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ABSTRACT

Horizontal wells are becoming popular for primary and enhanced oil recovery operations
because of their unique advantages over vertical wells. Some of these advantages are
improved sweep efliciency, effective use of gravity drainage, less severe coning problems
and higher productivity. Steam injection through horizontal wells has also been attempted
at several places to improve heavy oil recovery. However, well test analysis for horizontal
wells under steam injection is still in its infancy. For a horizontal wzll undergoing steam
injection, a steam chamber containing high mobility steam is established. This steam
chamber is surrounded by low mobility reservoir fluids. Such reservoir situations where a
high mobility fluid is surrounded by a low mobility fluid are referred to as composite

reservoirs.

To evaluate the applicability and accuracy of the pseudosteady-state method in the
estimation of swept volume, to have a better understanding of horizontal well testing in
composite reservoirs, and to have a good knowledge of the growth of the steam chamber
volume with time, a computer program was developed to simulate single-phase flow
around a horizontal well in three dimensions (x-, y-, and z-). The model is a closed, box-
shaped reservoir with a horizontal well. This research considers the pressure behaviour
analysis of two-rt gion and multi-region composite reservoirs with horizontal wells, with

emphasis on the two-region composite reservoir situations.

The pseudostzady-state method has been used to estimate the swept volume. During the
pseudosteady-state period, a straight line on a Cartesian graph of pressure versus time is
expected whose slope is inversely proportional to the swept volume. The effects of grid
size, well location in different directions, swept region shape, mobility ratio, storativity

ratio and the number of regions on the swept volume estimation have been studied. None



of the above mentioned parameters appear to have a significant effect on the swept volume
estimation and the expected constant value of the Cartesian derivative. Results of this study
show that the pseudosteady-state method may be used to estimate the swept volume for
steam injection through a horizontal well. However, the swept volume may be
overestimated by up to 30 percent. A theoretical expression for the Cartesian pressure
derivative constant value during the pseudosteady-state period for rectangular reservoirs
has been developed. By comparing this value with simulated values for different tests, the
error percentages are obtained. Analysis of the well test data shows that the steam chamber

mobility can be accurately estimated from pressure responses of horizontal wells.
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NOMENCLATURE

= Reservoir lengtli, ft (m)

= Area, ft* (m?)

= Swept-region length, ft (m)

= Dimensionless swept-region length

= Cross-sectional area of grid block perpendicular to x-axis, ft2 (m?)
= Cross-sectional area of grid block perpendicular to y-axis, ft2 (m?)
= Cross-sectional area of grid block perpendicular to z- axis, ft2 (m?)
= Reservoir width, ft (m)

= Swept-region width, ft (m)

= Dimensionless swept-region width

= Compressibility, 1/psia (1/pa)

= Total compressibility, 1/psia (1/pa)

= Pressure-drop coefficient in the current grid in Eq. 4.23

= Storativity ratio

= Pressure-drop coefficient in the following grid in the x-direction in Eq. 4.24
= Storativity ratio for a multi-region system, (¢c,),/(¢c);

= Reservoir thickness, ft (m)

= Pressure-drop coefficient in the following grid in the y-direction in Eq. 4.25
= Swept-region thickness, ft (m)

= Dimensionless swept-region thickness

= Well index, Eq. 4.36

= Permeability, md (m?)

= Permeability in x-direction, md (m?)

= Permeability in y-direction, md (m?)

= Permeability in z-direction, md (m?)
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Pi

Po
Pwt
P wD
I_)wf
q

q*
qdi,jk
R

R
Rp

= Permeability in x-direction for swept region, md (m?)

= Permeability in y-direction for swept region, md (m?)

= Permeability in z-direction for swept region, md (m?)

= Permeability in x-direction for unswept region, md (m?)

= Permeability in y-direction for unswept region, md (m?)

= Permeability in z-direction for unswept region, md (m?)

= pressure drop coefficient in the preceding grid in the x-direction in Eq. 4.22
= Well length, ft (m)

= Dimensionless well length

= Mobility ratio

= Cartesian slope corresponding to pseudosteady-state flow, psia/hr (pa/s)
= Semi-log slope corresponding to early radial flow, psia/cycle (pa/cycle)
= Transition-region slope for multi-region systems as defined by Acosta (1994)
= Number of equations in matrix

= Pressure, psia (pa)

= Dimensionless pressure, Eq. 4.30

= Initial pressure, psia (pa)

= Grid-block pressure, psia (pa)

= Wellbore flowing pressure, psia (pa)

= Dimesionless wellbore pressure, Eq. 4.30

= Average wellbore pressure, psia (pa)

= Flow rate, STB/d (m%/s)

= Production rate, STB/d (m%/s)

= Right-hand side of Eq. 4.19, bbl/d (m?/s)

= Radius, ft (m)

= Regression, Figures 5.6 and 5.7

= Dimensionless radius, R/r,,



Ry, = Dimensionless radius of region 1, R /r,,

Rp,., = Dimensionless radius of region n-1, R/,
IeD = Dimesionless outer-region radius, 1 /r,,

T, = Block radius, ft (m), Eq. 4.37

v = Wellbore radius, ft (m)

r,p = Dimensionless wellbore radius

(Tw)eq = Equivalent wellbore radius, ft (m), Eq. 4.38

S = Pressure-drop coefficient in the following grid in the z-direction in Eq. 26

t = Time, hr (s)

T = Transmisibility Eq.4.10

th = dimensionless time, Eq. 4.28

tp,  =dimensionless time based on area

e = dimensionless time based on R as defined by Ambastha (1988)

typ = dimensionless time based on R as defined by Ambastha and Ramey (1989)
U = Pressure-drop coefficient in the preceding grid in the y-direction in Eq. 4.21
Vp = Reservoir bulk pore volume, ft3 (m?)

Vg = Swept pore volume, ft} (m®)

w = Pressure-drop coefficient in the preceding grid in the z-direction in Eq. 4.20
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Y,,p = Dimensionless starting point of the well in the swept region
= Dimensionless ending point of the well in the swept region

z = Well location with respect to the z-axis, ft (m)



z,,, = Dimensionless well location with respect to the z-axis in the swept region

Ap = Pressure drop, psi (pa)

At = Time interval, hr (s)

AX = Block size in the x-direction, ft (m)
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Greek Symbols
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B = Formation volume factor, RB/STB (m?/sm3)
73 = Viscosity, cp (pa.s)
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Subscripts

b = Block, bulk

eq = Equivalent

i = Initial

i = Grid index in the x-direction
J = Grid index in the y-direction
k = Grid index in the z-direction
t = total

w = Well

wf = Wellbore flowing
X = x-direction

y = y-direcuon



z = z-direction

Superscripts
- = Average
n = Known time level

n+l = Unknown time level



1. INTRODUCTION

In the past several years, there has been a lot of interest in the use of horizontal wells for
the purpose of increasing productivity and reducing water and gas coning problems.
Horizontal wells have been widely and successfully used in different parts of the world
such as: Prudhoe Bay, Alaska, Empire Abo Unit in New Mexico, France and off-shore
Italy (Joshi, 1986). It has been reported that horizontal wells can produce at rates two to
five times that of unstimulated vertical wells (Joshi, 1986). In addition, horizontal wells

can be drilled to intersect vertical fractures to improve production.

The use of horizontal wells is reviving heavy oil production in Saskatchewan and Alberta
by making primary production profitable, even under unfavorable conditions. Over 300
horizontal wells have been drilled in Saskatchewan. Nearly all of the horizontal wells are
being used for p:.inary production. Some 60% of them are considered to be economical

(Farouq Ali et al., 1993).

Horizontal wells are becoming popular for primary and enhanced oil recovery because of
unique advantages in comparison to those for vertical wells (Economides et al., 1991).
The main advantages of horizontal wells over vertical wells are: (1) they offer a greater
area of contact with the formation that makes them suitable for the efficient recovery of oil,
especially from thin reservoirs. (2) for a similar flow rate, the pressure gradient at the
periphery of horizontal wells is smaller than that for vertical wells. Small pressure
gradients result in less severe coning (or cresting) problems. Therefore, horizontal wells
perform significantly better than vertical wells in reservoirs with a gas cap and/or bottom
water. (3) Due to the possibility of intersection of a multitude of natural fractures by
horizontal wells, horizontal wells can be more effective in naturally fractured reservoirs

(Ozkan et al., 1989). (4) In Steam-Assisted Gravity Drainage (SAGD) processes used for



both the production of bitumens and for the production of conventional heavy oils, the use
of horizontal production wells provides a large contact with the reservoir and this allows

operation at economic rates without the bypassing of steam (Butler, 1994).

However, due to excessive drilling costs and competition with hydraulic fracturing, the
development of horizont=1 wells has been slow. The drilling costs of horizontal wells are
1.4 to 2.0 times greater than those of vertical wells (Joshi, 1986). In addition to this, as
reported by Joshi (1986), horizontal wells are not very effective in thick (150-180 m)

reservoirs with low vertical permeability.

In many reservoirs, the vertical permeability is less than tne horizontal permeability. For a
horizontal well, a decrease in vertical permeability results in an increase in vertical-flow
resistance and a decrease in oil production rates. Field experience (Joshi, 1986) indicates
that horizontal wells not only increase oil production, but also reduce gas and water coning

tendencies.

"I'he pseudosteady-state method, first proposed by Eggenschwiler et al. (1980), has proven
to be quite successful in estimating the swept volume from pressure falloff tests on vertical
steam injection wells. Eggenschwiler et al. (1980) showed that, for a falloff test, if th¢
mobility and storativity contrasts between the inner and outer regions of a composite
system are large enough, the inner (swept) region could behave like a closed system for a
short period of time following the end of the first semi-log straight line corresponding to
infinite-acting radial flow in the inner region. This results in a pseudosteady-state type
flow regime, during which pressure is a linear function of time. The slope of a straight line
on a Cartesian graph of pressure versus time during the pseudosteady-state flow regime is

inversely proportional to the swept volume.



It has been reported that the pseudosteady-state method may be used to estimate the swept
volume for steam injection through a horizontal well. However, the swept volume may be
overestimated by 5 to 60 percent (Issaka, 1991, and Issaka and Ambastha, 1992b). The
estimates of the swept volume as well as the steam chamber mobility are sensitive to the
choice of appropriate straight lines. It has been reported that the steam swept volume
overestimation may have been caused hy steam-assisted gravity drainage and/or location of

the producer and irregular swept region shape (Issaka, 1991).

The research conducted in this study investigates an application of the pseudosteady-state
method for a horizontal well located in a composite reservoir. By using a numerical
soluticn, the effects of grid pattern, grid size, well location, shape of the swept region,
mohility ratio, storativity ratio and the number of regions in a multi-region system on the
pseudosteady-state method are evaluated. In this study, the reservoir is considered as two
distinct regions. Reservoir and fluid properties are uniform for each region. Each region is
assumed to be homogeneous and anisotropic. The fluid flowing into the reservoir is
assumed to be single-phase and slightly compressible. The reservoir has an uniform initial

pressure. All of the outer bounds = are ciosed.

To evaluate the accuracy and applicability of the pseudosteady-state method in the
estimation of the swept volume for steam injection through a horizontal well, a simplified
approach to evaluate the problems involved in horizontal well testing under steam injection
is undertaken. For this purpose, a single-phase, 3-D reservoir simulator is developed. The
numerica: model simulates the pressure response during the test by recording the wellbore
gridblock pressure with time, for a specified reservoir swept volume. Chapter 2 presents
the literature survey conducted for the current study. The statement of the problem is
presented in Chapter 3. Chapter 4 contains the development of the numerical model and its

validation. Chapter 5 presents a detailed study of the transient pressure behaviour of a



horizontal well in a composite reservoir. Finally, Chapter 6 presents the conclusions

Crawn from this study and recommendations for future investigations.



2. LITERATURE REVIEW

2.1 Well Testing in Composite Reservoirs

A composite reservoir, consisting of a zone surrounding the well in which rock and/or fluid
properties are different from the properties of the rest of the reservoir, represents a wide
variety of reservoir configurations of practical interest. Figures 2.1 and 2.2 schematically
illustrate rectangular reservoir models for the two- ana multi-region composite reservoirs
considered in this study. The terms swept-region, and altered zone, have the same
qeaning in the context of composite reservoirs. For pressure transient analysis in a

composite reservoir situation, one :..ds to answer the following questions:

1. What is the size of the altered zone in order to perform accurate graphical analysis to

achieve reliable estimates of altered zone parameters?

2. What is the duration and nature of the transition period between the pressure data

which represent the altered zone and those which represent the unaltered zone?

3. What influence do the wellbore effects of skin and storage have upon the pressure

transient response of a composite reservoir?

Brown (1985) presented equations for calculating mobility in the altered and unaltered
zones, and for calculating the radius of the altered zone by extending the model of a
composite reservoir previously developed by Eggenschwiler et al. (1980) to determine the
characteristics of a composite reservoir pressure transient response. He reformulated the

Eggenschwiler et al. (1980) model using unaltered zone properties as the model basis.
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Fig. 2.2 Schematic of cross-section of a multi-region
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His model shows that, in the absence of wellbore storage effects, pressure data appear as
two semi-log straight lines, representing the mobilities in the swept and unswept zones,
respectively. The slope of the semi-log straight line representing the unaltered zone is
independent of the storativity ratio. He also shows that the storativity ratio influences the
timing and shape of the transition region between the two semi-log straight lines and does
not influence the slopes of these lines. He concluded that the characteristic shape of the
transition region depends upon the mobility ratio and the storativity ratio between the

altered and the unaltered zones.

Ambastha and Ramey (1989) investigated the pressure-derivative behaviour of a well in a
two-zone, radial, infinite or finite composite reservoir. Their study shows that the
dimensionless time to the end of the first semi-log line, based on the front radius, is a
constant. They also show that the correlations developed for the end of the pseudosteady-
state behaviour of the swept region can help select the correct Cartesian line to calculate the
swept volume. They also presented derivative type curves applicable for all front radii,
with mobility and storativity ratios as parameters, for infinitely large composite reservoirs.
For closed and constant pressure outer boundaries, the ratio of the outer boundary to the

front radius is the third parameter.

Ambastha and Ramey (1989) describe different methods to calculate the front radius, such
as (1) deviation-time method, (2) intersection-time method, (3) type-curve matching
method and (4) pseudosteady-state method. They plotted dp,p/dlogty, versus tg to
correlate pressure responses for all front radii. They investigated the effect of mobility and
storativity ratios on the semi-log pressure derivative behaviour. During the transition
period, the pressure derivative goes through a maximum above the slope of the second

semi-log line corresponding to the outer-region mobility, if the mobility ratio or the



storativity ratio or both are greater than unity. Ambastha and Ramey (1989) concluded that
the deviation-time method and the intersection-time method are not suitable for thermal
recovery well test analysis. This is because wellbore storage may mask the first semi-log
line for both methods. Also, well tests are seldom run long enough to observe a second
semi-log line and outer boundary effects likely dominate the response before the
establishment of the second semi-log line. They have also provided guidelines for
sufficient test data collection to ensure reliable type-curve matching. If a pseudosteady
Cartesian line develops, the pseudosteady-state method should yield a correct volume and

average front radius for irregularly-shaped swept regions.

Ambastha and Ramey (1990) studied the injection-time effects on falloff responses for a
well in a two-region composite reservoir. They pointed out that all of the swept volume
estimation methods may produce an inaccurate estimate for swept volume, if injection time

is short.

Eggenschwiler et al. (1980) investigated the drawdown responses from composite
reservoirs through an analytical model. They developed an analytic pressure solution using
the Laplace transformation with numerical inversion using the Stehfest (1970) algorithm.
They made the following observations for large mobility and storativity contrasts between

the two regions:

1. The initial wellbore-storage effects vanish quickly and a semi-log straight line

corresponding to the inner region mobility develops almost immediately.

2, The first semi-log straight line corresponding to the inner-region mobility is
followed by a pseudosteady Cartesian straight line characteristic of the inner swept

volume. They demonstrated that a pseudosteady-state pressure response occurs



after the end of the swept region semi-log straight line, if a large mobility contrast
between the swept and the unswept regions exists. The slope of this line may be

used to calculate the inner swept volume, v,:

ve=qB/(m.c) (2.1)

Equation 2.1 is written in SI units.

3. A second semi-log straight line corresponding to the outer region mobility may

appear after a long transition period.

Messner and Williams (1982) studied the application of pressure transient analysis in steam
injection wells to determine the swept volume, so that important steamflood characteristics
such as cumulative heat losses and sweep efficiencies could be calculated. To gain a
further understanding of pressure falloff behaviour, they initiated a numerical study using a
multi-phase, fully-implicit thermal simulator. After injecting steam for a certain period of
time, the well was shut-in and the pressure was computed as a function of time. Both
transient and pseudosteady periods corresponding to the steam swept zone were apparent,

and from these data the steam permeability and the swept zone volume were calculated.

Messner and Williams (1982) concluded that the pressure falloff curves were characterized
by a period of wellbore storage and damage domination, followed by a short transient and a
pseudosteady period corresponding to the steam-swept zone. The end of the pseudosteady

period usually occurred in a reasonable range of time after shut-in.



2.1.1 Well Testing in Muiti-Region Composite Reservoirs

Acosta (1994) utilized a multi-region, composite reservoir to study the effect of various
trends of mobility and storativity variations, within the swept region, on weli tests for
composite reservoirs. He designed his study to address analytically the problem of multi-
region composite reservoirs by using the Laplace transformation technique. He defined his
model with three zones: the swept zone with the highest mobility and/or storativity, the
transition zone with continuously changing mobility and/or storativity, and the unswept
zone with the lowest values for mobility and/or storativity. He investigated how
representing these models by a different number of regions affects the pressure behaviour
analysis. His study presents an evaluation of the applicability, utility and accuracy of the
pseudosteady-state method to estimate the swept volume in a steam injection project

analytically modeled as a multi-region composite reservoir.

By analyzing the drawdown response of multi-region composite reservoirs, he concluded

that:

1. The transient pressure derivative behaviour corresponding to transition zone effects
is affected by the number of regions representing the transient zone.

2. Representing the transition zone by one region may generate transient pressure

derivative responses which may appear to be due to a higher mobility or storativity
contrast than what actually exists. Using several regions to represent the transition
zone allows a more realistic representation of property variation in the transition

region.
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2.2

2.2.1

For a high mobility or storativity contrast between the swept and the transition
regions, the psevdosteady-state method may yield a good estimate for the first
discontinuity radius. However, for a low mobility contrast, the pseudosteady-state

method may yield an ovarestimated value for the discontinuity radius.

Using the pseudosteady-state method to estimate the last discontinuity radius Ry, ,

will normally yield overestimated values and, in some cases, it may be impossible

to use the method due to insignificant flattening of the Cartesian pressure derivative.
A mobility contrast yields a larger and better defined Cartesian pressure derivative
flattening than a storativity contrast of the same magnitude. In other words, large
mobility contrasts are more likely to yield a pseudosteady-state flow period than
large storativity contrasts.

Transient Pressure Behaviour of Horizontal Wells

Drawdown Response

The use of horizontal wells in the oil industry began in the 1940's (Goode and

Thambyanayagam, 1987). Although the development of horizontal wells has been slow,

due to excessive costs of drilling and also competition with hydraulic fracturing for a

significant period of time, recent advances in technology have lowered drilling costs

considerably. Laboratory and field studies have demonstrated the unique advantages of

horizontal wells in situations such as:

1. naturally fractured reservoirs,

2. reservoirs with gas and/or water coning problems,

11



3.  thinreservoirs and

4. reservoirs with high vertical permeabilities.

Kuchuk et al. (1991) presented an analytical solution in real time and in Laplace space for
horizontal wells producing at a constant rate without wellbore storage and skin effects.
Their solution includes the effect of a gas cap and/or aquifer. They studied an anisotropic
reservoir fitled with a slightly compressible fluid of constant compressibility and viscosity.
Kuchuk et al. (1991) treated the horizontal well as a uniform-flux line source. To compute
the response for an infinite-conductivity horizontal well, they averaged the pressure along

the well length, instead of using an equivalent pressure point.

Kuchuk et al. (1991) identified the correct equivalent wellbore radius to be used in the case
of an anisotopic formation. They also identified new flow periods and simple equations
and existence criteria for flow periods that can occur during the transient test. Kuchuk et
al. (1991) concluded that the fact that an intermediate time radial flow period may not
develop in a reasonable testing time makes interpretation difficult. They also mentioned
that a large anisotropy ratio and the existence of multiple boundaries with unknown

distances to the wellbore increases the complexity of the interpretation problem.

Goode and Kuchuk (1991) studied the general inflow performance of a horizontal well.
They presented a solution for the pseudosteady-state pressure drop of a horizontal well
producing from a rectangular region of uniform thickness, bounded above and below by
no-flow boundaries. They argued that, when the steady- or pseudosteady-state pressure
drop is normalized with respect to the horizontal well flow rate, it provides a measure of the

pressure drawdown needed to flow a unit of volume per unit time.
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Ozkan et al. (1989) presented an analysis of the pressure transient behaviour of a horizontal
well or a drainhole. They developed analytical expressions and correlations for the pseudo-
skin factor, and developed new methods of aralysis to determine formation properties and
well characteristics. They discussed new applications of the derivative approach such as

the normalized pressure procedure.

Ozkan et al. (1989) considered the flow of a slightly compressible fluid to a horizontal line-
source well of length L. in a reservoir of height h. The vertical and horizontal permeabilities
were assumed to be different, and gravity effects were negligible. Two boundary
conditions on the well surface werc considered: infinite-conductivity and uniform-flux.

They concluded that:

1. Horizontal well pressure responses are functions of the dimensionless well length,

Lp, and the dimensionless well radius, ryp.

2. For a horizontal well or a drainhole, the infinite-conductivity idealization is the only

viable boundary condition.

3. The pressure response of horizontal wells and pseudo-skin factors are, for all
practical purposes, insensitive to the well location in the vertical plane of the

reservoir.

Karcher and Giger (1986) studied the expected productivity improvement from vertical
fractures. They used a numerical finite-difference model to solve the pseudosteady-state
flow equations for we!!s and fractures located in a closed area. They reported that becausc

of linear flow, instead of radial flow, around the well, the productivity of a fracture with
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the same length as the horizontal well and full vertical penetration will always be larger than

the productivity of a horizontal well.

Clonts and Ramey (1986) presented an analytical solution for the transient pressure
response of a uniform flux horizontal drainhole in an anisotropic reservoir of finite
thickness. In their work, a set of log-log type curves of dimensionless pressure versus
dimensionless time for different drainhole radii is presented, which can be used to
determine reservoir characteristics. They also presented conditions under which horizontal
drainholes may yield a greater productivity than vertical wells or hydraulic fractures. Their
solution, which applies for a reservoir with multiple drainholes in a vertical array, showed
the possible occurrence of two transient flow types:
1. For a short drainhole relative to the reservoir height, an initial radial flow
perpendicular to the drainhole axis occurs, which is then followed by a transition to

pseudo-radial flow.

2. For a long drainhole, the initial radial flow ends rapidly and linear flow identical to

that for a of uniform-flux vertical fracture appears.

Odeh and Babu (1990) provide equations for analyzing drawdown and buildup data
obtained on a horizontal well. The equations are derived using a closed drainage volume,
with arbitrary anisotropy, location and length of the well. They point out that the infinite or
semi-infinite extension assumption of the reservoir in the x-y plane could lead to the
occurrence or non-occurrence of some of the transient flow periods. They assume that the
reservoir is sealed on all three sides. They identified four possible transient flow periods
for a horizontal well in a closed, box-shaped reservoir model. They present simplified
equations describing the pressure-time relations during each flow period as well as the

duration of the periods. They also illustrated, using examples, the method of analyzing
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data, isheimed from testing the well, to determine permeability anisotropy in the drainage

vrlusr- 4% v eif as the skin factor.

tesan 1 and Axbastia (1992a) presented a study of the numerical evaluation of an analytical
solutioa for the tracuient pressure response of a horizontal well located in a closed, box-
shaped, anisotrepic :#s=-voir. They concluded that this numerical evaluation is in
reasonable agrevrnent with the analytical evaluation. They have shown that the time
criteria, based on the semi-log pressure derivative response, generally suggest shorter flow
peridd durations than those corresponding to the time criteria based on the pressure

response.

Goode and Thambyanayagam (1987) presented an analytical solution for the pressure
response during drawdown and buildup of a horizontal well. The physical model
considered in their analysis consists of an infinite conductivity horizontal well located in a
semi-infinite homogeneous and anisotropic medium of uniform thickness and width. A
slightly compressible fluid of constant compressibility is produced through the horizontal
well. Their model results from solving the three-dimensional diffusivity equation. To
develop the solution as a first approximation, they replaced the horizontal well with a thin
.strip. During the drawdown period, they assumed uniform flux along the length of the
well. They demonstrated different flow regimes for both drawdown and buildup tests.
They presented examples to calculate the directional permeabilities, average pressure and

mechanical skin factors.

Kamal et al. (1993) presented pressure transient analysis for a well with multiple horizontal
sections. They have shown how the values of horizontal permeability, vertical permeability
and skin are affected by analyzing numerically simulated tests from wells that are only

partially open to flow in the horizontal section. They presented an analytical solution that
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allows for a well to consist of a number of arbitrary lengths, strengths and skin. They
reported the appearance of a new radial flow regime from the results of the segmented
horizontal well model. It results in a flat pressure derivative at a value of 0.5 divided by the

number of producing segments.

In their (Kamal et al., 1993) work, analysis of numerous transient tests from horizontal
wells, which were drilled normal to the maximum permeability direction, resulted in a
horizontal permeability in the well direction (k,) greater than or equal to that in the direction
normal to the well (k,). They conducted an investigation to understand the reason(s)
behind this observation and to determine appropriate analysis methods for tests in
horizontal wells. As a result of this investigation, they identified the need for a new
interpretation model that accounts for the fact that flow in a horizontal well cccurs only
through some intervals, not the entire length of the well. They (Kamal et al,, 1993)
developed a segmented horizontal well model and used it in analyzing several field tests.
They have concluded that the effective well length may be, and usually is, less than the
length of the drilled and completed horizontal segment. They believe that the effective
length should be estimated and used in analyzing pressure transient tests. They have also
mentioned that the results of analyzing numerically generated and field data show that the
segmented horizontal well model produces better estimates of the reservoir parameters than

does a contiguous model.

2.3 Transient Pressure Behaviour of Horizontal Wells in Composite

Reservoirs

Issaka (1991) used a thermal numerical simulator to generate the pressure falloff data to
evaluate the accuracy and applicability of the psendosteady-state method in estimating the

swept volume for steam injection through a horizontal well. Results of his study show that
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the pseudosteady-state method may be used to estimate the swept volume for steam
injection through a horizontal well with an overestimation of 10 to 60 percent. Injection
time and swept region shape effects on the estimated volume were also studied. His
investigation showed that a longer injection time prior to shut-in appears to have an adverse
effect on the estimated swept volume because of a more irregular swept region shape for
longer injection-time cases. He reported that an irregular swept region shape does not

appear to have a noticeable effect on the early time well test data.

2.4 Estimating Swept Volume

The literature reports several attempts to determine swept volume from pressure falloff data
on vertical wells in both steam injection and in-situ combustion processes. All of these
studies treated the reservoir undergoing thermal recovery as a composite system consisting
of two zones with different rock and fluid properties. Therefore, determining the swept

volume is analogous to finding the volume of the inner region.

A significant amount of work has been reported in the literature to estimate the swept or
burned volume from pressure falloff data for vertical wells. Many authors have applied
different methods, such as the deviation time, the intersection time, the type curve matching
and the pseudosteady-state methods. In the following, discussions related to the
pseudosteady-state method appear. Other methods are not used in this study and,

therefore, are not discussed further.

2.4.1 Pseudosteady-state Method

The pseudosteady-state method was proposed by Eggenschwiler et al. (1980). A Cartesian

plot of pressure versus time during the pseudosteady-state period yields a straight line
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whose slope is inversely related to the swept volume. Eggenschwiler et al. (1980) tested
their method by using two field cases published by Van Poollen (1965) and Kazemi

(1966). They reported a close agreement in the results.

Walsh et al. (1981) used the information from the field studies to validate their method of
swept volume determination from pre<y.~¢ transient tests at an injection well. In their
study, they noted that in order that the swept volume may be calculated from the slope of
the Cartesian straight line, the average reservoir pressure and temperature in the swept zone
must be estimated. The average pressure can be approximated from the early-time
flattening of the pressure curve on a s¢mi-log graph. The average temperature can be
estimated from the pressure for steam injection, but requires calculation for in-situ
combustion cases. They mentioned that the wellbore storage effect ceases rapidly and a
semi-log straight line develops immediately, indicating the mobility of the swept zone. Due
to the high mobility contrast, the front behaves like an impermeable boundary. They
reported that a long transition zone between the two semi-log straight lines for the swept
and unswept regions contains an approximate pseudosteady-state region based on the

swept volume.

Onyekonwu et al. (1984) .iu 'ied the determination of the swept volume and the average
temperature to use for interpretation of combustion falloff data using the pseudosteady-state
concept in a one-dimensional radial reservoir. Their study was based on the fact that,
because of the very large contrast between the mobility of the gas in the swept volume and
the mobility of fluids in the unswept volume, the falloff data in the transition period forms a
straight line on a Cartesian graph whose slope is related to the swept volume. Onyekonwu
et al. reported that the correct interpretation of pressure falloff data depends on analyzing
the correct portions of the data, because the pseudosteady-state behaviour has a limited

duration, and often is difficult to identify. Their results obtained from the analysis of
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simulated data showed good agreement between calculated swept volume and actual swept
volume. However, they reported that the swept volume included both the burned and the

high gas saturation zone ahead of the combustion front.

Da Prat et al. (1985) applied the pseudosteady-state method to locate the burning front in an
in-situ combustion project in Eastern Venezuela. They conducted two falloff tests. To find
the location of the burning front under the assumptions of the composite system, they used
the fact that the pore volume of the swept zone is related to the slope of the pseudosteady-
state straight line. They reported that the slope of the Cartesian straight line was almost the
same for both tests, indicating the calculated value for the swept volume and front radius

was reliable,

Fassihi (1988) presented a study to evaluate the applicability of the pseudosteady-state
method for estimating the swept volume from thermal pressure falloff tests in
heterogeneous systems. He used a numerical simulator to simulate falloff tests of
steamflood and in-situ combustion processes. Fassihi (1988) investigated the effects of
parameters such as wellbore grid size, non-uniform permeability, layering and oil
vaporizﬁtion on the estimated swept volume. He reported that the presence of gas-saturated
oil or flowing non-condensable gas ahead of the steam front causes a long transition
between the end of the infinite-acting period and the start of the pseudosteady-state period.
For very heterogeneous reservoirs, the transition period is so long that it may mask the
pseudosteady-state data. Fassihi (1988) found that, for in-situ combustion, the onset of the
pseudosteady-state period depends strongly on gas mobility at the front. For high gas
mobility, the estimated swept volume from an analysis of falloff data was found to be
highly overestimated compared to the simulated swept volume. However, it approaches

the simulated volume as the gas mobility decreases.
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Ziegler (1990) presented a study on pressure falloff and step-rate injectivity tests for a light
oil steamflood at the Buena Vista Hills field, CA. He describes two pressure falloff tests
and an intermediate step-rate injectivity test conducted at a steam-injection well. The
objectives of these tests were to determine reservoir properties in the vicinity of the
injection well and to identify the reservoir fracture pressure. He plotted the pseudo-
pressure change and the derivative of the pseudo-pressure change versus time for the falloff
test. Both data sets show the presence of a boundary after a period of time. The slope of
the derivative curve after this period of time was unity. This implies that there exists a
pseudosteady-state flow regime and the corresponding boundary is the steam front.
Analysis of the pressure data from the pseudosteady-state period indicated that the steam
zone adjacent to the injection well was small in volume and in thickness. He concluded that

falloff testing of steam injection wells is an effective method for estimating swept volumes.

A great amount of work has been devoted to the application of the pseudosteady-state
method to determine the swept volume in thermal recovery processes for vertical wells in
the literature. Most of the investigations in this area of interest have met a good degree of
success. Hov.zver, the literature does not contain a considerable amount of study on an
application of the pseudosteady-state method to horizontal wells under steam injection and
this field of study is still in its infancy. To the best of my knowledge, there is only one
reference to the application of the pseudosteady-state method to horizontal wells under

steam injection available in the literature survey conducted by Issaka (1991).
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3. STATEMENT OF THE PROBLEM

The transient pressure behaviour of a horizontal well can be quite different from that of a
vertical well. Due to the potential occurrence of four or more different transient flow
periods in contrast to the occurrence of essentially one flow period for vertical wells,
horizontal well testing is more complex than vertical well testing. For a vertical well in a
homogeneous and unfractured reservoir, flow is radial in the horizontal direction, assuming
infinite horizontal extension of the reservoir. For a horizontal well, transient pressure data
may not necessarily appear as a semi-log straight line during the time period controlled by

the swept region mobility.

The pseudosteady-state method has been used to estimate the swept volume for vertical
wells from pressure falloff and pressure drawdown testing with a good degree of success.
For a horizontal well in a homogeneous and anisotropic reservoir, the swept volume is
ellipsoidal in shape (Issaka, 1991). The behaviour of composite reservoirs has attracted
considerable attention, and many studies have appeared on this subject. However, these

studies have concentrated on vertical wells. The main objectives of this study are:

1. To investigate the application of pseudosteady-state analysis to compute the steam
chamber volume.
2. To investigate the effect of steam chamber shape and well location on pressure

transient tests.

3. To improve the understanding of horizontal well testing in composite reservoirs.
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To achieve the preceding objectives, a numerical simulation study of the pressure falloff
behaviour of a horizontal well undergoing steam injection in a closed reservoir with
anisotropy is conducted. For this purpose, a computer program has been developed to
simulate single-phase flow around a horizontal well in three dimensions (x-y-z). A steam
chamber containing high mobility steam is represented by blocks of large effective
permeability, large compressibility and/or small viscosity in the simulator. Similarly, a low
mobility fluid surrounding the steam chamber is represented by blocks of small effective

permeability, small compressibility and/or large viscosity.
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4. NUMERICAL MODEL FOR A COMPOSITE RESERVOIR WITH A
HORIZONTAL WELL

This chapter considers the development of the numerical model. This chapter also
describes the validation of the numerical solution against various studies presented in the
literature such as those of Odeh and Babu (1990), Issaka and Ambastha (1992a), Ambastha
(1988) and Acosta (1994).

4.1 Model Description

The box shaped reservoir is assumed to be of length a, width b, and thickness h. Figure
4.1 shows a schematic of the model. A horizontal well is drilled in a box-shaped drainage
volume, with all six faces closed to flow. The well is located along the y-direction
extending from Y, to Y, at (Xo,Y) and has a radius of r,. The well can be fully or
partially penetrating, and it produces at a constant flow rate of g from an anisotropic
reservoir with permeabilities of k, k, and k, in the x-, y-, and z-directions, respectively.
The fluid flowing in the reservoir has slight, but constant, compressibility and the reservoir
pressure is initially at p;. Attempts have been made to refine the grids in the neighbourhood
of the well in the x- and z- directions to improve the accuracy of the simulated pressure

transient results. In the current research, the gravity effect is neglected.

For reservoirs undergoing steam injection, the mobility and storativity ratios are defined as

follows:
()
M=tHN

4.1)
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Fig. 4.1 Schematic of a horizontal well in a two-Tegion composite reservoir
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(6ch) 4.2)

where

h, = swept region thickness

and
h, = unswept region thickness = (h-h,)

For fully-penetrating vertical wells, since h, and h, are equal, Equations 4.1 and 4.2

simplify to

)

M ={%’— 4.3)
237]

and

_ (o)

F= (oo, (4.4)

In the study of horizontal wells, h, and h, are different. Therefore, the definitions of

mobility and storativity ratios are as per Equations 4.1 and 4.2, respectively. However,
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throughout the current research, for the sake of simplicity, Equations 4.3 and 4.4 are used,

respectively, as the mobility and the storativity ratios for a horizontal well.

4.2 Mathematical Development

Considering single-phase flow in an element of dimensions Ax, Ay and Az, porosity, ¢,

directional permeabilities, ky, ky and k, and combining the continuity equation and Darcy's
law and neglecting gravity effects, the three-dimensional diffusivity equation governing

fluid flow in a rectangular reservoir is given by:

Q_‘Axkx _a_l_), Ax+i(A)'ky ap ‘{Azkz ap Axkx QR Q_E
ox{ B ox oy\ U 9y n oz B ox)ox

Ay 902D, fAdk, 90|20
L dy]dy B oz 2"

= Vo2 = (4.5)

The non-linear terms corresponding to the square of the pressure gradient are neglected and

the final form of the preceding differential equation becomes:

Axky Op ) Ayky op a(A7kz op!

3 3y
‘gx X1 Ax+ “ y Az+q*=Vb¢ctaa—‘: (4.6)

The initial condition of uniform pressure at all locations is represented by:

p (x.y,2,0) = p; 4.7)
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At the outer boundaries of the reservoir, the assumption of no fluid flow across the
boundary results in the pressure derivatives in the direction normal to the boundary being

zero. The no-flow outer boundary condition is written as

op _dp _9p_, (4.8)

4.2.1 Numerical Solution

The finite-difference form of Equation 4.6, for the x-direction, becomes:

Axky0p
p ox
~ g A% = Tag PR P M) - Ty (PTPRL) 49
where
T _ 2AxmAXi.x,j_xkxi,j.kkxm,j.k |

(4.10)

Xisdjx

1
2 Ax;,,,kkxmAxm.j.k+Axi.,J-_ukxi.,J,.Axi.j.k\“

In a reservoir simulator, flow is computed between elements or blocks of a rectangular
grid. Flow between these elements is a function of mobility and pressure drop, as can be
seen from Equation 4.9. In this study, a harmonic average value of kA's is used where the
kA's are averaged as series resistances, while an upstream value is used for viscosity.
Assuming 1-D flow between block i and block i+1 and using the definition for harmonic

average, the transmissibilities for block i and block i+1 are computed as follows:

2pAx _ A A% )=u(Axiki+1Ai+l+Axi+1kiAi 4.11)

kA _ukiAi ki +1Ai+1 KiAik; +1Ai+1
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By rearranging Equation 4.11

kA _ 2 kiAiki + 1Ai+1 (_I_L =T, L
HAX  AxiKi+1Ai+ 1+ A% 4 1KiA; H Jupstream 2

4.12)

Extending Equation 4.12 to a 3-D flow equation, Equation 4.10 is obtained. Equation 4.9

can be also written as

22
X
—-——t-;—x-—AX =T, ,,k(spi+1.j.k-5pi,j.k) " Ty .k(api.j,k'SPi-l.j.k)“'ci . (4.13)

where

Sp=p™1-p" (4.14)

and

Ci=Txep;lPR1,jx Py ,k)'TXi.Jz_,j,k(p?J KPRk 4.15)

The y- and z-direction finite-difference approximations follow the same argument. The

right-hand side of the Equation 4.5 has the form:

d
Vn-,cpclgp = apdp; (4.16)
where
\
L 4.17)

At



and

8pi=p}*'-p}

The final finite-difference form of Equation 4.6 is

Wi jk-1+U0P; j-1 k+LOPi.1 jx+EdP; jx+FoPis1 ik

+H8pi j+1,k+SOpi j.k+1=Gi j.k

- where

-
o

S=Tzi.j.k+l
2

and

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

4.23)

(4.24)

(4.25)

(4.26)
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Qi jx= - (@ +Cijx) 4.27)

The terms W,U,L,F,H and S are time independent, and are calculated once. The term E is
time dependent and is updated at each time iteration. Then the problem is arranged as an N
by N matrix. To solve the problem, the matrix was arranged in the form of a tri-diagonal
matrix by multiplying the W, U, H and S coefficients by the guessed value for pressure
drop and then moving the results to the right-hand side vector. The Thomas algorithm was
used to solve the resulting problem. The pressure drop at each block at each time level was
determined. The updated pressure drops were used to recalculate the right hand side. Then
the iterations continued until the pressure drops converged for all grid blocks. By
subtracting the pressure drop from the previous time step pressure, the pressure at each

block was updated at each time iteration.
4.2.2 Dimensionless Variables

To consider the solution in dimensionless form. the following dimensionless variauies are

introduced (Issaka and Ambastha, 1992a):

=Kat (4.28)

tD
ol?

where, for fieild units,

o = 3790.85¢c, (4.29)

The dimensionless pressure in field units is:
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0.00708hk,A
pp = ———P

Bug (4.30)
where
Xp = %, 4.31)
Vb = % % (4.32)
and
2p= f k_z (4.33)

By definition, the well length in dimensionless form is

L (4.34)

p~ Y0~ Yip
Appendix A contains the computer program used in this research. Appendix B contains the
results of a particular run of the computer program. Appendix C contains the development
of the expression for the Cartesian derivative value to be expected during the

pseudosteady-state period.

4.2.3 Horizontal Well Representation

The program calculates the pressure at each grid block at different time levels. In numerical
reservoir simulation by finite differences, well models are used to relate the flowing

bottomhole pressure of a well, pys, to the pressure calculated for the block (biocks)
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containing the well, p,. These two pressures are related to one another by means of the
effective radius of the well block. The relation is expressed by the following equations

(Peaceman, 1991):

-n.9d
Pwf= Po I, (4.35)

where

_ 2mAy(ksk,)*?

lgy=—"""T"—
up In{fe (4.36)

w

and
0.5 0.5 0.5

0.28[ Ko a2k AZz]

= kx k,

° ks ,().25+ Ky )0.25 4.37)
ky k,

The widely-used Equation 4.37 derived by Peaceman (1991) for the equivalent well block
radius of a well in an anisotropic medium is based on the assumptions that the grid is
uniform and that the well is isolated: that is, it is located sufficiently far from the grid
boundaries. Although Peaceman's well model equation was written for a uniform grid

system, it has been used routinely in the literature for non-uniform grids.

The reliability of Peaceman's (1991) equation for uniform and non-uniform grids has been
studied. For this purpose, the simulator was run separately with uniform and non-uniform

grid patterns. For both cases, a horizontal well with a penetration ratio of 0.5 (i.e, L/b =
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0.5) was considered. The well was centrally located along the y-axis. The swept volume

was also kept the same.

For a uniform grid pattern, the reservoir was divided into 21 gridblocks in the x-, 5
gridblocks in the y- ard 21 gridblocks in the z-direction. The centrally-located inner region
was represented by 11 gridblocks in the x-, 5 gridblocks in the y- and 7 gridblocks in the z-
direction. The well was located in gridblocks 2, 3 and 4 in the y-direction. The wellbore

gridblock size was 19x2.4 ft.

For a non-uniform grid pattern, the reservoir was divided into 11 gridblocks in the x-, 5
gridblocks in the y- and 11 gridblocks in the z-direction. The centrally-located inner region
was represented by 7 gridblocks in the x-, 5 gridblocks in the y- and 10 gridblocks in the z-
directiun. Block sizes were made to increase gradually away from the center of the

reservoir. The wellbore gridblock size was reduced to 3.2x0.4 ft.

In each case, the simulator was run for certain values of mobility ratio with different
permeability and viscosity combinations. The results are plotted on Figures 4.2 and 4.3 for
a uniform grid pattern and on Figures 4.4 and 4.5 for a non-uniform grid pattem. As can
be seen from Figures 4.2 through 4.5, in each case, all results from different perrieabibivy
and viscosity combinations fall on the same curve for a given value of mobility siiic.
However, the results from a non-uniform grid pattern seem to be more accurate than those
from a uniform grid pattern for the early time period. Figures 4.2 through 4.5 show that
for a uniform grid pattern the early time is affected by wellbore storage and, as a result, the
early radial flow period is masked, while the early radial flow period develops for a non-

uniform grid pattern.
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Based on the preceding discussion, Peaceman's (1991) equation can be be used for both a
uniform and a non-uniform grid pattern with a reasonable degree of confidence.
Throughout this study, the majority of the cases are based on the uniform grid pattern and a

few are based on the non-uniform grid pattern.
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Fig. 4.2 Effect of different combinations of permeability and viscosity
on the pressure derivative responses for a two-region composite
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Fig. 4.3 Effect of different combinations of permeability and viscosity
on the pressure derivative responses for a two-region composite
reservoir with a horizontal well (M=1000, uniform grid)
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4.2.4 Equivalent Wellbore Radius Discussion

The proper equivalent wellbore radius to use for a well in an anisotropic reservoir has been
a subject of discussion in the literature for the last several years. Babu and Odeh (1989)
use the actual wellbore radius in their deliverability equation. They argue that the concept
of equivalent radius applies to wellbores subject to uniform pres. ¢ conditions. They
suggest that, in the immediate vicinity of the wellbore, the flow is ci. '~ .crized by three
main features: (1) the flux into the wellbore is uniform; (2) the pressure, pur, at the wellbore
varies around the perimeter of the well; and (3) a representative average wellbore pressure,
Pwt, is the arithmetic average of the maximum and minimum value of p,s. By this

argument, they believe that the wellbore radius does not need to be corrected.

Brigham (1990) and Peaceman (1990) argue that, because of the considerable difference
between directional permeabilities, during the time of interest, the wellbore behaves as

though its radius is the arithmetic average of the major and minor axes of an ellipse with a

) . Kk, 1025 . . k. \0:25 i
major axis of ry, |=*| and a minor axis of ry, [=%] . Both Brigham (1990) and Peaceman
k, kx &

(1990) agree that the actual radius must be corrected to the equivalent radius as follows:

)0.7.5+ r k, o.zs] (4.38)

=1 (ks
(rw)q =5 [rw (kz Ky

To observe the effect of equivalent wellbore radius, the program was run for three different

cases of an anisotropic two-region composite reservoir with different r~tios of ky and k,
(kx=10k, kx =100k, and kyx=1000k,) with a mobility ratio of 1000 and a storativity rat'o
of 10. The reservoir was divided into 25 gridblocks in the x-, 5 gridblecks in the y-, and
11 gridblocks in the z-direction. A uniform grid pattern was used. The wellbore gridblock
size was 16x4.5 ft. The centrally-located inner-region was represented by 11 gridblocks in

the x-, 5 gridblocks in the y-, and 7 gridblocks in the z-direction. The half- »enetrated well
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was centrally located along the y-axis. Figures 4.6 through 4.8 shcw the dimensionless
semi-log pressure derivative versus dimensionless time on a log-log scale based on actual
and equivalent wellbore radii for different permeability ratios. These figures show that the
dimensionless semi-log pressure derivative responses are the same for actual and equivalent
wellbore radii, for different permeability ratios. Throughout this study, the actual wellbore

radius is used.
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derivative response for a horizontal well fork /k =10.
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4.3 Validation of the Numerical Results

The solution presented by Odeh and Babu (1990) for the transient pressure behaviour of a
horizontal well in a closed, box-shaped and anisotropic reservoir is evaluated numerically.
The solution presented by Issaka and Ambastha (1952a) for the drawdown pressure
derivative for a horizontal well is also evaluated numerically. The analytical solution of
dimensicnless pressure derivative behaviour for a vertical well in a two-region composite
reservoir with a closed outer boundary by Ambastha (1988) is evaluated num-~rically. This
study has also been verified against the analytical solution for a multi-regiun composite

reservoir presented by Acosta (1994).

4.3.1 Validation against Odeh and Babu's (1990) Solution

The numerical solution presented in this study was validated against the analytical solution
presented by Odeh and Babu (1990). To reproduce Odeh and Babu's (1990) results by
using this solution, the current model was run as a single-region, and as an anisotropic
model. The reservoir was divided into 19 gridblocks in the x-, 5 gridblocks in the y- and
13 gridblocks in the z-direction. A non-uniform grid pattern was used. Wellbore
gridblock sizes were 2x0.8 ft, 2x0.4 ft, 2x0.6 ft and 2x0.6 ft for Examples 1 through 4,
respectively. The half-penetrated well was centrally dosaisd along the y-axis. In Figures
4.9 through 4.12, the results of this study are comparcd wvith those of Examples 1, 2, 3,
and 4 of Odeh and Babu (194}, vespectively. These figures demonstrate reasonable
matches between the two studies for the early radial , early linear, late pseudo-radial and
late linear flow periods, respectively. As can e seen from Figure 4.12, the simulated
answer deviates significantly from the analytical solution as time increases. The reason for
this phenomenon could be that in Examples 3 and 4 of Odeh and Babu (1990), the length

and width of the reservoir are not specified. Therefore, some random values have been
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used for the length and width of the reservoir for both cases. Another source of deviation
could be that the numerical solution could be affected by discretization problems and
computational errors such as truncation and round-off errors. The maximum percentage
error occurs for the late linear flow period (Figure 4.12) at about t12=13.8 hr!2. The
di{ference between the pressure drops of the two studies is about 0.87 psia which yields a

1.7 percent error.
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4.3.2 Validation agairst Issaka and AmPastha's (1992a) Solution

The current model was also validated against the Issaka and Ambestha (1992a) solution for
a horizontal well. The current model was run as a single-region reservoir. The reservoir
was divided into 15 gridblocks in the x-, 5 gridblocks in the y- and 11 gridblocks in the z-
direction. A non-uniform grid pattern was used. The wellbc g block size was 7.8x0.8
ft. The well was centrally located along the y-2»is with a pc  .ation ratio of 0.25. To
validate the model, the semi-log pressure derivative in dimensionless form was plotted
versus time. In Figure 4.13, the results of this study are compared with those of Figure 4
of Issaka and Ambastha (1992a) on a log-log graph of dp_,/dInt,, versus t;,. Early radial,
early-linear, late pseudo-radial and pseudosteady-state flow regimes are covered in this
figure. Both studies have employed the Bourdet et al. (1989) algorithm to calculate the
pressure derivatives. Figure 4.13 shows a fairly reasonable match between the two

studies.

4.3.3 Validation against Ambastha's (1988) Solution

This study was also verified against Ambastha's (1988) two-region radial composite
reservoir model pressure derivative response. The current model was run as a two-region
composite reservoir with a vertical well for r.p/Rp= 10 and r.,/Rp, = 100. Using the
current model to simulate a vertical well, since gravity effects are neglected, it appeared to
be sufficient to interchange the y and z axes, as well as k, and k,. Since the current model
is a rectangular reservoir and a cylindrical reservoir is considered for ihe vertical well, a
square base is assumed to yield an equivalent radius for a cylindrical reservoir (r=a?/n).
The reservoir was divided into 15 gridblocks in the x-, 15 gr:dblocks in the y- and 5
gridblocks in the z-direction. A non-uniform grid patte:n was used. The wellbore

gridblock sizes 'were 0.9x0.9 ft and 9x9 ft for r,p/Rp= 10 and r.p/Rp = 100,
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respectively.The fully-penetrated well was centrally located along the z-axis. The model
successfully reproduced Ambastha's (1988) results. Figures 4.14 and 4.15 show good
agreement between the two solutions. However, for the early radial period and also for the
pseudosteady-state period corresponding to an outer boundary, the two sets of data do not
match perfectly. The reason for this phenomenon for the early radial period could be error
in the numerical solution such as wellbore storage effects which dominate the early time

portion of the test.

4.3.4 Validation against Acosta's (1994) Solution

This solution was also verified by generating Acosta's (1994) multi-region radial composite
reservoir model pressure derivative response. To reproduce the results, the model was
treated as a multi-region composite reservoir, with a vertical well as described in Section
4.3.3. The modified model was run for three- and ten-region composite reservoirs for Ry,
= 100, Rp,.; = 1000, m; = 0.02, and Fg); = 1. The mobility ratio increases gradually
towards the outer boundary, while the storativity ratio remains constant at unity for each
case. The mobility ratio of the swept region is defined as unity, while that of the unswept
region is defined as 1000. The transition region's slope (m,) is the slope of the line that
represents the transition region's relationship between the mobility and/or storativity ratios,
and the dimensionless radius. A widely used algorithm (Bourdet et al. , 1989) has been
employed to calculate the pressure derivative. Figures 4.16 and 4.17 show reasonable

agreement between the two solutions.
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5. HORIZONTAL WELL TESTING IN COMPOSITE RESERVOIRS

¢ is imnortant to have a knowledge of the growth of the steam chamber volume with time.
For this purpose, a single-phase, 3-D res#veir simulator is developed on the basis of the
assumptions .:xi mathematical formuiation outlined in Chapter 4. The numerical model
simulates the pressure response during the test by recording the wellbore gridblock
pressure with time, for a specified reservoir swept volume. This chapter presents a detailed
study of a two-region composite model and a brief look at multi-region (more than two

regions) composite models.

5.1 Reservoir Model

Figure 5.1 shows a schematic of the 3-D rectangular rzservoir model used in the present
study. The reservoir and fluid data used 1or the base case in ths study are shown in Table
5.1. A steam chamber with high mobility fluid is represented by blocks of large
permeability and/or small viscosity in the simulator. Similarly, a low mobility fluid
surrounding the steam chamber is represented by blocks of small permeability and/or large
viscosity in the simulator. Although the developed model is not a thermal simulator,
attempts have been made to use such a set of input data as if it were a thermal one. By
surveying the literature on the steam injection subject, efforts have been made to use a

combination of data which is as realistic as possible.
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Table 5.1 Typical reservoir and fluid properties used in base case

simulation

Reservoir initial pressure, psia 1000
Swept region compressibility, psi’! 15x103
Unswept region compressibility, psi’! 15x10°6
Swept region viscosity, cp 0.1
Unswept region viscosity, Cp 100
Production rate, BPD 800
Wellbore radius, ft 0.25
Porosity, % 20
Swept region horizontal permeability, md 2000
Swept region vertical permeability, md 200
Unswept region horizontal permeability, md | 2000
Unswept region vertical permeability, md 200
Formation volume factor, RB/STB 1.25

A value of 15x1073 psi! is used as the swept region compressibility. Walsh et al. (1981)
used 10.8x1073 psi-!, Brown (1985) used 9x10° psi'! and Satman et al. (1980) used
3.3x1073 psi!. A value of 15x106 psi’! is used as the unswept region compressibility.
This value is a very typical value for total compressibility for the unswept region widely
used by different authors such as Onyekonwu et al. (1984), Brown (1985), Fassihi (1988)
and Farouq Ali and Ferrer (1977). A value of 0.1 cp is used as the swept region viscosity.
Brown (1985) used 0.9 cp, Satman et al. (1980) used 0.0275 cp and Da Prat et al. (1985)
used 0.0245 cp. A value of 100 cp is used as the unswept region viscosity. Depending on

the reservoir depth and temperature, a wide range of values including 100 cp has been used
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as the oil viscosity. Fassihi (1988) used 13.5 cp for light oil at 88 °F and 2700 cp for
heavy oil at 75 °F. A value of 2000 md is used as the horizontal permeability, and 200 md
as the vertical permeability of the reservoir. Farouq Ali and Ferrer (1977) used 2000 md,
Satman et al. (1980) used 8000 md for the swept region and 25 md for the unswept region,
Da Prat et al. (1985) used 1000 to 10,000 md and Onyekonwu et al. (1984) used 800 to
1000 md. The choice of the combination of data shown in Table 5.1 is also based on
computation time considerations to obtain sufficient information to analyze pressure

transient tests.

To observe as many flow regimes as possible, the program has also been run with a
different set of data than that of Table 5.1 with M=1000, F=10 and a penetration ratio of
0.5. The =sults are plotted on Figures 5.2 and 5.3. These figures show the typical semi-
log pressure and pressure derivative and Cartesian pressure derivative responses for a two-
region composite reservoir with a horizontal well based on the data shown on Figures 5.2
and 5.3. Different flow regimes are labeled on the Figure 5.2 pressure derivative curve.
The first flow regime marked by a zero slope line is the early radial flow period
corresponding to the swept region immediately after the well is put on production. The
first flow regime marked by a unit slope line is the pseudosteady-state period
corresponding to the swept region due to the mobility and storativity contrast between the
swept and unswept regions. As can be seen from the same curve, none of the early linear,
late pseudo radial and late linear flow regimes has developed. To observe an early linear
flow regime, the well length should be significantly longer than the formation thickness and
the contribution to the well flow from beyond its ends should be negligible (Odeh and
Babu, 1989). Since in this case the penetration ratio is 0.5. the contribution to the well
flow beyond its ends can not be regligible. Thus, an early linear flow period can not
develop. To observe a pseudo radial flow period, the penetration ratio should be less than

0.45 (Odeh and Babu, 1989). This requirement has not been met either. To observe the
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late linear flow period, the length of the swept region should be significantly longer than
the width of the swept region. This condition is not valid either. Thus, only the early
radial flow regime corresponding to the swept region has developed before the onset of the
pseudosteady-state flow period. The second zero slope line and the second unit slope line
are indicative of the early radial flow regime and the pseudosteady-state regimes

corresponding to the unswept region, respectively.

5.1.1 Reservoir Size

The reservoir is 400 ft long, 200 ft wide and 50 ft thick with a 100 ft long well in the y-
direction. These values in dimensionless form are 4, 2, 1.6 and 1, respectively. The
reason behind using small values for reservoir dimensions and well length is to avoid the
use of a large number of grids in different directions and, consequently, to reduce the
computation time. However, the simulator is able to simulate !arge reservoirs with a large
numbers of grids. The pressure responses for a reservoir with 200 ft thickness, 4000 ft
length and 4000 fi width are shown in Figures 5.2 and 5.3 (the dimensionless values are
shown on the graphs). The reservoir was divided into 19 gridblocks in the x-, 5
gridblocks in the y- and 13 gridblocks in the z-directions. A horizontal well with a length
of 2000 £t was located aiong the y-axis in giidblocks 2, 3 and 4. The wellbore gridblock
size was 1.95x0.79ft. A non-uniform grid paitern was used. To consider the swept
region, a number of gridblocks are specified with different reservoir and fluid properties
than those used in the outer region. The swept region volume is kept fixed for each case
studied to observe the effects of different parameters on the same swept volume estimation.

The producer is located in the center of the reservoir in the y-direction.
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§.2 Cases Studied

Various simulation runs were conducted to investigate the effects of different parameters on
the swept volume estimation and the constant Cartesian derivative value expected during; the
pseudosteady-state period. Table 5.2 shows a summary of the cases studied in this
research. The base case was Run 1 with the reservoir size the same as in Section 5.1.1.
For Run 1, the half-penetrated well is centrally located in all directions. Runs 1 and 2 were
used to investigate the effects of grid refinement. Various other runs were designed to

study the effects of the other parameters as shown in Table 5.2.

Table 5.2 List of cases studied for the effects of various parameters on

the swept volume estimation
Run number Description
1and 2 Effect of grid refinement
1,3,and 4 Effect of grid size
1,5, and 6 Effect of well location in the x-direction
1,7,and 8 Effect of well location in the y-direction
1,9, and 10 Effect of well location in the z-direction

1, 11,12, 13, and 14 Effect of swept region shape

1, 15, 16, 17,18, and 19| Effect of mobility ratio

1, 20, 21, 22, 23, and] Effect of storativity ratio
24

25, 26, 27,28, and 29 | Effect of the number of regions
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5.3 Simuiaticn Results and Discussion

The results of Run : .r¢ presented to explain in detail the calculation procedure for the
mobility and swept vclinvie estimation. In the latter parts of this chapter, the discussion on
the effects of grid size, el location, swept region shape, mobility ratio, storativity ratio
and the number of regions ou the estimation of swept volume are presented. For this

purpose, the dimensionless serni-log pressure derivative (dp,,/dlInt;) responses are plotted
versus area-based dimensionless time (t,,). To investigate the effects of the different
parameters on the estimation of the swept volume, the portion of the pressure response
data, corresponding to pseudosteady-state due to the mobility and storativity contrasts of
the swept and unswept regions, is considered. If the unit-slope lines corresponding to
pseudosteady-state for different values of each parameter contain the same set of data, there
will not be a considerable effect on the swept volume estimation due to the change in the

corresponding parameter values.

To observe the effect of different values of each parameter on the constant value of the

Cartesian derivative, the dimensionless Cartesian pressure derivative (dp,,,/dt;,) responses
are plotted versus area-based dimensionless time (tp,). If pseudosteady-state flow
corresponding to the inner region develops, the graph will show a zero-slope (flat) line.
Any differences in the constant value of the Cartesian derivative with respect to the
theoretical constant for the Cartesian derivative will be indicative of errors due to the

variation of a particular variable.

§.3.1 Results of Run 1

For Run 1, the reservoir was divided into 41 equal grids in the x-direction, 5 non-equal

grids in the y-direction and 11 equal grids in the z-direction. The centrally-located inner
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region was represented by 21 gridblocks in the x-direction, 5 gridblocks in the y-direction
and 7 gridblocks in the z-direction. The half-penetrated horizontal well extends along the y
axis from gridblock 2 to gridblock 4. The well is centrally located with respect to the x-
and z-axes. A value of 1000 was used as the mobility and storativity contrasts between the
inner and the outer regions. Oil was produced from the reservoir through a single
horizontal well at the rate of 800 STB/D for 100 h. rs. Figure 5.4 shows the wellbore
gridblock pressure and wellbore flowing pressure responses, during the test, graphed
against time. This figure shows that the wellbore gridblock pressure is equal to the actual
wellbore flowing pressure plus a constant value. The relationship between the wellbere
gridblock and the wellbore flowing pressures is defined in Equation 4.35. Generally
speaking, the wellbore gridblock pressure is essentially equal to the wellbore flowing

pressure at a radius of ro.
5.3.1.1 Identification of Flow Regimes

To identify the various flow regimes, semi-log pressure derivatives w.re calculated from
the wellbore flowing pressure response data using a suitable algorithm (Bourdet et al.,
1989). A log-log graph of the semi-log pressure derivatives (dps/dlnt versus t are shown
in Figure 5.5 for both uniform and non-uniform grid patterns. This figure shows an early-
time response dominated by wellbore storage for a uniform grid pattern up to about 0.03
hours. For a non-uniform pattern, an early radial flow regime starts at about 0.03 hours
and lasts up 1o 0.2 hours. Applying the Odeh and Babu (1989) time criteria equations, the
early radial flow regime should end at a time of about 0.17 hours, which is consistent with
what is observed in Figure 5.5. After a transition period of about one and half log cycles, a
unit-slope line corresponding to pseudosteady-state flow in the swept region develops at

about 2.5 hours. Converting this value to tp,, a vaiue of 0.12 is obtained which is
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basically the same as the expected theoretical value (0.1). Therefore, prior to
pseudosteady-state, only the early-radial flow period has occurred. This observation is

consistent with what Issaka (1991) reported.
5.3.1.2 Estimation of Steam Chamber Mobility

Based on the reservoir and fluid properties in the swept region and using the equation
presented by Odeh and Babu (1990), the expected slope of the semi-log straight line

corresponding to early-radial flow is:

_ 162.6qup

Equation 5.1 uses field units.

The early-time portion of the data from Figure 5.5, representing the early-radial flow
period, is plotted on a semi-log scale (Figure 5.6). The slope of this straight line is 0.274
psi/cycle. Based on the fluid and reservoir properties of the inner region and using

Equation 5.1, the calculated slope is:

., = 162.6(800)(0.1)(1.25)
T (100)72000)(200)

= (.257 psi/cycle

The slope calculated from the pressure response data is 106 percent of the theoretically
expected slope. Therefore, the steam chamber mobility is underestimated by about 6
percent. Such a slightly underestimated value of the steam chamber mobility is not
unreasonable, given that simulated data are affected by discretization problems and

computational errors such as truncation and round-off errors.
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5.3.1.3 Estimation of Swept Volume

The simulated swept volume was calculated by adding the gridblock voluraes within the
swept region (region of high mobility fluid). This volume was about 1.30x10° fi3. The
swept volume was also calculated from the simulated pressure response data using the
pseudosteady-state method. From the semi-log pressure derivative response shown in
Figure 5.5, pseudosteady-state for the swept region occurs for the data after 5 hours. This
set of data was plotted on a Cariesian graph of p.s versus t on Figure 5.7. The slope of
this straight line was 5.97 psi/hour. By using the simulated input data corresponding to the

inner region and Equatici: 2.1, the swept volume was calculated as:

5.614(800)(1.25)

= _ 6 3
Vs = 5202)(15E-3)(0.059) ~ =210t

A comparison between the calculated and the simulated swept volumes shows that the
swept volume is overestimared by 1.5 per cent, an amount which is quite reasonable for all
practical purposes. Effects of various other parameters on the swept volume estimation are

discussed in the following sections.
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5.4 Possible Causes of Errors in Swept Volume Estimation

Issaka (1991) studied the effects of wellbore gridblock size, injection time, injection rate
and anisotropy of the reservoir on the swept volume estimation. He concluded that the
smaller the gridblock sizes, the shorter the injection times, and the higher the injection
rates, the more accurate was the swept volume estimation. Since current research is based
on a specified swept volume, the effects of injection time and injection rate need not be
studied. For the purposes of investigating the possible causes of errors in swept volume
estimation, attempis have been made to observe the effects of grid refinement, wellbore
gridblock size, swept region shape, well location, mobility ratio, storativity ratio and the

number of regions of the multi-region system on the swept volume estimation.

5.4.1 Effect of Grid Refinement on the Swept Volume Estimation

The effect of grid refinement was studied through two different runs. Both runs had the
same specified swept volume. In the first run, grids were distributed uniférmly for the
whole reservoir including the wellbore gridblocks, with a gridblock size of 9.75x4.5 ft in
the x- and the z-directions. For the second run, the grid refinement pattern was applied,
where the block sizes were made to increase gradually away from the center of the reservoir
in the x- and the z-directions with a wellbore gridblock size of 0.78x0.4 ft. Figures 5.8
and 5.9 show the dimensionless semi-log and Cartesian pressure derivatives plotted versus
tp, for both runs. Figure 5.8 indicates that pseudosteady-state periods for hoth cases start
and end at the same time. Thus, the calculated swept volume will have the same value ror
both griu patterns. Figure 5.9 also demcnstrates the same constant value of the Cartesian
derivative equal to 2m for the two different grid pattens. Comparing this value with the

theoretical value, negligible error is expected in the swept volume estimation.
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5.4.2 Effect of Wellbore Gridblock Size on the Swept Volume Estimation

To observe the effect of wellbore gridblock size, three different runs were made. In the
first run, the gridblock size was 36x4.5 ft (10.97x1.37 m) in the x- and z-directions,
respectively. This gridblock size was based on uniform grids for the whole reservoir
including the wellbore gridblock. For the second run, the gridblock size was reduced to
19x4.5 ft (5.79x1.37 m). For the third run, the gridblock size was reduced to 9.5x4.5 ft
12.89x1.37 m). The reservoir dimensions, the well length and the swept region volume

.-~ *he same for all three cases. The well was producing at 800 STB/D (0.0015 m¥/s).
‘i ue dimensionless semi-log and Cartesian pressure derivatives for all runs were plotted
versus ty, in Figures 5.10 and 5.11, respectively. Figure 5.10 shows that the
pscudosteady-state period for all cases starts arict #w:is st the same time. Therefore, the
swept volume calculated for all three cases hi: the same value. Figure 5.11 also
demonstrates the same constant value of the Cartesian derivative equal to 6.28 (2r) for
different wellbore gridblock sizes. A comparison of this value with the theoretical value of
Zm, obtained in Appendix C, shows that the swept volume is estimated quite accurately

with essentially no error.
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5.4.3 Effect of Well Location on the Swept Volume Estimation

Effect of well location on the pseudosteady-state period corresponding to the swept region
was investigated by changing the location of the well along the x-, y- and z-directions
inside the swept region. The base case was that consisting of a centrally-located well in all

three directions and a penetration ratio of 0.5.

Figure 5.12 shows the dimensionless semi-log pressure derivative responses for different

xs pfasy (0.5, 0.7, 0.9). The well was centrally-located with respect to the y- and z-axes.
The pseudosteady-state flow period corresponding to the swept region starts at an earlier
time for xs_p/as;, = 0.5, and at a later time for the other cases. However, as xs /as;
increases, the pseudosteady-state flow period starts later. Since the late portion of the data
for all three cases falls on the same straight line, all three cases estimate more or less the
same volume for the swept region. However, the calculated swept volumes for longer
pseudosteady-state periods are more accurate. Figure 5.13 shows the dimensionless
Cartesian pressure derivative responses for different xs /as;,. Figure 5.13 shows that the
constant value for tiie Cartesian derivative for all three cases is about 6.28. Comparing this

value with the theoretical value, negligible error is expected in swept volume estimation.

For the effect of well location along the width of the swept region, three cases of ys,, (0,
0.5, 1) were considered. The parameter ys,, is the dimensionless starting point of the well
along the swept region width. Figure 5.14 shows the dimensionless semi-log pressure
derivative graph for three cases. Figure 5.14 shows that when the well is centrally-located
with respect to the y-axis, the pseudcsteady-state period starts at an earlier time. As the
well location moves away from the center of the swept region, the pseudosteady-state

period starts at later times. Since all three cases have the same late time set of data, the
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Cartesian straight lines corresponding to pseudosteady-state for all three cases have the

same slope.

Therefore, there is not a significant difference between the volume estimations of the thre~
cases. However, the longer the pseudosteady pericd, the more accurate the swept volume
estimation. Figure 5.15 shows the dimensicnless Cartesian pressure derivative responses
for different ys,,. This figure shows that the constant value for the Cartesian derivative for
the three cases is about 6.28. By comparing this value with the theoretical value, negligible

error is expected in swept volume estimation.

The effect of well location along the z-direction is studied through various zs_p/hs;, (0.5,
0.6, 0.9). Figure 5.16 shows the dimensionless semi-log pressure derivative responses
1 three different cases. Since the thickness of the swept region is small compared to the
.ngth and the width of the swept region, change in the well location in the z-direction does
not have a significant effect on the start of the pseudosteady-state period. From Figure
5.16, the Cartesian straight lines corresponding to the pseudosteady-state periods have the
same slopes for all three cases. Therefore, the calculated volumes based on the slopes of
these straight lines will be approximately the same. Figure 5.17 shows the dimensionless
Cartesian pressure derivative responses for various cases. From Figure 5.17, the constant
value of the Cartesian derivative s about 6.28 implying negligible error in swept volume

estimation.
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5.4.4 Effect of Swept-Region Shape cn the Swept Volume Estimation

For the purpose of investigating the effect of swept region shape on the swept-volume
estimation, five different runs with different shapes of the swept region have been
conducted. Figure 5.18 shows the vertical cross-sections, normal to the producer, of the
swept volume shapes. For all runs, the reservoir and fluid properties are the same. The
volume of the swept region has been kept constant for all runs. Figure 5.19 shows the
dimensionless semi-log pressure derivative responses for the various cases. This figure
shows that, for any swept region shape, the pressure transient effects are felt at the inner
region boundary at the same time. Thus, for all different shapes, the pseudosteady-state
period starts at the same time, and the slopes of the Cartesian straight lines, corresponding
to the pseudosteady-state period, are the same. Figure 5.20 shows the Cartesian pressure
derivative responses for different swept region shapes. This figure shows a zero-slope
(flat) line. Since all different shapes have the same constant value of 2x for the Cartesian
derivative, swept region shape does not affect swept volume estimation for the cases

considered in this study.
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Fig. 5.18 Swept region shapes for the data sets of Figures 5.19 and 5.20
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Fig. 5.20 Effect of swept-region shape on the Cartesian presure
derivative response for a two-region composite reservoir
with a horizontal well.



5.4.5 Effect of Mobility Ratio on the'Swept-Volume Estimation

To observe the effect of mobility ratio on the swept-volume estimation, six runs with
different mobility ratios were conducted. For ail cases, the other reservoir and fluid
properties and the swept volume were considered constant. The dimensionless semi-log
pressure derivative responses are plotted versus t, on Figure 5.21. Figure 5.21 shows
the same response for all mobility ratios. Therefore, a change in mobility ratio does not
affect the swept volume estimation for F=1000. Figure 5.22 shows the dimensionless
Cartesian pressure derivative responses versus t;,, for different mobility ratios. This figure
swyws that for all mobility ratios the constant value of the derivative is 6.28 implying no
arvor in swept-volume estimation. Figure 5.23 shows the semi-log pressure derivative
responses for different values of M for F=10. This figure shows that the pseudosteady-
state period starts at the same time, but the pseudosteady-state period for M=10 and 100
deviates more from the unit slope line. Figure 5.24 shows the dimensionless Cartesian
pressure derivative responses for various mobility ratios for F=10. From this figure, the
constant value for the Cartesian derivative for M=1000 is 6, while M=100 and 10 have the
same constant value of the Cartesian derivative of 5.28. Thus, for M=1000, the swept
volume is overestimated by 4.5 percent, while a 16 percent error is expected for swept

volumes estimated at M=100 and 10.
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Fig. 5.22 Effect of mobility ratio on the dimensionless Cartesian pressure
derivative response for a two-region composite reservoir with a
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5.4.6 Effect of Storativity Ratio on the Swept-Volume Estimation

The effect of storativity ratio on the swept-volume estimation is also studied through three
runs with different storativity ratios. In all these runs, the other reservoir and fluid
properties and the swept voiume were kept constant. The dimensionless semi-log pressure
derivative responses of the three cases are plotted versus t;, in Figure 5.25. For all three
runs, the pseudosteady-state period starts at the same time, but the pseudosteady-state
period for F=10 deviates from the unit slope line earlier. However, for all three runs,
practically speaking, the data set for the pseudosteady-state period lies on the same
Cartesian straight line. Therefore, a change in storativity ratio does not have a noticeable
effect on the swept region volume estimation for the cases considered in this study with
M=1000. Figure 5.26 shows the dimensionless Cartesian pressure derivative responses
for various storativity ratios. From this figure, the constant value for the Cartesian
derivative for F=10 falls below 6.28, whitz =100 and 1000 show the same constant value
of the Cartesian derivative to be 6.28. Thus, for F=10, the swept volume is overestimated
by 4.5 percent, while no error is expected far swept volumes estimated at F=100 and 1000.
Figures 5.27 and 5.28 show the =ffzct of the storativity ratio for M=10 on swept-volume
estimation. These figures show tha:. as the storativity ratio increases, the constant value of
the Cartesian derivative approaches :. T1:us, an increase in storativity ratio itaproves the

swept volume estimation.

Generally speaking, as the mobility ratio and/or storativity ratio increase, the estimation of
the swept volume improves. Also, as the mobility ratio and/or storativity ratio increase, the

constant value of the Cartesian derivative approaches the theoretical value of 2x.
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Fig. 5.27 Effect of storativity ratio on the dimensionless semi-log
pressure derivative response for a two-region composite
reservoir with a horizontal well
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5.5 Description of a Multi-Region Composite Reservoir Undergoing

Steam Injection

A two-region composite reservoir consists of an inner region, called the "swept region”,
and an outer region, called the "unswept region”. The inner region is characterized by high
mobility and high storativity values. The outer region is characterized by low mobility and
low storativity. However, in reality, there is not a sharp boundary between the swept and
the unswept regions. In enhanced oil recovery processes, such as in-situ combustion and
steam injection, a composite reservoir is created artificially. Depending on the type of
process, injection rate, injection duration, etc., the mobility and storativity in the reservoir
decrease gradually towards the outer boundary. In such cases, a two-region composite
model is not adequate. Therefore, a multi-region composite reservoir, characterized by
three or more zones, should be considered. The inner zone, called the "swept region”, is
full of steam and has the greatest values of mobility and storativity. After the inner zone,
one or more zones exist in which the mobility and/or storativity continuously change.
These zones represent the "transition zone". Steam, oil and also condensed water could be
present in the transition zone. Beyond the transition zone, towards the reservoir outer
boundary, there is a cold heavy oil region called the "unswept zone". The unswept zone

has the lowest mobility and storativity values.

In the literature, very little work has been done on multi-region (more than two regions)
composite reservoirs. A few authors have reported research on three- and multi-region
composite reservoirs (Acosta, 1994, Acosta and Ambastha, 1994 and Ambastha and
Ramey, 1992). All of these studies have concentrated on the application of multi-region
composite models to vertical wells. To the best of my knowledge, there is no study
available in the literature considering an application of a multi-region model for horizontal

wells. The current research reports on a brief study of drawdown responses for multi-
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region composite reservoirs with a horizontal well. The effect of the number of regions on
the application of the pseudosteady-state method to estimate the swept volume has been
studied. For this purpose, the iwo-region composite mode! is modified to simulate the

pressure responses for composite models with more than two regions.

In a multi-region composite model, as the pressure transient effects are felt beyond the
swept region, the mobility and/or storativity encountered decrease. Acosta (1994) de ined
the mobility and storativity ratios in such a way that these increase from the swept regicn to
the unswept region. He also defined the mobility and storativity ratios of the swept region
as unity, and those of the unswept region as the largest values of mobility and storativity
ratios. In this study, the values used for mobility and storativity ratios are the same as
those which were used by Acosta (1994) for a circular reservoir with a vertical well. In
this study, three-, four-, six-, eight- and ten-region composite models are analyzed. In all
models, the swept and the unswept regions are represented by one region each. In ali
models, the volumes of the swept, transition and unswept regions remain constant. The
three-region model has a transition region represented by one region, while the transition
region of a six-region model is represented by four regions, and that of a ten-region model

by eight regions.

Depending on the reservoir and fluid properties, well conditions and the amount of steam
injected, a reservoir undergoing steam injection may be represented by different flow
regimes. By using pressure derivative graphs, the pressure transient analysis from a
reservoir may be conducted. A plot of the dimensionless semi-log pressure derivative
(dp,,p/dint) versus area-based dimensionless time (t,,) on a log-log scale can be used to
identify the different flow regimes. Thrcughout this study, the area used in the definition
of area-based dimensionless time is the area of the swept region. Since, in this study, the

analysis is directed toward the application of the pseudosteady-state method to estimate the
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swept volume, only the pseudosteady-state period is considered. The pseudo-steady state
period, reflecting a large mobility and/or storativity contrast between the swept and the

unswept zones, is expected to yield a unit slope line.

5.5.1 Drawdown Test Analysis for a Multi-region Coraposite Rcservoir

with a Horizontal Well

In this section, se. ‘i-log and Cartesian pressure de.  ‘ve responses of a multi-region

composite reservoir with a horizontal well are studied.

Figures 5.29 and 5.30 show the semi-log pressure derivative and the Cartesian pressure
derivative of a reservoir in which the mobility in the transition region changes
continuously. The overall mobility ratio is 1000, and a constant storativity throughout the
whole reservoir has been used. Therefore, the storativity ratio is equal to unity everywhere
in the reservoir. From Figure 29, for all models, an early radial flow period corresponding
to the swept zone mobility develops between t,,=0.00065 and t;,=0.003. A
pseudosteady-state period corresponding to the mobility contrast between the swept and
unswept regions starts at about tp,=2. The semi-log pressure derivative has a value of
about 0.3 for the early radial flow period. However, this value should be equal to (hs/2)
for horizontal wells. By using Equation 4.33 for an appropriate definition of hsp, the

theoretical vaiue is:
__D
2 2(300) \/-2 =021

Thus, the semi-log pressure derivative for the early radial flow is overestimated by 43
percent. The difference between the theoretical value and the simulated value could be

because of the wellbore storage effect which masks portions of the early radial flow period.

85



lw =~ 1 lﬂﬂll LA Illllll LI IIHHI LI lllllll 1 T ITTITH
- M =1 . ]
i 1 — Three-region 7]
M_=1000 ~— Four-region 7
10 = F=1 —six to ten-region —
(=) — 1 jme
£ - m_=0.02 =
") - Y N
‘E ~ R, =100 i
A B = RD“" =1000 =
0.1 [ IHUI! ! IllIJHI Llllillll 1 Illllll‘ P i1
10 10° 102 10" 10° 10!
A
Figure 5.29 Dimensionless semi-log pressure derivative response
for a multi-region composite reservoir with mobility
variation

lm =3RERRALLL rTWTlm] LIRLILAR AL ] lllllll T TTTTVH
100 = M, =1 — Three-region  _|
= — Four-region =
o — = . . -
S - M, 1000 — Six to ten-region ]
=t - F. =1 .
E = ! -

= m_=0.02
100 = oF —
= 1= 100 =
- Ry , = 1000 3
1 1 lllllll 1 1 IlJIlll i3 ll“lll 1 Llllll]l 11 L1118y

10°* 10° 102 10" 10° 10!
ba

Figure 5.30 Dimensionless Cartesian pressure 4zrivatve response
for a multi-region composite res v+ «ith mobility
variation



Moreover,it could be due to inaccuracies in the numerical solution. In Figure 5.29, neither
the departure time from the early radial flow period nor the pseudosteady-state response are
significantly affected by the number of regions of the composite model. Thus, a change in
the number of the regions does not affect the swept volume estimation. However, the
transition region's transient pressure behaviour is affected by the number of regions of the
model. From Figure 5.29, the transition region's values for the semi-log pressure
derivative for the three-region compcsite model are higher than those for the other
composite models. The preceding cbservations are the same as those reported by Acosta

(1994) for a multi-region composite reservoir with a vertical well.

Figure 5.30 shows the dimensionless Cartesian pressure derivative plotted versus area-
based dimensionless time. This figure confirms the existence of the early radial flow
period by a negative unit slope line, and a pseudosteady-state flow period by a flattening of
the Cartesian pressure derivative. This flattening occurs when the Cartesian pressure
derivative has a value lower than 27 of about 4.2. This behaviour suggests that estimating
the swept volume by the pseudosteady-state method yields an overestimation of the actual
swept volume. However, this value should be 6.28 theoretically (see Appendix C). Thus,
there i- = 33 percent error in estimating the swept volume consisting of the volume to the

end of the transition region.

From Figure 5.29, soon after the early radial flow period, the dimensionless semi-log
pressure derivative falls on a straight line, for the three-region composite model. This line
appears because of the mobility contrast of the inner region and the single transition region.
The slope of this line is significantly less than unity because of the low mobility contrast
between the inner region and the transition region. Correspondingly, as expected, Figure
5.30 does not show a complete flattening for the three-region composite model during

intermediate time. From Figure 5.29, as the number of transition regions increases, the

87



slope of the aforementioned straight line decreases, because the mobility contrast between

the inner region and the first region of the transition zone decreases.

Figure 5.29 shows that at a later time in the transition region response, all composite
models join together and the semi-log pressure derivative falls on a straight line with a
slope of unity. This unit slope line is an indication of a pseudosteady-state period due to
the high mobility contrast between the transition region and the unswept region. Figure
5.30 confirms this high mobility contrast by a flattening of the Cartesian pressure
derivative. This flattening occurs when the constant value for the Cartesian derivative is

about 4.2 implying 33 percent error in the swept volume estimation.

A summary of the effect of different variables on the swept volume estimation is presented
in Table 5.3. A summary of the constant value of the Cartesian derivative and the percent

error in the swept volume estimation for various cases studied is presented in Table 5.4.
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Table 5.3

Summary of the effect of different variables on the swept

volume estimation

Description Effect on the swept
volume estimation

Grid size )

well location (x-direction) 0

well location (y-direction) 0

well location (z-direction) 0

Swept region shape 0

Mobility ratio The larger the M,
the better the swept
volume estimation

Storativity ratio The larger the F, the

better the swept

volume estimation

Multi-region

0

8%



Table 5.4 Constant value of the Cartesian derivative for various cases

Description Constant value of|Percent Error in

Cartesian derivative jswept  volume
estimation

Grid size 6.28 0

well location (x-direction) 6.28 0

well location (y-direction) 6.28 0

well location (z-direction) 6.28 0

Swept region shape 6.28 0

Mobility ratio 5.28-6.28 0-16

Storativity ratio 5.28-6.28 0-16

Multi-region 4.2 N 33




6. CONCLUSIONE AND RECOMMENDATIONS

In the current research, the pressure transient behaviour of a horizontal well in a closed,
and box-shaped composite reservoir was studied. The pressure responses were studied.
The main focus was on the application of the pseudosteady-state method in the estimation
of the steam chamber volume and the steam chamber mobility from the well test data.
Also, the effect of different parameters on the steam chamber volume estimation was

studied.

6.1 Conclusions

From the study of the pressure transient responses for 2 composite reservoir with a

horizontal well, the following conclusions may be drawn:

1. The numerical solution for the pressui¢ transient response of a horizontal well in a
closed, box-shaped, composite reservoir can be generated with a reasonable degree

of accuracy.

2. The pseudosteady-state method may be used to estimate the swept volume for steam
injection through a horizontal well. Various parameters, such as grid pattern, grid
size, well location in the x-, y-, and z-directions, swept region shape, mobility ratio
and storativity ratio do not affect significantly swept volume estimation and the
constant value of the Cartesian pressure derivative during the pseudosteady-state

flow regime for the cases presented in this study.

3. For the cases studied, early radial flow followed by a pscudosteady-state flow

regime appeared in all simulated tests. Early linear, late pseudo-radial and late
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6.2

linear flow regimes did not appear for any simulated test. This must have occurred
due 1o the specific swept volume dimensions, horizontal well lengths and horizontal

well locations considered in this study.

For a multi-region representation of the swept volume, the pseudosteady-state
method may yield a significantly overestimated swept volume for a horizontal well.
This conclusion is consistent with the findings of Acosta (1994) based on an
analytical study of a multi-region composite reservoir with production (or injection)

occuring through a vertical well.

Recommendations

The effect of steam assisted gravity drainage on the swept volume estimation should

be studied for horizontal wells in composite reservoirs.

An analytical study of the pressure behaviour of a horizontal well in a composite
reservoir should be conducted for comparison with the results from the numerical

studies.
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APPENDIX A

Pressure Transient Response for a Horizontal Well in Two-Region

Composite Reservoirs

Pressure Transient Response for a Horizontal Well in Multi-Region

Composite Reservoirs
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*

%
%

*THE PURPOSE OF THIS PROGRAM IS TO GENERATE PRESSURE TRANSIENT
*RESPONSE FOR A HORIZONTAL WELL IN A TWO-REGION COMPOSITE

PROGRAM #1

*RESERVOIR.
*

%

* VARIABLE IDENTIFICATION
*

*

* NX
*NY
*NZ

= NUMBER OF GRIDS IN X-DIRECTION
= WUMBER OF GRIDS IN Y-DIRECTION
= NUMBER OF GRIDS IN Z-DIRECTION

* MX,MY ,MZ=FIRST GRIDBLOCK NUMBER IN EACH DIRECTION
*LX,LY,LZ =LAST GRIDBLOCK NUMBER IN EACH DIRECTION

* CMP1

* CMP2

* VIS1

* VIS2

* FVF1
*FVF2
* POR1
* POR2
* RW

* PRS;R

* PKS!
*RT1
* APX1
*

* APX2
%k
* APY1
*
* APY2

*

* APZ1
sk
* APZ2

*
* SRP
* ORP

* XLGTH
* WDTH

* THK
*WL
* AS
* BS
* HS
*VS
*XO

= COMPRESSIBILITY IN THE SWEPT REGION

= COMPRESSIBILITY IN THE UNSWEPT REGION

= VISCOSITY IN THE SWEPT REGION

= VISCOSITY IN THE UNSWEPT REGION

=FORMATION VOLUME FACTOR IN THE SWEPT REGION

= FORMATION VOLUME FACTOR IN THE UNSWEPT REGION

=POROSITY IN THE SWEPT REGION

=POROSITY IN THE UNSWEPT REGION

= WELLBORE RADIUS

= RESERVOIR INITIAL PRESSURE

= RESERVOIR IN THE PREVIOUS TIME STEP

=TOTAL PRODUCTION RATE

= ABSOLUTE PERMEABILITY IN X-DIRECTION OF THE
SWEPT REGION

= ABSOLUTE PERMEABILITY IN X-DIRECTION OF THE
UNSWEPT REGION

= ABSOLUTE PERMEABILITY IN Y-DIRECTION OF THE
SWEPT REGION

= ABSOLUTE PERMEABILITY IN Y-DIRECTION OF THE
UNSWEPT REGION

= ABSOLUTE PERMEABILITY IN Z-DIRECTION OF THE
SWEPT REGION

= ABSOLUTE PERMEABILITY IN Z-DIRECTION OF THE
UNSWEPT REGION

= STEAM RELATIVE PERMEABILITY

= OIL RELATIVE PERMEABILITY

=RESERVOIR LENGTH

=RESERVOIR WIDTH

= RESERVOIR THICKNESS

= WELL LENGTH

= SWEPT REGION LENGTH

= SWEPT REGION WIDTH

= SWEPT REGION THICKNESS

= SWEPT REGION VOLUME

= X-COORDINATE OF THE WELL W.R.T. OUTER REGION



*Z0 = Z-COORDINATE OF THE WELL W.R.T. OUTER REGION

* XSO = X-COORDINATE OF THE WELL W.R.T. INNER REGION
*ZS0 = Z-COORDINATE OF THE WELL W.R.T. INNER REGION
*Y1 = STARTING POINT OF THE WELL W.R.T. OUTER REGION
*Y2 = ENDING POINT OF THE WELL W.R.T. OUTER REGION
*YS1 = STARTING POINT OF THE WELL W.R.T. INNER REGION
*YS2 = ENDING POINT OF THE WELL W.R.T. INNER REGION
*AD = DIMENSIONLESS RESERVOIR LENGTH

*BD = DIMENSIONLESS RESERVOIR WIDTH

*HD = DIMENSIONLESS RESERVOIR THICKNESS

*ASD = DIMENSIONLESS SWEPT REGION LENGTH

* BSD = DIMENSIONLESS SWEPT REGION WIDTH

*HSD = DIMENSIONLESS SWEPT REGION THICKNESS

*XOD = DIMENSIONLESS X-COORDINATE OF THE WELL W.R.T.
* OUTER REGION

*Z0D = DIMENSIONLESS Z-COORDINATE OF THE WELL W.R.T.
* OUTER REGION

* XSOD = DIMENSIONLESS X-COORDINATE OF THE WELL W.R.T.
* INNER REGION

*ZS0D = DIMENSIONLESS Z-COORDINATE OF THE WELL W.R.T.
* INNER REGION

*Y1D = DIMENSIONLESS STARTI. 'G POINT OF THE WELL W.R.T.
* OUTER REGION

*Y2D = DIMENSIONLESS ENDING POINT OF THE WELL W.R.T.
* OUTER REGION

*YSID = DIMENSIONLESS STARTING POINT OF THE WELL W.R.T.
* INNER REGION

*YS2D = DIMENSIONLESS ENDING POINT OF THE WELL W.R.T.
* INNER REGION

*LD = DIMENSIONLESS WELL LENGTH

*D1XD = SHORTEST DIMENSIONLESS DISTANCE OF THE WELL
* FROM BOUNDARY W.R.T. X-DIRECTION

*D2XD = LONGEST DIMENSIONLESS DISTANCE OF THE WELL

* FROM BOUNDARY W.R.T. X-DIRECTION

*DI1YD = SHORTEST DIMENSIONLESS DISTANCE OF THE WELL
* FROM BOUNDARY W.R.T. Y-DIRECTION

*D2YD = LONGEST DIMENSIONLESS DISTANCE OF THE WELL

* FROM BOUNDARY W.R.T. Y-DIRECTION

*D1ZD = SHORTEST DIMENSIONLESS DISTANCE OF THE WELL
* FROM BOUNDARY W.R.T. Z-DIRECTION

*D27D = LONGEST DIMENSIONLESS DISTANCE OF THE WELL

* FROM BOUNDARY W.R.T. Z-DIRECTION

* EER = END OF EARLY RADIAL FLOW PERIOD

* SEL = START OF EARLY LINEAR FLOW PERIOD

*EEL =END OF EARLY LINEAR FLOW PERIOD

* SLS = START OF LATE PSEUDO-RADIAL FLOW PERIOD

*ELS = END OF LATE PSEUDO-RADIAL FLOW PERIOD

*SLL = START OF LATE LINEAR FLOW PERIOD

*ELL = END OF LATE LINEAR FLOW PERIOD

*DP = PRESSURE DROP

* PRS = BLOCK PRESSURE

* PRF = WELLBLOCK PRESSURE

* PRIS = WELLBLOCK PRESSURE DROP

*XMB = MATERIAL BALANCE
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100

* TIM = TOTAL TIME
*TD = DIMENSIONLESS TIME
* PD = DIMENSIONLESS PRESSURE
% *
*
IMPLICIT REAL*8(A-H,0-2)

DIMENSION ARAX(45,45,45),ARAY(45,45,45),ARAZ(45,45,45),

VOLB(45,45,45),DPH(45,45,45),DL(20000),EL(20000),FL(20000),
W(20000),G(20000),DP1(45,45,45),ZK(45,45,45),ZK 1(45,45,45),

DX(45),DY(45),DZ(45),QL(20000),UL(20000),PRF1(45,45,45),
Cl1(45,45,45),Q(45,45,45),PR1S(45,45,45), FVF(45,45,45),
RTE(45,45,45),RADE(45,45,45),PRM(45,45,45),P1(45,45,45),
PRS(45,45,45),PR1(45,45,45),DP(45,45,45),
PRF(45,45,45),C1X(45,45,45),CIY(45,45,45),C1Z(45,45,45)
DIMENSION PRMX(45,45,45),PRMY (45,45,45),PRMZ(45,45,45),

& TRMX1(45,45,45),TRMX2(45,45,45),TRMY 1(45,45,45),

& TRMY2(45,45,45), TRMZ1(45,45,45),TRMZ2(45,45,45),

&  AP(45,45,45),E(45,45,45),2(45,45,45),B(45,45,45),

&  D(45,45,45),F(45,45,45),H(45,45,45),5(45,45,45),

& POR(45,45,45),CMP(45,45,45),VIS(45,45,45)

E 3

* READING THE VALUES
*

PR

OPEN(S,FILE="h1.d")
OPEN(S,FILE="h1.0")

A

READ(S,*) NX,NY,NZ
READ(S,*) MX,MY MZ
READ(,*) LX,LY,LZ
READ(5,%) NY1,NY2
READ(5,*) NX1,NZ1
READ(S,*) GX,GZ,P,KK
READ(5,*) MB,SHAPE, TOL!.
READ(S,*) CMP1:,72V¥2)
READ(S,*) VISl + 7721
READ(S,*) FVF1,” +2
READ(S,*) POR1,FOR2,RW1
READ(S,*) PRSIB1,RTEI11
READ(S,*) NOM,N,COUNT
READ(S,*) TIMEL,DELTA1,DELTBI1
READ(S,*) APX1,APY1,APZ1
READ(S,*) APX2,APY2,APZ2
READ(5,*) SRP,ORP
READ(S,*) XLGTH1,WDTH1,THK1,WLI1
READ(5,*) Y11,Y21
READ(S,*) 01,02,03

%k

* CONVERSION FACTORS
*

FM=3.28084D0
PP=6894.76D0
SH=3600
DM=1.013E15
DB=543439.6D0




*

* CONVERTING FROM FIELD UNITS TO SIUNITS

*

%
%

VIS1=VIS11/1000
VIS2=VIS21/1000
RW=RWI1/FM
CMP1=CMP11/PP
CMP2=CMP21/PP
PRSIB=PRSIB1*PP
DELTA=DELTA1*SH
DELTB=DELTBI1*SH
TIME=TIME1*SH
PRMX1=APX1*SRP/DM
PRMY1=APY1*SRP/DM
PRMZ1=APZ1*SRP/DM
PRMX2=APX2*ORP/DM
PRMY2=APY2*ORP/DM
PRMZ2=APZ2*ORP/DM
RTE1=RTE11/DB
XLGTH=XLGTHI1/FM
WDTH=WDTH1/FM
THX=THK1/FM
WL=WLI1/FM
Y1=Y11/FM
Y2=Y21/FM

* UNIFORM GRID
*

DO 11 I=1,NY
DY(I)=(WDTH-WL)/(NY-(NY2-NY1+1))

11 CONTINUE

DO 16 I=NY1,NY2
DY(I)=WL/(NY2-NY1+1)

16 CONTINUE
*

IF (GX.EQ.1) THEN
DO 5 I=1,NX
DX(I)=XLGTH/NX
CONTINUE
ELSE

* ¥ % ¥ ¥

GRID REFINING IN X-DIRECTION

PX=1

DO 21 I=1,NX1-1
PX1=N**]
PX=PX+2*PX1

21 CONTINUE

DX(NX1)=XLGTH/PX
DO 22 1=NX1-1,1,-1
DX(D)=DX(1+1)*2
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22 CONTINUE
DO 23 I=NX1+1,NX
DX(I)=DX(I-1)*2
23 CONTINUE
ENDIF

*

IF (GZ.EQ.1) THEN
DO 12 1=1,NZ
DZ(1)=THK/NZ
12 CONTINUE
ELSE

%*
¥

* GRID REFINING IN Z-DIRECTION

%
PZ=1
DO 51 I=1,NZ1-1
PZ1=N**]
PZ=PZ+2*PZ1
51 CONTINUE
DZ(NZ1)=TH¥/PZ
DO 521=NZ1-1.: 1
DZ(I)=DZ(1- "**2
52 CONTINUE
DO 53 I=NZ1+1,N 2
DZ(I)=DZ(I-1)*2
53 CONTINUE
ENDIF

%

* CALCULATION OF THE SWEPT VOLUME
%

AS=0.0D0
BS=0.0D0
HS=0.0D0
DO 4 I=MX,LX
AS=AS+FM*DX(I)
4 CONTINUE
DO 57 1=MY,LY
BS=BS+FM*DY(I)
57 CONTINUE
DO 6 I=MZ,LZ
HS=HS+FM*DZ(I}
6 CONTINUE
VS=AS*BS*HS

*

* WELL LOCATION IN X-DIRECTION
*

X00=0.D0
IF(NX1.EQ.1) THEN
XO=(DX(1)/2)*FM
ELSE
DO 111 I=1,NX1-1
X00=X00+DX(I)
111 CONTINUE
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103

X0=(X00+DX(NX1)2)*FM
ENDIF

XSGO0=0.D0
IF(NX1.EQ.MX) THEN
XSO=(DX(NX1)/2)*FM
ELSE
DO 121 I=MX,NX1-1
XS00=XSOO0+DX(I)
121 CONTINUE
XSO=(XSO0+DX(NX1)/2)*FM
ENDIF

*
%

* WELL LOCATION IN Z-DIRECTION

%*

Z00=0.D0
IF(NZ1.EQ.1) THEN
Z0=(DZ(1)/2)*FM
ELSE
DO 112 1=1,NZ1-1
Z00=Z00+DZ(I)
112 CONTINUE
ZO=(ZOO+DZ(NZ1)/2)*FM
ENDIF

Z500=0.D0
[F(NZ1.EQ.MZ) THEN
ZSO=(DZ(NZ1)/2)*FM
ELSE
DO 117 I=MZNZ1-1
ZS00=ZSO0+DZ(I)
117 CONTINUE
ZSO=(ZSO0+DZ(NZ1)2)*FM
ENDIF

YS1=0.D0
IF(NY1.EQMY) THEN
YS1=0.D0
ELSE
DO 118 I=MY,NY1-1
YS1=YS1+DY(I)*FM
118 CONTINUE
ENDIF
%k
YS3=0.D0
IF(NY2.EQ.LY) THEN
YS3=0.D0
ELSE
DO 119 1=NY2+1,LY
YS3=YS3+DY(I)*FM
119 CONTINUE
YS2=BS-YS3
ENDIF




L 3
%

* DIMENSIONLESS VARIABLES

*

XY=SQRT(PRMX1/PRMY )
XZ=SQRT(PRMX1/PRMZ1)
AD=XLGTH/WL
ASD=AS/WL1
BD=(WDTH/WL)*XY
BSD=(BS/WL1)*XY
HD=(THK/WL)*XZ
HSD=(HS/WL1)*XZ
XOD=XO/WLI1
ZOD=(ZO/WL1)*XZ
XSOD=XSO/WL1
ZSOD=(ZSO/WL1)*XZ
Y1D=(Y I/WL*XY
Y2D=(Y2/WL)*XY
XLD=Y2D-Y1D
YS1D=(YS1/WL1)*XY
YS2D=(YS2/WL1)*XY

D1ZD=MIN(ZSOD,(HSD-ZSOD))

D2ZD=HSD-D1ZD

D1YD=MIN(YS1D,(BSD-YS2D))

D2YD=MAX(YS1D,(BSD-YS2D))

D1XD=MIN(XSOD,(ASD-XSOD))

D2XD=ASD-DIXD

ALPHA=3790.85D0*POR 1*VIS11*CMP11*(AS*BS)/(APX1*SRP)
PD1=0.00708D0*HS*APX1*SRP/(FVF1*VIS11*RTE11)
E

* TIME CRITERIA FOR THE RESERVOIR
E 3

EER2=MIN(0.25D0*D1ZD**2,0.033D0*XLD**2)
SEL2=0.6D0*D2ZD**2
EEL2=0.02D0*XLD**2
SLS2=(0.4D0*XLD**2
ELS2=MIN(0.33D0*(D1YD+XLD/4)¥*2,0.27*D1XD**2)
SLL2=MAX(0.88*D2YD**2,0.63*D2ZD**2)
ELL2=0.162*D1XD**2
WRITE(8,1) EER2,SEL2 EEL2,SLS2,ELS2,SLL2,ELL2
1 FORMAT(2X,F6.2,2X F6.2,2X F6.2,2X,F6.2,2X,F6.2,
& 2X,F6.2,2X,F6.2)

CALCULATION OF MOBILITY AND STORATIVITY RATIOS

RM=(PRMX1*HS/VIS1)/(PRMX2*(THK1-HS)/VIS2)
SR=(POR 1*CMP1*HS)/(POR2*CMP2*(THK1-HS))
*

*FORMATING
*
WRITE(8,*)

IF(P.EQ.1) THEN
WRITE(8,101)

% * ¥ * ¥ *
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101 FORMAT(11X,'DT, 16X, PWF')
ELSEIF(P.EQ.2) THEN
WRITE(8,102)
102 FORMAT(11X,'DT',16X,'DP')
ELSE
WRITE(8,103)
103 FORMAT(11X,'DTDA',16X,PWD")
ENDIF
WRITE(8,104)
104 FORMAT(7X, L,6X,' D)
*

DO 30 K=1,NZ

DO 30 J=1,NY

DO 301=1,NX
PRMX(1,J,K)=PRMX2
PRMY(],J,K)=PRMY2
PRMZ(I,J,K)=PRMZ2
POR(1,J,K)=POR2
CMP(L,J,K)=CMPZ
VIS(1,J,K)=VIS2
FVF(1,J,K)=FVF2
PI(1,J,K)=10.D0
RTE(1,1,K)=0.D0

30 CONTINUE
*

DO 40 K=MZ,LZ

DO 40J=MY,LY

DO 40 I=MX,LX
PRMX(1,J,K)=PRMX1
PRMY(],J,K)=PRMY1
PRMZ(1,),K)=PRMZ1
POR(L,J,K)=PORI1
CMP(1,J,K)=CMP1
VIS(1,J,K)=VIS1
FVF(1,J,K)=FVF1

40 CONTINUE

¥

DO 820 K=1,NZ

DO 820 J=1,NY

DO 820 I=1,NX
ARAX(1,J,K)=DY(J)*DZ(K)
ARAY (L), K)=DX(1)*DZ(K)
ARAZ(1,].K)=DX()*DY(J)
VOLB(1,]J,K)=DX()*DY(J)*DZ(K)

820 CONTINUE
*

DO 10K=1,NZ
DO 10J=1,NY
DO 101=1,NX

IF (LEQ.1) THEN

TRMX1(1,J,K)=0.D0
ELSE
TRMX1(1,],K)=2*ARAX(LJ,K)*ARAX(I-1,] K)*
& PRMX(1,),K)*PRMX(I-1,J K)/((ARAX(LJ K)*
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106

& PRMX(L,J,K)*DX(I-1)+ARAX(I-1,],K)*
& PRMX(I-1,J,K*DX1))*VIS(1-1,J ,K))
ENDIF
10 CONTINUE

%k

DO 31 K=1,N7,

DO 31 J=1,NY

DO 31 I=1,NX

IF (.LEQ.NX) THEN

TRMX2(1,1,K)=0.D0
ELSE
TRMX2(1,J,K)=2*ARAX(1,J, K)*ARAX (I+1,J, K)*
PRMX(L,J,K)*PRMX (1+1,J,K)/((ARAX(IL,J,K)*
PRMX(LJ K)*DX(I+1)+ARAX(I+1,],K)*
PRMX(1+1,],K)*DX(1))*VIS(1,J,K))

Ro o R

ENDIF
31 CONTINUE
*

DO 32 K=1,NZ

DO 32 J=1,NY

DO 32 I=1,NX

IF (J.EQ.i) THEN

TRMY1(1,J,K)=0.DO
ELSE
TRMY1(1,J,K)=2*ARAY(L,J,K)*ARAY(1,J-1,K)*
PRMY(1,J,K)*PRMY(1,J-1,K)/((ARAY(1,], K)*
PRMY(1,J.K)*DY(J-1)+ARAY(I,J-1,K)*
PRMY(1,J-1, K)*DY(J))*VIS(1,J-1,K))

PR

ENDIF
32 CONTINUE
%

DO 33 K=1,NZ

DO 33 J=1,NY

DO 33 I=1,NX

IF J.LEQ.NY) THEN

TRMY2(1,],K)=0.D0
ELSE
TRMY2(L,J,K)=2*ARAY(L,J K)*ARAY(1,J+1,K)*
PRMY(1,J,K)*PRMY (1,J+1,K)/((ARAY(1,J K)*
PRMY(I,JK)*DY(J+1)+ARAY(1,J+1,K)*
PRMY(LJ+1,K)*DY(1))*VIS(L,J,K))

R

ENDIF
33 CONTINUE
*

DO 34 K=1,NZ

DO 34 J=1,NY

DO 34 1=1,NX

IF (K.EQ.1) THEN

TRMZ1(1,J,K)=0.D0
ELSE
TRMZ1(1,J,K)=2*ARAZ(L,J, K)*ARAZ(1,] K-1)*
PRMZ(1,J K)*PRMZ(I,J,K-1)/((ARAZ(1,J K)*
PRMZ(1,), K)*DZ(K-1)+ARAZ(1,J K-1)*
PRMZ(1,J X-1)*DZ(K))*VIS(L,],K-1))

R



ENDIF
34 CONTINUE
*

DO 35K=1,NZ

DO 35 J=1,NY

DO 351=1,NX

IF (K.EQ.NZ) THEN

TRMZ2(1,J,K)=0.D0
ELSE
TRMZ2(1,],K)=2*ARAZ(1,J, K)*ARAZ(I,J K+1)*
PRMZ(1,J,K)*PRMZ(LJ,K+1)/((ARAZ(1,J,K)*
PRMZ(1,J,K)*DZ(K+1)+ARAZ(I,J K+1)*
PRMZ{1,J K+1)*DZ(K))*VIS(1,] K))

R

ENDIF
35 CONTINUE
*

DO 830 K=1,NZ

DO 830 J=1,NY

DO 830 I=1,NX
Z(1,J,K)=TRMZ1(1,],K)
B(I,J.K)=TRMY1(1,],K)
D(1,J,K)=TRMX1(1,],K)
F(1,J,K)=TRMX2(1,],K)
H(1,J,K)=TRMY2(1,],K)
S(1,J,K)=TRMZ2(1,],K)

830 CONTINUE
*

VT=0.D0
DO 45J=NY1NY2
VT=VT+VOLB(NX1,],NZ1)
45 CONTINUE
*

DO 46 J=NY1,NY2
RTE(NX1,J,NZ1)=RTE1*VOLB(NX1,J,NZ1)/VT

RADE(NX1,J,NZ1)=0.28D0*DSQRT(DSQRT(PRMZ(NX1,J,NZ1)/

PRMX(NX1,J,NZ1))*(DX(NX1)**2)+
DSQRT(PRMX(NX1,J,NZ1)/
PRMZ(NX1,J,NZ1))*(DZ(NZ1)**2))/

((PRMZ(NX1,J,NZ1)/PRMX(NX1,J, NZ1))**

PR

0.25D0)

PI(NX1,],NZ1)=2*DACOS(-1.D0)*DSQRT(PRMX(NX1,J,NZ1)*

PRMZ(NX1,J,NZ1))*DY(J)/(VIS(NX1,J,NZ1)*

po R0

46 CONTINUE
»*

0.25D0+(PRMX(NX1,J,NZ1)/PRMZ(NX1,J,NZ1))**

FVF(NX1,J,NZ1)*(DLOG(RADE(NX1,J,NZ1)/RW)))

*

TiM=0.DO
Oo=M
JI=0
JJ1=KK
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108
DO 50 lI=1,NO

IF (ILEQ.1) THEN
DO 60 K=1,NZ
DO 60J=1,NY
DO 60 I=1,NX
PRSI(1,J,K)=PRSIB
60 CONTINUE
DELT=DELTRB
ENDIF

DO 73 K=1,NZ
DO 73)=1NY
DO 73 I=1,NX
IF (.LEQ.1) THEN
CIX(1,J,K)=TRMX2(1,] K)*(PRSI(1+1,] K)-PRSI(1,],K))
ELSEIF (1.EQ.NX) THEN
ELS CIX(1,J,K)=-TRMX1(1,J,K)*(PRSI(1,],K)-PRSI(I- 1, ,K))
SE
CIX(I1,J,K)=TRMX2(1,J,K)*(PRSI(I+1,],K)-PRSI(1,] K))-
& TRMX1(1,J,K)*(PRSI(1,J,K)-PRSI(I-1,] K))
ENDIF
IF J.EQ.1) THEN
CIY(1,J,K)=TRMY2(1,J,K)*(PRSI(I,J+1,K)-PRSI(1,],K))
ELSEIF (J.LEQ.NY) THEN
s CIY(1,J,K)=-TRMY1(1,J, K)*(PRSI(1,J,K)-PRSI(1,J-1,K))
ELSE
CIY(1,J, K)=TRMY2(1,J,K)*(PRSI(,]J+1,K)-PRSI(1,] K))-
& TRMY1(1,J,K)*(PRSI(I,],K)-PRSI(1,J-1,K))
ENDIF
IF (K.EQ.1) THEN
CIZ(1,J,K)=TRMZ2(1,J,K)*(PRSI(1,J,K+1)-PRSI(1,}J,K))
ELSEIF (K.EQ.NZ) THEN
CIZ(1,J,K)=-TRMZ1(1,J,K)*(PRSI(1,J,K)-PRSI(L,J ,K-1))
ELSE
C1Z(1,J, K)=TRMZ2(1,J,K)*(PRSI(1,J K+1)-PRSI(},},K))-
& TRMZ1(1,J, K)*(PRSI(1,J,K)-PRSI(1,] K-1))
ENDIF
CI(1,J,K)=CIX(LJ,K)+CIY (1] K)+CIZ(1,] K)
73 CONTINUE
*

DO 840 K=1,NZ
DO 840 J=1,NY
DO 840 I=1,NX
AP(L,J,K)=VOLB(,J,K)*POR(1,]J K)*CMP(1,J K)/DELT

E(LJ,K)=-(Z(1,J,K)+B(1,J,K)+D(1,J,K)+F(1,},K)+
& H(1,J,K)+S(1,J,K)+AP(1,J ,K))

*
Q(1,J,K)=RTE(1,J,K)*FVF(,],K)-CI(1,],K)
840 CONTINUE
*

*

DO 93 K=1,NZ




D093 J=1,NY
DO 93 I1=1,NX
DPI(1,J,K)=-1.1D0
93 CONTINUE
*

7 DO 90 K=1,NZ
DO 90 J=1,NY
DO 89 1=1,NX
DL()=D(1,J.K)
EL(I)=E(L,J,K)
FL(N=F(,J,K)
IFJ.EQ.1) THEN
P1=0.D0
ELSE
P1=DPI(1,J-1,K)
ENDIF
IFJ.EQ.NY) THEN
P2=0.D0
ELSE
P2=DPI(1,J+1,K)
ENDIF
IF(K.EQ.1) THEN
P3=0.D0
ELSE
P3=DPI(],],K-1)
ENDIF
IF(K.EQ.NZ) THEN
P4=0.D0
ELSE
P4=DPI(1,J,K+1)
ENDIF

QL(I)=Q(IJ’K)'B(I,J9K)*P 1 'H(I’JaK)*
& P2-Z(1,J,K)*P3-S(1,J,K)*P4

89 CONTINUE
W(1)=FL(1)/EL(1)
DO 600 1TI=2,NX-1

W(ID=FLI)/(ELJI)-DLAIN*W(II-1))

600 CONTINUE
G(1)=QL(1/EL(1)
DO 610 111=2,NX

G(IN=(QLII)-DLIN*G(III-1))/(EL()-DLII)*W(II- 1))

610 CONTINUE
DP(NX,J,K)=G(NX)
DO 620 HI=NX-1,1,-1

DP(II1,J, K)=GII)-W{ID*DP(1I+1,J,K)

620 CONTINUE
90 CONTINUE
TOL=0.D0
DO 630 K=1,NZ
DO 630 J=1,NY
DO 630 I=1,NX

DTOL=ABS(DP(1,] K)-DPI(1,] K))

IF(DTOL.GT.TOL) THEN
TOL=DTOL
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ENDIF
630 CONTINUE
IF(TOL.GT.TOLL) THEN
DO 632 K=1,NZ
DO 632 J=1,NY
DO 632 I=1,NX
DPI(1,J,K)=DP(1,],K)
632 CONTINUE
GO TO7
ELSE
DO 631 K=1,NZ
DO 631 J=1,NY
DO 631 I=1,NX
PRS(1,J,K)=PRSI(1,],K)+DP(1,],K)
631 CONTINUE
ENDIF

*
%k

* MATERIAL BALANCE

*

IF(MB.EQ.1) THEN
XDMB=0.D0
DO 633 K=1,NZ
DO 633 J=1,NY
DO 633 1=1,NX

XDMB=XDMB+CMP(1,J,K)*VOLB(L,J,K)*POR(1,J . K)*DP(i,] K)

633 CONTINUE
XNMB=FVFI1*RTEI*DELT
XMB=XNMB/XDMB
PRINT*,XMB,TIM1

ENDIF
*

IF(I1.LEQ.1) THEN
TIM=DEILT
ELSE
TIM=TIM+DELT
ENDIF
TIM1=TIM/SH

PRF1(01,02,03)=PRS(01,02,03)-RTE(01,02,03)/P1(01,02,03)
PRF(01,02,03)=PRF1(01,02,03)/PP
PRIS(01,02,03)=PRSIB1-PRF(01,02,03)

IF(P.EQ.1) THEN
1IFJI.LEQ.JJ1) THEN

WRITE(8,9) TIM1,PRF(01,02,03)

9 FORMAT(2X,F13.5,4X,F15.5)
JJ1=JJ1+KK
JJ=11+1
ENDIF

ELSEIF(P.EQ.2) THEN
IFI1.EQ.JJ1) THEN

WRITE(8,49) TIM1,PRIS(01,02,03)
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FORMAT(2X,F13.7,4X,F13.7)
JJ1=1J1+KK
JJ=1J+1
ENDIF

ELSE
*
*DIMENSIONLESS TIME & PRESSURE
*

TD=TIM1/ALPHA
PD=PD1*PRIS(01,02,03)

49

*

IF(II.LEQ.JJ1) THEN
WRITE(8,39) TD,PD
FORMAT(2X,F15.9,4X,F15.9)

JJ1=JJ14KK
JJ=)J+1
ENDIF

39

ENDIF

IF(I1.GT.O) THEN
DELTA=COUNT*DELTA
O=0+M

ENDIF

IF(TIM1.GT.TIME1) GOTO 13

DO 650 K=1,NZ
DO 650 J=1,NY
DO 650 I=1,NX
PRSI(1,J.K)=PRS(1,],K)
650 CONTINUE
DELT=DELTA
50 CONTINUE
13 WRITE(S,3) JJ
3 FORMAT(5X,14)
*
STOP
END
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* * PROGRAM *2
*
*T1:3 PURPOSE OF THIS PROGRAM IS TO GENERATE PRESSURE TRANSIENT
~&1;¢PONSE FOR A HORIZONTAL WELL IN A MULTI-REGION COMPOSITE
*, Z3ERVOIR.

*

*

* VAR 3LE IDENTIFICATION
*

*

* NX = NUMBER OF GRIDS IN X-DIRECTION
*NY = NUMBER OF GRIDS IN Y-DIRECTION
*NZ = NUMBER OF GRIDS IN Z-DIRECTION

* MX,MY,MZ= FIRST GRIDBLOCK NUMBER IN EACH DIRECTION
* LX,LY,LZ =LAST GRIDBLOCK NUMBER IN EACH DIRECTION

* CMP21 = COMPRESSIBILITY IN THE UNSWEPT REGION
* VIS21 = VISCOSITY IN THE UNSWEPT REGION
* RW = WELLBORE RADIUS
* PRSIB = RESERVOIR INITIAL PRESSURE
* PRSI = RESERVOIR IN THE PREVIOUS TIME STEP
* RT1 =TOTAL PRODUCTION RATE
* APX21 = ABSOLUTE PERMEABILITY IN X-DIRECTION OF THE
* UNSWEPT REGION
* APY21 = ABSOLUTE PERMEABILITY IN Y-DIRECTION OF THE
* UNSWEPT REGION
** APZ21 = ABSOLUTE PERMEABILITY IN Z-DIRECTION OF THE
* UNSWEPT REGION
* SRP = STEAM RELATIVE PERMEABILITY
* ORP =OIL RELATIVE PERMEABILITY
* XLGTH  =RESERVOIR LENGTH
* WDTH =RESERVOIR WIDTH
* THK = RESERVOIR THICKNESS
* WL = WELL LENGTH
*VS = SWEPT REGION VOLUME
* NREG = NUMBER OF REGIONS
*DPp = PRESSURE DROP
* PRS = BLOCK PRESSURE
* PRF = WELLBLOCK PRESSURE
* PRIS = WELLBLOCK PRESSURE DROP
* XMB = MATERIAL BALANCE
*TIM =TOTAL TIME
*TD = DIMENSIONLESS TIME
*PD = DIMENSIONLESS PRESSURE
%

*®
%*

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION ARAX(45,45,45),ARAY(45,45,45),ARAZ(45,45,45),

& VOLB(45,45,45),DPH(45,45,45),DL(20000),EL(20000),FL(20000),
&  W(20000),G(20000),DPI(45,45,45),ZK(45,45,45),ZK1(45,45,45),



*

& DX(45),DY(45),DZ(45),QL(20000),UL(20000),PRF1(45.45,45),
&  Cl(45,45,45),Q(45,45,45),PRIS(45,45,45),FVF(45,45,45),

& RTE(45,45,45),RADE(45,45,45),PRM(45,45,45),P1(45,45,45),
&  PRS(45,45,45),PRSI(45,45,45),DP(45,45,45),

& PRF(45,45,45),CIX(45,45,45),C1Y(45,45,45),CIZ(45,45,45)
DIMENSION PRMX(45,45,45),PRMY(45,45,45) PRMZ(45,45,45),

& TRMX1(45,45,45),TRMX2(45,45,45),TRMY1(45,45,45),

& TRMY2(45,45,45),TRMZ1(45,45,45), TRMZ2(45,45,45),

&  AP(45,45,45),E(45,45,45),Z(45,45,45),B(45,45,45),

&  D(45,45,45),F(45,45,45),H(45,45,45),5(45,45,45),

& POR(45,45,45),CMP(45,45,45),VIS(45,45,45),CK(10),

& MX(10),LX(10),MZ(10),LZ(10),AS(10),BS(10),HS(10),

& VS(10),VK(10),R(10),PRS1(45,45,45)

* READING THE VALUES
¥

&

OPEN(5,FILE='m3.d")
OPEN(8,FILE='m3.0')

*

PRINT *

READ(5,*) NX,NY,NZ
READ(5,*) 01,02,03
READ(S,*) MX1,LX1
READ(5,*) MY,LY

READ(S,*) MZ1,LZ1

READ(5,*) NY1,NY2
READ(S,*) NX1,NZ1
READ(5,¥) NREG,NST.MR,NR
READ(5,*) RM1,RM2
READ(5,*) RM3,RM4
READ(5,*) X11,X21

READ(5,*) Z11,Z21

READ(5,*) P,KK

READ(S,*) MB,TOLL
READ(5,*) CMP21,VIS21,FVF2
READ(5,*) POR2,RW1
READ(5,*) PRSIB1,RTE11
READ(5,*) NOM,COUNT
READ(S,*) TIME1,DELTA1,DELTBI1
READ(5,*%) APX2,APY2,APZ2
READ(5,*) XLGTH1,WDTH1,THK1,WL1.

* CONVERSION FACTORS
¥

*

FM=3.28084D0
PP=6894.76D0
SH=3600
DM=1.013E15
DB=543439.6D0

: CONVERTING FROM FIELD UNITS TO SI UNITS

V1§2=VIS21/1000
RW=RWI1/FM
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*

X1=X11/FM
X2=X21/FM
Z1=Z11/FM
22=721/FM
CMP2=CMP21/PP
PRSIB=PRSIB1*PP
DELTA=DELTA1*SH
DELTB=DELTB1*SH
TIME=TIME1*SH
PRMX2=APX2/DM
PRMY2=APY2/DM
PRMZ2=APZ2/DM
RTE1=RTE11/DB
XLGTH=XLGTH1/FM
WDTH=WDTH!/FM
THK=THK1/FM
WL=WL1/FM

*FORMATING
*

*

WRITE(8,*)
IF(P.EQ.1) THEN
WRITE(8,101)

101  FORMAT(11X,'DT',16X,'PWF')

ELSEIF(P.EQ.2) THEN
WRITE(8,102)

102 FORMAT(11X,DT',16X,'DP')

ELSE

WRITE(8,103)

103 FORMAT(11X,'DTD',16X,PWD’)

ENDIF

WRITE(8,104)

104 FORMAT(7X,

',6X,'

* UNIFORM GRID
¥k

DO 11 I=1,NY

DY()=(WDTH-WL)/(NY-(NY2-NY1+1))
11 CONTINUE

DO 16 I=NY1,NY2
DY(I)=WL/(NY2-NY1+1)
16 CONTINUE
*

DO 30K=1,NZ
DO 30 J=1,NY
DO 30 1=1,NX

PRMX(1,J,K)=PRMX2
PRMY(1,J,K)=PRMY2
PRMZ(1,], K)=PRMZ2
POR(],J,K)=POR2
CMP(1,],K)=CMP2
VIS(1,J,K)=VIS2
FVF(1,J,K)=FVF2
PI(1,],K)=10.DO

)
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RTE(1,J,K)=0.D0
30 CONTINUE
*

IF(NREG.GE.3) THEN
MX(NREG)=1
MZ(NREG)=1
LX(NREG)=NX
LZ(NREG)=NZ
DO 311 11=NREG-1,1,-1
MX(11)=MX(I11+1)+NST
MZ(11)=MZ(11+1)+NST
LX(I1)=LX(I1+1)-NST
LZ(I11)=LZ(1+1)-N%7
IF(11.EQ.1) THEN
DO 41 K=MZ(I1),LZ(i1)
DO 41 J=MY,LY
DO 41 I=MX(11),LX(11}
VIS(1,],K)=VIS2/MR
CMP(1,J,K)=CMPZ*NR
41 CONTINUE
VKI1)=1
CK(I1)=1
ELSE

DO 40 K=MZ(I1),LZ(11)
DO 40 J=MY,LY

DO 40 1=MX{I1),LX(I1)
VIS(L,J,K)=(VIS2/MR)*(RM1+(11-2)*RM2)

CMP(1,],K)=CMP2*NR/(RM3+(11-2)*RM4)
40 CONTINUE
VK(I1)=RM1+(11-2)*RM2
CK(I1)=RM3+(11-2)*RM4

ENDIF

311 CONTINUE
VK(NREG)=VIS(NX,NY,NZ)/VIS(01,02,03)
CK(NREG)=CMP(01,02,03)/CMP(NX,NY,NZ)

*

DX(NX)=X2/2
DX(1)=X2/2

DO 91 I=2.vA 1
IF(.GE.M. X" ). AND.LLE.LX(1)) THEN

D)](::(I)=X1/(LX(1)-MX(1)+1)

ELS
DX(I)=(XLGTH-X2-X1)/(NX-(LX(1)-MX(1)+1+2*NST))

ENDIF
91 CONTINUE
*

DZ(NZ)=722/2
DZ(1)=22/2
DO 92 1=2,NZ-1
IF(1.GE.MZ(1).AND.L.LE.LZ(1)) THEN
DZ(N)=Z1/(LZ(1)-MZ(1)+1)
ELSE
DZ(1)=(THK-Z2-Z1)/(NZ-(LZ(1)-MZ(1)+1+2*NST))

ENDIF




92 CONTINUE
%k
* CALCULATION OF THE SWEPT VOLUME
*

DO 312 I1=1,NREG
AS(11)=0.0D0
BS(I1)=0.0D0
HS(11)=0.0D0
DO 4 I=MX(1),LX(11)

AS(11)=ASI1)+FM*DX(I)

4 CONTINUE
DO 571=MY,LY
BS11)=BS(I1)+FM*DY(I)
57 CONTINUE

DO 58 I=MZ(11),LZ(11)
HSI1)=HS(I1)+FM*DZ(I)
58 CONTINUE
VS(I1)=ASI1)*BS(I1)*HS(11)
PRINT*,VK(I1),CK(11)
312 CONTINUE
ELSE
DO 71 K=MZ1,L.Z1
DO 71J=MY,LY
DO 71 I=MX1,LX1
VIS(1,J, K)=VIS2/MR
CMP(1,J,K)=CMP2*NR
71  CONTINUE
ENDIF

%k
ALPHA=APX2/(3790.85D0*POR2*(VIS21/MR)*CMP21*NR *
& AS(NREG-1)*BS(NREG-1))
PD1=0.007G8*HS(NREG-1)*APX2/(FVF2*(VIS21/MR)*RTE11)

DO 820 K=1,NZ

DO 820 J=1,NY

DO 820 1=1,NX
ARAX(I,J K)=DY (J)*DZ(K)
ARAY(LJ K)=DX(I)*DZ(K)
ARAZ(1,J K)=DXI)*DY(J)

VOLB(1,J,K)=DX(I)*DY(J)*DZ(K)
820 CONTINUE
%

DO 10K=1,NZ

DO 10 J=1,NY

DO 101=1,NX

IF (1.LEQ.1) THEN

TRMX1(1,J,K)=0.D0
ELSE
TRMX1(1,J,K)=2*ARAX(1,J,K)*ARAX(I-1,],K)*
PRMX(LJ,K)*PRMX(I-1,] K)/((ARAX(1,J K)*
PRMX(LJK)*DX(I-1)+ARAX(-1,J K)*
PRMX(I-1,J, K}*DXD))y*VIS(I-1,J K))

fo RO B

ENDIF
10 CONTINUE
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IF (LEQ.NX) THEN
TRMX2(1,],K)=0.DO
ELSE

TRMX2(1,J K)=2*ARAX(LJ, K)*ARAX (1+1,] K)*
PRMX(I,J,K)*PRMX(1+1,J,K)/((ARAX(I,J,K)*
PRMX (1], K)*DX(I+1)+ARAX(1+1,], K)*
PRMX(I+1,J,K)*DX(1))*VIS(LJ,K))

R R

ENDIF
31 CONTINUE

*

DO 32 K=1,NZ
DO 32 J=1,NY
DO 32 I=1,NX
IF (J.LEQ.1) THEN
TRMY1(1,J,K)=0.DO
ELSE
TRMY1(1,J,K)=2*ARAY (1] K)*ARAY(1,J-1,K)*

& PRMY(LJ,K)*PRMY(1,J-1,K)/((ARAY(1,J,K)*
& PRMY(LJ, K)*DY({J-1)+ARAY(L,J-1,K)*
& PRMY(1,J-1,K)*DY(J))*VIS(1,J-1,K))
ENDIF
32 CONTINUE
*
DO 33 K=1,NZ
DO 33 J=1,NY
DO 33 I=1,NX
IF J.LEQ.NY) THEN
TRMY2(1,J,K)=0.DO
ELSE

TRMY2(1,J, K)=2*ARAY (1], K)*ARAY(L,J+1,K)*
PRMY(1,J,K)*PRMY (I,J+1,K)/((ARAY(L,J K)*
PRMY(1,J, K)*DY(J+1)+ARAY(L,J+1,K)*
PRMY(1,J+1,K)*DY(J))*VIS(1,],K))

po Bo B

ENDIF
33 CONTINUE
*

DO 34 K=1,NZ

DO 34 J=1,NY

DO 34 I=1,NX

IF (K.EQ.1) THEN

TRMZ1(1,J,K)=0.D0
ELSE
TRMZ1(1,],K)=2*ARAZ(L,J, K)*ARAZ(],J K-1)*
PRMZ(1,J,K)*PRMZ(1,J K- 1)/((ARAZ(1,] K)*
PRMZ(1,J,K)*DZ(K-1)+ARAZ(1,] K-1)*
PRMZ(1,J K-1)*DZ(K))*VIS(L,] K-1))

Po o P>

ENDIF
34 CONTINUE
*

DO 35 K=1,NZ




DO 35 J=1,NY

DO 351=1,NX

IF (K.EQ.NZ) THEN

TRMZ2(1,},K)=0.D0
ELSE
TRMZ2(1,J,K)=2*ARAZ(1,J, K)*ARAZ(L,J K+ )*
PRMZ(LJ,K)*PRMZ(1,] K+1)/((ARAZ(1,} K)*
PRMZ(i,J Ky*DZ(K+1)+ARAZ(1,J K+1)*
PRMZ(1,] K+1)*DZ(K))*VIS(L,J K))

RoRo R

ENDIF
35 CONTINUE
*®

DO 830 K=1,NZ

DO 830 J=1,NY

DO 830 1=1,NX
Z(1,J,K)=TRMZ1(1,],K)
B(1,J,K)=TRMYi1(1,],K)
D(1,J,K)=TRMX1(1,J,K)
F1,J,K)=TRMX2(1,] K)
H(1,J,K)=TRMY2(1,J K)
S(1,J,K)=TRMZ2(1,J,K)

830 CONTINUE
*

*k

VT=0.DO
DO 45J=NY1,NY2
VT=VT+VOLB(NX1,J,NZ1)
45 CONTINUE
*

DO 46J=NYI1,NY2
RTE(NX1,J,NZ1)=RTE1*VOLB(NX1,],NZ1)/VT

RADE(NX1,J,NZ1)=0.28D0*DSQRT(DSQRT(PRMZ(NX1,J,NZ1)/

PRMX(NX1,JNZ1))*(DX(NX1)**2)+
DSQRT(PRMX(NX1,J,NZ1)/
PRMZ(NX1,JNZ1))*(DZ(NZ1)**2))/

((PRMZ(NX1,J,NZ1)/PRMX(NX1,J,NZ1))**

RPRrpp

0.25D0)

PI(NX1,J,NZ1)=2*DACOS(-1.D0)*DSQRT(PRMX(NX1,J,NZ1)*

PPMZ(NX1,J,NZ1))*DY J)/(VIS(NX1,J,NZ1)*

Ro R

46 CONTINUE
*

0.25D0+(PRMX(NX1,J,NZ1)/PRMZ(NX1,J,NZ1))**

FVF(NX1,J,NZ1)*(DLOG(RADE(NX1,],NZ1)/RW)))

*
TIM=0.D0
Oo=M
1J=0
JJ1=KK

DO 5011=1,NO
IF (I.LEQ.1) THEN
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DO 60 K=1,NZ
DO 60J=1NY
DO 60 1=1,NX
PRSI(1,J,K)=PRSIB
CONTINUE
DELT=DELTB
ENDIF

DO 73 K=1,NZ
DO 73 J=1,NY
DO 73 1=1,NX

&

IF (1.LEQ.1) THEN
CIX(1,],K)=TRMX2(1,J,K)*(PRSI(I+1,],K)-PRSI(L},K))
ELSEIF (1.LEQ.NX) THEN
CIX(1,J,K)=-TRMX 1(1,J,K)*(PRSI(1,] K)-PRSI(I-1,].K))
ELSE
CIX(1,], K)=TRMX2(1,J,K)*(PRSI(I+1,],K)-PRSI(J.K))-
TRMX1(1,J,K)*(PRSI(1,J ,K)-PRSI(I-1,],K))
ENDIF
IF (J.EQ.1) THEN
CIY(1,),K)=TRMY2(1,J,K)*(PRSI(1,J+1,K)-PRSI(1,J,K))
ELSEIF (J.EQ.NY) THEN
CIY(1,],K)=-TRMY 1(1J,K)*(PRSI(1,J,K)-PRSI(1,J-1,K))
ELSE
CIY(1,J,K)=TRMY2(1,J,K)*(PRSi(1,J+1,K)-PRSI(1,],K))-
TRMY1(1,J,K)*(PRSI(1,J,K)-PRSI(1,J-1,K))
ENDIF
IF (K.EQ.1) THEN
CIZ(1,J, K)=TRMZ2(1,], K)*(PRSI(1,J,K+1)-PRSI(LJ,K))
ELSEIF (K.EQ.NZ) THEN
S C1Z(1,J,K)=-TRMZ1(1,J,K)*(PRSI(1,],K)-PRSI(I,},K-1))
ELSE
CIZ(1,J,X)=TRMZ2(1,J,K)*(PRSI(1,J,K+1)-PRSI(I,J,K))-
TRMZ1(1,J,K)*(PRSI(1,J,K)-PRSI(1,J.K-1))
ENDIF
CI(1,],K)=CIX(1,],K)+CIY(1,J, K)+CIZ(LJ K)

73 CONTINUE

*

*

DO 840 K=1,NZ
DO 840 J=1,NY
DO 840 I=1,NX

&

AP(1,J,K)=VOLB(l,J,K)*POR(1,],K)*CMP(L,J K)/DELT

E(1,J,K)=-(Z(1,J,K)+B(1,J,K)+D(L,J K)+F(LJ,K)+
H(1,J,K)+S(1,J,K)+AP(1,J K))

Q(1,),K)=RTE(1,J,K)*FVF(1,J K)-CI(LJ,K)

840 CONTINUE
%

%

DO 93 K=1,NZ
DO 93 J=1,NY
D093 I=1,NX

DPI(1,J,K)=-1.1D0
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93 CONTINUE
*

7 DO 90 K=1,NZ
DO 90 J=1,NY
DO 89 I=1,NX

&

DL(I)=D(,J,K)
EL(=E(LJ,K)
FLI)=F(1,J,K)
IF(J.EQ.1) THEN
P1=0.D0
ELSE
P1=DPI(1,J-1,K)
ENDIF
IFJ.EQ.NY) THEN
P2=0.D0
ELSE
P2=DPI(1,J+1,K)
ENDIF
IF(K.EQ.1) THEN
P3=0.D0
ELSE
P3=DPI(l,J . K-1)
ENDIF
IF(K.EQ.NZ) THEN
P4=0.D0
ELSE
P4=DPI(1,J,K+1)
ENDIF

QL(N=Q(1,J.K)-B(1,J,K)*P1-H(LJ,K)*
P2-7(1,J K)*P3-S(1,J,K)*P4

89 CONTINUE
W(1)=FL(1)/EL(1)
DO 600 IT1=2,NX-1

WD)=FL{I)/(ELJIN)-DLAI*W(III- 1))

600 CONTINUE

G(1)=QL(1)/EL(1)

DO 610 111=2,NX

G/D)=(QLII)-DLAIIN)*GII- 1))/(ELJI)-DLAIN*W(I11-1))

610 CONTINUE

DP(NX,J,K)=G(NX)

DO 620 I1I=NX-1,1,-1

DP(IILJ,K)=G{II)-WII)*DP(111+1,],K)

620 CONTINUE

90

CONTINUE

TOL=0.D0

DO 630 K=1,NZ
DO 630 J=1,NY
DO 630 I=1,NX

DTOL=ABS(DP(1,],K)-DPI(1,J K))
IF(DTOL.GT.TOL) THEN

TOL=DTOL

ENDIF

630 CONTINUE

IF(TOL.GT.TOLL) THEN
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DO 632 K=1,NZ
DO 632 J=1,NY
DO 632 I=1,NX
DPI(1,J,K)=DP(1,J,K)
632 CONTINUE
GO TO7
ELSE
DO 631 K=1,NZ
DO 631 J=1,NY
DO 631 I=1,NX
PRS(1,J,K)=PRSI(1,J,K)+DP(LJ,K)
631 CONTINUE
ENDIF
%k

* MATERIAL BALANCE

%
IF(MB.EQ.1) THEN
XDMB=0.D0
DO 633 K=1,NZ
DO 633 J=1,NY
DO 633 I=1,NX
XDMB=XDMB+CMP(1,],K)*VOLB(L,J,K)*POR (1.} K)*DP(,J K)
633 CONTINUE
XNMB=FVF2*RTE1*DELT
XMB=XNMB/XDMB
PRINT* XMB,TIM1
ENDIF

*
IF(11.LEQ.1) THEN
TIM=DELT

ELSE
TIM=TIM+DELT

ENDIF
TIM1=TIM/SH

PRF1(01,02,03)=PRS(01,02,03)-RTE(01,02,03)/P1(01,02,03)
PRF(01,02,03)=PRF1(01,02,03)/PP
PRIS(01,02,03)=PRSIB1-PRF(01,02,03)

IF(P.EQ.1) THEN
IF(IL.EQ.JJ1) THEN
WRITE(8,9) TIM1,PRF(01,02,03)
9 FORMAT(2X,F13.5,4X,F15.5)
JJ1=JJ1+KK
JJ=JJ+1
ENDIF

ELSEIF(P.EQ.2) THEN

IF(I1.EQ.JJ1) THEN
WRITE(8,49) TIM1,PRIS(01,02,03)

49 FORMAT(2X,F13.7,4X,F9.3)
JJ1=1J1+KK
JJ=J1+1
ENDIF
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*

ELSE
*
*DIMENSIONLESS TIME & PRESSURE
*

TD=TIMI*ALPHA
PD=PD1*PRIS(01,02,03)

IF(1.EQ.JJ1) THEN
WRITE(8,39) TD,PD
FORMAT(2X,F15.5,4X,F15.9)

1J1=JJ1+KK
JJ=1J+1
ENDIF

ENDIF

IF(I1.GT.O) THEN
DELTA=COUNT*DELTA

0O=0+M
ENDIF
IF(TIM1.GT.TIME1) GOTO 13

DO 650 K=1,NZ
DO 650 J=1,NY
DO 650 I=1,NX
PRSI(1,J,K)=PRS(1,],K)
650 CONTINUE
DELT=DELTA
50 CONTINUE
13 WRITE(8,3) 1]
3 FORMAT(5X,14)

39

*
STOP
END
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123
APPENDIX B

Transient Pressure Response for a Two-Region Composite
Reservoir with a Horizontal Well
Input Data

as, = 2.0 k,, = 200.0

bs, = 2.0 kyl = 200.0

hs, = 4.0 k,, = 20.0

ap, = 4.0 k,, 20.0

b, = 2.0 Ky, 20.0

h, = 6.0 k,, = 2.00

L, =10 L/b = 0.50

Qutpui
At, Hrs o Ap, Psia PuD dp,p/dinty,  dp,p/dt,

0.03500 0.0030776 117.78 2.8531 0.69959 233.98
0.03600 0.0031655 118.55 2.8724 0.69952 227.27
0.03700 0.0032534 119.30 2.8911 0.69976 221.02
0.03800 0.0033414 120.03 2.9093 0.69972 215.10
0.03900 0.0034293 120.73 2.9270 0.69953 209.38
0.04000 0.0035172 121.42 2.9443 0.69951 204.00
0.04100 0.0036052 122.09 2.9610 0.69911 198.78
0.04200 0.0036931 122.74 2.9773 0.69866 193.80
0.04300 0.0037810 123.38 2.9932 0.69805 189.02
0.04400 0.0038690 124.00 3.0087 0.69744 184.46
0.04500 0.0039569 124.60 3.0238 0.69712 180.18
0.04600 0.0040448 125.19 3.0386 0.69630 175.97
0.04700 0.0041328 125.77 3.0530 0.69571 171.99
0.04800 0.0042207 126.33 3.0670 0.69508 168.18
0.04900 0.0043086 126.88 3.0808 0.69445 164.52
0.05000 0.0043966 127.42 3.0942 0.69380 161.01
0.05100 0.0044845 127.95 3.1073 0.69293 157.59
0.05200 0.0045724 128.46 3.1202 0.69232 154.40



0.05300
C.05400
0.05500
0.05600
0.05700
0.05800
0.05900
0.06000
0.06100
0.06200
0.06300
0.06400
0.06500
0.06600
0.06700
0.06800
0.06900
0.07000
0.07100
0.07200
0.07300
0.07400
0.07500
0.07600
0.07700
0.07800
0.07900
0.08000
6.08100
0.08200
0.08300
0.08400
0.08500
0.08600
0.08700
0.08800
0.08900
0.09000
0.09100
0.09200
0.09300
0.09400

0.0046603
0.0047483
0.0048362
0.0049241
0.0050121
0.0051000
0.0051879
0.0052759
0.0053638
0.0054517
0.0055397
0.0056276
0.0057155
0.0058034
0.0058914
0.0059793
0.0060672
0.0061552
0.0062431
0.0063310
0.0064190
0.0065069
0.0065948
0.0066828
0.0067707
0.0068586
0.0069466
0.0070345
0.0071224
0.0072103
0.0072983
0.0073862
0.0074741
0.0075621
0.0076500
0.0077379
0.0078259
0.0079138
0.0080017
0.0080897
0.0081776
0.0082655

128.97
129.46
129.95
130.42
130.88
131.34
131.79
132.23
132.66
133.08
133.50
133.90
134.30
134.70
135.09
135.47
135.84
136.21
136.57
136.93
137.28
137.63
137.97
138.30
138.63
138.96
139.28
139.59
139.91
140.21
140.52
140.82
141.11
141.40
141.69
141.97
142.25
142.53
142.80
143.07
143.34
143.60

.1328
.1451
1571
.1689
.1805
.1918
.2030
.2139
.2246
.2351
.2454
.2555
.2655
2752
.2848
.2943
.3036
3127
3217
.3305
.3392
.3478
.3562
.3645
3727
.3808
.3887
.3965
4042
4119
4194
4268
4341
3.4413
3.4484
3.4554
3.4623
3.4691
3.4759
3.4825
3.4891
3.4956

wuuuwuuwuwuuwwuwuwuuuwuuuwwuuuuuw

0.69169
0.69080
0.69010
0.68927
0.68864
0.68780
0.68691
0.68622
0.68542
0.68461
0.68377
0.68291
0.68224
0.68131
0.68050
0.67971
0.67889
0.67808
0.67719
0.67642
0.67566
0.67474
0.67397
0.67313
0.67239
0.67155
0.67067
0.66994
0.66915
0.66833
0.66754
0.66671
0.66602
0.66518
0.66440
0.66365
0.66288
0.66213
0.66134
0.66061
0.65991
0.65909
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151.29
148.24
145.35
142.53
139.85
137.23
134.69
132.27
129.91
127.63
125.42
123.27
121.22
119.19
117.27
115.38
113.55
i11.77
110.02
108.35
106.72
105.12
103.58
102.07
100.61
99.180
97.780
96.436
95.131
93.840
92.585
91.355
90.174
88.999
87.860
86.752
85.665
84.607
83.566
82.556
81.571
80.593



APPENDIX C

Development of an Expression for the Constant Value of the Dimensionless

Cartesian Pressure Derivative During the Pseudosteady-state Period

This appendix presents the development of an expression to demonstrate the relationship
between the dimensionless Cartesian pressure derivative response and the dimensionless
time based on the swept region area for the pseudosteady-state flow regime corresponding

to the swept region.

Depending on the geometry of any closed reservoir, the dimensionless Cartesiar. pressure
derivative versus dimensionless time, on a log-log scale, has a constant value for the
pseudosteady-state flow period corresponding to the swept region. For closed circular
reservoirs, this value happens to be 2r. By using the basic definition of compressibility
and the definitions used for the dimensionless variables in Chapter 4, a constant value for
the Cartesian pressure derivative during the pseudosteady-state flow period in a closed

rectangular reservoir can be calculated as follows:

@= '%g% (C-1)
where

v = dAh; (C-2)
and

dv = Bqdt (C-3)
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By rearranging Equations 4.28 and 4.29:

41 - 31908500A;
T ka DA (C-4)

By rearranging Equation 4.30:

dp uBq

= 0.00708 kgh, P*P (C-5)

By rearranging Equation (C-1):

cyvdp = -dv (C-6)

To account properly for the units, q should be converted to ft3/hr from STB/day.

Therefore, Equation (C-3) becomes:

- x5.614fDs«_ D _n
dv = Bq(STB/D) STBD 24 ks 0.234 PBqdt (C-7)

Substituting Equations (C-5) and (C-7) into Equation (C-6) and simplifying;

(5.614)

pwD = (3790.85)*(0.00708)* A DA (C-8)
and
PwD= 6.28 DA = 21{{DA (C'g)



