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ABSTRACT

A long range predictive control (LRPC) law is designed on the assumption, that
the given model truly reflects the plant dynamics. However in reality there is always a
model-plant mismatch (MPM) which gives rise to stability and performance problems when
the designed LRPC is implemented on the actual plant. This thesis addresses the crucial
guestion of designing a LRPC that is robust to MPM and looks at ways to enhance the
actual performance of the LRPC control loop in the presence of MPM.

The small gain theorem is used as a tool to design a LRPC that is robust to MPM.
Such a robust design method requires the knowledge of the MPM, which can be esti-
mated from the plant data using signal processing methods. This robust design method
has been applied to generalized predictive control (GPC) and Markov-Laguerre based model
predictive control (MPC) laws. 1t is shown that, irrespective of the model types, the robust-
ness bounds of both these LRPCs behave similarly under the influence of tuning parameters.
In the case of GPC: (a) the robustness properties associated with important tuning param-
eters are established analytically and verified experimentally; (b) it is shown that the model
and MPM can be estimated from closedi loop data; and (c) an optimization problem is for-
mulated within the small gain framework to select some of the controller tuning parameters.
For the Markov-Laguerre MPC: (a) designed stability is improved by incorporating steady
state weighting; and (b) faster disturbance rejection is obtained by including a structured
noise model in the controller design.

Ideally, a stable LRPC with satisfactory performance can be obtained by estimating
a model with minimnal MPM. Therefore significant emphasis has been given to system
identification methods and their applications have been illustrated through two industrial
case studies. In the context of model estimation, an extension based on the augmented
UD identification method to simultaneously estimate parameters of different orders of the

orthonormal function models is developed.

Three control relevant identification methods are reviewed and suitably modified to



enhance the achieved performance of GPC. The key issue in control relevant identification
is to bring the designed and the achieved closed loop performances as close as possible. This
is accornplished by: (a) designing a suitable model estimation filter; and (b) appropriately
modifying the designed controller objective function, and using them to obtain control

relevant models and thereby upgrading the performance.
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Chapter 1

Introduction

1.1 Long range predictive control

The term long range predictive control (LRPC) is used generically to represent a famnily of
model based predictive controllers. All LRPC strategies use a model based description of
the plant dynamics to determine the controller moves. The LRPC algorithins in general
calculate several controller moves in the future, but they implement only the first control
action and hence such controllers are also called receding horizon controllers. The LRPC
design is based on the assumption that the given mathematical model truly reflects the plant
dynamics; therefore such controllers are also categorized as certainty equivalence controllers.

There are varied opinions on how the concept of LRPC emerged. Clarke and Mo-
htadi who developed one popular LRPC algorithm, attribute the earliest LRPC design to
Dawkins and Briggs in 1965 [1, 2]. Another reference to the LRPC ideas can be traced
back to Kishi, in 1964 [3]. Kishi’s work on model based control was motivated from several
previous results on optimal and adaptive control due to Kalman in 1958, Merriam in 1960
and others [4, 5, 3]. Kishi even refers to a paper by Horing, who explicitely used the term
predictive control in his work in 1962 [3, 6]. Nevertheless, according to most references
on LRPC, the present state-of-the-art in the design of LRPC is said to conceptually stem
from the identification and control algorithm (IDCOM) and dynamic matriz control (DMC)
algorithms which were respectively proposed by Richalet et al. in 1978 [7] and Cutler and
Ramaker in 1980 [8]. We thus see that the concept of LRPC that was presumably conceived
during late 1970s and early 1980s was already examined in the early to mid 1960s.

The interest in LRPC surged since the advent of IDCOM and DMC because of their
successful industrial applications. The research interest in LRPC was at its peak during the
decade of 1980s when scores of several other LRPC algorithms were proposed. Some of the
LRPC controllers that emerged in the 1980s and that are traditionally quoted in the LRPC
literature are: model algorithmic control (MAC) due to Rouhani and Mehra in 1982 (9],
internal model control (IMC) due to Garcia and Morari in 1982, optimal control syntheisis



(OCM) due to Peterka in 1982 [10, 11), ertended horizon adaptive control (EHAC) due to
Ydstie in 1984 [12], multipredictor receding horizon adaptive control (MURHAC) due to
Lemos and Musca in 1985 [13], multistep multivariable adaptive controller (MUSMAR) due
te Greco et al. in 1984 [14], multivariable optirnal constrained control algorithm (MOCCA)
due to Sripada and Fisher in 1985 [15] and generalized predictive control (GPC) due to
Clarke et al. in 1987 [16, 2].

The main motivation for the development of LRPC algorithms was due to the chal-
lenges posed by real processes to achieve proper control and operation. It is well known
that most chemical processes are characterized either by time delays, non-linearities, inverse
response or other unusual high frequency dynamics, unmeasurable disturbances, process
constraints and interaction from other process variables or a combination of these. In gen-
eral LRPCs can elegantly handle these difficult process situations unlike PID controllers.
Although PID controllers are extensively used in the chemical industry for historical and
simplicity reasons, they have many disadvantages that are widely acknowledged to be over-
bearing. For difficult plant situations, some disadvantages of PID controllers are: (a) poor
performance (hence implications on operating cost) due to heavy detuning; (b) time con-
suming and nontrivial tuning processes; (c) inability to handle operating or instrument
constraints; and (d) applicable only to SISO systems. It is not surprising that the initial
LRPC algorithms such as IDCOM, DMC and MAC were developed by industrial practition-
ers and these controllers rapidly received wide-spread acceptance in the chemical industry
(17, 18, 19].

Besides handling difficult plant situations, the LRPC algorithms can be easily ex-
tended to: (a) multivariable control strategies, (b) incorporate operating constraints and
(c) integrate with other supervisory controllers that are based on economic objectives. For
example, MOCCA is a multivariable controller and has an elegant way of handling process
constraints. Other LRPC schemes such as DMC have been modified to LDMC! [20] and
QDMC? [21] and similarly GPC has been modified to handle input and output constraints
[22, 23). It is interesting to note that Kishi as early as in 1964 considered constraints in
model based control that are similar t= QDMC or constrained GPC.

Different LRPC schemes differ in detail but they have the following common fea-
tures: (a) irrespective of the model types (i.e. state-space, transfer function, step-response
etc.), the anticipated or the predicted process output is in terms of the step or impulse
response coefficients [24]; (b) the predicted process output comprises of a forced response
and a free response term; (c) the control actions are calculated so as to minimize a user
specified objective function; and (d) receding horizon strategy is used to implement the
controller.

1LDMC is an abbreviation for Linear programming methoa of optimization with DMC {20].
2QDMC is an abbreviation for Quadratic programming solution of DMC [21].



1.2 Motivation and objective

The research in LRPC has attained a significant level of maturity. In many chemical plants,
LRPCs such as DMC, IDCOM and GPC are operational3. But one issue of practical
importance and interest that has not been actively pursued is the issue of robustness of
LRPCs to modelling errors. This issue is important because, modelling errors manifest
themselves as performance and stability problems in all certainty equivalence controllers
such as LRPCs.

In a real situation a mathematical model can never emulate the true plant dynamsics
hence modelling errors or model-plant-mismatch (MPM) is inevitable. The reasons for the
existence of the modelling exrors are as follows:

e In real application, the plant often has infinite order, undefined structure and complex

dynamics. Often it is difficult to describe such complex plant dynamics even by a first-
principle based mechanistic models.

e Most LRPC algorithms are based on simple linear input-output models of finite di-

mension to obtain simple implementable controller design. As would be expected, for
simple models, the extent of ivi®M is often significant.

e Most processes are corrupted by different types of unmeasured disturbances, which
makes model identification difficult. In the presence of disturbances, the identified
model is usually biased, which then gives rise to MPM.

The next issue of importance is how MPM should be characterized. The MPM can
be characterized parametrically as well as nonparametrically. Parametric MPM could be
mismatch in process gain, time delay or time constant. But often for complex processes it
is not possible or feasible to specify parametric bounds on process dynamics. The non para-
metric uncertainty on the other hand lumps the mismatches in gain, delay, time constant
and other unusual dynamics together. Such a non parametric uncertainty that encom-

passes all possible type of mismatch is conveniently represented in the frequency domain.
Therefore one objective of this thesis becomes:

Objective - 1
To estimate non-parametric MPM in the frequency domain from time domain process data.

The problem of robustness of LRPC to MPM was recognized as early as 1964 by
Kishi [3], but he did not specify any methods on how to handle this situation. Later in the

3Th~ most successful LRPC controllers in the industry are DMC and IDCOM which are respectedly
marketcd by DMC Corporation and Setpoint Inc., (both these companies have now been purchased by
ASPEN TECH) both located in Houston, USA. GPC is more popular in academia, nevertheless, some
applications of GPC have been reported in the literature [16, 18].
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context of MAC, Rouhani and Mehra suggested a time domain based robustness measure
[9]; which can only be tested by performing closed-loop experiments. But here the question
raised is: can the robustness of LRPC be ascertained without porforming any closed loop
experiments? In order to address this issue, another endeavor of this thesis becomes:

Objective - 2
To design LRPC that is robsst to the non-parametric MPM and ascertain the robustness of
such a design without performing any closed loop tests.

Campo and Morari considered a family of process models and used them to formu-
late an optimal problem for the LRPC that minimizes the worst case tracking error [25].
The problem is solved using non-convex minimax optimization problem, for which efficient
algorithms are not available [25). Moreover they used time domain based uncertainties for
which the robust design methods are not yet fully developed. Instead of considering a fam-
ily of models (which involves more work in system identification), the present work focuses
on using a single model and its associated non-parametric MPM to design robust LRPC.

A number of results and design techniques are available in the area of robust control
design that address the problem of controller design that is robust to MPM [26, 27, 28]. One
such simple tool is the small gain theorem (SGT) that can be used to assess the robustness
of a model based controller in the presence of MPM and such a design is carried out in the
frequency domain [26, 28). SGT is therefore used as a tool in this thesis to ascertain the
stability of LRPC to the MPM and this analysis is carried out in the frequency domain.

Robust design of linear quadratic (i.Q) optimal controllers within the SGT frame-
work is mentioned in Bitmead et al. (1990) [29]. But the use of the SGT to examine the
robustness of LRPC was probably first proposed by Robinson and Clarke in the context of
robust design of GPC [30]. They used the SGT criteria to establish robustness of one of
the important tuning parameters of GPC. However for a robust LRPC design one should
examine the robustness of all the tuning parameters; hence the thesis objective expands to:

Objective - 3
To examine the effect of all tu ing parameters on the robustness of LRPC.

Another issue of importance that is associated with robust design is performance,
because, a good performance is what ultimately matters. For certainty equivalence con-
trollers, robust stability is cbviously a necessary prerequisite for a good performance. In
this context, several control-relevant identification methods have emerged in the early 1990s
[31, 32, 33] and the research interest in this area is presently growing. In order to make this
study complete, the following additional objective is also considered in this thesis:

Objective - 4

To examine different control relevant identification methods with a robustness perspective
and evaluate them for use with LRPC methods.

4



The objectives discussed above define the main goals of this thesis. The results for
this thesis are surmnmarized in Chapter 8.

1.3 Scope

The study of robustness and performance of LRPCs is intimately connected with signal
processing, system identification, robust design tools, LRPC design and control relevant
identification methods. Therefore to carry out this study, it is required to define the bound-
aries of these related issues, which is done in the following:

Signal processing

-

The robust design method used in this work requires a description of the MPM in the
frequency domain. Such a description of the MPM can be obtained using the signal pro-
cessing methods. Both parametric as well as non parametric signal processing methods
are available to characterize a signal or a system. Only non parametric signal processing
methods such as the use of discrete Fourier transforms (DFT) are considered because they
are simple to use and reliable. Moreover for noisy systems, parametric signal processing
methods do not provide any particular advantage [34]. Both time and frequency domain
signal processing methods are considered because: (a) time domain signal processing is

useful for model validation; and (b) robust design methods require system descriptions in
the frequency domain.

System identification

The design of any LRPC is based on a given model based description of the plant. Hence for
an effective controller design, there is a need for a good quality model which can be obtained
using system identification methods. The two main components of system identification are:
(a) structure of the model considered; and (b) methods for estimating the model parameters.
Discrete models considered in this thesis are transfer functions (ARIMAX, BJ etc), step
response, orthonormal functions and state space models. Except for the state space model,
other models are considered for identification studies. LRPC formulations discussed in this
thesis are based on the transfer function and orthonormal function models. Orthonormal
function models are converted into state space form to formulate LRPC. The identification

methods considered are ordinary least squares, augmented UD method [35] and prediction
error methods.

Robust design tool

As mentioned in the previous section, the small gain theorem is used to analyze the robust-
ness of LRPC in the frequency domain.



LRPC design

The LRPC algorithms considered for robustness analysis in this thesis are: (a) transfer
function (ARIMAX) model based GPC and (b) a DMC like controller which is based on an
orthonormal fuction model (specifically Markov-Laguerre model). Most model predictive
controllers have been shown in the literature to be specal cases of GPC (2, 16, 36]; hence
GPC is considered in this thesis as the main representative algorithm for the LRPC. The
DMC scheme is selected because: (a) it is widely used in the processs industries and (b) it
is somewhat structurally different from GPC as it is based on an unstructured model. In
order to show the similarities in the robustness properties for different LRPC structures,
both GPC and DMC type controllers are considered in this study.

Control relevant identification

The three control relevant identification methods due to Shook and Shah, Rivera et al. and

Zang et al. are considered [31, 32, 33] and these methods are evaluated by their application
to GPC.

1.4 Structure

The thesis is divided into eight chapters including the introductory chapter. Chapters 2 to 7
are relatively independent from one another hence they can be read in any order according
to the reader’s preference. There are some cross dependencies between these chapters, but
they are marginal and they can be traced with minimum effort. The contents of these
chapters are summarized in the following:

Chapter 2: The idea of signal processing is presented with a historical perspective. The
time and frequency domain aspects of signal processing are tutorially introduced and they
are combined with the statistical methods to verify the estimates. The use of signal pro-
cessing methods to estimate the spectrum of MPM from open loop time domain data are
also discussed in this chapter.

Chapter 3: Various system identification methods are reviewed to estimate different pro-
cess models. Model estimation and validation techniques are illustrated by their application
to two industrial case studies.

Chapter 4: Orthonormal function mndels are introduced with a historical perspective.
The augmented UD identificatior method is used in this chapter to simultaneously estimate
parameters of different orders of orthonormal function models in one computational step.
This method is applied to different models such as Laguerre, Kautz, FIR and Markov-
Laguerre models.

Chapter 5: The use of the small gain theorem to obtain robust design guidelines for GPC
i# discussed in this chapter. Through simulations, analytical methods and experimental



evaluations it is shown how different tuning parameters affect the robustness of GPC. A
method is also proposed to estimate MPM and the process model from GPC closed loop
data. It is also shown how optimization techniques can be combined with the SGT to
automatically select robust tuning parameters.

Chapter 6: A DMC like LRPC is formulated in this chapter by converting an estimated
Markov-Laguerre model into a state space form. The concept of steady state weighting [37}
is used to enhance the stability of this controller. This chapter also shows how a structured
noise model can be combined with the unstructured Markov-Laguerre model to obtain an
LRPC that gives faster disturbance rejection. SGT is used to illustrate that the robustness
properties of this controller and GPC are similar. )

Chapter 7: Control relevant identification methods due to Shook and Shah, Rivera et
al. and Zang et al. [31, 32, 33] are reviewed in this chapter. Zang et al.’s concept of
iterative design is extended to Shook and Shah and Rivera et al.’s identification strategies.
A modified version of GPC is presented in this chapter that can be used to iteratively
improve the controller performance. These methods are evaluated by their application to
GPC.

Chapter 8: This chapter summarizes the conclusions presented in Chapters 2 to 7 and
discusses future directions in research.
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Chapter 2

Signal Processing for System
Identification

2.1 Introduction

The example of splitting a sunbeam with a prisim into a rainbow of colored rays is often
quoted to explain the intent of signal processing. In simple words, signal processing can be
said to be the process of expressing a signal by sequences of numbers or symbols with a view
to either: (a) estimate characteristic parameters of the original signal; or (b) transform the
signal into a form which is more desirable [1].

An excellent example of a signal processor that nature has bestowed upon us is
the ear. The ear transforms sound waves into signals of varying pitches for the brain to
turn this information into perceived sound [2]. Signal processing as a mathematical tool has
been applied to diverse areas such as seismology, astronomy, oceanography, acoustics, sonar,
radar, quantum mechanics, telecommunication, medical science (e.g. cardiograms), nuclear
science, meteorology, semiconductor physics, integrated circuit technology, opto-electronics,
spectrometer for chemical analysis, speech processing, image processing, solution of partial
differential equations, stock market data and many others [2, 3, 4, 5].

Signal processing plays a crucial role in many of these applications. For example,
signal processing is extensively used to extract information from seismic data. Images
beamed from satellites are enhanced using signal processing techniques. In fact signal
processing has played a key role in laying the foundation of modern quantum mechanics.

It is well known that frequency response of a linear dynamic system is based on the

1Versions of some sections of this chapter have appeared in: (2) P.Banerjee and S.L.Shah,'Estimation of
Model-Plant uncertainty and its role in the Robust design of Predictive Control’, 12th IFAC World Congress,
Sydney, Australia, vol-2, pp 321-326, July 18-23, 1993 and (b) P.Banerjee and S.L.Shah, ‘The Role of Signal

Processing Methods in the Robust Design of Predictive Control’, Automatica, vol 31, No. 5, pp. 681-695,
1995.
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principles of signal processing. It is needless to say that frequency response behaviour plays
a crucial role in the design of classical linear controllers. Signal processing is also useful
in system identification for validating the quality of estimated mathematical models. It
is known that the quality of estimated models have a profound effect on the stability and
performance of model based controllers [6]. Performance assessment of controllers is yet
another emerging area of research where signal processing have proved to be useful [7].

The link between signal processing, data analysis and controller design have often
been used to control electrical or mechanical systems. However in the chemical industry
this potential of signal processing has not been actively pursued or applied to improve the
control and performance of their process plants. Interestingly, petroleum industries have
extensively relied on signal processing methods in their exploration for oil. In fact the
major impetus in the development of modern signal processing can be attributed to those
projects that eventually led to the discovery of major crude oil fields around the world
[3]. The petroleum industries thus have the potential to derive further benefits from signal
processing by using them to improve their plant operation via improved controller design
and performance assesment.

The ficld of signal processing has a large number of well established results widely
available in the engineering literature. These results are being used regularly for many
applications described at the beginning of this section. The objective of this chapter is
to consolidate in a tutorial manner some of the classical signal processing results that are
of relevance to the field of system identification and control. This chapter has a tutorial
flavor to motivate the chemical engineer reader to adopt signal processing methods so that
their use will (hopefully) lead to better data analysis, a good process model, robust control
design etc.

Most results presented in this chapter are complimented by illustrations to conform
to the classical proverb: pictures are worth thousand words. The derivation of the most basic
signal processing results are largely omitted because: (a) they are already well established
in the literature; (b) the main interest lies in the application of these results; and (c) some of
these derivations are very involved and do not fall within the scope of this thesis. However, a
few useful and relevant results, a few key steps and the assumptions made in their derivation
are presented to facilitate their significance.

Advances in signal processing has treaded through an interesting path. A brief
historical sketch of these key developments in signal processing is included in the ensuing
Section 2.2. A review of the historical development of signal processing is followed by a short
introductory discussion on signal characteristics in Section 2.3. The time and frequency
domain aspects of signals are then discussed in Sections 2.4 and 2.5 respectively. A separate
Section 2.6 is devoted to statistical methods because they are used to put confidence bounds
on the estimated parameters. Results presented in Sections 2.4, 2.5 and 2.6 are illustrated
by case studies in Section 2.7. Section 2.8 discusses the use of signal processing methods to
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estimate modelling errors; which is followed by the concluding remarks in Section 2.9.

2.2 Signal processing - a historical account?

In ancient times signal processing concepts were used by the Babylonians to predict astro-
nomical events and in 600 BC Pythagoras used them to understand the laws of musical
harmony. In 1664 Sir Issac Newton empirically used signal processing concepts to discover
the light spectra (published in 1704). German chemist Robert Wilhelm Bunsen (1811-1899)
and subsequently Gustav Robert Kirchoff (1824-1887) extended Newton’s experiment to
discover the spectral D lines of the sodium ion, thereby laying the foundation for modern
spectroscopy.

Pythagoras’s interest with vibrating strings surfaced as a wave equation in the 18th
century which set the tone for analytical developments in signal processing. L. Euler in
1748 noted that vibration of a string could be expressed as a linear combination of si-
nusoidal functions which was supported via analytical reasoning by D.Bernoulli in 1753.
However J.L.Lagrange in 1759 heatedly contested this theory because he believed that a
vibrating string being a nonanalytic function (i.e. a discontinuous function as both ends

of string are fixed), it cannot be expressed as a combination of analytic functions such as
the trigonometric functions.

Fourier Series

In the midst of this controversy, Baron Jean Baptist Joseph de Fourier (1768-1830), an
engiveer and a diplomat for Napolean Bonaparte, entered this fray that for all times marked
the turning point in the development of signal processing. In an effort to solve the wave
equation that characterizes the transient conductive heat behavior in an iron ring, Joseph
Fourier concluded that any function (analytic or non-analytic) can be expressed as a series of
sinusoidal functions. Fourier presented his results in 1807, but this result was (expectedly!)
challenged by Lagrange and was not allowed to be published3. Fourier’s work eventually
got publicized when his book “The Analytical Theory of Heat” was released in 1822.
Fourier’s mathematical reasoning about his series was imprecise although he had a
clear insight into the problem. Later S.D.Poisson and A.L.Cauchy extended Fourier’s work

2The Section ‘Signal processing - a historical account’ is largely a synthesis of the material published in
[2, 3, 4, 5, 8). Therefore no specific references are cited in this section. The interested reader is encouraged
to consult these references for further details.

3To be precise, Fourier presented his results on 2i December, 1807 at the prestigious French Academy of
Sciences meeting where Lagrange stood up to challenge Fourier’s result. A committee of four that included
P.J.Laplace and J.L.Lagrange refused to publish Fourier’s work after examining it; mainly due to Lagrange’s
opposition although Laplace and others favoured publication. Fourier’s work was published 15 years after
he first presented his result at the French Academy.
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to prove convergence. It was P.L.Dirichlet in 1829 who finally provided a formal mathe-
matical framework to the Fourier series which is now known by the Dirichlet’s condition of
Fourier series. Dirichlet’s work provided the recognition to Fourier but this did not occur
until near the end of Fourier’s life.

Amongst the initial users of Fourier's work into their fields were Claude Navier and
Lord Kelvin. Lord Kelvin used Fourier series to predict tidal waves. G.G.Stokes in 1879
extended the concept of Fourier series to the Fourier Transform to find hidden periodicities
in non-periodic signals. In 1894 A.Schuster proposed to consider modulus square of finite
Fourier transform to detect hidden periodicities in a signal and he defined this term as a
pertodogram.

Fourier’s work played an important role in solving primarily: (a) periodic solutions of
partial differential equations (e.g. wave equation); (b) converting differential equations into
algebraic equations using Fourier transform; and (c) zpproximating non-periodic functions
by a set of orthogonal functions. (Note: This thesis is mostly concerned with the third
application. In particular the focus of this chapter is on representing signals by a set of
stnusoidal functions.)

Later developments

A landmark was reached when French mathematicians Charles Strum (1803-1855) and
Joseph Louville (1809-1882) linked the Fourier series to a set of othonormal functions in the
spectral theory of differential equations?. Lord Rayleigh (1842-1919) used Strum-Louville
results to study elastic vibrations of solids and Erwin Schrédinger (1887-1961), in 1926, used
the same results to explain vibrations within an atom and thereby accounting for the atomic
spectral lines as experimentally observed by Bunsen. Werner Heisenberg (1901-1976) also
arrived at Schrédinger’s result a year earlier through a different route. Thus Heisenberg’s
and Schradinger’s results laid the foundation for modern quantum mechanics®. Later John
von Neumann® (1903-1957) who introduced the abstract Hilbert space’ in quantum mechan-
ics (in 1929), mathematically showed the indispensability of spectral analysis in quantum
mechanics. Fourier analysis was also used to obtain finer resolution of the atomic spectral
lines, that were not noticed by Bunsen.

Norbert Wiener used Fourier analysis to mathematically describe Brownian motion

“Chapters 3 and 4 consider orthonormal functions in more detail.

5In simple words, according to quantum mechanics: (a) changes in energy level of electrons manifest as
electomagnetic energy which can be quantified by photons and shows as spectral line at some frequency; (b)
electrons in an atom are given by probability density function and their shape determines the probability of
electron jump; and (c) the sharpness of spectral lines are explained using Heisenberg’s uncertainty principle
and wave property of electron. Further discussion on this subject is beyond the scape of this thesis.

®Neumann was a mathematician who worked in Physics. -

THilbert space is an infinite dimensional space which is characterized by an inner product. Hilbert space
is used to represent orthonormal function as discussed in Chapter 4.
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(first reported by Robert Brown in 1827) which is now known as the Einstein-Weiner theory
and it forms the basis for the white noise signal. The use of Fourier analysis reached another

milestone in 1962, when it was used along with X-ray diffraction to discover the structure
of DNA.

Digital signal processing

An early version of a numerical technique to compute the nonparametric spectrum of a time
series data was introduced by Sir Arthur Schuster in 1898. Schuster’s method did not work
for random signals, so G. Udny Yule in 1927 proposed a parametric model which he called
the autoregressive model to represent the signal spectrum.

Much before the arrival of powerful computers, N.Levinson in the 1940’s converted
Wiener’s work on continuous signal processing into discrete domain. The advent of digi-
tal computers in the mid 1950s revolutionized the use of spectral analysis. Digital signal
processing was first applied to Mobil Oil’s seismic data records by the MIT Geophysical
Analysis Group where J.W. Tukey contributed significantly towards the development of
numerical methods to compute the discrete Fourier transform. The use of digital signal
processing of seismic data records led to the discovery of major oil fields around the world.

The development of the Fast Fourier Transform (FFT) algorithm by Cooley and
Tukey in 1965 was a hallmark in the development of the discrete Fourier analysis. Since
then several forms of FFT algorithms have appeared. The FFT algorithms reduced the
computational burden significantly, so consequently it helped in spreading the use of signal
processing to diverse areas. Application of FFT methods have now become very trivial
because software for the FFT algorithms are widely available in the market for almost
all type of computer platforms. Further, even hardware implementation of FFT are now

available that can process a huge amount of data at a much faster rate than the FFT
software.

2.3 Signal characterization

The objective of this section is to give a brief introduction to the problem of signal processing
and the nomenclature for signal characterization. Both continuous and sampled signals are
analyzed using signal processing, but the emphasis here is on discrete signal processing
because the focus of this thesis is on the design of digital controllers.

The reference system block diagram around which the signal processing methods
are applied in this thesis is shown in Figure 2.1. The blocks G(z) and G(2) in Figure 2.1
denote a discrete linear time invariant plant and its model respectively. A description of

various signals in this block diagram are listed in the Section Notations but in addition the
following notes also apply:
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Figure 2.1: Block diagram of plant and model.

Note 2.1

e z generically denotes any signal in Figure 2.1. This means that if a property holds
for z, then that property will also hold for other signals in Figure 2.1.

e z(t, N) denotes a discrete time series at pointst =1... N. Continuous time data are
represented by z.(t, T) where T is the time period of the signal. If z(t,N) and z.(¢,T)
are of same duration then T = NT, where T, is the sampling time.

The signal z(t,N) or z.(¢,T) can either be stochastic or deterministic. In case
of a stochastic signal, z(t, N) is independent of ¢ whereas z(t, N) is a function of ¢ for a
deterministic signal. Mathematical models apply to deterministic signals whereas stochastic
signals are analyzed using statistical methods. Stochastic processes are assumed to be: (a)
stationary; (b) obey certain probability distribution; and (c) are characterized by some mean
and variance. A time series which is in statistical equilibrium and devoid of auy trends is
called a stationary series. It is assumed that a stationary stochastic process is normally
distributed and it is designated by N (u,02) where p and o2 are the mean and variance of
the time-series respectively.

For an openloop system of the type shown in Figure 2.1, u(t, N) can be either
stochastic or deterministic. But if the filter or transfer function G(z) exists, then it will
make the output y*(t, N a deterministic signal. Similarly, the noise or disturbance sequence
u(t, N) can either be stochastic or deterministic; but in a real situation v(t, N ) is usually
unknown. Further, u(t,N) is assumed to corrupt y*(¢,N) such that the observable or
measurable plant output is y(t, N) = y*(¢, N) + v(¢, N). Therefore one of the tasks of the



signal processing technique is to extract the information, y*(¢t, N), from the signal y(t, N).
The system in Figure 2.1 can be represented as:

y(t) = G(g H)u(t) +u(t)
enr—— m—
y°(t)
@) = G@gMu(®) (2.1)

The following remarks apply to the above equation-(2.1) and Figure 2.1.

Remark 2.1

e The argument z in G(z) denotes frequency domain i.e. z = e *7T-.

e The argument g~ ! in G(g!) is called the back-shift operator and similarly q denotes
the forward-shift operator (see the Notation section). The operators q or ¢! are used
for time domain manipulations.

e This thesis uses q—! operator because it is standard for system identification.

e z is analogous to s in the Laplace domain, whereas g~ is analogous to the differential
operator d/dt in the continuous time domain. For the discrete case, z and q ! are
interchangable because the differential equation continuous in the domain simplifies to
a difference equation in the z domain.

Stochastic or deterministic signals can be analyzed in time and/or frequency do-

mains. The following sections show how time and frequency domain signal characterizations
are interrelated.

2.4 Signal processing in time domain

A measure of dependency of a signal at any two sampling instants is given by the autoco-
variance or by its normalized version i.e. autocorrelation function. Similarly correlation be-
tween two signals is given by cross covariance or its normalized version i.e. c¢ross correlation
function. The concept of cross correlation can be extended to any number of signals where it
becomes the subject of multivariate statistical analysis. These covariance/correlation terms
are defined in the following subsections 2.4.1 and 2.4.2.

®Key references for the Section ‘Signal processing in time domain’ are [9, 10].
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2.4.1 Autocovariance/Autocorrelation

Autocovariance function of a signal z(¢, N) is given by [10]

Yez (k) = E[(z(t) — p)(z(t + k) — p)] = cov[(z(t) — u), (z(t + k) — p)] (2-2)

where u is the mean i.e. p = E[z(t, N = oo)]. In practice N is finite, therefore a sample
mean of x(t,N) i.e. T = -ﬁ N | z(t) is generally used. For a finite data record, the sample
autocovariance function [10] is given by:

1 Nk
Yoz (k) = 7 > (z(t) — z)(z(t + k) — ) (2.3)
t=1

where " in 9;z(k) denotes a sample or appraximation of the true 7zz(k). In order to compare
different time series and make this term measure unit independent it is often convenient to
normalize the autocovariance function by dividing it by variance i.e. var(z) = 7z2(0) =
E[(z — p1)?). The normalized autocovariance is called autocorrelation function or simply acf
in abbreviated form. The acf is defined [9] as:

T k
pelb) =225 @9
Similarly the sample acf of z(t, N) is [9):

SN (z(t) — E)wit + k) — )
>N (z(t) — z)2 ’

2.4.2 Cross covariance/cross correlation

prz(k) = k=0,1,2,... (2.5)

The cross covariance function between two signals say u(t, N) and y(¢, N) can similarly be
defined [10] as:

Yu(k) = E[(Y(E) = py)(u(t + k) — pu)] = cov{(y(t) — py)(u(t + k) —pa)]  (26)

where p, = E[y(t, N — 00)] and gy = E[u(t, N = o0)]. As in case of acf, the normalized
cross covariance i.e. cross correlation function (or ccf) is given by:

ppatk) = —=22E)__ — corx{(y(t) — ) (ult + ) — )] @7
v/ 70 (0)7uu (0)

Based on equations-(2.3), (2.5), (2.6) and (2.7), the sample ccf becomes:

Mﬂ(ﬁﬂ__ﬁl_, k=...,—2,-1,0,1,2,... (2.8)
Y/ TN () — 92T, (ut) — )2

The properties of acf and ccf are quite different [10]; some of them are:

Pyu(k) =
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e The acf is an even function of the lag k i.e. it is symmetric about p,,(0) or in other
words | pzz(k) = pzz(—k) } The ccf on the other hand is an odd function i.e. the cct
is non-symmetric around pyy(0) and | pyu (k) = puy(—k) |

e Maximum value of acf is 1 which is at lag 0. In contrast, the relation jpy.(k)| < 1
holds good for ccf and its maxim.m can occur at any lag k.

e The acf helps to find the energy distribution and/or randomness of a signal whereas
the ccf determines the dependency between two signals. The dependence between
two signals is given by coherence and phase. The concepts of energy distribution,
randomness, coherency and phase are discussed in the following sections.

2.4.3 Applications of acf

Some applications of acf that are useful for system identification are highlighted in this
subsection.

Randomness or whiteness of a signal

If z(t, N) € N(0,02), then that implies py-(k) = O for £k > 1. However for a finite N
often pzx(k) reduces to small values for k¥ > 1 rather than to zero because p-(k) is only
an approximation of pyz(k). Hence the whiteness test for finite IV is always associated with
some statistical confidence bounds and for z’t, N) € N(0, ¢2), the bounds [9, 10]

1.96
B=(p2p2z) = iTﬁ' (2.9)

indicate a confidence level of 95%, i.e. if pzz(k) € p then with a 95% confidence it can be
said that the data are normally distributed. The bounds in equation-(2.9) is based on the
assumption that pzz(k) — pzz(k) € N(0,0%). p in equation-(2.9) is displayed by a pair of
dashed lines in the acf plot in Figure 2.2. Figure 2.2 shows: (a) a portion of white noise
sequence (given signal length is N = 1024); and (b) p:z(k) € p V k > 1, thus confirming
with a 95% certainty that the given time domain data are normally distributed. This result
is useful in validating process models as will be seen in Chapter 3.

Moving Average (MA) signals

A moving average (MA) signal is related as [9}:

z(t) =£(@) —aé(t—1) —c2f(t —2) —--- (2.10)

where £(t, N) € N(0,02) and c;,cz,... are the MA parameters. If the order of MA process
is r, then acf for such a MA(r) signal is given by [9]:
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—Cx+Ci1Ce41+C2Ck42+ - +Cr —2Cr f —_
ork=1,2,...,r
pz=(k) = { Theyteztted

(2.11)
fork>r+1

For a MA(r) process, equation (2.11) suggests: (a) pzz(k) € p V k > r; and (b) acf can
be calculated from the MA(r) parameters but it is difficult to determine MA(r) parameters
from acf for » > 1. However MA(r) parameters can be inverted t» AR process to indirectly
obtain these MA(r) parameters [9]. Further discussion on the invertibility issue is omitted
for brevity. The acf of MA(r) process is however useful in ascertaining its order r as
illustrated in Figure 2.3.

Figure 2.3 shows a portion of MA(r) data generated by using: v(t) = £(t) +0.5¢(t —
1) +0.3£(t — 2) or compactly denoted by v(t) = (1+0.5¢~! +0.3g~2)€(t). The MA(2) data
thus generated looks similar to £(t) in Figure 2.2 but it shows more spread than £(t) and
nothing beyond. However an acf plot of this process in Figure 2.3 clearly reveals a MA(2)
correlation because p.(k) is less than the 95% bound p for all k£ > 2 or compactly this is
denoted by pz-(k) < pV k> 2.

It is to be noted that the truncation in data manifests itself as an error between
px=(k) derived from equation-(2.11) (i.e. pzz(1) = 0.485, p»-(2) = 0.224) and their sample
values (i.e. pzz(1) = 0.497, p-(2) = 0.182 for N = 1024) determined by equation-(2.5) for
the given MA(2) process. Further the bounds g = +1.96/ V1024 are applicable because of
the assumption pzz(k) — pzz(k) € N(0,02). The procedure described in this section can be

used to determine if the noise has a MA(r) structure.

Autoregressive (AR) signals

An autoregressive signal of order p i.e. AR(p) is given by:

z(t) = a1x(t — 1) + azz(t — 2) + - -+ + apz(t — p) + £(t) (2.12)

As an illustration, a time series of an AR(1) process generated using (1 —0.8¢71)u(t) = &(t)
shows a much slower variation in Figure 2.4 than in Figures 2.3 or 2.2. The acf plot however
provides a more clear picture where the acf function bears the following recursive relation

[9]:

pzz(k) = a1prz(k — 1) + a2pzx(k —2) + - - + appzz(k —p) V21 (2.13)

A set of above equation-(2.13) for k = 1,2,...,p is called the Yule Walker equations and
unlike the MA(r) process, this equation can be used to determine the AR(p) parameters
directly from the acf values. For example the sample acf values {0.7909, 0.6046,0.4649, .. .]
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(calculated using equation-(2.5)) in Figure 2.4 can be substituted in equation-(2.13) to
obtain® a; = 0.79. The characteristics of AR(p) process is summarized in the following:

e The acf of an AR(p) process decays ‘almost’ exponentially. The decay in the acf can
be either overdamped or underdamped depending upon the nature of the process.

e Equation-(2.13) can be used to determine the AR(p) parameters by using the acf
values.

e The assumption pz(k) — pzz(k) € N'(0,02) holds good for the AR(p) process.

e For an AR(p) process pzz(k) & p even for k > p as illustrated in Figure 2.4 for (1 —
0.8¢ 1)u(t) = £(t). Therefore for an AR(p) process, it is difficult to determine its order
p from pz-(k) but this difficulty is resolved by calculating the partial autocorrelation

function (pacf), because the pacf of an AR(p) series behaves like an acf of MA(p)
data.

For exzmple t:» pacf plot in Figure 2.4 confirms that the given AR(p) process indeed has

an order p = i and a; = 0.79. The pacf at lag k is calculated by removing the effect of all
intervening lags [9, 10}, i.e.:

é(k, k) = corr(z(t), z(t — k)|z(t — 1),z(t — 2),...,z(t — k + 1)) (2.14)
Levinson in 1947 showed that sample pacf can be recursively expressed [9] as:

- k-1 3 o o .
7 k,k) = Pz (k) — i=1 ?(k -1, 1)P:::(k —1)
#k: ) 1 - Y5 gk — 1,i)pzz(d)

(2.15)

where

¢(k,i) = p(k —1,i) — ok, k)p(k —1,k—i) fori=1,2,...,k—1 (2.16)

As a convention, the sample pacf recursion is initialized by setting $(1,1) = pzz(1). Asin
case of MA(r) process, the acf or pacf can be used to ascertain if the noise has an AR(p)
structure. The following notes however apply:

Note 2.2

e The acf or pacf plots are good only for the analysis of white noise, MA or AR processes.

e The acf/pacf plots are not adequate for the analysis of ARMA processes.

®Note that: (a) equation-(2.13) reduces to p.x(k) = a} for AR(1) process; and (b) at higher lags the
accuracy of parameter estimation falls for AR(1).
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Figure 2.5: Application of cross correlation function to estimate the process characteristics.

e For integrated: (a) waite noise (i.e. random walk process); (b) MA; or (c) AR pro-
cesses; the data must be differenced before doing the acf/pacf analysis. Similarly dif-
ferentiation of appropriate order is reguired for higher order integrated processes.

2.4.4 Applications of ccf

The ccf plots often provide useful information about the process transfer function and this
is illustrated by considering the following plant:

- 0.2¢~8

b e 1
Figure 2.5 shows a section of the system output y(t, N = 1024) by subjecting the plant to a
white noise excitation. The concept of confidence intervals p also applies here hecause the

assumption pyy (k) — pyu(k) € N'(0,02) holds good. The cross correlation plot in Figure 2.5
conveys that:
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e The ccf function is non symmetrical as discussed in subsection 2.4.2.

e At positive lags the ccf values are positive, thus indicating that the process gain is
positive. Conversely, negative ccf values at positive lags would indicate a negative
gain.

e pyu(k) € p for k € (0,7) and a peak value at lag 8 indicates that the process has a
delay of 8 sampling intervals which is in conformity with equation-(2.17).

e The ccf values for lags beyond the process delay are related to the process impulse
response in the following way:
h=A"b (2.18)

where h is a vector of impulse response coefficients, A is a symmetric matrix of
puu(k)s and b is a vector of pyy(k)s. The elements of A are arranged such that its
first row is pyu(0), yu(1), Ayu(2), . . ., second row is fyu(1), Ayu(0), Ayu(1), ... and so on.
In practice equation (2.18) is not used much because it gives significant variance in
the estimated parameters. However a frequency domain equivalent of equation-(2.18)
is widely used in practice as discussed in Section 2.5.

Further, if 5y,(0) # 0 but pyu(k) = O for all other ks, then it can be inferred that the pro-
cesses y(t, N) and u(t, N) are correlated at simultaneous times but otherwise uncorrelated.

2.5 Signal processing in frequency domain

In many applications including process control, much of the design analysis is carried out in
the frequency domain. For example, robustness analysis of a controller, which is the theme
of this thesis, is best done in the frequency domain. In Chapter 3 it is also shown that
better mathematical (dynamic) models can be obtained by evaluating and validating them
in the frequency domain. Similarly much of the work in filter design and image processing
is done in the frequency domain. For such applications it becomes necessary to convert
time domain data into frequency domain for the design or analysis to be possible.

The frequency domain representation is often more compact and reveals more infor-
mation about the system than can possibly be obtained from time domain representation.
The field of signal processing has tools that can be used to convert time domain signals into
frequency domain in a wide variety of applications.

The objective of this section is to introduce discrete Fourier transform (DFT) which
converts a discrete signal into discrete frequency domain. DFT in the form of FFT has
become an indispensable tool in many applications, including this thesis. In order to under-
stand DFT it is necessary to explain the concept of continuous and discrete frequencies and
how they are related to continuous and discrete signals. These basic concepts are outlined
- in the ensuing subsections.

26



DFT represents the classical signal processing approach which directly provides
nonparametric or unstructured frequency response from the time domain data. But there
are also modern spectral methods which give parametric and structured models to represent
the signal spectrum. Although modern spectral methods can be used to estimate the
frequency behavior for a noise-free plant, these methods often yield no better results than the
DFT method in the presence of noise [11]. Moreover the FFT approach is computationally

quite efficient. In view of this, only the classical signal processing approach s.e. the DFT
method has been addressed in this thesis.

2.5.1 Continuous time periodic signal

A signal in continuous time x.(t) is periodic with a periodicity T" if z.(t) = z.(¢t+T). Fourier
series!® can then be applied to such a periodic signal. Dirichlet showed that any periodic
function z.(£,T) can be expressed as a Fourier series if [;|z.(t)|{dt < 0 i.e. the function is
finite and the number of discontinuities in z.(¢,T") are finite. This boundedness condition
of Fourier series is called Dirichlet’s condition and it is also applicable to a periodic discrete
signal z(t, N). Any periodic signal z.(¢,T) obeying Dirichlet’s condition can be expanded
into the following Fourier series [12]:

o0 [« o)
zc(t) = -%2 + Z Ay cos(kAwt) + )  Bgsin(kAwt) (2.19)
k=1 k=1
where Aw = 27 /T is the fundamental frequency, Ap is the mean average of z.(t) i.e.
Ag = 72-; fz‘ql,"‘/’z z.(t)dt and A, and Bi are the Fourier coefficients:

2 (T/2
A= = / ze(t) cos(kAwt)d
T J-1s2

92 fT/2
By = T L1y zc(t) sin(kAwf)dt (2.20)
For example a sequence of square waves with 7' = 27 such that z.(t) = [l for0 <t < 7
and 0 for 7 < t < 2] can be expanded into:

1 27/, 1 . 1 .
z(t) = 3 + = (sm(t) + 3 sin(3t) + 3 sin(5¢) + - - ) (2.21)
Equation-(2.19) (similarly equation-(2.20)) can be compactly expressed as [12]:
m .
T(t) = D XclkAw)elkout (2.22)
k=-—00

where j = V=1 und X (kAw) = # ffﬁz z.(t)e~T*Bwtdt is the frequency spectrum of the
signal at discrete frequency points kAw, for —o0o < k < oo. The subscript ¢ in X, denotes

1055 proposed by Joseph Fourier in 1807.
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it corresponds to the continuous signal z.(t). X (kAw) for —oo < k < oo is a set of
complex numbers i.e. Xc(kAw) = Xer(kAw) + jXci(kAw) and it is also expressed as
[Xc(kAw)|L X (kAw) i.e. as a set of magnitude and phase spectrums. The important
message of this subsection is that - even though the periodic signal is continuous, it’s Fourier
series is represented at discrete frequencies at intervals kAw.

2.5.2 Non-periodic continuous signal

For a nonperiodic signal, it is assumed that its time period T — oo, as a result the fun-
damental (or incremental) frequency Aw — 0 since Aw = -211'- Therefore for a nonperiodic
signal the effect of continuous frequency is realized and for such a case instead of Fourier
series, Fourier transform (FT) applies [12], thus:

X.(w) = /_ ® Ze(t)eIwtds
To(t) = /_ ® X (w)etdw (2.23)

where X (w) is the FT of z.(t). As in case of periodic signal, FT results in complex
function X (w) = Xc,(w) + 7Xci(w) for —00 < w < oo and it may also be expressed as
| Xe(w)|£Xc(w). The Fourier transform is related to the Laplace transform because a simple
substitution s = jw translates Laplace transform into FT. But the Fourier transform in
addition can also be applied to negative time, unlike the Laplace transform. An important
conclusion of this subsection is that - FT converts nonperiodic continuous signal into a
continuous function in the frequency domain.

2.5.3 Non-periodic discrete signal

Discrete signals are obtained by sampling a continuous signal with a hypothetical train
of unit pulse signals §(¢). Unit pulses in the train are separated by a sampling time Tj,.
Theoretically §(t) has a unit area with effectively no width but in reality the sampler has
a certain width 7. Let such a practical sampler be designated by 5(t). Discrete signals in
fact are obtained as z(t) = x.(¢)8(t). Further, the FT of 5(t) is given by a sinc function e.g.
sinc(wr/2) = 7sin(wr/2)/(wr/2). Since 7 has a narrow width, the sinc function drops off
gradually in the frequency domain. Also () being a periodic signal with a time period T,
equation-(2.22) can be applied to express §(t) by the following Fourier series:

=% %—sinc (ﬁ‘%’l) eikuwat (2.24)
-0 2 _

FT((t))

where the sampling frequency w, = 2w /T,. Since the discrete realizatior is z(t) = z(t)d(t),
its frequency response is obtained by first multiplying equation-(2.24) by x.(t) as:
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z(t) = Z -%sinc (-%kw,'r) etkwst . (t) (2.25)

)

5y
and then taking its FT to finally yield:

X(w) = i %sinc (—;—kw,'r) Xe(w — kw,) (2.26)

The above result is derived by using the property FT'(z(t)e?“*!) = X(w — w,). Equation-
(2.26) leads to the following important conclusions:

e Multiplication of two time series results in a convolution in frequency domain and
vice-versa. For example compare equations-(2.25) and (2.26).

e Even though the non-periodic signal is discrete, it translates into a continuous function
in the frequency domain.

e Spectrum of a discrete signal comprises of spectrum of the original continuous signal
together with an infinite series of its clones.

e The cloned spectrums occur at multiples of sampling frequency w,.

e These discrete frequency spectrums are enveloped by the sinc function i.e. by
frsinc(kws7/2). This sinc function drops off as it moves away from w = 0, thus
simultaneously reducing the magnitude of the cioned signal spectrums. For a very
small sampling width 7, the drop off in the sinc function is very gradual, this results
in a gradual decrease in the magnitude of the cloned spectrums and vice versa.

e As the sampling interval 7T, reduces, the spacing between the sampling frequency w,
reduces thus bringing the cloned signal spectrums closer. Therefore with the reduced
sampling rate there is a distinct possibility that the tail ends of the adjoining signal
spectrums may overlap. This overlapping of the spectrums is undesirable because it
causes loss of information at the higher frequencies and this phenomenon is called
aliasing. The problem of aliasing frequently happens in practice.

e The problem of aliasing is removed by sampling the signal at a speed greater than

twice the highest frequency in the signal spectrum. This sampling rule is called the
Shanon’s sampling theorem.

e Shanon’s sampling theorem also leads to the conclusion that the highest frequency

that can be recovered in a digital signal is w,/2 which is also called the Nyquist
Jrequency, wN.
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e For an ideal sampling, equation-(2.26) also corresponds to the z-transform and for
such a case FT{z(?)] is given by X(w) = Y122 (KT, )e~ 3T

2.5.4 Discrete time periodic signal

This subsection discusses the main objective of translating the discrete signals into discrete
frequency points using the DFT. Let the discrete points Z in z(t,N) be given by t = kT,
and if this signal is periodic with a period T, then its DFT and its inverse are expressed as
[12]):

N

X(mAw) = Y z(kT,)e imouTe (2.27)
k1=1 . .
(kTs) = 3" X(mAw)etmovTs
m=1

where Aw = 27/T is the fundamental frequency and M is the total number of frequency
points. The following observations thus hold for periodic discrete signals:

e FT of a periodic discrete signal results in a discrete frequency function.

e The discrete frequency function appears with its clones at integral multiples of the
sampling frequency w;,.

e Since the time signal is periodic, the discrete frequency points are separated by Aw =
2n [T.
2.5.5 Implementation of DFT (FFT)

Some practical issues that need to be considered for the implementation of DFT are pre-
sented in this subsection. The following convention is adopted for the implementation of
DFT.

Remark 2.2

e For a periodic discrete signal =(t, N), each sampling instant is given by t = kT,
however the range of k ts set as 0 < k< N — 1.

e Time period of x(t,N) is T where T = NT,.

e Frequency points are given by m such that 0 < m < N —1 and the frequency increment
is Aw = 2r/T. Therefore X(mAuw) represents a discrete frequency function and
sometimes for convenience mAw is denoted by wp,, i.e. X(MmAw) = X(wm).
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o Let W = e 78T gnd W1 = 30T,

With respect to the above remark-2.2, the DFT pair is given by [12]:

N-
X(mAw) = l:r:(k)W"‘k = X (mAw) = DFT|z(k)]
k=0
N-
z(k) = %ZX(mAw)W"’“" = z(k) = DFT[X(mAw)] (2.28)

The frequency points 0 < m < N — 1 in the above expression span the range (0,w,).
Whereas from subsection 2.5.3 it is known that only the frequency range (0,wn) makes
sense for discrete systems. Therefore from X (mAw), only the range 0 < m < (N/2) —1
that corresponds to {(0,wy) represents the true signal spectrum. The remaining half ie.
N/2 < m < N —1 corresponds to the adjoining cloned spectrum that can be interpreted to

represent the negative time or frequency [12]. The first expression in equation-(2.28) can
also be re-written [12] as

N-1 N-1
X(mAw) = Y z(k) cos(kmAwT,) +j Y, z(kT,) sin(kmAwT,) (2.29)
~k=0 - k=0 B
X,.(mAw)vor X, (wm) X.-(mAw)vor Xi(wm)

Assuming z(t, N) to be a sequence of real numbers, the above equation then conveys the
following:

o X, (wm) iseven (i.e. X(ws—wm)= X(wm) ) and X;(wm) is odd (i.e. X(ws—wm) =
—X(wm))-

e If z(t,N) is even (i.e. (N — k) = z(k)), then X(wp) = X,(wm) and it is an even
function.

e If z(t,N) is odd (i.e. (N - k) = —z(k)), then X(wm) = Xi{wm) and it is an odd
function.

Equation-(2.29) shows that N2 computational steps are required to calculate the
DFT. This means that for a large N, which is common in many applications, the DFT
computation by using equation-(2.29) would require an enormous amount of computer time,
memory and speed. In an effort to reduce the computational burden of DFT, J.W.Cooley
and J.W.Tukey in 1965 proposed the Fast Fourier Transform (FFT) algorithm, that reduced
the number of computational steps to N leg, N. The effect of reduction in the computation
steps using FFT is felt more when N increases. For example when N = 64, the ratio
Nloga N s 0.0938, whereas for N = 2048 this ratio drops to 0.0054. The FFT algorithm
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can be applied to any number of data points, but the maximum compuational efficiency is
obtained by constraining the data length to 2N | There are several types of FFT algorithms,
but they are not discussed because:

e FFT algorithms are involved and they are beyond the scope of this thesis.
e The objective of this section is only to introduce the basic concepts of FFT.

e Implementation of FFT is quite trivial because the software and hardware is readily
available. For example, under the MATLAB® environment!!; a simple command:

X=fft(z) will convert a time domain vector z into a frequency domain vector X by
using the FFT algorithm.

2.5.6 Data windowing

Windowing of data are used to obtain a smoother and better estimate of the signal spec-
trum. An important property of DFT mentioned in subsection 2.5.3 that is useful for data
windowing is:

e Multiplication of two time domain signal results in a convolution (x) of their spectrums
in the frequency domain and vice-versa. For example DFT[z(t)w(t)] = F X (wm) *
W(wm) = Ilr Zylx;(l) X(wm)W(ws — Wm).

Windows are time domain even functions that are used to trim or shape a large data
set with an objective to recover the original signal spectrum from the trimmed or re-shaped
data set. An elementary example of a window function is the rectangular window. When
rectangular window is multiplied with a data whose length is longer than this window,
it causes it to abruptly truncate the data. Or, in other words, finite data record can
be interpreted as a multiplication of rectangular window of finite length with the original
infinitely long data set.

A rectangular window is essentially same as the non-ideal pulse function 5(t), but
with a wider base. Therefore a sinc function for the rectangular window drops off more
rapidly than for §(¢). The magnitude spectrum!? of this sinc function shows a main lobe
and a series of sidelobes of diminishing magnitude as depicted in Figure 2.6 by the thick
chained lines.

It is desired that the main lobe be narrow and the maximum side lobe level be as
small as possible for best window performance. But it turns out that both these objectives
are contradictory so a compromise is required between reducing the width of main lobe

M A registered trademark of The Math Works, Inc.
33]deally the magnitude spectrums in Figure 2.6 should be shown in a logarithmic scale, instead they

are shown in a linear scale because on a log scale a large number of peints are required which exceeds the
memory limitation of the graphical software used by the author.
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verses having smaller side lobes. Smaller side lobes are desirable because they minimize
leakage in the spectral estimates and thus help in obtaining better signal spectrum. Similarly
narrow main lobe helps to capture sharp features such as resonance peaks in the signal
spectrum. The rectangular window gives undesirable side lobe characteristics but its main
lobe is narrower. Therefore the use of a rectangular window often gives spurious values at
different frequencies but it can also identify sharp features in the signal spectrum better.
Recurence of spurious signals due to rectangular window is a major problem in
spectrum estimations. Hence to cope up with this challenge researchers in signal processing
have directed their efforts to develop various other type of windows. A partial list of some
windows [12] are shown in Table 2.1 and they are graphically illustrated in Figure 2.6
Figure 2.6 shows that: (a) rectangular window has higher side lobes than any other
windows in the figure; (b) the amplitude spectrum of triangular window is positive at all
frequencies unlike other windows; and (c) smaller side lobes for Hamming/Hanning windows
are realized by compromizing width of the main lobe.

Table 2.1: Time and frequency representation of different windows

Win Time domain Frequency domain
1 v i (1) i:elvtlh:rf W(w) = 7sinc(5)
3 w(t) : (()).Sel-si;:)v.lfl);c;s(%_"—‘-) for |t| < 3 W(w) = %[T-Tlg—f:-'j!']smc(gzl)
a | MO 2 A OHEE BT SE | ) — RASEIE raine()

where: 1=Rectangular, 2= 1riangular, 3=Hanning and 4=Hamming windows

Since data windowing is a multiplication of data with window function in the time
domain, it translates into a convolution between the window and the signal spectrums in
the frequency domain. Therefore depending upon the application and nature of the signal
spectrum, it becomes important to select the window functions carefully. For example,
chemical processes usually have overdamped responses which are char: cterized by smooth
spectrums. Therefore for such cases Hanning or Hamming windows are adequate for re-
covering the original signal spectrums. Hanning or Hamming windows are ideally suited
for smooth spectrums because these windows have broader main lobes and very small side
lobes characteristics.
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2.5.7 Power spectrum

A power spectrum is used to characterize a signal or to find the relation between two
signals in the frequency domain. An equivalent time domain signal characterization is done
by the autocovariance function and similarly a cross covariance function is used to determine
relation between the signals as discussed in sections 2.4.1 and 2.4.2.

The power spectrum which is used to characterize a signal is called auto spectrum
and similarly a cross spectrum is used to find the relation between two signals. Auto and
cross spectrums are used in system identification to estimate frequency behavior of the
plant transfer function. Power spectrums also provide an excellent basis for cross validating
mathematical modeis of dynamic systems.

For a discrete signal z(¢, N — oco) let the true auto spectrum be denoted by ®.(w)
and similaly let ®,,(w) denote the true cross spectrum between y(t, N — oo) and u(t, N —
00). Discrete auto and cross power spectrums are then defined as [18, 13]:

Brz(MAW) = D Yzz(k)W™F (2-30)
k=—o0&
[= o]

Byu(mAw) = Y pu(k)W™F
k=-00

The concept of normalization as in case of acf or ccf also applies to the power spectrumns
to facilitate comparison between different signals. Normalized power spectrums are called
spectral densities. Thus the auto and cross spectral densities can be defined as {10}:

Pea(mBw) = —— 3= (BW™ = 3 pe (W™
’Yzz(o) k=-—00 k=—-—00
Bu(mAw) = —= 3 BuB)W™ = 3 au(yWT (2.31)

The following remarks apply to power spectrums and also spectral densities:

Remark 2.3

e D,p(w) or Pyu(w) generically denotes spectral values for all frequencies i.e. w €
[0: UN]-

o &..(w) is essentially a magnitude spectrum and therefore it is an even function.

o &, (w) is a spectrum of complez numbers and it is an odd function. The cross spectrum
therefore contains information about the phase lag or lead between two sets of data
and it can also be expressed [10] as:
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quadrature—spectra

. g —
q’yu(w) = Qyu,-(‘-‘-") +7 Qy'ui(“-’)
e’
co—spectra
or
phase
—— e,
Qpu(w) = |Ppul(w)] £Byu(w) (2.32)
e e’
magnitude

In most applications the data length N is limited, therefore the concepts of sample
acf and ccf also apply correspondingly to the spectral estimates. Sample auto and cross
spectrums are denoted by &,-(w) and @w(w) respectively and they can be similarly defined
as in equation-(2.31) by setting finite limits for the summation sign.

Sample spectrums are also called periodograms and naturally these periodograms are
estimates of the true power spectrums. In time domain, sample auto/cross covariance func-
tions provide consistent 2symptotically unbiased estimate of the true auto/cross covariance
functions. However their I*Ts i.e. sample auto/cross spectrums are not asymptotically
consistent estimate of their true power spectrums because their variances never approach
zero with the increase in N. The variances in periodograms can be reduced by using window
functions and other spectral smoothing techniques which is discussed in subsection 2.5.8.

With the advent of FFT algorithm, it is no longer required to compute the DFT
of the auto/cross covariance functions to obtain periodograms. The FFT can directly be
applied to the data to compute these periodograms [1] as shown:

U(w) = FFT[U(@t,N)] and Y(w) = FFT[y(t, N)] (2.33)

then

buulw) = FU@UT@) = U@
Spulw) = -It-r-Y(w)UH (w) (2.34)

where U#H(w) is the complex conjugate transpose of U (w).
For causally related data sets (e.g. in Figure 2.1 y(¢, N) is causally related to u(t, N)

via G(z)), the correlation between the input and the output at a frequency (w) is described
by the squared coherency spectrum k2, (w) as:

[Dyu (w)[?
Do (W) Pyy (w)
Concept of sample spectrum or periodograms also applies to squared coherency and it is
called sample squared coherency spectrum: kgu(w). The value of squared coherency varies

Kay(w) = (2.35)
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between 1 and 0, signifying complete and no coherency respectively, between input and
output. Often the process output is corrupted by noise as shown in Figure 2.1, in such
cases squared coherency can be used to estimate the degree to which the output is effected
by noise. For example if the noise level is high, a squared coherency will have a lower value
and for lower noise level it will have values close to 1. More recently attempts are also
being made to use the squared coherency function to acertain the level of non-linearity in
the systems [14].

It should be noted that direct substitution of equation-(2.34) in equation-(2.35) will
always lead to nﬁy(w) =1 even when y(t) is corrupted by noise; which of course will lead to

a misleading result. A true picture emerges only when equation-(2.35) is used with spectral
smoothing techniques described in the following subsection.

2.5.8 Spectral smoothing

Since the periodograms are not consistent estimate of the spectrum and also increasing N
provides no relief, it becomes important to consider modifications in spectral estimation
procedures that will yield better results. The procedures by which the signal spectrums
are modified to yield results are called spectral smoothing techniques. Popular spectral
smoothing techniques include periodogram averaging as proposed by Bartlett and data
windowing and their combinations as suggested by Welch.

Bartlett’s smoothing

Bartlett suggested dividing IV point data into K units of M samples each to compute K
periodograms and then take their average. Using statistical techniques it is shown that such
an averaging naturally leads to convolution between a triangular window and the original
spectrum [10]. Furthermore, with incriusing K, the variance of the resulting averaged
periodogram decreases and thus it becomes a consistent estimate of the true spectrum [1].
However the disadvantage of increasing K is that it reduces the spectral resolution e.g.
it becomes difficult to identify if the spectrum has a narrow or a sharp peak. Therefore

depending on the application a compromise is required between spectral resolution and
reduction in the spectral variance.

Window smoothing

Another way to smooth a signal spectrum is to convolve it with an appropriate window
function. In case of Bartlett’s method, the averaging is equivalent equal to the triangu-
lar window. But if a window of desirable characteristics i.e. with lower side lobes (e.g.
Hamming/Hanning windows) is used instead of triangular window; a better compromise be-
tween resclution and variance in the periodogram can be achieved. It should be noted that
periodograms are non-negative functions and Bartlett’s method (i.e. triangular window)
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always result in periodograms with positive values. But the same cannot be said about
Hamming or Hanning windows as sometimes these windows can give negative values for the
periodograms as at certain frequencies their amplitude shows negative values [1] as can be
seen in Figure 2.6.

Welch’s smoothing

Welch proposed a combination of spectral averaging and data windowing to achieve desirable
results. Welch’s method essentially brings together the desirable features of both data
windowing and Bartlett's method. Welch’s method can be summarized by the following
steps [1]:

1. Split the data z(t,N) into K sections of M points in each section. The K data
segments can also be overlapped if required.

2. Each data segment is separately multiplied by window function w(t).

3. The FFT of each windowed data segment are computed to obtain K modified peri-
odograms.

4. The resulting periodogram is the average of K periodograms as shown below:

- 1 1 X
1] = —— Xy for0<m<M-1 2.36
where
1 M-1
lwl* = = Y- w?() (2.37)
M =0

and X}(w) = FFT[z(t, M),w(t)] and where z(t,M); is the k** data segment in z(t, N)
for k = 1,2,...,K. In equation-(2.36) ®;z(w) denotes the average periodogram and the
frequency points m span the range (—wn,wy). The average cross periodogram can be

determined similarly.
2.5.9 Estimation of frequency response of a transfer function

A major application of signal processing methods in process control is to estimate the
frequency behavior of a transfer function for either model validation or controller design.
If y(t, N) be causally related to u(t,N) via G(z), then in frequency domain this translates
into [15]:

Y (w) = G(w)U(w) (2.38)
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and similarly

YH(w) = GH(w)UH (w) (2.39)

post-multiplying both side of equation-(2.38) by U (w) and subsequently using equation-
(2.39) results in:

Y (w)UH (w) = GH (W)U (w)UH (w) (2.40)

combining equation-(2.34) with the above equation gives:

Pyu (w)
Gw) = L= 241
(w) Bon(@) (2.41)
similarly multiplying both sides of equation-(2.38) ‘with GH(w)U¥H (w) and substituting
equations-(2.39) and (2.34) yields [15]):

_ [ 2uw(w)
|G(w)] = FBo(@) (2.42)
Equation-(2.41) is very useful because it gives spectrums of both magnitude and phase of
the system from time domain process data. Equation-(2.42) can be used when information
on the magnitude spectrum alone is required.

2.6 Statistical analysis in signal processing

One of the main objectives of statistical analysis in signal processing is to determine the
confidence bounds on the estimated spectrum. Confidence bounds are derived on the
assumption that the error or noise z(t,N) have a Gaussian distribution i.e. fg(z) =
715; exp ﬁz;;)_gf_, to which the statistical methods are applied. A portion of this section is
devoted to some statistical techniques that are required to estimate the confidence bounds
for the signal spectrum.

A measure of spread of the normally distributed population (i.e. z(t,N — o0)) is

variance 02 = E[(z — p)?}, similarly for a finite sample size N, the sample variance is given
by:

52 = — f;(z(k) —z)? (2.43)
N-12

Normally distributed data for a population (i.e. N — o0o0) is denoted by M (u,c?) and for

finite N it is similarly given by N(Z,5%) (In the last Sections 2.4 and 2.5 this distinction
was not made for reasons of simplicity).
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x2 distribution

The key distribution that is used to determine the spectral bounds is x2. For z(t,N) €
N(0,1), the sum of its squared elements is said to have a x% distribution with a degree of
freedom (dof) N i.e. [10]:

X =22 +2t 4.+ 2% (2.44)
For the general case if v denotes the dof, then xZ is given by [10]

1
25r(%)
for 0 < z < oo and where ['(v/2) = [Ce tt(/2)-1dt. If z(¢t,N) € N(u,0?), then it is

Fra(x) = z($)"le—3 (2.45)

shown [10] that:

a2 2
(N - 1);2' € X{(N-1) (2.46)
i.e. the dof for the ratio between the sample and true variance is v = N — 1. As v — oo,

x2 = N(u,0?) (Central limit theorem), however for smaller dof’s, x2 is vastly different
from N (i, a2). Probability limits of v62/a? are [10):

[ o vée a\]
P (5) <=k (1-3)|-2-o (247

where o« is the confidence limit. Equation-(2.47) can also be rearranged to;

Pl —<Zc 2| 1-a (248)
[X2(L—a/2) ~ 62~ xi(a/2)] '
Some properties of x2 are [10]:

EREl = v
var(x?) = 2v

where v = vy + 2 + ++- + . If £ € ax,?, where a and v are unknown, then using
equation-(2.49) these two unknown parameters can be shown to be:

2(E[x])?

v = _(T)

o = ol (2.50)
1 74

because the first two moments of = are £[z] = av and var[r] = 2a%v. The above equation-
(2.50) will be used later to describe the statistical distribution of periodograms.

40



Fisher's F distribution

Related to X2 there is yet another distribution which is called the Fisher’s F distribution.
The F distribution is applied to estimate the bounds on magnitude and phase spectrums.
It compares the variances of two unrelated normal data sets of different lengths (N, and

Ns) having distributions A (u1,01%) and A (u2,02%). Therefore by using equation-(2.46),
with the F distribution as defined as [10]:

a%/a? _ xi/n
G2 fo22 X2, /[ve
If the values of F,,,, distribution are given by f,,.,(1 — a), then for a fixed confidence limit

of (1 — a), plots of f,,.,(1 — @) are available for different v, and 1. The corresponding
confidence level on F,,,, is given in {10] as:

Fyup = (2.51)

222
g2"agy
P [012622 < Fom(l — a)] =l-a (2.52)

It may also be noted that F,,,, = 1/F,,,,, therefore f,,,,(1 — @) and fu,, (1 — @) can be
used to construct confidence intervals as shown in subsection 2.6.3.

2.6.1 Confidence bounds on smoothened auto spectrums

In practice N is finite and the data set is often corrupted by noise which tends to adversely
affect the spectral estimates discussed in Sections 2.5.& to 2.5.8. Therefore uncertainties in
spectral estimates are always accounted for by the confidence bounds. Often these spectral
uncertainties are assumed to be stochastic, and therefore statistical techniques outlined in
Section 2.6 are used to compute the bounds. A number of assumptions and approximations

are made for deriving these spectral bounds. An important relation used in this context is
the Parseval’s theorem!3 [1]:

M-1 N-1
T IX(mAw)? = Y 23(k) (2.53)
m=0 k=0

If z(t, N — oo0) € N(0,0?), then from Parseval’s relation (2.53) and equation-(2.43) it is
clear that:

1 N-1 1 M-1 M-1
ol = ~ z z(k)? = ~ Z | X (mAw)|? = Z S, {(MmAwW) (2.54)
k=0 m=0 m=0

Equation-(2.54) is validated by illustrations in Figure 2.7 for the example z(t,N) €
N(0,1.0354), where it is shown that good estimates of 5 are obtained from the signal
spectrum. Subsets of Figure 2.7 further show that: (a) an unsmoothened spectrum exhibits

13The Parsevals theorem can be expressed in several forms. Some other forms of Parseval’s theorem are
discussed in Chapters 4 and 7.
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Figure 2.7: Use of periodogram to estimate the variance of a white noise signal.
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more variations but it yields a good mean value, (b) improper smoothing (i.e. use of just
one window) leads to biased estimate and (c) proper smoothing reduces variance in the

estimated spectrum without compromising the mean value. The statistical distribution of
sample spectrum of white noise is shown to be:

2@_—:;;((-0) 2(X,-2((U) + X:2(w)) € X2 (2.55)

Similarly the above spectral distrlbutxon approzimately holds for the filtered white noise t.e.
z(t) = G(z)&(t) also.

It is proved in the literature that var(®.z(w)) increases with the increase in N
contrary to the expectation that it should decrease. Therefore periodograms are not a con-
sistent estimator of the true spectra but this situation is rectified by resorting to spectral
smoothing techniques described in subsection 2.5.8. Smoothened periodograms have distri-

bution similar to equation-(2.55), but they have more dof v i.e. V®rr(w)/Prx(w) € ax,?
and it is shown that [10]:

E[ém(w)] ] Q:r:::(“’)

= 2 2 22, (w) =,
var(®zz(w)) = ‘I’zz(w) Z Wé(w) = N S wi(k) (2.56)
k=—wn k=0

The above expressions-(2.56) show: (a) with increasing N, spectral variance of smoothened
periodogram decreases because N is in the denominator; and (b) the spectral variance is
weighted by the dof of the window function. Parsevals relation is used to calculate the
spectral variance in the above equation. From equations-(2.50) and (2.56) it is shown that:

2N
V= e (2.57)
k=01 w?(k)

Therefore using equations-(2.47), the confidence bound for v®zz(w)/®z. (w) follows:

Ppe(8) <= (-5)] - a9

2.6.2 Confidence bounds on the smoothened cross spectrum

Derivation of confidence bounds for the cross spectrum is more involved and it is beyond

the scope of this thesis hence only some final results are presented. The bounds for cross

spectrum are provided separately for |®yu(w)|, R;‘;,, and @y (w) and their variances are given
by [10]:
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D 2
var((gu)) ~ 1% (1+ 1 )

)
V(@) ~ 2z ()
var(@p () = %(;2—1—(;7— 1) (2:59)
yu

The above set of expressions (equation-(2.59)) convey that:

e Variances of these estimates are dependent on spectral smoothing i.e. dof v and
Ku (@)-

e For #Z,(w) =1 (i.e. no noise) there are no variances in 72,(w) and Gy (w).

e For lczw(w) — 0 (ie. mo input-output coherency), var(l;iw(w)l) — oo and
var(@yu(w)) — oo.

e Effect of x2,(w) on these variances is more profound than the smoothing factor v.

|<i>w(w)| has larger variance than the component signals y and u because the dis-
tribution of |®,u(w)| is approximately the product of x3 distributions of y and u. The
confidence bounds on only the squared coherency spectrum is discussed because they pro-
vide more useful information than the amplitude or phase of the cross spectrum. The 95%
confidence bound on &2, (w) is given by:

£w) = (Y (w), sE(w)) = % In i + "”"(‘") +1. 96\/— (2.60)

arf:iianh(“‘v:m(‘-»'))

where &' or (kU (w) and xZ(w)) are the upper and lower bounds in terms of transformed co-

ordinates i.e. arctanh(Ryu(w)). The bounds on the original coordinate system are obtained
by the following inverse transform (i.e. arctanh™!):

_ e W) _ 1
Ew) = Iy (2.61)
\——v—-——f
arctanh~* (&' (w))
where E(w) = (kU (W), sk, (w)) i.e. 8L (W) < Ryu(w) < kjy(w)- The confidence bounds on
the magnitude and phase of <i>w(w) are not mentioned here because it makes more sense to

discuss them in the context of estimating the transfer functions as discussed in the following
subsection 2.6.3.



2.6.3 Confidence bound on smoothened gain and phase spectrums
In order to calculate the confidence bounds on the gain and phase spectrums, it is assumed
that the output y(t) is corrupted by white noise £(t). Therefore letting v(t) = &(t) in
equation-(2.1), the frequency response of the plant becomes
Y (w) = Gw)U(w) + Z(w) {2.62)

where Z(w) = DFTI[&(t,N)). If Gp(w) represents the spectral estimate of G(w), then
equation-(2.62) can also be written as:

Y (w) = Gu(w)U(w) + Z(w) (2.63)
where Z{w) is an estimate of Z(w). The following assumptions hold for equation-(2.63):

Assumption 2.1

e u(t,N) € N(0,02), £(t,N) € N'(0,02) and £(t,N) € N(0,53).
® puc(k) =0 and pué(k) =0 for all k.

Equations-(2.62) and (2.63) are equated to replace Y (w) to obtain

Z(w) = Z(w) + U(w)(Gm(w) — G(w)) (2.64)
Multiplying equation-(2.64) by Z#(w) and use of assumption 2.1 leads to:

Pge(w) = Bzz(w) + Pua(W)IGM (W) - GW)I (2.65)

The following expression results after: (a) substituting smoothened periodograms in the
preceding equation-(2.65); and (b) multiplying the resultant equation by v/®zz(w):

vhee(w)  YRiw) | vPuu(w) _ \
Beew) | Dee@) | Tee(w) IGm(w) - GW)| (2.66)

Equation-(2.66) conveys the following:
e LHS term has a x2 distribution.
e LHS is a result of two statistically independent terms shown in the RHS.

e It is shown in literature [10, 5] that the first and second RHS terms kave x2_ and x3
distributions respectively.
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e In view of the above observations, ratio of the two RHS terms can be taken to obtain
the F distribution.

For the sake of derivation of confidence bc :nds, it is assumed that y and u are uncor-
related i.e. G(w) = 0 [10], then equations-(2.35), (2.41) and (2.42) can be applied to
the terms on the RHS to obtain: v®uu(w)G3,(w)/Pee(w) = v®2 (w)RZ,(w)/Pee(w) and
v@z(w)/ Pee(w) = v®y (W) (1 — &2, (w))/Pee(w) and subsequennly taking their ratio gives
[10]):

(v = 2)&%,(w)
2(1 — K3y (w))

therefore from equations-(2.52), (2.66) and (2.67) it is clear that ratio of RHS terms in
equati»:: i/ #5) will have the following confidence interval {10]:

€ Fa,_2 (2.67)

> [u 2 B} Carle) - G p - ,,)] —1l-a (2.68)
33

By rearranging equation-(2.68) and using equations-(2.66) and (2.67) gives the following
confidence intervals for gain and phase spectrums [10]:

—R2
(G (w),GlH(w)) = Gumw) {1 + J ” 3 2f2’(”_2)(1 —a) (1 Rs:,z:’()w))}

2

u——

1-—- Ezzu(w)

Rou(w)

(P (), Phr (W)

pm(w) £ Sin_lJ 5 fzi(,,_z)(l —a) ( ) (2.69)
The confidence intervals presented in this section has a link with the least squares estimates
which is a subject of discussion in Chapter 3. Therefore further discussions on confidence

intervals are deferred to Chapter 3.

2.7 Case studies

The purpose of this section is to highlight the application of signal processing methods
described in Sections 2.5.5 to 2.5.9 and 2.6.3 via illustrative examples. These examples show
that the outcome of signal processing methods depend on spectral smoothing techniques,
experiment design and the level of noise in the data. With a careful choice of design
parameters such as input design and spectral smoothing, reliable estimates of the spectrum
can be obtained.

The use of signal processing methods is illustrated by applying them to estimate the

frequency response (Bode plots) of the following plant from its input-output data record
(equation-(2.17)):
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Figure 2.8: Estimation of Bode plots for a noise free plant using (i) white noise excitation
and (ii) no spectral smoothing. Left: Magnitude spectrum. Right: Phase spectrum.
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Gi(g7!) = l—g—i—qs—q'_—l

The effectiveness of spectral estimation techniques are shown by considering three
cases; namely: (a) noise-free data; (b) output corrupted by white measurement noise
(SNR=3.03); and (c) output corrupted by ARMA noise (SNR=3.0). The input-output
data for case-a has already been shown in Figure 2.5. For other cases the output record will
be shown subsequently. The case of noise-free data are of course the simplest one, but it
is considered to show the effect of spectral smoothing methods on the spectral estimations.
The level of noise considered (i.e. SNR = 3.9) in cases (a) and (b) is quite significant and
it is shown how signal processing methods yield reliable results for such a level of noise.

(2.70)

2.7.1 Case: Noise free plant

Case-1: Figure 2.8 shows estimated magnitude and phase spectrums match well with
the true Bode plots of the plant. Since no spectral smoothing is employed: (a) estimated
spectrums show significant variance even though the plant is noise free; and (b) no spectral
bounds are calculated because dof=0.

Case-2: The case presented in Figure 2.9 is similar to the previous one, except that
only 1 Hanning window is used to shape the data. This results in: (a) reduced spectral
variance without compromising the accuracy; and (b) shows confidence bounds and they
are depicted as UB and LB signifying upper and lower bounds respectively. The LB is so
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Figure 2.9: Estimation of Bode plots for a noise free plant with bounds using (i) white noise
excitation and (ii) 1 Hanning window of length M = 1024. Left: Magnitude spectrum.
Right: Phase spectrum.

small for the magnitude spectrum because of small dof, that it is beyond the scale of the
graph.

Case-3: The effect of Welch’s spectral smoothing method in Figure 2.10 shows: (a) further
reduction in the variance of the estimated spectrums without compromising the accuracy;
(b) tighter confidence bounds owing to higher dof; but (c) with a reduced frequency span
(shown by the vertical dotted lines) because of data segmentation.

Case-4: The reduced frequency span is shown to increase suitably by increasing the data
length as depicted in Figure 2.11. The tightness of confidence bounds is same as in the
previous case because there is no apparent change in the value of dof. However for this case
the variance in the estimated spectrum seems to increase due to increased data length.
Case-5: Previous cases show that white noise excitation always result in some variance
in the estimated spectrums, irrespective of the smoothing effort. Figure 2.12 on the other
hand shows that a low frequency square type excitation yield very smooth spectrums with-
out compromising the quality of estimation. It may however be noted that: (a) spectral
smoothing methods are still required to ensure the reliability of spectral estimates; and (b)

it is shown later in Section 2.8 that square type excitation does not work well when the
data are corrupted by noise.
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Figure 2.10: Estimation of Bode plots for a noise free plant with upper and lower bounds
using (i) white noise excitation and (ii) 4 Hanning windows of length M = 256 each. Left:
Magnitude spectrum. Right: Phase spectrum.
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Figure 2.11: Estimation of Bode plots for a noise free plant with upper and lower bounds
using (i) white noise excitation and (ii) 4 Hanning windows of length M = 1024 each. Left:
Magnitude spectrum. Right: Phase spectrum.
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Figure 2.12: Top: Noise free process output for a square wave input. Bottom: Estimation of
Bode plots and their bounds for the above case with 4 Hanning windows of length M = 256
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Figure 2.13: Top: Time series plots of noisy (y(¢)) and noise free (y*(t)) process outputs
for a white noise excitation. v(t) is the white measurement noise sequence (SNR=3.03).
Bottom: Estimation of Bode plots for the above case with no spectral smoothing. Bottom-
Left: Magnitude spectrum. Bottom-Right: Phase spectrum.

2.7.2 Case: Data corrupted by white measurement noise

In process industries, often the data record are said to be corrupted by white noise due to
faults in the sensors and other measuring devices. This subsection therefore explores how
signal processing methods perform in presence of white measurement noise. Figure 2.13
shows a section of the process output from Figure 2.5 corrupted by a significant level of
white noise (SNR=3.03). The sequence of white noise is also shown in Figure 2.13. It is
assumed that u(t) and noise v(t) are uncorrelated.

Case-1: The unsmoothened spectral estimates in Figure 2.13 shows significant variance
and the phase spectrum shows bias at some frequencies.

Case-2: Thke example shown in Figure 2.14 is similar to the previous case except that
a Hanning window is used to shape the data. This results in: (a) significant reduction in
variance in the spectral estimates; but (b) no improvement in the quality of phase spectral
estimates (on the contrary it deteriorates).

Case-3: However with the use of Welch’s smoothing method the quality of the spectral
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Figure 2.14: Estimation of Bode plots and their bounds for a plant corrupted by white noise
(SNR=3.03) using (i) white noise excitation and (ii) 1 Hanning window of length M = 1024.
Left: Magnitude spectrum. Right: Phase spectrum.

estimates improve as illustrated in Figure 2.15. The tighter confidence bounds on the
estimated spectrum is due to a high value of dof which essentially stems frora the use of
large number of windows. This figure also shows the squared coherency spectrum, which is
at a satisfactory level (i.e. closer to 1) for most frequencies except at the higher frequencies.
Case-4: The above case is repeated in Figure 2.16, except that Hanning windows are
replaced by rectangular windows to check the effectiveness of Bartlett’s smoothing (i.e. just
data averaging without using any windows) in the presence of white noise. Expectedly the
estimated spectrums in Figure 2.16 shows: (a) more variance; (b) more relaxed confidence
bounds owing to lesser dof when compared with the earlier case; and (c) squared coherence
values are lower compared to the previous case. Nevertheless this illustration conveys that:

o Data averaging is very essential and in fact it is more important than data windowing
and this becomes obvious after comparing the phase spectrums in Figures 2.14, 2.15
and 2.16.

e Figure 2.15 shows higher squared cohrerency (owing to data windowing) than shown
in Figure 2.16. Consequently the estimated spectrums in Figure 2.15 reflect the true
Bode plots more accurately than in Figure 2.16.

In fact the squared coherency plot is very valuable because it gives a measure of both quality
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4x1024 data points, 16 Hanning windows, 128 freq. points, dof=82.02
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Figu 2 2.15: Estimation of Bode plots, their bounds and coherency spectrum for a plant
corrupted by white noise (SNR=3.03) using (i) white noise excitation and (ii) 4 Hanning
windows of length M = 256 each. Top-left: Magnitude spectrum. Top-right: Phase spec-
trum. Bottom: Squared coherency spectrum.
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4x1024 data points, 16 Rectangular windows, 128 freq. points, dof=31
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Figure 2.16: Estimation of Bode plots, their bounds and coherency spectrum for a plant
corrupted by white noise (SNR=3.03) using (i) white noise excitation and (ii) Bartlett’s
smoothing method. Top-left: Magnitude spectrum. Top-right: Phase spectrum. Bottom:
Squared coherency spectrum.
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4x1024 data points, 16 Hanning windows, 128 freq. points, dof=82.02
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Figure 2.17: Effect of level of white measurement noise (SNR) on the squared coherency
spectrum.

and reliability of the estimated spectrums. This is illustrated by an example in Figure 2.17
which shows higher coherency for richer signals and vice-versa, thus indicating higher level
of confidence and reliability on the estimated spectrums for higher values of the squared
coherency.

2.7.3 Case: Data corrupted by ARMA noise

Chemical processes are often prone to low frequency disturbances such as random walk
and ARMA or colored-type noise disturbances. Low frequency disturbances tend to make
the data record non-stationary and sometimes they may also exhibit nonlinear traits, thus
posing challenges for both signal processing and system identification. The effectiveness
of signal processing methods are evaluated in this section for output corrupted by ARMA
noise. Cases of more difficult noise situations are presented in the next chapter.

The present case assumes that the output y*(t) in Figure 2.5 is corrupted by the
ARMA noise model:

1+0.5¢71 —0.2¢72 .
1 -qo.999q—1q €@ 2.71)

with SNR= 3.0 (which is significant). Figure 2.18 shows both the noise free (y*(t)) and

v(t) =
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Figure 2.18: Top: Time series plots of noise free output (y*(t)) and output corrupted by
ARMA noise (y(t)) for white noise excitation. v(t) is the ARMA noise sequence (SNR~ 3.0).
Bottom: Magnitude spectrum of v(¢).

noisy (y(t) = y*(t) + v(t)) process output together with a colored (ARMA) noise sequence
v(t). Magnitude spectrum of the ARMA noise in Figure 2.18 shows richness at the lower
frequencies in contrast to the flat spectrum for a white noise signal.

The nonstationarity in y(¢) is first removed before applying signal processing meth-
ods (y(t) is mildly nonstationary under the influence v(t) whose nonstationarity is apparent
in Figure 2.18). It should however be noted that nonstationarity in the data due to noise
cannot always be removed completely and this often makes the job of identification or signal
processing difficult. In the present case Figure 2.19 reveals biases in the estimated spec-
trums at the lower frequencies because the coherency in this region is small. Furthermore,
smaller coherency at the lower frequencies is attributed to the significant level of noise in
this frequency range.

One way to ameliorate the problems at lower frequencies (in this case) is to provide
input excitation, u(#), that is rich enough at these frequencies. A signal that is rich at
the lower frequencies can be obtained by filtering the white noise input through a low pass
filter. The time series and spectrum of the low pass filtered excitation uf(t) are depicted

56



4x1024 data points, 16 Hanning windows, 128 freq. points, dof=82.02
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Figure 2.19: Estimates of Bode plots and coherency spectrum for a plant corrupted by
ARMA noise (SNR=x 3.0) using (i) white noise excitation and (ii) 16 Hanning windows of
length M = 256 each. Top-left: Magnitude spectrum. Top-right: Phase spectrum. Bottom:
Square coherency spectrum.
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Process output corrupted by ARMA noise, SNR=3.0, Low pass filtered input
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Figure 2.20: Top: Time series plots of low pass filt~red white noise input uf(¢) and its
output y(t) that is corrupted by ARMA noise (SNR~ 3.0). Bottom: Magnitude spectrum
of filtered input.

in Figure 2.20 for an arbitr.:cy filter 1/1 — 0.8¢~!. The coherency plot in Figure 2.21 now
shows richness at the lower frequencies as a result better estimates are obtained for these
frequencies.

2.8 Estimation of model-plant mismatch (MPM)

The dynamics of a process can be mathematically expressed in several ways. But in a real sit-
uation (especially for chemical plants) the dynamics of a plant is are generally complicated,
and therefore such mathematicai models can only capture the most dominant dynamics.
Hence in practice mathematical models are always associated with some uncertainty which
is often called model plant mismatch (MPM).

For model based conirollers the MPM acts as bounded disturbance which can ad-
versely affect its stability and performance. But if information on MPM is available, then

M A version of the Section ‘Estimation of model plant mismatch’ appessed in [6, 16).
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Figure 2.21: Estimation of Bode plots and cohierency spectrum for a plant corrupted by
ARMA noise (SNR=3.03) using (i) low pass filtered white noise input and (ii) 16 Han-
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this knowledge can be used to design controllers that are robust to suck modelling errors
and these issues are further deliberated upon in Chapters 5 and 6.

It should be understood that the MPM is a non-stochastic term, but in practice
it is always associated with measurement noise plus other disturbances which together is
called the residual error e(t) depicted in Figure 2.1. For rmodel based controllers it therefore
becomes imnportant to extract MPM from e(t), because it is the MPM that causes instability.

In reality the MPM is rever known and it can best be represented nonparametrically
such as in the frequency domain. If the MPM is designated by G(w), then from Figure 2.1
it is obvious that:

G(w) = G(w) — G(w) (2.72)

If the plant is noise free i.e. v(¢t) = 0, equations-(2.34), (2.41), (2.42) and (2.72) can be
used to obtain the following expression for MPM [17, 18, 19]:

Peulw)

éM(w) = m (2.73)
or
IGu(w) = %—:% (2.74)

The subscript M in eguations-{2.73) or (2.74) designates that it is a spectral estimate of
G(w) (note: M signifies the n:niber of frequency poinis for DFT computation, therefore
the use of M is appropriate in this context i.e. in equaticn-(2.74)).

MPM thus represented by equations-(2.73) or (2.74) is nonparametric and it encom-
passes all information about the mismatches in process gain, time-constant and delay. The
MPM in equations-(2.73) or (2.74) is therefore unstructured and its use in control design
will ensure robustness to all structural uncertainties such as the mismatcles in process gain,
delay or time constant as discussed in Chapters 5 and 6.

The equations (2.73) or (2.74) are the theoretical estimates based on the asymptotic
results. In practice however the given data are finite, therefore: (a) the spectral smoothing
methods discussed in Section 2.5.8 are applied to obtain consistent and reliable estimates
of Gp(w); and (b) the confidence bounds are provided for Gm(w) to account for the un-
certainties in the estimates. For robust controller design only the upper confidence bound
is required as it signifies maximum modelling error with a certain degree of confidence.

In presence of v(t) the estimated Gas(w) will be biased as illustrated by several
examples in Section 2.7. If the biased Gs(w) is denoted by G¥(w), (superscript B indicates
bias), then:

1GB ()] = \/ G a(w)]? + %—E{—; (2.75)
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The above expression shows that in presence of v(t):.

e A bias proportional to @y, (w)/Puu(w) is added to |G s (w).

o Bias is affected by the shape of ®,4(w). For example, the effect of roll off in ¢, (w)
at the higher frequencies would be to amplify the noise and therefore add more bias
in the estimated |G (w)| at those frequencies.

e For colored noise i.e. u(t) = H(g ')&(t) [€(t) € N(0,62)] the biased estimate of
MPM is:

-3 — vi w
1G] = \/ (Ga(@)l? + |H ()2 g2e) (2.76)
Puu(w)
which shows that the bias is influenced by H(g™!) in addition to ®44(w). Therefore

depending on the nature of H(g™!), appropriate pre-filtering is required to minimize
the effect of bias on G (w).

In model based control, the problems of stability manifests from G(w) rather than
from noise or disturbance v(t) (assuming the designed controller is stable). Therefore it
makes sense only to estimate the G(w) component and not the spectrum of v(t) in the
interest of a less conservative controller design. These issues are pursued further in Chapters
5 and 6. This section is only devoted to the methodologies (via signal processing) by which
a good estimate of Gap(w) can be obtained. In essence the central message is - MPM
bounds should be determined as accurately as possible because an inadeguate estimation
can lead to instability whereas an overly conservative bound can affect the performance.
Further, equations-2.75 and 2.76 suggests that v(¢) tends to make the estimnated bounds
more conservative.

To the best of author’s knowledge, most research papers e.g. [17, 18, 19] tend to
ignore the effect of bias in the spectral estimation of MPM. Yet the effect of bias cau be
very significant, because, the SNR is usually poor in e(t). Often for good models (which is
desirable) |le|| < ||yl| and it is obvious from equations-(2.1) and (2.72) that any noise in y(t)
gets transferred to e(t). Therefore the bias term @, (w)/®Pyu(w) can usually be significaut
in the estimation of MPM. For example, in an extreme situation, when G(g~!) = 0, e(t) is
simply v(t) or [GMW)| = VBou(W)/Buu(w).

2.8.1 Spectral estimation of MPM - simulation example

In reality the true model-plant uncertainty is never known exactly and hence the effec-
tiveness of the DFT method to estimate MPM can only be ascertained through con-
trived examples such as the following. Consider a third order averdamped plant: G,(s) =
1/(s +1):3s + 1)(5s + 1), whose discrete equivalent for a sample time of T, =1 is:
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Figure 2.22: Nyquist plots of the plant, model and the uncertainty regions.

Galg) = - 0.0077q! + 0.0212¢ 2 + 0.0036¢ 3
1 —1.9031¢q~! 4+ 1.1514¢9—2 — 0.2158¢—3
The following first order model with two numerator parameters was identified using

least square technique by providing a square wave excitation:

(2.77)

5 - 0.0419¢7! + 0.0719¢2
Galg™) == ?-0.896941"1 :

The Nyquist plot of the plant, model and the uncertainty regions are shown in
Figure 2.22

The objective is to estimate the MPM for the system equations-(2.77) and (2.78)
using signal processing methods discussed in Section 2.5. The use of various smoothing
techniques to improve spectral estimates of Bode plots have already been illustrated via
ample number of case studies in Section 2.7. The results of case studies in Section 2.7 are
extended here to show how they can be applied to estimate the MPM spectrum [6, 16).

The effect of two extreme cases of input types (i.e. square wave and white noise)
on the estimation of MPM are discuzsed in the presence and absence of measurement noise.
The noise-free case is discussed first to examine the effect of input type on the spectral
estimation of the MPM. The illustration on the left in Figure 2.23 and 2.24 show that

(2.78)
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Figure 2.23: Left: Spectral estimation of MPM with square wave input for a noise free
plant. Right: Error between true and estiinated MPM.

|G(W)| z-< |Gm(w)| compare well when: (a) subjected to square type and white noise
excitation (IV = 1024); and (b) spectral smoothing methods are employed.

The plot on the right side in Figure 2.23 and 2.24 show baises between |G (w)| and
|G m(w)| for square and white noise inputs. These figures show lower biases for low frequency
square wave input when compared with white noise excitation. But the bias corresponding
to square wave input shows a patteru whereas for white noisce it is randomly distributed
about 0. The distribution of bias in Figure 2.23 confirms the fact that bias in the estimated
spectrum is greater wherever the first and second derivatives of the transfer function w.r.t.
w are significant [15]. This fact shows up for square type input but for white noise excitation
this is not perceptible.

For SNR=~ 1.4, Figure 2.25 suaows that the estimated siss in MPM is greater at
higher frequencies for the square wave input in comparison with the white noise input.
This result is contrary to the previous results for noise-free case. This is expected, because
for a square input, ®y4(w) rolls off at the higher frequencies which magnifies the effect of
noise at these frequencies according to equation-(2.75). Simrilarly, the flat spectrum due
to white noise introduces lesser bias in the estimated MPM in presence of measurerent
noise at higher frequencies. Nevertheless the square input gives a better escimation at the
lower frequencies because of more signal energies at these frequencies (note that: (a) usual
spectral smoothing methods are employed for these cases; and (b) the level of noise is very
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Figure 2.25: Spectral estimation of MPM in the presence of white measurement noise
(SNR=: 1.4). Left: with square wave input, Right: with white noise input.
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significant).

These results indicate that a square type input with proper smoothing methods
can give a good and reliable estimate of the MPM from e(t, N) provided that the level
of measurement noise is sufficiently low. In the preseunce of measurement noise, a white
noise ¢xcitation will give a better estimate of MPM for most frequencies and especially at
the higher end of the spectrum. However if accuracy in the estimation of MPM is desired
at the lower frequencies, then a square type iuput is also required. The coherency plots
discussed in Section 2.7 must also be referred to gain confidence in the estimnated spectrum.
In this particular illustration i.e. left figure in Figure 2.25, the coherency spectruun &2, (w)
is relatively large (close to 1) at the lower frequencies due to square wave excitation. This

results in a good estimate of the upperbound in comparison to the white noise excitation
at these lower frequencies.

2.9 Conclusions
The main contributions of this chapter are:

e The field of signal processing is introduced with an interesting histarical perspective.
Different signal processing results that are relevant. 10 system identification are brought

together. Importance of these results are highlighted via example dependent case
studies and illustrations.

e This chapter compactly gives the gist of signal processing methods with a tutorial
flawor such that they can be easily adopted by the chemical engineering practitioners.

e The significance of signal processing methods presented in this chapter are suniunarized
in the following:

— ~zz(k) gives the nature of correlation for x(t, N — co) whereas v, (k} determines
the correlation between y(t, N — co) and u(t, N — 00). pzz(k) aud pyu(k) are
the normalized versions of vzz (k) and vyu(k) respectively. prr(k) corresponds to
finite N and it is s¢3umed pzz (k) — pzz(k) € N(0,0?%) and the similar argument
holds good for pyu(k).

— The acf helps to check if (¢, N) € N(0,02) or z(t,N) € (MA(r) or AR(p)).
AR(p) is ascertained by examining the pacf. Similarly ccf provides information
on the direction of gain, delay and impulse response.

Periodic and non-pctiodic time dormain signals are conveited i::to i juiancy do-
main by using Fourier series and FT respectively. Periodic signals yield discrete
frequencies whereas nonperiodic signals give the effect of continuous frequency.
FT[z(t, T)] is related to Laplace transform whereas FT of ideally satupled non-
periodic z.(t,T) i.e. FT{z(t,N)] is same as the z—transfc::a.

65



— DFT is applicable to periodic z(t,/N) and its numerically faster (or practical)
version is called FFT.

— @, (w) describes the energy distribution of z(¢,N) for different w € [0,wn].
Similarly ®,,(w) describes relation between y(t, N) and u(t, N) for w € [0,wn].
The ratio between @4, (w) and @,,(w) is used to estimate the Bode plots.

— It is essential to smoothen the periodograms to obtain a good estimate of the
signal spectrum. Averaging of segmented signals and data windowing are two
principal smoothing techniques. A combination of these two methods is known
as Welch’s smoothing which usually leads to better estimation of the spectrum.

.- Statistical methods such as x2 and Fisher’s F distibution are used to derive con-
fidence bounds for the estimated spectrum. The confidence bounds are tighter if
more data segments are considered and it also depends on the choice of windows.

— &%, (w} gives a measure of the reliability and quality of the estimated Bode plots.
F:fm (w) varies between 1 and 0, signifying infinite SNR (i.e. very reliable esti-
mates) to SNR=0 i.e. unreliable spectral estimates.

— For a noise free plant, low frequency inputs such as square wave signals give no
spectral variance whereas white noise excitation always give variance. However,

for noise corrupted output low frequency signals give biased spectral estimates
at the higher frequency end.

— The spectral estimation techniques discussed above are also extended to estimate
the MPM.
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Notation

Roman Characters

a Coefficients of AR model

Coefficients of MA model

Time and frequency domain error (or model-plaut mismatch) signal
Expectation operator

Fisher distribution value, Fisher’s distribution

Transfer function

Impulse Response coefficients (e.g. h; is k* impulse response coefficient)
Complex number /—~1

Number of frequency domain points or length of a data window
Number of data points for a time series data

Normal distribution

Probablity

Forward shift operator (i.e.z(¢*) = z(t + k)

Backward shift operator (i.e.x(qg %) = z(t — k) )

Order of AR miodel

Laplace domain e.g. G(s)

Sampling time instant

Time period of a signal

Sampling timne

[y}

e
m I

—

<

Time and frequency domain input signal
Window function

DFT operator (W = e~7AvT)

Time and frequency domain plant output signal
Discrete domain e.g. G(z)

g‘:ﬁqﬂ-mﬂn‘»a ﬁ‘azg%-:-c)

g
<

N

White noise in frequency domain
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Greek Characters

Confidence limit

Covariance function

Auto covariance function of z(t, N) at lag k

Cross covariance function between y(t, N) and u(t + k, N)
Unit impulse e.g. 6(n) = 1 implies at time n only, elsewhere 0
Coherence

Population mean (i.e. p = E(z(t,N)))

Degree of freedom

White noise sequence

Correlation at lag k

Auto correlation of (¢, N) at lag k

Cross correlation between y(t,N) and u(t + k, N)
Standard Deviation (or o2 is the variance)

Time and frequency domain process noise signal (unmeasurable)
Partial autocorrelation function at lag &

Power st~ectrum or simply spectrum

Auto spectrum of z(¢,N) at frequency w

Cross spectrum between u(t,N) and y(¢, N)

Phase spectrum for transfer function

Phase spectrum for cross spectrum

Chi square distribution

Frequency (w = 27 /T5s)

Nyquist Frequency (wy = w/2)
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Superscripts, subscripts and symbols

Continuous time signal (e.g. z.(2))

[

H Complex conjugate (e.g. XH)

i Imaginary component (e.g. X;)
L Lower bound (e.g. XL)

r Real component (e.g. X;)

U

Upper bound (e.g. XV)

Sample mean or a smoothened value (e.g. )

Estimated value or a property based on finite data record (e.g. X)
* True value of a signal (e.g. z*(t))

* Convolution

Difference between true and its estimated value (e.g. Z(t))

llell Norm (e.g. [|XI])

|e] Magnitude (e.g. |X]})

L Angle (e.g. /LX)

Abbreviations

acf Autocorrelation function
AR Autoregressive

ccf Cross correlation function
DFT  Discrete Fourier transform
FFT  Fast Fourier transform
FT Fourier transform

LHS  Left hand side

MA Moving average

MPM Model-plart -~ismatch

pacf  Partial « -+ “lation function
pdf Probabilit, uiscribution function
RHS Right hand side

Var Variance
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Chapter 3

System Identification - Case
Studies

Different system identification methods are reviewed and their application is illustrated via two
industrial case studies.

3.1 Introduction

System identification (ID) is the subject of mathematically describing the dynamic behavior
of a system based on experimental data [1]. Hence for system ID there is need for: (a)
experimental data, (b) an appropriate mathematical model structure and (c) a method by
which such a model can be estimated. The choice of these prerequisites for system 1D has
a significant effect on the final outcome i.e. the identified model and is largely influenced
by the intended application.

System ID is used in several engineering applications and is also applied in areas such
as biology, environmental science and econometrics [1). Some engineering applications of
system ID include signal processing, fault detection, pattern recognition and process control
[1). The main emphasis of this chapter and also in this thesis is to use system ID in such a
way that the resultant model can be readily used in the design and/or implementation of
process control.

The dynamics of a physical system (also referred as a plant or process) can be ;zid-
elled in several ways ranging from simple empirical to detailed mechanistic models. Famil-
iarity with the process and its physical laws are imperative in building ab initio mechanistic
models which are usually a combination of algebraic and integro-differential /partial differ-

1A version of this chapter has been published as: P.Banerjee, S.L.Shah, 5.Niu and D.G.Fisher, ‘ldentifi-
cation of dynamic models for the Shell benchmark problem’, Journal of Process Control, val 5, No. 2, pp.
85-97, 1995.
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ential equations. Many times such mechanistic models can successfully describe the system
behavior however: (a) such models are generally complex and tedious to develop, (b) on
most oceasions it is difficult to design process controllers that are based on such detailed
mechanistic models and (c) frequently the real plant behavior (particularly for a chemical
process) is too complicated to be emulated even by such mechanistic models.

Therefore empirical or semi-empirical models are more popular in system ID. Em-
pirical models are developed without any a priori knowledge of the physical system and
hence such models are also called black-box models. Similarly models that are based on
some minimal a priori information about the plant are called semi-empirical or grey-bozx
models. The advantages of empirical or semi-empirical models are: (a) they are simple; (b)
often detailed insight about the plant is not required; (c) design of experiments to estimate
such models is simple; and (d) it is relatively easy to design controllers that are based on
such empirical/semi-empirical models. Black/grey-box models are often sufficient for many
applicatious such as in process control; where it is required that the models adequately
describe the important and dominant dynamics of the process only around the current op-
erating point. Models of lower complexity are also desirable for process control because
they yield simuple controller designs. Therefore system identification generally focuses on
estimating simple parsimonious models that adequately describe the dominant dynamics of
the plant. The emphasis of this chapter is therefore on identifying black/grey-box models
that can eventually be used for controller design. In Chapters 5 and 6 it is shown how
estimated black/grey-box models can be used for the design of robust model predictive
controllers.

Different empirical/semi-empirical models used to represent the plant dynamics are
well known in the literature [1, 2, 3, 4]. A partial list of such models that are relevant
to this thesis are summarized in Section 3.2. The characteristics of these models and
their estimation methods are described in Sections 3.3 to 3.7. In particular, Section 3.3
summarizes estimation of frequency response models. Estimation of step and finite impulse
response (FIR) models is described in Section 3.4. Approximation of model dynamics using
different types of input-output (I/0) transfer function models such as ARX models and their
estimation procedures are discussed in Section 3.5. Section 3.6 briefly outlines estimation of
orthonormal models. A more detailed discussion on the estimation of orthonormal models
is presented in Chapter 4. State space models are briefly mentioned in Section 3.7.

The confidence of the estimated parameters is usually defined by statistical bounds
and this is discussed in Section 3.8. The quality of the estimated model is ascertained using
time and frequency domain model validation methods which are summarized in Section 3.9.

System ID is a well established field with a significant amount of published results
{1, 2, 5. System ID methods are regularly used by many process industries and consul-
tancy/engineering firms? for their controller design. Yet, not many published results are

3Companies such as Setpoint, DMC, Gensym, Honeywell-Profimatics etc. extensively use system ID
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available that iYlustrate the use of system ID methods in a systematic manuner via real in-
dustrial applications. Therefore a major portion of this chapter is dedicited to systematic
application of system 1D methods. They are illustrated by applying them to two industrial
case studies.

The plant for the system ID case study in Section 3.10 is in the form of a computer
program that very closely emulates the behavior of an industrial distillation columun. This
problem is also referred as the Shell benchmark probiem because Shell Canada® was pri-
marily instrumental in formulating this identification exercise. In order to evaluate different
system ID methods, the Systems and Control Division of Canadian Society for Chemical
Enginering made this Shell benchmark problem for identification available to groups? across
Canada. The outcome of this identification exercise was suinmarized at the 1992 Canadian
Chemical Engineering Conference (CSChE-92), Toronto, Canada [6]. The Shell problem is
included in this thesis because: (a) University of Alberta (U of A) was one of the partici-
pants; the author’s contribution was significant [7}; and (b) it serves as an excellent examnple
to illustrate the application of system ID techniques outlined in this chapter.

The second case study presented in Section 3.11 deals with identifying wodels from
batches of industrial plant 1/O data. The process in this case is a catalytic reactor in a
fertilizer plant that converts N Hj to NO; for Urea production.

Identification of both these indvstrial case studies is the main contribution of this
chapter because these case studies serve as excellent examples on how to use system 1D

methods in a systematic way. The identification case studies are followed by concluding
remarks in Section 3.12.

3.2 Modelling linear systems

The dynamic model is estimated as indicated by the block diagram in Figure 2.1. The
blocks G(z) and G(z) in that figure derote the discrete linear time invariant plant and its
gnodel respectively. This system is mathermatically described as:

y(&) = G(g )u(t) +u(t)
B
vy (t)
g(t) = G(g ')ul(t) (3.1)

Remark-2.1 in Chapter 2 also applies here but in addition the following is to be noted:

methods for controller design.

3The Shell benchmark problem was made avajlable by Dr. Barry Cott of ‘Process Control Group’, Shell
Canada Products Limited, Sarnia, Ontario, Canada [6].

4(a) Participating Universities: U of Alberta, U of Toronto and U of Western Ontario. (b) Participating
Companies: Shell Canada, Sarnia and Sunoco Incorporated, Sarnia.
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Note 3.1 Although the operator g~ is used for time domain manipulations, for simplicity
reasons g is used as an argument for the polynomials instead of g~ 1. As en illustration, the
polynomial B(q™') = big™ ! + byg 2 +--- + busg~™ would be denoted by B(g) = big™! +
baqg2 + --- + bppq™™ or G(g™ ') in equation-(3.1) by G(q).

The plant G(q) can be modelled in several ways and further, these models can have
several classifications. It is also possible in most cases to convert one form of model to
another, but the choice of these models largely depends on: (a) the intended application
(e.g. controller design); (b) parsimony in parameters; and (c) method used to estimate or
identify these models. The model $(q) addressed in this thesis can be classified as:

e Parametric or non-parametric model.

e Structured or unstructured model.

e Equation error (EE) or output error (OE) model.
e Input-output (1/O) or state space (SS) model.

e Black box or grey box model.

Dynamic models referred in this thesis fall in more than one of the above mentioned classes
and they can be represented as:

e Frequency response models.

e Step response and finite impulse response (FIR) models.
e Transfer function models.

e Orthonormal function models.

e State space models.

A brief description of the models, their estimation and validation methods, parameter con-
fidence bounds and their use in modelling industrial systems are presented in the ensuing
sections.

3.3 TFrequency response models

Frequency response models are popularly known as Bode and Nyquist “models” and need
no introduction. Frequency response models are unstructured and non-parametric as they
have no formal mathematical structure; instead they are represented by a set of frequency
dependent complex numbers or equivalently by a set of magnitudes and phases.
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Frequency response models are used to analyze the stability of closed loop control
systems. In Chapters 5 and 6 it is shown how frequency response models are used to

design robust controllers. Frequency response models are also used to validate mathematical
models as described later in this chapter.

3.3.1 Estimation of frequency response models

There are three ways of estimating the frequency response of a plant and they are:

e Ezperimental [8]: The open loop plant is subjected to a sinusoidal test signal of a given
frequency and the magnitude and phase of the output sinusoidal signal are recorded.
This experiment is repeated for different frequencies in the input sinusoidal signal.
Such experiments can give very accurate frequency behavior of the plant, but this
method can be tedious, time consuming, expensive and may not be feasible under

most circumstances (particularly for chemical plants). An extension of this basic
method is pulse testing.

e Signal processing methods: Thses methods were described in Chapter 2.

e Mathematical models: Mathematical models described in the ensuing sections can
generate frequency response data. But the accuracy of this method depends on the
quality of the estimated mathematical model. This technique is chiefly used to validate
the quality of a mathematical model and/or to design robust/stable controllers.

Frequency response models are generically denoted by G(z) as mentioned in Chapter 2.

3.4 Step response and FIR models

A step response model is obtained by providing a step input to the plant whereas a FIR
model is obtained by subjecting a plant to an impulse input or by differencing the step
model coefficients. Mathematically these models are represented as:

Step-response model:

N
G(g) = Y _ siBbu(t — i) (3.2)
i=1
Impulse-response model:
N
G(q) =Y _ fiu(t —1i) (3.3)
i=1

where s; and f; are the it* step and impulse response coefficient respectively and from
equations-(3.2) and (3.3) it is obvious that such models are unstructured, non-parametric,
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input/output and output error type (OE models are explained later in Section 3.5). These
models are also black-boz type because no a priori process information is required to obtain
these mnodels.

Several industrial predictive controllers used in the process industries are based on
FIR/step-response models. Generally a large nurnber of coefficients is required to describe
the dynainics of a process. FIR or step-response models are typically of the order of 20
to 60 or even more, depending on the sampling timne and nature of the process dynamics.
However, these mnodels are particularly good in capturing unusual dynarnics of the process.

3.4.1 Estimation of Step/FIR models

Step/FIR models can be estimated in the following ways:

e Ezperimental: Step response coefficients can be estimated by subjecting the plant to
a step input. Similarly FIR coefficients can be obtained by subjecting the plant to an
ipulse input. But such tests are limited by:

— In presence of noise and disturbances, the step/FIR coefficients are adversely
affected and they do not represent the true (noise free) plant dynamics.

— For high SNR ir: a plant, step tests are feasible, but impulse tests may still be
infeasible because: (a) FIR coefficients are very small (f; = As;) and they usually
get masked by the noise; and (b) it may be difficult and impractical to inject an
impulse input to a plant (especially for chemical plants).

Therefore FIR coefficients are usually derived using: f; = As;. Step/FIR coefficients
can also be obtained using least squares methods, but such a method is limited by:
(a) input step lengths must be long enough to cover the entire plant dynamics; (b)
there can be numerical problems because the number of parameters is large; and (c)
these parameters are very sensitive to plant noise and disturbances.

e From other models: Other forms of mathematical models can be converted to step or
FIR models. Such conversions are usually done to compare quality of the estimated
models.

3.5 Transfer function models

All discrete linear noise-free processes with a zero-order hold (ZOH) can be expressed in the
following transfer function form:

= B(z)
6 =35 (3.4)
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where z = 7T+ for the frequency w = [0, wn] and where wy = 7/T, is the Nyquist? frequency
and T, is the sampling time. In the time domain it is also called an ARX® model and is
given by

y(8) = G(gult) = t'; 1) (3.5)

G(q) in (3.5) is the transfer operator [9] and B(q) = big ' + bag 2 + - + bypq ™ and
A(Q)=1+ayqg ' + azq~ ! + -+ - + anag~ ™. It should be noted that if a ZOH is included in

the model, a unit delay is implicit in G(g) as shown in the above expression for B(g). A
more generalized transfer function model

Ao = R + SEew

~aBl(q) .
t .
Fla )u(f) + v(t) (3.6)
accounts for the disturbances where v(t) = C(g)£(t)/D(q) in the above expression is referred
as the colored noise, process delay is denoted by d and ZOH is implicit in B(q). The
orders 8(-) of different polynomials in equation-(3.6) are: na = §(A(q)), nb = 6(B(q)},

ne = §(C(q)), nd = §(D(q)) and nf = 6(F(q))- All other forms of transfer function models
such as ARX, ARMAX, ARIMAX, BJ etc and even FIR model are subclasses of the modei

represented by equation (3.6)¢ [2]. From equation (3.6) it is obvious that transfer function
models are structured, parametric, 1/0 type and black bor models. Furthermore, the form
given by equation (3.6) is defined as the eguation errvor (EE) model if /delta(A(q)) = 1,
otherwise for A(q) = 1 it is called a Box-Jenkin’s (BJ) model which is also defined as an

output error (OE) model.
2.5.1 Estimation of transfer function models

An ARX model is obtained from equation 3.6 by setting F(g) = C(¢g) = D(q) = 1 and the

parameters 8 = [B(g), A(g) — 1] for such a model can be estimated from a batch of I/O data
z(N) = [u(t),y(t),t = 1... N] by minimizing [1]

N
Vn(®) = % Slut) - F ()6t ~ I (3.7
t=1

where ¢T(t) = [u(t—1),...,u(t—nbd), —yt—1),...,~ylt— na)]. The solution of equation-
(3.7) is given by the Gauss-Markov least-squares (LS) solution as:

SARX stands for Auto regressive model with eXogenous input.
SWhere: AR=Auto Regressive, MA=Moving Average, X=eXogenous, BJ=Box Jenkins, I=Integrated
7LS method can be traced back to Gauss in 1809. Markov’s contribution came much later [1, 10].
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N -1 rnN
i = [z -1N¢(t)¢<t)"] [Z ¢(t)y(t)] (38)
t-1 - t=1

The above method is called the batch LS (BLS) method because a batch of data are used to
obtain parameter estimates. There are also recursive methods of parameter estiinates used
in adaptive-control but this thesis is restricted to the use of batch identification techniques.
It is also pessible to simultancously estimate the parameters (in equation (3.8)) and loss
functions (in equation (3.7)) for different orders of ARX models using the Augmented
UD Identification AUDI) method [11]. The use of the AUDI method is illustrated by
applying it to industrial case studies in Sections 3.10 and 3.11. For colored noise i.e.
v(t) = C(q)/D(q)é(t) = H(q)&(t) the LS solution can be obtained by filtering z(IN) by
H~'(q). Since H(g) is nnknown, H(g) is used to approximate H(g). The filter H~(q) can
either be obtained by trial and error or if it can be somehow approximated. The choice of

the filter becomes relatively simple if either C(g) =1 or D(q) = 1.
A more general prediction error method (PEM) can be applied to z(N) to estimate

the parameters of equation-(3.6) [1, 2, 5. PEM employs standard optimization methods to
minimize

\% m)—lil 2(t,0) 3.9
N\ _Nt=12€ 9 (')

to obtain its solution in an efficient manner. In equation-(3.9), e(¢,0) = y(t) — T (1)8(t —1)
is the prediction error. Newtonian algorithms such as:

8(t +1) = 6(t) — [V (6(N] VA (B(ENIT (3.10)

can be used to update 8 where

e = A - —},Ex(t 6)e(t,)
" C{ZVN(O)
VN(e(t) = —m—
N dg? 9=0(t)
= = Z)\(t 2T (t) — 5 Z d’\(t o)e(t 8)le=a(t) (3.11)

and where AT (¢,6) = —de(t 6)/do = d(§j(t|8))/da8 at 6 = 6(t) and §(t|6) = T (t)0(t — 1).
Close to the solution 8o, 7 Yy, d—'%%’-g)-e(t, 6) =~ 0 in equation-(3.11) as £(t,6) = eo(t) is
constant. Therefore the Hessian of Vy(t) can simply be approximated by:

N
VAO) = 5 3 AEON Blo=ate (3.12)
t=1
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which avoids the computation of dA(t, 8)/dt. A combination of equations-(3.10) to (3.12) is
also known as the Gauss-Newton method which gives a positive definite Hessian thus guar-
anteeing convergence to a minima. The approximation-(3.12) does not atfect the search
procedure significantly because the effect of Hessian is not important when: (a) the solu-
tion is far from tg; and (b) Va(6(t) — 6} cannot be well approximated by a quadratic
function [2]. If equation-(3.12) approaches singularity, then a regularization technique such
as Levenberg-Marquardt method can be used i.e. dI is added to the RHS of equation-
(3.12) where & is small positive scalar and I is the identity matrix [2]. Gradients A(t,0) in
equation-(3.11) for equation-(3.6) are shown to be (1, 2, 5]:

2%%1:’;) = —%—Z—gy(t‘k)
iyéﬁﬂ)_ _ 5?%(71(15)@31‘“_}6)
a%(z_ie_) _ th),e(t._k,o)
3—’;,‘5,%’1 = "G}(Lq)v(t“k’g)

(3.13)
where w(t,8) = BlaJu(t)/Fla), v(t,0) = Al@kid - <46 £(,8) = y(t) — #(tl6) =
D(q)v(t, 8)/C(g) and y(t) = [(C(q) — Alg)D(9))/C{sw’t) + D(g)B(g)u(t)/C(q)F(q) +
&(t). Therefore a regressor corresponding to 6T = [A(q) — 1, B(q), F(q) — 1, C{q) — 1,
D(q)—1] for equation-(3.6) becomes ¢7 (t) = [—y(t—1),..., —y(t—na), u(t—1),...,u{t—mn),
—~w(t—1,0),-..,—w(t —ny,6), e(t—1,0),...,e(t —n.,0), —v(t —1,0),...,—v(t — na, 0T.

In order to avoid local minimas in the Gauss-Newton approach, an effort is made
to obtain good initial values®. It is however shown that there are no local minimas for: (a)
ARMA models; (b) BJ models with ny = 1, and (c) OE models (A(q) = C(g) = D(q) = 1)
if u € M(u,02); and for ARMAX models local minimas are rare [2, 1]. Model validation
techniques outlined in Section 3.9 are used to check if the solution has reached a local

minima. The PEM method is also used (in fact essential) in closed loop identification, as
will be seen in Chapter 5.

3.6 Orthonormal function models

A linear stable transfer function G(z) can be expressed as a weighted sum of the orthonormnal
functions [4, 12}:

8Good initial values can be generated by first approximating an ARX model followed by approximating
a noise model.
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G(z) = Y gx'i(2) (3.14)
k=1

where the coefficients gz, (k = 1,2,3,...) are called the weights or gains of the orthonor-
mal functions ¥.(z). The scope of the above equation-(3.14) is defined using a number of
mathematical premises that are based on functional analysis [13, 14, 15]). The following
paragraph highlights some of these mathematical presumptions for the orthonormal func-
tions; however they are pursued with a greater depth in Chapter 4 (orthonormal function
models are the main topic of discussion in Chapter 4).

The function ¥k (z) in equation (3.14) is defined as the orthonormal basis function
and this function is said to be orthonormal if < ¥;(z), ¥;(z) >= d;; where < - > is the
inner product and &;; is the Kronecker delta function (i.e. 8;; =1 if i = j otherwise é;; = 0
for i # j). The basis function in ¥,(z) in equation (3.14) is chosen such that it reflects the
unit delay that is implicit in the discrete transfer function G(z). If the basis signal ¥ (t) for

the orthonormal block ¥i(z) be given by: ¥(t) = ¥i(q)u(t), then the true plant output
can be expressed as:

vt = S getn(®) = 3 ok Te(gult) (3.15)
k=1 k=1

In practice only a finite number of orthonormal functions are required to approximately

represent the process dynamiécs. Therefore the model output for an N th order orthonormal
series is given by: T

N
() =Y gri(t) (3.16)

k=1

There are several types of orthonormal functions such as Laguerre, Kautz, Markov
(or FIR), Markov-Laguerre functions etc. used to describe the process dynamics. These
functions are discussed in greater details in Chapter 4. Only the Markov-Laguerre model is
mentioned in this chapter because this model is used for system identification case studies
in the subsequent sections.

A Markov-Laguerre model is obtained by combining the Markov and Laguerre func-
tions. Markov functions are used to capture the fast, delayed or inverse response behavior
of the plant just like an FIR model whereas the Laguerre functions are used to capture the
low frequency dynamics of the plant. For overdamped systems an approximate knowledge
of the location of the real pole a, (| a |< 1) in a plant is required to obtain Laguerre function
model, therefore orthonormal models such as the Laguerre function are called a grey-boz
models. The real pole a in the Laguerre series represents the dominant time constant of

the process. The discrete Laguerre functions for a real pole in the z-domain are defined as
(4, 16]:

‘I’k(z) = Lk(z) = (3.17)

a zZ—a

vi—a? [1—- a.z)""1
z—
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The above Laguerre filter pertains to discrete models where a unit delay due to the ZOH
is implicit in the model. Similarly the basis function for a Markov function is Wx(z) = 7k
or ¥x(q) = ¢~*. Markov and Laguerre functions are combined as

d N
G(z) = Z hig tu(t) + Zg,-\l',-(q)u(t —d) (3.18)
=1

i=1

to obtain Markov-Laguerre models where d is the number of Markov coeflicients, NV is
the number of Laguerre functions, h; is the i Markov coefficient, g; is the i Laguerre
coefficient and ¥;(q) corresponds to the i"* Laguerre function as shown in equation-(3.17).

3.6.1 Estimation of Markov-Laguerre models

A batch of I/O data can be used to estimate the Markov-Laguerre parameters by using the

BLS method shown by equation-(3.8). For a specified number of Markov (d) and Laguerre
(N) coefficients, the data vector

()T = [u(t —1),...,u(t ~d), it —d),..., In(t — )] (3.19)

is used to estimate the parameters 8 = [h1,-.., R4, 91,--.,9gn] (using BLS) where I (t —d) =
Li(q)u(t — d) and Lg(g) is the same as ¥x(q) as shown in equation (3.17).

3.7 State space models

The knowledge of different dynamic modes of a system that are internal to the process are
used to develop a state space (SS) model. Usually a state space model gives a more detailed
picture of the process dynamics than the I/O models. But it is often tedious and difficult
to develop SS models especially for chemical plants, hence the emphasis of this thesis is on
utilizing I/O models for identification and control.

The design of controllers is usually simplified when SS models are used instead
of some other form of model such as the orthonormal models. Therefore models such as
orthonormal models are converted to SS form prior to the controller design. Infact all the
models described in Sections 3.4 to 3.6 can be converted into the SS form. It should be noted
that the SS models obtained using model-transformation most often do not correspond to
physical states of the process. Therefore such translated SS models are also described as
pseudo-SS models and they are used because of mathematical convenience.

The conversion of orthonormal models to SS form is described in Chapter 6. Further
discussion on SS models is limited because they are not used in this chapter.

3.8 Confidence bounds

Confidence- bounds for the estimated parameters obtained using BLS are based on the
assumption: 6 — 6p € N(0, Pn) where Py is the covariance matrix given by:
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N -1
Py = d?[@Ron] ! = o* [Z ¢(t)¢""(t)] (3.20)
t=1

where 6y is the true paraecter vector and 02 = Vn(8p) is true variance of the noise which
is unknown. The relation between o and &2 is given by [2]:

. N -

& = N Vi (6) (3.21)

— W

where the degree of freedom (dof) @ is the dimension of §. &% is given by the following x?
distribution [2]:

6'2
(N — @)= € X}-a(@) (3.22)

where o is the confidence level discussed earlier in Chapter 2. The normality assumption
in A9 = @ — 6, translates into the following x? distribution [2]:

w + AT PIAG € X% (a) (3.23)

Since o2 (which is unknown) is implicit in Py in equation (3.23), a better estimate of the
confidence bound is obtained by substituting equation (3.21) in equation (3.23) and dividing
it by 62 (from equation (3.22)) to produce [2]

AT [@T dN]A
v 52
where Fo N—o(a) is as discussed in Chapter 2. Therefore the confidence limit for the ith
parameter becomes:

€ Fuo N—w(a) (3.24)

Ab; < \/62[@T @n];! Fo—m(@) (3.25)

where (@%@ n];! is the i*h diagonal element of [®],®&n]~!. Equation-(3.24) describes a
constant probability density contour which is surface of a hyperellipsoid centered at 6o in
parameter space [10] whose length of semi azes l; are:

N (3.26)

and their directions are given by e; where ); and e; are the it* eigenvalue and eigenvector of

[@E@ ~] [2, 10]. In general the axes of confidence hyperellipsoids are given by +l;\/€; and
its volume ¢ is shown to be [10]:

- \/62Fw.n_w(a)
;=

9 = re\/62[@T @ N Far N— () (3.27)

where Ko = 27%/2/(w/2) and I'(-) is the Gamma function. If 6 corresponds to the FIR
parameters, then confidence limit for the estimated model spectrum becomes: [17]:
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AT HT @  enIH| 1AO

= < Fon- (o) (3.28)
where
= Hyeqt _ costT) cos‘(&'uT) (:t)s‘QwT) (3.29)
Himag —sin(wT) —sin2wT) ... -—-sin(wwT)

is the basis matrix that converts FIR parameters to frequency domain and © = I To. From

equation-(3.28), axes for the confidence ellipsoid at each frequency can then be shown to
be:

AO; = \/62Fp (o) Na( HT[@F n] 111 (3.30)

3.9 Steps in model identification and validation

Usually the following steps are involved in thc identification and validation of a S150 linear
model from cpen loop I/0 data of the plant |1, 2, 18, 18]

1. Ezperiment design: The first logical step in system 1D is to collect a set of process 1/0
data iy providing excitation to the plant. This excitation signal can b cither stochas-
tic or deterministic. As mentioned in Chapter 2, the stochastic signals such as the
white noise or RBS are characterized by a certain probability distribution whereas the
deterministic signals depend a lot on the design parameters.Irrespective of the nature
of inputs, they should: (a) have sufficient magnitude such that the SNR of the output
signal is rich enough and yet it does not violate the process operating conditions; and
(b) persist for sufficient duration to meet the identification requirements.

The advantage of deterministic input is that its spectrum can be shaped according
to the ID needs. Some of the parameters that are useful for designing an input
are: a priori knowledge of the plant dominant time constant, sampliug time, settling
time, cross over frequency, desired closed loop specifications such as the closed loop

bandwidth, disturbance dynamics, etc. The use of these variables to design an input
are illustrated by the following examples:

e The Schroeder-phased signals [20] are dependend on the choice of a rumber of
the above stated variables. Such signals are a combination ef the sinusoids and
therefore: (a) they can be used to obtain a spectrum of the input as desired; and

(b) such a spectrum can be determined without using classical signal piocessing
methods®. .

9This type of input has not been used in this thesis.
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e For control applications, a good estimate of the model around the cross over
frequency is important. Therefore a good estimate of the model around the
cross over frequency can be ensured by designing an input signal that is rich
around these frequencies.

e Sometimes it is desired to obtain a good estimate of the model around the lower
frequencies as well. For such cases ‘stretched’ RBS signals can be used, where
the stretch factor is dependent on the dominant time constant of the process.

If pussible, steady state data should also be collected to assess the structure of noise
in the plant. Usually two sets of experiments are performed, where one set is used for
ID and the other set is used for model validation.

Data processing and preliminary datae analysis: The experimental or given data set
should then be zero centered and any outliers should be eliminated. If the knowledge
of the approximate structure of the noise is available then it can be used to linearize
the data or else the data are linearized and if possible made stationary by suitable

prefiltering. Results of Chapter 2 are then used for the following preliminary analysis
of the processed data:

e Delay: Cross-correlation and visual methods are used to assess process delay and
the direction of gain. Large data samples i.e. 1024 or more points 52 required
for good assessment using cross-correlation techniques.

e Coherency: Squared coherency tests are performed to check the level of noise
and the extent of correlation between process input and output.

e Process spectrum: Signal processing methods with appropriate smoothing are
used to assess the Bode characteristics of the process.

Choice of model and its identification method: The processed data from the prelim-
inary analysis stage can be further filtered depending on the choice of model type
and structure. If the plant has more measurement noise or if it is suspected that
the noise is directly added to the output rather than to the process, then OE, BJ or
orthonormal function models are expected to identify the plant better. In the case of
process noise or if the noise is suspected to have an EE form, then ARX, ARMAX,
ARIMAX etc. models are expected to identify the plant better. For general model
structures such as BJ, ARIMAX etc models, a PEM method is suggested whereas
for orthonormal models or ARX models BLS identification method is adequate. The
AUDI method can be applied to ARX/ARMAX models to assess process delays, order
and determine parameters for different orders of the model. The Akaike Information
Criteria (AIC) can also be used to confirm the choice of an appropriate model order.
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4. Model validation: The estimated model is validated in the time and frequency domain
and also by using residual analysis as shown below:

e Time domain validation: The quality of the estimated model is visually assessed
by superimposing model output on the plant output, whwi tim set of plant
data used for time domain validation is usually different frois: #¥we & » set used
for identification. Since the model output does not consider noix and other
disturbances, it may not seem to fit well with the plant output when the data
are corrupted by noise and disturbances. However disturbances and noise can be
accounted in the model by fitting one step ahead model prediction on the plant
data. One step ahead prediction is also known as model output with feedback.

e Frequency domain validation: The estimated model is visually evaluated by su-
perimposing its Bode plots or the Bode plots estimated using signal processing
methods from the plant I/O data. The two most obvious points to check are the
steady state gain and phase shift due to an error in the estimated delay.

e Residual analysis: The quality of the model can be assessed by examining the
whiteness of the residual i.e. €(t) = y(t) —7(¢). If the residual €(t) is white, then
the estimated model is said to be of good quality. The residual needs appropriate

filtering in the presence of colored noise. The whiteness of ¢(t) can be tested using
the ACF/PACF plots.

5. Re-identification: If model validation is unsatisfactory, then the whole identification

process is repeated (i.e. Go to step-2) by suitably changing the model delay, order,
structure, type etc as the case may be.

The above steps are illustrated via example case studies in the ensuing two sections.

3.10 Case-I: Shell benchmark problem

This section discusses the application of ID methods outlined in Sections 3.3 to 3.9 to
estimate dynamic models for the Shell benchmark problem introduced in Section 3.1. In
essence this section: (a) stummarizes a revised version of the solution that was proposed by
the U of A group!® [7] and in addition (b) discusses the use of BJ and orthonormal function
models te represent the plant dynamics.

The layout of this section is as follows: (a) subsection 3.10.1 outlines the Shell bench-
mark problem; (b) subsection 3.10.2 gives the overall identification strategy; (c) subsection
3.10.3 describes identification of noise models; (d) preliminary data analysis is described in
subsection 3.10.4; (e) different models used for ID are discussed in subsection 3.10.5; and (f)

10The U of A group was represented by a team of graduate students and staff from the ‘Process Contro}
Group’, Department of Chemical Engineering [7}.
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this is followed by residual analysis and model evaluation in subsections 3.10.6 and 3.10.7
~espectively.

3.10.1 Problem description

The Shell plant is in the form of FORTRAN executable code, that very closely emulates
a real 2 x 2 industrial distillation column. The computer code!! was provided instead of
real industrial data because: (a) it provides fiexibility for designing the plant input; and
(b) with simuiated data different identification methods can be compared as the underlying
model is known to the head evaluator; which is not the case with real data.

Tiie Shell plant data are highly corrupted by noise and unmeasured disturbances.
T.e base level of noise which poses a tough challenge for model identification is designated
as the 100% noise case. The option is also provided to select 20% and 50% of the base level
noise to reduce the difficulty of the identification exercise.

Note 3.2 Based on the “rules” established for this competition, each level of noise was
treated as an independent problem. Results for one level of noise were not used to influence
the outcome of another level of noise.

Note 3.3 The definition of SNR is modified in this case study i.e. each level of noise 20%,
50% and 100% is designated as a different SNR for the sake of simplicity.

Operating conditions

The industrial column has 35 real trays with feed entering at tray 5 (numbered from: %he top
tray) and it is assumed that the feed flow is constant. This column is intended to prevent a
light key component in the feed from contaminating the bottom product (bottoms impurity
is X).

A steam heated siab-in reboiler provides the necessary heat Q to the column and it
is also used to control X. The reboiler heat duty is controlled by manipulating the steam
flow rate and the bottoms level is controlled separately by manipulating tke reboiler flow
rate.

An overhead partial condenser uses plant cooling water to condense the overhead
products and manipulate the overhead pressure P. However, the column throughput
presently exceeds the original design, hence heat removal is a constraint and to partially
account for this the cooling water flows at maximum capacity at all times. An accumulator
separates uncondensed overheads D and the condensed overhead is sent back as a reflux.
The reflux rate is manipulated separately by an accumulator level controller. Process objec-
tives, operating conditions and constraints forthe key manipulated and controlled variables
are summarized in the following table [6]:

11The computer code was in an object form. Therefore the original plant dynamics were not known to
the participants.
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The manipulated variables are @ and D which are used to achieve the above men-
tioned objectives. Furthermore, the specified sampling time for the plant is T, = 5 (min)
and the number of data points must not exceed a limit of 4096 which corresponds to ap-
proximately 14 days of operation. The main objectives for this problem are:

e Identify the process models and discuss the effect of unmeasured disturbances on
model identification.

e Design a PID controller which would tie X with Q and F :ith D.
e Design a multivariable, linear, predictive controller which would decouple X and P.

This chapter discusses only the first objective i.e. model identification.
objectives (i.e. controller design) are reported in [7].

The other two

3.10.2 Overall solution procedure

Based on Section 3.9, the following provides a brief layout of the steps involved in the
identification of the Shell bezichmark problem:

1. Identification of noise model: The noise model is estimated from the steady state
plant data.

9. Plant ezcitation and preliminary data analysis: The plant is excited with D10 and

Q200 to generate sets of I/O data. A preliminary analysis is performed on the 1/O
data to ascertain delays, coherency and cross correlation in the data.

3. Model identification: Knowledge of the noise model is used to pre-filter the data in
order to improve the identification of the plant dynamic models.

4. Model validation: Estimated models are validated in the time/frequency domain and
also by performing residual tests.

5. Re-identification: Go to step 3 and suitably change the modei order, delay, filter or
any other relevant parameters to confirm that they are optimal. Usually experiments
are not repeated during the model re-identification stage.

The noise pattern actuated by the plant program code is controlled by a ‘seed’ that
generates a particular sequence of random numbers. This ‘seed’ in turn is dependent on the
clock time of the computer that triggers different noise sequences each time the program
is run and thus allowing it to emulate 2n iadustrial scenario. Therefore for each set of
identification experiment the noise sequeunce in the plant data are different. However to
compare the effect of SNR on the identified models, the same random ‘seed’ is used for
different SNRs for a particular identification experiment.
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Noise in P for different SNRs
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Figure 3.1: Noise in P and its ACFs for different SNRs. Top: Time series data. Bottom:
ACF.
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Noise in X for different SNRs
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ACF.

90



3.10.3 Identification of noise models

In order to estimate the noise structure, a record of P and X are obtained with the ma-
nipulated variables D and Q constant at their nominal operating points. It is possible to
perform this experiment because there are no restrictions on the input design. The results
of this open loop steady state experiment are shown in Figures 3.1 and 3.2 for all levels of
noise. These figures also show autocorrelation functions (ACFs) of P and X sequences for
different SNRs. The ACF plots in Figures 3.1 and 3.2 reveal that:

e There is significant auto-correlation in P and X, thus indicating that the noise may
have an AR structure.

e The auto- correlation in P is the same irrespective of the SNR.

e The auto-correlation in X is different for different SNRs. However in view of Note-3.2,
this information was not exploited to ascertain the nature of noise in X.

The AR noise in P and X are confirmed by their partial autocorrelation functions
(PACFs) which indeed reveals an AR(2) structure (i.e. there are two poles, but this figure
is not included). Furthermore, the strong correlations in the ACF of P and X at higher lags
indicate that one of the poles might be located near the unit circle. If the dominant pole for
the AR(2) noise is assumed to be at 1 (i.e. integrated noise = 1/A), then first differencing
(i.e. A =1-— g 1) of the data should linearize this data and make it stationary.

The need for first differencing of the data are confirmed by the ACF and PACF
plots of AP and AX in Figure 3.3 which shows that the noise structure is indeed integrated
AR(1). If the noise in P and X is denoted by v and v; respectively then from Figure 3.3
it can be determined that:

(3)- (54 )~ (4)

where d; = 0.5745 and values of dz are 0.7535, 0.6296, and 0.5896 for SNRs 20%, 50% and

100% respectively. D; and D in equation-(3.31) are the noise polynomials and £ (t) is the
white noise.

3.10.4 Plant dynamic data and preliminary analysis

Since the plant is 2 x 2, (i.e. two outputs (P and X) and two inputs (D and Q)) and the
noise is defined by equation-(3.31), the plant niodel has the following OE form:

P(g) \ _ ( Gule) Gu(9) D(q) nit)
( X(q) ) - ( Ga(g) Gz(q) ( X(q) ) + ( wlt) ) (3.32)
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Figure 3.3: ACFs and PACFs of differenced noise data for different SNRs. Top-Left and
Right: ACF of AP and AX. Bottom Left and Right: PACF of AP and AX.
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Input Output Data Set #1
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Figure 3.4: Plant responses for different SNRs when subjected to excitation in D.
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Figure 3.5: Plant responses for different SNRs when subjected to excitation in Q.
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where for an ARX structure Gij(g) = Bij(q)/Fij(gq) and for orthonormal models it is
Gij(9) = Tr¥ gijkPiik(g)-

The models in equation-(3.32)'2 are estimated by subjecting the plant to stretched
RBS excitation in such a way that: (a) they do not violate the plant operating condi-
tions/constraints; and (b) the excitation is rich enough to excite all frequency modes of the
plant. The advantage of flexibility in the input design and the sampling duration was used
to provide two SISO excitation signals to the plant, each lasting 1024 sampling periods (i.e.
3% days). Figure 3.4 shows the plant response with different SNRs when subjected to the
RBS excitation in D holding Q constant. Similarly Figure 3.5 shows the plant response
with different SNRs by providing RBS excitation in Q and keeping D constant. (Note: It
is interesting to note that X goes below zero for 100% noise case as shown in Figure 3.4.
In practice such a situation will of course never be encountered.)

A preliminary estimate of the coherency between the I/O data!? is obtained from
the squared coherency spectrum as shown for different channels in Figure 3.6. The plots of
squared coherency spectrum in Figure 3.6 show that:

e The overall squared coherency for 20% noise is high for all the channels except for
X/ D, thus indicating good model identifiability for all these channels except for X/D.

e The squared cohereacy for 50% noise is very close to the 20% case for P/D and P/Q,
hence for these channels the estimated models are expected to be close for both 20%
and 50% noise cases.

e The squared coherency is significantly lower for the 100% noise case and therefore
difficulties would be expected in the model identification.

The cross correlation function (CCF) analysis of the process data in Figure 3.7 for different
levels of noise shows that:

e There are no delays (and not even a ZOH!) for channels P/D and P/Q.
e The channel X/Q has a delay of 7 sampling intervals i.e. 6 delays and 1 due to ZOH.

e There is no cross correlation in the channel X/D.

From the preliminary analysis based on the data in Figures 3.6 and 3.7 it can be
said, with a 95% certainty, that there are no dynamics in the channel X/D i.e. G21(q) =0,
therefore no further attempt is made to identify dynamics for this channel.

121t was later revealed that the channel X/Q was nonlinear, however around an operating point it behaved
linearly. Hence the assumpuion of a linear model for this channel worked well.
13Note that the original data are detrended or mear centered before identification.
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Squared coherency plots for different channels and SNRs
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Figure 3.6: Squared coherency functions for different channels and different SNRs. Top-
Left: Channel P/D. Top-Right: Channel X/D. Bottom-Left: Channel P/Q. Bottom-Right:
Channel X/Q.
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Cross-correlation functions for different channels at different SNRs
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3.10.5 Model estimation

For this case study, the following models and estimation procedures are considered:
¢ ARX <= BLS/AUDI
e BJ <= PEM

e Markov-Laguerre <=> BLS

Based on the model structure given by equation-(3.32), the transfer function for
each channel can be represented by the following BJ model:

u(®) = Fult) + gt (3:33)

ARX Model

The ARX model is estimated by first transforming the OE structure in equation-(3.33) into
the EE form

Flgu(®) = Blault) + 2 pst(®) (3:39)
and filtering it by A/D(q) as
Ay(t) Au(t) F(q)
F =B = = 3.3
DB D(q) (@ D(q) N D(Q)D(Q)g(t) (3.35)

where D(q) is chosen such that F(q) = D(q)D(q) to make the noise term white. The data
vector consisting of the filtered 1/0 data i.e. uf(t) = Au(t) /D(q) and ¥/ (t) = Ay(t) /D(q)
is then used to estimate the ARX parameters using the BLS/AUDI method. The use of
AUDI method in Banerjee et. al. [7] reveals that a first order model is adequate to describe

the process dynamics. The estimated ARX models for different SNRs sumunarized in Tables
3.2 to 3.4 indicate the following for each channel:

e Channel P/D: With a decrease in SNR: (a) the estimated ARX parameters become
more biased and (b) the steady state gain is increasingly overestimated i.e. the true

gain is —4.49 whereas for 20%, 50% and 100% noise levels the respective estimated
gains are —4.85, —5.8 and —7.38.

e Channel P/Q: Different levels of noise influence the estimated parameters and gains
in the same way as for P/D. The true gain for this case is 0.31 whereas for 20%, 50%
and 100% noise levels the estimated gains are 0.309, 0.357 and 0.46 respectively.
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e Channel X/Q: With the decrease in SNRs there is no significant change in the esti-
mated parameters however the estimated gains are overestimated i.e. the true gain
is —0.499 whereas for 20%, 50% and 100% noise levels, the estimated gains are —0.53,
—0.55 and —0.61 respectively.

It may be noted that no ZOH was considered in the models corresponding to the
P/D and P/Q channels. The lack of ZOH in these channels was independently confirmed
from their phase spectrum plots obtained using signal processing methods (shown later in
Figures 3.8 and 3.9), and the cross-correlation tests (in Figure 3.7).

BJ Model

The PEM method was used to estimate the parameters of the BJ model by setting A(g) =
C{(q) = 1 in equation-(3.6) and filtering equation-(3.33) by A so that:

_ B(g) £®)
Ay(t) = F(q_)Au(t) + D(a) (3.36)

BJ models estimated for different SNRs are summarized in Tables 3.2 to 3.4 and for
each channel they indicate the following trend was exhibited:

e Channel P/D: The estimated parameters are fairly consistent with the change in noise
levels, however the gains are slightly underestimated in this case i.e. the estimated
gains for 20%, 50% and 100% noise levels are —4.59, —4.49 and —4.36 respectively
(true gain = -4.49).

¢ Channel P/Q: The estimated parameters are marginally affected by the change in
noise levels and here also the gains are underestimated for 20%, 50% and 100% noise
levels the estimated gains are 0.299, 0.282 and 0.255 respectively (true gain = 0.31).

e Channel X/Q: The estimated parameters are fairly consistent and the SNRs
marginally affect them. However the gains are overestimated i.e. for 20%, 50%
and 100% noise levels, the estimated gains are —0.52, —0.54 and —0.59 respectively
(true gain = -0.499).

Markov-Laguerre Model

The OE structure in equation-(3.33) is retained to estimate the Markov-Laguerre model. In

order to minimize the effect of noise in the parameter estimation, equation-(3.33) is filtered
by AD(q) as:

D@ = 2D (aD(@ut) + FE® (337)
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No Markov parameters are considered for channels P/D and P/Q because there
are no delays in these channels, whereas for the channel X/Q, 6 Markov parameters are
considered to accomadate the process delay. The ZOH is not inherent in the Laguerre
functions for channels P/ D and P/Q because these channels react instantaneously to process
excitation as analyzed in Section 3.10.4.

The estimated parameters g; of Markov-Laguerre models shown in Tables 3.2 to 3.4
indicate that they are quite immune to the changes in the SNRs. The Laguerre poles in
all these cases are approximately equal to the average of poles estimated using the ARX
and BJ models. The steady state gains of the Markov-Laguerre models are compared by
plotting step responses as shown later in subsection 3.10.8.
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Validation of different models for P/D in frequency domain
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Figure 3.8: Frequency domain model validation for channel P /D. Top-Left: Magnitude spec-
trum for 20% noise. Top-Right: Phase spectrum for 20% noise. Bottom-Left: Magnitude
spectrum for 100% noise. Bottom-Right: Phase spectrum for 100% noise.

3.10.6 Model validation

The estimated models shewn in Ta! ‘es 3.2 to 3.4 are visually validated in the frequency and
time domains in this subsection. For the sake of brevity all figures related to the validation
studies show only the 20% and 100% noise cases. The results for the 50% noise case fall
between the 20% and 100% noise levels and they are not reported in this chapter for the
sake of brevity.

Frequency domain model validation

Frequency domain models are validated by visually comparing the Bode plots of the models
with the Bode plots obtained using the signal processing methods as discussed in Chaptec
2. The Bode plots obtained using the signal processing methods are also referred to as the
spectral plots for brevity.
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Validation of difterent models for P/Q in frequency domain
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Figure 3.9: Frequency domain model validation for first order models for channel P/Q.
Top-Left: Magnitude spectrum for 20% noise. Top-Right: Phase spectrum for 20% noise.
Bottom-Left: Magnitude spectrum for 100% noise. Bottom-Right: Phase spectrum for
100% noise.
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Figures 3.8 to 3.10 shows the validation of estimated models using the Bode plots!4.
For the case of 20% noise, both magnitude and phase plots of the models match very well
with the spectral plots for all the channels. For the case of 100% noise the following are
observed:

e The spectral estimnates show significant variance because of the lower coherency even
though more data windows are used for this case.

e Unusual behavior is observed in the phase spectral plot for the channel P/D at the
higher frequencies. This unusual behavior is attributed to the high level of noise in
the data.

e All models seem to fit well in the frequency domain for the channel X/Q. For the
channel P/D and P/Q, the Bode plots for BJ and Markov-Laguerre models almost
seem to be in agreement with each other and to a large extent they also seem to be
following the trends in the spectral plots. However the Bode plots for the ARX models
for the channels P/D and P/Q show significant deviation from the spectral plots as
well as from the Bode plots corresponding to the BJ and Markov-Laguerre models.

Time domain model validation

In time domain the models are visually validated by comparing the estimated output of the
model with the plant output. The estimated output can be of two types i.e. (a) model
output and (b) one step ahead predicted output. Model output §(¢) is given by:

#(t) = G(g)u(?) (3.38)

where G(g) is the estimated plant model and the one step ahead predicted output §(¢+ 1|¢)
is given by:

gt + 1jt) = ¢T ()6 (3.39)

where ¢(t) is the data vector and f is the estimated parameters mentioned in Section 3.5.
For transfer function models it is straightforward to calculate j(¢ + 1|t), however for the
orthonormal function models (i.e. Markov-Laguerre model in this case) a transformation
to the ARX form is required to estimate §(t + 1|t). The expression for the ARX model
obtained from the Markov-Laguerre model is given in Section 6.2 in Chapter 6; has been
used here. Equation-(3.39) can also be used to quantify the quality of the model in terms
of the residual i.e. Vn(8) = & XN, lw(@) — 96 + 1[e)]2.

M1 Figures 3.8 and 3.9, the phase spectrums show unusual behavior because of the lack of ZOH in the
corresponding plant transfer functions.
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Validation of different models for X/Q in frequency domain

100 : T LI v vyl — v T 070d o 500 1] T V3 0ITH LERIRRALLLLS ¥ U ¥ ETISE
-8 - . o ol 20% |
= - . (7]
- e
o 101 3 E o -500¢} *
S - ]
= - ]
L - —-1000} -
10—2 T EETIIT R E AT ] —-1500 1 2 asIpm IR £ .1 tagt
10-3 10-2 101 100 10-3 10-2 10-? 100
Frequency Frequency
100 5—1—1-1-rn1-rr—|—1—rrrrm—1—rrrm§ 500,
X NG i o
g 10—} E @
- 3 E
= : 3 -]
c : 1 8-so00
= - 1 a
(5]
= 102 E
§ § -1000
10—3 L e pagtRane 4 p Egagemar X L ARIUM _1500 AL Aigii S s 1i1aki J.s 2 RS
10-3 102 10-1 100 10-3 10-2 10-1 100
Frequency Frequency

Figure 3.10: Frequency domain model validatior for channel X/Q. Top-Left: Magnitude
spectrum for 20% noise. Top-Right: Phase spectrum for 20% noise. Bottom-Left: Magni-
tude spectrum for 100% noise. Bottom-Right: Phase spectrum for 100% noise.
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Time domain model validation for P/D
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Figure 3.11: Time domain model validation for channel P /D. Top-Left: Model output with
feedback for 20% noise. Top-Right: Model output without feedback for 20% noise. Bottom-
Left: Model output with feedback for 100% noise. Bottom-Right: Model output without

feedback for 100% noise.
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Time domain model validation for P/Q
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Figure 3.12: Time domain model validation for channel P/Q. Top-Left: Model output with
feedback for 20% noise. Top-Right: Model output without feedback for 20% noise. Bottom-
Left: Model output with feedback for 100% noise. Bottom-Right: Model output without
feedback for 100% noise.
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Time domain model validation for X/Q
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Figure 3.13: Time domain model v ‘dation for channel X/Q. Top-Left: Model output with
feedback for 20% noise. Top-Right: *indlel output without feedback for 20% noise. Bottom-
Left: Model output with feedback for 100% noise. Bottom-Right: Model output without
feedback for 100% noise.

If the process output is corrupted by noise or disturbances then #(¢) may not
appear to match well with the output y(t) because equation-(3.38) does not utilize any
noise/disturbance information that are buried in y(¢). On the other hand §(¢ + 1|¢) usually
matches well with y() because it utilizes past process outputs and therefore §(¢ + 1)t) is
also defined as output with feedback.

Time domain model validations using #(t) and #(t + 1|t) for channels P/D, P/Q
and X/Q are illustrated in Figures 3.11 to 3.13 for 20% and 100% noise levels. The model
output §(t) is compared with the zero-centered and detrended (linear trend is removed)
process output y(t) whereas §(t + 1|t) is compared with only zero-centered y(t).

For 20% noise, the Figures 3.11 to 3.13 show that: (a) the match between (¢ + 1|t)
and y(t) is better than between §(t) and y(t) for all channels; and (b) for X/Q, §(2) is in
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Residual Analysis for P/D
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Figure 3.14: Residual analysis for channel P/D. Top-Left: ACF(Ae) for 20% noise. Top-
Right: ACF(D;(q)Ae) for 20% noise. Bottom-Left: ACF(Ae) for 100% noise. Bottom-
Right: ACF(D3(g)Ae) for 100% noise.

good agreement with y(t), thus indicating that this channel is signal-rich.

For case of 100% noise, Figures 3.11 to 2.13 indicate that: (a) §(t) is significantly
different from y(t), because of the significant level of disturbaces; and (b) §(¢+ 1|t) appears
to match y(¢t).

3.10.7 Residual analysis

Figures 3.14 to 3.16 show the residual analysis for all the three channels for 20% and 100%
noise levels where the residual e(t) is given by e(t) = y(t) —§(t). Based on the approximate
knowledge of the noise mode! given by equation-(3.31), it is expected that the residuals
would be white if e(t) is filtered according to:

el (t) = AD(q)e(t) (3.40)
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Residual analysis for P/Q
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Figure 3.15: Residual analysis for channel P/Q. Top-Left: ACF(Ae) for 20% noise. Top-
Right: ACF(D1(g)Ae) for 20% noise. Bottom-Left: ACF(Ae) for 100% noise. Bottom-
Right: ACF(D2(g)Ae) for 100% noise.
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The ACF plots of residuals in Figures 3.14 to 3.16 show that:

e Ae(t) is not white for all the channels, models and levels of noise thus indicating that
£(t)/A is only a partial representation of the noise structure.

e The residuals ef (t) obtained according to equation-(3.40) are white for channels P/D

and P/Q thus confirming that the structure of noise model selected is correct for the
output P.

The residual e/ () is not perfectly a white noise signal for channel X/Q, which means
that the noise structure selected for X is imperfect. However from subsection 3.10.6
it is noted that G(q) fits well in the time and frequency domain for X/Q, hence this
channel does not require re-identification. Nevertheless, for the sake of accuracy an

alternate model structure (such as EE) could be selected for the re-identification of
X/Q channel.

3.10.8 Step responses

The step responses of the different models and the spectrum of the estimated model-plant
mismatch (MPM) are depicted in Figures 3.17 to 3.19 for all the three channels, models
and for the two levels of noise. For different channels these plots show the following:

e P/D: Laguerre model gives the best fit for 20% and 100% noise, which is followed by
the BJ and ARX models. The mismatch in the steady state gain for the ARX model
is very significant for 100% noise. The level of noise is so significant that the spectral

plots of the MPM are significantly overestimated. For the sake of clarity, the spectral
plot of MPM is shown only for the ARX model.

e P/Q: Around steady state, the Laguerre and ARX models give a better fit for 20%
noise, whereas for 100% noise, the Laguerre model gives the best estimate. The BJ
model is marginally underestimated whereas the ARX model is significantly overes-
timated. However at the higher frequencies BJ model gives the best performance as

can be seen from the MPM plots. For the sake of clarity, the spectral plot of MPM is
shown only for the ARX model.

e X/Q: The performance of all the models is comparable for both cases of noise, however

around steady state the performance of Laguerre model is better. The spectral plot
of MPM corresponds to the ARX model.
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Residual analysis for X/Q
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Figure 3.16: Residual analysis for channel X/Q. Top-Left: ACF(Ae) for 20% noise. Top-
Right: ACF(D;(g)Ae) for 20% noise. Bottom-Left: ACF(Ae) for 100% noise. Bottom-
Right: ACF(D2(q)Ae) for 100% noise.
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Step responses P/D MPM
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Figure 3.17: Step responses and MPM for different identified models for channel P/D.
Top-Left: Step responses of models identified for 20% noise. Top-Right: Step responses of
models identified for 100% noise. Bottom-Left: MPM for models identified for 20% noise.
Bottom-Right: MPM for models identified for 100% noise.
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Figure 3.18: Step responses and MPM for different identified models for channel P/Q.
Top-Left: Step responses of models identified for 20% noise. Top-Right: Step responses of
models identified for 100% noise. Bottom-Left: MPM for models identified for 20% noise.
Bottom-Right: MPM for models identified for 100% noise.
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Figure 3.19: Step responses and MPM for different identified models for channel X/Q.
Top-Left: Step responses of models identified for 20% noise. Top-Right: Step responses of
models identified for 100% noise. Bottom-Left: MPM for models identified for 20% noise.
Bottom-Right: MPM for models identified for 100% noise.
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Figure 3.20: Process /-:’put and input data.

3.11 Case-II: An industrial plant

The main process is an exothermic catalytic reactor that converts a mixture of superheated
NHj (at 300°F) and compressed Air to NO; (other byproducts are Hz and NO;) for
Urea production in a fertilizer plant [21]. It is desired to control the temperature y(t)
of the catalyst by manipulating the NHj flow rate u(t). Figure 3.20 shows a record of
openloop 1/0 data collected at 5 sec. intervals by subjecting the reactor to a series of step
inputs. This set of data are designated as set — 1 and it is used for model identification.
For the purpose of validation, two other sets of openloop data are available and they are
designated as set — 2 and set — 3 in this chapter. The data sets 2 and 3 are shown later in
this section.

Most work on the identification of this process had already been carried out by
Miller [21]. However this problem is included to show: (a) the use of Markov-Laguerre
model to describe the process dynamics; and (b) a transfer function model that gives a
better fit in the frequency domain can be obtained. For the sake of brevity, most of the
identification work carried by Miller [21] is not repeated here.
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3.11.1 Preliminary analysis

Figure 3.21 indicates that the coberency between y(t) and u(t) is weak at the higher frequen-
cies thus implying difficulties may be encountered in identifying models at those frequencies.
Not much can be inferred from the CCF plot in Figure 3.21 because the confidence bound
is very wide, owning to the small data record. Nevertheless the ccf plot indicates that the
process has a del~ which is more than 1 and its most likely value is between 2 and 4.

3.11.2 Estimation of models

A preliminary estimate of the model order and delay for an ARX model can be made from
the loss function profile obtained using the AUDI method. The variation in loss functions
w.r.t. the delays for different model orders estimated from data set-1 are shown in Figure
3.22(a). The loss function in Figure 3.22(a) shows that a 3™ order model with 1 delay
(excluding ZOH) is adequate to model the system [21]. It is further shown by Miller [21)
that a 3" order ARMAX(na,nb,nc,d) model (where na = nb =3, nc = 1) with delay 4 =1
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(excluding ZOH) gives a better representation of the plant dynamics. This model no doubt
gives 2 minimum value for the loss function, but it does not fit too well with the spectral
Bode estimates at certain frequencies. It is therefore expected that by changing the delay
a better fit can be obtained in the frequency domain.

The effect of delay is explored by plotting the loss function for ARMAX(3,3,1) model
for delays from d = 0 to d = 5 for data sets-1 to 3 as shown in Figure 3.22(b)!3. Only the
loss function for set-1 needs consideration in Figure 3.22(b) because the loss functions for
data set-2 and 3 are much smaller. The loss function for set-1 in Figure 3.22(b) shows that
this value remains almost constant upto d = 3 and after which it starts to increase.

As a next step 9 = S, (IG(wi)] — 1G(wi)))? and 94 = LM, [£Go(wi) — LG (wi)?
are plotted in Figures 3.22(c) and 3.22(d) to examine the effect of delay on the overall
Bode performance, where G4(w;) is the model obtained using spectral analysis at the ith
frequency w;. Figure 3.22(c) shows that the magnitude spectrum of ARMAX(3,3,1,d) fits
well with its spectral estimate for d = 3 whereas at d = 4 the phase spectrum fits the best.

Therefore from Figures 3.22(b) to (d) it can be concluded that d = 3 is a good compromised
candidate rather than d = 1 in [21] because:

e The loss function for d = 3 is only marginally more than for d = 1 and therefore they
can be treated as equivalent. Hence from the time domain validation point of view
any value of d between 0 and 3 should be acceptable.

e U is minimal for d = 3; for d = 4 this value is slightly higher; and for d =0 to 2, Im
is significantly higher. Therefore the 9 plot indicates that d = 3 is most suitable
and d = 4 may also be accepted as a compromise.

e ¥4 is minimal for d = 4; ford = 1 and d = 3, the ¥4 values are aliost in the samne
range; and they are slightly higher than the minimum 94. 94 values are significantly
high for d = 0 and d = 2. Therefore from the ¥4 plot it is deduced that d=41is an
ideal choice but d = 1 and d = 3 should also be acceptable as a compromise.

From the above analysis it is seen that d = 3 is arguably the best value in both time
and frequency domain validations. Therefore in light of the above analysis, the best AR-
MAX(3,3,1,3) model is identified (using PEM) to be:

(1 — 1.4256¢" +0.2284¢7% + 0.2205¢ ) y(2) =
A)
(2.1047¢7! — 1.0421972 + 0.4944¢73) ¢ u(t)
B(q)

15For each delay d, the parameters of ARMAX(3,3,1,d) are identified from set-1 and these parameters are
also used to calculate the loss functions for data sets-2 and 3.
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+(1- 0.3811¢7 ') £(2) (3.41)
c(q)

whose poles are: {0.8967,0.8271, —0.2975} and zeros are: {0.2476 + j0.4167}. Assuming
the dominant pole to be at a = 0.89 (from equation-(3.41)) a Markov-Laguerre model with
5 Markov and 5 Laguerre coefficients was determined to be (using BLS and set-1):

Markov Parameters = 0.0055, 0.7622,1.0273,2.1901, 2.1675
Laguerre Parameters = 10.8214,4.0585, —1.2158, 0.2795, —0.6167 (3.42)

3.11.3 Model validation

Figure 3.23 shows the Bode plots for frequency domain model validation. It is observed
from Figure 3.23 that: (a) magnitude plot corresponding to ARMAX(3,3,1,3) is in good
agreement with the spectral plot; (b) magnitude spectrum of Markov-Laguerrre model
fits better than the ARMAX(3,3,1) models with delays 0 to 2 but not necessarily when
compared with the the ARMAX(3,3,1,3) model; and (c) phase plot of ARMAX(3,3,1,3) is
in good agreement with the spectral plots.

Figure 3.24 shows that the model outputs §(¢) for ARMAX(3,3,1,3) and Markov-
Laguerre models are in good agreement with the data sets-1 to 3 and they are confined be-
tween §(t) corresponding to ARMAX(3,3,1,0) and ARMAX(3,3,1,4) models. The feedback
output §(¢ + 1]t) for the Markov-Laguerre model gives significant variation when compared
with the §(t + 1|t) for ARMAX model because the Markov model translates into a very
high order ARX model with na = 5 and nb = 10.

3.11.4 Residual analysis

The residual analysis for ARMAX(3,3,1,3) model in Figure 3.25 indicates that the filtered
residual is white, thus confirming that the assumed noise structure is correct and the model
has an EE form. The residual is filtered using A(q)/C(q)-

The residual analysis for the Markov-Laguerre model in Figure 3.26 indicates that
the filtered residual (filter is: A(g)/C(q)) is not quite white but it is close to a white noise
signal. Nevertheless, Markov-Laguerre model gives a good fit in the time and frequency
domain, therefore no further attempt is made to improve this model.

3.11.5 Step responses

The step response plots for Markov-Laguerre and ARMAX(3,3,1) models for d = 0, 1,3 and
4 are shown in Figure 3.27. It is difficult to say which of these step responses reflect the
true noise-free process behavior because the actual plant is unknown. Grossly it can be
said that the steady state gain is between 60 and 70 and it has an approximate rise time
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Figure 3.25: Residual analysis for ARMAX model. Top-Left: Filtered residual data. Top-
Right: ACF of filtered residual. Bottom-Left: PACF of filtered residual. Bottom-Right:
MPM.
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Figure 3.26: Residual analysis for Markov-Laguerre model. Top-Left: Differenced residual
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of 60 x 5 secs. However based on the model validation methods, it can be said that the

step response corresponding to the ARMAX(3,3,1,3) model most likely closest to the true
behavior of the noise-free plant.

3.12 Conclusions

This chapter summarizes the properties of several I/O models, their estimation methods
and highlights their use through the identification of two industrial processes. The models
considered in this chapter are: (a) frequency response; (b) FIR/step response; (c) transfer
function; and (d) orthonormal function (i.e. Markov-Laguerre) models.

A frequency response model is estimated using either signal processing methods
discussed in Chapter 2 or other forms of mathematical models can be converted into this
form. Step/FIR models are estimated using step tests or by using the BLS method. The
parameters of a generalized transfer function model are estimated using the PEM method,
whereas BLS or AUDI method can be used to identify simple ARX models. For ARX
models, AUDI can: (a) simultaneously estimate parameters/loss functions of different model
orders and (b) estimate an appropriate delay for each m:del order. The dynamics of a
linear process can also be expressed by a series of orthonormal functions. Orthonormal
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function models have OE structure, whereas a generalized transfer function model has an
EE structure.

System ID basically comprises of: (a) experiment design and preliminary analysis;
(b) estimation of model parameters; and (c) model validation. The purpose of experiment
design is to collect appropriate data samples for ID and validation by providing suitable ex-
citation. For preliminary analysis: (a) CCF is used to ascertain system delay; (b) the extent
of 1/O correlation is checked using squared coherency plots; and (c) the Bode characteristics
of the plant are estimated using the signal processing methods discussed in Chapter 2. 4
priori knowledge of the noise model (if available) is used to determine if the use of EE or OE
structured model is appropriate. The AUDI method is then used to determine/approximate
model order/delay/parameters of ARX models and this information can also be extended
to set the order of more generalized transfer function models. The identified models are
validated in time/frequency domain and also by using residual analysis.

System ID methods to a great extent are case-specific but they conform to the gen-
eral ID method outlined in this chapter and this is successfully illustrated via the following
two industrial case studies.

(1) Shell benchmark problem: The estimation of the noise model helped in designing
appropriate filters for process ID. Through ccf and coherency tests it was established that
there were no dynamics in the channel X/D. The CCF and spectral Bode (phase) plots
revealed that the channels P/D and P/Q were devoid of any delay including ZOH and there
was a delay of 7 units (including ZOH) in the channel X/Q. Three types of models namely
ARX, BJ and Markov-Laguerre models were considered for system ID. It was observed
that with the increase in noise level the parameters of ARX models became more biased
when compared with the BJ and Markov-Laguerre models for all the three channels. The
estimated models were successfully validated in the time/frequency domain and also through
residual analysis.

(2) An industrial ID problem: Three sets of data were provided, where one set was
used for ID and the other two sets for validation. The squared coherency plot showed poor
I/O correlation at the higher frequencies and since the data record was short, ccf could
not definitively provide an estimate of the process delay. Loss function analysis using ARX
model indicated that a 37¢ order model should adequately represent the process dynamics.
In order to take the noise dynamics into account an ARMAX(3,3,1) model was selected [21].
After examining the loss function and the error between spectral and model Bode plots for
ARMAX(3,3,1) model for different delays it was concluded that a delay of 3 was the best.
The resultant ARMAX(3,3,1,3) model was successfully validated in time/frequency domain
and also through residual analysis. A Markov-Laguerre model was also identified for this

process, but the overall performance of the ARMAX(3,3,1,3) model was better than this
model.
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Table 3.1: Process objectives, operating conditions and constraints

Variable Norninal Normal Operating
setpoints operation objectives

Top pressure P | 2800 2700 < P <2900 | P < Pryax = 3200

Bottom impurity | X | 500 250 < X <1000 | X < Xnpax

Overhead D20 - 10<D<30 Minimize D

Reboiler Duty Q | 2500 2000 < Q@ < 3000 | Minimize Q

Where input excitation magnitudes were: D = +10 and Q = 200

Table 3.2: Estimated models for P/D for different SNRs.

Trus P/D: 0%
SNR 20% 50% 100%
ARX —0.6114+0.0158¢—1 —~0.6172+0.0538q—1 —~0.62+0.0§§q"
1-0.8774¢q~! 1—-0.9030¢—1 1— D.9285g‘1
Bl ~0.612140.0026¢ —0.6160+0.0080g9= 1 -—~0.6219+0.017lg‘1
1—0.8614_q:1 1—0.8646g—! 1—-0.8607¢—
Ma-Lag a = 0.87 a = 0.875 a = 0.875
g1 = —1.2307 g1 = —1.2329 g1 = —1.2564

Table 3.3: Estimated models for P/Q for different SNRs.

True P/Q: 1—ggs6ra=T
SNR 20% 50% 100%
0.1041—-0.0073g- " | 0.1044—0.0277g 1 | 0.1049—0.0476g 1
ARX 1——0.68710‘? 1-0.7851g— 1 ~ _1—0-——.8774'0‘?
BJ 0.1049-+0.0002g- 1 | 0.1039+0.0007¢~ 1 o.1oz4+o.oozg-1
1—0.6484g~1 1-0.62029—1 1—-0.5909¢~
Ma-Lag a = 0.66 a = 0.66 a = 0.66
g1 = 0.1396 g1 = 0.1383 g1 = 0.1363
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Table 3.4: Estimated models for X/Q for different SNRs.

. —0.03825¢—
True X/Q: Togssa0eT

SNR 20% 50% 100%
ARX —0.0399¢~ T+ 0.00069- 5 | —0.0403q '40.0015q-° | —0.0410¢~'+0.0030¢~"
1-05265¢-1 1-0.9306g1 1-0.9384¢—7
Bl —0.0401g_ '+0.0008g-5 | —0.0404¢~ '+0.00209~° | —0.0408¢_"+0.0042g~ "
1-0.92509— 1092869 1—0.9388g—
Ma-Lag a =0.92 a=0.93 a=0.93
hy = 0.0017 h,; = 0.0029 h, = 0.0048
hy = 0.0007 hy = 0.0006 ho = 0.0005
h3 = 0.0008 h3z =0.0010 hz = 0.0014
h4 = 0.0008 hg = 0.0011 h4 = 0.0016
hs = 0.0009 hs = 0.0014 hs = 0.0023
hg = 0.0015 he = 0.0028 hg = 0.0050
g1 = —0.0999 g1 = —0.0986 g1 = —0.0963
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Chapter 4

Parameter Estimation for

Orthonormal Function Models
using AUDI

The augmented UD identification (AUDI) method is used to simuitaneously estimate parame-
ters of all 1 to N order discrete orthonormal function models in one computational step. This

method is tested on different types of orthonormal functions such as the Laguerre, Kautz, FIR
and Markov-Laguerre models.

4.1 Introduction

Orthonormal functions are used to represent a function in an expanded form by a series
of (orthonormal) functions. There are several types of orthonormal functions, for example,
the Fourier series discussed in Chapter 2 is a case in point. Other orthonormal functions
i.e. Laguerre and Markov-Laguerre functions were briefly introduced in Chapter 3.

The orthonormal functions were originally formulated in the eighteenth a1 wine-
teenth centuries and they were in the form of differential equations. Howe:- - ™ many
engineering applications, some of these orthonormal functions are now uscd in ‘nd form
of transfer functions [1, 2, 3, 4]. This thesis also pursues the applicatioz. ~t or-nonormal
functions in the form of transfer functions because these transfer function fori:'x are more
relevant to the controller design addressed in this thesis. Nevertheless in order to provide a

historical perspective, srthonormal functions in the form of differential equations are briefly
discussed in Section 4.2.

1A version of this chapter has been accepted for publication in: JEEE Transactions on Signal Processing
as ‘Simultaneous Estimation of Parameters for different Orders of Discrete Orthonormal Function Models’,
by P.Banerjee and S.L.Shah.
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Orthonormal functions have been extensively applied to a wide range of areas; some
of which were outlined in Chapters 2 and 3. The use of orthonormal functions in numerical
analysis, solution of partial differential equations and probability theory are well established
[5]. Specifically, orthonormal functions have been proved to be useful to solve: (a) prob-
lems in numerial analysis such as numerical integration and interpolation, (b) problems in
partial differental equations relevant to quantum mechanics, hydrodynamics, electrostat-
ics, gravitation etc. and (c) problems in probabilities such as two dimensional probability
distribution, non-Gaussian distribution and scattering of waves by rough surfaces (useful
in radio/radar engineering, acoustics, and optics) [5]. This thesis is confined to using or-
thonormal functions to represent the plant dynamics as illustrated in Chapter 2 and 3.

Orthonormal functions in the form of transfer function models such as the Laguerre
and Kautz function models are based on some a priori process information such as the
knowledge of dominant poles; hence such models are also called grey-box or semi-empirical
models as mentioned in Chapter 3. The need for e priori knowledge of the dominant pole
of a system by orthonormal functions may be considered to be a disadvantage, but there
are several other advantages in using orthonormal function models which outweigh this
disadvantage. Moreover in most situations this dominant pole can be approximated either
through step tests as suggested by Fu et al. [6] and Cluett et al. [7, 8] or from ARX
models as shown in Chapter 3. Some of the advantages of orthonormal functions have been
summarized by Wahlberg [9] and Dumont et al. [10] as: (a) insensitivity to sampling time;
(b) compact and unstructured model representation, (<) well-conditioned covariance matrix,
therefore a numerically robust estimation procedure aad (d) a significantly insensitive model
estimate to system noise.

Depending on the dynamics of the process, different types of orthonormal functions
are used to model them. For example, the Kautz model is useful in approximating the
dynamics of an underdamped process as it is based on the dominant complex poles of
the system. The use of Kautz function model has been illustrated by Lindskog et al. to
compactly model a highly resonating aircrz?. fight flutter system [11].

An important sub-class of the Kautz models are the Laguerre models [9, 6. A
Laguerre model based on the real dominant pole is useful in describing the dynamics of an
overdamped plant [9, 12, 7). Dumont et al. {13, 12] and Cluett et al. (7] have illustrated
the use of Laguerre model via several process control applications. Fu et al. have =lso
shown that a Laguerre function with complex poles can be formulated ‘n approximate the
dynamics of an underdamped plant [6]. Some other applications of the orthonormal function
models include compact data representation [1, 2, 5], frequency smoothing [14] and filter
design [3].

The most elementary form of the orthonormal function is the FIR (finite impulse
response) model. For example, both Kautz and the Laguerre models can be reduced to
the FIR form. The distinction between the orthonormal and black-box models fade out
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for the FIR structure, because no a priori process information is embedded in the FIR
model. Infact the black-box step-response model is only a cumulative form of the FIR
model. Since Kautz or Laguerre functions have a longer memory, they yield more compact
models in comparison to the FIR or step-response models [9]. FIR models are best suited for
processses with significant delay, inverse response or other unusual high frequency dynamics,
although it requires a large number of coefficients to model them.

A good trade-off between capturing unusual high frequency dynamics and number
of model parameters can be achieved by combining the FIR and the Laguerre or Kautz
models to form the Markov-Laguerre or Markov-Kautz function models as illustrated by
Finn et al. via a process control application {15]. The FIR component in this combined
model helps to capture the unusual high frequency dynamics whereas the Laguerre or Kautz
models can be 1sed to effectively emulate the lew frequency dynamics.

The least-squares (LS) technique is a standard system identification tool to estimate
the parameters of a specified order of the linear models as described in Chapter 3. Often
due to the practical constraints such as the need for lower order controllers, lower order
models that satisfactorily approximate the plant dynamics are preferred over the higher
order models. Several LS trial runs may be required for different model orders to obtain an
acceptable model structure. Therefore the question arises: can a method be devised that
can simultaneously estimate the parameters of different orders of the model? Niu et al.
[16, 17] have addressed this issue by proposing an augmented UD identification (AUDI)
method, that simultaneously estimates the parameters for all 1 to N** order ARMAX
models with approximately the same computational effort as for the N th order ARMAX-
LS solution. Therefore the AUDI-ARMAX method solves the LS solutions concurrently
for different orders of the ARMAX model. The AUDI method proposed by Niu et al. was
motivated from the LU-decomposition and Bierman’s UD factorization {18, 19]. The LU
or UD factorization methods were in turn motivated by numerical considerations in the LS
solution. Niu et al. have also shown that the AUDI-ARMAX method retains the advantages
of numerical stability as provided by the LU or UD decomposition methods [16, 17].

The AUDI-ARMAX solution is based on the decomposition of a covariance mairix
that has a symmetrical structure. The approach proposed in this chapter uses the AUDI
concepts to simultaneously estimate the parameters of all 1 to Nth order discrete orthonor-
mal models in one computational step by forming a symmetrical covariance matrix. For
output error rgndels, Niu et al. have recently also proposed LU decomposition of a co-
variance matrix that has a non-symmestric structure to simultaneously obtain the model
parameters [20)].

This chapter first presents a brief historical sketch of the orthonormal functions
in Section 4.2 which is followed by a list of some definitions relevant to the orthonormal
function models in Section 4.3. The focus of this chapter then shifts to the main theme i.e.
the AUDI formulation for orthonormal function models in Section 4.4. The application of
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AUDI technique to estimate parameters of different orders of orthonormal function models
are then discussed in Sections 4.5 to 4.9. Specifically; Sections 4.5 and 4.6 referes to Laguerre
models with real and complex poles and Sections 4.7, 4.8 and 4.9 pertains to the Kautz,
FIR (and step-response) and Markov-Laguerre models respectively. The performances of
the proposed method for various model types are summarized in Section 4.10.

4.2 Historical perspective

Different classical orthonormal functions that were defined in the eighteenth and nineteenth
centuries can be arranged in the following chronological order (Table 4.1) [5):

Table 4.1: Classical Orthonormal Functions and their relevant intervals.

Year | Name Interval
1785 | Legendre -1,1
1859 | Jacobi -1,1
1859 | Chebyshev -1,1
1864 | Hermite —00,00
1877 | Gegenbauer -1,1
1879 | Laguerre 0,00

Prior to World War 1I, these classical orthonormal models were considered to be a com-
plicated system of differential equations and for each type of function, it’s properties were
derived separately. Later in 1948 an Italian mathematician F.G.Tricomi and Russian math-
ematicians M.A.Lavrentyev and B.V.Shabat in 1951, independently showed that these clas-
sical orthonormal functions were special cases of a general weighting function [5]2. The
work by Tricomi and Lavrentyev et al. were motivated by the discovery by J.Rodriguez in
1814 who showed that Legendre polynomial (which was the only known polynomial then)
could be generated using [5]:

Tricomi and Lavrentyev et al. generalized the above equation-(4.1) to [5]

P,(z) =

Pa(z) = An;u%ﬁ;,%[w(z)ﬂ" @] (4.2)

2p G.Tricomi’s work was known in 1970 when his book Vorlesungen iiber Orthogonalreihen was published
by Springer Verlag in German language. The original paper by Tricomi was published in 1943 in Italian Jan-
guage. Some results published by Lavrentyev et al. were obtained to them through private communication
from other Russian mathematicians 1.G.Aramonovich and N.I.Kozhevnikov. [5].
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to represent all classes of orthonorr:al function models and it was aptly named as the
generalized Rodriguez formula for classical orthonormal functions. The functions Ay, w(r)

and B(zx) in equation-(4.2) vary with the type of orthogonal models. For example the
Laguerre function can be expressed as [5]:

An

—~— u’(I)
1 _ d —_
Mz) = = '\e”a;;(e A ™) (4.3)
w(z) Jd €))

Simiiarly other functions can be defined but they are not shown here as they are not relevant
to this thesis3. It is however interesting to note that: (a) Legendre and Chebyshev functions
are special cases of Gegenbauer function and Gegenbauer function in turn is a special case
of Jacobi function and (b) Hermite functions can be expressed as Laguerre function [5].
This led Tricomi to conclude that the orthonormal functions can virtually be classified as
i.e. Jacobi and Laguerre functions [5].

Various orthonormal functions have found applications in different areas such as:
(a) Legendre polynomials are useful to solve partial differential equations such as Laplace,
Poisson and wave equations in the spherical cocrdinate, (b) Chebyshev functions are used
in filter design, interpolations in numerical methods and in probability theory, (c) Laguerre
functions find use in quantum mechanics, systems theory and probability theory etc. and
(d) classical Schrédinger’s wave equation in quantum mechanics? have been solved using
Hermite polynomials and they are also used in probalility theory [5].

The orthonormal functions referred i~ this thesis are confined to modelling dynamic
systems (also shown in Chapter 3) and apply:ng them to design predictive controllers which
is persued in Chapter 6. Besides the Laguerre functions, some other orthonormal functions
that are used in process control are the Meixner, Kautz and Markov functions®. In 1934
J.Meixner function proposed Meixner func ..n and W.H.Kautz proposed Kautz function in
1954 [4). Since Markov function is shown to be a special case of orthonormal functions, this
function i.e. FIR model is also called Markov (orthonormal) function.

The emphasis of this thesis is on using transfer function models in the discrete
domain, therefore the orthonormal functions that are originally in the form of differential
equations are converted into (discrete) transfer function forms in the frequency domain.
It so happens that Laguerre and Kautz functions can be converted into discrete transfer
function forms, hence these functions are mainly referred in this thesis. Meixner functions
is not referred in this thesis because it does not have any rational transfer function form
in the z-domain [4]. The discrete transfer function forms for the Laguerre and Kautz

3 Any standard handbook on mathematics will have expressions for the orthonormal functions in the form
of differential equations.

“Quantum mechanics was briefly discussed in Chapter 2.

50ne of the main reasons why Laguerre, Kautz, Meixner and Markov functions are used in systems
engineering because they are applicable in the region 0 to oo.
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functions were respectively derived by M.J.Gottlieb in 1938 and P.W.Broome in 1965 [4]-
Traditionally Laguerre models are used to describe overdamped systems and Kautz models
for underdamped plants; hence Laguerre models can be shown be a special case of Kautz
models [9, 6, 4].

4.3 Definitions

Before formally defining the terms ‘orthogonal’ and ‘orthonormal’ functions, it is required
to go through a series of other definitions that are connected to these orthogonal functions.
The following premises from functional analysis are therefore used to formally define the
scope of orthonormal functions [21, 22, 23]:

Definition 4.1 Intervals: An open interval is denoted by (a,b) = {z:a <z < b,z € R}.
A closed interval is given by [a,b] = {z: a < z < b,z € R}. A half open (or half closed)
intervals are similarly defined as (a,b) or [a,b).

Definition 4.2 Euclidean and complex spaces: N-dimensioned Euclidean and complex spaces
are designated as RN and SV respectively. The underlying vector for RN and SN comprises
of a set of N rea. or complex numbers (also called as N-tuples). For example, z € R3 = =
= [3112:211'3]-

Definition 4.3 Metric space, metric: A metric space is a pair (X,d), where X € RY isa
nonempty set and d is metric (or distance function) on X. For ezample, if X,Y € RN, then
d(z,y) = V&1 —41)2 + - + (Tn — ¥n)?, wherez; € X and y; €Y.

Definition 4.4 P space and normed® IP space: Metric induced under I” space is given by
dp(z,y) = (T2 =i — yilP)V/? where z; € X, yi €Y and p > 1 is a fized real number. I?
norm of x € RN is given by ||z||, = (TN, 1zilP)Y/P, such that 332, |zi|P < oco. For redl
sequences this space is called real space IP and similarly it is called complex space l? for
complex sequences.

Definition 4.5 Function spaces L[a,b]: Lla,b] is a metric space comprising of real valued
functions z(t) € X and y(t) € Y which are continuous in t € R on [a, b] and whose metric
is defined as d(z,y) = supie(ap)lz(t) — y(t)|- For Ly[a,b] space, the metric dp is dp(z,y) =
{2 |=(t) — y(e)|Pde} /P,

Definition 4.6 Square-Lebesgue integral: function X(t) € [0,00] is square-Lebesgue inte-
grable if:

[ nx@at < oo (4.9)

SNormed spaces were independently proposed by S.Banach, H.Hahn nd N.Wiener all in 1922 22]).
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Definition 4.7 Convergence: A seguence {z;} € X in a metric space (X,d) is said to
converge or to be convergent if 3 x, : im0 d(Zi,ZTo) = 0. In such a case x, s called the
limit of {z:} or simply x; — x,.

Definition 4.8 Cauchy sequence: A sequence {z;} in (X,d) is said to be a Cauchy sequénce
if d(zi, ;) < € for alli,j > N. Every convergent sequence in (X, d) is a Cauchy sequence.

Definition 4.9 Complete space: A space (X,d) is said to be complete if every Cauchy
sequence in (X, d) converges.

Definition 4.10 Banach space: A complete normed space is called a Banach space. [P and
Lyla, b] spaces are Banach spaces.

Definition 4.11 Inner product space: Inner product space between vectors r =
[1y--->Zn] € S™ and y = [y1,...,Yn] € S™ is given by < z,y? > =yl + - + oyl
Similarly inner product on X is ||z||2 = V< 1z, ¥ > and for functions it is < z(t),y(t) >=
I : z(t)yH (t)dt. (The superscript H denotes complex conjugate transpose.)

Definition 4.12 Hilbert space: A complete inner product space is called a Hilbert space H.
Every finite dimensional inner product space is complete, therefore they belong to Hilbert
space 1. Obviously Hilbert space is a Banach space, however the converse is not true. I?
and Ly[a,b] spaces with p = 2 belong to Hilbert space.

Definition 4.13 Orthogonal: Two vectors z,y € S" are said to be orthogonal if <
z,yH >= 0. Obviously orthogonal vectors belong to H.

Definition 4.14 Orthonormal: Two orthogonal vectors =,y € S™ are orthonormal if <

z,yH >=1 for £ = y. Orthonormality condition is compactly denoted by a Kronecker delta
functicn 8y, i.e. fm=mn,8=1 and § =0 for m # n.

The above set of definitions are next used to formally represent the orthonormal
function model as follows:
If y € Ly[0,00) (i.e. square-Lebesgue integrable) and if there exists orthonormal

sequences {1;} which is complete, then y € L2[0, 00) can be expanded into the series in the
Hilbert space as:

o0
y=_ <y,i> (4.5)
=0
The following theorem then applies to equation-(4.5):

Theorem 4.1 Fischer-Riesz Theorem”: Let {1;} be a complete orthonormal set as defined

above and let {g;} be a sequence of constants such that 32, |gil® is convergent, then the
series

TThis theorem was proved by E.Fischer and F.Riesz independently in 1907 {24]
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y=>_ g (4.6)

i=0

converges to y whose coefficients g; are given by gi =<y, ¥: > [24, 25].

Proof: See® Theorem-20 in page 20 in reference [24].

The series given by equation-(4.6) is also called as a Fourier series where g; is the ith Fourier
coefficients of y with respect to 1; [24]. Orthonormal vectors ¥; in equation-(4.6) are called
as orthonormal basis in H. The convergence of Orthonormal series equation-(4.6) can be
defined as:

Definition 4.15 Convergence of orthonormal series: The orthonormal series (or Fourier
series) y = .%o githi is convergent only if the series 3529 |gk|? converges.

If y in equation-(4.6) be the system output as described by Figure 2.1 (in Chapter
2), then the impulse respouse for such a system is L; stable. The system output y being a
function of time t, it is designated as y(t), similarly ¢ is written as ¥(t). Precesses such as
pure integrators, oscillators and unstable systems cannot be expressed by equation-(4.6) as
they do not lie in the Ly space [25].

When the orthonormal basis signal ¥;(t) in equation-(4.6) is a function of time,
then 1;(t) can be expressed as a set of differential equations as given by equation-(4.3).
However for system identification (ID)/process control applications it is more convenient
to use transfer function forms. Therefore let W;(z) denote the discrete domain transfer
function of 1;(t), then the systern dynamics is expressed as:

G() = 3o 9 ¥:(2) 7

i=0
The basis function in ¥;(z) in equation (4.7) is chosen such that it reflects the unit
delay (due to zero order hold ZOH) that is implicit in the discrete transfer function G (2)
and obviously ¥;(z) hold the orthonormality condition:

(¥i(2), ¥j(z)) = 6i; (4.8)
The innerproduct in equation (4.8) is between the impulse responses of ¥;(z) and ¥;(z2).

With reference to the note:

Note 4.1 Applying Remark-2.1 and Note-3.1, the basis signal v¥;(t) for ¥i(2) can be ez-
pressed as: P;(t) = W;(q)u(t), for the referred system given by Figure 2.1 in Chapter 2.

8The proof is not included because: (a) for brevity, (b) it is straight forward and (c) the application of
this theorem is only of interest in this thesis.
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the true plant output is expressed as:

y(t) = gi¥i(q)u(t) (4.9)

=0
In practice only a finite number of orthonormal functions are required to approx-

imately represent the process dynamics. Therefore the model output for an N th  order
orthonormal series is given by:

N
7(t) = gi¥i(g)u(t) (4.10)
i=1
For a finite order orthonormal function, the following definitions hold:

Definition 4.16 Maximal set: Orthonormal set B = {i;} is maximal if Fxq € H such that
{zo & B} and {xoU B} is an orthonormal set. A mazimal set is also called a complete set®.

For a complete set, equation-(4.9) and the following definition holds.

Definition 4.17 Parseval's Theorem!®: For a mazimal orthonormal set {1);} the Parseval's
theorem is given by: ||y||3, =< ¥,y > =< X221 gi%i, L21 i%5 >n = 12 lail®-

in other words, Parsevals’s relation can also be stated as:

t N t
3426 = YD lor(twr(d)? (4.11)

i=1 k=11i=1

Definition 4.18 Bessel’s inequality: If {1;} is not mazimal then Bessel's ineqality is given
by:

N
ly =D gsll < e
i=0
alternately

N
Il < iyl (4.12)

=0

where € > 0 and N is a positive integer. In practice most models are finite order, therefore
they obey Bessels inequality. The model given by equation-(4.10) can also be written as:

9Definition-4.9 is aot to be confused with definition-4.16.

10parseval’s theorem can be stated in many ways. One form of Parseval’s equation was shown in Chapter
2 and in Chapter 7 this theorem is again re-visited.
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(t) = o7 ()0 (4.13)

where @(t) = [¢1(t), $2(t), ..., dn(t)]T is the data vector and 6 = [91,92,---,gn]T is the

parameter vector and where @i(t) = Ti(q)u(t). The LS parameter estimates @ of 6 in
equation-(4.13) is given by:

6 =[eTe'@”Y (4.14)

where Y = [y(1),%(2),--- ,y(IN)]T is the output vector and & = [¢(1), &(2),-..,d(N)] is the
data matrix.

Definition 4.19 Let the LS solution given by equation-(4.14) be designated as the LSy
solution.

Orthonormal models give very robust parame’r estimates for plants having OE
(output error) structure as shown by an illustration for the following OE structured plant:

y(t) = (G(g) + G(q)) u(t) + e(t) (4.15)
G(9)
where the plant G(g) in equation-(4.15) is expressed as a summation of the nominal model

G(q) and its associated unmodelled dynamics G(q); and e(t) is either a white or colored
noise sequence. Letting:

N

Gl@) = > a:%i(9) (4.16)
i=1

Glg = Y 9i%(q)
i=N+1

thien combi.ing equations-(4.13), (4.15) and (4.17) yield:

Yy =0T+ 24+ E (4.17)

where E = [e(1),€e(2),...,e(N)], & and @ are tiie data matrix and parameter vector corre-
sponding to G(g). Substitutirg Y from equation- (4.17) into equation-(4.14) and then taking
its expectation (£) gives:

£ = 6+ €[0T o774 + £[[eT o) o7 E] (4.18)
6

The above conclusion holds only if: (a) u € N(02,0) and (b) E is zero mean; implying @
and E are uncorrelated. And that also implies @ and & are uncorrelated.
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4.4 AUDI formulation of orthonormal function models

This section discusses the use of AUDI method to simultaneously estimate the parameters
of different orders of the orthonormal function models. Because of the simultaneous nature
of the model estimation, it is required to associate the model outputs and parameters with

the model order. For example the model output corresponding to the Nt* order model is
given by:

N
G(t, N) =D grt(t) (4.19)
k=1

where the Nt* order model is: G(z,N) = Zf:’:l 9x¥x(2z). Parameters associated with
different model orders of the model are given in the next subsection.
4.4.1 Data regressor and parameters for the AUDI method

The first step in extending the AUDI method {16, 17] to simultaneously estimate the pa-
rameters of all 1 to N** order orthonormal filter models is to formulate an appropriate data
regressor. To begin with, equation (4.19) is re-expressed as:

9(¢, N) = B (t, N)8(t, N) (4.20)
where the data vector h(t,N) is given by:

h(t, N) = [i1(t), %2 (t), ..., ¥ ()T (4.21)

and the parameter vector, 6(t, N) is:

9(t, N) = [gin(t), g2n (t), .- -, gnn (B)]T (4-22)

where gxn(t),k = 1...N in equation (4.22) are parameters corresponding to the model
order N. The parameter g in equation (4.19) is re-written as gy in (4.22) to signify that

it is the kt* parameter corresponding to the N** order model. As per the AUDI formulation,
the data vector:

8(¢,N) = [~y(®), ¥1(0), .., o O = [-v(®), A7, )] (4.23)

is defined corresponding to the model:

—y(t) + N @)1 (t) + gan (E)2(t) + - -- +gnn(B)Yn(t) =0 (4.24)

to estimate the parameter matrix (or the LSy, model-set) @(¢t,N):
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o(t, N) = [0(t9 1)’ O(t, 2)9 L EE X 9(t1 N)]
gu(t) gi2(t) --- ain(f)
_ 922(t) gz»{(t) (4.25)
gnn(t)

in one computational step. The LS, model-set O(t, N) pertains to the following assump-
tion:

Assumption 4.1 The plant order is assumed to be higher than the model-set O(t,N), or

in other words, ©(t, N) is assumed to be underparameterized and therefore the plant does
not belong to the model-set O(t, N).

Assumption-4.1 is true in most real situations (such as in chemical processes), where
the plant dynamics are copiplex and generally of very high order. Therefore estimation of the
orthonormal series model is concerned with the identification of a suitable finite and reduced-
order model that adequately approximates the plant dynamics. In view of Assumption-4.1,
it should be recognized that the model-set ©(t, N) is non-unique as it depends on several
identification design conditions such as: a priori system information, system noise and
design factors such as the choice of model order, nature of excitation, data length and data
pre-filtering. Let these identification design conditions be symbolically denoted by F.

It should be noted that the structure of the data vector defined by equation (4.23)
is different from the AUDI-ARMAX formulation {16, 17]. Specifically the signal —y(t) is
placed at the beginning of the data vector rather than at the end. This enables equation
(4.23) to be rzcursively expressed as:

#(t,N) = [¢7(6, N = 1), ¥w (®)] (4.26)
Rearrangement of equation (4.24) 'eads to:

() = o [L67( N = D)] 66N = 1)
= _[§l(t! N)9€2(t N)v ’€N(t N)]¢(t N - 1)
= —¢T(t,N)o(t,N —1) (4.27)

where the new set of parameters £(t, N) is:

T
£(t,N) = ( 5 ———[1,6T(t, N -1)] (4.28)

Analogous to O(t, N) in (4.25), the set of AUDI parameters [¢(¢,1),£(t,2),...,£(t, N)] is
cogllpactly denoted by Z(t, N) in this paper.
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4.4.2 LS properties of the AUDI estimated model parameters &(t,N)

For a specified identification design condition F, let the LS, parameter set O(t, N) repre-
sent the reference model-set. Consequently, the parameter set Z(t, N) which is related to
O(t, N) via equation (4.28) for model orders 1 to N also corresponds to the AUDI reference
parameter set. Let the LS solution for the AUDI parameter vector £(t, N) be denoted by

£(t, N), then from equation (4.27), the estimated last basis signal corresponding to £(t, N)
is expressed as:

¥ (E) = —@T (5, N — 1)é(t, N) (4.29)

From equations (4.27) and (4.29) it is clear that the LS solution £(¢, N) is obtained by
minimizing the following objective function:

t

I8 N) =3 [un @) — dn @)’ (4.30)

i=1
Since the above objective function is different from the classical LS identification (i.e. LSy),
the LS estimates f(t, N) of £(t, N) are therefore stated in the following as:

Lemma 4.1 The LS estimate £(t, N) is given by:

t

t -1
(¢, N) = — [Z #(i, N —1)¢" (3, N — 1)] S é6, N - 1)¥n (i) (4.31)
i=1 i=1

Proof: The LS estimates £(t, N) of £(t, N) are obtained by substituting equation (4.29) in
(4.30) and minimizing the resulting equation with respect to £(¢, N) as shown below:

3J(t, & N) [ T 2] -
——— P +¢" (i, N —1)E(t, N =0 4.32
S leemy ag(t 7y |2 (@ + 476N -1 ) -~ (4.32)
Equation (4.32) results in:
t t
S (i, N — 1)¢7(i, N — 1D, N) + 3 ¢(i, N = 1)¥n(i) =0 (4.33)
i=1 i=1

The best LS estimate (¢, N) of £(t, N) is therefore obtained as shown in equation (4.31).
O

Corollary 4.1 The minimum value of J(t,§, N) in equation (4.30) is given by:

J(t,N) = E«/m(z) —€T(t,N) [Z o(i, N —1)¢" (i, N — 1)] £(t, N) (4.34)

i=1
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4.4.3 AUDI formulation for the orthonormal series models

The data vector ¢(f, N) in equation (4.26) is used to form the following Data Product
Moment Matriz (DPMM), S(¢,N), to obtar multiple orti:onormal model estimation as
follows:

t
S (i, N)¢T (i, N)
=1
_ [ Yoy oG, N — ¢TGN —1) i 66 N — 1)vow (i)
S vn(d)eT N —1) S vk (%)

S(t,N)

] (4.35)

The inver - - ¢ DPMM i.e. S~1(t, N) is called the Information Accumulation Matriz (IAM)
[16, 1¢- 74 LDLT decomposition of S(¢, N) in equation (4.35) yields [16, 17}

T
[a B] [ n o][ao0 L 0
S(t’N)—[BT D]’[BTA-I 12][0 A][BTA-I 12] (4.36)

From equations (4.35) and (4.36) it follows that.:

A= gw,z\f -1)¢TGE, N -1) = S, N —1) (4.37)
B = g«ﬁ(i,N ~ 1)n (%) (4.38)
D= 2;:1¢?v(i) (4.39)
and A=D-BTA™'B
(4.40)

From equations (4.27), (4.31), (4.37) and (4.38), BTA™! can be expressed as:

BTA™!

) t -1
S un@¢ 6N - 1) [Z $(i, N — 1)¢7 (i, N — 1)]

i=1 =1

t
S en@¢ 6N -1 [sTHEN D] = —ETEN) (441)
=1

Furthermore from equations (4.29), (4.30) and (4.34), the term A as defined by equation
(4.40) can be shown to be the minimum value of the loss function J (t, N) as follors:
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t t
A = Y k@ +E@N Y SN - DEn()
i i=1

=1

t t
= Y kG -E@N) [z: $(i, N —1)¢" (i, N - 1)] £(t,N) = J(t.N)
i=1

=1
(4.42)

Equatior: (4.36) can be used for the nested LDLT decomposition of S(¢, N —1) in equations

(4.35) or {4.37). The following expression is obtained after successive LDLT decompositions
of 5(¢(, N—1):

S(t,N) = L{t, NYD(t, N)CT (¢, N) (4.43)

where C(t,N) = LNLN_l...L2L1
(4.44)
The argument ¢ is omitted from the right hand side matrices Ly, k = 1... N in the above

equati¢n (4.44) for brevity and convenience. The right hand side matrix Ly in equation
(4.44) is then given by:

Iy Okx1 Ok x (N —k)
L = "éT(t, k) L 01 x(N—k) (4.45)
ON-k)xk Ov-kyx1  IN-k
where I,, and O,xr in the above equation (4.45) are the identity matrix of diinension m

and matrix of zeros of size . x n respectively. From equations (4.36), (4.40), (4.42) and
(4.43) the diagonal matrix D(¢, N) can be shown to be:

[ J(t,0) ]
J(t,1)
J(t,2)

D(t,N) = (4.46)

i J(t,N) |
Similarly tis UDUT decomposition of IAM can be performed as shown below (16, 17):

SN = [£tMDENET N

-1
[LNLN—I -+ LaLy [D(t,N)} LTLT --- L%—IL%]
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= [LFTLaT - LTLT) PNt (L L
= [UNUn-1---U2lh] [P, N))? [UTUT -~-U?5_1UN;
= U(t, N)[D(t, )" U (¢, N) (4.47)

The elements in £(t, N) do not directly correspond to the AUDI estimated param-
eter set =(t, N) = [£(t,1),€(£,2),--.,£(t, N)]. A transformation U(t, N) = [L(z, NI Tis
required as shown in equation (4.47) in order to obtain the AUDI parameter set ._.(t N).
This is also illustrated by an example in appendiz-1.

The LS estimated AUDI parameter set E(t, N) as such cannot be used directly for
modelling. Therefore it is required to convert Z(t, N) into a usable model-set having the
form O(t, N). Let such a converted model-set which is derived from =(t, N), be denoted by
6(t, N). It can then be shown that ©(t, N) is obtained using simple algebraic manipulations
of Z(t, N), because the AUDI decomposition of S(t, V) corresponds to solving:

1 1[ —v® ]

b1 1 i (t)

£1(t,2) &(t,2) 1 Yo(t) | =0 (4.48)
| @, N) - - En(N) 1] | Un(t) ]

Further, the conversion from Z(t, N) to 6(t, N) is illustrated by considering the kt* row of
the above equation (4.48):

— &1, K)y(t) + E2(t, EYr () + - - - + Ex(t, K)¥r—1(t) + ¥u(t) = O (4.49)

which can then be rearranged to:

y(t) = ( X k)) (2t Ky () + -+ + Enlt )1 (2) + (1)) (4.50)

Therefore comparing equation (4.50) with a combination of equations (4.24), (4.27), (4.28)
and (4.48), it leads to:

é(t, k) = [5:2(*”‘) &Lt.k) &tk 1
TG R &R ERE) &R

In this way the parameters of all models of order k= 1,...,N can be determined. Niu et
al. have recently shown that ©(t, N) can be obtained by performing LU decomposition of
a non-symmetric DPMM wkich is obtained as: S*(t, N) = Tt ¢(i, N)[RT (i, N), —y(@))T
[20]. The approach proposed here results in ©(t, N) by applying the AUDI method to
S(t,N). S(t,N) and S*(t,N) are related to each other, i.e. the first column of S(t,N)

T
] — k), G2k (8- ik O (451)
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corresponds to the last column of $*(¢, N). The S(t, N) matrix is symmetric and can be
decomposed by using UDUT or LDLT decompositions. S*(t, N) on the other hand is
non-symmetric and can only be decomposed using LU decomposition. The AUDI method
presented in this paper complements the LS, solution by confirming an appropriate order
for the model i.e. as the model order approaches the plant, 6(t,N) — 6(t, N).

4.4.4 Effect of noise and modelling error in the AUDI method

This subsection analyses the effect of noise and modelling error in the performance of the
AUDI estimation method. It is shown in this section that noise and modelling errors have
detrimental effect in the AUDI estimation procedure. The way to circumvent soine of these
problems are also discussed here.

In reality it is difficult to meet Parseval’s condition given by definition-4.17, as the
plant order is usually considered to be very large i.e. N — oo in comparison to the model
order. Therefore for most practical purposes and also according to assumption-4.1, the
LHS of the above equation (4.11) exceeds the RHS term i.e. it obeys Bessel’s inequality as
given by definition-4.18 [5]. It is obvious that the systems belonging to the class of Bessels
inequality are underparameterized and consequently they introduce a modelling or bias
error. Let this error be denoted by the term b(¢). In addition, the process measurements
are usually corrupted by the noise sequence e(t) satisfying the assumption:

Assumption 4.2 The noise, e(t), is zero mean and is a sequence of normally distributed
random white measurement noise.

According to assumption-4.1, the plant does not belong to model-set because the models are
underparameterized or in other words they obey Bessel’s tnequality. Therefore the analysis
of the proposed AUDI method considers the effect of modelling error b(t) and noise e(t)
(i.e. assumption-4.2) as shown in the following:

N
y(t) = D gren(t)Pr(t) + b(t) + e(t)

k=1
= hT(t,N)0(t, N) + b(t) + e(t) (4.52)

For the AUDI formulation, a combination of equations (4.27) and (4.52) yields:

— Pn(t) = ¢T(t, N — 1)E(t, N) + & (2, Ne(t) + &1(t, N)b(t) (4.53)

For the above equation (4.53), the LS estimate of £(¢, N) for the AUDI solution is given by
the following lemma:

Lemma 4.2 The least square estimate for £(t,N) corresponding to eguation (4.53) (i.e.
the AUDI method) is given by:

146



E[E(t, N))

Il

¢ -1
E(t,N) +€ { LZ«#(‘&', N -1)¢"(i, N — 1)]
1

[Z(e(i) + b(@)6 (8, N)$T (6, N — 1)] }
=1

t

E(t,N)+& {S“I(t, N-1) [Z(e(i) + b(@))&1 (¢, N)$T (G, N — 1)] }

i=1

I

(4.54)

where £ is the expectation operator.

Proof: Substituting equation (4.53) in (4.31) and taking expectation leads to the proof.
a

The following corollaries and remarks then apply to lemma-4.2:

Remark 4.1 From equation (4.4.4) it is clear that for a “complete” mudel (i.e. b(t)=0)
and a noise-free process (i.e. e(t) =0), &(t, N) = £(t,N), i.e. the estimatis £(t, N) converge
to their ‘true’ values £(t, N) i.e. unbiased estimates are obtained. For such a case the AUDI
and LSy solutions are equivalent as illustrated by an example in appendiz-2.

Corollary 4.2 The AUDI and LS, solutions are not equivalent for the (underparameter-
ized) models that obey Bessel’s inequality.

Proof: For the models that obey Bessel’s inequality, b(t) # O. Therefore
from equations (4.31), and (4.4.4) parameters £(t,N) are biased by E£{S7'(t,N —
1)t b()6 (¢ N)eT (i, N — 1)}

Remark 4.2 Corollary-4.2 is true for even noise-free processes i.e. e(t) = 0. With the
increase in model order the AUDI solution approaches the LSy solution, because b(t) — 0.

Corollary 4.3 In presence of noise e(t), the AUDI solution is biased even for a “complete”
model.

Proof: From equation (4.4.4) it is clear that the error correlation term:
E{T_e(i)&1 (2, N)¢T (i, N — 1)} # 0 (even for t — oo) because ¢(i, N — 1) is correlated
with e(£) due to the presence of y(3) in ¢(i, N — 1).

Remark 4.3 For any model order k, where 1 < k < N, it is required that Gii(t) > O for the
AUDI method to work. This condition also holds good for the LU decomposition of S*(t, N)
[20]. It is unlikely that a situation such as gxx(t) = O will arise in practice because the

147



plant order is high compared to the model order according to assumption-4.1 and also the

knowledge of exact location of the plant dominant poles required by the orthonormal models
to generate the basis signals is ezactly not known.

Remark 4.4 Small values of Gxk(t), 1 < k < I+, also tend to amplify b(t) and e(t) in
equation (4.4.4) because £1(¢, k) is inverse of gix(t). This is perhaps a major limitation
of the proposed method; however, the approach using LU decomposition of S*(t,N) does
not have such a constraint. Therefore for noisy data, y(t) in ¢(t,N) (in equation (4.23))
is replaced by §(t, N') which is obtained via the LS, method for some large N'. In many
applications as in process control, use of such higher order models (i.e. of order N') is not
desirable due to practical reasons, but they can be used as a reference by the AUDI method to
obtain a lower order model-set ©(t, N). It is shown in the succeeding sections, that such an
approzimation method can work well for orthonormal models. This procedure complements
the LSy solution by confirming an appropriate order for the model.

Remark 4.5 UDUT decomposition of the IAM matriz (i.e. S™'(t,N)) is computationally
the most efficient way to determine the U(t,N) matriz. But this method cannot be used
when S(t,N) is rank deficient. LU decomposition of S(t,N) is another computationally
efficient but an indirect way to obtain the U(t, N) matriz. LU decomposition of the S(t,N)
results in the L(t,N) matriz which can then be used to obtain the AUDI parameter set
by using the transformation: U(t,N) = L~ T(t,N). LU decomposition can be used for
rank deficient S(t,N) as this algorithm does not involve any matriz inversions [26]. The
LDLT decomposition of S(t,N) as shown in Section 4.4 is not computationally efficient as
it involves N matriz inversions, where N is the mazimum order of the model. The LDLT

decomposition shoun in equations (4.36) through (4.47) is for analytical derivation purposes
only.

Remark 4.6 From remark-4.4 it can be seen that if §{t,N') is used in place of y(t) to
compute S(t,N), then S(t,N) becomes rank deficient (by one column) if N' < N. It is
recommended that the LU decomposition be used for such a rank deficient S(t, N). However
if UDUT decomposition is to be used for rank deficient S(t,N ), then {(t,N') should be
replaced by §(t, N') + A(#(t, N') — y(t)) in the regressor ¢(t,N). The choice of A is crucial
because A has to be small enough to suppress the effecé of noise in ¢(t,N) and yet large
enough to remove the effect of collinearity in S(t,N). For ezample, o A value of 1075 was
adequate to handle the ezamples iliustrated in the ensuing sections.

4.5 Simultaneous estimation of Laguerre models with real
poles

The Laguerre function model with a real pole a,(] @ |< 1) is used to approximate the
dynamics of an overdamped process. The real pole a in the Laguerre series represents the
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dominant time constant of the process. The discrete Laguerre functions for a real pole in
the z-domain are defined as [9, 6]:

Ur(z) = Li(2) =

vVi—aZ (1 —az\*!
) (4.55)
z—Qa zZ—a

The above Laguerre filter pertains to discrete models where a unit delay is implicit as
discussed in the previous section. Therefore any discrete linear stable system with the

transfer function G(z) can be expressed as a weighted sum of the Laguerre filter series as:

G(z) = ) 9k Li(2) (4.56)
k=1

where the coefficients gk, (k = 1,2,3,...) are called the Laguerre gains. Using equations
(4.9) and (4.19), the estimated output for the Nth order Laguerre model can be written as:

N
§(t, N) =D gen(t) L(t) (4.57)
k=1

where [ (t) = Li(q)u(t). The AUDI solution for Laguerre models is obtained by substituting
Yi(t) = l(t) and forming the data vector shown in equation (4.23). The AUDI method
described in the earlier section (i.e. equations (4.23) through (4.51) and (4.4.4)) is then
used to obtain the parameter set (t, N) via the U(t, N) matrix for the Laguerre model. A
comparison of the estimated Laguerre gains between the LS, and AUDI methods is shown
in the following section via a simulation example.

4.5.1 Simulation Example

Consider a third order noise-free overdamped stable plant: G(s) = 1/(s+1)(3s+1)(5s+1),
whose discrete equivalent for a sample time of T's = 1 is:

0.0077z! + 0.0212z~2 + 0.0036z~3

1—1.9031z-1 + 1.15142—2 — 0.2158z—3

The batch LS, solution for a square wave type of excitation for 1 to 4** order
Laguerre network models and their corresponding loss functions Jy (t) are shown in Table
4.10 for @ = 0.8434. The AUDI solution for this problem is shown in Table 4.10 for
comparison. The loss functions in Table 4.10 indicate that a 372 order Laguerre filter model
adequately represents the dynamics of the system.

The UDUT decomposition of the IAM results in the following £(t, N) parameter
matrix U(t,N), and the loss function matrix D({t, N):

G(z) =

(4.58)
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Figure 4.1: Comparison between AUDI
and LS, methods for 2"? and 3" order
Laguerre models.

Figure 4.2: Magnitude Spectrum of the
modelling errors for the AUDI and LS,
based Laguerre models for orders 2 to 4.

3.3988 9.1601 —21.7299 —84.5853

1

0 1 1.8311 --3.8239 15.1486
Uit4)=1| 0

0

0

0 1 —3.3769 13.4076 (4.59)
0 0 1 —4.7788
0 0 0 1

D(t, 4) = diag (150.9492, 100.2522, 68.7863, 23.7327, 19.8) (4.60)

Equation (4.51) is used to calculate the model-set 6(t, N) from equation (4.59) as shown

in Table 4.10. As an example the parameters calculated for the 3"¢ order Laguerre model
by the AUDI method are:

oy - [e2 6ea 1)’
&(t,3) &i(t,3) &(¢,3)
—3.8239 —3.3769 1 T
[-21.7299’ —21.7299° —21.7299]
= [0.1760, 0.1554, —0.0460]

= [513(t), g2a(t), Gaa(®)]T (4.61)

Similar to the LS, results, the AUDI results (Table 4.10 and equation (4.60) ) also
indicate that a 37 order Laguerre filter model adequately represents the process dynamics.
From Tables 4.10 and 4.10 it is observed that with the increase in the order of Laguerre
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model the difference in Laguerre gains or loss function as obtained from AUDI and LS,
methods diminishes considerably.

Figure 4.1 compares the Nyquist plots between the true plant and the estimated
models obtained from the 2"¢ and 37 order Laguerre filter models obtained via the AUDI
and LSy methods. The figure shows little difference in the Nyquist plots of LS, and AUDI
based models for both 2™ and 37¢ order Laguerre filter models.

The 374 or 4** columns of Tables 4.10 and 4.10 consistently indicate that the time
domain performances of the LS, models are better than the AUDI based models. However
from the Nyquist plots in Figure 4.1 it is difficult to conclude if the LS, models are better
than the AUDI based models. The euclidean norm of the modelling errors shown by the
last column in Tables 4.10 and 4.10 infact indicate that the AUDI based 2"¢ and 374 order
Laguerre models are better than the LS, based models in the frequency domain. The
magnitude spectrum of the modelling errors for the AUDI and LS, based models are
shown in Figure 4.2, which also show for this example that: (a) |[|G(w) — G(w)||oo is lower
for the AUDI based method; (b) at the lower frequencies LS, based models are better;
and (c) AUDI models are generally better at the higher frequencies. Although these results
cannot be generalized, nevertheless one may conclude that: if the AUDI and LS, models
are close, then it is difficult to decide which of these two models is better in the frequency
domain.

In Figure 4.3, the Nyquist plots of 374 order Laguerre filter models for noise-free
and noisy (SNR=8.5) data are compared with the models obtained by the AUDI method.
The result shows that the AUDI method with appropriate modifications discussed under
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remark-4.4 performs well even in the prusence of significant noise. This confirms as shown
in Figure 4.4, that the AUDI method with the above modification can be used even in the
presence of noisy process data.

4.6 Simultaneous estimation of Laguerre models with com-
plex poles

The Laguerre series with a complex pole is a special case of the more general discrete Kautz
series described in the next section. Fu and Dumont [6] have shown the following formulation

for the discrete Laguerre functions for a complex pole @, (] a |< 1), to approximate the
dynamics of underdamped systems:

o 1(z) = T ()P 1(2)
Vo(z) = T2(2)¥ 7 (2) (4.62)

where: ¥1(z) = NM1V1 —1r2 (z oy ) Uy(z) = Nov/1I —12 (z}__,—;—;"zz‘f’-_,)
‘I’(z):: (lz_%)'r= m,ﬂn:a mz_a.___r_%zi :":+ )

N2 (1+a2482)2 —40> Nz (1+a?462)2—4a?
(1+a?+62)(1+m7)- “ima’ (1+ad 4+ (1+m3)-4maa

(4.63)

and where a and g are real and imaginary components of the dominant complex pole a. As
described in Section 4.4, the regressor ¢(t, N) can be formed to solve the AUDI problem.
Since the Laguerre model for complex pole is a special realization of the Kautz model,

simulation results for this section are lumped with the example presented for the Kautz
model.

4.7 Simultaneous estimation of Kautz models

As stated in the previous section, Kautz models are used to describe resonant systems.
Kautz models can be represented as [9, 11):

22 +blc—1)z—c\ z2+blc—1)z—c

k-1
Tplz) = V=31 - ) (—-cz’z +b(c—1)z + 1)

22 +blc—1)z—c\ 22+blc—-1)z—c

Vi=¢& k-1
Uak—1(2) = Loclb (—cz2 +bc—1)z + 1)

(4.64)
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Kautz and Lag-c models. the AUDI and LS, methods.

where b and ¢ (|b] < 1,|c| < 1) are obtained by solving 2% + b(c — 1)z® — ¢ = 0 such that z
corresponds to the dominant (complex) pole of the system. The AUDI estimation of Kautz
and Laguerre models with complex poles is considered in the following illustrative example.

4.7.1 Simulation Example

Consider an underdamped noise-free stable plant having zeros at [0.1 £ j0.2,0.2 &+ 70.1]
and poles at [0.8 % 70.2,0.88 + j0.3] which corresponds to a peak magnitude of 22.26 at a
normalized frequency w/wy, = 0.1033. Figure 4.5 compares the Nyquist plots for 4% and
8th order Kautz and Laguerre models with complex poles (denoted by Lag-c) obtained via
the AUDI and LS, methods. A small difference is observed between the Kautz-AUDI
and Lag_c-AUDI models for the 4" order models. However for the 8tk order model, the
difference between LS, and AUDI models is not apparent.

Figure 4.6 shows parameter profile for the 8th order Kautz and Lag_c models as obtained
by the AUDI and LSy approaches. The figure shows that the AUDI and LS, parameters
are in good agreement. Kautz and Lag-c models essentially give the same model but their
parameter profiles are different because of the difference between their basis signals. Figure
4.7 shows that 8% order Kautz and Lag.c models obtained via the LSy and AUDI methods
are in good agreement for noisy data having a signal-to-noise ratio of 8.5.
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Figure 4.7: Comparison between AUDI and LS, methods for 8" order Kautz/Lag-c models
for noisy data.

4.8 Simultaneous estimation of FIR Models

The FIR model is a special case of orthonormal functions described in the preceding sections
[9). The basis function ¥ (z) for the FIR model is defined as:

Ti(z) = z7F (4.65)

Several industrial predictive controllers used in the chemical industries are: based
on the FIR/step-response models. Generally a large number of coefficients are required to
describe the dynamics of a process using FIR or step-response models which is typically of
the order of 20 to 60 or even more, depending on the sampling time and nature of the-process
dynamics. However this allows the FIR models to capture unusual process dynamics. The
method of AUDI is used here to simultaneously estimate the coefficients of all M to N*»
order FIR or step-response model, where M and N can be fairly large. A linear stable
transfer function G(z) can be expressed in the infinite impulse response form by:

oo
G(z) = z fr 27k (4.66)
k=1
or in the step-response form as:
o0
G(z) = (1 - z—l) Z Sk 27k (4.67)
k=1
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where f; and s, are the FIR and step-response coefficients respectively. The basis signal
i (t) for the FIR and step-response models are u(t—k) and Au(t—k) respectively. Therefore
the data vector for the N** order FIR-AUDI formulation becomes:

¢(tv N) = [—y(t)’ “(t - 1)1 u(t - 2)! ey u(t - N)]T (4‘68)
similarly the data vectm for the AUDI formulation of the step-response model is given by:

B, N) = —y(t), Auflt — 1), Au't — 2),..., Au(t — N)|T (4.69)

The AUDI method described in earlier sections can then be used to simultaneously estimate
the coefficients of FIR or step-response models from orders M to N.

4.8.1 Simulation Example

The 15%* and 30t order FIR coefficients determined by the LS, and AUDI methods for
the 3™ order process described in Section 4.5 are compared in Figure 4.8. Usually the
FIR coefficients can be divided into initial and tail-end sections as shown in this figure by
the wortical bars. The initial section of the FIR coefficients capture the high frequency
and unusual part of the process dynamics whereas the tail-end or low frequency portion
is characterized by an exponential decay function corresponding to the first order model
[27). Therefore an optimal approach for estimating FIR models weuld be to fit the tail-
end by an exponentially decaying function and use the AUDI or LS, methods to identify
the initial portion of the FIR coefficients. Such an approach not only svoid the problems
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of truncation error but it aiso gives smooth frequency characteristics. Since the tail-end
function is a sinooth extrapolation of the initial portion of the FIR coefficients. the tail-end
function varies according to the order of the identified FIR model to maintain the continuity
of the parameter profile.

Figure 4.8 shows that the tail-end portions of the 30** and 15 order FIR model-
approximated by the decaying functions e~%-227 and =927 respectively. The vertical
on the FIR response indicate the point from where the tail-end approximation is made.
this case, the last 5 data points of the initia! portion of the FIR parameters (that excludes
truncation error) are used to extrapolate the tail-end portion. A significant difference is
observed in the extrapolated truncation terms between the 30t* and 15 order FIR models
because, the 15" order model is not adequate in this case to capture the dominant dynamics
of the process.

Figure 4.9 compares the Nyquist plots between the true plant and 15** and 30"
order FIR models, where the tail-ends are approximated using the method described above
to obtain better frequency characteristics of the model. No significant difference is observed
between the models obtained from LS, and AUDI methods when low-frequency square
wave excitation is used as shown in Table 4.10. For a white noise or RBS excitation, a small
variance of the order of 10~ % is however observed between the FIR parameters obtained
using the LS, and AUDI approaches. The figure also shows that the 15** order FIR
model is inadequate to describe this process, which is verified by both the AUDI and LS,
approaches.

The method just described for the FIR model can aiso be extended to step response
model which is iilustrated by the above example in Figure 4.10. The extrapolation function
used in this case is 0.5[1 — e~ %22(:=11)] for the 30** order step response model. Figure 4.10
also shows no apparent difference between the AUDI and LS, based step response models.

4.9 Application of the AUDI method for estimation of
Markov-Laguerre models

The AUDI method described for FIR and Laguerre models can be combined to estimate
parameters of the Markov-Laguerre models. Markov-Laguerre models have the advantage
of better identifiability in the presence of measurement noise because of the Laguerre com-
ponent and they are also well suited for processes with significant time delays and non-
minimum phase behavior due to the presence of FIR components [15]. Although Laguerre
models can be used to represent processes with delays as noted by Dumont et al. [10}, it
is should be observed that a Markov-Laguerre model gives a better representation for a
delayed process as also viewed by Finn et al. [15]. For a known delay, d, or for a known

duration, d, of inverse response snd ior an upper limit (N) on the order of Laguerre maodel,
the data vector is given by:
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¢(t’ d7 N) = [—y(t),u(t - 1)1 .. 7u(t - d)’ll(t - d)s e alN(t - d)]T (4'70)

The AUDI method described in this section can also be used to estimate the Markov-Kautz
[15] models, which can be used to approximate the dynamics of underdamped systems with
a delay or inverse response.

4.9.1 Simulation Example

The use «f Markov-Laguerre model is illustrated for the plant described in Section 4.5 to
which a delay of 4 sampling intervals has been added. Nyquist plots between the true plant
and the estimated Markov-Laguerre models with 4 FIR coefficients and 3 and 4** order
Laguerre models are compared in Figure 4.11 as obtained by the LS, and AUDI methods.
The Nyquist plots show that the LS, and AUDI results are in good agreement and they
also capture very effectively the high frequency dynamics due to the delay. Figure 4.11
shows that the 4t® order Markov-Laguerre model matches very well with the true process.

4.10 Conclusions

e The AUDI method can be used to simultaneously estimate the parameters of 1 to
Nt» order orthonormal function models such as Laguerre models with real or complex
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IMAGINASY

Figure 4.11: A comparison between 3'¢ and 4" order Markov-Laguerre models obtained
using the AUDI and LSy methods.

poles, FIR (also step-response), Kautz and Markov-Laguerre models.

e LU decomposition of S*(¢, N) gives LS, solution and it is more robust to process-noise
than the AUDI decomposition of S(t, N).

e The solutions obtained by the AUDI method are close to the LS, solutions. The dif-
ference in AUDI and LS, solutions are due to the use of different objective functions.
However the difference between AUDI and LS, solution diminishes with increase in

the model order. This procedure can therefore be used to verify an appropriate order
for the AUDI and LSy models.

e The AUDI method is sensitive to measurement noise. The sensitivity to measurement
noise is reduced by replacing the noisy cutput by a LS, based model output of suitable
model order N’ in the data regressor ¢(t, N). The order N’ should be greater than
the maximum desired order N in the AUDI formulation.

e The method of UDUT decomposition is computationally most efficient in caiculating
the AUDI parameter set =(t, N), if the DPMM (S(t, N)) matrix is full rank. For
rank deficient S(t, N), LU decomposition can be used to calculate Z(t,N) via the
transformation U(¢t, N) = L-T(t,N). The UDUT decomposition can be used for

rank deficient S(t,N) after suitable modifications in the data regressor as described
in remark-4.6.

e The truncation error in the FIR model can be reduced by approximating the tail end

of the FIR model by an exponential decaying function e”*f, where o represents the
derninant time constant of the process.
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Table 4.2: Laguerre gains obtained using LS;, method.

# of | Laguerre gains gi
Laguerre () | A% IGW) - Gz
filters "
1 0.2782 8.2064 | 5.4365% 3.1351
2 0.2070, 0.0993 0.7454 | 0.4938% 1.3058
3 0.1779, 0.1519, -0.0431 0.0471 | 0.0312% 0.3125
4 1 0.1790, 0.1581, -0.0558, 0.0112 | 0.0026 | 0.0017% 0.1579
Table 4.3: Laguerre gains obtained using AUDI method.
# of Laguerre gains g;
Laguerre Fo(t) | 5% | IG(W) - Sz
filters
1 0.2942 8.6782 | 5.7491% 3.2450
2 0.1999, 0.1092 0.8199 | 0.5432% 1.1921
3 0.1760, 0.1554, -0.0460 0.0503 | 0.0333% 0.2838
4 0.1791, 0.1585, -0.0565, 0.0118] | 0.0028 | 0.0018% 0.1617

Table 4.4: Comparison of FIR coefficients obtained using LS, and AUDI methods.

AUDI

LS,

#

AUDI | LS,

e

AUDI

LS,

Somqmm»uwwzﬂ:

0.0066
0.0358
0.0630
0.0802
0.0879
0.0885
0.0845
0.0779
0.0701
0.0619

0.0061

0.0358
0.0630
0.0802
0.0879
0.0885
0.0845
0.0779
0.0701
0.0619

11
12
13
14
15
16
17
18
19
20

0.0539
0.0465
0.0397
0.0337
0.0284
0.0239
0.0200
0.0167
0.0139
0.0115

0.0539 -
0.0465
0.0397
0.0337
0.0284
0.0239
0.0200
0.0167
0.0139
0.0115

21
22
23
24
25
26
27
28
29
30

0.0095
0.0079
0.0065
0.0054
0.0044
0.0037
0.0030
0.0025
-0.012
0.0223

0.0095
0.0079
0.0065
0.0054
0.0044
0.0037
0.0030
0.0025
0.0020
| 0.0075
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Appendix-1: UDUT Decomposition

This appendix shows that the matrix U(¢, N) contains the AUDI parameter set Z(t,N)
which is obtained via the transformation U (t, N) = £-T(t, N). This is illustrated through
an example for N = 3 and by considering the matrices L and L(t, N) in equations (4.44)
and (4.45). For the sake of simplicity in the notations, £(t, N) is written as £(N) (i.e. by
dropping the argument (¢)) in the following example:

L(1,3) = [L3L2Lh] =

1 0 0 0 1 0 0 0 1 0 0O
0 1 0 0 0 1 0 —6(1) 1 00 |
0 0 1 0 —£(©2) -&©2) 1 0 o o1o0]"
—£,3) —&03) —-&B) 1 0 0 01 o 001
1 0 0 0
| & 1 0 0
5:1(2)"-5:2(2)5:1(1) o o {:2(2) 1 0
£1(3) + &2(3)61(1) + £3(3)61(2) + £3(3)€2(2)61 (1) £2(3) + £a(3)é2(2) &3(3) 1
(4.71)
then
ue3) = [ce3)™ "
1 &£Q) 5:1(2) 6:1(3)
10 1 £&(2) &0B)
- o T2 (4.72)

I‘ 0
\e o o 1
Appendix-2: Solution for £(t, N) and 6(t, N) parameters.

The purpose of this exazuple is to show that the parameter vector 9(t, N) is equivalent to
£(t, N) for a complete systetn i.e. wizn the model is equal to the plant and where the plant
is noise free. This is illustrated using symbolic computation for a 374 order orthonormal
model. The argument ¢ is dropped from 8(t, N), £(¢, N) and other intermediate variables in
this example for the sake of simplicity. Consider the following 3" order orthonormal model:

y(t) = hT(t,3)8(3) (4.73)

where 6(3) = [g1,92,93]7 and the regressor vector is: h(t,3) = [41 (), W2(t), ¥3(t))7T. For
any 3 points Y(t,3) = [y(t — 2),y(t — 1),y(t)]T, 6(3) is given by:
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' = H-1(t,3)Y(¢t,3) (4.74)

where H(t,3) = [h(t — 2,3),k(t - 1,3),h(t,3)]T. The following solution (4.74) is then
obtained using Matlab 1! symbolic computation:

0(3) [gl’ g2, g3] = ; [G'I’ —u2, a3]T (4.75)

where

d = P(t—2)Pa(t — 1)a(t) — 1 (t — 2)¥2(t)ha(t — 1) —
Dy ()2t — 1) (2 — 2) — U (t — 1)2(t — 2)ebs(t) +
W1 (t — 1)z (£)3(t — 2) + h(t)a(t — 2)¢ps(t — 1)
a1 = y(t—2)[2(t — 1)va(t) — ¢a(t)ys(t —1)] +
y(t — 1)[ws(t — 2)1b2(t) — Yot — 2)3(t)] +
y(t) 2 (t — 2)vs(t — 1) — a(t — L) (t — 2)]
az = y(t—2)[hr(t —Ya(t) — ha(t)ys(t — 1)) +
y(t — D)1 (t)balt — 2) — ¥(t — 2)¥s(t)] +
i 55y (8 — 2)apa(t — 1) — Pi(t —1)¢s(t — 2)]

ax = yir— 2t — Dapa(t) — i (t)e(t — 1)) +
wid — 1) [y ()2 (t — 2) — P1(t — 2)v2()] +
y(&)[W1(t — 2)va(t — 1) — Y1 (t — V)¢e(t —2)] (4.76)

Similarly, according to the AUDI approach, equation (4.73) can be rewritten as:

¥a(t) = —¢7 (£, 3)€(3) (4.77)
again using symbolic computation it can be shown that the solution for £(3) is:
T
al a
£3) = [ o aa] (4.78)

Comparing solutions (4.75) and (4.78) it can be infeired that they are equivalent,
i.e. i»uen £(3) is converted into LSy form, it exactly results into 6(3) as shown by equation
(4.75).

11The Math Works Inc.
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Chapter 5

Robust Design of Generalized
Predictive Control (GPC).

The small-gain theorem is used to obtain robust design guidelir+: for the GPC control law.
The effect of different tuning parameters on the robustness of GPC is examined via analytical
methods, simulations and experimental evaluations. This method relies on a priori knowledge
of the model-plant mismatch which can be estimated from either open loop or closed loop plant
data. The proposed robust design method can also be used to select some of the GPC tuning
parameters using parameter optimization techniques.

5.1 Introduction

The performance and robustness of a model based controller to u large extend depends on
how well a model is able to capture the dynamics of a plant. A mathematical model can
have several degrees of complexity, but invariably in a realistic situation a model cannot
exactly emulate a physical process, and the problems of stability and performance in a
system mostly manifest themselves from this model-plant uncertainty. Furthermore for
most real-time control applications, simpler models such as linear input-output transfer
functions are desirable. But the performance and stability limitations are often significant
for such linear models owing to the constraints on model order and structure. Identification
methods discussed in Chapter 3 can be used to estimate a linear model of the plant.

One of the important robustness tools that can be used examine the stability of a
system in the presence of model-plant uncertainty is the norm bounded small-gain theorem
(SGT) based on the Nyquist stability criterion [1, 2]. The small gain formulsation is only a

Material from this chapter has been published as: (a) Banerjee,P. and S.L.Shah, ‘The Role of Signal
Processing Methods in the Robust Desigu of Predictive Control’, Automatica, vol 31, No. 5, pp 681-695,
1995 and (b) Banerjee,P. and S.L.Shah, ‘Robust Stability of GPC as Applied to a First order Model with
Delay’, Proc. of ACC, Vol 999, Pg. 999-999, Seattle, 1995.
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sufficient condition for stability, which makes the design of a controller potentially conser-
vative. The key difficulty in the application of SGT is the knowledge of model uncertainty
bounds. Inadequate estimation of the uncertainty bound can lead to instability whereas
a conservative bound can reduce the performance of a system. The quantification of such
unrertainty bounds is currently an active area of research 3, 4, 5, 6, 7, 8, 9]. Several para-
metric and nonpararmetric approaches have been proposed to estimate the error bounds,
One such method is due to Kosut (1987) [3], which uses the discrete Fourier transform
(DFT) of the output error to estimate the spectrum of the model plant mismatch (MPM).
Kosut’s results indicate a good fit of the uncertainty over a certain frequency band for the
noise free case. However in Chapter 2 it was shown that, with the use of classical signal
processing smoothing techniques [10, 11, 12}, it is possible to obtain a good estimate of the
uncertainty over the entire frequency range of interest for the robustness analysis.

An important class of controllers that has received widespread acceptance and
success in the chemical process industry is model-based, long range predictive controller
(LRPC) [13, 14, 15, 16]. To fully exploit the advantages offered by such controllers, it
hecomes meaningful to develop robust design guidelines for successful implementation of
such controllers in industry. Robust design of linear quadratic (LQ) optimal controllers
within SGT framework is discussed in Bitmead et al. (1990) [17]. Robust design of an ob-
server prefilter for one such LQ controller, namely the generalized predictive control (GPC)
[14] using the SGT tool was examined by Robinson and Clarke (1991) for mean-level and
dead-beat performance [18]. This chapter examines the tuning parameters of GPC from
the perspective of robustness analysis. The robustness properties of some of these tuning
parameters are also analytically established in this chapter.

Analytical derivations of robustness measures involve development of explicit ex-
pressions for the GPC Diophantine coefficients and for the polynomials that represent GPC
in the feedback form. These expressions in themselves are an important contribution be-
cause they: (a) can increase the computational speed of the GPC algorithm and (b) have
potential use in adaptive GPC control. The use of Maple? (a symbolic mathprocessor),
proved to be indispensable in deriving expressions for the GPC Diophantine coefficients.
The analytical results presented in this chapter are limited to first order models? as it will
become clear that a generic proof for the robust stability of GPC when applied to models
of order higher than one becomes a nontrivial problem. To the best of this author’s knowl-
edge, this is the first complete and systematic application study where the robust design
techniques for GPC are developed by simulations, experimental evaluations and supported
analytically (for some of the key tuning parameters of GPC). This design method also helps

2Maple is a registered trademark of Symbolic Computation Group, Waterloo Maple Software, University
of Waterloo, Canada, 1981-1990.

$ Any overdamped process can be approximated by a first order model with a delay [19). Moreover in the
chemical industry, overdamped processes are quite common and heirce these results can be applied.
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to select appropriate tuning parameters such that the controller gives ‘reasonably good™
performance but with guaranteed robustness to the estimared MPM. This work is also ex-
tended to the robust design of GPC in a quasi-adaptive framework by using closed-loop
data to estimate the MPM.

This chapter is organized as follows: (a) The principle behind GPC is briefly dis-
cussed in Section 5.2, (b) The expressions for the GPC Diophantine coefficients and linear
form of GPC are derived in Sections 5.3 and 5.4, (c) Section 5.5 describes the formulation
of GPC in an SGT framework for robustness analysis, (d) The effect of different GPC tun-
ing parameters is discussed in Sections 5.7 to 5.12, (e) The effects of model quality and
noise/disturbances on the robustness of GPC are discussed in Sections 5.13 and 5.14, (f)
The proposed robust tuning guidelines for GPC are evaluated experimentally in Section
5.15, (g) Estimation of modelling errors and the model from closed loop data are presented
in Section 5.16, (h) Use of an optimization technique for the selection of appropriate GPC

tuning parameters is discussed in Section 5.17 and (i) The chapter ends with concluding
remarks in Section 5.18.

5.2 Generalized predictive Control

Most LRPC strategies (including GPC) are based on the minimization of a multistep
quadratic cost function J, such as:

N2 NU
J= [wt+1)—gt+it)? + > MAult +i— 1))? (5.1)
i=N; i=1

where N;, N2, NU and )\ are the tuning parameters representing the minimum and max-
imum prediction (or costing) horizon, the control horizon and control weighting (or move
supression factor) respectively. In equation-(5.1), w(t + i) and §(t + i|t) are the projected
set-points and predicted outputs over the prediction horizon and Au(t + i — 1) represents
incremental contrc™ -5 over the control horizon. The control law is obtained by min-
imizing J with resp .u(t+i—1). The predicted output §(¢ +%|t) is model dependent
and in the case of GPC, this model has an ARIMAX structure.

In order to improve the controller performance, the objective function J in equation-
(5.1) can be modified to include: (a) weightings on the predicted cutput, (b) weightings

“The definition of a good performance depends a lot on the plant dynamics. A controller that gives a dead
beat response without violating any constraints can be said to define the characteristics of the best output
performance that can be achieved. This usually is not possible to achieve in practice because of modelling
errors and plants (particularly for chemical processes) with high orders and which are often characterized
by the time delays, inverse response or other unusual high frequency dynamics. Nevertheless, a good or an
acceptable performance can be said to have zero offset, a minimum overshoot with a response or settling

time much faster than the mean level performance and the controller actions are smooth and within the
constraints.



on the controller movinents and (k) st - .«dy-state weighting (20, 21, 22, 23]. Some of these
weightings in the objective function a.e useful for control-relevant identification, which is
discussed in Chapter 7. Recently it has been shown that the objective function J given
by equation-(5.1) can be modified to: {a) have variable spacings in the prediction horizon
and (b) use interpolation functions in J [24], but such modifications are not considered
here. This chapter pertains only to the following weighted objective function for the GPC
{20, 23):

Na NI
J= 3" Lylw(t+1) — Plg)j(t + i + 3 MAu(t +i— DI + Yoolfes — wasl®  (5:2)
i=N) i=1

where 'y = diaglyy(N1), (N1 +1),---, ~y(i+2)] is the output weighting, Yoo is the steady-
state weighting, 74, is output at the steady-staie, wss is the set-point at co-horizon and P(q)
can either be a transfer function or a polynoinial that imparts model folowing characteristics

to the controller. In this chapter P(q) is consid-red to be a polynomial. J in equation-(5.2)
can be written more compactly as:

J = [w—¥Tfw — %] + AuTAAu (5.3)

where:

r = diaglyy (1), %N +1),...,7(N2);Yoo)
= [w(N), w(Ny +1),..., w(N) wee]”
U = Pt + Nilt), §(t+ Ny +2{t),. .., 5t + Na|t)], Gss]”
(@t + Ny[t), B(t + Ny + 1[t), ..., T(t + No|t), VLS
A diag[\(1), A(2), ..., A(NU)]
Au = [Au(t),Au(t+1),...,Au(t + NU - 1)]T 15.4)

€
|

I

such that P(1) =1 and all values of v, (i) in I" are identical to vy, A(z) in A 2:e identical to
A and ‘1’33 = 1733-

Note 5.1 As in the case of previous chapters, all polynomials in this chasters are in terms
of g~1, altheuyh fo- the sake of convenience, ¢ is used in fhe aigumenis.

The uncoustrained minimization of J in equation-(5.3) with respect to Au results in the
following projected (GPC) control law [14]:

Au =[0TG + A]"1GT [w —~£] (5.5)
h

where G is the step-response matrix and f is the free-response vector whose derivation is
shown in the following section.
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5.3 Diophantine equations

For the ARIMAX process-model:

. C
Aau®) = B@utt - 1) + ELeqr) (5.6)
the projected output P(q)g(t+i|t) for GPC in the equation-(5.2), is obtained by multiplying

equation-(5.6) by P(gq) and taking the Diophantine identity® of the resultant noise model
as:

P(q)C(q) _ —i Fi(q) .
where A(q), B*(q), C(q) are polynomials as menticned in Chapter 3, A is the difference op-
erator 1—g—! and E;(q) and F;(gq) are the i*" quotivnt and remainder of P(q)C(q)/[A(q)A]).

Note 5.2 The numerator polynomici B*(q) i1=:dudes only the process Jrlays and excludes
the zero order hold (ZOH). The ZOH is consi:i<+w. iy taking the product B*(q)u(t — 1) as
shown by equation-(5.6). The numerator pefynuvinsai is designated by B(q) if it includes the
ZOH i.e. B(q) = q 1B*(q).

For the degree of a polynomial denoted by é{-}: we then d.fine na = §{A(q)], nb = §[B*(q)]
and nc = 6§[C{(g)]. Combining equations-{5.5) and (5.7) results in:

gt +ilt) = ____E‘(gg) D puit+i-1) + —-—gé;’; y(t) (5.8)

The expression E;B*(g)/C(g) in equation-(5.8) can be further factored as:
w =G, —i_G__"_(l)_ 5.9
51C) Gilg) +q ) (5.9)

which upon substitution in equation-(5.8) results in:

Ut +ijt) = Gi(g)Au(t +i—1) + f(t +1) (5.10)
where f(t + i) is the filtered free-response, which is given by:

ft+i) = Gi(@)Av! (t — 1) + Fi(a)y/ (1) (5.11)

where y/(t) = y(t)/C(g) and Auf(t — 1) = Au(t - 1)/C(g). For the prediction horizon N
to N3, equation-(5.11) can be compactly expressed as:

5Recently a new approach for the recursion of the Diophantine equations has emerged for GPC [24].
However the classiczl Diophantine approach is pursued in this thesis because it adequately serves the purpose
of deriving various proofs in this chapter. However as a future research direction, it would be of interest to
explore the effectiveness of the new Diophantine approach to solve the problems outlined in this chapter.
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f=GAu/(t — 1)+ Fy/ () (5.12)

for use in equation-(5.5). In reality the noise polynomial C(gq) is unknown. hence it is
replaced by its estimated value C.(q) (nc = §(C.(q))) which then becomes an important
tuning parameter of GPC. The C.(q) filter is more popularly known as the T-filter or the
observer polynomnial and helps in rejecting undesirable effects of the unimodelled dynamies.
At steady-state the free-response is given by [22]:

fo = Gu(@Au/ (t — 1) + F(q)y (1) (5.13)
where
) = S
Gila) = gpyx(B*(Cee) - C()B(g)] (5.14)

In order to analytically establish robustness properties of the GPC tuning param-
eters, it is necessary to express the Diophantine polynomials E;(q), F;{q), G,(q) and G;(q)
as functions of the GPC tuning knobs and the process model. In this context, first consider
the denominator polynomial:

Algd =1+ a;q—l + azq”z + o+ Qpag ™ (5.15)

whose roots are r; € ™. Using Maple, it is found that the coefficients a; in equation-(5.15)
are relacted to the roots r; in the following way:

ap = —(ry+r2+---+7n)

az = Ti(re+- -4 1) +ra(riFra oo 4 re.) 4o
+Tna(r1 + 724+ - 4+ Trpg-1)

a3 = —[rira(ra -+ rae) treralri b rg o rR) -

+Tna-1Tna(ri +--- + TM-Z)]

na = (=1)"(rir2...7na) $5.16)

From the above equation-(5.16) it is ciear that the expression for the coefficients a; becomes
a complicated function of the roots r; as the value of na increases. Hence:

Note 5.3 For the sake of simplicity in the following analytical exposition, the model is
restricted to first order i.e. na =1 where a = —r.

169



The justification for the above note-5.3 will become more apparent with further progress in
the analytical developments presented later in this chapter. Analytical derivations for the
Diophantine polynormials based on a first order model are considered next in the subections-
5.3.1 to 7.3.4.

5.3.1 The quotient polynomial F;(q) in the Diophantine identity

The factor 1/AA(q) for na = 1 (for 0 < a < 1) in equation-(5.7) can be expressed as:

1

A—A(—)—=1+(1 +a)g '+ +a+a®)g 2+ +(Q+a+a’+---+a®)g™ (5.17)
g

If the geoinetric series in equation-{5.17) is denoted by:

. 1— an+1
1+a+a‘+a3+---+a"=———1_a =Pi(n+1) (5.18)
then equation-(5.17) can be rewritten as:
1 -1 V=2 —co
— ces .19
A Pi1(1) + P1(2)g " +P1(3)g™“ + --- + P1(o0)q (5.19)

Assuming P(q) = 1 and C(g) = 1, then from equations-(5.7), (5.17) and (5.19), it is shown
that:

Efqg) = l+eig'+eq2+---+eq™®
= 1+Pi2Q)qg ' +Pi@B)g %+ - +P(i+ 1)} (5.20)

For C(g) =1 — eq™ !, e; in equation-(5.20) becomes:
ei = —-i—-[(l —a'tl) — (1 — a%)]
! l—a
= Pi(i+1) - cPi(d) (5.21)

5.3.2 The remainder polynomial F;(g) in the Diophantine identity

Lemma 5.1 The Diophantine polynomial Fi(q) in equation-(5.7) holds the following rela-
tion [21]:

9" ' Fi(q) = Fi—1(g) + ei-1g7' AA(g) (5:22)
Proof: Rearranging the Diophantine identity in equation-(5.7) yields:

a7 'Fi(q) =1 — Ej(q)AA(q) (5.23)
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similarly for i — 1, we have:

¢ O VE 1(g) = 1— Ei 1(q)AA(q) (5.24)

J.o
Substituting equation-(5.20) in equations-(5.23) and (5.24) and subtracting the resulting
equations. proves the lermma.
A combination of lernma-5.1 and equation-(5.18) for C(g) = 1 — ¢¢ ! gives the
following expression for F;(q):

Bl = 1_1_a[1_ai+1"‘c(1—’li) —a(l-a' —¢e(1—a' 1))
= lia[(l—c)+ai(c—a) —a((l—c)+ai ‘((:——a))]
= [Pi(i+ 1) — cP1(3) —a(Py(i) — ¢P1(i — 1))
= [fil f,'z] (5.25)

Note 5.4 The above expression (equation-(5.25)) becomes difficult to generalize for na > 2,
hence this is an additional reason to restrict the analysis presented in this chapter to a first
order model.

5.3.3 The quotient polynomial G;(¢) in the Diophantine identity

For the model numerator in equation-(5.6) (after considering the ZOH):

B(g) =g *(big™ ' + bog 2+ -+ + bupg™™) (5.26)

(where d is the delay), using Maple and equations-(5.9) and (5.20), the Diophantine poly-
nomial G;(q) is shown to be (where ¢ € [N, N;] and N2 > max(d, nb)):

Gi(@) = 9a+107 Y + 904207 D 4o+ guinng D) 4 gy
big~ D) (b + bre)g @D 4 o 4 (bup + bup 165 + -+ Drenp 1)y PP 4
+(bnb€i—nb + bpb—1€i—npp1 + - + brei-n, ) * (5.27)

where €¢; = 0 for j < 0 and g; = O for 5 < d. For a first order model of the form:
bg—(¢+1) /(1 — a9—1), g; in equation-(5.27) reduces to:

b(1 —a*~9%) .
gi I p— i>d
= bPi(i — d)
0 1 <d (5.28)

Equation-(5.28) ;s valid irrespective of C.(g).

171



5.3.4 The remainder polynomial G;(g) in the Diophantine identity

Gilg) in equation-(5.9) is given by:

Gi(g) =G1 +G2g” ' + -+ Gig™" (5.29)
The expression for Gi(g) becomes complicated if nb exceeds 1, therefore:
Note 5.5 For the sake of simplicity, further analysis is carried out for B(q) = bg—(4+1),

In view of the above note, from equations-(5.9), (5.21) and (5.18), G(q) is given by:

Pi(1) |
Pi(l) &
Pi(1) e ez
G=0b
P1(1)
P1(1) ey
Pi(2) ez
| Pi(Na—1) engoa -0 eNy-2 €Nyl [

where N} = 1 in the above equation and in general, §[G(q)] = rig = max(nb—1,d—1,nc—1)
[25].

5.4 Linear form of GPC

Model predictive controllers (MPC) are sometimes referred as open-loop controllers because
of the nature of objective function as shown by equation-(5.1) or (5.2). However as a result
of repeated impleme=tation of the controller using a receding horizon® strategy, the MPC
gives the effect of conventional feedback. Therefore the GPC control law in equation-(5.5)
can be arranged to a feedback form as:

T(q)Au(t) = Rlq)w(t) — S(q)y(2) (5-30)
where the coefficient polynomials in the above equation are given by [25, 26]:

®Under the receding horizon strategy, only the first controller move out of the NU controller values
calculated over the controller horizon is implemented.
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N2
R(g) = C@))_ h

=Ny
N2
T(q) = Cclg)+q7'[D hiGuq)]
=N,
Na
S(@) = _ hiFi(qg) (5.31)

i=N)
and where h;,i = [NV}, N3] are elements of the first row of the matrix [GTG + A] 'GT as
shown by equation-(5.5). The polynomials in equation-(5.31) have the following degrees:
8[R(q)] = nc, 8[S(q)] = na and 8[T(q)] = max(nb,nc) = nt.
5.4.1 The control law matrix h

With Ny =1, NU =1, 70 = 0, vy = 1 and for the model:

¢ bg 7 5.32
(9) = T—ag ) (5.32)
h is given by:
Ny
h= [Zztz +A]_l[$1,$2,...,23~2] (5.33)
i=1

where z; is the i® step-response (which is same as g;s in equation-(5.28)) given by z; =
b(1 — a*~%)/(1 — a) and z; = 0 for i < d; or from equation-(5.28) x; can be expressed as:

z; = bP1(i — d) (5.34)
Substituting equations-(5.34) and (5.18) into equation-(5.33) and taking d = 0 results in:

_ 1 (1 —a), —a?),...,(1 - aV?)] o
h= K ((1 —a)?2+(1—a?)24---+(1—-al2)2 + k2 (5-35)
Using the summation of series:
— (p2ynt+1
(a2)0 + (a2)1 RS (a2)n = .______1 ]_(f 3’2 = Pa(n + 1) (5.36)
and equation-(5.18) in equation-(5.33) gives:
_1( [(1-a),(1-a?,...,(1—a™?)] .
h= K (Nz + a?2P(N3) — 2aP;1(Nz) + 2 (5.37)

For a delay of d units, the above relation is generalized to:
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d-zeros

h= 1 0,0,...,0,(1 —a),(1 —a?),...,(1 —alN2—1)]
Tk | N2 —d+aZPa(N2 — d) — 2aP1(N2 — d) + r—2A

(5.38)

For NU > 2, the expression for h becomes much more complicated, hence they are not
included in this analysis.

5.4.2 Linear GPC polyncmial S(g)

Using equations-(5.25), (5.31) and (5.33) for the model in equation-(5.32), S(g) is expressed

as:

S(g) = s1+ 327" (5-39)

where

N
. 2imdy1 Tifi
st = N2 2
i=d+1%i T A

note: h; =0fori<d

‘=N
iz Tifiz
N
SiZi TE A

Substituting equations-(5.18), (5.36) and (5.38) into (5.40) leads to:

S2 (5.40)

o = LJWN2—d)d —c) —a’(c—a)Pa(N; —d) — a((l —c) — (¢~ a))P1 (N — d)
! b Nz — d + a2P2(Nz — d) — 2aP1 (N2 — d) + A2
o = _g{(Nz —d)(1 —C)—a(c—a)'Pz(Nz—d)—((1—0)0—(6—0))7’1(N2—d)}
z b Nz — d+ a?P3(Nz — d) — 2aP1 (N2 — d) + As—2
(5.41)
5.4.3 Linear GPC polynomial T'(q)
From equation-(5.31), T'(q) is expressed as:
T(q) = Ce(@) + [t1g™ +t2¢7% + ... + tag™] (5.42)

where from equations-(5.31), (5.38), (5.18) and (5.36) and using Maple, it is shown that:

(N2 —d)(1 — c) + a%(a — &)Pa(N2 — d) — a(l + a — 2¢)P1(Nz — d) — cAx™2
No —d + 027’2(N2 —~d) — 2aP:(N; — d) + Ak—2
(N2 — d)(1 = ¢) + a®(a — )Po(N2 — d) — a(1 + a® — c(1 + a))P1(N; — d)
Ny —d+ az'Pz(Nz —d) — 2aP1 (N2 —d) + A2
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Figure 5.1: 81 —3&3 structure for the Small

Figure 5.2: Feedback structure of GPC.
Gain Theorem.

e = (N2 — d)(1 — ¢) + a*(a — c)P2(N2 — d) — a(1 + a® — ¢(1 + a?))P1 (N, — d)
3 = Nz — d + a?P2 (N2 — d) — 2aP (N2 — d) + Ak 2

(5.43)

5.5 Robust design of GPC

Robust design of a feedback system within the SGT framework involves dividing the closed
loop system into two interconnected subsystems S; and Sz as shown in Figure 5.1. Such a
system is guaranteed to be stable if |S;S2| < 1 at all the frequencies. If the subsystem S,

corresponds to the MPM, then for a SISO system, the SGT criterion translates the stability
requirement into;

ng(w)I < |S—1:‘(;u-3| Vw € (0,wn) (5.44)

where w is the frequency span and wy is the Nyquist frequency. The criteria given by
equation-(5.44) then allows one to examine the stability of GPC in the presence of model-
plant mismatch.

Note 5.6 The frequency form for the discrete domain is given by e 7“T* (j = /=1 and T,
is sampling time), however for the sake of notational simplicity, this argument is designated
simply by w in eguation-(5.44) and also throughout this chapter.

The Sz or MPM in Figure 5.1 or in equation-(5.44) can be represented in several
ways, for example, the edditive, multiplicative and feedback uncertainties {17, 27]. The
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additive, multiplicative and feedback mismatches are designated by G(w), Gm(w) and G f(w)

respectively and they are expressesd as:

CGlw) = Gw)—-Gw)
C‘,n(w) = g—(i)-
G(w)
Grw) = Clw) (5.45)

" G(w)(G(w) + G(w))

where in the above expressions G(w) and G(w) respectively denotes spectrum of the true
plant and its estimated model. The above equations represent the MPMs in frequency
domain and are nonparametric so as to include all structural mismatchs such as the un-
certainties in model order, time constant, gain, delays or other unusual high frequency
dynamics.

S; in the 81 — S in Figure 5.1 represents the designed closed loop transfer func-
tion corresponding to S;. The expression for S; depends on how the MPM i.e. Sy is
represented. For example, Figure 5.2 shows linear feedback form of GPC where the plant
G(q) is expressed as a summation of the model G(g) and the additive perturbation i.e.
S2(g) = G(q). For this system (in Figure 5.2), the transfer function blocks in the shaded
region is lumped into M (q), which is a design variable. M(q) corresponds to S1(g) in Figure
5.1 which is given by:

M(g) = 5(@)
AT(q) + G(g)S(q)

Similarly for Gm(w) and Gf(w), the corresponding My, (w) and M (w) are given by:

(5.46)

Mo(w) = S(w)G(w)
" AT (w) + S(W)G(w)
Miw) = —SW/ATw) (5.47)

AT (w) + S(w)G(w)
Thus for the additive, multiplicative and feedback purturbations, the SGT criteria respec-
tively becomes: |/ (w)G(w)| < 1, |Mpm(w)Gm(w)| < 1 and |M;(w)Gs(w)| < 1.

Note 5.7 In equation-(5.47), M(q) and M,,(q) is also known as the mized sensitivity func-
tion and sensitivity function respectively.

Further analysis presented in this chapter pertains to the additive purturbation
because: (a) the additive purturbation is simple to visualize and (b) as shown later, it is
often informative to plot {1/M(w)| (as in equation-(5.44)) in order to see the frequencies
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at which stability is most vulnerable. Equations-(5.44), (5.45) and (5.46) are combined to
obtain the following robustness criteria for the GPC:

Ié(w)l < lAT(w) -;j(i)(w)b‘(w) VYw € [0,wn] (5.48)

Some key features of the stability criterion given by equation-(5.48) are:

e This stability criteria can be expressed as a simple graphical tuning procedure for the
robust design of GPC.

* Violation of the stability criterin even with exact knowlwdge of uncertainty may or

may not lead to instability, because SGT provides only a sufficient condition for sta-
bility.

e It is more likely that the system will become unstable if the SGT criterion is violated
in the mid to higher frequency ranges [28].

e The safest practice would be to design a controller whose |1/M(w)| bound exceeds
the uncertainty at all frequecies.

o This approach gives & %«s conservative design compared with |G(w)M (w)|eo < 1.

e This method can be use to select tuning parsmcters for GPC using optimization
methods.

Related to the SGT based robusiness criterion is the robustuess performance spec-
ification [27] given by:

1M ()G ()| + IS @)W (w)llloo < 1

where S in the above equation is the designed sensitivity function and W is the upper bound
on S. As in the case of SGT, the above equation is also applicable in the frequency range
[0,wn). However the present study is based only the SGT criteria, as the objective herc is
to examine the robustness of the GPC tuning parameters.

As mentioned earlier a number of tuning parameters are associated with GPC (and
also with other LRPCs). The sheer number of these tuning parameters may appear to be a
disadvantage. However, they provide flexibility to handle different problems and to improve
computational efficiency. Once the basic tuning parameters such as N}, N2, NU and C¢(q)
are set, other parameters such as A, P(gq), 7y, or 700 are adjusted to fine tune GPC. Also
the use of optimization methods to select some of the GPC tuning parameters are discussed
in Section 5.17.

Clarke and Mohtadi (1989), McIntosh et al. (1991) and Mohtadi (1988) have ex-
amined the role of these GPC parameters and provided tuning guidelines [20, 26, 29). The
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alternative approach for tuning GPC presented here is based on shaping the frequency do-
main stability margins. This approach also provides a further insight into the role played by
these tuning parameters in imparting stability. Another advantage of this approach is that
a set of GPC tuning parameters can be estimated a priori using simulations that guarantees
stability for a known uncertainty bound when implemented on an actual plant.

The following definitions pertaining to the robustness of GPC are used in the sub-
sequent studies.

Definition 5.1 Robustness bound: The spectrum of |1/M (w)| corresponding to the ad-
ditive purturbation is defined as the robustness bound. The robustness bound is sometimes
referred as the stability bound becarse with the violation of the SGT criteria, the system can
become unstable.

Definition 5.2 Robustly stable: The design of GPC is said to be robustly stable if the
robustness bound exceeds the spect:um of the mismatch |G(w)| at all the frequencies.

Definition 5.3 Robustness margin: The difference in magnitude (or the gap) between
the robustness bound and the |G (w)]| is called the robustness margin.

Definition 5.4 Robust: A set of tuning parameters is defined as more robust than a given
reference set of tuning parameters, if the robustness bound corresponding to the specified set
exceeds the robustness bound of the reference set.

The stability criteria given by equation-(5.48) leads to the following lemma :

Lemma 5.2 The steady state gain of the robustness bound in eguation-(5.48) is equal to
the steady state gain of the process madel.

Proof: Equation-(5.46) can be expressed as:

=|m@+qm|

Bw) ATW)
Aw) S(w)

|_1__|
M(w)|

(5.49)

where G(w) = B(w)/A(w) and C(w) = AT(w)/S(w) are the expressions for the
model and the controller-inverse respectively. Since A(w) = 1 — e~ 7%, at steady state

(w = 0), A(w) = 0, and substitution of this condition in equation-(5.49) proves the lemma-
5.2

The following useful corollaries to lemma-5.2 can now be stated.

Corollary 5.1 Asw — 0, the characteristics of robustness bound are influenced more by
the process model than by the controller.
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Proof: As w — 0, A(w) — 0, implying AT(w)/S(w) — 0; i.e. the influence of the controller
parameters is reduced relative to the influence of the process model on the robustness bound.

Corollary 5.2 Stability of SISO GPC cannot be guaranteed if the steady state gain of the
uncertainty exceeds the estimated steady state gain of the model.

Proof: At steady state (w = 0), the following stability relation can be deduced fromn
equation-(5.49) and lemma-5.2:

|G(w)| < Ei_(_“_)li atw=0 (5.50)
A(w) |
If |G (w)| is assumed to be a continuous function in the region around w = 0 (which is true
for stable systems) and the robust stability condition is violated at w = 0 then, through
continuity arguments, the stability criterion will also be violated in the region ¢ < w < w'!
in the neighbourhood of w = 0, thus proving the corollary.

Remark 5.1 The robust stability criteria will not be violated if |G (w)| < 3G (W)| at w=0.

Remark 5.2 Corollary-5.2 is particularly useful for w in the range 0 < w < w'. Since
the SGT condition is only sufficient and fairly conservative in the low frequencies [28], it is
likely to result in an unstable region for relatively large values of wt.

Remark 5.3 At higher frequencies, |A(w) — 1|, thus signifying that robustness bound
will be more influenced by the controller AT (w)/S(w) at these frequencies. If the magnitude
spectrum of the model rolls off rapidly at these higher frequencies, then the robustness bound
will be dominated by the controller there (see equation-(5.49).

It is obvious from equation-(5.49) that the polynomials AT(w) and S(w) (that con-
stitute the controller inverse C(q)), affect the shape of the robustness bound. Also the
discussions in the earlier sections (i.e. in Sections 5.3, 5.4 and 5.5) showed that it is dif-
ficult to obtain generalized expressions for T(q) and S(q) when the model order is greater
than one. Therefore it is difficult to ascertain analytically, how the controller inverse C(g)
precisely influences the behavior of the robustness bound, when the model order exceeds
one. Nevertheless, the robustness of GPC tuning parameters can be ascertained through
simulations under all situations. Hence, simulation studies are presented in the ensuing sec-
tions that illustrated the robustness of GPC tuning parameters via example dependent case

studies. These simulation studies are also supplemented by analytical proofs that apply to
first order model under certain assumptions.
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5.6 Robustness of GPC tuning parameters

The robustness of GPC parameters is evaluated using a contrived example, because in
reality the nature of the true plant and/or the MPM is never known. The plant under
consideration is a third order overdamped (true) plant: G(s) = 1/(s + 1)(3s + 1)(5s + 1)
whose discrete equivalent for a sample time T, = 1 is:

0.0077¢~! + 0.0212¢-2 + 0.00364~3
1~ 1.19031¢g~! + 1.1514¢g-2 — 0.2158¢~3

The above plant (equation-(5.51)) is approximated by the following 1*! order model

Glgl) = (5.51)

with two numerator parameters (by applying least-squares techniques and by generating
using a square wave excitation) as:

0.0419¢~! + 0.0719¢2

1 —0.8969¢1
The mismatch between model and plant is deliberate, because it is desired to examine the
robust stability of GPC in the presence of MPM. Noise-free simulations studies are presented
for the sake of clarity in understanding the stability properties and the performance of GPC
tuning parameters. Conclusions based on noise-free studies are also applied to the system
corrupted with noise/disturbances in Section 5.14 and experimentally evaluated in Section
5.15.

G(g!) =

(5.52)

A motivational example

The following example highlights the relevance of the work presented in this chapter:
o For the plant-model system given by equations-(5.51) and (5.52), suppose the following
two sets of GPC tuning parameters are given:

e Set-1: Ny =1, No =5, NU =1, A =0.5, Yoo =0, P(g) =1, and C.(q) =1 — 0.5¢!
e Set-2: Ny =1, N =8, NU =1, A=0.5, 70 =0, P(q) =1, and C,(q) =1 —0.8¢7!

For these two sets of tuning parameters is it possible to determine the following before
performing the closed-loop test:

e If both the above tuning sets will result in stable systems ?

e Which one of the above tuning set is more robust to modelling errors ?

Undoubtly the issues raised by the above questions acquire importance in the context of
real-time control applications where the plant dynamics are not fully known.

Besides the issue of robustness, there is also a question of how much robustness mar-
gin should be acceptable and in that case one steps into the robustness verses performance
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issues. It is well known that the robustness is achieved at the cost of controller performance;
but a certain degree of robustness to modelling errors is something which cannot be com-
promised for the sake of stability. The issue of robustness with the perspective of controller
performance is pursued further in Chapter 7, whereas the focus of this chapter remains on
the robustness properties of the GPC tuning properties.

The closed-loop performance of GPC in Figure 5.3 shows that the response is oscil-
latory for the tuning set-1 whereas for tuning set-2, the system is stable. For tuning set-1,
Figure 5.4 shows that the stability bound touches the uncertainty at a certain frequency
thus lacking necessary robustness margin at that frequency, and this gives rise to persis-
tent oscillations in the system response. Whereas for the tuning set-2, sufficient robustness
margin exists and as a result. the process response is stable.

Framework for the analytical proof

Equation-(5.49) shows that the robustness bound is influenced by both G(«) and C(w) as
shown by the Nyquist plots of G(w), C1(e~7*) and Cy(e~7*) in Figure 5.5. The controller
inverses C1(e~7*) and Cy(e~7) corresponds to the GPC tuning sets 1 and 2. It is obvious
that for a specified G (w), the changes in the robustness bounds are due to changes in C(w)
under the influence of different tuning values.

The influence of C(w) on |1/M(w)| can be analysed by considering the the vectors
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OA, OB, and OB, corresponding to G(w), C; (w) and Ca(w) respectively at a given frequency
w as depicted in Figure 5.5. The robustness bounds at w are then given by OM; = OA+OB,
and OM,; = OA + OB32. At w the bound OM, is said to be more robust than OM, if
!O-ftlzl > |0M1l. Obviously the robustness is governed by the relative magnitudes and
angles of OB; and OB3 as OA is fixed. The analytical analysis becomes straightforward if
it can be shown that |O-le > IOBII = lOle > IOT\III. However it is nontrivial to show
this for na > 1 because of the influence of Z0B;7 and ZOB;.

In other words, since the robustness bound is a complex sum of G({w) . - Clw), it
cannot be inferred that with the increase in |C(w)|, there is also a corresponding increase
in magnitude spectrum of the robustness bound |1/M(w)|. Brute force Algebraic methods

-e therefore used for a first order model to arrive at the conditions under which it is shown
that an increase in |C{w)| causes a corresponding increase in |1/M(w)].

In order to analyze the effect of individual tuning parameters on the robustness
bound, it is necessary that their effect be examined individually. In the subsequent sections
the effects of various GPC tuning parameters op. the robustness bounds, and they are
complemented by time-domain simulations are shown. For some cases of GPC parameters,

the simulation results are backed-up by analytical proofs for a first order model and under
the following assumptions:

Assumption 5.1 The robustness of each tuning parameter is examined by keeping the other
tuning parameters constant. The tuning parameters considered for the analytical methods
are N, A\, C.(g) =1 —cg ! (for 0 < c< 1) and NU.

Assumption 5.2 The default values of the tuning parameters are: Ny =1, A= 0, v¥50 =0,
P(g)=1,C.g) =1 and NU =1.

Assumption 5.3 The delay in the model is zero i.e. d =0.

Assumption 5.4 G(q) and G(q) ere stable.

5.7 Effect of N,

It is known that the system becomes more robust as the costing horizon, V3, is increased.
This can be verified from Figure 5.6, which shows the spectral plots of the robustness bounds
for different values of N3, superimposed on the magnitude spectrum of the uncertainty. The
abscissa cerresponds to the frequency points, which are normalized by the Nyquist frequency
wy. The values of N2 examined are 2, 5, 10 and 20, with the other tuning parameters kept
constant at Ny =1, NU=1,A=0, Cc(q) =1 ~0.7¢" !, 700 = 0 and P(q) = 1.

Twhere ¢ indicates phase contribution.
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Figure 5.6: Effect of N3 on the robustness Figure 5.7: Effect of N> on the servo
bound. tracking.

It is observed that the stability criterion is violated for N2 = 2 giving rise to insta-
bility, as can be seen in the servo response in Figure 5.7. The robustness of the controller
improves as the value of N, increases i.e. the robustness margin increases. Also the amount
of oscillation in the output reduces with the increase in N,. For this illustrative axample
it is therefore required ihat the value of N; be greater than 2. The effect of other tuning
parameters that would also give robust control with a smaller values of N> are explored in
the subsequent sections.

This simulation example shows that robustness margin of the system increases with
the increasing value of N2. Now the question arises: is it possible to analytically establish: the
conditions under which it can be shown that with the increase in N there is a corresponding
increase in the robustness margin? This question is addressed in the following for a first
order model.

Lemma 5.3 Under assumptions 5.1 to 5.4, the magnitude spectrum of |C(w)| increases
with an increase in the final prediction horizon Na.

Proof: From assumptions 5.1 to 5.4, use of equations (5.31) and (5.33) leads to T'(¢) = 1
which gives:

Clq) = -5-%5 (5.53)
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therefore the lemma reduces to proving that |S(q)|n,4+1 < |S(g)|n,. Further, employing
equations-(5.25), (5.39) and (5.40) and under stated assumptions, they yield:

N .
2 i1 Ti D k=0 a*
N
2ish I?
a

2 = -% (5.54)

S1 -

which then leads to

N.
sulvprr ( X2 7 ) (zl(l +a) + -+ 2N, T2 ak + Ty, 0 T a“)
slv R R . zi(l +a) + - + TN, Ti2gak

(5.55)

In order to prove the lemma, it needs to be shown that the ratio in equation-(5.55) is
less than unity. Rearranging equation-(5.55) and substituting equations-(5.18), (5.36) and

(5.34), translates into the following inequality which must hold good for the lernma to be
true:

2 3 < (5.56)
Ny, —(a+a )Pl(Nz) +a Pz(Nz) Ny — 2aP, (Nz) + a2'P2(N2)

The above inequality is always satisfied for 0 < a < 1 and Ny > 1. Thus the lemma is
proved because s3 is constant and the inequality-(5.56) is satisfied.

With the increase in the value of N2, both the LHS and RHS of equation-(5.56)
asymptotically reach zero, indicating that the stability bound reaches an asymptotic value

with the increase in the value of N2; hence the following corollary to leinma-5.3 can be
stated:

Corollary 5.3 Under the assumptions 5.1 to 5.4, as the value of N, increases, S(w) asymp-
totically reaches:

S(w) = %(1 — aeiv) (5.57)
Proof: From equation-(5.41), the asymptotic value of s; becomes:
1
sllNz—)oo = 3 (558)

Since sz is constant, substituting equations-(5.54) in (5.39) proves the corollary.

Now it is required to investigate Lhe conditions under which it can be shown that
an increase in |C(w)| also causes a corresponding increase in |1/M(w)|. Under the stated
assumptions-5.1 to 5.4 this is done by using equations-(5.53) to express |C(w)| as:
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c( 1= e v
w) = S1 + Spe—Iw
(51 — 52)(1 — cos(w)) + j(s1 + s2) sin(w)

s% + 5% + 23152 cos(w)

J 201 —cos(w) |, 1 { (1 + s2) sin(w) } (5.59)

52 + 83 + 23155 cos(w) (s1 — 82)(1 — cos(w))

From equations-(5.59) and (5.41) it is evident that C(w) provides a phase lead; at w = 0,
C(w) = |0|Z7/2 and at w = 7 (i.e. at wy), C(w) = |2/\/s% + 8% — 2s;85|/w. Similarly the
model given by equation-(5.32) can be written as:

N bg_jw

Gl = T
b | /ian? {_Em_(‘.‘_’)_.} (5.60)
V1 + a% = 2acos(w) cos(w) — a

From equations-(5.60) and (5.59) it is concluded that the relative angle between G(w) and
C(w) varies from w/2 to 7 as w changes from 0 to 7w (i.e. wy). Therefore from equations-
(5.41) and (5.59), it is deduced that:
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Ic(w)lNz+1 > |C(w)'1\'2 and AC("")lNr{»l < ZC(‘-‘J)lNz (5-61)

which is verified in Figures 5.8 and 5.9 for the system equations-(5.51) and (5.52)%, which
shows that: (a) |C(w)| increases as the frequency and N, increase, (b) ZC(w) reduces with
the increases in both frequency and N», (c¢) |C(w)| and ZC(w) reach an asymptotic limit as
N2 —> OO.

The following terms are defined with reference to Figure 5.5 for notational simplicity:

|OA| = p, |OB2| = o, |OB1]| = Bo where 0 < 8 < 1
LO-BQ = a, LOB; = a + da where o is w.r.t. positive real-axis. (5.62)

From equations-(5.39), (5.41), (5.54) and (5.59) it is shown that:

lc(w)lNz
[C(w)lNa+1

[s2 + s + 25157 cos(w)]lN,+1
[s2 + s% + 25152 cos(w)]| N,

B(w)

(5.63)

Using Figure 5.5 as a reference and from equation-(5.62) it is clear that Z(OA + OB,) =

a+|¢| and L(OA+OB;) = a+da+|¢| where LG(w) = ¢ and (a+ ||, a+da+|¢]) > 7/2,
which then lead to:

|OM2| = \/p? + 02 +2p0 cos(a + |¢])
|0M1] = +/p® + B202 + 2Bpo cos(a + da + |¢]) (5.64)

where |OM3| corresponds to N2 +1 and |OM,] to N,. Further, Za + 4| and La + da + |¢]
are greater than m/2, therefore it leads to the possibility that 3 |O0B*| = 8*o on |OB,| s.t.
|OB*| < |OB,| or B*c < fo and yet |OB* + OA| = |OBz+ OA| or |8*o + p| = |o +p|. This
implies that 8* can be obtained by equating the equations in (5.64) and by letting 8 = §*,
which yields:

p* = }1- [psin(a +da+ |¢| — %) + \/02 + p? cos?(a + da + |¢|) + 2po cos(a + |4>|)]

(5.65)
Only one of the roots of equation-(5.65) is meaningful and they are:

8Although equation-(5.61) is derived for the model-(5.32), Figures 5.8 and 5.9 show that these conditions
(i.e. equation-(5.61)) also apply to the model-(5.52) that has two parameters in the numerator.
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1. #* = 1 : This implies 8 < B* i.e. |OM;| > |OMj;| eventhough |OB;| < |OBj).
This situation is undesirable because with the increase in |C(w)| there is a decrease in
|1/M (w)].

2. 0 < 3* < 1 : Under this case two possibilities exist i.e. 0* < 8 and 8 < 8*. In the
foriner case |OB;| < |OB3| = |OM;| < |OM;}, which is desirable. The later case
(i.e. B < (*) however is undesirable.

3. * < 0 : This situation is always desirable because in such a case there is always an
increase in |1/M (w)] with the increase in |C(w)].

f* is applicable for w > 0, because at w = 0, 0 = 0, which makes the solution (5.65)
indeterminate. However at the Nyquist frequency (wn), Za +da+|@| = La+|¢| = =,
therefore substitution of this condition in equation-(5.65) leads to f*(wn) = (2p/0c) — 1.
Now consider the application of this analysis on the example problem given by equations-
(5.51) and (5.52). Figure 5.10 shows that at all w, 8* < 8 and f*(w) is a decreasing function
of w (since o increases and p decreases with the increase in w (5.65)) and from Figure 5.5
it is apparant that #(w) is an increasing function of w, and also as w — 0 = [*(w) — B(w),
therefore according to the condition number 2 above, it can be concluded that increasing
the value of IV; also increases the robustness margin as verified in Figure 5.4.

5.8 Effect of )\

The effect of the control weighting term A is to detune the controller performance of an
open-loop stable plant and thus its use gives a sluggish closed-locp response. Hence it is
recommended that A be kept as small as possible. Nevertheless, increasing the value of A
adds to the robustness by moving the robustness bounds further away from the uncertainty,
as can be seen from Figures 5.11 and 5.12 for the system given by equations-(5.51) and
(5.52). Several A values are examined, with the other tuning parameters kept constant
at Ny =1, Ny = 5, NU =1, 70 = 0, C(q) = 1 and P(q) = 1. It is also observed
that A produces a slight ‘minimum’ in the robustness bounds, thus making the controller
sensitive at the frequencies where the dip occurs. For this problem it is seen that the
system becomes unstable for A < 1, which is confirmed by the plots in Figure 5.11 and 5.12.
For A = 1, the robustness bounds come very close to the uncertainty, which give a lightly
damped oscillatory response for this system. Although increasing )\ increases the robustnesc
margin, but for this example, its use does not seem to reduce the amount of oscillations in a
signifinant way. Whereas in Figures 5.6 and 5.7 it +as seen that the amount of ascillations
reduced significantly as the value of N2 was increased. The effect 6§ A on the robustpess
margin for a first order model is explained by the following lemma:

Lemma 5.4 Under assumptions-5.1 to 5.4, |C(w)| increases with the increase in the con-
troller weighting term ).
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Proof: As in the case of leimma-5.3, here also it is shown that T(g) = 1. Therefore for the
lernma to be true, it needs to be proved that |S(w)|s, < |S(w)|, where A2 > A;. Under the
above assumptions and from equation-(5.41), s; and s, reduces to:

sl = 1 [ Ny +a®Py(Nz) — (a+ a®)Pi(Ng)
Ha = b\ Ny + a2’P2(N2) - 20P1(N2) + Ax—2

32|A - ”2 Ny =- a2'P2(N2) — 2a‘P1 (Ng) (5 66)
b \ N2 + a2P2(N3) — 2aP; (N2) + As~2 )
From the above equation-(5.66) it is clear that:
silag < sily, where Ay > A; fori =1,2 (5.87)

which implies: |S(i)|y, < |S(w)ia, if A2 > Ay, thus proving the lemma.

Remark 5.4 The values of both s, and sz changes with the change in A\, whereas N2 affects
only sy. Therefore the robustness margin is influenced more by A than by N».

Corollary 5.4 For a given A, as N; — oo, S(w) aesymptotically reaches: S(w)|x,Ny—o0 =
(1 — ae=¥)/b.

Proof: : Equation-(5.66) can be used to show that as N — oo, s1|A,N3»00 = 1/b and
32|a, N300 = —a/b thus proving the corollary.

Corollary 5.5 For a given N3, S(w) asymptotically reaches zero as A — oo.
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Proof: From equation-(5.66) it is obvious that s; = 32 = 0 as A — oo, thus proving the
corollary.
The corollaries-5.4 and 5.5 are interesting because they convey the following:

e As the value of N, increases, the robustness margin reaches an asymptotic limit. This

also means that beyond a certain value of Ny, there is no appreciable improvement in
the robustness margin.

e The robustness margin increases with increase in the value of A. At infinite A, the
robustness margin is infinite since for such a case there is no controller action and the
process is open loop stable by assumption.

It is now required to establish the conditions unider which it can be shown that that
with the increase in |C(w)| due to increasing value of A, there is also an increase in |1/M(w)];
which is shown in the foilowing:

{lOB;| = [C(W)ia, = 0} > {|OB)] = |C(w)|», = Ba}
{£0B; = LC(w)|2} = {£LO0B; = LC(w)|r,} (5.68)

The above equation-(5.68) is easily verified using equations-(5.59) and (5.66).

Remark 5.5 From equation-(5.68) it is clear that the phase of C(w) is not influenced by
A
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The above remark is verified in Figures 5.13 and 5.14 which shows: (a) as in the case of
N3, |C(w)]| increases with the increase in A and frequency, but (b) A has no effect on £C(w).
Now it remains is to be shewn that:

|OMa|», > |OM, ), where X2 > X (5.69)
From: equation-(5.68) it is clear that:
kil
2
which leads to the possibility that 3 |Ob*| = B*o such that |OB*| < |OB; | or o < Bo and
yet |OB*+OA| = |OB2+CA| or |B*0 +p| < |o+p|. Substituting do = 0 in equation-(5.65),
[* is obtained as:

a+|é| > (5.70)

g = {% (2psin (a+ |l — —725) - a) ,1} (5.71)

At the lower frequencies #* =: 1 and it drops to 20/p — 1 at wy. Moreover in this case 3 is
constant because from equations-(5.53), (5.59) and (5.66) it is obvious that:

Nz + a?2Py(N2) — 2aP1(N2) + Ax~2

A= Ny + a2Py(N3) — 2aP(Na) + Aok—2

Figure 5.15 shows that at the lower frequencies f < §* and at the higher frequencies 8 > g*,

implying that A imparts robusiness at the higher frequencies but not neccessarily at the
lower frequencies.

(5.72)

5.9 Effect of C.(q)

One of the most important GPC tuning parameter is the monic observer filter polynomial
Cc(g), which helps in rejecting disturbances, unmodelled dynamics and other high frequency
noise [26]. The filter thus adds to the robustness in the system. The values of C,(g) are
examined by setting the other tuning knobs constant at Ny =1, No =5, NU =1, A =0,
Yoo = 0 and P(g) = 1. With these tuning values and for C.(g) = 1, the stability criteria
gets violated, giving rise to an unstable system, as shown in Figures 5.16 and 5.17. The
robustness bound moves up from the uncertainty for C.(g) = 1 — 0.8¢~1, and as a result
the system becomes robust to model uncertainties. Figures 5.16 and 5.17 shows that the
use of C.(q) filter also reduces the amount of oscillations in the system response. For
Cc(g) = (1—0.8¢71)2, the robustness margin increases further to give a more robust system
although it shows a minimum. The robustness due to the C,(q) filter is next explored
analytically for a first order model.

Lemma 5.5 Under the assumptions-5.1 to 5.4, the use of C.(q) filter increases the mag-
nitude spectrum of C(w).
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tracking,.

Proof: Under the stated assumptions and for Cc.(q) = 1 — cg!, where 0 < ¢ < 1, equations-

(5.41) reduces to:

sile. =

s2lc. =

Na(1 - ¢) + (a® — ca®)Py(N2) — (a + a2 — 2ca)P;1(Ny)
Ny + a?2Py(N3) — 2aP, (N2) + A2
(%)
D

_a [ N2(1 —¢) + (a% — ac)Py(N2) — (2a — c(1 + a))P1(N2)
N3 + a?Pa(N3) — 2aP(N2) + A2

b
+®)

1
b
1
b

Comparing equations-(5.66) and (5.73) it is concluded that:

31le.(q) < s1lcu(g)=1
s2lc.(q) < s2lc.(g)=1 (5.74)

for A = 0 and from equation-(5.74), it is concluded that this lemma is true. However when
A > 0 and in the presence of C.(q), the polynomial T'(q) = 1 —tg™! is also involved. Under
the stated assumptions and from equations-(5.31), (5.34) and (5.30), t is simplifies to:
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t = cAx—2
N + a?2Py(N3) — 2aP; (N2) + A—2
- % (5.75)

Therefore from equations-(5.73) and (5.75), |C(qg)| = |AT(q)/S(q)| can be expressed as:

|TA(w) 2[1 — cos(w)][1 + 2 + 2t cos(w)]
S(w) 52 + s% + 2s15; cos(w)
2[1 — cos(w)]b2[D2 + NZ + 2N, D cos(w)]
Ar12 -+ a2N22 — 2aMi N3 cos(w)

From equations-(5.73), (5.74) and (5.75) it is clear that:

(5.76)

e With an increase in A, there is increase in D and N; which proves the lemma for a
fixed case of C.(q).

e With an increase in ¢ in C¢(g) = 1 — ¢g~! such that 0 < ¢ < 1, there is an increase in
MN; and decrease in N7 and N>, which proves the lemma for this case.

The phase contribution due to C.(g) on C(w) is given by:
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sin(w) {2t cos(w) — (1 + )}
— 1)+ (1 4+ t) cos(w) — 2t cos?(w)
The effect of C.(g) on the magnitude and phase spectrum of C(w) are illustrated in Figures
5.18 and 5.19, which shows that: (a) as in the case of N2 or ), |C(w)| increases with the
increase in frequency and C.(g) and (b) as in the case of N2, ZC(w) decreases with the
increase in frequency and C.(g). Since the influence of C.(g) on C(w) is similar to Ny,
therefore the analysis carried for N2 also applies in the case of C.(gq).

LC(w) = tan™! { a (5.77)

5.10 Effect of NU

The Control horizon NU adds to the aggressiveness in the control action. It is generally
adequate to use NU = 1 for open loop stable systems (e.g. equations-(5.51) and (5.52)).
For the control settings ai Ny = 1, N = 5, A = 0, 700 = 0, Cc(q) = 1 — 0.8¢7! and
P(q) = 1, a stable response is obtained for NU = 1, whereas for NU=2, the stability bound
just touches the uncertainty line, giving rise to an oscillatory response with large control
actions, as depicted in Figures 5.20 and 5.21. The figure also shows that the oscillations
due to NU = 2 are attenuated by selecting a second order filter C.(g) = (1 — 0.8¢71)2.
The second order filter however cannot prevent the large initial control moves as a result of

using NU = 2. The effect of NU on the robustness bound is next analytically examined in
the following:
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Lemma 5.6 Under the assumptions-5.1 to 5.4, the magnitude spectrum of C(w) reduces
with the increase in the value of the NU.

Proof: The general expression for h becomes complicated for NU > 2 even for a first order
model. Therefore this lemma is verified by restricting N = 2. Under the assumptions-5.1
to 5.4 and for Ny = 2, h can be expressed as:

1
hinvu=1,N=2 = (b(l s a)z)) 1 1+aq] (5.78)
similarly for NU = 2 and N> = 2, the first row of h is shown to be:

1
hinv=2.v=2 = 11 0] (5.79)
From equations-(5.25), (5.31), (5.78) and (5.79) it follows that:

l1+a a
silbp=2Nv=1 = ——\l-77% dray
ite
£ I Np=2,NU=2 = b (5.80)

which verifies the lemma because s5 is constant.

5.11 Effect of P(g)

The output weighting polynomiai P(g) provides model-following characteristics for the
GPC. Generally, a detuned model-following strategy is employed to circumvent the prob-
lem of zero cancellation [21]. The use of P(g) can give an offset if P(1) # 1. In Figures
5.22 and 5.23 it is observed that the use of P(q) enhances the robustness by pushing the
stability bound up and away from the uncertainty spectrum. Robustness in the system is
improved with the increase in the values of P{q). The P(q) polynomials considered are
P(q) = 5—4¢ ! and P(q) = 3—2¢~}, with the other tuning parameters at N} = 1, Na = 5,
NU=1,A=0, Y0 = 0 and C.(g) =1 —0.8¢~ 1.

5.12 Effect of y-weighting

The steady state weighting ., gives the effect of a large prediction horizon, without actually
using a large value for N;. Therefore as in the case of Ny or )\, the use of 7., increases
the robustness margin as shown in Figure 5.24 for the 7, values of 0, 0.5 and 1.0. The
corresponding servo responses for these <, values shown in Figure 5.25 are obtained by
setting other tuning parameters coustant at Ny = 1, Np = 5, NU =1, A = 0 C.(g) =
1—0.7¢7! and P(q) = 1. As in the case of N5, the servo responses in Figure 5.25 show
that the amoum of inital oscillations reduces with the increase in v, walues. It has also
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been shown that the use of v, improves the stability margin of a system, hence its use is
recommended in place of A [22].

5.13 Effect of model

The impact of model accuracy on the stability and performance of any model-basca con-
troller is often profound, and GPC is no exception to this fact. The uncertainty shown
by the dashed curve in Figure 5.26 corresponds to the model in equation-(5.52), where the
tuning constants Ny = 1, N2 =5, NU =1, A =0, v =0, P(q) =1 and C.(qg) = 1 result
in an unstable system, as shown earlier. If an extra parameter is added to the numerator
in the model, then the following model is identified by using least squares fitting:

- 0.0405¢! + 0.0313¢~2 + 0.0523¢~3
Ga(q) = 1—0.8836g~1

The extra numerator parameter in the new model enables it to capture more dy-
namics and as a consequence it gives a robust closed-loop system even with the same
tuning parameters that resulted in an unstable system for the first model (equation-(5.52)).
This highlights the need for proper model validation [30] prior to control. The use of the
Cc(g) =1 — 0.8¢7! filter improuves the performance for the second model in comparison to
the first model, as illustrated in Figure 5.27.

(5.81)
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5.14 Robustness of GPC in presence of disturbances

The effect of additive noise in the robust design of GPC is examined in this section for
the plant-model system given by equations-(5.51) and (5.52) by adding measurement noise
(SNR= 3.1) to the process output. The process is also subjected to step type disturbances
having the same magnitude and direction as the set point. Robustness bounds and corre-
sponding time domain performance for different cases of tuning parameters listed in Table
5.14 are shown in Figures 5.28 and 5.29. The direction and location of the step type distur-
bances are symbolically shown in Figure 5.29 by ‘d’. Figure 5.28 also shows the estimated
spectral uncertainty from noisy data and the actual MPM. A white noise excitation is used
to determine the upper bound on the MPM for higher frequencies. A square wave input
is used to find the upper bound on MPM at the lower frequencies. However, in this case
accuracy at the lower frequencies is not important because there is sufficient robustness
margin at these frequencies.

The stability of a system is affected only when the robustness bound violates the
stability condition with respect to the true MPM. That is because a stable characteristic
polynomial 1 + Gp(g)Gc(g), (where Gp(g) and G(g) are true plant and controller respec-
tively) is also stable with respect to measurement noise. The effect of different tuning
parameter sets on the performance of the closed-loop system in the presence of measure-
meut noise and disturbances are evaluated for the following cases:
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e case-1, which shows a significant sensitivity to noise and disturbances, since the ro-
bustness bound is closer to the MPM;

e case-2, where an increase in X causes a minima in the robustness bound, thus bringing
{1/M(w)] closer to |G(w)| and consequently not leading to any significant improvement
in performance;

e case-3, where for higher values of N> the robustness bound moves further away from

G(w), and as a result the controller action is detuned and also provides better distur-
bance rejection;

e case-4, where with a second order C.(q) filter, the controller gives a better disturbance
rejection even for a smaller value of No;

e case-5, where the advantage of using P(g) is illust: ated, with the spectrum of |1/M (w)|
almost coinciding with that of case-3; therefore, although the value of NN; is smaller
in this case, its performance is as good as for case-3.

5.15 Experimental evaluation

The signal processing methods for estimating the uncertainty, discussed in Chapter 2, are
combined with the GPC robust design techniques presented in the earlier sections of this
chapter, to experimentally evaluate the robustness objective of GPC tuning parameters.
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A schematic of the experimental set up is shown in Figure 5.30. The experimental
plant is a stirred-tank heater in which cold water is heated by a submerged steam coil in
an insulated vessel. The plant is open loop stable and operates as a continuous process.
Through an OPTOMUX module, the heater is interfaced to an IBM-PC that runs a real
time (QNX) operating system. The GPC and identification algorithms (both coded in C)
are executed under an in-house developed software called MULTICON. The MULTICON
software is tailored to handle any SISO/MIMO control and identification algorithms and
also permits configuration of different control strategies. The outlet temperature for this
experiment is regulated by manipulating the steam valve position. The stirrer and the baffle
in the tank help to maintain a uniform temperature. For this experiment the water level in
the tank is maintained constant by a separate pneumatic controller.

The process is suitably excited as a first step in the experiment to identify a model
and thereby obtain an estimate of the MPM through signal processing techniques. An open
loop process response for square type excitation is shown in Figure 5.31. This information
is used to select robust tuning parameters, which are then implemented on the plant. A
MATLAB-based toolbox has been developed that utilizes experimental data for robust
design of the GPC. The different sets of GPC tuning parameters that were tried on the
plant are shown in Table 5.15.

Figure 5.32 shows that for case-1 the stability bound intersects the upperbound
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and almost intersects the actual uncertainty thus resulting in a marginally stable system
as can be seen in Figure 5.33. During the step down in the setpoint, the oscillations in
the controller are not observed because the valve reaches its lower saturation limit, thus
exhibiting the inherent nonlinearity in the system. The C.(q) filter in case-2 adds to the
robustness in the system by increasing the robustness margin. When NU is set equal to 2,
for case-3, it adds to the aggressiveness of the controller and thereby limnits the robustness
of the controller settings, as shown in the figure. The contribution of ) to the enhancement
of the robustness in the system can be seen for case-4, where the controller action is heavily
detuned and the robustness margin is comparatively large.

5.16 Estimation of MPM from the Closed-loop data

An important assumption in the robust design of GPC using the SGT criteria is that an
a priori knowledge of the MPM (spectrum) is known. In Chapter 2 it was shown how the
signal processing methods could be used to estimate the spectrum of MPM from open-loop
process data. The applicability of the robust tuning guidelines for GPC discussed in the
earlier sections, therefore remains confined to the: (a) design stage and (b) time invariant
plants; when the estimated MPM is based on the open-loop data. In other words, should
the plant dynamics change in course of closed-loop control, the existing tuning parameters
may no longer guarantee robustness to the modelling errors.

In order to ensure robustness of the controller for changing plant dynamnics, it be-
comes necessary to determine the MPM from closed loop data. The scope of the proposed
robust design of GPC therefore gets vastly enhanced when MPM is estimated from the
closed loop data, which is the focus of discussion in this section. The derivation of MPM
from the closed-loop data are followed by a discussion on the scope and limitations of the
proposed method.

The knowledge of MPM can be extracted from the -+ror signal which is designated
as e(t) in Figure 5.2. The signal e(t) in Figure 5.2 can be written as:

e(t) = R(q)w(t) — S(q)y(t) (5.82)
For a noise-free plant, the output y(t) is:

y(t) = e(t)laig(:)c(q)] (5.83)

Substituting y(t) from equation-(5.83) in equation-(5.82) gives:

_ AT(q)R(q)
AT(q) + S(q) [G(q) + G(q)]
G(q)

e(t)

w(t) (5.84)
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By taking S(q) common, the above equation-(5.84) can also be written as:

1 _ S {AT(q) + S(g)G(q) S(q)é(q)} (5.85)
e(t) AT(g)R(q)w(t) S(q) S(q)
Using equation-(5.46), the above relation can be re-expressed as:
_ [(R(q)AT(q) M(q)
« = (Zgg ) {1 +M(q)G'(q)}w(t)
( R(g9)AT(g) ) ( 1 )w(t) (5.86)
AT(g) + G(q)S(q) /] \M(q)G(q)

Further it is easy to show that: 1 — M(q)G(q) = AT(q)/(AT(q) + G(q)S(g)), which on
substituting in equation-(5.86) gives:

e(t) = L= M@)G(q)
1+ M(q)G(q)
X(q)

In the context of control relevant identification, Rivera et al. have derived an

expression similar to the above equation-(5.87) in terms of the multiplicative uncertainty

Gm(g) and the sensitivity function [31]. The above equation-(5.87) however is in terms

of the mixed sensitivity M(g) and G(g) which is used to determine G(q) from the closed

loop data (equation-(5.87) is revisited agin in Chapter 7, in the context of control relevant

identification). Signal processing methodis discussed in Chapter 2 can then be applied to
equation-(5.87) to obtain a spectral estima.2 of X(g) as shown below:

R(q) w(t) (5.87)

o~

_ D ew (w)
X(w) = Bo(@) (5.88)

From equation-(5.88), it is clear that external excitation (e.g. in the set-point w(t)) is
required in order to obtain a good estimate of X' (w). Once X (w) is known then, equation-
(5.87) can be used to estimate G(w) as:

[ = Mw)G(W)RW) — X(w)
M (w) X (w)
If the plant is corrupted by noise: H(g)£(t), (which often is the case), then the
output y(¢) becomes:

Gw) =

(5.89)

G(g) +G(g)
AT(q)
Substituting y(t) from equation-(5.90) in equation-(5.82) and using: 1 — M(q)G(q) =

AT(q)/(AT(q) + G(q)S(q)), gives:

y(t) = H(q)&(t) + e(t) (5.90)
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1 _ 1 [1+M(g)G(g) S@ 1
e(t)  S(q) {1 - M(q)é(q)} {R(q)w(t) H(q)g(t)} (5.91)

As in case of equation-(5.87), the above equation-(5.91) can be simplified to:

1 1 1 R(q) 1
@) ~ X(@w@)  S@H@X@ @) (5.92)
From equation-(5.92), 1/X(w) can be determined as:
Deryyr (W) — 1 - R(w) Q{'w‘ (w)
B (@) ~ (@) S@H(@)R(@) Byror () (5.93)

where ¢’ =1/e, w' = 1/w and £ = 1/¢. It is common to have e(t) = 0 and w(t) = 0 under
the closed loop operation, hence the use of equation-(5.93) is not recommended as it involves

taking inverses of w(t) and e(t). This situation is avoided by rearranging equation-(5.92)
to:

S(q)H(q)é(t)e(t) = S(q)H(q) X (q)w(t)é(t) + R(q)w(t)e(t) (5.94)
which leads to:

Doy (w) R(q) Qwe(w)q)wf(w)
= X(w) +
@ T S H @) Bee @) Burnw)
In presence of noise v(t) = H(q)&(t), the use of signal processing methods to estimate X (w)
from equation-(5.95) will be biased by:

{ R(q) }‘Pwe(w)‘bwe(w)
S(g)H(q) ) ®ge(w)Puwwlw)

The effect of this bias term is minimal since w(t) is uncorrelated with £(t). However for a
finite data record (which usually is the case) the effect of ®¢,,(w) does not vanish completely
and from equation-(5.95) it is seen that that if ®,,,(w) rolls off at the higher frequencies,
it would add bias in the estimated X(w) at the higher frequencies. The effect of this bias
term can be minimized by providing white noise excitation through w(t).

(5.95)

Estimation of Model from the GPC closed loop data

For GPC, the sensitivity function S(q) is given by:

AT(q)

5@ = T+ s@et (6.96)

which can be used to express e(t) as:
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e(t) = S(q)(R(q)w(t) — S(9)H (q)&(t))

or
e/ (t) = S(q)w! (t) — S(q)H(q)&(t) (5.97)

where e/(t) = e(t)/S(g) and w'/(t) = R(q)w(t)/S(q). The method of PEM can be used
to estimate S(q) from equation-(5.97), and G(q) in-turn can then be estimated from S(q).
The error signal e(t) has a poor SNR compared to y(t), therefore G(q) is estimated using:

¥ (t) = G(g)w!/(t) + H(q)&(2) (5.98)

using PEM, where y(¢)/S(g) and w/f(t) = R(q)w(t)/AT(q).

The procedure for the estimation of MPM and model from closed loop data is
illustrated by simulation examples in Figures 5.34 to 5.39. The closed loop outputs for
GPC shown in Figures 5.34 and 5.36 are obtained for the system given by equations-(5.51)
and (5.52). The output in Figure 5.34 corresponds to the noise-free plant and it is obtained
by subjecting the plant to step changes in the setpoint. The output shown in Figure 5.36 is
obtained by subjecting the plant to white noise excitation through w(t) and here the plant
is assumed to be corrupted by white noise signal of SNR=: 3. In both these cases, 1024
data points are collected, although for the sake of clarity only a portion of the data are
shown in Figure 5.36. Equations-(5.88), (5.89) and equation-(5.95) are used to obtain the

206



Output

[}
v oru

-1} : ‘= il u i 1l
A u u I
- '] 13 ¥
- ,

-z-
\ 1 [
-23 ! LI l

[+] 20 40 60 80 100

Figure 5.36: A section of closed loop data
corrupted with white measurement noise
for white noise excitation in the setpoint.

100 | YT T TYT

Tt T

100

e

2
_‘?.: 104} N F
E " RN
= | —— Plant
[ -—~—- O/ Modal A
' —— Model from
C/L data
1ol i
Frequency

Figure 5.38: Estimated model from the
noise-free closed loop data.

n 3 - v~—r +- —y
3
100 E
@
-]
3
= qo-1k
[ 10 E
5 3
3
=
|0'35
rue MPM
soo bl e e, NEPENPUOVN
102 10— 100 10t
Frequency

Figure 5.37: Estimated MPM from the
noise corrupted closed loop data.

10! p——r—r—vrrrrm T
100 ¢ P
Q
a
2 o
& -
sq \\\.
I —— Plant
w-+f ~~ =" O/L Mode! 3
i ——— Model from 3
CA. data
‘W rs A Ak b AL A Dndadd A A d L S S 1 B, W
102 10-% 100 10
Frequency

Figure 5.39: Estimated model from the
closed loop data corrupted by the mea-
surement noise.

207



estin-ated MPM from the closed loop data shown in Figures 5.34 and 5.36. The results of
the estimated MPMs are shown in Figures 5.35 (for the noise-free case) and 5.37 (for the
noisy case). In both these cases ‘Hanning’ windows with data overlapping (as discussed in
Chapter 2) are used to obtain the MPM spectrums. Square wave excitation through the
setpoint results in a good estimation of MPM for the noise-free process, whereas for the
noisy process, a white noise excitation in the setpoint is required to obtain an acceptable
estimate of MPM.

The closed loop data in Figures 5.34 and 5.36 can also be used to estimate the process
model by using equations-(5.96) to (5.98). Figures 5.38 and 5.39 compare the estimated
models corresponding to the noise-free and the noisy plants. Overall the estimated model
using the closed loop data appear to match well with the mc-del that was estimated using
the open loop data. There are however some mismatchs between the open loop and the
closed loop based models at the higher frequencies.

Since MPM can be estimated from the closed-loop data, it becomes possible to check
the robustness of the existing (GPC) controller on-line. This way any gradual changes in
the plant dynamics can be detected and the GPC (or for any LRPC control law where
MPM can be estimated) can be appropriately re-tuned on-line based on the SGT criteria.

The main limitation of the proposed method is that sufficiently rich excitation must
be provided in the set-point w(t) in order to obtain a good estimate of the MPM or model.
It is also assumed that the plant dynamics remain time-invariant during the window of
time when closed loop data is collected for identification. Thus the application of this
method is quasi-adaptive and it can give reliable estimates only when the changes in the
plant dynamics are slower than the time-length of the data window considered. Neverthe-
less, this method advances the robust design concepts from non-adaptive to quasi-adaptive
applications.

5.17 Selection of tuning parameters using an optimization
technique

Like most LRPCs, GPC has a large number of tuning parameters. These tuning
parameters no doubt add to the flexibility in the design of GPC, but just the sheer num-
ber of these tuning parameters can sometimes be bothersome for some users. Ideally one
would therefore like to have these tuning parameters selected by using some optimization
procedure.

The use of an optimization technique to select all the tuning parameters of GPC
appears to be a non-trivial task, because these tuning parameters involve both integer and
continuous variables and further these variables are related in a nonlinear way to |1/M(w)].
For example, equations-(5.41) and (5.42) show that, even for the simple case of a first order
model and for NU = 1, the controller and model parameters are related in a complex
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Figure 5.40: Robustness bounds for three Figure 5.41: Servo responses for three op-
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0.1. 0.1.
manner.

MINLP?® can be used to solve optimization!? problems that involve both integer and
continuous variables; but in MINLP the integer variables must be expressed in binary form
e.g. oor 1. In the context of GPC, the use of binary form of integer tuning parameters to
express the controller is beyond the scope of this thesis, hence the focus here is on utilizing
only the continuous variables to formulate the optimization problem.

The next issue of importance is the appropriate formulation of the optimization
problem in order to obtain tuning (continuous) parameters that give robust stability and
performance. The small gain theorem as such is an excellent tool to obtain robust stability,
but it cannot give an estimate of the achieved or actual performance. In fact the achieved
performance can only be accessed through actual implementation of the controller on the

plant. Nevertheless the SGT plots and the corresponding servo responses in Sections 5.7 to
5.12 showed that:

1. As |1/M(w)| moves away from the MPM, the controller provides more robustness
but performance becomes more detuned and sluggish. Therefore maintaining a large
robustness margin is not expected to give a good (achieved) performance.

2. When |1/M (w)| is very close to or touches the MPM, then the process response shows

9MINLP stands for Mixed Integer Non-Linear Programming.

10The author would like to thank Dr.R.K.Wood, Department of Chemical Engineering, University of
Alberta for discussing this optimization problem.
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significant oscillations. Hence close proximity or contact between |1/M(w)| and the
MPM should be avoided in the interest of stability and performance.

3. The perforinance is usually acceptable when {1/M(w)| is neither too far nor too close
to the MPM. It is difficult to quantify how far or how close {1/M (w)| should be from
the MPM.

The above observations roughly indicate that good performance with a guaranteed robust-
ness can be expected by minimizing the area tetween |1/M(w)] and MPM (i.e. the robust-
ness margin), subject to the SGT constraints and by maintaining a user choosen minimum
robustness margin. Thus the optimization problem (to select the tuning parameters) can
be stated as:

¥ = Min 322, Awi(l 5zl — 1G we)l)

subject to:
Gwy) + e<|m|fork—1
ASA<A
0<c<1
1<p<p
0<70<1 (5.99)

where in the above equation-(5.99), n, is the number of frequency points, € is the user
specified minimum robustness margin at any frequency, {A, A} are the lower and upper
bounds on the controller weighting ), c is a parameter in the filter C.(q) = 1 — cg~! (only
the first order filter is considered) and p is the upper bound for p in P(q) =p— (p—1)g~ L.
The parameter € in equation-(5.99) serves to indirectly specify the performance criterian.

The use of this optimization procedure (equation-(5.99)) to obtain the GPC param-
eters is illustrated by simulation examples for the system given by equations-(5.51) and
(5.52). Table 5.17 gives a layout of different case studies and their results are shown in Ta-
ble 5.17. Sequential quadratic programming (SQP), under MATLAB’s Optimization Tool
Box was used to obtain these tuning parameters. The robustness bounds and performance
corresponding to the optimal tuning parameters (in ‘able 5.17) are illustrated in Figures
5.40 to 5.43; and they indicate the following:

o The A values generally do not get selected, which (based on earlier analysis) is a
desirable outcome. For the case of NU = 2, the ) values selected are marginally small
and they can be neglected. The )\ values do not get selected, probably because it
causes a ‘minimum’ in |{1/M(« )| (which implies more robustness margis: at the higher

frequencies).
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e The optimization program puts significant emphasis on C.(q) and P(gq) to adjust the
robustness margins. Expectedly for smaller values of €, C.(q) selected is small, but
it is difficult to explain the selection criteria for P(q). For NU = 2, C.(q) selected
is large in order to compensate for the smaller robustness margin due to the use of
NU =2.

e Interestingly, oo is not selected for cases-1 and la (i.e.
selected for cases-2 and 2a (where N2 = 10).

N2 = 5), whereas it gets

e The robustness margins for cases-1 and 2 and for cases-la and 2a are very close and
they look alike, but their corresponding servo responses are significantly different.
Thus it is difficult to get an estimate of the achieved performance from the SGT

based robustness bound plots.

e The proposed optimization method gives optimal tuuing parameters such that they
are robust to the modelling errors and satisfy a certain minimum specified robustness

margin.
5.18 Conclusions

The main contributions of this chapter are as follows:

e A systematic and complete controller synthesis technique has been provided that
combines signal processing techniques for the estimation of MPM (which is presented
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in Chapter 2), predictive controller tuning and stability analysis via the small gain
theorem.

Using the small gain theorem it is shown that the stability of GPC cannot be guar-
anteed if the steady state gain of the uncertainty exceeds the model gain. At steady
state, the small gain condition will never be violated if the steady state gain of the
model exceeds half the steady state gain of the process.

The robustness bound of GPC (i.e. |1/M(w)]) is influenced by the model at lower
frequencies. At higher frequencies the robustness bound is influenced more by the
controller term |AT (w)/S(w)|, provided that the model rolls off these higher frequen-
cies.

Explicit expressions for computing the GPC Diophantine coefficients, GPC controller
law and linear GPC polynomials are derived for a process represented by a first order
model with a delay. The use of these GPC expressions can hasten the computational
speed of GPC in the context of adaptive or non-adaptive control.

The influence of GPC tuning parameters such as N», C.(q), P(q), A and 7. on the
stability and robustness has been examined. It has been shown through sirmulations
that, with nominal increases in the values of all of these parameters, the robustness
bound [1/M(w)| increases, thus giving robustness to the system. The fact that NU
makes the controller more active has also been verified through simulation results
analysed in the frequency domain.

It is shown analytically that the increase in the values of the tuning paramaters such
as N2, X and C.(g!) = 1—cg™}, causes an increase in the magnitude spectrum of the
inverse of the GPC controller transfer function (i.e. |AT(w)/S(w)|) when applied to
a first order model of the process.

It is analytically proved that with the increase in the values of the tuning parameters
such as N2, A and C.(¢g7!) = 1 — cg~! there is also an increase in the robustness
margin. The change in the magnitude spectrum of the robustness margin is more
pronounced in the higher frequency range than in the lower frequency range.

The robust stability results have been evaluated experimentally on a pilot-scale heater
system. The experimental results show that this method can be implemented on an
open-loop stable process.

A method is presented to estimate MPM from the closed loop plant data, therefore
the robustness of GPC can be examined quasi-adaptively.

An optimization method is used to automatically select some of the tuning parameters
of GPC, such that robust performance is guaranteed.
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Table 5.1: Different cases of GPC parameters for disturbance rejection.

Case | Ny | N2 | NU | A P(q) Cc(q)
1 115 1 o} 1 1—-0.8q¢7!
2 1 5 1§11 1 1-0.5q71
3 1|15 1 jo! 1 1—-0.8¢7!
4 1|5 1 [0} 1 |[1—0.8¢g71)?
5 1|5 1 o} 1 1—-0.8q¢!

Table 5.2: Different cases of GPC parameters for the experimental set-up.

Case | Ny | N2 | NU | X | P(g) C.(q)
1 1|5 1 0 1 1
2 1|5 1 0 1 |1-0.8q¢?
3 115 2 0 1 |1-08qg!
4 115 1 |o5] 1 |1—-0.8q}

Table 5.3: Layout of different cases studies to dete-mine optimal tuning parameters.

e=0.1 €=0.2
case-1 | case-2 | case-3 case-1a. | case-2a | case-3a
Ny 5 10 10 Ny 5 10 10
NU 1 1 2 NU 1 1 2

Table 5.4: Small gain theorem based optimal tuning parameters of GPC.

A C.(q) P(q) Yoo J Iterations
case-1 0 |1-06629¢-! | 4.7857 —3.7857¢~' | 0 | 0.6281 61
case-la 0 1 —0.9342¢7! | 1.0040 — 0.0040¢~! 0 0.9234 46
case-2 0 1 —0.6030g~! | 5.0000 — 4.0000¢! 1 0.6118 91

case-2a 0 1 —-0.7427¢™! | 5.0000 — 4.0000¢~! 1 0.9736 76

case-3 | 0.0001 | 1 —0.9006g™! | 2.4428 — 1.4428¢~! | 0.0067 | 0.4841 46
case-3a | 0.0096 | 1 —0.9117¢~! | 3.4603 — 2.4603¢~! | 0.0007 | 0.7910 157
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Chapter 6

Robustness of Markov-Laguerre
model based Predictive Controller

A SISO linear me=i#! predictive controller with steady state weighting is formulated using a
Markov-Laguerre model. A structured noise model is combined with the Markov-Laguerre model
to achieve faster disturbance rejection. The small gain theorem is used to analyze robustness of
the Markov-Laguerre based controller in the presence of unmodelled dynamics. It is shown that
robustness properties of the Markov-Laguerre based controller and GPC are simiilar.

6.1 Introduction

The concept of robust design of GPC discussed in chapter 5 is extended in this chapter to
design a model predictive controller (MPC) based on the Markov-Laguerre model.

In Chapters 3 and 4 it was shown that orthonormal models such as Laguerre models
can result a fairly accurate descriptions of the plant dynamics even in presence of significant
measurement noise. Furthermore, delays, inverse response or other unusual high frequency
dynamics which are common in chemical processes can be effectively captured using Markov-
Laguerre or Markov-Kautz models as described earlier in Chapter 4. Although this chapter
is concerned only with the robust design of Markov-Laguerre model based MPC, it is straight
forward to extend these methods for the design of predictive controller based on the Markov-
Kautz model (for processes with complex poles).

Furthermore, the Markov-Laguerre model is unstructured like the FIR/step-
response models. Therefore the robust design procedure discussed in this chapter can easily
be applied to other MPCs such as DMC and IDCOM that are based on FIR/step-response
models. The Markov-Laguerre based MPC has several advantages over other well estab-
lished controllers such as DMC/IDCOM. Notable among them is that the Markov-Laguerre
model requires a smaller number of parameters compared to the large number of coeffi-
cients required by the FIR/step-response models to emulate the process behavior; and yet
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the Markov-Laguerre model retains the same structure as the FIR /step-response models.
Many commercial controllers such as IDCOM/DMC still prefer to use FIR/step response
models because these models are well suited for capturing unusual high frequency dynamics
and are easily interpretted by process engineers. The Markov-Laguerre model is effective
even in such cases because unusual high frequency process behavior can easily be captured
using the Markov (or FIR) parameters whereas the lower frequency dynamics can be effec-
tively modelled using the Laguerre component. Since the Markov-Laguerre model requires
a smaller number of coefficients, its usage can lead to savings in cotnputer resouces. This
saving in computer resources can be even more significant for large scale integrated control
systems involving large dimensional MIMO systems.

The use of a Laguerre model to design unconstrained MIMO predictive controller
was first proposed by Zervos and Dumont {1]. With respect to the Laguerre model based
unconstrained SISO MPC, Dumont and co-workers showed that: (a) the design of such
controllers is always stable for a unity controller horizon and (b) under some parametric
mismatch conditions, the robustness of such controllers can be established {2]. Dumont and
co-workers also reported several successful industrial applications of such Laguerre based
(adaptive) MPC [2, 3, 4, 5].

Subsequently Finn et al. [6] proposed the use of Markov-Laguerre models to design
a constrained MIMO predictive controller whose formulation is similar to QDMC! [6]. For
Markov-Laguerre based MPC, Finn et al. have: (a) indicated that the choice of tuning
parameters is important in order to ensure robustness to modelling errors; and (b) showed
from the passivity theory that input constraints do not destabilize the loop [6].

Some of the work carried out by Dumont and co-workers and Finn et al. in for-
mulating orthonormal model based MPC is extended in this chapter. Section 6.2 discusses
the conversion of Markov-Laguerre model to state-space form, which is subsequently used
to design the MPC. The state-space model used by Dumont and co-workers is represented
in terms of the parameters of the Laguerre model in the continuous domain, whereas the
state-space model used in this chapter is in terms of the parameters of the Markov-Laguerre
model that is identified in the discrete demain. Finn et al. have also used the state-space
equivalent of discrete Markov-Laguerre model, but they did not elaborate on their state-
space model in the way presented in this chapter. This section also provides an explicit
expression for an ARX model that can be obtained from the Markov-Laguerre model.

Section 6.3 describes the use of Markov-Laguerre based state-space model to design
a MPC. The approach followed here to desiga the MPC is similar to the Laguerre based
MPC that was formulated by Dumont et al. [3]. The concept of steady-state weighting as
proposed by Kwok and Shah for GPC (7] is also used here to formulate Markov-Laguerre
based MPC.

Section 6.4 presents the formulation of constrained Markov-Laguerre based MPC

!QDMC stands for Quadratic Dynamic Matrix Control.
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which is very much similar to what has been proposed by Finn et al. [6]. But this section
also provides explicit expressions for the constraints that are of practical interest.

Dumont and co-workers did not consider any noise model for their Lagurre based
MPC. However Finn et al. considered a noise model of the type 1/A™ (their analysis
was however based on n = 1) to design Markov-Laguerre based MPC [6]. This idea of
noise model is extended in Section 6.5 to design Markov-Laguerre MPC that is based on
C(q)/D(q)A type noise model. Thus a combination of structured noise model and unstruc-
tured Markov-Laguerre based model is combined to obtain better process regulation.

Section 6.6 discusses the design of a Markov-Laguerre based MPC that is robust to
the unstructured or non-parametric modelling errors. The of different tuning parameters on
the robustness of the Markov-Laguerre based MPC are examined through simulation case
studies in Section 6.7. A comparative study between GPC and Markov-Laguerre based
MPC with and without the use of noise model is also discussed in a subsection under the

Section 6.7. The discussions presented in the preceeding sections are followed by concluding
remarks in Section 6.8.

6.2 Markov-Laguerre based state-space model

The discrete Markov-Laguerre model as introduced in Chapters 3 and 4 is expressed as:

d N
G(z) = D hez™* + " giLi(z)z™4 (6.1)
k=1 k=1

to represent the dynamics of a discrete overdamped stable linear plant G(z) by its estimated
model G(z); where

Li(2) =

\/zl —a2 [i— az)"'1 (6.2)

—a zZ—a
is the Laguerre basis function for a specified real pole a. In equation-(6.1), NN is the order of
the Laguerre model, d is the delay or length of the inverse response, hg, (k= 1,2,...,d) are

the Markov coefficients and gi, (k = 1,2,...,N) are the Laguerre coefficients. The model
output corresponding to equation-(6.1) is given by:

d N
§(t) =3 hiu(t — k) + D geli(t — d) (6.3)
k=1 k=1

where the Laguerre basis signal is: x(t — d) = Li(q)u(t — d).

With the bold faced upper and lower case characters denoting matrices and vectors
respectively, the discrete states-space model:

x(t+1) = Ax(t)+ bu(t)
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() = <Tx(2)

can be used to represent the model given by equation-(6.3) where

x(2) = [u(t —1),u(t — 2),...,ult — d),1{t —d),lo(t —d),...,In(t — d)]T € R**?

A= [ Ay A
Az Ap

] € %nxn

b =[1,0,x(n+a-1)]T € R**!

c= [hlah2a'-°)h'dsglagZa“-’gN]T € RRXI

(6.4)

(6.5)

such that n =N +d, A;; € R¥*4, Ao € RIXN A, € RN%C Asy € RV*N and where:

[0
All — 1xd ]
| Ig-1 O@—1)x1
Az = Ogxn
le(d—l) o
01x(d-1 —aa
Az = ) ) .
| O1x(a-1) —aV7la
i a-:
0!2 a
—aa? a?
Azp = a2a? —aa?
| (__a)N—zaz (_a)N—aaz

a

(6.6)

In the above expression (6.6) a = V1 — a2, I,, is identity matrix of size p and Opxg is a matrix
of zeros of size p x q. For the special case of a Laguerre model (i.e. when d = 0), the state
matrix reduces to A = Ag;, b becomes the last column of Az; and ¢ = [g1,92,...,9nN]7-
The Markov-Laguerre model given by equation-(6.1) can also be expressed in the ARX form

as:

(1 —az"")Ny(2)

{1 = az"Y)YN(hy + hoz™  +... + hgz~%+1)
az g (1 —az YV 4 go(1 —az )V 2(z7! —q)

+
+ g3(1—az )N3(z71 —a)2 ... 4 gn(z ) — @)V Y u(t — 1)
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6.3 Design of unconstrained MPC - without noise model

As discussed in Chapter 5, MPCs are designed to mimimize the sum of square of the error
between the projected set-point and the predicted output over a prediction horizon from
Ni to Ny with a penalty A on the controller inovement Au over a control horizon NU. The
objective function to be minimized is:

J =[w—-yPITiw —yF]+ AuTAAu (6.8)
min Au

where w € RN2-M+1)x1 ig the projected setpoint vector, Au € R¥VU*! js the projected

incremental input, A = Myy and yP € R(N2—N+1)x1 i the predicted output which is given
by:

yP =[Gt + N1|t), §(t + Ny + 1[t),..., 5(t + Nat))T (6.9)

Successive substitution of equation-(6.4) gives the following i** step predicted output as [2]:

Gt +it) = T A'(t) + vi1u(t) + viou(+ 1) + - - +vou(t +i — 1) (6.10)

where v; = ¢T Ab. The set of equations-(6.10) for i =1 to N can then be written as:

[ g+1) ] T TA ]
§(t +20t) cTA?
9t + NUIt) =] cTANU x(t)
9t + NU + 1|t) cTANU+1
i TAN
Gt + Nalt) 4 N2xN2 [ TAT N2xn
o 1 [ w7
" Vo u(t + 2)
+ VNU-—I coe te s Vo u(t + Af{_'r — 1)
VNU vee ces ceow Vo u(t+NU)
| YN2—-1 cee see sees ses ees V°-Nng2 i U(t+NU) J a1

(6.11)
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Using the relation: s; = Ei:o v, the above equation-(6.11) can be rearranged as:

yP = L'x(t) + syu(t — 1) +SAu (6.12)
£
for the prediction horizon /N, to N3 where:

L' = [cTAM, TAN+L cTAN’]T
Au = [-Au(t), Au(t +1),...,Au(t + NU)|T
o,
s = [ (6.13)
| SNa—-N1+1

(N2—N1+1)x NU

In equation (6.12), £ € R(N2—N1+1)x1 corresponds to the free-response, s; € R(N2—M+1)x1
is the first column of 8 € RN2-M+)xNU 5. in § js the it* step response coefficient and
L’ € RNVa-N1+1)x(N+d) i the observability matrix. SAu corresponds to the forced response.
Substituting equation-(6.13) in (6.8) results in the following control law:

Au = (STT,S + A)~18TT e’ (6.14)

where

T, = N (6.15)

'nyz
and where the projected error is €' = w—f' € R{N2-M+1)x1_ The term €’ is however devoid

of the feedback from output y(t), therefore as noted by Elshafei et al. [2], €' is replaced by
e = w — f where the free-response f is:

f =y + Lx(t) + s1u(t — 1) (6.16)

where

w),y@),..., y(t)]T e R(Na+M-1)x1
L = [cT(AM -1),cT(AM+! 1), T (AN2-N1+1 _ DT € H(N2—N1+1)xn

<
[

(6.17)
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6.3.1 Steady State Weighting - v

As mentioned in Chapter 5, Kwok and Shah modified the LRPC objective by augmenting
the GPC control law with a terminal matching condition [7]. The modified LRPC objective
with a steady state weighting v, gives the effect of a large prediction horizon without
actually using a large value for N;. For the case of GPC it has been shown that the steady
state weighting v, endows better stability properties than the move supression factor X [8].
Interestingly, this result appears to be somewhat similar (though not quite the same) to the
guaranteed stability properties of infinite horizon receding controller {9, 10].

Since v, improves the stability of GPC, it becomes meaningful to explore the effect
of 7w on the stability of Markov-Laguerre model based MPC as well. The key step in
including the steady state weighting is in the formulation of predictor at the infinite horizon
(i.e. at steady state) which is given by the following two lemmas:

Lemma 6.1 The predicted output for the Markov-Laguerre model at steady state is given
by:

yF (t + oo|t) = y(t) — T Ix(t) + Seort(t — 1) + SeoAur (6.18)
where sco = 3_fno Vk and Soo = [Sous* ** , Sec]1xNU

Proof: This lemma is proved by evaluating the predictor yF given by a combination of
equations-(6.10), (6.12), (6.16) and (6.17) at i = oo and noting that A® = 0. O

Lemma 6.2 s, in equation-(6.18) is given by:

Soo = ¢l Aoob (6.19)

where for the Markov-Laguerre model, A, is

Aoo — [ Acoll de(N-—d) ] (6-20)
Ax21 Ax22

(for the Laguerre model, Ao = Aco22), Aco11 € R4*? is a lower triangular matriz of ones
(including the diagonal) i.e.:

1

11
Aou=|. . (6.21)

1 e eer 1
all elements of Acoz, € RWV-N*2 in equation-(6.20) are a/(1 — a) (a and a are defined in
(6.2 and 6.6)) and A.~0z2 € RIN-DX(N=d) ig given by:
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|
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Fu—a
-]
‘..

-
!
[}
-
]
"

;
3
"

Ax22=| T=a 1=a T-a (6.22)
l4a .. l1ta 1
. 1—a 1—-a 1—a

Proof Using the relations v; = ¢TA’b and s; = 2;;:0 Vi, A in equation-(6.20) can be
obtained as:
Aw=I+A+A%24+...+ A® (6.23)

Substituting equation-(6.6) in equation-(6.23) proves the lemma. This lemma is also proved
by using the following relation:

A,p,=[I-A]"? (6.24)

because at steady state, z = 1 in the transfer function: cT[zI — A]"'b. O
The objective function with a steady state weighting vy is given by [7]:

J=[w-— yP ]Tl‘y[w - y‘D ]+ AuTAAu + [weo — yoop ]T'yoo[woo - ycoP ] (6.25)

where wq, is the setpoint at the steady state which is assumed to be same as the elements
in w. Substituting equation-(6.18) in (6.25) and minimizing it with respect to Au gives the
following control law with a steady state weighting ., term:

Au = H[L,ST(W —f) + 100SL (Weo — foo)]

where H = [STl‘yS+A+S£,'y°°Sm]_1
8co
S = |: - (6.26)
Seo *** Seo

Saudagar [11] has shown that the steady state so, is not affected by NU, hence
it does not make sense to use the S, matrix as shown in equation-(6.26). A simplified

control law with steady state weighting can therefore be obtained by forming an augmented
predicted output as:

ye = [ly"15 4" (¢ + colt))T (6.27)

and then minimizing the objective function with respect to Au:
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J=Min [w, —yP|Tr[w,—yf]1+ AuTAAu

[

to give the following simplified controller law:

where wg = [Ww7,we]T and

Au = H,[[ST(w, - )]

where

H, = [STTS+A]!
S,

S OpxnNo—1

£, = y+[ L ]x(t)+[s‘ ]u(t—l)
-1 S

%)
N et N—
L. Sa

6.4 Design of constrained MPC

(6.28)

(6.29)

(6.30)

(6.31)

In a plant the final control elements are always bounded by their saturation limits and their
incremental movements are often constrained due to physical reasons. Such constriants are

accomadated in the MPC by formulating the following problem:

min
Jt =Au }AuTH,Au - glAu
minAu
s.t. CAu<p

where

H, = [SITS,+ A]™!
Ba = I'SI(wa-1fa)

(6.32)

(6.33)

Quadratic programming (QP) can be used to solve this problem, where the resulting J+
is a suboptimal solution of J (i.e. J* > J) given by equation-(6.30). In equation-(6.32),
the output constraints are handled by expressing y* in terms of Au. The limitations on
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the control inputs represent the ‘hard’ input constraints which are never violated. On the
other hand the output constraints are ‘soft’ which are often violated due to the presence of
noise, disturbances and unmodelled dynamics.

Let {i,u}, {Au,Au} and {Ay, Ay} denote the maximum and minimum saturation
values of the input, incremental input and projected incremental output around the setpoint
w repectively. In view of these constraints, the operating regime becomes:

u< u(t+i) <u fori=0,...NU -1
Au< Au <Au
w+ Ay < yP <w+Ay (6.34)
— y
h A

where each element of y is y and each element of ¥ is 7. It is mathematically possible to have
different bounding limits on u(t +¢) and Au over the controller horizon NU. However it is
practical to assume constant bounding limits on {u(tf + i), Au} over the controller horizon
because the hard input constraints usually remain constant over time and even if they
change, they are expected to change gradually and it is difficult to predict these changes
in the future. With these assumptions, the constraint matrices C and p in equation-(6.32)
becomes:

¢ =[tw C -Iww -C1 s 8]
T
p = [P P2 Ps P« Ps P | (6.35)

where C; € RINU-1)XNU pa5 the following structure for NU > 2

1 --- 1 0
1 - eee 1

C,=| . ) (6.36)
1 oo ee- 1

and for NU =2, C, = [1,1]. In equation-(6.35)

p1 = [min(Au, 7 —u(t—1)),Aqy,...,Au7T € RVUX?

p2 = [@-u(t—1),...,7—u(t—1)T € RVU-1x1

ps = [max(—QAu, —(x— u(t —1))),~Ax,...,—-Au]" € RNV*!

P4 [—(u— u(t —1)),...,—(u—u(t — 1))T € RWU-1)x1

Ps = Mg"f(Nﬂt), .o, w(Ne|t) + By — F(Na)IT € R(Na—Ni+1)x1
v

226



Ps = [—(w(M|t) — Ay —F(Nilt)), ..., —(w(Na|t) — Ay — f(No]2))]T € RNVa—M1+1)x1
Yy

(6.37)

As an illustration, for NU = 2 we have (neglecting the effect of o ):

u<u(t)<u - z—u(t—1) < Au(t) <u-—u(t—1)
u<u(t+1l) <7 u—Au(t) < Au(t +1) +u(t — 1) <u— Au(t)
Au< Aut) <Au
Au< Au(t+1) <Au
y—-f< SAu <y-f (6.38)
the above set of equations-(6.38) will then yield:
[ 1 o | [ min(Au, 7 — u(t — 1)) |

0 1 Au

1 1 u—u(t—1)
-1 0 max(Qu, u — u(t — 1))

0 -1 —Au
-1 -1 —(u—u(t-1))

51 0 Ault v—In

u(t) = o (6.39)

82 s Au(t +1) ¥~ fmn

. ~ .
SN, SNp-1 ¥— N,
—8 0 ' ""(1_/, —Iny)
—382 -8 —(y — fvi+1)

L —S8N2 —SN;-1 J L '_(E - sz) J
C P

6.5 Design of unconstrained MPC - with a noise model

The modelling of noise plays an important role in the formulation of some MPCs suvi: :.:;
GPC or UPC [12, 11]. The noise model influences both robustness and performance of tue
controller; for example, in Chapter 5 it was shown how the use of C,(g) filter improves the
robustness of GPC.

Noise models are an integral part of structured models such as ARIMAX or Box-
Jenkins (BJ) models. Consequently, the noise model naturally gets considered in the deriva-
tion of MPCs that are based or: such structured models. The noise model acts as an observer
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for the anticipated disturbances, thus it enables the MPC to take suitable corrective actions
in advance to obtain better regulation. The inclusion of noise model also helps to account
for the modelling errors as exhibited by GPC or UPC {12, 11}.

Traditionally the unstructured models such as the step-response or orthonormal
models are represented without any consideration for the noise model. Therefore noise
models usually get excluded in the formulation of MPCs that are based on unstructured
models. Consequently the disturbance rejection properties of unstructured model based
MPCs such as classical DMC are poor. Finn et al. combined a noise model of type 1/A™
(the analysis was however based on n = 1) with a Markov-Laguerre model to formulate
the MPC [6]. Finn et al. used the noise model from the identification perspective aad
they did not elaborate on the consequence of including the noise model in the controller
performance. This section presents a slightly different formulation for the Markov-Laguerre
based MPC by considering the following noise model:

C 1+cg?
0(8) = Prab(®) = 5Ty (6.40)
The type of noise model shown by equation-(6.40) has also been used by Saudagar [11] to
obtain a faster disturbance rejection for the DMC; where the DMC in that case was based
on the transfer function model. However here the structured model has been combined with
thiz state-space form to obtain a controller design. The noise model in this case is restricted
7. » first order, because subsequently it will become apparent that the derivation of the
Markov-Laguerre based MPC becomes quite involved even for this case of first order noise
model. The noise model considered here is to be viewed from both the identification and
control perspectives. Both these perspectives are important because the knowledge of the
noise model helps to identify a better quality model and it can lead to better regulatory
response. The process model under consideration thus has the following form:

v(®) = S u(t - 1)+ 5re(®) (6.41)
Rearranging the above equation gives:
() = B@) s (t—1) +&(2) (6.42)

A(g)
where y/ (t) = D(q)Ay(t)/C(q) and uf(t — 1) = D(q)Au(t — 1)/C(q). The transfer function
term B(q)/A(g) in equation-(6.42) can also be identified as Markov-Laguerre mode., in such
a case the process model becomes:

d N
V() =D hig' + 3 giaLai(g)}u () + £(2) (6.43)

i=1 i=1
The model shown by equation-(6.43) is a result of combination of the unstructured
Markov-Laguerre model and a structured noise model. The Markov-Laguerre model shown
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by equation-(6.43) can be estimated from the process data {y(t), u(t)} using a batch least-
squares (LS) technique. If the noise model in equation-(6.40) is unavailable, then it can
be approximated from the residual data r(t) = y(¢) — §(t), where §(¢) is the model output
corresponding to the identified Markov-Laguerre model. One way to identify the noise

model from r(t) is to apply an AR model? of arbitrarily high order to r(¢) to estimate the
innovations £(t) as [13]:

&(t) = (1 — T(q))r(2) (6.44)

where YT(g) represents the identified estimated high order AR parameters. Subsequently
D(q) and C(g) can be estimated by forming the following ARX model [13]:

AD(g)r(t) = [C(g) — 1)(2) + £(¢) (6.45)

The estimated noise model using this two step approach is influenced by the mod-
elling errors as the residual r(¢) also contains information on the MPM. The model described
by equation-(6.43) can be expressed in the state-space form as:

x(t+1) = Ax(¢)+bul(2)
vit) = Tx(t) (6.46)

where x(t) = [uf(t — 1),...,u (¢ —d),l{(t — d),- -, g (t — d}), L(t — d) = Ly(q)u/ (t — d)
and

W(t) = Ay(t)+dAy(t—1) —cy/(t-1)
wf(t) = Au(t)+dAu(t—1)—cuf(t-1) (6.47)

Note 6.1 The difference between c in C(q) in equation-(6.40) and c in equation-(6.46))
should be noted.

Using equation-(6.47), the ' step output prediction is given by:

Dyt +iit) =y G +i)+ eyt +i—1) —dAy(t +i—1) (6.48)

For 1 to N3 step ahead predictions, equation-(6.48) together with equation-(6.46) can be
expressed as:

2The command ‘AR(r,N)’ can be used to obtain the AR parameters using MATLAB for the residual
vector r and AR-order N.
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y(t + 1j¢) y(tjt) y(t—1)

t+ 2|t t+1ft t|t
verain | e 4o VO
y(t+N2|t) y(t+N2—1|t) y(t+N2—2|t) |
Y v
x(t) u/ (2)
x(t+1 uf(t+1
+ cT(A+cl) .( ) +c'b | | ¢ )
\-__a!f_d : :
x(t+ N2 —1) ul/ (t+ N —1)

(6.49)

Successive substitution of x(t) from equation-(6.46) in equation-(6.49) results in

[ I ] ] Onx1 |
A b
Y? = Y'+r{| A? x(t) + Ab b x
AN2-1 i AN2—-2p AN:2-3p ... b
L . e m
\ L
[ u/(2) 1 [ w/(2)
uf(t +1) uf(t+1)
ul (t +2) \ +cTb | vf(t+2)
_uf(t+N2—1)_‘ _uf(t+N2—1)_
[ Tb 1
rb <I'b
= Y +rLx(t)+ rAb rb c’b x
| rAN:-2p pAN2-3p -, .. cTb
v
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u/ (1) T
ul(t+1)
uf(t +2)

uf(t+N2—1) i

o

uf
(6.50)
where the elements of V are:
n
v2 m
V= . .. (6.51)

‘UN: - T 'Ul Nz x Nz

Recursive substitutions of the predictions y*(t + i|t) in equation-(6.50) leads to:3

YF = Ey(t) + wy(t — 1) + Ix(t) + Ou’ (6.52)
where
B (=, =1~d
= Ea=1-dZ +d
=2 = =3 where { Z3=(1-d)=, +d=,
T PV | En = (1 = djEN, -1 + dEN, 2
K780 (¥, =d
v, Yo = (1 - d)\I’l
¥ = Ty where <{ Y3 =(1-—-d)¥;+d¥,
| Un, | Nax1 | YN = (1 —d)¥N, 1 +d¥N,—2

3Length and complexity of equations for the output prediction increases with increase in the prediction
horizon N;. For higher order noise models the expressions for the predictions are much more complicated

and they are difficult/tedious to generalize. Hence formulation of Markov-Laguerre based MPC is restricted
to a first order noise model.
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;] (I, =rI
Iz II, = (1 —d)II; +rA
I = I3 where W O3 = (1 — d)[Iz + dII; + rA2
L BN J s | Oy, = (1 — d)lIn,—1 +dlIN, 2 + TAN?7!
on ]
©21 Oz
e = ©3; O3 ©Oa33
| BNt B2 - T OmaN [,
where
On=un
O2 = (1 —d)O11 +v2 O =u;
4 O3, = (1 —d)O2; +dO1; +v3 O3; = Oy O33 = v
| On1 = (1 ~d)ON;—11 +dON,—21 + VN, ONy2=ON,1

(6.53)

Also by successive substitution of u/ from equation-(6.46) in conjunction with equation-
(6.47) results in:

[ uf(¢) 1 [ 1 ]
uf(t+1) d—c 1
uf(t+2) = —c(d —c¢) (d—¢) 1
L;Lf(t+N2—1)_ Lc""z(:d—c) N2=3(d—¢) --- (d—c) 1
o S Mo ”
[ Au(t) i
Au(t +1)
Au(t+ 2)
i .AU(t+N2— 1) |

~ o

Au
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] d 1 [ —¢ ]
—cd 2
+ c2d Au(t—1)+| - |uvft-1)
—clNa-14 —cNa
L J L i
M, M,

(6.54)

Substituting uf from the above equation-(6.54) in equation-(6.50) gives:

P _ = — —_ f¢ —
Y' =EZy(t) + Pyt — 1) + IIx(t) + OMp Au+ OM,; Au(t — 1) + OMo u/ (t — 1) (6.55)
S Q $
The control law is obtained by substituting Y* from equation-(6.55) in equation-
(6.8) and then minimizing the resultant expression with respect to Au to yield:

Au = H[STT, {w — Ey(t) — Ty(t — 1) — Ix(t) — RAu(t — 1) —Ouf(t —1)}] (6.56)
where H = [STT',S + A]" L.

6.6 Robustness Analysis

In Chapter 5 it was shown how the small gain theorem [14] can be used to examine the
robustness ot GPC in the presence of unmodelled dynamics. The robust design method in-
volves estimating the MPM and then designing a controller that is robust to these modelling
errors [15]. This method for the robust design of GPC is applied to the Markov-Laguerre
based MPC in this section. Infact this method for ascertaining the robustness can be ap-
plied to any unstructured model based MPC such as DMC or IDCOM. The present work
parallels the work done by Qi [16] in the context of robust design of model predictive con-
troller where the model has a dual form (i.e. a combination of FIR and ARX models) and
where this model is converted into a state-space form for the controller design. However,
in the present case the SGT criterion has been used as a robustness measure whereas the
design procedure by Qi is based on the matrix perturbation theory.

Before proceeding to the robustness analysis it is important to check if the designed
closed loop system is stable or not. For simplicity, first the MPC which is designed without

using any noise model is considered. Using equations-(6.30) and (6.31), the controller (for
w, = 0) can be expressed as:

u(t) = —viy(t) — vox(t) +vau(t—1)
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Figure 6.1: Closed loop structure of
Markov-Laguerre Predictive Controller

Figure 6.2: Small Gain Structure for the
Markov-Laguerre Predictive Controller

where vy, = Iy Sfl"l
Vo2 = h1 SZI‘LQ
vg = 1—hSTrs,

(6.57)

where h, is the first row of H, in equation (6.30) and 1 is a vector of ones of size (N2+1) x1.
The first row of H, is only considered because of the receding horizon policy for the MPC.
The expression for the designed closed loop is obtained by incrementing u(t) in equation-
(6.57) by one-step and substituting y(¢t + 1[t) = ¢ (Ax(t) + bu(t)) from equation-(6.4) in
the resulting incremental equation to give:

x(t + 1) _ A b x(t) '
[ u(t + 1) ] - [ —(v1cTA +vzA) v3 —vzb—vcTb ]J [ u(t) ] (6.58)

-

N

A,

The designed controller when implemented on the plant will be stable only if A, is stable,
therefore before proceeding for the robustness analysis it is imperative to check if all the
eigenvalues of A, are inside the unit circle. Elshafei et al. [2] showed that A, is stable for

Laguerre based MPC when NU = 1, but this result does not apply to Markov-Laguerre
based MPC as illustrated by examples in later sections.
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In Chapter 5, the robustness of GPC was analysed by separating the unmodelled
dynamics from the designed closed-loop system. A simple way of representing the MPM is
the additive purturbation (i.e. G(z) = G(z) — G(z)) [17]. Let the corresponding designed
closed-loop for G(w) be denoted by M (w) as shown in Figure 6.2. Such a partitioned system
is guaranteed to be stable if |G(w)M (w)| < 1 or |G(w)] < |1/M (w)]| for a SISO system. As
in the case of GPC in Chapter 5, here also |1/M (w)| is designated as the robustness bound
corresponding to G(w). Such a method gives a conservative design, nevertheless it results
in a controller design which guarantees robustness to unstructured modelling errors.

In Figure 6.2, d(t) represents signal corresponding to the modelling error and
the noise-free plant output is y(t) = F(t) + d(t), where from equation-(6.4), §(t) =
cT'[z1 — A]"bu(t). Combining the expressions for §(t) and y(t) with equation-(6.57) gives
the following expression for M(z):

u(z) -z
Td@ 6.
M d(z) z{l1+ (v2+ucT)(zI — A)~1b} — v3 (6.59)
or the robustness bound is given by

l 1 I _ Z{1+(V2+'U1CT)(ZI—-A)'“1b}—'u3
M(z) - —mn1 2
_ 1 1 N\ T(ﬁ __1)1_T___1
- .hlsg‘rl{(z 1) mSIT (2 4+ LofsT - A7'b) | - &Tle1- A b
G(z)
_ A 1 hSTT .
= —{G(z)+zhlszr1 (sa+zLa[zI A) b+A)

(6.60)

The effect of some of the key tuning parameters of the Markov-Laguerre based
predictive controller are discussed and compared with the ARIMAX based GPC in the next
section. As in the case of GPC, the robustness bound given by equation-(6.60) has the
following property:

Lemma 6.3 At w = 0 the robustness bound for the Markov-Laguerre based MPC is the
steady state gain of the model which is given by:

|M_1(1_) =|éw)| = "L - A]'b| (6.61)

Proof At steady state w = 0 = z = L1 and A = 1 ~ z7! = 0 and substituting these in
equation-(6.60) gives:
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1 - h, STT .
= | =1= _ b .
IM(1)| {G(” + sty BetLell — A" b] (6.62)
Representing s, in terms of s; = Ti_ocTA*b and using the expression for L, from

equations-(6.17) and (6.31) in the above equation-(6.62) leads to the following form for
X:

I [A — [T - A]!
I+A Az -JjI—-A"E

X = ¢ . b+ cT [ ][ ’ b
Ao [A® —I][I — A]?

[A-II—-A]"Y+1
| [A2-TI-A]'+[I+A]

—I[I - Ai‘l +A,
(6.63)

This lemma is proved by showing that all elements of X in equation-(6.63) are zero. In
equation-(6.64), taking [I — A]~! common gives

[A-TI]+[XI-A]
[AZ —I]+[I+ AJ[I-A]
X=c'| [A°-T+I+A+AYI-A] [[I-A]'b (6.64)

: 1 !
| ~I+ A [I—A] i

It is clear that ail elements inside the matrix in the squas® brackets in equation-{6.64)
are zero, thus proving the lemma. For the last row in the above equation, the equality

AZ! = 1— A from equation-(6.24) has been used to prove this lemma. o

Corollary 6.1 With an increase in frequency, the robustness bound for the Markov-
Laguerre based MPC is influenced more by the controller parameters than the model.

Proof: With an increase in the frequency: (a) influence of the model reduces if the magnitude
spectrum of the model drops at the higher frequencies which usually is the case; and (b) the
influence of A which comes from the controller in equation-(6.60) increases with increasing
frequency.

If the noise model as shown by the equation-(6.40) is considered, then from equation-
(6.56), it follows that the designed closed-loop can be expressed as
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Au(t) = —vy(t) — vay(t — 1) — vi x(t) — veAu(t — 1) — vsud (t — 1) (6.65)

where w = 0 for simplicity and where

v; = hSTO,E
va = hSTr,w
vz = hSTr,a
V4 = hlsTr,,n
vs = hSTr,® (6.66)

and h; is the first row of H.

As in the case of equation-(6.58), the designed closed-loop for the Markov-Laguerre

based MPC with a noise model can be expressed by using equations-(6.4), (6.46), (6.47)
and (6.65) to yield:

[x(t + 1), 9t + 10,07 (6 + 1), Ay(k +1), 0/ (¢ + 1), Au(t +1)] " =

A Onxn  Onx1 Opxi b Onx1 |
cTA 1 c —d b 0
cTA 0 0 0 c<’b 0
cTA 0 c —~d cTb 0
—v1cTA —v3A —v;—vy —vie nid —-vecTb—vsb—vs—c —vg+d
| ~v1cTA —v3A —vy—vy —vec und —v1¢Tb — vzb — vy ~vq |
A.
T
[x(t),w(t), 57 (£), Ay (0), w/ (2), Du()] (6.67)

The closed-loop system represented by equation-(6.67) is stable if the eigenvalues of A, are

inside the unit circle. When C(g) = D(q) =1 i.e. when no noise model is considered tlien
the above equation-(6.67) reduces to equation-(6.58).

In order to determine the robustness bound |1/M(z)|, equation-{6.65) is expressed
as:

Au(z) = - { ('vl + -1-;3) y(2) + vax(z) +§ (v4 + vsg'%) Au(z)} (6.68)

which gives
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I 1 . d(z)
M(z)l — fu(2)
G.iz)
A [1 + v3fzl — A]—lb%g-} +1 (v4 + vs-g%)] + (1 + 2) cTlzL - Al™'b

— (v + %)

(6.69)

_ {A [1 + v3[zI — A]‘Ibg-g-} +4 (‘v4 + vs%g})] . é(z)}

(1 +2)

after some rearrangement and substituting x(z) = [zI — A} 'buf(z) and y(z) = cT[zI —
A]"'bu(z) + d(z) in equation-(6.68); where d(z) = Z[d(t)]. At w = 0, equation-(6.69)
reduces to |[1/M(w)| = |G(w)! because: z = 1 and A = 0. From equation-(6.69) it is
obvious that with an increase in frequency, |1/M(w)| is influenced more by the controller
terms because |G(w)] reduces and the influence of A increases.

6.7 Simulation Results

This section shows the use of the small gain theorem to evaluate the effect of robustness of
different tuning parameters for Markov-Laguerre based MPC. The method used to evaluate
the robustness of these tuning parameters is the same as presented in Chapter 5 for the
GPC. Through simulations it is shown that the behavior of different tuning parameters of
Markov-Laguerre MPC and GPC are similar.

The simulation results presented in this section are based on a noise-free third order

“‘overdamuped plant: G(s) = e % /(s + 1)(3s + 1)(5s + 1) whose discrete equivalent for a
sampling time T, = 1 is:

_[0.0077g7} + 0.0212¢! + 0.0036¢~3)g~*
T 1-1.9031¢g-! + 1.1514¢~2 — 0.2158¢3
The above mentioned plant is approximated by a 4** order Markov and 2™ order Laguerre
model whose dominant pole is assumed to be at a = 0.8434. For this specified model

structure, the LS identification method results in the following model for a square wave
excitation:

G(q) {6.70)

G(q) = [0.0181,0.0002, 0.0002, —0.0923,0.2381,0.0872)[¢" %, ..., ¢4, L1(a, q), L2(a,q))T
(6.71)

Note 6.2 The argument a in equation-(6.71) signifies that Ly is a function of a.
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Figure 6.3: Effect of N2 on the robustness
margin.

Figure 6.4: Effect of N> on the servo and
regulatory response.

As discussed in Chapter 5, the mismatch between model and plant is deliberate,
because we want to examine the stability of the Markov-Laguerre based MPC in the presence
of MPM. subsections 6.7.1 to 6.7.4 discuss the effect of different tuning parameters on
the robustness of Markov-Laguerre based MPC. A comparison between GPC and Markov-
Laguerre based MPC is studied in subsection 6.7.5. The effect of the noise model on the
performance of the Markov-Laguerre MPC is illustrated in subsection 6.7.6. For the sake of
clarity in understanding the effect of tuning parameters on the robustness and performance,
noise-free simulations are considered in most of these case studies.

6.7.1 Effect of N,

As in the case of GPC, the prediction horizon N2 plays an important role in imparting
robustness to the Markov-Laguerre based MPC. This is verified in Figure 6.3, which shows
spectral plots of the robustness bound |1/M(w)| for different values of N, superimposed
on magnitude spectrum of the uncertainty. The values of N, examined are 7, 10 and 20,
with the other tuning parameters kept constant at N3 = 1, NU =1, A =0 and 75, = 0.
The spectral plots in Figure 6.3 shows that N, > 7 is required for this example (system
(6.70) and (6.71)) in order to achieve robustness with respect to modelling errors. For
Nz < 7 the SGT stability criterion is violated at the higher frequencies which gives rise to
instability as can be seen in Figure 6.4. Figures 6.3 and 6.4 show that with the increase in N,
the controller becomes more detuned, consequently, robustness of the controller improves,
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overshoot reduces and overall performance becomes more sluggish.

The choice of N> is also important to achieve a nominal stability, for instance,
design of this controller for the model given by equation-(6.71) is stable only if N2 > 5.
Elshafei et al. [2] showed that irrespective of the choice of tuning parameters, the nominal
design of Laguerre based MPC is always stable, but this observation does not hold for the
Markov-Laguerre based MPC.

6.7.2 Effect of )

It is known that the move supression factor A detunes the controller performance hence the
smallest practical value of A should be used. Since ) restrains the controller movements, it
is expected that it will also improve the robustness margin as observed in Figures 6.5 and
6.6 for the A values of 0, 0.5 and 1.0 with other tuning parameters constant at N1 = 1,
Ny = 10, NU =1 and 9 = 0. The influence of A on the nature of robustness margin
is however different from N2. Figure 6.5 shows that A produces a ‘minimum’ in |1/M(w)|
(similar to GPC as observed in Chapter 5) unlike N, thus making the controller sensitive
around the frequencies where the dip occurs.

In Figure 6.4 it was observed that the system response varied significantly with
the change in N2, whereas Figure 6.6 shows no such appreciable variation in the process
performance with the change in A values. Although the controller detunes with the increase
in A, it only increases the overshoot although it is marginal and it does not seem to affect
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the regulatory vesponse. Therefore as far as possible, the use of A is not recommended as it
produces a ‘minimum’ in |1/M(w)| and docs not seem to improve the process performance.

6.7.3 Effect of NU

The controller horizon NU adds to the aggressiveness in the control action, hence as in the
case of GPC, the use of a large NU is expected to reduce the robustness margin. This is
verified for NU values of 1 and 2 with the other tuning parameters kept constant at N, = 1,
Ny =10, A =0 and v, = 0. Figure 6.7 shows that the robustness margin decreases as the
value of NU is increased from 1 to 2. For NU = 2, the spectrum of |{1/M(w)| touches the
MPM, consequently this makes the system unstable as depicted in Figure 6.8.

6.7.4 Effect of v,

The steady state weighting term v, gives approximately the same effect as a large prediction
horizon, without actually using a large value for N;. Consequently it is expected that the
use of 7o will also increase the robustness margin in a similar way as in the case of Na.
This is observed in Figure 6.9 which shows that as the value of v, increases from 0 to 1,
the robustness mazgis: increases in a similar way as in the case of Na. In Figures 6.9 and
6.10 the 4o, values are examined by keeping N; = 1, N, =10, NU =1 and A = 0 constant.
Figure 6.10 shows that with the increase in y.,: (a) overshoot in the servo response reduces;
and (b) regulatory behavior becomes more detuned.
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Figure 6.10: Effect of v, on the servo
and regulatory response.

6.7.5 Comparison between GPC and Markov-Laguerrre MPC

This subsection compares the robustness and performance between GPC and Markov-
Laguerre based MPC. A fair comparison between GPC and Markov-Laguerre MPC is pos-
sible only if: (a) both the ARX and Markov-Laguerre models have the same dynamics and
almost the same number of model parameters; and (b) same set of tuning parameters be
used for both the cases. It is difficult to satisfy the first condition because the structure of
both these models are entirely different?. Nevertheless an approximate comparison between
ARIMAX based GPC and Markov-Laguerre based MPC is possible if the dynamics of both
these identified models are sufficiently close.

For the noise-free plant given by equation-(6.70), a first order ARX with 4 delays
and 2 parameters in the numerator (3 parameters in all) is identified using a square wave
excitation. For the same excitation a second order Laguerre model with 4 Markov coef-
ficients (6 parameters in all) is estimated for this plant. The MPM associated with the
identified ARX and Markov-Laguerre models in Figure 6.11 indicate that: (a) the Markov-
Laguerrre model better represents the lower frequency range than the ARX model; and (b)
at the higher frequencies, the ARX model is identified better. Nevertheless, NG (W)lloo of
both these models are approximately the same and they occur towards the higher frequen-

‘In Section 6.2 it was shown that Markov-Laguerre model can be converted into an ARX model such
that dynamics of both these models are identical. But the converted ARX model in such a case is of very

high order. Further, GPC based on this ARX model would require a large value of N3 to achieve stability
and suitable performance.
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Figure 6.11: Robustness margins for
GPC and Markov-Laguerre based MPC
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Figure 6.12: A comparative performance
between GPC and Markov-Laguerre
based MPC for a noise-free plant.

cies and also their time domain responses are similar (not shown). Hence the dynamics of
both these models can be assumed to be similar and comparable which is sufficient for our
analysis.

The robustness bounds of GPC and Markov-Laguerre MPC shown in Figure (6.11)
are obtained by setting the tuning parameters constant at Ny = 1, N = 10, NU = 1,
A =0, Yoo = 0.5 and in addition GPC uses C,(g) = 1 — 0.8¢~!. Figure 6.11 indicates that
the Markov-Laguerre MPC is more robust than GPC. This is because the MPC is designed
without using any noise model and GPC uses a noise model of the type C(q)/A(q)A. The
corresponding performance in Figure 6.12 shows that the GPC response is more oscillatory
(owing to smaller robustness margin) but it rejects the disturbance faster than the MPC
(due to use of noise model in the GPC).

When the plant is corrupted by noise, and a stretched RBS excitation is used to
identify the models, we see that the GPC becomes unstable whereas the Markov-Laguerre
based MPC is stable as shown in Figure 6.13. GPC beconits unstable because it violates the
small gain stability criteria due to a large MPM as shown in Figure 6.13. The ARX model
required by the GPC is poorly identified because of high level of measurement noise (SNR=
1.1) and the excitation is improper for identification of the ARX model®. The instability
can be contained through the input constraints by using a constrained controller as shown

5A combination of measurement noise and high frequency input leads to poor estimation of the ARX
model, however in such a case the use of a low pass filter improves quality of the estimated model.
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in Figures 6.15 and 6.16. But in Figure 6.16 it is seen that the controller corresponding to
the MPC hits the constraints more often.

For the same level of noise i.e. SNR=1.1, if a square wave excitation is used and
if the number of Laguerre parameters be increased to 3 from 2, then in Figure 6.18 it is
seen that the Markov-Laguerre based MPC becomes unstable whereas the GPC is stable.
The Figure 6.17 robustness plot in shows violation of the stability criteria for the MPC due
to large MPM at a certain frequency range for the Markov-Laguerre model. The square
wave excitation gives a relatively better identification for the ARX model {due to more
emphasis at the lower frequency range) whereas it create problems for the Markov-Laguerre
model at the higher frequencies. These examples show that GPC or Markov-Laguerre MPC
can become unstable if the corresponding MPM is large. The choice of identification design
criteria is important and must be carefully selected depending on the model to be identified.

6.7.6 Effect of noise model on the performance of Markov-Laguerre MPC

The effect of including a noise model in the formulation of Markov-Laguerre based MPC is
discussed in this subsection. Figures 6.19 and 6.20 compare the robustness and performance
of Markov-Laguerre based MPCs that are formulated with and without the noise model.
As in the case of GPC, the use of a noise model in the Markov-Laguerre MPC helps to
achieve faster rejection of disturbance as shown in Figure 6.20. The use of a noise model
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also leads to a less robust controller design as depicted in Figure 6.19. For this particular
example, (1 — 0.25¢71)/((1 — 0.8¢71)A) is selected as the noise mode! and this model is
to be treated as an additional tuning parameter for the MPC to obtain faster disturbance
rejecton. Similarly a comaprison between GPC and MPC with the noise model is made in
Figures 6.21 and 6.22. With an appropriate selection of noise model for the MPC, these
figures show that: (a) its robustness bound can be made similar to GPC; and (b) it can
reject disturbance as well as GPC.

6.8 Conclusions
The main contributions of this chapter are as follows:

e A Markov-Laguerre model is used to formulate a model predictive controller (MPC)
by first converting the Markov-Laguerre model into a state-space form. The objective
function of this MPC is the same as GPC. Formulation of a Markov-Laguerre MPC
with and without employing a noise model is considered.

e For MPC without a noise model: (a) a steady state weighting is incorporated in its for-
mulation to enhance stability and performance of the controller; and (b) input/output
constraints are incorporated and this problem is solved using quadratic programming.
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Figure 6.22: Performance of GPC and
Markov-Laguerre based MPC with a
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e A first order structured noise model (i.e. a combination of AR and MA models)
is combined with the unstructured Markov-Laguerre model to formulate an uncon-
strained MPC. The noise model in the MPC is used as a tuning parameter to achieve
faster rejection of the disturbances. The usual disturbance rejection property of MPC
without the noise model is like DMC and slower than GPC, however this situation is
remedied by including a suitable noise model in the formulation of MPC.

e The small gain theorem is used to evaluate the robustness of Markov-Laguerre mndel
based MPC in the presence of modelling errors. Before evaluating the robustness, sta-
bility of the nominal design is checked by ascertaining if the eigenvalues of A, given by
equations-(6.58) or (6.67) are inside the unit circle. The robustness of different tuning
parameters of MPC such as N2, NU, ) and ~. are examined through simulations
and it is shown that these parameters affect the robustness margin |1/M (w)] in a way

similar to GPC. Inclusion of a noise model in the formulation of MPC can reduce its
robustness margin.

e As in the case of GPC, the robustness bound |1/M(w)]| is a summation of the model
G(w) and terms associated with the controller. At w = 0, |1/M(w)| is equal to the
steady state gain of the model and the robustness bound {1/M(w)| is influenced more
by the controller at the higher frequencies.
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Chapter 7

Control Relevant Identification for
GPC

Different single-step and iterative control relevant identification methods are reviewed and eval-
uated by applying them to linear SISO GPC. The goal of control relevant identification is to
enhance the controller performance. This is achieved by minimizing the controller and identifi-
cation objectives in a synergistic manner.

7.1 Introduction

Chapters 2 to 4 of this thesis were concerned with the estimation of model from open-
loop plant data. The use of such estimated models to design certainty equivalence based
predictive controllers was subsequently described in Chapters 5 and 6. The main focus of
Chapters 5 and 6 remained on the design of predictive controllers that are robust in the
presence of model-plant mismatch (MPM).

An important issue related to robust stability is performance. In controller design
one always endeavors to attain a good closed loop performance, because that is what ul-
timately matters. Since MPM is inevitable in all realistic cases, the pursuit for a good or
desirable performance is feasible only when the system is robustly stable.

Furthermore, the issue of robustness and performance is considered to be a problem
of trade-off. For example, in Chapters 5 and 6 it was seen that the performance degraded
as the robustness margin increased. On the other hand, in some cases it was also noticed in
Chapters 5 and 6 that the system response became oscillatory (i.e. again a degradation in
performance) due to lack of sufficient robustness margin at certain frequencies. Therefore

1A version of this chapter has been presented as: ‘A Robustness Perspective on Control Relevant Identifi-
cation for Long Range Predictive Control’, by P.Banerjee and S.L.Shah at the 1995 AIChE Annual Meeting,
Miami, Florida, USA.
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a question that naturally arises is: what robustness margin gives an acceptable pevformance
2 or stated differently can systern performance be predicted by specifying the robustness
margin ? Unfortunately, this is a difficult question to address and the system performance
can seldom be quantitatively predicted by examining the frequency domain based robustness
margins. Nevertheless, the system performance can be qualitatively assessed by observing
the nature of robustness margin and this observation was utiiized in Chapier & in the context
of tuning GPC parameters using an optimization technique. This motivates one to look
for alternate ways of enhancing the performance which is the subject of discussion in this
chapter.

The quest for performance improvement in certainty eqivaleuce controllers has led
researchers to have a fresh look at identification issues. Therefore a pertinent question
that arises in this context is: what model will result in good controller performance ? or
alternately can a model be identified in such a way that it will yield desirable controller
performance ? In an excellent tutorial review on identification (ID) for control, Gevers {1]
noted that: “When a reduced complexity model is identified with the purpose of designing
a robust controller, the model is just a vehicle for the computation of a controller” and
an important overall objective should be: “the global control performance criteria must
determine the identification criteria”. Infact several researchers (2, 3, 4, 5] have recognized
this need for a suitable model ID scheme for control, some of which have been reviewed in
this chapter from the point of view of improving the performance of GPC.

The importance of system ID to estimate models for the design of a certainty equiva-
lence controller was recognized as early as the 60s when the certainty equivalence controller
was first proposed [1]2. Since then the major effort in system ID went into the issues re-
lated to the development of a good open-loop model, but the effect of undermodelling on
the controller performance was largely left out.

Later, the need for accounting for modelling error in controller design gave rise to
the field of robust controller design in the 1980s® [1]. These robust design procedures are
usually frequency domain based and require some a priori knowledge of the MPM* without
accounting for this MPM is estimated. Thus it was seen that although system ID and robust
controller design emerged to facilitate better and reliable design for the certainty eqgivalence
controllers, they were developed as mutually exclusive entities by themselves. For example,
the lack of accord between system ID and robust controller design is more apparent in the
context of adaptive control; where: (a) it is difficult to perceive if the identified model will
keep the system stable; and (b) frequency domain based robust controller design cannot be

2R.E.Kalman first published state-space model based controller design in 1960 as: “Contributions to the
theory of optimal control”, Bol. Soc. Mathematica Mezicana, pp 102-119, 1960 {1].

3Th~ work by G.Zames, ‘Feedback and Optimal Sensitivity: model reference transformations, multiplica~
tive seminorms, and approximate inverses.’, IEEE Trans. on Automatic Control, AC-26, pp301-320, 1981,
first marked the beginning of robust controller design [1].

4As seen in Chapters 5 and 6.
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used to ascertain the stability of a system5.

The need for coherency between system identification and controller design was
realized as early as in 1960 by Fel’dbaum in the context of adaptive (stochastic) control
for certain problems in communications where the process was poorly known. In order to
handle these problems, Fel’dbaum introduced the concept of dual control that pursues the
dual goal of identification and control simultaneously [€, 7}. The key strategy in dual control
is to sacrifice short-term control performance for good overall long-term regulation, by “rich’
initial excitation to obtain good information on the process [8]. Unfortunately, dual control
is impractical in most cases because of the nonlinear dependence of the control action on the
parameter estimates [8]. Nevertheless, the estimation of a model that is commensurate with
the control objectives has been the cornerstone of dual control philosophy and this recently
has been the guiding principle for doing system identification and control in a synergistic
manner.

Fel’dbaum’s work inspired Astrom and Wittenmark to use a joint identification and
control strategy to solve an optimal control problem with no MPM by employing dynamic
programming [9]. Their work in essence showed that a joint strategy of identification and
control: (a) is feasible for simple cases with no MPM; and (b) there are often multiple local
minima in the cost function, and the actual global minima may be difficult to find [1, 8, 10].

The interplay between identification and contro! has received much recent attention
in the literature under headings such as: control-relevant identification, iterative identifica-
tion methods for control, control directed identification... etc. These recent investigations
have focussed on the subject of how to obtain models that are relevant end appropriate jor
the control objectives and with a view to improve the controller performance.

Interest in control relevant identification resurfaced in the early 1990s. Different
researchers have provided different ways to integrate the dual objective of identification
and control. The underlying principle and the common thread in all these identificztion
methods are presented in Section 7.2.

The control relevant identific:tion methods have been classified in this chapter as:
one-step and multiple-steps or iterative designs. Under the one-step mettod, the open-loop
model is used to design a suitable control relevant filter, which is used to subsequently
obtain a control-relevant model. For the iterative design method, the identified control-
relevant model is updated quasi-adaptively® until there is no improvement in closed-loop
performance.

An identification scheme compatible with the long range predictive control (LRPC)
strategy was proposed by Shook and Shah {8, 2} (in 1992) and it was labelled as the long
range predictive identification (LRPI). This technique is reviewed briefly in Section 7.3.

5 A small step in bridging the gap between robust design and adaptive control has been made by applying
signal processing methods (in Chapter 2) to the method presented in Section 5.16 in this thesis.
% e. using a batch of closed-loop data.
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The LRPI is a one-step scheme and it has been shown to work well for real-timme adaptive
control [8]7 as well.

Another one-step control relevant ID scheme was proposed by Rivera et al. in
1990; which has been successfully tested on industrial plants {11, 3, 12]. Rivera et al’s
control relevant identification scheme is more generic and has been applied to an LRPC®
scheme. Furthermore, this control-relevant ID approach provides an alternative viewpoint
when compared with LRPI and therefore this method is also discussed briefly in Section
7.4.

Zang et al. in 1991 and Schrama et al. in 1992 showed the need for iteration in
upgrading the model and controller to achieve a better performance (1, 4, 13, 14]. They
devised their iterative control relevant identification scheme for LQG based control. The
principle behind these iterative controller design methods are similar, therefore only one of
these approaches i.e. due to Zang et al. has been considered for review in Section 7.5.
Zang et al. also proposed an (interesting) frequency weighting criteria in the objective
function for the LQG controller; this idea has been applied to modify the GPC objective
and is discussed in Section 7.6.3. The iterative implementation of the control-relevant 1D
scteme due to Zang et al. for GPC has also been discussed in this section. Specifically,
the application of the control-relevant filters due to Zang et al., Shook et al. and Rivera
et al. to iteratively improve the performance of GPC are discussed in subsection 7.6.3 to
7.6.2. The contributions made in the preceeding sections are summarized in Section 7.7 as
concluding remarks.

No matter how a model is obtained sorne amount of MPM is inevitable in all practical
model-based controllers. There is therefore a need investigate how the identified control
relevant models shape the robustness margins for the LRPC (GPC in this case). This work
therefore also investigates how the measure of robustness, robustness margin and the shape
of MPM are influenced by various control-relevant identification techniques.

7.2 Problem formulation

The entire issue of robust stability and performance of a certainty equivalence controller
lies in the comparison between Figures 7.1 and 7.2. The closed-ioop system represented
by Figure 7.1 is defined as the designed-loop or the designed-system; similarly, the system
shown in Figure 7.2 is defined as the achieved-loop or the achieved-system. A designed-
system is based on the assumption that the model G (q) truly represents the plant dynamics,
consequently its designed performance criteria J is given by:

7 Although LRPI has been implemented for adaptive control, it cannot. be considered to be a multiple-step
method. A multiple-step or iterative version of LRPI is proposed in this chapter.
Sspecifically to horizon predictive control [12).
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N N
J = 23wl - 96 + A3 826) (7.1)

i=1 =1
Infact the LQG controller is designed to minimize the above stated performance criteria J,
when N — co. When the designed controller is implemented on the actual plant as shown
in Figure 7.2, it results in a closed loop system which is different from the designed case due
to the presence of modelling errors. The performance of the reaiized or the achieved-loop

system is given by:

1 N N
J= S (wli) — y(@))2 + 2D uli) (7.2)
=1

i=]

which is usually poor in comparison to J (under the influence of MPM). For the achieved
loop, the issues which take precedence are:

e Robust Stability

e Robust Performance®

Robust stability is concerned with the stability of the achieved loop in presence of MPM. The
use of the small gain theorem to examine the robust stability of model predictive controllers
were discussed in Chapters 5 and 6. Robust performance on the other hand involves bringing
J and J close to each other [1]. Obviously:

Remark 7.1 Robust stability is a necessary but not a sufficient condition for robust per-
Jorszanee.,

Ilote 7.1 The controller under question in this study is GPC whose objective function
is different from that is given by equations-(7.1) or (7.2). Nevertheless, these objective
functions truly reflect the performance of th> designed and the achieved loop, hence they are
shown first to facilitate proper understanding of the problem. The developments based on
equations-(7.1) and (7.2) are subsequently applied to GPC.

®Although this term appears to be self-contradictory, it is defined in the following paragraph.
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The endeavor in achieving robust performance is to minimize J rather than focusing
on minimizing J, because the quantity that ultimately matters is J. For a moment if it is
assumed that A = 0, then J in equation-(7.2) can be rewritten as:

{w(i) — §(3) + 9() — y(D)}?

M= i

i
[

(2|~ zZ|~

N
{w(@) — 9GP + = Z{y(l) - y(i)}* + Z{[W(i) — 9(@)]#) -y}
l'=1

-’ -’ - -’
o

J Jig

JC"OI'

(7.3)

Direct minimization of J in equation-(7.2) is the problem of dual control which is
difficult to solve [8]. However equation-(7.3) shows that J can be split into the designed
control objective J, the identification objective J;3 and the cross product terms designated
as Jeress- It is difficult to handle the cross product terms Jeross, hence this term is neglected
{8]. Therefore the problem of minimizing J reduces to a suboptimal problem and applying
the triangular inequality!? to equation-(7.3) gives:

VI <Vi+VTa (7.4)

Since a simultaneous minimization of J and J;4 is difficult, hence the strategy fol-
lowed for all control-relevant identification methods is:

Remark 7.2 Minimize J by separately minimizing J through proper controller design and
by minimizing J;q by using a suitable system ID method.

One of the principal goals of control-relevant 1D is to minimize J;4. For most control relevant
ID methods (at least those discussed in this chapter), the least-squares (LS) method or the
prediction-error method (PEM) is used to obtain a suitable control-relevant model from the
filtered open-loop or closed-loop data; where an appropriate control-relevant filter is used to
filter the process data for ID. An important step in the control-relevant 1D is to obtain this
control-relevant filter by equating J;4 with the open-loop or the closed-loop LS objectives.

For a general case i.e. A # 0 and for the performance criteria given by equations-

(7.1) and (7.2), Gevers [1] showed that the achieved performance J is bounded between the
two limits as:

10The triangular inequality is given by: |la + b]] < |la|| + ||b]| where a, and b are real or complex numbers
(15). Similar to the triangular inequalit; is the Minkowski's mequa.hty which is applicable in this case. The
Minkowski inequality applies to finite sums and it is given by: {Em: la(#) £b(D)F}/? < (zf!_l la (i)} /7 +
{X, 1b(i)|P}*/® where a and b are real or complex numbers [15).
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W7 = VTal < VT < Wi+ /Ta

where

1 | N N
Jia = 5 {Zw(i) —y@OPF + A [ul) - ﬁ(i)lz}

(7.5)
The bounds given by equation-(7.5) are obtained by defining [1]:
_ w(z) — y(z) Au(i)
], - B[R G
- 7= || 2@ —v6)
Au(i) 2
(7.6)

and using the triagular inequality on:

w(i) —y(@) \ _ [ w@) —90) 9(1) — (%)
( Au(s) ) B ( Ai(i) ) * ( A(u(i) — () ) (*.7)

7.2.1 Performance criteria for GPC

This subsection presents different ways of expressing the performance measure of GPC.
Traditionally, the GPC controller law at an instant ¢ is defined as [16]:

JCPC(ty = E [w(t + £) — §(t +4}))> + A E[Au(t +i-1))2 (7.8)
i=Ny i=1
For a specified setpoint trajectory, the designed GPC loop results in a set of input-output
(I/0) data represented as D(N) = {a(i),§(i),i = 1...N}, where N is the number of
data points. Similarly for the achieved loop, the set of I/O data obtained is D(N) =
{u(@),y(i),i=1...N}.
Since the GPC is implemented using a receding horizon policy, the designed and the
achieved performance of GPC can be respectively defined as (as in case of equations-(7.1)
and (7.2)):

Jepc = NZ{(w(t) - #(8)% + AAE?(3)}
t—l

Jare = L3O - @)+ MM

=1

(7.9)
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To be in confirmity with equation-(7.8), A& and Au have been used in equation-(7.9) instead
of 4 or u as in equations-(7.1) or (7.2).

Note 7.2 Note the difference between JEFC(t) in equation-(7.8) and Jgopc in equation-
(7.9).

If the prediction horizon N; to N» for the GPC is also considered at each time step

t,t =1... N, then the designed and the achieved objectives for the GPC can be expressed
as:

_ 1 N-N, N> . . 2 NU . ) 2
Jop = FV__—_N; ; {Z[w(t+z)—y(t+z|t)] +/\E[Au(t+l—l)]}

i=N; i=1
1 N‘-N2
iR = NN, 2

t=1

N2 NU
37 [w(t +1i) -yt + i) + AZ[Au'(t +i- 1)]2}

i=Nj3 i=1
(7.10)

where at each sampling instant ¢, the implemented controller action is given by it(t) = #(t)
and u(t) = u*(t) according to the receding horizon strategy. Further, the subscript LR in
the above equation denotes that the long-range prediction (LRP) is used for calculation of
the objective at each sampling time ¢. Using equations-(5.8) to (5.12) in Chapter 5, the
predictors §(t + i|t) and v*(t + i|t) in equation-(7.10) can be written as:

Gt +ilt) = Gi(g)Au(t+i—1)+ Gi(g)Adl (t — 1) + Fiq)i (¢)
VE+ilt) = Gi(g)AuT(t+i—1)+Gi(g)Au/ (t - 1) + Fi(q)y’ (¢)

(7.11)

wheze @/ (t — 1) = a(t — 1)/Celg), w/(t — 1) = u(t — 1)/Cela), &/ (t) = #(t)/Celq) and
y/(t) = u(t — 1)/C:(q). Another form of the achieved LRP performance objective can be:

1 N-Nz [ N2 NU R
JLR = - ST [w(t +i) -yt + a0 + 2D iAut +i— 1Y (7.12)
T2 4, i=N; =1 ,

"~ No matter how the performance objective is specified, using the triangular inequality
it can be shown that the achieved performance objective is hounded below the corresponding
controller and the ID objectives. In general it can be stated that:

| < 1]+ |l (7.13)

In this subsection, essentially two sets of performance specifications have been pre-
sented, i.e. equation-(7.9) and equation-(7.10) together with equation-(7.12). Out of these
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two sets of equations, the expressions in (7.9) truly reflect the performance measure, hence
this equation has been used to evaluate the performance of GPC in the subsequent sections.
Furthermore, equation-(7.12) has been used in a slightly modified form for the derivation
of a control-relevant filter presented in the following section, nevertheless its performance
has been assessed using equation-(7.9).

7.3 Control-relevant identification by Shook and Shah

A one-step control-relevant ID technique that is compatible with the GPC was proposed by
Shook and Shah [2, 8] and they termed it as a long range predictive identification (LRPI).
The basic philosophy of LRPI is to estimate a model tk«i can best predict the future output
of the process over a given prediction horizon as specified for the LRPC objective. Such an
identification scheme is obtained by equating J;4 for the GPC with the open-loop LS criteria
JPE. Jiq for the LRPI is obtained by adding and subtracting y* (¢ + i|t) as in equation-(7.3)
for the following achieved performance specification (note the sinilarity of the following
expression with equation-(7.12)):

N—-N;3

JE%C - y Z {y(t +1) —w(t+ 2)}2 (7.14)
N 'Vg t: —‘ Pi=Ny
to yield
& ,.«-._v.- . {'!::\: ( ' 2
JLrPI = [T i Z [yt +17) — y* (£ + ijt)] (7.15)
) !=1 p =N,

ve P, = Np — Ny + 1. Substituting y*(¢ + i|t) from equation-(7.11) in equation-(7.15)

1 N-—-N» 1 N> . F;
o = stz 5\ B oo - (A
Ei(g)B*(g) PR &
-—C-':m——Au(t-i-z— ):! }

(7.16)

Note: refer Note-5.2 in Chapter 5, for the definition of the term B~ \g). Further rearranging
the Diorhantine equation-(5.7) (for A(q) = A(q), P(g) = 1) in Chapter 5, to:

1 = Ei(g)AA(g)/Cc(q) + g~ Fi(q)/Cc(q) (7.17)

and multiplying equation-(7.17) by y(t+1) and substituting it in equation-(7.16) for y(t+1)
and also using y{t + i) = B*(q)u(t +1 — 1)/A(q) gives:
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Np i=Ny

1 N1 X [(E(q)AA(Q)) - _ 2
JLRPI = T N- N, Z { > [(—(‘(}7—)0((1)(_[1)) G(Q)u(t-i--z—l)} } (7.18)

where G(q) = G{g) — G(q). The filter for LRPI is obtained by equating-(7.18) with the
open-loop LS objective which is given by:

g o= % Ze*(z)
=1
where €(z2) = y(i) —y(i)i — 1) (7.19)

In order to obtain control-relevant filter L(q), €(z) is multiplied with L(q) to obtain
filtered residual as: €f(i) = L(q)e(i). The model parameters 8 are then obtained as 8 =
arg min JZZ. The expression for filter L(g) is obtained bv expressing e/ (i) in ters of the

MPM and the noise model. This expression is derived by considering the following model
17}

y(t) = Glq)u(t) + H(q)&(t)
v (t)
= y(t) = G(q)u(t) + (H(q) — 1)E(t) + £(t) (7.20)

where H(q) is the noise madel and £(2) is the white noise sequence. The first expression in
equation-(7.20) can also be rearranged to: £(¢) = [~1(q) (y(t) — G(g)u(t)) and substituting
it in the middle term ix the second expression in equation-(7.20) gives the following (after
taking one-step ahead prediction = £[£(t + 1)} = 0):

Pttt — 1) = H ()G (q)u(t) + (1 — H " (g))y(2) (7.21)

Also the expression for the true plant is -iv#n by:

y(t) = G(q)u(t) + H(q){(t) (7.22)
Nt e
v(t)
where G(q) and H(gq) are the true (and unknown) plant and the noise model. Therefore

substituting the expressions for y(t) from eciustion-(7.22), §(¢|t — 1) from equin-(T 21}
into equation-(7.19), via ef(t) gives:

Jk = L(") {G( yu(t) +v(t)} (7.23)
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The expresson for the filter L{g) is obtained by expressing equations-(7.18) and
(7.23) in the frequency domain (by using Parseval's theorem) and equating them. Therefore
applying Parseval’s theorem to equation-(7.18) as

2

1 N2 T, /n/T.
Ce(w)

JirpPt = -N;iz o=

—7/Te

(where T, in the above equatiox is the sampling time and this term will be assumed to be
one in all subsequent derivations for simplicity) and to equation-(7.23) as

Lefy,
H(w)
and equating (7.24) and (7.25) and in equation-(7.25): (a) neglecting the term ®,,(w); and
(b) using H(q) = Cc(q)/A.A(g) gives the following expression for the LRPI filter L(g):

188 = 5 [ {160IPEww) + @)}

— (7.25)

N>
L@ = 5= 3 1B (7.26)
=N

The above LRP! filter is designated as the L;(g)-filter in this chapter. Shook et al. sug-
gested a polynonial deconvolution based spectral factorization method to solve equation-
(7.26). Although this method of spectral factorization is approximate, nevertheless it gives
a good estimate of Ls(g). A more accurate spectral factorization is obtained from the for-
mulation of the Riccatti equation. A MATLAB® based function ‘sfl.m’ can be used for
this purpose.

Shook [8] noted the following features for the L filter as: (a) it is a strong function
of the prediction horizon N, and it is weakly dependext on A; (b) typically L, is a low-pass
filter, 7 ut for a lightly damped system with a slow sampling rate L, tends to become a
high-pass filter. The L, filter is used in conjunction with the A/C, as shown in Figure 7.3;
and therefore this filter gives the effect of band-pass filtering.

For the plant-model system described by equations-(5.51) and (5.52) in Chapter 5,
the robustness bounds for the GPC corresponding to the models obtained usir. - the LS and
the LRPI methods are compared in Figure 7.4.

Note 7.3 All simulation results presented in this chapter are based on the plant-model
system given by equations-(5.51) and (5.52) in Chapter 5.

Figure 7.4 shows that the nature of MPM associated with the LS based model is significantly
different from the LRPI based model. The LS based model shows a good match at the higher
frecuencies whereas the model fit is poor in the mid frequencies. Consequently for this case,
the robustness margin is poor at those frequencies where the MPM is significant. On the
other hand, MPM associated with the LRPI based model shows a flatter spectrum. This is
cbtained by compromising the model fit at the lower frequencies and thereby reducing the
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MPM in the mid frequencies. This effect is like an averaging or stretching the Mi{’M for the
LS based model.

Note 7.4 All simulation examples presented in this chapter are based on the following set
of tuning parameters.

Ni=1,N=10, NU=1,A=0, Yoo =0, P(q) =1 and C.(q) =1 —0.75¢7".

Furthermore, Figure 7.4 shows that the the robustness margin |1/M (w)} for the LRPI based
model is not significantly different from the LS based model; as a resuit, the robustness
margin for the LRPI case is more or less uniform at all the frequencies as against the LS
case where the robustness margin is poor at some frequencies. This example illustrates
that the use of LRPI filter significantly enhances the robust stability properties of the GPC
controller. The nature of the robustness margin also has a significance effect on the system
performasice. As an example, the poor robustness margin at certain frequencies for the
LS case as shown in Figure 7.4 will lead to a significantly oscillatory reseponse. However
the amount of oscillations are significantly reduced for the LRPI case because of uniform
robustness margin.

Different servo responses in Figure 7.5 compare the responses hetween the ideal case,
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Figure 7.5: Effect of L, on performance of the system

the designed case, response due to the model obtained using the L,-filter and the response
which is simply based on the model given by equation-(5.52); where:

Note 7.5 The ideal case corresponds to the ideal situation where the plani dynamics is
completely known.

Note 7.6 For simplicity reasons, the model corresponding to equation-(5.52) is designated
as the LS-model in this chapter.

Note 7.7 The designed case corresponds to the block diagram shown in Figure 7.1.

In Figure 7.5, the designed case corresponds to the model obtained using the Ls-filter. Fig-
ure 7.5 illustrates that the response due to the use of L,-filter does not show any overshoot
when compared with the response due to the LS-model. Furthermore, this figure shows
that the rise time due to the use of L, filter is faster than the ideal or the designed cases.
However the L, based response does show some initial oscillatory behavior.

7.4 Control-relevant identification by Rivera et al.

A more general single-step strategy to estimate the control-relevant filter was developed by
Rivera et al. [3, 11], where the objective is to minimize:

= Sl - v (27)

=1

The use of equations-(5.82) to (5.86) in Chapter 5 along with equation-(7.22) yields:
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. _ 1= M(g)C(q) |
I = ()G g F@w) = Sa)p®) (7.28)

In the original formulation of the above equation, multiplicative perturbation was used by
Rivera et al., whereas here the additive perturbation has been considered. If the system is
stable, then from the small gain theorem it is shown that M(q)G(q) < 1 (refer equation-

(5.44)), which then leads to the following approximation by applying the Taylor series
expansion to the denominator in equation-(7.28) as:

1 .
— =~ 1 — M (q)G(q) + higher-order-termns-neglected 7.29
1+ M(q)G(q) ¢ (729

Further, using equation-(5.96) it is shown that the designed sensitivity is S(q) = 1 —

M(q)G(q), therefore subsituting this equality along with equation-(7.29) in (7.28) finally
gives

JT = S(g) — M(q)G())(R(g)w(t) — S(g)v(t)
= S(g)(R(g)w(t) — S(q)v(t)) — S(g)M(q)G i) (R(gw(t) - S(q)v(t))

(7.30)
Applying Parseval’s theorem and trianglar inequality to equation-(7.30) results in:
1 7 . 1/2
VI < o= [ 18@)PIR@(W) - S(w)v(w)lzdw] +
L -7
Gr

(1 (™ & ~ ) 1/2
Er'/ IS (e J)G (W) R(w)w(w) ~ S(w)v(w)l‘dw] (7.31)
L -

Vdiq

The objective in equation-(7.31) is to minimize the function J" whicli is bounded at the
upper limit by a summation of two terms. The first term J' in equation-(7.31) corresponds
to the designed objective which is minimized via the controller design. The effort is therefore
made to minimize the second term via suitable model identification, hence this termn is
designated as the control-relevant identification objective Jj;. As in the case of LRP], the
control-relevant filter L,(g) is obtained by equating JJ, with J2¥ in equation-(7.25) and by
assuming: (a) ®yu{w) = 1; and (b) by neglecting ®,,(w) in equation-(7.25) to yield:

L.(q) = H(q)S(q)M(g)(R(q)wlg) — S(q)v(q)) (7.32)

The above expression is flexible enough to consider the characteristics of the desired perfor-
mance (via $(q)), setpoint and the disturbance to obtain a suitable control-relevant pre-filter
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Figure 7.6: Effect of L, on performance of the system

L,(q). However for simplicity in the simulation studies (presented in later sections), it is
assumed that v(g) = 0, no user chosen closed-loop performance specification is provided!!
and it is assumed that step changes in the setpoint are provided ¢.e. w(g) = 1/A in or-
der to estimate L,(g). When these assumptions are combined with the following relations
H = C./AA, § =1~ MG and M = S/(AT + GS) they lead to the foilowing expression
for L.(q):

Ce(9)A(@)T(9)S(9)R(a) __ 1
(AAT(q) + B(g)S(g)? 1 —q™*

A comparison between the ideal, designed, L, based achievea and the LS-model
based achieved performances are shown in Figure 7.6. This figure shows that the achieved
performance due to the use of L, based filter is in between the ideal/designed cases and
the response due to the LS-model. In Figure 7.6 it is also observed that the cvershoot for
the L, based response is smaller than _he response due to the LS-model. A comparison
between the responses due the L, and L, ilite:s are shown later in Figure 7.12.

L (q) = (7.33)

7.5 Control-relevant identification by Zang et al.

An iterative contrel-relevant ID method for the LQG controller was proposed by Zang et
al. (1, 4, 14] and it is referrec as the Zangscheme. The method by Zang et al. employs
closed-loop data of the plant to identify the control-relevant models. In order te facilitate
the application of the Zangscheme to GPC, one needs to examine the designed and the
achieved closed-loop GPC as shown in Figures 7.7 and 7.8 (note that an equivaient closed-
loop GPC was illustrated in Figure 5.2 in Chapter 5). The blocks C; and C; in Figures 7.7
and 7.8 are given by:

"The performance specification i~ naturaily vrovided by the thoize of model and the tuning parameters.
in this case.
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AT(q)
in this case is J,4 which is given by equation-(7.5)
btained by equating Jig with the closed-loop LS

and C2( (7.34)

Ar expression for J;q is derived using Figures 7.7 and 7.8, assuining %(t) = 0. The

first step in this sequence is to use equati
7.8 to express the achieved and designed input/outputs as (note:

subsequent expressions the argument ¢ is

ions-(7.20) and (7.22) along with Figures 7.7 and

in the following and
dropped for simplicity):

. X C1Gw(t) X Chw(t)
esigned case:  §(t) =TG5, 24 U =TS
. _ GCru(t) v(t) _ Cuuw(t)  Cy(t)
Achieved case  y(t) = Tmm +1reg, 24 0 =1Tes T Trac
(7.35)

Substituting the expressions in equation-(7.35) in Jiy in equation-(7.5) and subsequently

applying Parseval’s theorem gives:

{55

GC,

N
Jia — 1+ GCz

>

L
N =

+

-~

GG,

1 2
——w(t)
14+ GCy
C

v+ 1768

v(t) —

{1 + Gng(t) -

C 2
v(t) — ——uw(t
766" " " 156" )}]

+ A|C2)?)

1

/”{ |GCi2(1
27 J_x | |(1 + GC2)

1+ eopp o)
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1+ NGE, O, o
|1+cc-2l24""'(““)} e (7.36)

similarly substituting u(t) from equation-(7.35) in the expression for €/ (t) in cquation-{7.23)
and taking Parseval’s identity leads to:

Gu(t) +v(t))
(GClw(t) _ GGt tw (t\>

1+ CG 1+ CG

oL

+ |1 + G(w)Ca(w)
1+ G(w)Ca(w)

é(w) Ve 2
1 +G(w)Cz(w)| ICH () Punle)

2 .
L 2
vi (w)] |7; ‘L‘)

Equating the frequency domain expressions for Ji4 in equation-(7.37) with J§ % in equation-

(7.37) and substituting G = B/A and H = C./(AA) results in the following relation for
the Lz'ﬁlter:

M',_, m'h‘* !:|l.~«

(7.37)

HI2( + A|C2]?)
11+ CLG2
c.T 2 (|AT|2 + A S|?
ATA + SB |AT? )

|L.|?

(7.38)

A comparison between the Bode plots of L, (i.e. AL,/C.), L, and L, filters are
made in Figure 7.9 which shows that: (a) as expected L, shows a band-pass characteristics
because it is used in conjunction with A/C.; (b) the nature of gain and phase of these
filters are significantly different from each other; and (c) for this example problemn, L, and
L, turn out to be a low-pass filter. The achieved servo-respanse due to the use of L,-filter is
compared with the ideal, designed and the response based on the LS-model in Figure 7.10.
This figure shows that the use of L filter has helped to reduce the amount of overshoot
relative to the LS-model based response.

Different robustness margins due to the use of different filters in Figwre 7.11 shows
that the nature of MPM associaied with these control-relevant models are remarkably dif-
ferent form the MPM that corresponds to the LS-model. Specifically: (a) the L, filter
gives almost a uniform robustness margin but this is achieved by compromising the MPM
at the lower frequencies as pointed earlie.; (b) the use of both L, and L, filters result in
smaller MPM at the lower frequencies but it is achieved by compromising MPM at the
other frequencies; e.g. MPM is high at the mid frequencies due to the use of L, filter
whereas by applying the L. fiiter the MPM is significant at the higher frequencies; and (c)
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Figure 7.9: Bode plots for the L,, L, and Figure 7.10: Effect of L, on performance
the L, filters. of the system

the robustness bounds are marginally affected bychanges in the identified model due to the
use of different filters. The use of L, and L, filters give lower MPM at the lower frequencies
because they are estiinated to be low-pass filters.

Figure 7.11 further shows that the robustness bounds in general are higher at the
lower frequencies whereas it goes down with the increase in frequency. Consequently for
this case, poor MPM can be accomadated at the lower frequencies relative to the higher
frequencies; and interestingly, the use of L,-filter results in better MPM at the higher
frequencies by compromising MPM at the lower frequencies.

The servo responses in Figure 7.12 correspond to the robustness bounds in Figure
7.11 and they show that: (a) the use of an L, filter results in a remarkably fast rise time
but it is achieved at the cost of more overshoot; (b} the use of an L, filter in this case shows
almost not overshoot; and (c) the performance due to the use of L, filter is somewhere in
between the previous two cases. The overshoot in the servo responses due to the L, and
L, filters can be attributed to the smaller robustness margins at certain frequencies. This
example essentially conveys that: the uniformity in the robustness margin is probably more
important than the accuracy of the model in order to achieve an acceptable performance.

7.5.1 Weighted objective function and iterative design

An important contribution of the Zangscheme has been to introduce the frequency weight-
ings in the controller design objective which serves the purpose of: (a) accounting for the
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MPM; and (b) bringing the designed and the achieved controller objectives together. Zang
et al. [4] proposed the following frequency weighting for the LQG controller design:

N
J—i,- Y _AIF1(2)(3(8) — we)) + A Fz(2)a(t)]*) (7.39)
t=1
where
I R I CO) )
Filw) = J @(:—w)(:—w)(w) and Fw) = Paa(w) (7.40)

Zang et al. also suggested that the frequency weighting factors Fj(z) and F2(z) can be
adequately modelled by a 37% order!? AR models as follows:

AR(,_.)(3) AR.(3)
ARj_.,)(3) ARu(3)

The frequency weightings F} and F; distort the certainty equivalence criterion and
Gevers [1] noted the following merits of including these weightings:

= and Fp = (7.41)

12The choice of model order for F; and F; is an issue of trade-off. Higher order models will capture the
signal spectrum better but it will also lead to an increase in the controller order. Therefore Zang et al.
suggested a compromize order of 3.
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e If at some frequency P(y—w)y-w)(@W) > PG-w)g-w)(w), (i.e. Fi(w) > 1) it means
that at that frequency the model fit is poor, and it contributes to poor tracking
performance. Hence in the next design stage more emphasis should be put by the
controller to minimize the tracking error due to the mismatch at that frequency.

e If at some frequency ¥(y_w)(y-w)(@W) < G-w)g-w)(w) (i-e. Fi(w) < 1), then also
the model fit is poor at that frequency, but it helps to achieve a better tracking
performance on the actual plant. Therefore the emphasis on the tracking penalty
at that frequency is reduced at the next control design stage to provide scope for
itnprovement at other frequencies.

‘i*he following steps have been suggested under the Zangscheme to iteratively improve the
system performance:

1. For a given (or identified) open-loop model G, (i.e. the LS-model) design a stak:lizing
controller and perform a closed-loop test on the actual plant as well as for the designed
model by subjecting both to the same setpoint (w) profile. The closed-loop data sets
for the designed and the achieved case are respectively designated as: D(N) and
D(N).

2. For the present: (a) model G; (b) controller C; and (c) the data set D(IN), determine
the filter L,. Apply this filter to the present data D(N) to estimate the next model
G. Design a new controller C based on the new estimated model G and by using the
present data set D(IV) to determine different frequency weightings.

3. Implement the newly designed controller C on both the plant and model by subjecting

both to the same setpoint profile and collect a new set of closed-loop data D(N) and
D(N).

4. Go to step-2 if there is an improvement in the performance or else stop.
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The above method is graphically illustrated in Figure 7.13; which essentially conveys the
need for updating the model via minimizing J;y aud use this model to obtain a controller
by minimizing J iteratively.

The application of this frequency weighting idea has been exteuded to the GPC in
the following sections.

7.6 A GPC algorithm with frequency weightings

A reformulation of the GPC algorithun is proposed in this section by incorporating frequency
weighted factors in the GPC objective function. This reformulation in the GPC algorithin

is done with a view to enhance its performance using the iterative techmique discussed in
the previous section.

Let the frequency weighted terms F and F; shown by equation-(7.41) be given by:

Fy = — and B = 91'— (7.42)

and they are used to modify the GPC objective as:

AL Pﬂ . * . 2 iy Qﬂ - . ¢ .
Jepc(t) = j§v1 [E(W(t + 7)) — Py*(t +J|t))] + z\jgl [b—d-Au (t+5— 1)] (7.43)

A series of Diophantine identities can then be defined as follows:
Diophantine identity - 1

P, . Pf .
7% = Lo +q77 P; (7.44)
Diophantine identity - 2
_;QF;
.g_;z = Qe+ (7.45)
Diophantine identity - 3
Pho Ce _ i +q7? i (7.46)
Fa AA PjAA
Diophantine identity - 4
. B* G
BB g, 4 qiC (7.47)
[ Cc

As a next step in the derivation, equation-(7.44) is multiplied with w(t + j) to yield:
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wl (t + 7) = Pejw(t +3) + Pfj'wff(t)

where

wl(t + 7) = %w(t +3j) and w/f(t)= w—lg?

Equation-(7.45) is multiplied with Au*(t + j — 1) to give:

Aul(t+35—1) = Qe;Ault +j5 — 1) + Qr;Aufl(t—1)
where

Aul(t+37-1) = 9—"Au*(t+j —1) and Auf/(t-1)

Qa4 Qq

Similarly, multiplication of y*(t) with equation-(7.46) results in:

D%
T(t+ jit) = E’CB Au(t+j5-1)+ F,-yf(t)

where

) PP, i (t)
- * fipy = Y\
U(t + jit) 7 Y (t+jlt) and y’'(2) C.P

Substitutiug equation-(7.47) in equation-(7.50) results in the following predictor:

Ut +jlt) = GiAu*(t+j—1)+CGAuf(t—1) + Fiy! ()
£1(t+3)
where Aul(t—1) = M
Cc

The above equation-(7.51) can be compactly written as:

T = GAu+ff

_ Au(t —1)

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

where W is the predictor vector, G is the step response matrix (as a result of frequency

weighting F) and f7 is the free-response vector.

Substituting equations-(7.48), (7.49) and (7.51) in the objective function given by
equation-(7.43) and minimizing it with respect to Au gives the following after a lengthy

simplification process:

Au = H G Ty(Pew + Pyw// —£/) — Q.AQ AW/ (¢ - 1))

w!v(t)
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where

T -
H=G'I,G+Q"\qQ! (7.54)
Under the QP framework; the Hessian is H and the terms inside the braces [ ] in equation-

(7.53) constitute the gradient. The modified GPC law given by equation-(7.53) can also be
expressed in the linear feedback form as:

TAu(t) = Rw(t) — Sy(t) (7.55)

and comparing equation-(7.55) with (7.53) gives:

T = C.PsQq+PsQuhG'T,G + C.P,AhQ.Qf
R = C.Q4P.hG7T,
S = Q4hGTr,F (7.56)

where h in equation-(7.56) is the first row of H™!. Kwok and Shah [18] extended the GPC
law to include steady-state weighting to enhance its stability property. This result can also
be applied to the modified GPC law as shown below:

e, = Pn(l)c}(l)
P4(1)A(1)
75 é*(l)Pn(l)
' A(1)P4(1)
F_g = CSPdA
G, g,,%— - e_.,%— (7.57)

where eg, g5, F3, and G, are the values of E;, G;, Fj, C'j at the steady state respectively.

The application of modified GPC to iteratively enhance its performance is described
in the following sections

7.6.1 Iterative implementation of L,

The use of L, filter in conjunction with the modified GPC to iteratively upgrade the process
performance is discussed in this subsection. The loss function plots in Figure 7.14 shows
that under the influence of weighting functions F) and F3, the performance of modified
GPC improves. The loss functions in this figure corresponds to the expressions given by
equation-(7.9). It is also seen in this figure that: (a) in the beginning the designed per-
formance is better than the achieved performance as expected; but (b) with the progress
in iteration-steps, the achieved performance becomes better than the designed performance
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Figure 7.14: The influence of L, on the Figure 7.15: The effect of L; on the
progress of designed-vs-achieved perfor- achieved performance at iterations 1 and
mance criteria along the iteration steps. 6.

and also the overall achieved performance improves along the line. However this figure
shows that the improvement in the achieved performance in terins of the relative decrease
in the loss function is only by 3.8% between the iteration steps 1 and 6. This observation is
also reflected in the corresponding servo responses in Figure 7.15; which shows a marginal
improvement in the achieved performance with the change in iteration steps from 1 to 6.
Moreover, this improvement in the servo response is due to a marginally faster rise time
corresponding to iteration number 6. The advantage of including the weighting functions
F, and F; on the servo-response is depicted in Figure 7.16, which shows a better response
is obtained when these weighting functions are considered.

The evolution of Bode plots for the identified models using the L -filter are illus-
trated in Figure 7.17; which shows that there is no significant change in the model with
progress in the iteration steps. This figure further shows that the magnitude spectrum of
the model fits poorly in the high frequency range compared to the LS-model, whereas the
phase spectrum of the model fits better relative to the LS-model at the high frequencies.
A more accurate description of the mocdel fit can be given via the MPM plot, which is
subsequently shown in Figures 7.19 and 7.20.

The Bode plot in Figure 7.18 corresponds to the evolution of AL,/C, with the
progress in iterations. This figure shows that there is virtually no change in the nature of
AL,/C. along the iteration steps; this happens because the change in the model is marginal
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as apparent in Figure 7.17; and the tuning parameters are kept constas:t.

The evolution of robustness margin with the progress in iterations are shown in
Figures 7.19 and 7.20. Also shown in these figures are the spectrumn of the weighting
functions F; and F,. These figure shows that with the use of L, filter, the uniformity in
the robustness margin is maintained more or less along the iteration steps. However the
MPM plots in these figures indicate that the mismatch at the lower frequencies increases
with the progress in iterations, which however is not a matter of great concern because the
robustness bound is sufficiently large at these frequencies.

Earlier in subsection 7.5.1 it was remarked that if Fj(w) > 1 at any frequency, then
the MPM at that frequency is responsible for poor tracking performance {1}. lu connection
with this, Figure 7.19 shows that the magnitude spectrums of F; and F are significantly
higher than 1 at a certain frequency range that is marked by a shaded box. Therefore
accor:'ing to the earlier remark, the MPM in this shaded region is mostly respousible for
the degradation in the system performance. Furthermore, it is interesting to note that the
robustness margin is narrow in this shaded frequency range relative to other frequencies;
which is chiefly responsible for deteriorating the system perforrnance, according to the
discussions in Chapters 5 and 6. Thus we see that the explanations provided for the reasons
behind deteriorating sytern performance can be viewed form two different angles; and they
appear to be in agreement.

The characteristics of F; and F» at iteration 1 is utilized by the modified GPC
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to improve its closed-loop performance in the next iteration. For exainple, the robustness
margin obtained for the second iteration in Figure 7.19 shows that the MPM is reduced at
the shaded frequency region by compromising at the lower frequencics.

Figure 7.20 shows the magnitude spectrum of Fy and F, at iteration 5 and the
robustness margins at iterations 5 and 6. It is seen in Figure 7.20 that there is no apparant
change in the robustness margins between iterations 5 and 6, which means that, for the
specified model structure, no further improvement in the system performance is possible,
which is also conveyed by the loss function plots in Figure 7.14. Figure 7.20 further shows
that the peaks in the spectral plots of F] and F; are still existing at iteration 5 around the
same frequencies as marked by the shaded area in Figure 7.19; which implies that for the
specified model structure and probably for the specified L,-filter, no further improvement
in the system performance is possible and the performance problems for this example case
will manifest mostly from the MPM in the shaded frequency range. A similar explanation
can also be provided by using the robustness margin plots.

The evolution of F) and F, weighting functions along the iteration steps are sitnilarly
portrayed in Figures 7.21 and 7.22 respectively. Figure 7.22 shows that there is virtually
no change in the pattern of Fj, with the progress in the iteration steps, which indicate
that F5 does not contribute in the enhancement of the achieved performance in conjunction
with the L,-filter. However with the use of L,-filter, the characteristics of the F} weighting
changes with the iteration steps and it indicates that: (a) its value increases in the lower

frequency range with the increase in iteration steps; but (b) it does not effect the nature of
peak in a major way.
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7.6.2 Iterative implementation of L,

This section discusses the influence of L,-filter on the performance of modified GPC when
implemented iteratively. Figure 7.23 shows the effect of frequency weightings F} and Fp
on the designed and achieved closed-loop performances; which illustrates that the use of
frequency weightings significantly improves the performance of GPC when iteratively. For
the frequency weighted case, this figure shows that, the loss-function values for both the
designed and the achieved performances drop till a certain iteration step and thereafter the
achieved performance improves relative to the designed performance. This observation is
somewhat reflected in the servo responses in Figure 7.24, which shows an acceleration in
the rise time with the progress in iteration steps and this way it gives lower loss function
values. Faster rise time is however achieved at the cost of more overshoot, for example,
at the 6" iteration, the rise time is fastest but it manifests as an overshoot of around
19%. Therefore just from the loss-function plots, the quality of the response cannot be
ascertained. Nevertheless, for this referred example together with the use of L.-filter, it is
seen that the loss-function of the achieved-loop drops by about 18.3% in six iteration steps;
which is a significant improvement.

The effect of including the frequency weightings F; and F, are depicted in Figure
7.25, which shows that these weightings significantly influence the system performance. For
the unweighted case, this figure shows that the overshoot is smaller relative to the weighted
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case.

Figures 7.26 and 7.27 respectively illustrate the evolution of model and the L.-filter
along the iteration steps. The magnitude plots in Figure 7.26 show that the mismatch
is significant at the higher frequency range relative to the LS-model. However with the
progress in iteration steps, attempt is made to reduce this gain mismatch at the higher
frequencies. In case of the phase spectrum, it is noticed that the L, based models are
closer to the plant when compared with the LS-model. However unlike the gain, the phase
spectrum tends to move away from the plant with the progress in :terations.

Figure 7.27 shows that the L,. filter evolves in a significant manner along the iteration
steps. At the first iteration, in Figure 7.27 it is noticed that L, has a strong low-pass char-
acteristics, as a result it identifies the plant better around the steaii state by comprormising
at the higher frequencies. However along the iteration steps, this low-pass characteristics
changes which has a significant impact on the identified model, which are further examined
in Figures 7.28 to 7.31 via the robustness margin plots.

Figures 7.28 to 7.31 depict the evolution of robustness margins and the frequency
weighting factors. Figure 7.28 shows that better model estimate is obtained at the lower
frequencies by significantly compromising the model fit at the higher frequencies for the
iteration step 1. This happens because of the strong low-pass nature of the L,-filter in the
initial stage. This figure also shows that the magnitude spectrums of F; and F», exhibit a
significant peak around the same frequencies as in case of the L,-filter. Corresponding te
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Figure 7.28: The frequency weighting fil-
ters F} and F; at iteration 1 and the ro-
bustness margins at iterations 1 and 2 for
the case of L,-filter.

Figure 7.29: The frequency weighting fil-
ters F] and F; at iteration 2 and the ro-
bustness margins at iterations 2 and 3 for
the case of L,-filter.
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the case of L.-filter. the case of L, -filter.

this ‘peak’ frequency range, it is observed that the robustness margin is also poor. Therefore
in the second iteration, effort is made by the control-relevant identifier to obtain a better
estimate of the plant around the peak frequency range by compromising the model fit in
the lower frequency range as depicted in this figure for the iteration step 2.

In Figure 7.29 it is seen that the nature of F} and F3 is similar to the previous
case, but the MPM corresponding to the third iteration shows some improvement around
the peak frequency range, but the narrowness in the robustness margin now shits to an
adjacent frequency range.

At the third iteration, Figure 7.30 shows that the characteristics of F) changes
significantly at the lower frequencies; but this also leads to an improved robustness margin
around the peak frequencies for the subsequent fourth iterative step. This improvement
in the robustness margin is achieved by shifting the MPM peak to an adjacent frequency.

+ iteration 5, it is seen in Figure 7.31 that the frequency weightings does not change the
robustness margin for the subsequent stage 6 in a significant manner. However during the
fifth or sixth iteration, the robustness margin becomes narrow at the middle frequencies,
thus indicating that the system can become unstable with further progress in the iteration
steps.

The evolution of magnitude spectrum for the weighting functions F} and F2 are
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Figure 7.32: The evolution F; for the case Figure 7.33: The evolutiocn of F5 for the
of L.-filter. case of L,-filter.
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Figure 7.34: The influence of L, on the  Figure 7.35: Achieved performances at

progress of designed-vs-achieved perfor- different iterations for the case of L,-
mance criteria along the iteration steps. filter.

shown respectively in Figures 7.32 and 7.33. This figure shows that, unlike the case of L,
filter, here both the weighting functions change along the iteration steps; and they both
influence the controller design.

7.6.3 Iterative implementation of L,

The effect of L,-filter in the performance of modified GPC when implemented iteratively
is discussed in this section. Figure 7.34 shows the progress in the designed and achieved
performance objectives (or loss function) along the iteration steps. This figure also shows
the consequence of including and not including the the frequency weightings F; and F; for
the iterative implementation. In Figiire 7.34, the iteration step 1 corresponds to the closed-
loop simulation which is based on the LS-model. The loss function plots in this figure show
that in the beginning as expected, the designed performance is better than that achieved.
But in the subsequent iterations the achieved objective performs better than the designed
objective.

Nevertheless, with the progress in iteration the achieved performance does not im-
prove and on the contrary this vake» increases. Gevers noted that such a situation may be
possible and this issue is currently keing investigated by him [1]. The other reason for the
non-improvement in the achieved objective could be because the derivation of the L.-filter
which is for the LQG objective is not suitable for the GPC objective. The responses in Fig-
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Figure 7.36: The effect of frequency weightings on the achieved performance with the use
of L.-filter at iteration-6.

ure 7.36 show that the weighting functions favorably influence the closed-loop performance.

Figure 7.37 describes the evolution of estimated model using the L.-filter. This
figure shows, as in the prevous cases of filters, the mismatch in gain is significant at the
higher frequencies, whereas the phase is closer to the plant relative to the LS-model. The
evolution of the L,-filter along the iteration steps is depicted in the form of Bode plots in
Figure 7.38; which shows that L, has low-pass characteristics.

The evolution of robustness margins for different iterations are shown in Figures
7.39 and 7.40. In Figure 7.39 it is seen that profile of the L, based estimated MPM changes
significantly compared to the LS-model. This figure also shows that for the L, based
model, the robustness margin is small in the frequency range where the peak in Fj and F>
are significant. Figure 7.40 shows no apparant change in the robustness margin between
iterations 5 and 6, signifying that the loss function has reached a plateau. The evolution of
Fy and F, along the iteration steps are shown in Figures 7.41 and 7.42 respectively.

The evolution of the robustness margin with the progression in the iterative steps
are shown in Figures 7.39 and 7.40. This figure shows a significant cliange in the MPM
spectrum when compared with the initial design stage. The MPM corresponding to the 3rd
or 5t* iteration shows a more uniform distribution, unlike the MPM for the open-loop model.
However it is also seen for this example that, at the higher frequencies the robustness margin
reduces with the progress in iteration and it is expected that with the further progress in
iteration, this robustness margin may get violated and result in instability.

The evolution of model with the successive iterations is shown in Figure 7.37. This
figure shows that the mismatch in the magnitude at the higher frequencies increases with
the increase in iteration. However the phase tries to catch-up with the plant along the
iteration steps. Figure 7.38 shows how the Bode plot of the L. filter evolves along the
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Figure 7.41: The evolution F} for the case Figure 7.42: The evolution of F3 for the
of L.-filter. case of L.-filter.

iteration steps.

The comparative achieved performance due to using different filters is displayed in
Figure 7.43 and their corresponding servo responses at the last iteration is depicted in Figure
7.44. It is seen that according to the loss function plots in Figure 7.43, the use of L.-fiiter
gives the best performance in terms of achieving minimum values for the loss functionbut
its corresponding response in Figure 7.44 shows larger overshoot relative to the other two
cascs.

In case of the L,-filter, the reduction in the loss function is gradual but it does not
give any overshoot. This figure also shows that the performance due to the use of L filter
is close to the response based on the LS-model.

7.7 Conclusions

Control relevant identification methods due to Shook and Shah, Rivera et al. and Zang et
al. have been reviewed and were applied .0 GPC. These ¢ontrol-relevant methods are an
approximation of the dual control, hence they are suboptimal in uature. The abjective of
these control relevant ID methods is to improve the closed-loop behavicr by formuuiating an
ID objective that is commensurate with the controller goal. The key step in these control-
relevant ID methods is the formulation of the control-relevant filters, which is obtained by
equating the identification and the LS objectives. Control-relevant models are obtained by
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ent achieved performances obtained using sponses obtained using different control-
different control-relevant filters. relevant filters.

first filtering the process data with the control-relevant filters and then applying the LS
technique. The idea of frequency weighting due to Zang et al. nave been used to modify
the GPC control law. These control-relevant filters have been tested by iteratively assessing
the performance of the modified GPC. These simulation results indicate the following:

e The use of an L -filter provided the minimum loss function values for the achieved
pertuormance. This was accomplished by having a faster rise time but it also resulted in
a more overshoot. The robustness margin for this case was not uniformly distributed.

e The use of L, filter also helped to improve the performance but its iterative im-
plementation improved the performance orly marginally. The use of an L, filter in
general provided a more uniform robustness margin relative to the other two cases;
and consequently it did not show any significant overshoot.

e The L.-filter did not appear to work satisfactorily for the modified GPC.
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Chapter 8

Conclusions, recomendations and

research directions

8.1 Concluding remarks

Robust tuning guidelines for GPC and Markov-Laguerre based MPC have been proposed by
integrating results from signal processing, system identification, robust control and LRPC
design. The small gain theoreni was used as a tool to carry out the robust design of LRPC.
Robust design methods require a spectrum of the model-plant mismatch (MPM) that is
associated with the identified model, but it is not concerned how that MPM is estimated.
Signal processing methods were used to fill this gap by estimating the spectrum of the
MPM from the process data. Another issue related to robust design is performance, which
was also addressed in this thesis. In the context of performance enhancement, different
control relevant identification methods have been examined and evaluated via applications
using to GPC. The key issues in performance enhancement are the design of appropriate
control relevant filters and modifications in the control objective functions; and using this
information to upgrade the process model.

8.1.1 Main contributions

The main contributions of this thesis are: (a) a methodology for the robust design of LRPC;
and (b) design methods for performance improvement (of GPC). Besides, there are also a
number of other results which in themselves are interesting contributions. The important
contributions of this thesis are summarized below:

1. Signal processing

A number of time and frequency domain based signal processing results that are relevant
to system identification have been reviewed with a tutorial flavor and their application
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highlighted via example dependent case studies and illustrations. In the area of time domain
signal processing, the use of different correlation functions with confidence limits has been
demonstrated by estimating the process and noise characteristics. It is shown how the
time domain process data can be used to effectively estimate the spectral characteristics of
the signal and the process (i.e. the Bode plots) with a calculated level of confidence, by
using the DFT (i.e. FFT) in conjunction with signal processing based smoothing methods.
For noisy process data, it has been shown how the coherency spectrum can be used as a
reliability index in estimating the Bode plots. These spectral techniques were also used to
estimate the spectrum of the MPM from open loop plant data.

2. System identification

Different components of system identification (ID) i.e.: (a) experiment design; (b) model
estimation methods; and (c) model validation have been reviewed with a tutorial flavor and
in the context of estimating the transfer function (i.e. ARX, BJ) and Markov-Laguerre
models from process data. The estimation techniques considered were: LS, AUDI and PEM
methods. For model validation, the time domain signal processing methods were evaluated
and recommended. The use of these ID methods was successfully iliustrated with the: (a)
the Shell bench mark problem; and (b) an industrial process. The key features in the Shell
problem were: (i) the process consisted of a 2x 2 triangular system,; (ii) response in two of the
channels was instantaneous whereas there was a delay of 6 units in the remaining channel;
and (iii) the process was heavily corrupted by AR type noise. System ID methods were
successfully used to ascertain these features. For the second industrial process, estimation
of the delay was a key issue. This delay was estimated by fitting the model in the frequency
domain.

Orthonormal function models were introduced with a historical perspective. Cer-
tain mathematical premises were used to define the scope of orthonormal function models.
The AUDI method was used to simultaneously estimate parameters of all 1 to N** order
orthonormal function models in one computational step. It was shown how the proposed
method complements the LS, solution by verifying an appropriate order. The proposed
method was verified using Laguerre models with real and complex poles, Kautz model,
FIR /step response models and a Markov-Laguerre model.

3. Robust design of GPC

The small gain theorem was used to provide robust tuning guidelines for GPC. It was shown
that the robustness bound of GPC is influenced most significantly by the model at lower
frequencies. At higher frequencies the robustness bound is influenced by the controller term,
provided that the model rolls off at these higher frequencies. The influence of different
tuning parameters of GPC on the robustness bound were examined via simulations and
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experimental evaluations. For a first order model, explicit expressions were derived for
the GPC Diophantine coefficients, GPC control law and linear GPC polynomials. These
expressions were used to analytically ascertain the rebustness properties of N2, A and C.(q)
tuning parameters. A method was presented to estimate the spectrum of the MPM and
to determine the model from closed loop data. This method allows one to examine the
robustness of GPC quasi-adaptively. An optimization method was also proposed to select
some of the GPC tuning parameters within the framework of small gain theorem.

4. Robust design of Markov-Laguerre based MPC

A Markov-Laguerre model was used to formulate a MPC by first converting this model into
a state space form. The objective function of this MPC was the same as GPC. The concept
of steady state error weighting was incorporated in this MPC to enhance the stability. A
structured noise model was combined with the Markov-Laguerre model to obtain an MPC
that resulted in faster disturbance rejection. As in the case of GPC, the SGT was used to
evaluate the effect of different tuning parameters on the robustness of the Markov-Laguerre
based MPC. Analytical results and simulation studies were used to show that the stability
properties of Markov-Laguerre based MPC and GPC are similar.

8.1.2 5. Control relevant identification for GPC

Different control-relevant ID methods due to Shook and Shah, Rivera et al. and Zang et al.
were reviewed with a view to enhance the performance of GPC. The key strategy in all these
control-relevant ID methods has been to estimate a control-relevant model by formulating
an ID objective commensurate with the controller goal. A vital step in the implementation
of this scheme has been to design a control-relevant filter by equating the control-relevant
ID objective with the least-squares objective. In this context, the derivation of dufferent
filters i.e. the L,-filter due to Shook et al., L-filter due to Rivera et al. and L.-filter
due to Zang et al. were reviewed. The control-relevant models were based on the filtered
process data, where the above mentioned filters were used for data filtering. The idea of
a frequency weighted LQG controller due to Zang et al. was extended to GPC for the
iterative enhancement of the controller performance; and the effect of Ls, L, and L filters
was assessed.

The simulation results indicated that the use of an L, filter resulted in the best
performance in terms of having minimum values for the loss function along the iteration
steps. The low values for the loss function were achieved by having a faster rise time but
at the cost of more overshoot and by compromising the robustness margin in the mid-
frequency range. The use of an L, filter on the other hand resulted in a more uniform
robustness margin which is desirable from the stability point of view but its performance
was more detuned compared to the previous case. However the use of L, filter did not give
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any significant overshoot due to uniform robustness margin. The use of L, filter did not
appear to be satisfactory in the context of iterative enhancement of the GPC performance.

8.2 General design and tuning guidelines for LRPC

The following steps are recommended for effective design of an LRPC:

1.

8.3

Use approrpriate system identification methods to estimate a simple model from the
open loop process data obtained using appropriate input excitation.

Use signal processing methods with appropriate smoothing techniques to estimate the
spectrum of the MPM. In the case of GPC, closed loop data can also be used to carry
out steps 1 and 2, while for other LRPCs, the method of determining MPM and the
model from closed loop data has to be investigated further.

Use design methods based on the SGT to determine robust tuning parameters. Opti-
mization methods such as SQP may also be used to determine the tuning paraneters.
The tuning parameters should be selected such that the robustness margin is neither
too wide nor too narrow. A wide robustness margin will lead to a detuned performance
whereas for a narrow margin there is a risk of violating the stability margin.

Implement the designed LRPC.

Use an iterative control relevant identification method to upgrade the process perfor-

mance. In the case of GPC, the use of LRPI is recommmended to enhance the process
performance.

In the case of GPC, use batches of closed loop data to check the robustness margin
from time to time. This requires mild setpoint perturbations. Consider re-tuning the
controller if the characteristics of the MPM change significantly.

Future research directions

Robustness analysis of a multi input multi output (MIMO) system is carried out using
frequency domain based singular values rather than the magnitude spectrum as was
used for the SISO case. Therefore for a MIMO system the effect of how change in
the norm (i.e. the use of singular values rather than the magnitude) would affect the
conservativeness of the SGT based design. Tuning of MIMO-LRPC is another issue of
interest, as it is a non-trivial task. For such a case it would be necessary to determine
whether the use of the SGT can yield reliable and efficient tuning guidelines. The
estimation of MPM for a MIMO system is another issue that needs to be addressed
for the robust design of MIMO-LRPC. Issues such as input signal design, multivariable
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spectral estimation and multivariable system identification methods would require due
attention in order to estimate MPM for a MIMO system. The relative advantages
and disadvantages between parametric and non-parametric signal processing methods
is also an area worthy of investigation in order to estimate MPM for a MIMO system.

. The robustness analysis in this thesis was carried out for unconstrained linear SISO
systems. However in the context of robust design of LRPCs for constrained cases and
mildly non-linear or saturation type non linearities, the use of methods such as conic
sectors, passivity, circle theorem and Popov theorem need to be examined.

. The robustness condition was analytically established for some of the tuning param-
eters of GPC for a first order model. The natural extensions of this study include:
can such robustness conditions be analytically established for other tuning parameters
of GPC and also for a first order model with delay; first order model with an over
parameterized numerator; and also for second order models? Similarly the exten-
sions of robustness analysis as applied to a state-space based or unstructured model

based LRPC such as for Markov-Laguerre based MPC is an area worthy of further
investigation.

. A method is developed in this thesis for estimating a model and its MPM from GPC
closed loop data. It would be worth exploring if such information could be extracted
from closed loop data of state-space or unstructured model based LRPCs, for example,
the Markov-Laguerre based MPC. In this connection it would be interesting to see if
time-frequency spectral methods and wavelet spectral methods can be used to estimate
the changes in plant dynamics from closed loop data of short record-lengths.

. Control relevant identification methods need to be extended to MIMO-LRPC cases.

Control relevant identification methods also need to be developed for non parametric
model based LRPCs.
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