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ABSTRACT

In this thesis we look at the topology of substitution tiling dynamical sys-
tems (T,w). We do this by looking at two systems that are topologically
conjugate to (¥, w). One system consists of an inverse limit space that looks
at each tiling 7 by considering how the origin lies in the tile containing it for
each tiling w™™(7). The other system looks at 7 by considering the relative
location of the origin in the tile containing it for 7, and then uses a sequence

of choices to build up a tiling around the origin.
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0.1 Introduction

'The concept of a tiling is something that is familiar to everyone. A pattern
bricks forming a wall, or a design of tiles covering a floor, are a couple of
common examples of tilings. They can range from simple designs, such as
periodically repeating the same pattern, to very complicated designs, where
there may be no obvious patterns. Recent discoveries in solid state materials
and within mathematics have reawakened an interest in the study of tilings,
especially in two and three dimensional aperiodic tilings. These aperiodic
tilings can appear to very disorganised, while they will in fact demonstrate an
amazing amount of symmetry and order.

One of the simplest ways to generate tilings that will have this aperiodic
order is through use of a substition process, and this will be explained below.
This method will start with a finite set of prototiles, then use a rule to inflate
these prototiles and then subdivide into tiles. Iterating this process will create
aperiodic tilings. This process has been used for a long time in the study of one
and two dimensional tilings, and there are many well known, and interesting
tilings that this process can create in one and two dimensions.

In studying tilings that are not strictly periodic (repeating in various spatial
directions) new mathematical tools have had to be created. One of the most
commonly used used ideas is to combine whole translation classes of tilings into
a single topological space. More generally, we can combine classes of of locally
indistinguishable tilings (meaning tilings that only display the same types of
patterns) into a single topological space, see Radin and Wolff [5]. These spaces
will often carry the stucture of a topological dynamical system, with the action
of the dynamical system coming from the translation group, or in the case of
substitutions, it may come from the substitution itself. The relevance of this
connection is demonstrated by the relationships that emerge between funda-
mental concepts of dynamics and important geometrical concepts of tilings,
Theorems 1.2 and 1.3 provide an example of this.

The topology that arises in tiling dynamics turns out to be surprisingly
subtle. It is interesting enough to have attracted the attention of mathemati-
cians in a variety of areas, such as non-commutative geometry, see Connes [9],
operator algebras, see Putnam and Anderson [6], and diffraction theory, see
Schlottmann [10]. What makes this topology interesting is the way that it
combines two notions of closeness. Each point in the topological space con-
sists of one tiling. The topology combines the standard notion of closeness, a
small shift in the real space where the tilings live, with a non-standard notion
of closeness which measures the extent to which the tilings match. In the case



of substitution tilings this is further complicated by the fact that the substitu-
tion treats these notions of closeness differently, and will be expansive on the
standard closeness, while being contractive on the the non-standard closeness.

It is well known that this topology will roughly look like a product space
of a compact space and a totally disconnected space. However, discussions of
these ideas are often widely scattered and hard to reconcile. It is the purpose
of this thesis to look at some of the different ways of producing a topological
dynamical system, given a substitution tiling, and show that these systems are
essentially the same, i.e., show that they are topologically conjugate. Each of
these systems has a slightly different look and feel than the others do, providing
new insights into the nature of the topology. Presenting them together allows
us to also examine the connections between these systems.

All of the ideas here work in any finite dimension. However, for simplicity,
we have focused mainly on one dimensional tilings. Nothing is lost by doing
this. The one dimensional situtation shows the full complexity of the topology,
while avoiding the difficulties that can arise when trying to visualize exactly
what these systems look like in higher dimensions. The discussion has been
kept relatively informal. All of the key ideas are presented, but there are
not too many truly formal proofs, which do not add anything in the way of
understanding, but can even serve to obscure it. In the final section we give
an idea of how the theory generalizes to higher dimensions.



Chapter 1

Substitution Tiling Dynamical
Systems

1.1 Dynamical Systems

Let X be a compact metric space and let ¢ : X — X be a continuous map.
The pair (X, ¢) is a topological dynamical system. For any z € X we have
the forward orbit of x, which is the set {¢™(z) | n € Zxo}. If our map ¢ is a
homeomorphism we will have the (full) orbit of x, which is the set {¢"(z) | n €
Z}.

Let’s consider an example. Let X; be R/Z and give it the topology induced
from R. This space is homeomorphic to the space created when the interval
[0, 1] is bent into a circle, with the points 0 and 1 identified. The topology on
the circle will have a basis of all open intervals on the circle, and the space will
be compact. See Figure 1.1. For the metric, let d(z,y) = min{|z —y|, |1 +z —
yl, |1 +y—z|}, which is just the shortest distance from z to y, travelling along
the circle. For our mapping ¢, fix any z € R and let ¢1(z) = 2 + z (mod 1)
for all z € X;. The map ¢; is a homeomorphism, so (X1, ¢;) is a topological
dynamical system and for any = € ¥4, the orbit is {nz+z | n € Z}.

An important subclass of topological dynamical systems is symbolic dy-

X Yy

0=1

Figure 1.1: The transformation of the interval [0,1] into a space homeomorphic to the
space X1. On the circle, both the of intervals (z,v) and (y, z) will be open sets.



namical systems. These are spaces that are made up of symbol sequences
from a finite alphabet of symbols. In this thesis we will devote much of our
attention to this subclass of topological dynamical systems, and we will now
describe their construction. A more thorough description of the space we are
about to describe can be found in Lind and Marcus [1], pp. 5-8.

Let A be a nonempty, finite set of symbols, and give it the discrete topology.
Let

6 =6(A) =A% = {(z,)2__. | #, € AVn},

and give G the product topology. The cylinder sets
[,y an)t, = {(@) e | 2k = ag, k=m, ..., n}

form a basis for the topology on &. We define 0 : & — & by (0(z))n = Tpnt1-
In other words, if x is the sequence :

s 1,20, L1 -
then o(z) is the sequence x shifted left by one symbol :
cy0(z)oy = z0,0(x)0 = x1,0(x)y = X9, . .. .

Now o([am, - - - n)lern) = [Gms - - -, 0] 4, and so o is a homeomorphism.
We also have a metric on &. For z,y € G, z # y, define

N(z,y) :==min{n > 0| Z, # yn OT T_p # Y-n} ,

and let our metric be

1/2)N@y)  if ¢
e = { W Mty

Our dynamical system (&, o) is called the full shift on A. We call o the
shift map, and it is the same map for all shift systems. For the remainder of
this discussion the symbol o will always refer to the shift map on whichever
system we are dealing with. The elements a € A are the letters of the alphabet
A. The set of words of the alphabet A is

A*:=DA".

n=0

We also have a map £ : A* —> Z, given by

EIA“ =n,

4



which represents the length of each word of A. For a given word ¢ of A, the
words of A that appear in ¢ are the subwords of t. By definition, the words of
A must be finite. However, we may also regard the sequences of & as biinfinite
words of A. It will then make sense for us to the consider the subwords of any
particular biinfinite word z.

For an example of the full shift on an alphabet A, consider the case when
A = {A, B}. Then let &; be the set of all biinfinite sequences consisting only
of A’s and B’s. If we let x be the element of &, defined by x4, = A, 24,11 =
B,x4, 19 = B,Z43 = B, for all n, we see that

lOth term

= ..ABBBABBBABBBABBB...

o(z) = ..BBBABBBABBBABBBA...
o(zx) = .BBABBBABBBABBBARB...
03(z) = ..BABBBABBBABBBABB....

Now o*(z) = z, so z is periodic and we can see that the orbit of z is just
made up of these four elements, z, o(z), 0?(z), and o3(z). We also observe
that {A, B} is the set of all words of length one in A*, {AA, AB, BA, BB} is
the set of all words of length two in A*, and so on. Further, we can note that
A is a subword of the word AA, but not of the word BB, and ABBBA is a
subword of z, while ABA is not.

Any ¢*! invariant, closed subspace 2) of X gives rise to a dynamical system
(), ). Such systems are called subshifts on A. In our above example, the set
of all elements of G in which no two consecutive A’s appear would be a subshift
of &. This space is clearly o*! invariant and is easily seen to be closed due to
the nature of the cylinder set basis on &. Here we have defined a subshift by
choosing a set of words of & that cannot occur in any word in that subshift.
Any biinfinite word that does not contain any of these forbidden words will be
contained in the subshift. It can be shown that any subshift of any shift space
can be defined in this way.

Equivalently, we can create our subspaces of a shift space by defining a
set of words that can appear in elements of the subspace. The subspace
of &; that does not contain the word AA could alternatively be defined
as the subspace of &; consisting of the elements that have only the words
{A,B,AB,BA,BB, BBB,BBA,BAB, ABB, ABA, ...} appearing in them.
(All we have done to create this set is write down all of the words of each pos-
sible length that do not contain the word AA as a subword.) This is summed
up in the following theorem.



Theorem 1.1. 1. Let (), ¢) be a subshift of (X, ). Then there is a set F
of words of A so that x = (z,) € Y if and only if no word of = lies in
F.

2. Given any set F of words on A, the set
D =Dz :={z € X | no subword of x lies in F}
is a subshift of (%, ¢).

The proof of this is given by Lind and Marcus [1], pp. 9-11 and page 179.

A dynamical system is said to be minimal if for every x € X, the orbit
{¢™(z) | n € Z} is dense. In our first example of a topological dynamical
system, (X1, ¢;) will be minimal if and only if the z € R that is chosen to
define ¢, is irrational. Our example of a shift space is not minimal, since the
element we looked at has only four elements in its orbit, and consequently its
orbit is not dense. However, we shall see that there is a broad, and interesting,
class of subshifts that is minimal.

A subset J of Z is relatively dense if there exists an m € Z such that for
any n € Z, there is a j € J such that n < j < n 4 m. This just means that
there is a bound on how far we have to go in Z before we find an element of J.
An element z € X will be said to be almost periodic if for all neighbourhoods
V of z, the set J(z,V) :={n € Z | ¢"(z) € V} is relatively dense. In other
words, if we take any neighbourhood V of z, iterating our map ¢ on z will keep
bringing us back into V, and there will be a bound on how many iterations
are necessary to get back into this neighbourhood.

When we consider our shift spaces, an element z € X will be almost periodic
if and only if every word of x repeats with bounded gaps. The element in our
above example is clearly almost periodic, since it is in fact periodic, and every
fourth iteration of ¢ returns us to the element z. So every word of z will
repeat after four or fewer iterations of 0. The element y = (y,) in this same
shift space, where yg = A, and y, = B for all n # 0, is not almost periodic,
since the word A only occurs once.

We have a couple of theorems that relate minimality and almost periodicity.

Theorem 1.2. If a space X is minimal, then every x € X is almost periodic.

Theorem 1.3. If x € X is almost periodic, then the dynamical system
({¢"(z) | n € Z}, @) is minimal.

These are proven by Furstenberg [2], pp. 29-30.



Two dynamical systems (X,¢) and (X', ¢') are topologically conjugate if
there exists a homeomorphism ~ : X — X’ which satisfies

forall z € X.

1.2 Substitution Systems

We start with an alphabet A = {ai,...,a,,} and form the full shift (&, o)
on A, together with the usual product topology. A substitution on A is a
mapping w : A — A* such that for at least one a € A, {(w(a)) > 2. The

map w induces a homomorphism (of semigroups) w : A* — A* by
wler...cx) = wler). . . wle).

The substitution matriz M of w is the card(.A) x card(A) matrix where My,
is the number of a’s in the word w(b), for a,b € A. The matrix M is positive
if M;; > 0 for all ¢, j. The matrix M is primitive if there exists a k > 0 such
that (M*);; > 0 for all 4, 5. We will say that the substitution w is primitive
if the substitution matrix M of w is a primitive matrix. We also observe that
the substitution matrix for w® is M*.

It is clear that w being primitive is equivalent to saying that there exists
an integer k > 0 such that for any a € A, every letter b € A will occur in the
word w*(a). Consequently, there is a k' > 0 and ao € A such that ag occurs
in the “interior” of w* (ag) (meaning this particular ao is not the first or last
letter of w¥'(ag)). So for some c_pi,...,c_1,¢1,- .., Cny € A, we have

k/
w® (@0) = C_py - C1 Q0 Cp . Cny
. ! . '
We replace w with w* and M with M* | so now
w(ao) = C_pf ... Co1 G0 €1+ Cn,y -

We may now use w and ag to form a biinfinite word u of & that is stable under
the substitution w. (By stable we mean that we will have some way of defining
w on u so that w(u) = u. In general, we will not define a map w : & — &,
we will only define an action for w on the word u.) We start with the word
a0, and we create the larger word w(ag). We then fix one of the copies of ag
that occurs in the interior of w(ag) (there may be more than one). Then we



build a biinfinite word around this ag, by continuing to fix its location in the
same spot through infinitely many iterations of w. The biinfinite word of A
that results from this procedure is u, and v is not changed when w acts on it

in this way. So, for some ¢_,;,...,C p|—1,Cnyt1,- - - Cny € A, We have
ap = g
wlag) = Conl -+ Co1 G0 C1 ... Cpy
2 -
w(ag) = Conly o Copf oo Co] Qg CLo - Cpy -+ Cry

We see that each word w™(ag) contains w™ !(ag) as a subword with the
generating ag fixed in the same location. So this process will generate a stable
biinfinite word u € &. It follows from the primitivity of the system that it
is also almost periodic (since this will put a lower bound on how often each
letter, and ultimately each word, will appear) and as a consequence, we have
the following result.

Theorem 1.4. ({c*(u)|k € Z}, o) is a minimal dynamical system.

Proven by Queffélec [3], pp. 71-72.
Let’s consider an example. Let A; = {A, B} and let

wi: A — A*
A — ABA
B — A
This is known as the silver mean substitution. Our substituion matrix is
2 1 ) 5 2
M, = { 1ol We see that our substitution is primtive since M? = 9 1 }

We also see that primitivity ensures that each letter of A; appears in both
wi(A) = ABAAABA, and w}(B) = ABA. To construct a biinfinite word that
is stable under our substitution, we use the fact that B appears in the interior
of w#(B). So we replace w; with w?, and we construct our biinfinite word

B = B

wl(B) ABA
wi(B) = ABAAABAABAABAAABA

Let’s call this word u;, so ({o*(u)|k € Z}, o) is a minimal dynamical system.
We notice here that we could have chosen to build our biinfinite word
in several differnt ways. For instance, we could have noticed that, using our

8



original wy, wi(A) = ABAAABAABAABAAABA, and chosen to fix the third
A in this word, replacing w; with w}. Constructing the word that results from
these choices give us

A = A
wi(A) = ABAAABAABAABAAABA
w}A) = ABAA...ABAAABAABAABAAABAABA...ABA

and we can call this word u}, so we have a minimal dynamical system
({o*(u))|k € Z},0). We can see that u; and u) are not the same word, but
we do have the same types of patterns emerging inside of these words. Since
our system is primitive, every letter of our alphabet appears in both words,
and consequently they will generate the same dynamical system. This result

applies to all dynamical systems that are constructed in this way, not just

to this particular example. The dynamical systems generated by this process

depend only upon the alphabet and the substitution on that alphabet.
Another example is given when Ay = {C, D, E, F'} and

we: Ay — A3
¢ -— DF
D — CF
E — CF
Fr — K
Then the substitution matrix is
0110 3 4 41
1000 2 11 2
M, = M =
2= g 001 | M= g 45,5
1110 5 5 5 3
so we know that our substitution is primitive. We notice that

wi(E) = CFECF, so if we replace w, with wj we can produce a bininfinite

word by fixing this E, and we get

E = E
wy(E) = CFECF
w}(E) = DFECFDFECFECFDFECFDFE

Call this word ug, and ({o*(ug)|k € Z},0) is a dynamical system.

9



This method of constructing these dynamical systems doesn’t give much
insight into what the elements in these dynamical systems look like. Fortu-
nately, we can visualize these dynamical systems in a different way. These
dynamical systems are subshifts of the full shift on their alphabet. Each of
these subshifts can be defined as the set of elements in & that only contain
subwords of u. Equivalently, they could be defined as the elements that do
not contain a certain word if and only if v does not contain that word.

Let’s consider what this means for our two examples. First consider
({o*(u1)|k € Z},0). The words A, and B both appear in u;. We also see that
AB, BA, and AA all appear in u;. However, the word BB will never occur in
u1. We can see this because if it was to appear, it would have to be generated
by some other word that does occur in uy. But wi(B) = ABA and wy(A) =
ABAAABA, and no possible ordering of these words will produce the subword
BB. Similarily, we see that the words AAA, AAB, ABA, and BAA can occur
in uy, but the words BBE, BBA, BAB, and ABB can not occur in u;. We
continue in this way, deciding which words of every possible length are and are
not allowed to occur in uy. Then, {o*(u;)|k € Z} is the set of biinfinite words
of A; that only contain the subwords {A, B, AB, BA, AA, AAA, AAB, ABA,
BAA, ...}, (just list all of the legal words of length one, then all of the legal
words of length two, and so on), or equivalently, is the set of biinfinite words of
A; that do not contain any of the words {BB, BBB, BBA, BAB,ABB, ...}
(just list all of the illegal words of length one, then all of the illegal words of
length two, and so on). Similarily, we see that {o*(us)|k € Z} is the set of all
biinfinite words of .45 that only contain the subwords {C, D, E, F, CF, DF, EC,
FE FD,...}, or equivalently, as the set of biinfinite words of Ay that do
not contain any of the words {CC,CD,CE,DC,DD,DE,ED,EE, EF, FC,
FF,...}. (We can note here that the word ED will be a legal subword of us if
and only if F'C is also a legal subword. Further, we will only get the word ED
appearing by letting wy act on the word FC,| since wo( FC) = EDF, and we
only get FIC from wy(ED) = CFCF. However, uy is generated by letting woy
repeatedly act on the words generated by just the letter £. So we will never
generate either of the words ED or F'C', which is why these two are not legal
subwords of uy.) We note that it is the almost periodicity of these systems
that ensures that we can always construct these sets of words. If we want to
know which words of a given length can and cannot occur in the word u, we
only need to check if it occurs in any sufficiently large subword of u. How
large of a subword we must look at will depend on the particular system and
the length of word we are concerned about, see Queffélec [3] pp. 98-104 for

10



details..

At this point we may also explain why it is that we look at the space
({o*(a)|k € Z}, 0) instead of the space ({o*(a)|k € Z}, o). It turns out that
the closure of the shift space is a much larger space than just the shift space.
To get an idea of how an element can belong to the closure, but not to the shift
space itself, consider the following. Let’s form the spaces ({o*(a)|k € Z}, 0)
and ({o*(a)|k € Z},0) for some almost periodic biinifinite word a. Now let
B(0) be any biinifinite word that is made up only of subwords of «, such that

ﬁ(o)o = Qp,

and £(0) # a. Now take the smallest |k;| so that
o™ (a)-1 = B(0)-1,

o* (a)o = B(0)o,
O'kl(a)l = ﬂ(())l

The almost periodicity of a ensures that we can find such a k;. Now let 3(1)
be any biinfinite word made up only of subwords of « so that

B(1)-1 = o™ (a)1 = B(0)

B(1)o = o™ (a)o = £(0)o,
B(1)1 = o™ ()1 = B(0)y,

but B(1) # o*(a). (It is very likely that 5(0) will be an adequate choice for
£(1).) Now take the smallest |kq| so that

It is not hard to see that |ki1| < |ko|. Inductively we will define a sequence
of biinfinite words (3(n))2,,, and an increasing monotonic sequence (|k,|)2,
where

B(n)—n = 0™ (a)n = fn — 1)

11



ﬁ(n)n = Ukn(a)n = ﬁ(’n’ - 1)"
and B(n) # o*»(a). So we have the situation that is depicted below.

B(n—-1) o Br=1per Bn—1en ... Bn-1)0g ... Pnr-=1n Bn-—1n4

akn (a) e oFn (@) _n—1 oF (@), ... oFm(a)e ... oFm(@)n 0P (0)ny

B(n) e Bn)—n-1 Bn)en ... B(n)e ... Bn)n B(nyn+1
may:liﬁer will ;gree maytiiffer

The fact that « is almost periodic but not periodic ensures that we can
always find such B(n) and k,. Further, we can see that (3(n)) will converge
to some biinfinite word 8 (since G(N) and S(N + K) will agree on entries
B(N)_n,....B(N)y and S(N + K)_n,...,8(N + K)y), and that |k,| — oo
as n — 0o (since we always choose 3(n) # o (a)). We can also see that
the sequence o**(a) — 8 as n — oo, so we will have 8 € {o*(a)|k € Z}, but

B¢ {o*(a)lk € Z}.

1.3 Substitution Tilings

We will start with a substitution system as above and we will define a collection
of tilings of the line that are related to this system.

A tile is a subset of R% that is homeomorphic to a closed ball in R%. A
partial tiling is a collection of tiles with pairwise disjoint interiors, and its
support is the union of its tiles. A tiling is a partial tiling with support R
Sometimes it is desirable to have different tiles that look alike, and we can
associate a label with each tile to distinguish them. Now suppose that we
have a finite set of tiles {Py, ..., P,}, and we wish to consider tilings that only
contain translations of these tiles. Then we will call these tiles {Py,..., P,}
the prototiles of the tilings which contain only translates of these tiles. We
will often refer to tiles as translates of prototiles. If we have a prototile P and
a real number z (or J), then we will let = + P denote the tile that we get when
we shift the prototile P by z (or 9). In our considerations, our tilings will be
one dimensional, and each of our tiles will consist of a closed interval in R.
So if we have a prototile P consisting of the interval [a, b], then the tile z + P
will be the interval [z + a,z + b]. The first thing that we need to make our
connection between substitution systems and tilings is the Perron-Frobenius
(PF) theorem, which is proven in Queffélec [3], pp. 91-93.

Theorem 1.5. Let M be a primitive, positive matriz. Then

12



X+ Plu ) Xo+ P(ug) x;+P(u;)

e o o } I } l e o e
0
Figure 1.2: The tiling 7 (u)

1. M admits a strictly positive eigenvalue X\, such that X > |0| for any other
eigenvalue 6 of M,

2. There exists a strictly positive right eigenvector corresponding to A,
3. X has multiplicity 1.

Now suppose that we have our alphabet A = {a1,...,an}, with a substitu-
tion w, and substitution matrix M. Let A be our Perron-Frobenius eigenvalue,
and let v = [f1,...,4n]T be our PF eigenvector. Now let {P, ..., P} be a set
of closed intervals, of lengths #1,. .., ¢,, respectively, where ¢, and £; represent
the shortest and longest lengths, respectively. These will be our prototiles,
and any tile in the tilings and partial tilings we construct will just be a trans-
late of one of these prototiles. If two of these prototiles have the same length,
making them translates of each other, then we will associate labels with them
to distinguish these prototiles and the tiles they create. We will let *F; and
P? denote the left and right endpoints of these intervals, respectively. We will
also have a map P : A — {Py,..., P} defined by P(a;) = F,.

Now let (&,0) be the dynamical system generated by the procedure in
section 2, and let u = (u;) be the biinfinite word that was fixed under w. Then
we can construct a tiling 7 (u) of the line using u as a guide, as in Figure 1.2.

Here we have shifted the prototile P(ug) by some zo, so that the left end-
point of the tile zo+ P (up) lies on the origin. We have then shifted the prototile
P(u;) by some z; so that its left endpoint matches up with the right endpoint
of 2o + P(up), and we have shifted P(u_;) by some z_; so that its right end-
point matches up with the left endpoint of zg + P(uo). In this way we shift
all of the prototiles P(u,) to form a tiling of the line.

We will want to simplify our notation somewhat. Instead of denoting
our tiles as z; + P(u;), we will often denote them as T'(u;), where T'(u;) =
z; + P(u;). So T(u;) will symbolize a tile of type u; which has been shifted
to the appropriate location in a tiling or partial tiling of the line. If the exact
position of one of these tiles is important, it will be made clear. However, it
is often the patterns of tiles that appear that has the most importance for our

13



T(u,) T(u,) T(u,)

| | | |
® @& o ’ l | l ® ® @

0
Figure 1.3: Alternate labeling of the tiling 7 (u)

T(a, ) T(a,) T(a, )

| | RN |
Figure 1.4: A partial tiling of type a;, . ..a,,.

considerations, so we can adopt this notation without losing any important

information. So we may also represent the tiling 7 (u) as in Figure 1.3.

We will say that a tile T'(a;) is a tile of type a;. We will say that a sequence
of tiles T(a;,),...,T(a;,), all connected continuously as in Figure 1.4, is a
partial tiling of type a;, ... a;,.

Now consider the space (7 (u), R). This space consists of all possible shifts
of the tiling 7 (u). So the elements of this space are all of the form 7 =
z+ 7 (u), for some z € R, and this tiling will be similar to 7 (u), the difference
being that each tile has been shifted by x to the right.

We can put a metric on this space as follows. For any 7,7 € (7 (a),R),
let

AT, T) = inf({1/VZ} U {e | Bie(0) N (0 + T) = Bye(0) N (—0' + T')

for some v, || < €}).

It is easy to verify that this is a metric, with the only tricky part being the
verification of the triangle inequality, and we will follow the proof of a similar
problem given in Lee, Moody and Solomyak [4]. Suppose that we have tilings
71,73, 75 € (T(a),R), with d(T1, T3) < & and d(73,73) < €2. We need to show
that d(71,73) < € +€3. We can assume that €1, €y < 1/\/5, otherwise the
claim will be obvious. Then

Bl/gl (0) M (*’Ul + ,Ii) - 81/61 (0) N (‘-’UQ + 7-2) fOI‘ some v, Uy [ Bl/el (O),

Bi/e,(0) N (=05 + T3) = B/, (0) N (=05 + T3) for some vy, v € Bie,(0).
It follows that

Bije,(—v5) N (=v1 — v + 1) = By, (—v5) N (—vg — vy + T3).

14



T(B.) T(B,) T(B))
® ® @ i I ® I I e @ ®
) 0
Figure 1.5: The tiling 7 = § + 7(8).

Since B(1/e;)—e)(0) C Biye, (0), we have

B(1/e1)-e2(0) N (—v1 = v + T1) = B1/e) e, (0) N (—v2 ~ vy + T2).
Similarily,

B jeg)-e (0) N (—v2 — v + T2) = B1/e)—e, (0) N (=02 — v5 + T3).

It is easily computed that 1/e; — ey > 1/(e3 +€2) and 1/ea — €1 > 1/(€1 + €2)
when €, €5 < 1//2, so we have

Bijer+e)(0) N (=01 = v + T1) = Buy(ey 42)(0) N (=02 — v5 + Ts),

so d(71,73) < €1 + ea.
This metric will induce a topology on (7 («),R), which is given by letting
all
U(T) ={T"|d(T,T") < €}

form a basis. Basically, this topology and metric will consider two tilings to
be close if they agree on a large patch around the origin, after a small shift of
each tiling.

Now let ¥ = (7 (u),R). This is a compact metric space (see Radin and
Wollff [5] pp. 357-358 for proof). Further, every element 7 € T can be uniquely
written as

T =6§+7T(B)

for some unique 8 € & and § € (—£(P(0o)),0]. The tiling 7 is shown in
Figure 1.5.

We notice here that T'(fy) is the tile created when P(8;) is shifted to
have its left endpoint lie at §. The tiles T'(5;) are copies of P(5;) shifted
appropriately to create a tiling. We also notice that our above restriction that
§ € (—L(P(B)), 0] will allow us to represent a tiling with § = 0, but we will
not be able to represent the same tiling with § = —£(P(5))..

Now our substitution w will act on ¥ in a natural way. First, we will
consider what w does to any lone tile. Suppose that w(a;) = ¢1 ... ¢ for some
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T(a;) ® T(cy) T(c,) T(cy)
| | | | e e e

X y X Ay

Figure 1.6: The action of w on 7 (a;)

1, ..., ¢ € A The tile T(a;) has length #;, and by the PF theorem, we know

M 4| =| Maby+-- + Myl | = | M

But each M;; is just the number of times the letter a; appears in the word
w(a;), so

If we inflate the tile T'(a;) by a factor of A, we can continuously place the tiles
T(c1),...,T(c), in order, inside of AT(a;), with no overlaps or gaps, as in
Figure 1.6.

So for any tiling 7, we do this to every tile in 7, and we are left with a
new tiling of the line, w(7).

We will say that a tiling satisfies the finite pattern condition if for any given
tile, it’s boundary can be covered by other tiles, with no overlapping, in only a
finite number of ways. It is trivial to see that all of the one dimensional tilings
that we study here will satisfy this condition. (However, it is possible to create
tiling spaces that do not satisfy this condition, see Radin and Wolff [5] page
355 for an example.) We can also consider this condition in a slightly different
way: for any positive radius r, there will be only finitely many partial tilings
up to translation that are subsets of tilings in T and have support of diameter
less than r. (This is trivial to see for all of the examples we consider here,
since there are only a finite number of ways we can line up our tiles before
their support becomes greater than or equal to some fixed r.)

Now we have already assumed that w is primitive, and we know that our
space has the finite pattern condition. If we now assume that w is one-one
on ¥, then we can also conclude that w is both onto and bicontinuous, see
Putnam and Anderson [6] pp. 512-513. Consequently, w will have an inverse,
w™l, and we will have a well defined map w” : ¥ — ¥ for every n € Z. So
(T, w) is a topological dynamical system.

We will say that w forces the border if there is an integer Brp > 0 such
that for any tiling 7, and any tile 7" € 7, the tiles that come immediately
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before and after the partial tiling wB7 (T) in the tiling wP#(7") are completely
determined by what type of tile T is.

1.3.1 Examples of Substitution Tilings

Let’s look at a couple of examples. First we will consider the silver mean substi-

tution. Recall that 4; = {A, B}, o 2 _ z/‘llBA
—_

, and our substitution
21
1 0
our PF eigenvector is [A;,1]7. We can choose the prototiles P(A) = [0, ],
and P(B) = [0,1]. Recall that we have also created the word wu, which is
stable under wi, and so we can form the tiling 7 (u;), and we have a compact

metric space Ty = (7 (uy), R).

matrix is M; = [ } We calculate our PF eigenvalue A\ = 1 + \/5, and

2

wi: A — ABAAABA
B — ABA ’
and BAB is a forbidden word in &1, so if we take any tile of type A in a tiling

T, we must have a tile of type A come immediately before w?(T'(A)) in wi(T),

We can see that w; forces the border since

and we must have a tile of type A come immediately after w?(T'(A)) in wi(7T).
Similarily, if we take a tile of type B in 7, we must have a tile of type A come
immediately before w?(T(B)) in w?(7), and we must have a tile of type A
come immediately after w?(T(B)) in w$(7). This is depicted in Figure 1.7.

We can also see that wy : ¥ — T is one to one. Take any 7 € %1, and
consider the possible candidates for w;'(7T) in T;. For every tile of type B
in ¥, the tiles to the immediate left and right must both be of type A. So
we have a partial tiling of type ABA. But this must have come from a tile of
type A in wi(7) (if such a tiling exists). See Figure 1.8 a.

The only tiles that this situation will not account for are tiles of type A
in 7, that are neighboured by tiles of type A on both sides. These tiles must
come from a tile of type B in any candidate for w; *(7). See Figure 1.8 b.

This leaves us with only one possible candidate for w;*(T), since we have
accounted for where each tile of 7 must have come from, so w; must be one
to one. Consequently, w; will also be onto, invertible and bicontinuous. So we
have a topological dynamical system (%, w;).

For another example lets consider the Fibonnacci substitution. Here we
will again use the alphabet A; = {A, B}, but now we will let our substitution
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T T(A) T(B) T(A) T(?)
RN t f } 1 oo
@
\ T(A) TA) \T(B)K T(A) . TA) ‘ T(A) \T(B) ‘ T(A) T(A)
T TMB) T
[P S B S N
o,
e T(A) ™
oo f y Jo s
o,
T(A)

T(A) T®B) TA) T(A)

| I T

T T T 1

Figure 1.7: Forcing the border for w;.
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Figure 1.8: The map w; is one to one.

be
wy: A — A*

A —s AB
B —s A

As above we can create a topological dynamical system from this substitution,
say (%),ws). However, this substitution does not force the border. Let’s
consider the ways in which a tile of type A can be collared in this system. A
collaring of a tile is any one of the ways a tile can share its boundary with
other tiles in a tiling. In this substitution, a tile of type A can be collared three
ways, it can have a tile of type B to its immediate left and a tile of type A to
its immediate right, as in BAA, or it can have a tile of type A to its immediate
left and a tile of type B to its immediate right, as in AAB, or it can have a
tile of type B to its immediate left and a tile of type B to its immediate right,
as in BAB. (A tile of type B can only be collared one way, as in ABA. We
note that the ways a tile can be collared depend on the particular substitution
system.) Let’s consider the ways a partial tiling w¥(T(A4)) can be collared in
this system. If wy forces the border there will have to be some & > 0 such
that w¥(T(A)) can only be collared in one way. However, we can see from
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Figure 1.9: The map wy does not force the border.

Figure 1.9, that the partial tiling w5(T(A)) can be bordered on the left by
either a tile of type A, or a tile of type B, for any k. So wy does not force the
border.

We will replace this system with a topologically conjugate system that does
force the border. We create an alphabet consisting of one symbol for each way
our existing symbols can be collared in our existing substitution system. The
symbol A can be collared three ways (one each for BAA, AAB, and BAB),
and B can only be collared one way (ABA). So we create a new substitution
system where our alphabet As contains four letters, say C,D,E, and F. Here
we let C correspond to the A in the middle of AAB, D corresponds to the A
in BAB, E corresponds to the A in the middle of BAA, and F' corresponds to
the B in ABA. To see what our new substitution rule does we look at what
it did to the original alphabet. We will still call this new substitution ws, but

20



we will understand that it now acts on the alphabet A4;. Our C corresponds
to the second A in AAB, and wy(AAB) = AB AB A. (Here we have inserted
spaces to make it easier to recognize what wy does to each letter in AAB.)
So the second A in AAB, the one that corresponds to C, is mapped to an
A, which is collared BAB, then a B, which is collared ABA. But the A in
BAD corresponds to D, and the B in ABA corresponds to F'. So our new
substitution maps C' to DF. When we look at the rest of the possiblities, we
see that

we: AAB — AB AB A wyp: C — DF
BAB — A AB A N D — CF
BAA — A ABAB E — CF
ABA — AB A AB F — F

We have already looked at this substitution in the last section. It has substitu-
tion matrix My, which has PF eigenvalue Ay = 1 +1/5/2 and PF eigenvector
[A2, Ao, A2, 1]7. So we can create four prototiles P(C) = [0, Xy, P(D) = [0, Aa,
P(E) = [0, Xg], and P(F) = [0,1], and we have the tiling 7 (us) and the
compact metric space Ty = (7 (ug), R).

We can also see why this substitution is one to one. We must look at the
partial tilings of length three. The words of length three that can occur in G,
are CFD, CFE, DFE, ECF, FEC, and FDF.

We can see immediately that a partial tiling of type DFE must always
come from a partial tiling of type C'F. This is the case because our tile of type
FE must come from a tile of type F, and the tile of type D must come from a
tile of type C. See Figure 1.10 a.

We see that a partial tiling of type C F E must come from a partial tiling of
type DF. This is because the tiles of type C'FE must be contained in a larger
partial tiling of type FCFE. Both of the tiles of type E must come from tiles
of type F, and the tiles C'F between these tiles of type E must come from
either a tile of type D or a tile of type E. However, the word FEF is illegal
in &,, while F'DF is legal, so the tiles C'F" must come from a tile of type D.
See Figure 1.10 b.

A partial tiling of type C'F D must be part of a larger partial tiling of type
ECFDFE. The tiles of type E must come from a tile of type F, the tiles DF
must come from a tile of type C, and consequently, the tiles CF must come
from a tile of type E (since FDC is not a legal word of G3). See Figure 1.10 c.

A partial tiling of type F DI must be part of a larger partial tiling of type
ECFDFE, and we have seen where this must come from in our considerations
of the partial tiling CFD. See Figure 1.10 d.
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Figure 1.10: The map ws is one to one.

For the partial tiling of type ECF we must also look at the tile bordering
it on the immediate right. This tile can be of either type D or E. If it is
of type D, then the partial tiling ECFD must be part of the larger partial
tiling of type ECFDFE, and this can only come from a partial tiling of type
FECF. See Figure 1.10 e. If our partial tiling FCF is part of the partial
tiling ECFE, on the other hand, then it must come from a partial tiling of
type FDF. See Figure 1.10 f.

All that remains is the partial tiling FEC. We can see that this tiling
must be in one of the larger partial tilings of type CFECF, DFECFDF, or
DFECFE, and as above, these partial tilings come from the partial tilings of
type DFE, CFEC, or CFDF, respectively. See Figure 1.10 g,hi.

Putting all of this together, we can decompose each tiling 7 in ¥ into only
one possible candidate for wy?(7), and we see that ws is one to one. So we
have a topological dynamical system (%y, ws). Also, it is easy to show that for
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Figure 1.11: The bijection from ¥ to Ts.

any a € Aj, the tiles that border w(T'(a)) will be completely determined by
the symbol a, so wq forces the border (in this system). It is a trivial matter
to verify that (%), ws) and (Ts,wq) are topologically conjugate. The spaces
are clearly bijective since for each tiling in T there will be a tiling in ¥ that
is identical, except for the fact each tile has been labelled to correspond to a
prototile consistent with the alphabet in that system. See Figure 1.11 for an
example. This bijection is certainly bicontinuous, and the way wq was defined
on Ay ensures that wy and the bijection from T} to Ty intertwine.

We will note that this process of creating a topologically conjugate sub-
stitution tiling dynamical system that forces the border is possible for any
substitution tiling dynamical system, and the process above will always create
a suitable system. We merely create an alphabet containing one symbol for
each way an existing symbol can be collared, then we redefine our substitution
in the natural way that respects the collarings.
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Chapter 2

Other Dynamical Systems

2.1 The dynamical sytem (£, w)

We will create a dynamical system that is topologically conjugate to (%, w)
by considering each tiling in ¥ to be related to a sequence of points from the
prototiles.

2.1.1 The space U

We will define a relation ¥ from ¥ into the space of all sequences of points
from the prototiles, and we will define our space as 4 := ¥(%F). It is easy
to define the map we want by considering an example, then generalizing the
process.

Let’s consider the silver mean tiling space ¥ (as defined in Section 1.3.1),
and let 7 € T4, as in Figure 2.1. We note that for the tiling 7, the origin is
contained in a tile of type A, and the left endpoint of this tile is at the point
do € R. We let zo = —dp + *P(A), and we note that zg is just a point in the
interval P(A). (Recall that ®P(A) denotes the left endpoint of the interval
P(A), so adding —dy and *P(A) makes sense.) If we define a point z, in
this way for each of tilings w™"(7), we will form a sequence (z,)52, where
each point z, is in one of our prototiles (either P(A) or P(B). We will let
U(T) = {(zn)7Z0}, Where

Ty = —50 -+ .P(A)

I = —51 + .P(B)
s = —0, + *P(A)
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T3 = —53 -+ .P<A)
Ty = —54 -+ .P(A)

Now consider the tiling 7" in Figure 2.2. We willlet U1 (7") = {(z])%,, (1)},
where
(4)
(4)

=*p
=*P(A
=*P(B)

N~ =~ S~

T
z
x

o= =8+ *P(4)
= =0, +*P(B)

and

= P(A)
).
)

P(A
P(A)
= ——63, +°*P(A)
= —0, + *P(B)

(In this situation we have two elements in ¥;(7") because the origin of 7" lies
on the boundary between two tiles. It will be the quotient space that is formed
when we identify these two sequences that is of interest to us.)

It is easy to see how to generalize this relation to the rest of the space
T, and to any general tiling space . Suppose that we have a tiling 7 € %,
where w™(7) = 6(n) + T(8(n)), for all n. We will let the sequence (x,)5,,
where z,, = —d(n) + *P(8(n)), be in (7). If the origin of 7 does not
lie on the boundary of a tile, ie., if §(0) # 0, then (z,)5, will be the only
sequence in W(7). However, if the origin of 7" does lie on the boundary of
a tile, i.e., if 6(0) = 0, then we will add one other sequence to W(7). If
§(n) =0 for all n < N, but §(N) # 0, then define the sequence (z;,)n2, Where
o { P(B(n)_1)* forn< N

" o forn> N~
by 2/, = P(8(n)_1)® for all n. Then we let W(T) = {(2,)30, (2}, )oz0}- All

If 6(n) = 0 for all n, then we define (z;,)52,
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Figure 2.1: A tiling in %,
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Figure 2.2: Another tiling in T,

we have done is rigorously defined the process used in defining ¥, above, for
a general tiling system. The following lemma ensures that this map ¥ is well
defined.

Lemma 2.1. If 7 € T, where w™(T) = §(n) + T(B(n)), and 6(n) # 0, then
§{n+1)#0.

Proof This is clear by the contrapositive. It is easy to see that if 6(n+1) =
0, then 6(n) = 0. O

We let 4 := (%), and it is clear that there is exactly one element in
for every tiling in ¥ where the origin does not lie on the boundary of a tile,
and exactly two elements in i for every tiling in ¥ where the origin lies on the
boundary between two tiles.

We can put a topology on 4 as follows. First we note that each prototile
P(a) has the subspace topology from the usual topology on R. We will let ‘B
be the disjoint topological union of the prototiles. We can form the product
space I122,, and we let 4 have the subspace topology from this space.

Let’s consider what this topology will look like for the space i; := ¥ (%4).
First, the space B; is the disjoint topological union of the prototiles P(A) and
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P(B). So all intervals of the form
(a,0), (a, P(A)°], ' P(A),b) C P(A),

or of the form
(a,0), (a, P(B)°], [*P(B),b) C P(B),

will form a basis for the topology on B;. The product space II$2,; has a
basis consisting of all sets of the form II2,V; such that each V; is open in P,
and all but finitely many V; = ;. So the set

W1 L= (ao,bo) X (0,1, P(B).] X H;’)igipla

where (ag, bo) C P(A) and (a1, P(B)*] C P(B) will be a typical basis element
for the topology on II2,B;. Now &l; has the subspace topology from the
topology on 12 B1. So U C Uy will be open if and only if there is some open
set W C I12,%3; so that WNU = U and W N (L, \U) = 0. So the set

5.11 M W1 = {(:Ez)fio & 5.11 l To € (Cl(),bo) and T € (al,P(B)°]}

will be a typical example of an open set of ;.

2.1.2 Themap ¥V 1: 4 —F

We can define a map ¥~! : §{ — 7 such that if (z,)52, € V(7), then
U ((zn)ilo) = 7.

n=0

Theorem 2.1. For each (2,)2, € i, there is a unique T € % such that
(2,)2 € U(T). So there is a well defined map ¥~' : Y — T where
Ut ((za)zo) = T if and only if (za)7o € ¥(T).

Proof. Let (z,)5°, € U, and suppose that each z, € P(c,), for some
¢, € A. For each n, let 7, be any tiling where w™"(7,) contains the tile
—z, + P(cn). Now (2,)2, € 4, so there must be some 7 € T such that
()% € U(T). Further, for every n, the tile —,,+P(c,) must be in the tiling
w™™(7T). But the tile —z,+P(c,) contains the origin, so the tilings w™(7") and
w™™(7,) will agree on some interval containing the origin. Now our substition
w forces the border, so for some integer Br > 0, the tiles to the immediate left
and right of the partial tiling w? (—z,, + P(c,)) will be completely determined
by the symbol ¢,. Let’s label these tiles T}, and Tg, respectively, and they are
as shown in Figure 2.3. These tiles will have length greater than or equal to £,
(the length of the shortest prototile), and the partial tiling wBF (—z, + P(c,))
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Figure 2.3: Common tiles in 7,, and 7.

will contain the origin, and be contained in both wB#~"(T) and wBF—"(T,).
So the tilings WP (w™(7T)) and WP (w="(7;,)) will both contain the tiles 77,
and T, so they will agree on the interval [—£,, £s]. Further, if n > Bp, then
the tilings w™ Br(wWBF—(T)) = T and w87 (WP ~(T;)) = T,, will agree on
the interval [-A""8F¢  An=Br ] As we let n approach oo, this interval will
become R. So the sequence (7,,) will converge to 7. We let ¥~ ((z,)2,) = 7,
and we have established the theorem. l

Let’s consider an example of how this map works. Take the sequence
(n)52 € Uy given by

2o = —0y + *P(A

(4)
Iy = —51 + .P(B)
Tg = —52 + .P(A)

(4)
T4 = —64 + *P(A)

I3 = —53 +.P

and let’s find UT'((2,)%,). We can let 7 be any tiling with the tile —zy +
P(A), as in Figure 2.4 a. The tiling 77 can be any tiling where wj*(77)
contains the tile —z; + P(B), as in Figure 2.4 b. The tiling 75 can be any
tiling where w;?(7;) contains the tile —x + P(A), as in Figure 2.4 ¢. We can
see that these tilings are agreeing on larger areas as n increases, and we will
let ~1(((2,)%2,)) be the tiling that they converge to. We can note that this
sequence is the one created when ¥, acts on the tiling in Figure 2.1, and we
can see that U appears to be mapping (z,)S, back to this tiling.

==
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Figure 2.4: The map W' for the siver mean substitution.
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2.1.3 The space i
We can now define the space {l. If (2,)%%,, (2,)2%, € U(T), and (2,)%%, #

n=—=l

(21)22, then identify them. Let 4 be the quotient space under this identifi-

cation, and let ": & — ${ be our identification map. Also let U and ¥~ be
the naturally induced maps between ¥ and 4. The following theorem is clear.

Theorem 2.2. The maps U : T — §1 and U~ : 8 — T are both bijections.

Let’s consider what this identification will look like. When we consider
7' from Figure 2.2, we see that ()32, and (z!)>.,, will be identified. This
example illustrates how our identification will typically look. Suppose we take
two sequences (y,)%%, and (v, )52, from some space 4. If either of yg or y; is
not an endpoint of the prototile containing it, then these sequences will not be
identified. The only way an identification might be possible is if, without loss
of generality, yo = P(cp)® and y; = *P(c), for some ¢g, ¢ € A. Further, it will
be necessary that the word cyc, can appear in &. If yo and y{ satisfy these
conditions, then an identification might be possible. We need to look at the
rest of the sequence. If we see that y,, = y,, for all other n, then we will identify
the sequences. Or, if y; = P(c;)® and y] = *P(c}), for some ¢;,c; € A, where
16} is a legal word of &, then an identification might still be possible, and we
look at the points yo and y5. We continue on in this way until our sequences
agree on the remaining points, in which case we will identify them, or until
we get two points ¥y, and g/, which will be inconsistent with an identification.
The only other possibility would be when for all n, we have y, = P(c,)® and
y. = *P(c,), and the word c,¢), is a legal word of &. In this case we will
identify the sequences. For an example of this situation, consider the tiling in
Figure 2.5. Both of the sequences (y,)32, and (y.,)%2,, where y,, = P(A)® and
y, = *P(A), for all n, will be in ¥{(7'), and since AA is a legal word of &,

they meet the above criteria for identification.

2.1.4 The Space £

All of the non trivial results in this section have been verified by Anderson
and Putnam [6].

We can consider this space in slightly different way. Let’s consider the
space ‘P again, the disjoint topological union of the prototiles. Now, if it is
possible for a partial tiling of type aa’ to appear in our tiling space, we will
identify the points P(a)® and *P(a’). Performing all possible identifications of
this form will give us a quotient space of P, and we will call this space JN.
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Figure 2.5: A tiling in T4

p,(P(A))

0,(®)

Figure 2.6: Formation of the space 90;.

Let p : P — M be the identification map. We may also put a metric on
this space in a natural way, and our first example of a topological dynamical
system, given in Section 1.1, illustrates this metric for a simple example.

Let’s consider what this space is for our examples. For the silver mean
substitution we have our two prototiles P(A) and P(B), and the legal words of
length two in this system are {AA, AB, BA}. So we will identify the endpoints
P(A)® and *P(A), as well as the points P(A)® and *P(B), and the points
P(B)* and °P(A). When we identify these points and apply the quotient
topology, we form a new topological space 9;, which is a compact metric
space, and is depicted in Figure 2.6. (Note that all the identification p; does
is “bend” P(A) and P(B) so that their endpoints become identified. The
arrows in this figure, as well as the arrows in Figure 2.7 are only present to
help illustrate that the only deformation to these intervals occurs in “bending”
them. If 0 < @ < b < Ap, then if we would trace p1(P(A)), we would start at
p1(0), then come to py(a), then p;(b), then finally to p1(A1), which is actually
the same point as p1(0).)
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Figure 2.7: Formation of the space M,

P(a) T(c) T(cx)

| | [ |
| | o |"‘*—“{

Figure 2.8: The action of w on P(a)

For our new Fibonacci substitution we have the prototiles P(C), P(D),
P(E), and P(F). The legal words of length two are {CF, FD, FE, DF, ECY},
and when we make the corresponding identifications we get a compact metric
space My, as in Figure 2.7.

Now w will induce a continuous map from 9t to 9. Suppose that w(a) =
c1...cp, forsomea,cy,...,c € A Then we know that w will map the prototile
P(a) to a partial tiling of type ¢;...ck, as in Figure 2.8, where each T'(¢;) is
just a translate of some prototile P(c;), and for each i, we will suppose that
T(¢;) = z; + P(¢;) for some z;. So we may subdivide P(a) into k sections, say
P(a)y,...P(a)g, where w maps each P(a); exactly onto the tile T'(¢;). (We
note here that these sections of P(a) may share boundary points.) Now for
each section, we will let w(p(P(a);)) = p(P(ci)), and due to the fact that
p(P(c;)®) = p(*P(cizq)) for alli = 1,...,k — 1, this map will be continuous.

To get a better idea of how this mapping works, let’s consider the silver
mean example. We have already constructed our space 9, and we will now
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Figure 2.9: The action of w; on the prototiles P(A) and P(B). Notice that
P(A) has been divided into three sections, corresponding to P(A);, P(A),,
and P(A)s.

P(P(A)) o(P(A)) P(P(A);) p(P(A))
P . D ——
P(P(A)) p(P(B)) p(P(B)) p(P(A))

A~ O <>_,©

Figure 2.10: The action of w; on 9t

consider how wy will act on M. We know that w; maps P(A) to a partial tiling
of type ABA, and we can subdivide P(A) into three sections, P(A); which is
mapped to the first tile in w(P(A)), P(A), which is mapped to the second tile
in w(P(A)), and P(A); which is mapped to the third tile in w(P(A)). This is
shown in Figure 2.9.

So in My, we let w(p(P(A)1)) = p(P(A)), w(p(P(A)2)) = p(P(B)), and
w(p(P(A)3)) = p(P(A)). Now we also know that w; maps P(B) to a tile of
type A, so we can let w(p(P(B))) = p(P(A)). This is depicted in Figure 2.10,
and since p(P(A)®) = p(*P(A)) = p(P(B)*) = p(*P(B)), we can easily see
why w; is continuous.

We will now define an inverse limit space using 9% and w. We let £ be the
inverse limit of 901 relative to the map w. Our space £ will consist of all infinite
sequences (x;)32, of points in M such that w(z;41) = z; for all i =0,1,2,....
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If we give the space 12,9 the product topology, then we will let £ have the
subspace topology in this space. A basis for this topology will consist of all
sets of the form

Bf, ={ze€f|z e (U)fori=0,1,...,n}.

The substitution w will also provide a natural map on £ given by w(z); = w(z;),
and this map will have an inverse given by w™(x); = Z; 1.

At this point it is clear that when forming the space {1 above, we would
identify the sequences (z,)%%, and (z,)%°, if and only if p(z,) = p(z,,) for all
n. Consequently, we have the following theorem.

Theorem 2.3. The spaces i and £ are homeomorphic.
We may also establish the following theorem.

Theorem 2.4. The dynamical systems (T,w) and (£,w) are topologically con-
jugate.

Proof. We have a homeomorphism I' : € — £. Let 7 € %, where
w™™(T) = 6(n) + T(B(n)) for all n > 0. Then for every n, *P(8(n)o) —
§(n) € P(B(n)o), and this point will be related to the location of the origin in
T(B(n)o). Welet x,, = p(*P(8(n)o) —d(n)), for all n, and I'(T) = (n )50 O

2.2 The Dynamical System (5%, w)

Above we created a space 4 and then identified some of its elements to form a
space homeomorphic to T. We will again start with the space i, then we will
create a space bijective to {I, and then make the same identification in this
new space. We use this approach to get a different look at the nature of the
topology on T. We will use Bratteli diagrams in defining this space, so we will
develop the needed theory below.

2.2.1 Bratteli Diagrams

We develop the theory by following Durand, Host, and Skau [7]. A Bratteli
diagram is an infinite directed graph (V, &) such that the vertex set V and the
edge set £ can be partitioned into finite sets

V‘—:VQUV1UV2U... andé’zgluﬁgu...

with the following properties
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Figure 2.11: An example of a Bratteli diagram.

1. Vo = {wo} is a one point set.

2. 1(&) TV, s(&,) CVpo1, n=1,2,..., where r is the associated range
map and s is the associated source map. Also, s71(v) # @ for all v € V
and r7(v) # 0 for all v € V\V

It is convenient to represent a Bratteli diagram as a diagram with the
vertices V,, at a horizontal level and with &, as the downward edges connecting
Vi_1 to V. Also, if |V, 1| = t,—1 and |V,| = t,, then &, determines a ¢, X t,_;
incidence matrix. See Figure 2.11 for an example. In this example we will

100
o . 100 L .
note that &, has incidence matrix 100 and &, has incidence matrix
011
1000
[ 0 1 11 } ’
A Bratteli diagram is stationary if & = |Vi| = |V,] = ..., and if, by an
appropriate labelling of the vertices, the incidence matrix between level n and
level n+1 is the same k x k matrix C forn = 1,2,.... In other words, beyond
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Figure 2.12: An illegal set of edges for a Bratteli diagram.

level one, the diagram repeats.

Throughout our discussion we will be dealing with stationary Bratteli di-
agrams with the property that there are no multiple edges between any two
vertices, i.e., if e,, e, € &,, with s(e,) = s(e},), and r(e,) = r(e},), then
en = e),. (All we have done here is prohibit the situation in Figure 2.12 from
happening.)

Let B = (V, £) be a Bratteli diagram. We will let X denote the associated
infinite path space of B,

XB = {(61,62,...) l e; & Ei,r(ei) = 8(8i+1),i = 1,2,}

Each element in this space corresponds to one of the ways you can trace an
infinite path along the edges of the diagram. In Figure 2.11, we could have
a path looking something like (..., e,, €n41,... ), but we can not have a path
like (..., en, €1, ), since r(e,) # s(e;,, ;). We let the cylinder sets

[emy-senlie, ={(f1,f2,...) € Xp | fi =€ for m <i<n}

form a basis for the topology on Xp.

2.2.2 The Space B; for the silver mean substitution

Let’s consider our space U, again. We will use it to define a space By, which
is bijective to 4;. Then we will generalize the construction.

Let’s suppose that (z,)°, € i, and zg € P(A). Any tiling 7 containing
the tile —zg + P(A) will have z, as the first point in one of the sequences in
U(T). Now let’s consider what the point x; might be, if all we know is zg.
Suppose that z; € P(c;), where ¢; is either A or B. Then there must be some
tiling 7 so that w;!(7) contains the tile —z; + P(c;) and 7 contains the tile
~xz9 + P(A). So the tile —x¢ + P(A) must be contained in the partial tiling
wi(—z1 + P(c1)). In this substitution system there are only three ways that
this can happen, and they are shown in Figure 2.13 a. The substitution w
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will produce two tiles of type A when it acts on a tile of type A, and it will
produce one tile of type A when it acts on a tile of type B. When we further
require that this tile of type A is shifted to match the tile —zq + P(A), we are
left with only three possible choices for z;.

Similarily, if we had originally supposed that zo was in P(B), we would only
have one possible choice for the point =1, and this is illustrated in Figure 2.13 b.

Suppose now that xg and x; have both been specified. Then, by the same
argument as above, if z; is in a tile of type A, we will have three choices for
what x5 can be. If 21 is in a tile of type B, we will have only one choice for
Zo. Inductively, if x,, is in a tile of type A, there will be three choices for z, 1,
and if z, is in a tile of type B, there will be one choice for what z,.; can be.

Let’s label these choices. If z, € P(A), and we make the choice shown in
Figure 2.13 a i, let’s call this choice A;. If z,, € P(A), and we make the choice
shown in Figure 2.13 a ii, let’s call this choice A,. If z,, € P(A), and we make
the choice shown in Figure 2.13 a iii, let’s call this choice As. If z,, € P(B),
then the only choice we can make is as in Figure 2.13 b i, and let’s call this
choice Bj. It’s clear that we can represent every sequence (z,)02, € i as
the point zp, along with the sequence of choices we would make in defining
the remaining (z,)%,. For example, consider the sequence (z,)5>, that we
created by looking at the tiling in Figure 2.1. We can consider this sequence
as the sequence where zo = —dy + *P(A), x1 is the point we get from making
choice As, x5 is the point we get from making choice By, z3 is the point we
get from making choice A, z4 is the point we get from making choice Aj,
and so on. We can consider the sequence ()%, that we created from the
tiling Figure 2.2 to be the sequence created when we let z = *P(A), 2} is
the point we get from making choice A;, z, is the point we get from making
choice Aj; x5 is the point we get from making choice B, z/, is the point we
get from making choice Az, and so on. We can consider the sequence (z7)>
that we created from the tiling Figure 2.2 to be the sequence created when we
let zg = P(A)*, = is the point we get from making choice A, 2§ is the point
we get from making choice As, x4 is the point we get from making choice Aj,
xy is the point we get from making choice Az, and so on.

We can use a Bratteli diagram to keep track of the legal sequences of
choices. We will define a Bratteli diagram 31, which we will associate with the
silver mean substitution. First we define the vertex sets. Let Vo = {vo}. For
all other n, let V,, = {A}, A3, A%, B7'}. Our intention is to let each vertex A}
(or B}) signify making choice A; (or By) when defining the point z,,. Then, if
we choose our edges properly, each path through the diagram will define one
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Figure 2.13: Possible ways of generating tiles in ;.

39



>

>.._‘
u>..-
um._t

Figure 2.14: The set & and part of & for By.

legal sequence of choices. We will let £ consist of one edge from vy to each of
AL, AL Al and B]. Now let’s consider what the set & must look like. If our
first choice is Ay, then zy will be in a tile of type A. So we need to be able to
make one of the choices A;, Ay, or Asz. So we will draw one edge from A] to
each of A2, A2, and A2. This is shown in Figure 2.14. Similarily, we will need
one edge from A} to each of A?, A3, and A2 and one edge from Bj to each
of A2, A2, and AZ. We will also need one edge from A} to Bi. By the same
reasoning we can inductively define all other sets &£,,. We will need one edge
from A?7! to each of A7, A2, and A%, one edge from A}™! to each of A}, A7,
and A%, one edge from B! to each of A?, A%, and A%, and one edge from
A37! to B}. The resulting Bratteli diagram B; is shown in Figure 2.15.

Now we can see that if zop € P(A), then every path that starts with an
edge to one of Al, A2 or A3 will define an element in ;. A path that starts
with B] will not make sense, because it would require zo to be in P(B). So
we define

Xp, (A) := {€ € By | the first edge in £ is to one of A}, A%, or A3}

Similarily, if zo € P(B), then every path that starts with B will define an
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element in 4, while any other path will not make sense. We define
Xp,(B) := {& € By | the first edge in £ is to By }.
Now we can define the space B,
B, = {P(4) x Xg,(A)} U{P(B) x Xz,(B)}.

It is clear from the construction of 9; that 2B; and &; are bijective. If
(xn)2 o € Uy, we define Ty : 1y — By by T1((2,)22,) = (z,€), where z = =,
and £ is the path that corresponds to the choices made in selecting each point
Tn. Let Y7': B; — i as follows. If (z,€) € B, where £ corresponds to
making choice Cy, then choice Cy, and so on, then let T1((z,§)) = (zn)3,
where the point xo = x, the point z; corresponds to making choice Cf, the
point x5 corresponds to making choice Cy, and so on. By using this bijection
we can now define a relation

@1 :ZTloqflt‘Il—ﬁ%l

and a map
o= tort B — T

2.2.3 The space ‘B in general

It is easy to generalize the process we used in constructing 9B,. First we will
form the Bratteli diagram B. We let V, = {vo}. Now consider any ¢ € A, and
suppose that our substitution gives us m ways to generate a tile of type c. Let’s
label these choices of how to generate ¢ as ¢y, ..., ¢y,. Then for every n > 1,
we let ¢} € V,, for 1 < ¢ < m. For the edge sets, first we will let £ consist
of one edge from vy to each element in V;. We define all other &, as follows.
Suppose that the choice ¢; corresponds to a situation where w generates a tile
of type ¢ by acting on a tile of type d. Then, for every n > 1, we need to draw
an edge from c' € V, to every element of the form d?“ € Vp41. This process
will define all edge sets &, and will give us a stationary Bratteli diagram. We
let

Xp(c) = {€ € Xp | the first edge of £ goes to ¢; for some 1 < i < m}.

Then we have the space

B = U P(c) x Xg(c).
ceA
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Now let (z,€) € B, where z € P(a) and the path £ corresponds to the
choice Cy, then the choice C5, and so on. Then, similarily to how we defined
T4, we can define T : U — B by T{(z,)o,) = (z,§), where z = zg, and ¢
is the path determined by the choices made in defining each other z,. Due
to the similarities between the spaces B and U, the following theorem is now
clear.

Theorem 2.5. The map Y : 4 — B is a bijection. Further, we can define a
relation @ 1= ToW¥ : T — B, and O(7T") will contain exactly one element if the
origin of T does not lie on the boundary of a tile, and ®(7T") will contain ezactly
two elements if the origin of T does lie on the boundary of a tile. We also
have a well defined map &1 .= U Lo T™1: B — T where @ 1((x,£)) =T
if and only if (x,&) € ®(T).

The map @ is easy to understand. For any (z, £) € B, form the sequence
Y7((z,€)), and then create the tiling associated with this sequence.

We can put a topology on B. Recall that the space Xz has the topology
given when the cylinder sets form a basis. We can put the subspace topology
on each of the spaces Xg(c). So the set of all cylinder sets that are contained
in Xp(c) will form a basis for the topology on Xg(c). Each space P(c) has the
subspace topology from the usual topology on R. So we can give each space
P(c) x Xg(c) the product topology from these two topologies. Then we can
let 9B be the disjoint topological union of these spaces. If the point (z, &) € B,
where z € (*P(a), P(a)*) and & € Xg(a), then the set of all basis elements

<y7 Z) X [617 sy eN]iNzla
where € (y,2z) C P(a) and £ € ley,...,ex]Y,, will form a fundamental

system of neighbourhoods for (z,&). If the point (z,&) € B, where z = P(a)*
and £ € Xg(a), then the set of all basis elements

(y,P(a)'] X [617""61\7]11'\;17

where (y, P(a)?] € P(a) and € € [eq,...,en]|¥,, will form a fundamental
system of neighbourhoods for (z,&). If the point (z,£) € B, where z = *P(a)
and & € Xg(a), then the set of all basis elements

[*P(a), z) X [e1,-. Lenly,,

where [*P(a),z) C P(a) and € € [ey,...,en]¥,, will form a fundamental
system of neighbourhoods for (z, £).
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2.2.4 The space B*

We can now define the space B*. We start with the space B, and if 7 ((z,€)) =
O~1((z',£")), then we will identify (z, &) and (2/, £’). We call the resulting space
B*, and we will let * : B — B* be our identification map. We let ®* and
& be the naturally induced maps between B* and ¥. The following theorem
follows from the relationship between the spaces 8 and 4, and Theorem 2.2.

Theorem 2.6. The maps & : T — B* and ®* : B* — T are both
bijections.

We have also established the following.
Theorem 2.7. The spaces X, £, and B* are all bijective to each other.

We give B* the quotient topology under the map *. So, if (z,£)* € B*,
where z € (°P(a), P(a)®) and £ € Xg(a), then the set of all basis elements

((ya Z) X [617 ceehy eN]i]\il)*v

where © € (y,2) C P(a) and € € [ey,...,en],, will form a fundamental
system of neighbourhoods for (z,£). On the other hand, if (z, £)* € B*, where
r = °P(a) and £ € Xp(a), then there will be exactly one other (z',¢') € B
such that (z,€)* = (2/,£)*, where 2/ = P(d’)* and & € Xp(d'), for some
a’ € A. Then the set of all basis elements

({(y, P(a)] % [ex, -, en]ily}

U{['P((Ll), Z) x [6/1’ R elN’]ivzll})*v
where (y, P(a)?] C P(a), [*P(d’),2) C P(a'), £ € le1,...,en]l,, and £ €
e, ..., ex]Y, will form a fundamental system of neighbourhoods for (z,&)*.

Theorem 2.8. The maps &* : T — B* and o' . B — I are both
continuous. Consequently, the spaces ¥, £, and B* are all homeomorphic.

Proof. Let Br be the integer that is associated with the property of forcing
the border for this substitution system.

Let U C T be open, and let 7 € U, where w™(T) = é(n)+7T (B(n)), for all
n. Then there is a basis element U (7)) C U. Let ®*(7) = (z,&)* € B*, where
z € P(a) and £ € Xg(a), for some a € A. We have two cases to consider.

The first case is when z is not an endpoint of P(a).

Then we can choose some § < € so that (=0 + z,0 + z) C P(a). We can
also choose an integer N > 0 such that AVN"P7¢, > 1/e + §. Now take any
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(,¢) e V= (=0+2z,6§ +1z) X [e1,...,en]Y,. The point =’ will not be an
endpoint of P(a), so @ ((«/,€)*) = &~ Y((2/,¢)) = T, for some T’ € %.
Now the origin of 7 and the origin of 7’ will be in the same type of tile,
since they are both in ®*7 (V), and if we shift 7’ by some v with |v| < 6,
then 7 and —v + 7" will agree on the tile containing the origin, which will
be 6(0) + T(B(0)o). Also, since the paths £ and & will agree on the first
N edges, the tiling w™(7) will generate the tile containing the origin in
7 in the same way as the tiling w™"(~v + 7') will generate the origin in
~v+7. Sow ™ M(T) and w™¥(~v + 7T') will agree on the tile containing the
origin, and by forcing the border, the tilings 7 and —t + 7" will agree on the
interval [~AN=Brg  AN-Brg ] which contains the interval [—1/¢ — 8, 1/¢ + 6].
So T' € U(T), and @ (V) C U. So &*(U) is open.

The other case to consider is when z is an endpoint of P(a), and without
loss of generality, assume z = P(a)®. Then there will be exactly one other
(', &) € B, such that (z,8) # (¢/,&), but (z,£)* = («/,&)*. We will know
that ' = *P(d'), and ¢ € Xp(a') for some o’ € A. By a similar argument as
above, we can find some § < ¢, and some integer N > 0, with AN =874, > 1/e+6
so that the basis element

V= ({(*5 + P(a).a P(a>.] X [617 R eN]i]il}

W{[*P(a), 6+ P(a’)) x [e], .., enlits})",

will satisfy ' (V) € U. So ®*(U) is open.

So the map ' is continuous.

Now lets take any open set V' C 9B*, and let (z,£)* € V, where x € P(a)
and £ € Xg(a). Let & ((z,£)*) = T € X. First we will suppose that z is not
an endpoint of P(a).

So we have some basis element

W:i=((-0+z4d6+x) X [61,-~~76N]£\;1)*CV~

Now since w : ¥ — ¥ is invertible, if we look at a sufficiently large patch
around the origin in the tiling 7, we can determine what type of tile contains
the origin in w™(7), and how much it has been shifted. Further, we can
choose a R > 0, so that a ball of radius R around the origin in any tiling of
T will determine the tile containing the origin in the inverse of that tiling. It
follows that a ball of radius AR+ R = (A + 1)R around the origin in 7" will
determine which tiles lie in a ball of radius R around the origin in w=1(7),
which will determine which tile contains the origin in w™2(7). Inductively,
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a ball of radius (A + 1)¥~!R will determine which tile contains the origin in
wN(T).

Choose an € > 0 such that € < §/2, and 1/e — 2¢ > (A + 1)¥'R. Then
choose any 7' € B.(T). There is some v with |v| < € <  so that 7 and
~t + 7" agree on a ball of radius (A + 1)¥ 'R around the origin. Further,
for each n < N, w™(7) and w™™(—t + 7') will agree on a ball of radius
(A + 1)N=""1R around the origin. This forces the tile containing the origin in
7 and the tile containing the origin in —t + 7" to be generated in the same
way by the tilings w™"(7) and w=N(—t + 7T), respectivley. So ®*(7) € W,
and @ (V) is open.

The other case is when « is an endpoint of P(a). Without loss of generality,
assume that z = P(a)®. Then there is some other (z/,¢) € B, with 2/ =
*P(a’), and & € Xg(a'), such that (z,£)* = («/,&)*. There will be some basis
element

W = ({(=6 + P(a)®, P(a)*] X [e1, .. .,eN]fY__l}
U P(), 5+ *P(d)) x [él,. .., eyl ) € V.

By a similar argument as above, if we choose an ¢ > 0 such that € < §/2, and
1/e —2e > (A + 1)N-1R, then ®*(B.(T)) ¢ W. So &' (V) is open
So the map ®* is continuous.

2.2.5 The map w on B*

Since the maps ®* : ¥ — B* and w : ¥ — T are both continuous and
invertible, we may define

wi=d*owod :B* —s B*.

Further, this map will be both continuous and invertible, and by definition, it
intertwines with ®*. This gives us the following result.

Theorem 2.9. The topological dynamical systems (%, w), (£,w), and (B*,w)
are all topologically conjugate dynamical systems.

To get a better idea of how the substitution w will act on B*, let’s consider
an example. Let (z,€)* € B3, where  ((,€)*) = wi}(T), where T is the
tiling in Figure 2.1. So z = —d; + *P(B), and £ is the path corresponding
choice By, then choice A;, then choice Ay, and so on. We will have w((z, £)*) =
(z',&)* where 2’ = —dg+°*P(A), and £ is the path corresponding to choice As,
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then Bj, then choice A;, then choice Ay, and so on. We have w™((x,£)*) =
(", &")* where " = —d9 + *P(A), and £” is the path corresponding to choice
A1, then choice A,, and so on.
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Chapter 3

Higher Dimensions and The
Cantor Set

3.1 Higher Dimensions

So far, for simplicity, we have limited our discussion to one dimensional tilings.
However, all of the ideas involved also work in higher dimensions. Given a
substitution tiling dynamical system ¥, in any dimension, we can always find
a topologically conjugate system that forces the border. Then, once we are in
the system that forces the border, we can always form the the topologically
conjugate inverse limit system (£,w), and the topologically conjugate Bratteli
diagram system (8B*,w). We will briefly look at how to do this for the chair
tiling substitution system in R2. For a more rigorous and general approach to
the spaces T and £ in higher dimensions, refer to [6].

We will start with a set of prototiles and a substitution rule. The substitu-
tion will inflate each tile by some constant A, and exactly subdivide this larger
tile into a set of translates of our prototiles. For the chair tiling, the prototiles
P(A), P(B), P(C), and P(D), the substitution ws, are shown in Figure 3.1,
and the inflation constant is 2.

Any way that we can arrange translates of these prototiles to cover all of
R? will be a tiling of R%. If 7 is one of these tilings, and if any partial tiling
P c T will be a subset of wl¥(—z + P), for some z € R?, and N > 0, where
P is one of our prototiles, then 7 is a substitution tiling, under ws. We let
T3 be the set of all substitution tilings for ws. A section from a tiling of %3 is
shown in Figure 3.2.

We can put a metric and topology on T3 in the same way as we did for a
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Figure 3.1: The prototiles and substitution rule for the chair tiling.
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Figure 3.2: A section of a tiling in ¥3.
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one dimensional system. We put a metric on T3 by
d(T,T') = inf({1/V2}U{e | Bije(—v+T) = Bye(—v'+T") for some ||, ||[V|| < €}),
and define a topology where the sets

U(T) :={T" | d(T,T') < ¢}

form a basis. The substitution ws extends to an invertible and continuous map
from %3 to ¥3,, and the space (T3, ws3) is a topological dynamical system.

This system does not force the border. In higher dimensions, forcing the
border will require that for some Bp, and for any tile 7" in a tiling 7, all of
the tiles that border the partial tiling we” (T), and how they share boundary
points with wf F(T), will be completely determined by what type of tile T' is.
It is straightforward to see that each of the four types of tiles in T3 can be
collared (surrounded) in 14 ways, so we can create a new substitution tiling
with the prototiles P(A1),..., P(Ay), P(B1),...,P(Bu), P(CY),..., P(Ca),
P(Dy),..., P(Dy,) (one for each type of collared tile). For example, we can
let P(A;) correspond to the situation where a tile of type A is collared as in
Figure 3.3 a, we can let P(Aj) correspond to the situation where a tile of type
A is collared as in Figure 3.3 b, we can let P(Bj3) correspond to the situation
where a tile of type B is collared as in Figure 3.3 ¢, and so on. We will replace
T3 with this new space (so T3 now refers to the space with 56 prototiles), and
redefine ws accordingly. We are now in a system that forces the border.

We can let B3 be the disjoint topological union of the prototiles, and we
will identify the points z € P and 2’ € P’ if there is some tiling in T3 that
contains the tiles —~t+P and —t'+P’, and —t+x = —t'+2'. This identification
will form the space M. So if we have a partial tiling as in Figure 3.4 appear
in some tiling in %3, then we will have to make many identifications. A couple
of the identifications that will be necessary are to identify the points z, z’,
and z”, and also to identify the points ¥, v/, where these points are shown in
Figure 3.5. (We notice that in higher dimensions the identifications we will
make in defining the spaces M, and B* may contain more than two points.
However, there will always be a finite bound, depending on the system we
are considering, on how many points of B (or B) will be identified to any
particular point of 9 (or B*).) Let ps : Ps — M3 be our identification map.

We can define w; on M3 in the same way that we did in one dimension. If
w3 maps the point x in the prototile P to the point —t 4z’ in the tile —t 4+ F,
then we let ws map the point p(z) to p(z’). If we look at Figure 3.6, then we
see that the point z in the prototile P(A;) is mapped to the point 2’ in the tile
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Figure 3.3: Three ways of collaring a tile in T3.
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Figure 3.4: A partial tiling in T5.
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P(A;) -t+PD ;)

Xe

L]
x|

Figure 3.6: The action of w; on P(A4;).

—t+ P(D;). (Note that A; can be any one of Ay,..., Ay, but D; will depend
on which prototile 4; is.) So we will let ws(p(x)) = p(z').

Now we define the space £3 to be the inverse limit space of 913 relative to
the map ws. Our space £3 will consist of all infinite sequences (z;)52, of points
in M3 such that wy(z,41) =z; forall i =0,1,2,.... We give £3 the subspace
topology from the product space II2,, and it will have a basis consisting of
all sets of the form

B{in = {z € L|lz; € wy ' (U) fori=0,1,...,n}.

Also, w3 will provide a bijection on £3 given by ws(z); = ws(x;), and the
inverse will be given by w3 (z); = Tiy1.

The dynamical systems (T3, ws) and (£3,ws) are topologically conjugate.

Now let’s consider how to form the appropriate Bratteli diagram for this
system. We let w3 act on each prototile, and count the number of times a
translate of each prototile appears. When we do this, fourteen tiles of type A;
will appear. Each type of tile Ay, ..., A4 will produce one tile of type A;. We'll
let the symbols (Aj)s, ..., (A;)14 denote the choice made when generating a
tile of type A; by using a tile of type Ay, ..., A4, respectively. Only one tile
of type A, will appear, and it will be produced by a tile of type Bs. We will
let the symbol (A2); denote the choice of generating a tile of type As in this
way. So when we form our Bratteli diagram, we will need to have Vo = {vo},
and every other V,, must contain the subset {(A1)7,..., (A1)}, (A2)7}. Tt will
also contain elements corresponding each way that each of the other prototiles
can be generated.
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Now for the edge sets. The set & will consist of one edge from vy to each
vertex in V;. For every other &£,, we construct the edge set by considering
what sequences of choices will be legal. If we make the choice (A;); at level n,
then this will mean that our tile of type A; was generated by a tile of type Ay,
so we must be able to make all of the same choices at the next level. So we
need edges from (A1)} to each of (A1), ..., (A1), If we make the choice
(Ay)2 at level n, then this will mean that our tile of type A; was generated by
a tile of type Ay, so we will need an edge from (A;)5 to (A2)7™'. We continue
using this process until all of our edges have been defined.

We will let Xp, denote the infinite path space of this diagram. If we let
Az = {Ay,..., A1, B1,...,B14,C4,...,C1g, D1, ..., D14}, then for each a €
Ajs we can define the path space

Xp,(a) := {€ € Xp, | the first edge of £ goes to a vertex aj }.

We let B := (4, Pla) x Xp,(a).

As before, we can define a map ®3 : B3 — T3, and this map constructs
a tiling 7 of T3 by using the point (z,£) € P(a) x Xp,(a) C B3 as a rule. It
will place the origin of 7 in a tile of type a, with its exact location in that tile
determined by the point . The sequence £ will then dictate how to build a
tiling around this tile, and it will do it by specifying how the tile containing
the origin in each tiling w;™(7) is generated by the tiling w3™ (7).

Now we let B* be the space that is formed when we identify (z, &), («/,&') €
B if & 1((z,8)) = 7 ((2,¢)), and we let * : B* — T be the naturally

induced bijection between the two spaces. Then we can define our substitution
wsy =Pz owo ®;t: B — B

The dynamical system (B3, ws) is topologically conjugate to (%3, ws).

3.2 Comparisons to the Cantor Set

The Cantor set is a subset of the interval [0,1]. We start with the interval
[0, 1], and remove its middle third, the interval (1/3,2/3). So we are left with
two intervals, [0,1/3] and [2/3, 1]. Then we remove the middle third of each of
these intervals, leaving us with the four intervals [0,1/9], [2/9,1/3], [2/3,7/9],
and [8/9, 1]. We continue in this way, successively removing the middle third
from each remaining interval. Repeating this process infinitely often we are
left with an infinite set of points from this interval. This set, with the induced
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topology from the real line, is the Cantor set. Some points that are obviously in
the Cantor set are {0,1,1/3,2/3,1/9,2/9,7/9,8/9,...}. However, the Cantor
set is uncountable.

A space S is totally disconnected if for any distinct z,y € S, there exist
disjoint open sets U and V such that x e U,y € V, and UUV = S§. It is
not hard to see that for any Bratteli diagram B, the infinite path space Xz is
totally disconnected. Each cylinder set is both open and closed, and it is clear
that for any distinct &, & € Xg, we can find a cylinder set containing £ but
not containing &', so the space Xz is totally disconnected.

A space S is perfect if every point of S is a limit point of S. In general, the
space Xpg does not need to be perfect. However, the path space for any of the
diagrams that we create from a substitution system will be. Suppose B was
created using a substitution system, and let [e1, ..., e,]7; be any basis element
in Xp. Since our substitution system is primitive, any type of tile will eventu-
ally produce every other type tile. So no matter what type of tile the vertex
r(en) corresponds to, there will be at least two ways to produce it through
iterating our substitution on other tiles. So the basis element [ey, ..., e,]"
will contain at least two elements. So Xp will be perfect.

It is also clear that the space Xz is compact. (Each edge set is finite, hence
compact, so we can regard Xz as a subspace of a product space of compact
spaces.) We can also put a metric on Xz in the same way that we put a metric
on the cylinder sets in Section 1.1.

The following theorem about the Cantor set is verified in Hocking and
Young [8] pp. 97-100.

Theorem 3.1. Any compact totally disconnected perfect metric space is home-
omorphic to the Cantor set.

So each of the Bratteli diagrams that we create from a substitution system
will be homeomorphic to the Cantor set. Further, if we are considering a tiling
space in R™, then each of our prototiles will be homeomorphic to the unit ball
in R™, which we will denote as I,,. Now let B be the Bratteli diagram space
constructed from a tiling space in R™, and suppose that B = |J,.4 P(a) x
Xp(a). If we use these homeomorphisms on (z,£) € Xp, then we can map x
to the corresponding point in /,, and & to corresponding point in the Cantor
set. It follows that % and I, x € (where we are letting € denote the Cantor
set) are homeomorphic spaces. So we have the following theorem.

Theorem 3.2. Let I,, be the unit interval and let € be the Cantor set. Then
any substitution tiling space ¥ is homeomorphic to a quotient space of I, X €.
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