shows the entities of RES ANN building blocks
for EMT simulation. Renewable sources like PV arrays also
contain common components such as equivalent conductance
and topological data. However, the computation of their equiv-
alent current sources is determined by specialized components.
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For entities with conventional nonlinear model parameters,
standard algorithms are auto-invoked to compute the PV out-
put. Conversely, entities with artificial neural network model
parameters are processed via a specialized GPU compute
system, facilitated by a specific neural network plugin: GPU-
BatchPlugin.

Although the model inference is the same process for
all ANN-modeled RES, inputs, and outputs cannot be the
same due to different physical structures. Therefore, the pre-
processing and postprocessing systems are implemented in
specific wind, solar, and battery plugins for convenience. In
these model entities, essential environmental inputs like solar
irradiance, wind speed, and ambient temperatures are managed
by discrete components. These components are capable of
interfacing with user-defined systems to acquire the relevant
environmental data. For example, real weather data from a
specific region can be integrated into a plugin that can generate
these data components without caring about any detail in
EMT simulation. Consequently, our proposed design ensures
a smooth integration of geographical and weather information

with electrical engineering simulation data.

C. Heterogeneous Massively Parallel CPU-GPU Computing

The ECS framework stores homogeneous data components
in cache-friendly contiguous arrays, making it optimal for
parallel computing. However, a challenge arises since ECS
component data reside on the CPU, and the GPU has its
distinct memory management. Efficient data exchange between
CPU and GPU is pivotal for achieving optimal performance.
Executing ANN model units individually is not feasible in
practice. To address this, a common strategy known as GPU
instancing is employed, substantially enhancing performance.
This concept of GPU instancing originates from graphical en-
gine development. Initially, it was designed to render multiple
3D objects with identical mesh data in a single batched GPU
call, such as rendering a forest composed of the same trees
but with varied scales and positions. Analogously, in ANN
models, the tree meshes are analogous to matrix weights, and
the variations in scale and position correspond to different
inputs, outputs, and scalar factors.

A GPUBatchManager is built as a singleton in this context,
which manages all ANN model and IO tensor memories.
At the initial stage, all ANN models will be scanned and
registered in GPUBatchManager; then, Entities with the same
ModelRef are grouped and allocate a global contiguous tensor
memory space in GPUBatchManager to fit the inputs and
outputs; all TensorIO components register their data to a
specific memory address in these contiguous GPU memory
space according to the type of ModelRef. Notice that all tensors
must use CPU memory to communicate efficiently with the
CPU EMT solver.

As shown in Fig. 9 (a), in the PreUpdate stage, the CPU
will process all ANN inputs and write input data to TensorIO
which is a local memory pointer mapped to global tensor
in GPUBatchManager. For GRU, due to the input being a
time series, there is an additional input shift system set to
store necessary data in the input tensors. Then, instead of
processing TensorIO components on the entities one-by-one,
the GPUBatchManager singleton will copy the global tensor
to GPU and perform GPU scaling and inference by model
type. Therefore, no matter how many ANN model entities are
there, there is only one inter-device copy for all input and
output tensors of each model type, which is the reason why
tensors should be on host CPU memory to avoid expensive
inter-device memory copy overhead. With the managed global
tensors, batched model computation is achieved for each
model type. Even when dealing with a few hundred ANN
model entities, this approach provides a speed-up of more than
100 times compared to executing them individually.

As shown in Fig. 9 (b), it’s worth noting that the GPU-
BatchManager possesses the capability to associate models
with multiple GPUs or streams. Furthermore, the GPUB-
atchPlugin can have an upgraded version to use an upper-
level GPUBatchManager constructed above multiple ECS
objects to manage multiple EMT simulation systems, further
amplifying the scalability for GPU instancing. Meanwhile, the
intrinsic parallel DAG scheduler of Bevy ECS allows the GPU
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computations for the ANN models to be executed in parallel
with other traditional EMT components whenever feasible.
With the power of the ECS framework and GPU instancing
techniques, an elegant, adaptable, and highly scalable approach
emerges for machine-learning enhanced heterogeneous CPU-
GPU massively parallel EMT simulation.

IV. STUDY CASE AND RESULTS

The study case is based on a synthetic AC-DC network
based on the IEEE 118-Bus and CIGRE B4 DCS-1 MMC
systems, with a RES microgrid connected at Bus-44 as shown
in Fig. 10 (a). As shown in Fig. 10 (b), the microgrid contains
100 PV farms, one wind farm, and one battery energy storage
station. Each PV farm contains 400 MLP-modelled 4x4 PV
arrays and is 6400 × 100 = 640, 000 PV panels in total.
The microgrid is connected at Bus-13 with the 25kV/138kV
transformer, which is typical in the transmission grid.

As shown in Fig. 10 (c), due to the highly optimized EMT
simulation program, the computing of AC/DC components,
matrix equations solving, and thread synchronization processes
only take 20% of overall computation time. The systems in
GPUBatchSet take a minimal 300µs regardless of the neural
network type. This is not only due to heavy computing loads
but also caused by much higher overhead to call GPU drivers
and move data between CPU and GPU. Therefore, with fine-
grained parallel scheduling, the final computing performance
is determined by this GPU ANN computing process. This is
why tensor components must be on CPU and batch computing
must be applied to minimize the overhead.

To extend the scale and complexity of the simulation
study case, four IEEE-118 systems are connected together
with MMCs as shown in Fig. 10. This extends the scale
to 2,560,000 machine-learning modeled PV panels and can
demonstrate the full power of CPU-GPU massively parallel
computing performance under the proposed data-oriented ar-
chitecture. However, this is only used to extend the system
scale and evaluate the parallel performance and the test results
will be focused on the RES-related scenarios.

As shown in Fig. 10 (d), 8 CPU threads and 2 GPUs are
allocated to execute the test system cluster, which can be

handled solely by a computing node in the ComputeCanada
Cedar cluster. Due to the advanced data-oriented design, this
heterogeneous complex computational resource allocation and
scheduling are achieved without difficulty.

The test scenarios are mainly related to RES which is a
partial shading scenario for PV farms and a wind speed change
scenario for wind farms. The results will focus on RES model
performance and related system voltage or current changes.

A. Scenario 1: Partial Shading

This scenario sets the rated irradiance of 1000W/m2 for
all PV panels at the beginning of the simulation. At the
1s of simulation time, irradiance of PV panels S1 and S16
to 100W/m2 and 200W/m2, respectively. This data point
is selected in a very sparsely sampled region and is not
presented in the training data set, which is used to verify
the generalizability of the ANN model deployed in EMT
simulation environments. The solar irradiance decreased over
0.02s, not instantaneously. With EMT simulation steps be-
tween 20 to 50µs, linear interpolation was used to reflect this
gradual change, indirectly verifying the model’s smoothness
and robustness during this dynamic process. Due to the 4x4
PV arrays being serial-connected and S1 and S16 being in
separated columns, the power output should be approximately
50% of the rated power due to the output of serial-connected
PV panels being determined by the panel with the lowest
output current.

Results are shown in Fig. 11 (a)-(c), which are measured
from the inverter AC side of one PV farm. The PV array
achieved very high accuracy with rated irradiance inputs,
which only has a relative error of 0.2%. Under the partial
shading scenario, the active power of the MLP PV array model
drops from 1.25MW to 0.69MW, which has a 4% relative
error compared to the original model output. The errors are
acceptable for simulation and they highlight the effects of the
imbalanced dataset with a normal distribution and the MSE
loss function. In the dataset of 20 million training samples,
the probability of sampling within the central rated area is
0.682716 ≈ 0.002, resulting in approximately 40,000 samples,
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whereas the partial shading data point in the region has an ap-
proximate sampling probability of 0.0212 ∗0.682714 ≈ 2e−6,
yielding only approximately 40 samples. Consequently, the
relatively higher error in the latter case is expected and aligns
with previous theoretical analyses in Section II.C. Despite
increased errors in the peripheral regions, the output waveform
of the trained MLP model shows no significant deviation and
aligns well with the characteristics of the PV model during
both transient and steady states. This demonstrates the model’s
robust generalization ability.

Given these findings, it is clear that merely using the dropout
strategies and the choice of loss function are insufficient to
deal with complex modeling problems and more complex real-
world data sets. Future research should consider employing
broader data science techniques, such as feature engineering,
to preprocess datasets before training. This approach may be
better to enhance the efficiency and precision of the models
used for simulation and inference.

B. Scenario 2: Wind Speed Step Change

This scenario sets the rated wind speed of 15m/s for a wind
farm at the beginning of the simulation. At the 5s of simulation
time, the wind speed changes from 15m/s to 10m/s. The
results, as shown in Fig. 11 (d)-(f), all exhibit low relative
errors, each below 1%. This accuracy mainly comes from the
wide range of data used to train the model. The more complex
GRU structure also helps to increase the model accuracy for
lumped DFIG wind farm systems. Although the GRU models
do have better accuracy for time-series data, the current GRU
models use fixed time steps due to the nature of the GRU
structure, which limits its usage compared to the MLP PV
array model.

C. Performance Evaluation

The performance is measured from a node in the Cedar
cluster of ComputeCanada, which has two NVIDIA® Tesla
V100 GPUs. Each Tesla V100 GPU has 5120 CUDA units.

The performance evaluation of the MLP PV model is
performed on the test synthetic system. In Fig. 12 (a) and
(b), the performance metrics between the CPU-based Newton-
Raphson PV array simulation and the GPU-accelerated ma-
chine learning alternative are compared. A spectrum of PV
panel counts was evaluated to show the distinction between the
traditional serial computing approach and the massively par-
allel GPU-based methodology. The conventional CPU-bound
implementation retains its advantage up to the 16k PV panel
threshold. Beyond this point, the GPU-facilitated solution
demonstrates a consistently low execution time, outperforming
the CPU-based Newton-Raphson approach by an order of
magnitude. Notably, a speed up exceeding 100 is observed
when the system scales beyond 1000k PV panels, equating to
approximately 62.5k MLP PV array entities.

For the extensive simulation involving 2560k PV panels,
the serial CPU computation paradigm failed to deliver re-
sults within an acceptable timescale. In contrast, the machine
learning-driven GPU methodology sustained its efficiency,
culminating in an impressive 400x speed-up. This test was
accomplished using a dual-GPU setup, as a single GPU is
inadequate for managing such an expansive system.

In the evaluated test system, the limited quantity of wind
farms and energy storage obscured the potential benefits of
GPU acceleration. The performance of GRU models was
assessed independently, as shown in Fig.12 (c) and (d). Despite
the inherent nonlinearity in the physical models of wind farms
and batteries, they were implemented via decoupled, non-
iterative approaches, resulting in a proportional increase in
speed up. However, it is noteworthy that the GRU models
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Fig. 12: (a) Execution time per simulation step vs. number
of PV panels of traditional serial CPU nonlinear model and
GPU accelerated model; (b) GPU speedup vs. number of PV
panels; (c) Wind farm GRU model GPU speed up vs. number
of wind farms; (d) Battery array GRU model GPU speed up
vs. number of battery arrays.

required approximately two to three times the execution time
compared to MLPs of equivalent system scale. This disparity
led to a relatively lower speed-up in Fig.12 (c) and (d).

V. CONCLUSION

This paper explores machine-learning-based ANN models
for RES components such as PV arrays, DFIG wind farms,
and Lithium-ion battery groups, highlighting the significant
advancements in machine-learning research and their appli-
cations in power system EMT simulations. An effective

Monte Carlo simulation method based on traditional nonlinear
EMT models has been proposed to address the challenges
of generating training data for multivariate RES machine
learning models. A data-oriented, heterogeneous CPU-GPU
ECS architecture is proposed to realize flexible and fast
massively parallel processing of these RES models in large-
scale AC/DC power grid simulation. The proposed method has
shown promising results for large-scale simulation, achieving
high computational accuracy, decent GPU performance, and
scalability across various system sizes.

Despite its promising results, there is considerable scope
for enhancement in the model’s complexity and computational
optimization. To derive machine-learning-reinforced digital-
twin models for real-world RES stations, training data can be
swapped with real-world measurements, which requires col-
laboration with power generation enterprises for comprehen-
sive on-site research. Moreover, although the model maintains
the generalizability, the test results on imbalanced datasets
indicate that there is substantial room for improvement in both
the efficiency and accuracy of the machine learning process.
This can be improved with state aggregation techniques, dic-
tionary learning, and other advanced feature extraction meth-
ods which might be also useful to process real-world data sets
more efficiently. Future work will focus on incorporating real-
world measurements and enhancing the efficiency of large-
scale RES model training with more sophisticated machine
learning technologies.

The potential for practical application of this research is
substantial. The RES machine learning models and the data-
oriented architecture are not only applicable for EMT sim-
ulations but also useful for transient stability simulations. It
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is hoped that this work will serve as a foundation for future
studies, continuing to push the boundaries of power system
simulation methods.
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